WorldWideScience

Sample records for identify phenotype-specific drugs

  1. Utilization of genomic signatures to identify phenotype-specific drugs.

    Directory of Open Access Journals (Sweden)

    Seiichi Mori

    2009-08-01

    Full Text Available Genetic and genomic studies highlight the substantial complexity and heterogeneity of human cancers and emphasize the general lack of therapeutics that can match this complexity. With the goal of expanding opportunities for drug discovery, we describe an approach that makes use of a phenotype-based screen combined with the use of multiple cancer cell lines. In particular, we have used the NCI-60 cancer cell line panel that includes drug sensitivity measures for over 40,000 compounds assayed on 59 independent cells lines. Targets are cancer-relevant phenotypes represented as gene expression signatures that are used to identify cells within the NCI-60 panel reflecting the signature phenotype and then connect to compounds that are selectively active against those cells. As a proof-of-concept, we show that this strategy effectively identifies compounds with selectivity to the RAS or PI3K pathways. We have then extended this strategy to identify compounds that have activity towards cells exhibiting the basal phenotype of breast cancer, a clinically-important breast cancer characterized as ER-, PR-, and Her2- that lacks viable therapeutic options. One of these compounds, Simvastatin, has previously been shown to inhibit breast cancer cell growth in vitro and importantly, has been associated with a reduction in ER-, PR- breast cancer in a clinical study. We suggest that this approach provides a novel strategy towards identification of therapeutic agents based on clinically relevant phenotypes that can augment the conventional strategies of target-based screens.

  2. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities

    DEFF Research Database (Denmark)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B.

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any...... associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents...... including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong...

  3. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities.

    Science.gov (United States)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B; Papamarkou, Theodore; Huber, Kilian V M; Mutz, Cornelia; Toretsky, Jeffrey A; Bennett, Keiryn L; Olsen, Jesper V; Brunak, Søren; Kovar, Heinrich; Superti-Furga, Giulio

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three pediatric tumor types, we identified Ewing sarcoma-specific interactions of a diverse set of targeted agents including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong synergistic propensity in Ewing sarcoma, revealing its targets in critical Ewing sarcoma signaling routes. Using a multilevel experimental approach including quantitative phosphoproteomics, we analyzed the molecular rationale behind the disease-specific synergistic effect of simultaneous application of PKC412 and IGF1R inhibitors. The mechanism of the drug synergy between these inhibitors is different from the sum of the mechanisms of the single agents. The combination effectively inhibited pathway crosstalk and averted feedback loop repression, in EWS-FLI1-dependent manner. Mol Cancer Ther; 16(1); 88-101. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  5. HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening.

    Science.gov (United States)

    Charoenkwan, Phasit; Hwang, Eric; Cutler, Robert W; Lee, Hua-Chin; Ko, Li-Wei; Huang, Hui-Ling; Ho, Shinn-Ying

    2013-01-01

    High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images. We propose an automated analysis method with novel descriptors of neuromorphology features for analyzing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1) automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate classifier to group neurons treated by different drug concentrations using support vector machine and an intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite retraction. Three identified features, total neurite length, average neurite length, and average neurite area were able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module and neuron image datasets are provided as a freely downloadable

  6. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening.

    Directory of Open Access Journals (Sweden)

    Maha-Hamadien Abdulla

    2009-07-01

    Full Text Available Praziquantel (PZQ is the only widely available drug to treat schistosomiasis. Given the potential for drug resistance, it is prudent to search for novel therapeutics. Identification of anti-schistosomal chemicals has traditionally relied on phenotypic (whole organism screening with adult worms in vitro and/or animal models of disease-tools that limit automation and throughput with modern microtiter plate-formatted compound libraries.A partially automated, three-component phenotypic screen workflow is presented that utilizes at its apex the schistosomular stage of the parasite adapted to a 96-well plate format with a throughput of 640 compounds per month. Hits that arise are subsequently screened in vitro against adult parasites and finally for efficacy in a murine model of disease. Two GO/NO GO criteria filters in the workflow prioritize hit compounds for tests in the animal disease model in accordance with a target drug profile that demands short-course oral therapy. The screen workflow was inaugurated with 2,160 chemically diverse natural and synthetic compounds, of which 821 are drugs already approved for human use. This affords a unique starting point to 'reposition' (re-profile drugs as anti-schistosomals with potential savings in development timelines and costs.Multiple and dynamic phenotypes could be categorized for schistosomula and adults in vitro, and a diverse set of 'hit' drugs and chemistries were identified, including anti-schistosomals, anthelmintics, antibiotics, and neuromodulators. Of those hits prioritized for tests in the animal disease model, a number of leads were identified, one of which compares reasonably well with PZQ in significantly decreasing worm and egg burdens, and disease-associated pathology. Data arising from the three components of the screen are posted online as a community resource.To accelerate the identification of novel anti-schistosomals, we have developed a partially automated screen workflow that

  7. Integration of genome-scale metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-induced metabolic perturbation.

    Science.gov (United States)

    Cordes, Henrik; Thiel, Christoph; Baier, Vanessa; Blank, Lars M; Kuepfer, Lars

    2018-01-01

    Drug-induced perturbations of the endogenous metabolic network are a potential root cause of cellular toxicity. A mechanistic understanding of such unwanted side effects during drug therapy is therefore vital for patient safety. The comprehensive assessment of such drug-induced injuries requires the simultaneous consideration of both drug exposure at the whole-body and resulting biochemical responses at the cellular level. We here present a computational multi-scale workflow that combines whole-body physiologically based pharmacokinetic (PBPK) models and organ-specific genome-scale metabolic network (GSMN) models through shared reactions of the xenobiotic metabolism. The applicability of the proposed workflow is illustrated for isoniazid, a first-line antibacterial agent against Mycobacterium tuberculosis , which is known to cause idiosyncratic drug-induced liver injuries (DILI). We combined GSMN models of a human liver with N-acetyl transferase 2 (NAT2)-phenotype-specific PBPK models of isoniazid. The combined PBPK-GSMN models quantitatively describe isoniazid pharmacokinetics, as well as intracellular responses, and changes in the exometabolome in a human liver following isoniazid administration. Notably, intracellular and extracellular responses identified with the PBPK-GSMN models are in line with experimental and clinical findings. Moreover, the drug-induced metabolic perturbations are distributed and attenuated in the metabolic network in a phenotype-dependent manner. Our simulation results show that a simultaneous consideration of both drug pharmacokinetics at the whole-body and metabolism at the cellular level is mandatory to explain drug-induced injuries at the patient level. The proposed workflow extends our mechanistic understanding of the biochemistry underlying adverse events and may be used to prevent drug-induced injuries in the future.

  8. Tissue-specific functional networks for prioritizing phenotype and disease genes.

    Directory of Open Access Journals (Sweden)

    Yuanfang Guan

    Full Text Available Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as "functionality" and "functional relationships" are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.

  9. Combinatorial Drug Screening Identifies Ewing Sarcoma-specific Sensitivities

    DEFF Research Database (Denmark)

    Radic-Sarikas, Branka; Tsafou, Kalliopi P; Emdal, Kristina B.

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any...... including approved drugs. We were able to retrieve highly synergistic drug combinations specific for Ewing sarcoma and identified signaling processes important for Ewing sarcoma cell proliferation determined by EWS-FLI1 We generated a molecular target profile of PKC412, a multikinase inhibitor with strong...

  10. Open innovation for phenotypic drug discovery: The PD2 assay panel.

    Science.gov (United States)

    Lee, Jonathan A; Chu, Shaoyou; Willard, Francis S; Cox, Karen L; Sells Galvin, Rachelle J; Peery, Robert B; Oliver, Sarah E; Oler, Jennifer; Meredith, Tamika D; Heidler, Steven A; Gough, Wendy H; Husain, Saba; Palkowitz, Alan D; Moxham, Christopher M

    2011-07-01

    Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.

  11. Cell and small animal models for phenotypic drug discovery

    Directory of Open Access Journals (Sweden)

    Szabo M

    2017-06-01

    Full Text Available Mihaly Szabo,1 Sara Svensson Akusjärvi,1 Ankur Saxena,1 Jianping Liu,2 Gayathri Chandrasekar,1 Satish S Kitambi1 1Department of Microbiology Tumor, and Cell Biology, 2Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden Abstract: The phenotype-based drug discovery (PDD approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery. Keywords: phenotype, screening, PDD, discovery, zebrafish, drug

  12. Can the genotype or phenotype of two polymorphic drug metabolising cytochrome P450-enzymes identify oral lichenoid drug eruptions?

    DEFF Research Database (Denmark)

    Kragelund, Camilla; Hansen, Claus; Reibel, Jesper

    2010-01-01

    Lichenoid drug eruptions (LDE) in the oral cavity are adverse drug reactions (ADR) that are impossible to differentiate from oral lichen planus (OLP) as no phenotypic criteria exist. Impaired function of polymorphic cytochrome 450-enzymes (CYPs) may cause increased plasma concentration of some...

  13. Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs

    Directory of Open Access Journals (Sweden)

    Chan-Jung Chang

    2018-05-01

    Full Text Available Summary: Connecting specific cancer genotypes with phenotypes and drug responses constitutes the central premise of precision oncology but is hindered by the genetic complexity and heterogeneity of primary cancer cells. Here, we use patient-derived induced pluripotent stem cells (iPSCs and CRISPR/Cas9 genome editing to dissect the individual contributions of two recurrent genetic lesions, the splicing factor SRSF2 P95L mutation and the chromosome 7q deletion, to the development of myeloid malignancy. Using a comprehensive panel of isogenic iPSCs—with none, one, or both genetic lesions—we characterize their relative phenotypic contributions and identify drug sensitivities specific to each one through a candidate drug approach and an unbiased large-scale small-molecule screen. To facilitate drug testing and discovery, we also derive SRSF2-mutant and isogenic normal expandable hematopoietic progenitor cells. We thus describe here an approach to dissect the individual effects of two cooperating mutations to clinically relevant features of malignant diseases. : Papapetrou and colleagues develop a comprehensive panel of isogenic iPSC lines with SRSF2 P95L mutation and chr7q deletion. They use these cells to identify cellular phenotypes contributed by each genetic lesion and therapeutic vulnerabilities specific to each one and develop expandable hematopoietic progenitor cell lines to facilitate drug discovery. Keywords: induced pluripotent stem cells, myelodysplastic syndrome, CRISPR/Cas9, gene editing, mutational cooperation, splicing factor mutations, spliceosomal mutations, SRSF2, chr7q deletion

  14. Novel Phenotypic Outcomes Identified for a Public Collection of Approved Drugs from a Publicly Accessible Panel of Assays.

    Directory of Open Access Journals (Sweden)

    Jonathan A Lee

    Full Text Available Phenotypic assays have a proven track record for generating leads that become first-in-class therapies. Whole cell assays that inform on a phenotype or mechanism also possess great potential in drug repositioning studies by illuminating new activities for the existing pharmacopeia. The National Center for Advancing Translational Sciences (NCATS pharmaceutical collection (NPC is the largest reported collection of approved small molecule therapeutics that is available for screening in a high-throughput setting. Via a wide-ranging collaborative effort, this library was analyzed in the Open Innovation Drug Discovery (OIDD phenotypic assay modules publicly offered by Lilly. The results of these tests are publically available online at www.ncats.nih.gov/expertise/preclinical/pd2 and via the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/ (AID 1117321. Phenotypic outcomes for numerous drugs were confirmed, including sulfonylureas as insulin secretagogues and the anti-angiogenesis actions of multikinase inhibitors sorafenib, axitinib and pazopanib. Several novel outcomes were also noted including the Wnt potentiating activities of rotenone and the antifolate class of drugs, and the anti-angiogenic activity of cetaben.

  15. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    Science.gov (United States)

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates for the enzymatic reaction. In this study, susceptibility of HIV mutations to drugs was evaluated by selective formation of three FL products after the enzymatic HIV-PR reaction. This proof-of-concept study indicates that the present HPLC-FL method could be an alternative to current phenotypic assays for the evaluation of HIV drug resistance. PMID:25988960

  16. Candidate gene resequencing to identify rare, pedigree-specific variants influencing healthy aging phenotypes in the long life family study

    DEFF Research Database (Denmark)

    Druley, Todd E; Wang, Lihua; Lin, Shiow J

    2016-01-01

    from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation......BACKGROUND: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. METHODS......: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually...

  17. A Novel Drug-Mouse Phenotypic Similarity Method Detects Molecular Determinants of Drug Effects.

    Directory of Open Access Journals (Sweden)

    Jeanette Prinz

    2016-09-01

    Full Text Available The molecular mechanisms that translate drug treatment into beneficial and unwanted effects are largely unknown. We present here a novel approach to detect gene-drug and gene-side effect associations based on the phenotypic similarity of drugs and single gene perturbations in mice that account for the polypharmacological property of drugs. We scored the phenotypic similarity of human side effect profiles of 1,667 small molecules and biologicals to profiles of phenotypic traits of 5,384 mouse genes. The benchmarking with known relationships revealed a strong enrichment of physical and indirect drug-target connections, causative drug target-side effect links as well as gene-drug links involved in pharmacogenetic associations among phenotypically similar gene-drug pairs. The validation by in vitro assays and the experimental verification of an unknown connection between oxandrolone and prokineticin receptor 2 reinforces the ability of this method to provide new molecular insights underlying drug treatment. Thus, this approach may aid in the proposal of novel and personalized treatments.

  18. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells.

    Science.gov (United States)

    Drawnel, Faye M; Boccardo, Stefano; Prummer, Michael; Delobel, Frédéric; Graff, Alexandra; Weber, Michael; Gérard, Régine; Badi, Laura; Kam-Thong, Tony; Bu, Lei; Jiang, Xin; Hoflack, Jean-Christophe; Kiialainen, Anna; Jeworutzki, Elena; Aoyama, Natsuyo; Carlson, Coby; Burcin, Mark; Gromo, Gianni; Boehringer, Markus; Stahlberg, Henning; Hall, Benjamin J; Magnone, Maria Chiara; Kolaja, Kyle; Chien, Kenneth R; Bailly, Jacques; Iacone, Roberto

    2014-11-06

    Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Faye M. Drawnel

    2014-11-01

    Full Text Available Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.

  20. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    OpenAIRE

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates f...

  1. Similarity-based search of model organism, disease and drug effect phenotypes

    KAUST Repository

    Hoehndorf, Robert

    2015-02-19

    Background: Semantic similarity measures over phenotype ontologies have been demonstrated to provide a powerful approach for the analysis of model organism phenotypes, the discovery of animal models of human disease, novel pathways, gene functions, druggable therapeutic targets, and determination of pathogenicity. Results: We have developed PhenomeNET 2, a system that enables similarity-based searches over a large repository of phenotypes in real-time. It can be used to identify strains of model organisms that are phenotypically similar to human patients, diseases that are phenotypically similar to model organism phenotypes, or drug effect profiles that are similar to the phenotypes observed in a patient or model organism. PhenomeNET 2 is available at http://aber-owl.net/phenomenet. Conclusions: Phenotype-similarity searches can provide a powerful tool for the discovery and investigation of molecular mechanisms underlying an observed phenotypic manifestation. PhenomeNET 2 facilitates user-defined similarity searches and allows researchers to analyze their data within a large repository of human, mouse and rat phenotypes.

  2. Phenotypic characterization of glioblastoma identified through shape descriptors

    Science.gov (United States)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2016-03-01

    This paper proposes quantitatively describing the shape of glioblastoma (GBM) tissue phenotypes as a set of shape features derived from segmentations, for the purposes of discriminating between GBM phenotypes and monitoring tumor progression. GBM patients were identified from the Cancer Genome Atlas, and quantitative MR imaging data were obtained from the Cancer Imaging Archive. Three GBM tissue phenotypes are considered including necrosis, active tumor and edema/invasion. Volumetric tissue segmentations are obtained from registered T1˗weighted (T1˗WI) postcontrast and fluid-attenuated inversion recovery (FLAIR) MRI modalities. Shape features are computed from respective tissue phenotype segmentations, and a Kruskal-Wallis test was employed to select features capable of classification with a significance level of p < 0.05. Several classifier models are employed to distinguish phenotypes, where a leave-one-out cross-validation was performed. Eight features were found statistically significant for classifying GBM phenotypes with p <0.05, orientation is uninformative. Quantitative evaluations show the SVM results in the highest classification accuracy of 87.50%, sensitivity of 94.59% and specificity of 92.77%. In summary, the shape descriptors proposed in this work show high performance in predicting GBM tissue phenotypes. They are thus closely linked to morphological characteristics of GBM phenotypes and could potentially be used in a computer assisted labeling system.

  3. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery.

    Science.gov (United States)

    Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott

    2018-05-01

    The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.

  4. An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits.

    Directory of Open Access Journals (Sweden)

    Iksoo Huh

    Full Text Available Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.

  5. A side effect resource to capture phenotypic effects of drugs

    DEFF Research Database (Denmark)

    Kuhn, Michael; Campillos, Monica; Letunic, Ivica

    2010-01-01

    The molecular understanding of phenotypes caused by drugs in humans is essential for elucidating mechanisms of action and for developing personalized medicines. Side effects of drugs (also known as adverse drug reactions) are an important source of human phenotypic information, but so far research...

  6. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  7. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  8. A Phenotypic Cell-Binding Screen Identifies a Novel Compound Targeting Triple-Negative Breast Cancer.

    Science.gov (United States)

    Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong

    2018-06-11

    We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.

  9. Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets.

    Science.gov (United States)

    Horman, Shane R; To, Jeremy; Lamb, John; Zoll, Jocelyn H; Leonetti, Nicole; Tu, Buu; Moran, Rita; Newlin, Robbin; Walker, John R; Orth, Anthony P

    2017-11-21

    Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo , murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.

  10. Familial adenomatous polyposis patients without an identified APC germline mutation have a severe phenotype

    DEFF Research Database (Denmark)

    Bisgaard, M L; Ripa, R; Knudsen, Anne Louise

    2004-01-01

    BACKGROUND: Development of more than 100 colorectal adenomas is diagnostic of the dominantly inherited autosomal disease familial adenomatous polyposis (FAP). Germline mutations can be identified in the adenomatous polyposis coli (APC) gene in approximately 80% of patients. The APC protein...... comprises several regions and domains for interaction with other proteins, and specific clinical manifestations are associated with the mutation assignment to one of these regions or domains. AIMS: The phenotype in patients without an identified causative APC mutation was compared with the phenotype...... in patients with a known APC mutation and with the phenotypes characteristic of patients with mutations in specific APC regions and domains. PATIENTS: Data on 121 FAP probands and 149 call up patients from 70 different families were extracted from the Danish Polyposis register. METHODS: Differences in 16...

  11. Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Philip W. Brownjohn

    2017-04-01

    Full Text Available Summary: Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP processing and the accumulation of APP-derived amyloid β (Aβ peptides are key processes in Alzheimer's disease (AD. We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation. : In this article, Livesey and colleagues perform a phenotypic drug screen in a human stem cell model of Alzheimer's disease. The anthelminthic avermectins are identified as a family of compounds that increase the production of short Aβ peptides over longer more toxic Aβ forms. The effect is analogous to existing γ-secretase modulators, but is independent of the core γ-secretase complex. Keywords: neural stem cells, Alzheimer's disease, phenotypic screening, iPSCs, human neurons, dementia, Down syndrome, amyloid beta, ivermectin, selamectin

  12. Towards precision medicine-based therapies for glioblastoma: interrogating human disease genomics and mouse phenotypes.

    Science.gov (United States)

    Chen, Yang; Gao, Zhen; Wang, Bingcheng; Xu, Rong

    2016-08-22

    Glioblastoma (GBM) is the most common and aggressive brain tumors. It has poor prognosis even with optimal radio- and chemo-therapies. Since GBM is highly heterogeneous, drugs that target on specific molecular profiles of individual tumors may achieve maximized efficacy. Currently, the Cancer Genome Atlas (TCGA) projects have identified hundreds of GBM-associated genes. We develop a drug repositioning approach combining disease genomics and mouse phenotype data towards predicting targeted therapies for GBM. We first identified disease specific mouse phenotypes using the most recently discovered GBM genes. Then we systematically searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with GBM. We evaluated the ranks for approved and novel GBM drugs, and compared with an existing approach, which also use the mouse phenotype data but not the disease genomics data. We achieved significantly higher ranks for the approved and novel GBM drugs than the earlier approach. For all positive examples of GBM drugs, we achieved a median rank of 9.2 45.6 of the top predictions have been demonstrated effective in inhibiting the growth of human GBM cells. We developed a computational drug repositioning approach based on both genomic and phenotypic data. Our approach prioritized existing GBM drugs and outperformed a recent approach. Overall, our approach shows potential in discovering new targeted therapies for GBM.

  13. Phenotypic Screening Approaches to Develop Aurora Kinase Inhibitors: Drug Discovery Perspectives.

    Science.gov (United States)

    Marugán, Carlos; Torres, Raquel; Lallena, María José

    2015-01-01

    Targeting mitotic regulators as a strategy to fight cancer implies the development of drugs against key proteins, such as Aurora-A and -B. Current drugs, which target mitosis through a general mechanism of action (stabilization/destabilization of microtubules), have several side effects (neutropenia, alopecia, and emesis). Pharmaceutical companies aim at avoiding these unwanted effects by generating improved and selective drugs that increase the quality of life of the patients. However, the development of these drugs is an ambitious task that involves testing thousands of compounds through biochemical and cell-based assays. In addition, molecules usually target complex biological processes, involving several proteins and different molecular pathways, further emphasizing the need for high-throughput screening techniques and multiplexing technologies in order to identify drugs with the desired phenotype. We will briefly describe two multiplexing technologies [high-content imaging (HCI) and flow cytometry] and two key processes for drug discovery research (assay development and validation) following our own published industry quality standards. We will further focus on HCI as a useful tool for phenotypic screening and will provide a concrete example of HCI assay to detect Aurora-A or -B selective inhibitors discriminating the off-target effects related to the inhibition of other cell cycle or non-cell cycle key regulators. Finally, we will describe other assays that can help to characterize the in vitro pharmacology of the inhibitors.

  14. Rational polypharmacology: systematically identifying and engaging multiple drug targets to promote axon growth

    Science.gov (United States)

    Al-Ali, Hassan; Lee, Do-Hun; Danzi, Matt C.; Nassif, Houssam; Gautam, Prson; Wennerberg, Krister; Zuercher, Bill; Drewry, David H.; Lee, Jae K.; Lemmon, Vance P.; Bixby, John L.

    2016-01-01

    Mammalian Central Nervous System (CNS) neurons regrow their axons poorly following injury, resulting in irreversible functional losses. Identifying therapeutics that encourage CNS axon repair has been difficult, in part because multiple etiologies underlie this regenerative failure. This suggests a particular need for drugs that engage multiple molecular targets. Although multi-target drugs are generally more effective than highly selective alternatives, we lack systematic methods for discovering such drugs. Target-based screening is an efficient technique for identifying potent modulators of individual targets. In contrast, phenotypic screening can identify drugs with multiple targets; however, these targets remain unknown. To address this gap, we combined the two drug discovery approaches using machine learning and information theory. We screened compounds in a phenotypic assay with primary CNS neurons and also in a panel of kinase enzyme assays. We used learning algorithms to relate the compounds’ kinase inhibition profiles to their influence on neurite outgrowth. This allowed us to identify kinases that may serve as targets for promoting neurite outgrowth, as well as others whose targeting should be avoided. We found that compounds that inhibit multiple targets (polypharmacology) promote robust neurite outgrowth in vitro. One compound with exemplary polypharmacology, was found to promote axon growth in a rodent spinal cord injury model. A more general applicability of our approach is suggested by its ability to deconvolve known targets for a breast cancer cell line, as well as targets recently shown to mediate drug resistance. PMID:26056718

  15. Cancer drug addiction is relayed by an ERK2-dependent phenotype switch.

    Science.gov (United States)

    Kong, Xiangjun; Kuilman, Thomas; Shahrabi, Aida; Boshuizen, Julia; Kemper, Kristel; Song, Ji-Ying; Niessen, Hans W M; Rozeman, Elisa A; Geukes Foppen, Marnix H; Blank, Christian U; Peeper, Daniel S

    2017-10-12

    Observations from cultured cells, animal models and patients raise the possibility that the dependency of tumours on the therapeutic drugs to which they have acquired resistance represents a vulnerability with potential applications in cancer treatment. However, for this drug addiction trait to become of clinical interest, we must first define the mechanism that underlies it. We performed an unbiased CRISPR-Cas9 knockout screen on melanoma cells that were both resistant and addicted to inhibition of the serine/threonine-protein kinase BRAF, in order to functionally mine their genome for 'addiction genes'. Here we describe a signalling pathway comprising ERK2 kinase and JUNB and FRA1 transcription factors, disruption of which allowed addicted tumour cells to survive on treatment discontinuation. This occurred in both cultured cells and mice and was irrespective of the acquired drug resistance mechanism. In melanoma and lung cancer cells, death induced by drug withdrawal was preceded by a specific ERK2-dependent phenotype switch, alongside transcriptional reprogramming reminiscent of the epithelial-mesenchymal transition. In melanoma cells, this reprogramming caused the shutdown of microphthalmia-associated transcription factor (MITF), a lineage survival oncoprotein; restoring this protein reversed phenotype switching and prevented the lethality associated with drug addiction. In patients with melanoma that had progressed during treatment with a BRAF inhibitor, treatment cessation was followed by increased expression of the receptor tyrosine kinase AXL, which is associated with the phenotype switch. Drug discontinuation synergized with the melanoma chemotherapeutic agent dacarbazine by further suppressing MITF and its prosurvival target, B-cell lymphoma 2 (BCL-2), and by inducing DNA damage in cancer cells. Our results uncover a pathway that underpins drug addiction in cancer cells, which may help to guide the use of alternating therapeutic strategies for enhanced

  16. Phenotypic screening approaches to develop Aurora kinase inhibitors: Drug Discovery perspectives

    Directory of Open Access Journals (Sweden)

    Carlos eMarugán

    2016-01-01

    Full Text Available Targeting mitotic regulators as a strategy to fight cancer implies the development of drugs against key proteins such as Aurora A and B. Current drugs which target mitosis through a general mechanism of action (stabilization/destabilization of microtubules, have several side effects (neutropenia, alopecia, emesis. Pharmaceutical companies aim at avoiding these unwanted effects by generating improved and selective drugs that increase the quality of life of the patients. However, the development of these drugs is an ambitious task that involves testing thousands of compounds through biochemical and cell-based assays. In addition, molecules usually target complex biological processes, involving several proteins and different molecular pathways, further emphasizing the need for high-throughput screening techniques and multiplexing technologies in order to identify drugs with the desired phenotype.We will briefly describe two multiplexing technologies (high-content imaging, microarrays and flow cytometry and two key processes for drug discovery research (assay development and validation following our own published industry quality standards. We will further focus on high-content imaging as a useful tool for phenotypic screening and will provide a concrete example of high-content imaging assay to detect Aurora A or B selective inhibitors discriminating the off-target effects related to inhibition of other cell cycle or non-cell cycle key regulators. Finally, we will describe other assays that can help to characterize the in vitro pharmacology of the inhibitors.

  17. Identification of differentiation-stage specific molecular markers for the osteoblastic phenotype

    DEFF Research Database (Denmark)

    Twine, Natalie; Chen, Li; Wilkins, Marc

    to age-matched control (n=4). Using RNA-seq and cluster analysis, we identified a set of stage-specific molecular markers that define the progression of OB phenotype during ex vivo culture of hMSC, predict in vivo bone formation capacity of hMSC and can be employed to study the mechanisms of impaired......The phenotype of osteoblastic (OB) cells in culture is currently defined using a limited number of markers of low sensitivity and specificity which belong mostly to extracellular matrix proteins. Also, for clinical use of human skeletal (mesenchymal) stem cells (hMSC) in bone regeneration......, there is a need to identify predictive markers for in vivo bone forming capacity. Thus, we employed Illumina RNA sequencing (RNASeq) to examine changes in gene expression across 8 time points between 0-12 days of ex vivo OB differentiation of hMSC. We identified a subset of expressed genes as potentially...

  18. Drug-specific characteristics of thrombocytopenia caused by non-cytotoxic drugs

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Andersen, M; Hansen, P B

    1999-01-01

    OBJECTIVE: To analyse drug-specific clinical characteristics and to investigate the possible influence of epidemiological and other factors on thrombocytopenia induced by selected non-cytotoxic drugs. METHODS: A retrospective analysis of drug-induced thrombocytopenia reported to the Danish...... determined by the drug itself and also by its usage pattern. No specific patient-related factor responsible for the heterogeneity of the clinical appearance of the adverse reaction was identified. Factors related to the physician, such as monitoring recommendations or level of attention towards the adverse...

  19. [Phenotypic diversity of toxigenic Vibrio cholerae O1 El Tor strains identified in China].

    Science.gov (United States)

    Zhao, Xuan; Zhang, Li; Li, Jie; Kan, Biao; Liang, Weili

    2014-05-01

    To understand the phenotypic diversity of toxigenic Vibrio cholerae O1 El Tor strains isolated from different provinces in China during the last 50 years. Traditional biotyping testings including susceptibility to polymyxin B, sensitivity to group IV phage, Voges-Proskauer test and haemolysis of sheep erythrocytes were conducted. Data from Biotype-specific phenotype analysis revealed that only 133 isolates carried the typical El Tor phenotypes while the other 251 isolates displayed atypical El Tor phenotypes. Combined with ctxB, rstR genotypes and phenotypic characteristics, 64 isolates were identified as typical El Tor biotype, 21 were El Tor variants that showing the typical El Tor biotype-specific phenotype but with ctxB(class). 280 isolates were defined as the hybrid groups with traits of both classical and El Tor biotypes that could be further classified into 45 groups, based on the combination of genotypes of ctxB, rstR and phenotypic characteristics. Toxigenic Vibrio cholerae O1 El Tor strains that isolated from different provinces in China displayed high phenotypic diversity. The traditional biotype traits could not be used to correctly distinguish the two different biotypes.

  20. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms.

    Science.gov (United States)

    Esplin, M Sean; Manuck, Tracy A; Varner, Michael W; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M; Ilekis, John

    2015-09-01

    We sought to use an innovative tool that is based on common biologic pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB) to enhance investigators' ability to identify and to highlight common mechanisms and underlying genetic factors that are responsible for SPTB. We performed a secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks' gestation. Each woman was assessed for the presence of underlying SPTB causes. A hierarchic cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis with the use of VEGAS software. One thousand twenty-eight women with SPTB were assigned phenotypes. Hierarchic clustering of the phenotypes revealed 5 major clusters. Cluster 1 (n = 445) was characterized by maternal stress; cluster 2 (n = 294) was characterized by premature membrane rupture; cluster 3 (n = 120) was characterized by familial factors, and cluster 4 (n = 63) was characterized by maternal comorbidities. Cluster 5 (n = 106) was multifactorial and characterized by infection (INF), decidual hemorrhage (DH), and placental dysfunction (PD). These 3 phenotypes were correlated highly by χ(2) analysis (PD and DH, P cluster 3 of SPTB. We identified 5 major clusters of SPTB based on a phenotype tool and hierarch clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors that were underlying SPTB. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Targeting the latest hallmark of cancer: another attempt at 'magic bullet' drugs targeting cancers' metabolic phenotype.

    Science.gov (United States)

    Cuperlovic-Culf, M; Culf, A S; Touaibia, M; Lefort, N

    2012-10-01

    The metabolism of tumors is remarkably different from the metabolism of corresponding normal cells and tissues. Metabolic alterations are initiated by oncogenes and are required for malignant transformation, allowing cancer cells to resist some cell death signals while producing energy and fulfilling their biosynthetic needs with limiting resources. The distinct metabolic phenotype of cancers provides an interesting avenue for treatment, potentially with minimal side effects. As many cancers show similar metabolic characteristics, drugs targeting the cancer metabolic phenotype are, perhaps optimistically, expected to be 'magic bullet' treatments. Over the last few years there have been a number of potential drugs developed to specifically target cancer metabolism. Several of these drugs are currently in clinical and preclinical trials. This review outlines examples of drugs developed for different targets of significance to cancer metabolism, with a focus on small molecule leads, chemical biology and clinical results for these drugs.

  2. Algorithmic Mapping and Characterization of the Drug-Induced Phenotypic-Response Space of Parasites Causing Schistosomiasis.

    Science.gov (United States)

    Singh, Rahul; Beasley, Rachel; Long, Thavy; Caffrey, Conor R

    2018-01-01

    Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Amongst these, schistosomiasis (bilharzia or 'snail fever'), caused by blood flukes of the genus Schistosoma, ranks second only to malaria in terms of human impact: two hundred million people are infected and close to 800 million are at risk of infection. Drug screening against helminths poses unique challenges: the parasite cannot be cloned and is difficult to target using gene knockouts or RNAi. Consequently, both lead identification and validation involve phenotypic screening, where parasites are exposed to compounds whose effects are determined through the analysis of the ensuing phenotypic responses. The efficacy of leads thus identified derives from one or more or even unknown molecular mechanisms of action. The two most immediate and significant challenges that confront the state-of-the-art in this area are: the development of automated and quantitative phenotypic screening techniques and the mapping and quantitative characterization of the totality of phenotypic responses of the parasite. In this paper, we investigate and propose solutions for the latter problem in terms of the following: (1) mathematical formulation and algorithms that allow rigorous representation of the phenotypic response space of the parasite, (2) application of graph-theoretic and network analysis techniques for quantitative modeling and characterization of the phenotypic space, and (3) application of the aforementioned methodology to analyze the phenotypic space of S. mansoni - one of the etiological agents of schistosomiasis, induced by compounds that target its polo-like kinase 1 (PLK 1) gene - a recently validated drug target. In our approach, first, bio-image analysis algorithms are used to quantify the phenotypic responses of different drugs. Next, these responses are linearly mapped into a low- dimensional space using Principle

  3. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    Science.gov (United States)

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  4. Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations.

    Science.gov (United States)

    Vilar, Santiago; Hripcsak, George

    2016-01-01

    Drug-target identification is crucial to discover novel applications for existing drugs and provide more insights about mechanisms of biological actions, such as adverse drug effects (ADEs). Computational methods along with the integration of current big data sources provide a useful framework for drug-target and drug-adverse effect discovery. In this article, we propose a method based on the integration of 3D chemical similarity, target and adverse effect data to generate a drug-target-adverse effect predictor along with a simple leveraging system to improve identification of drug-targets and drug-adverse effects. In the first step, we generated a system for multiple drug-target identification based on the application of 3D drug similarity into a large target dataset extracted from the ChEMBL. Next, we developed a target-adverse effect predictor combining targets from ChEMBL with phenotypic information provided by SIDER data source. Both modules were linked to generate a final predictor that establishes hypothesis about new drug-target-adverse effect candidates. Additionally, we showed that leveraging drug-target candidates with phenotypic data is very useful to improve the identification of drug-targets. The integration of phenotypic data into drug-target candidates yielded up to twofold precision improvement. In the opposite direction, leveraging drug-phenotype candidates with target data also yielded a significant enhancement in the performance. The modeling described in the current study is simple and efficient and has applications at large scale in drug repurposing and drug safety through the identification of mechanism of action of biological effects.

  5. How Phenotypic Screening Influenced Drug Discovery: Lessons from Five Years of Practice.

    Science.gov (United States)

    Haasen, Dorothea; Schopfer, Ulrich; Antczak, Christophe; Guy, Chantale; Fuchs, Florian; Selzer, Paul

    Since 2011, phenotypic screening has been a trend in the pharmaceutical industry as well as in academia. This renaissance was triggered by analyses that suggested that phenotypic screening is a superior strategy to discover first-in-class drugs. Despite these promises and considerable investments, pharmaceutical research organizations have encountered considerable challenges with the approach. Few success stories have emerged in the past 5 years and companies are questioning their investment in this area. In this contribution, we outline what we have learned about success factors and challenges of phenotypic screening. We then describe how our efforts in phenotypic screening have influenced our approach to drug discovery in general. We predict that concepts from phenotypic screening will be incorporated into target-based approaches and will thus remain influential beyond the current trend.

  6. Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

    Directory of Open Access Journals (Sweden)

    Jonathan D Mosley

    Full Text Available A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1 non-synonymous SNPs (nsSNPs associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1 thrombosis, evaluated in a population of 1,655 African Americans; and (2 four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs, and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03, driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10-5, FDR p = 0.03 (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L while the additive model showed enrichment related to chromatid segregation (p = 4×10-6, FDR p = 0.005 (KIF25, PINX1. We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.

  7. Phenotype, Genotype, and Drug Resistance in Subtype C HIV-1 Infection.

    Science.gov (United States)

    Derache, Anne; Wallis, Carole L; Vardhanabhuti, Saran; Bartlett, John; Kumarasamy, Nagalingeswaran; Katzenstein, David

    2016-01-15

    Virologic failure in subtype C is characterized by high resistance to first-line antiretroviral (ARV) drugs, including efavirenz, nevirapine, and lamivudine, with nucleoside resistance including type 2 thymidine analog mutations, K65R, a T69del, and M184V. However, genotypic algorithms predicting resistance are mainly based on subtype B viruses and may under- or overestimate drug resistance in non-B subtypes. To explore potential treatment strategies after first-line failure, we compared genotypic and phenotypic susceptibility of subtype C human immunodeficiency virus 1 (HIV-1) following first-line ARV failure. AIDS Clinical Trials Group 5230 evaluated patients failing an initial nonnucleoside reverse-transcriptase inhibitor (NNRTI) regimen in Africa and Asia, comparing the genotypic drug resistance and phenotypic profile from the PhenoSense (Monogram). Site-directed mutagenesis studies of K65R and T69del assessed the phenotypic impact of these mutations. Genotypic algorithms overestimated resistance to etravirine and rilpivirine, misclassifying 28% and 32%, respectively. Despite K65R with the T69del in 9 samples, tenofovir retained activity in >60%. Reversion of the K65R increased susceptibility to tenofovir and other nucleosides, while reversion of the T69del showed increased resistance to zidovudine, with little impact on other NRTI. Although genotype and phenotype were largely concordant for first-line drugs, estimates of genotypic resistance to etravirine and rilpivirine may misclassify subtype C isolates compared to phenotype. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. Characterization of the multiple drug resistance phenotype expressed by tumour cells following in vitro exposure to fractionated X-irradiation

    International Nuclear Information System (INIS)

    Hill, B.T.; McClean, S.; Hosking, L.; Shellard, S.; Dempke, W.; Whelan, R.

    1992-01-01

    The major clinical problem of the emergence of drug resistant tumor cell populations is recognized in patients previously treated with antitumor drugs and with radiotherapy. It is proposed that, although radiation-induced vascular fibrosis may limit drug delivery to the tumor, exposure to radiation may 'induce' or 'select for' drug resistance. This hypothesis was examined by establishing in vitro model systems to investigate the resistance phenotype of tumor cells following exposure to X-rays. Characteristically tumor cells surviving exposure to a series of fractions of X-irradiation are shown to have consistently expressed resistance to multiple drugs, including the Vinca alkaloids and the epipodophyllotoxins. Currently this research is aimed at determining whether distinctive resistance mechanisms operate depending on whether resistance results following drug or X-ray exposure. Initial results indicate that whilst some common mechanisms operate, drug resistant tumor cells identified following exposure to X-irradiation appear to exhibit a novel multidrug resistance phenotype. (author). 13 refs., 1 tab

  9. CYP2C9 Genotype vs. Metabolic Phenotype for Individual Drug Dosing—A Correlation Analysis Using Flurbiprofen as Probe Drug

    Science.gov (United States)

    Vogl, Silvia; Lutz, Roman W.; Schönfelder, Gilbert; Lutz, Werner K.

    2015-01-01

    Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects), correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen) determined two hours after flurbiprofen (8.75 mg) administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 % of wild type), and 0.113 for CYP2C9*3 (19 % of wild type). If these estimates were used for flurbiprofen dose adjustment, taking 100 % for genotype *1/*1, an average reduction to 84 %, 60 %, 68 %, 43 %, and 19 % would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation ≥ 20 % and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 %, one in 20 would be 40 % off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype. PMID:25775139

  10. CYP2C9 genotype vs. metabolic phenotype for individual drug dosing--a correlation analysis using flurbiprofen as probe drug.

    Science.gov (United States)

    Vogl, Silvia; Lutz, Roman W; Schönfelder, Gilbert; Lutz, Werner K

    2015-01-01

    Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects), correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen) determined two hours after flurbiprofen (8.75 mg) administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 % of wild type), and 0.113 for CYP2C9*3 (19 % of wild type). If these estimates were used for flurbiprofen dose adjustment, taking 100 % for genotype *1/*1, an average reduction to 84 %, 60 %, 68 %, 43 %, and 19 % would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation ≥ 20 % and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 %, one in 20 would be 40 % off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype.

  11. CYP2C9 genotype vs. metabolic phenotype for individual drug dosing--a correlation analysis using flurbiprofen as probe drug.

    Directory of Open Access Journals (Sweden)

    Silvia Vogl

    Full Text Available Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects, correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen determined two hours after flurbiprofen (8.75 mg administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 % of wild type, and 0.113 for CYP2C9*3 (19 % of wild type. If these estimates were used for flurbiprofen dose adjustment, taking 100 % for genotype *1/*1, an average reduction to 84 %, 60 %, 68 %, 43 %, and 19 % would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation ≥ 20 % and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 %, one in 20 would be 40 % off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype.

  12. Identification of genus Acinetobacter: Standardization of in-house PCR and its comparison with conventional phenotypic methods.

    Science.gov (United States)

    Kulkarni, Sughosh S; Madalgi, Radhika; Ajantha, Ganavalli S; Kulkarni, Raghavendra D

    2017-01-01

    Acinetobacter is grouped under nonfermenting Gram-negative bacilli. It is increasingly isolated from pathological samples. The ability of this genus to acquire drug resistance and spread in the hospital settings is posing a grave problem in healthcare. Specific treatment protocols are advocated for Acinetobacter infections. Hence, rapid identification and drug susceptibility profiling are critical in the management of these infections. To standardize an in-house polymerase chain reaction (PCR) for identification of genus Acinetobacter and to compare PCR with two protocols for its phenotypic identification. A total of 96 clinical isolates of Acinetobacter were included in the study. An in-house PCR for genus level identification of Acinetobacter was standardized. All the isolates were phenotypically identified by two protocols. The results of PCR and phenotypic identification protocols were compared. The in-house PCR standardized was highly sensitive and specific for the genus Acinetobacter . There was 100% agreement between the phenotypic and molecular identification of the genus. The preliminary identification tests routinely used in clinical laboratories were also in complete agreement with phenotypic and molecular identification. The in-house PCR for genus level identification is specific and sensitive. However, it may not be essential for routine identification as the preliminary phenotypic identification tests used in the clinical laboratory reliably identify the genus Acinetobacter .

  13. A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning.

    Science.gov (United States)

    Sun, Yahui; Hameed, Pathima Nusrath; Verspoor, Karin; Halgamuge, Saman

    2016-12-05

    Drug repositioning can reduce the time, costs and risks of drug development by identifying new therapeutic effects for known drugs. It is challenging to reposition drugs as pharmacological data is large and complex. Subnetwork identification has already been used to simplify the visualization and interpretation of biological data, but it has not been applied to drug repositioning so far. In this paper, we fill this gap by proposing a new Physarum-inspired Prize-Collecting Steiner Tree algorithm to identify subnetworks for drug repositioning. Drug Similarity Networks (DSN) are generated using the chemical, therapeutic, protein, and phenotype features of drugs. In DSNs, vertex prizes and edge costs represent the similarities and dissimilarities between drugs respectively, and terminals represent drugs in the cardiovascular class, as defined in the Anatomical Therapeutic Chemical classification system. A new Physarum-inspired Prize-Collecting Steiner Tree algorithm is proposed in this paper to identify subnetworks. We apply both the proposed algorithm and the widely-used GW algorithm to identify subnetworks in our 18 generated DSNs. In these DSNs, our proposed algorithm identifies subnetworks with an average Rand Index of 81.1%, while the GW algorithm can only identify subnetworks with an average Rand Index of 64.1%. We select 9 subnetworks with high Rand Index to find drug repositioning opportunities. 10 frequently occurring drugs in these subnetworks are identified as candidates to be repositioned for cardiovascular diseases. We find evidence to support previous discoveries that nitroglycerin, theophylline and acarbose may be able to be repositioned for cardiovascular diseases. Moreover, we identify seven previously unknown drug candidates that also may interact with the biological cardiovascular system. These discoveries show our proposed Prize-Collecting Steiner Tree approach as a promising strategy for drug repositioning.

  14. Combinatorial drug screening identifies Ewing sarcoma-specific sensitivities

    OpenAIRE

    Radic-Sarikas, Branka; Tsafou, Kalliopi P.; Emdal, Kristina B.; Papamarkou, Theodore; Huber, Kilian V.M.; Mutz, Cornelia; Toretsky, Jeffrey A.; Bennett, Keiryn L.; Olsen, Jesper V.; Brunak, Søren; Kovar, Heinrich; Superti-Furga, Giulio

    2017-01-01

    Improvements in survival for Ewing sarcoma pediatric and adolescent patients have been modest over the past 20 years. Combinations of anticancer agents endure as an option to overcome resistance to single treatments caused by compensatory pathways. Moreover, combinations are thought to lessen any associated adverse side effects through reduced dosing, which is particularly important in childhood tumors. Using a parallel phenotypic combinatorial screening approach of cells derived from three p...

  15. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups.

    Directory of Open Access Journals (Sweden)

    Jeban Ganesalingam

    2009-09-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes.Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method.The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001. Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb and time from symptom onset to diagnosis (p<0.00001.The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.

  16. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.

    Directory of Open Access Journals (Sweden)

    J H Duncan Bassett

    Full Text Available Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium.

  17. Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits

    NARCIS (Netherlands)

    Arbore, Roberto; Sekii, Kiyono; Beisel, Christian; Ladurner, Peter; Berezikov, Eugene; Schaerer, Lukas

    2015-01-01

    Introduction: RNA interference (RNAi) of trait-specific genes permits the manipulation of specific phenotypic traits ("phenotypic engineering") and thus represents a powerful tool to test trait function in evolutionary studies. The identification of suitable candidate genes, however, often relies on

  18. Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays

    DEFF Research Database (Denmark)

    Wainø, M.; Bang, Dang Duong; Lund, Marianne

    2003-01-01

    campylobacterial cultures, 108 Campylobacter jejuni cultures and 351 campylobacterial cultures other than Camp. jejuni were subjected to various species-specific PCR assays. On the basis of the genotypic tests, it was demonstrated that Camp. jejuni and Camp. coli constituted approx. 99% of all cultures, while...... other species identified were Helicobacter pullorum, Camp. lari and Camp. upsaliensis. However, 29% of the 309 Camp. coli cultures identified by phenotypic tests were hippurate-variable or negative Camp. jejuni cultures, whereas some Camp. lari cultures and unspeciated campylobacter cultures belonged...... and Impact of the Study: Future phenotypic test schemes should be designed to allow a more accurate differentiation of Campylobacter and related species. Preferably, the phenotypic tests should be supplemented with a genotypic strategy to disclose the true campylobacterial species diversity in broilers....

  19. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.

    Science.gov (United States)

    Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina

    2017-04-01

    Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  20. Arylesterase Phenotype-Specific Positive Association Between Arylesterase Activity and Cholinesterase Specific Activity in Human Serum

    Directory of Open Access Journals (Sweden)

    Yutaka Aoki

    2014-01-01

    Full Text Available Context: Cholinesterase (ChE specific activity is the ratio of ChE activity to ChE mass and, as a biomarker of exposure to cholinesterase inhibitors, has a potential advantage over simple ChE activity. Objective: To examine the association of several potential correlates (serum arylesterase/paraoxonase activity, serum albumin, sex, age, month of blood collection, and smoking with plasma ChE specific activity. Methods: We analyzed data from 195 cancer-free controls from a nested case-control study, accounting for potential confounding. Results: Arylesterase activity had an independent, statistically significant positive association with ChE specific activity, and its magnitude was the greatest for the arylesterase phenotype corresponding to the QQ PON1192 genotype followed by phenotypes corresponding to QR and RR genotypes. Serum albumin was positively associated with ChE specific activity. Conclusions: Plasma arylesterase activity was positively associated with plasma ChE specific activity. This observation is consistent with protection conferred by a metabolic phenotype resulting in reduced internal dose.

  1. Drosophila Cancer Models Identify Functional Differences between Ret Fusions.

    Science.gov (United States)

    Levinson, Sarah; Cagan, Ross L

    2016-09-13

    We generated and compared Drosophila models of RET fusions CCDC6-RET and NCOA4-RET. Both RET fusions directed cells to migrate, delaminate, and undergo EMT, and both resulted in lethality when broadly expressed. In all phenotypes examined, NCOA4-RET was more severe than CCDC6-RET, mirroring their effects on patients. A functional screen against the Drosophila kinome and a library of cancer drugs found that CCDC6-RET and NCOA4-RET acted through different signaling networks and displayed distinct drug sensitivities. Combining data from the kinome and drug screens identified the WEE1 inhibitor AZD1775 plus the multi-kinase inhibitor sorafenib as a synergistic drug combination that is specific for NCOA4-RET. Our work emphasizes the importance of identifying and tailoring a patient's treatment to their specific RET fusion isoform and identifies a multi-targeted therapy that may prove effective against tumors containing the NCOA4-RET fusion. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels

    NARCIS (Netherlands)

    van Leeuwen, E.M.; Karssen, L.C.; Deelen, J.; Isaacs, A.; Medina-Gomez, C.; Mbarek, H.; Kanterakis, A.; Trompet, S.; Postmus, I.; Verweij, N.; van Enckevort, D.; Huffman, J.E.; White, C.C.; Feitosa, M.F.; Bartz, T.M.; Manichaikul, A.; Joshi, P.K.; Peloso, G.M.; Deelen, P.; Dijk, F.; Willemsen, G.; de Geus, E.J.C.; Milaneschi, Y.; Penninx, B.W.J.H.; Francioli, L.C.; Menelaou, A.; Pulit, S.L.; Rivadeneira, F.; Hofman, A.; Oostra, B.A.; Franco, O.H.; Mateo Leach, I.; Beekman, M.; de Craen, A.J.; Uh, H.W.; Trochet, H.; Hocking, L.J.; Porteous, D.J.; Sattar, N.; Packard, C.J.; Buckley, B.M.; Brody, J.A.; Bis, J.C.; Rotter, J.I.; Mychaleckyj, J.C.; Campbell, H.; Duan, Q.; Lange, L.A.; Wilson, J.F.; Hayward, C.; Polasek, O.; Vitart, V.; Rudan, I.; Wright, A.F.; Rich, S.S.; Psaty, B.M.; Borecki, I.B.; Kearney, P.M.; Stott, D.J.; Cupples, L.A.; Jukema, J.W.; van der Harst, P.; Sijbrands, E.J.; Hottenga, J.J.; Uitterlinden, A.G.; Swertz, M.A.; van Ommen, G.J.B; Bakker, P.I.W.; Slagboom, P.E.; Boomsma, D.I.; Wijmenga, C.; van Duijn, C.M.

    2015-01-01

    Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (∼35,000 samples) with the population-specific reference panel created

  3. Phenotypic and genotypic analysis of anti-tuberculosis drug resistance in Mycobacterium tuberculosis isolates in Myanmar.

    Science.gov (United States)

    Aung, Wah Wah; Ei, Phyu Win; Nyunt, Wint Wint; Swe, Thyn Lei; Lwin, Thandar; Htwe, Mi Mi; Kim, Kyung Jun; Lee, Jong Seok; Kim, Chang Ki; Cho, Sang Nae; Song, Sun Dae; Chang, Chulhun L

    2015-09-01

    Tuberculosis (TB) is one of the most serious health problems in Myanmar. Because TB drug resistance is associated with genetic mutation(s) relevant to responses to each drug, genotypic methods for detecting these mutations have been proposed to overcome the limitations of classic phenotypic drug susceptibility testing (DST). We explored the current estimates of drug-resistant TB and evaluated the usefulness of genotypic DST in Myanmar. We determined the drug susceptibility of Mycobacterium tuberculosis isolated from sputum smear-positive patients with newly diagnosed pulmonary TB at two main TB centers in Myanmar during 2013 by using conventional phenotypic DST and the GenoType MTBDRplus assay (Hain Lifescience, Germany). Discrepant results were confirmed by sequencing the genes relevant to each type of resistance (rpoB for rifampicin; katG and inhA for isoniazid). Of 191 isolates, phenotypic DST showed that 27.7% (n=53) were resistant to at least one first-line drug and 20.9% (n=40) were resistant to two or more, including 18.3% (n=35) multidrug-resistant TB (MDR-TB) strains. Monoresistant strains accounted for 6.8% (n=13) of the samples. Genotypic assay of 189 isolates showed 17.5% (n=33) MDR-TB and 5.3% (n=10) isoniazid-monoresistant strains. Genotypic susceptibility results were 99.5% (n=188) concordant and agreed almost perfectly with phenotypic DST (kappa=0.99; 95% confidence interval 0.96-1.01). The results highlight the burden of TB drug resistance and prove the usefulness of the genotypic DST in Myanmar.

  4. High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia

    Directory of Open Access Journals (Sweden)

    Fanny A. Pelissier Vatter

    2018-04-01

    Full Text Available Summary: Aging is associated with tissue-level changes in cellular composition that are correlated with increased susceptibility to disease. Aging human mammary tissue shows skewed progenitor cell potency, resulting in diminished tumor-suppressive cell types and the accumulation of defective epithelial progenitors. Quantitative characterization of these age-emergent human cell subpopulations is lacking, impeding our understanding of the relationship between age and cancer susceptibility. We conducted single-cell resolution proteomic phenotyping of healthy breast epithelia from 57 women, aged 16–91 years, using mass cytometry. Remarkable heterogeneity was quantified within the two mammary epithelial lineages. Population partitioning identified a subset of aberrant basal-like luminal cells that accumulate with age and originate from age-altered progenitors. Quantification of age-emergent phenotypes enabled robust classification of breast tissues by age in healthy women. This high-resolution mapping highlighted specific epithelial subpopulations that change with age in a manner consistent with increased susceptibility to breast cancer. : Vatter et al. find that single-cell mass cytometry of human mammary epithelial cells from 57 women, from 16 to 91 years old, depicts an in-depth phenotyping of aging mammary epithelia. Subpopulations of altered luminal and progenitor cells that accumulate with age may be at increased risk for oncogenic transformation. Keywords: human mammary epithelia, aging, mass cytometry, single-cell analysis, heterogeneity, breast cancer

  5. Metabolomics to unveil and understand phenotypic diversity between pathogen populations.

    Directory of Open Access Journals (Sweden)

    Ruben t'Kindt

    Full Text Available Leishmaniasis is a debilitating disease caused by the parasite Leishmania. There is extensive clinical polymorphism, including variable responsiveness to treatment. We study Leishmania donovani parasites isolated from visceral leishmaniasis patients in Nepal that responded differently to antimonial treatment due to differing intrinsic drug sensitivity of the parasites. Here, we present a proof-of-principle study in which we applied a metabolomics pipeline specifically developed for L. donovani to characterize the global metabolic differences between antimonial-sensitive and antimonial-resistant L. donovani isolates. Clones of drug-sensitive and drug-resistant parasite isolates from clinical samples were cultured in vitro and harvested for metabolomics analysis. The relative abundance of 340 metabolites was determined by ZIC-HILIC chromatography coupled to LTQ-Orbitrap mass spectrometry. Our measurements cover approximately 20% of the predicted core metabolome of Leishmania and additionally detected a large number of lipids. Drug-sensitive and drug-resistant parasites showed distinct metabolic profiles, and unsupervised clustering and principal component analysis clearly distinguished the two phenotypes. For 100 metabolites, the detected intensity differed more than three-fold between the 2 phenotypes. Many of these were in specific areas of lipid metabolism, suggesting that the membrane composition of the drug-resistant parasites is extensively modified. Untargeted metabolomics has been applied on clinical Leishmania isolates to uncover major metabolic differences between drug-sensitive and drug-resistant isolates. The identified major differences provide novel insights into the mechanisms involved in resistance to antimonial drugs, and facilitate investigations using targeted approaches to unravel the key changes mediating drug resistance.

  6. Identifying mechanistic similarities in drug responses

    KAUST Repository

    Zhao, C.

    2012-05-15

    Motivation: In early drug development, it would be beneficial to be able to identify those dynamic patterns of gene response that indicate that drugs targeting a particular gene will be likely or not to elicit the desired response. One approach would be to quantitate the degree of similarity between the responses that cells show when exposed to drugs, so that consistencies in the regulation of cellular response processes that produce success or failure can be more readily identified.Results: We track drug response using fluorescent proteins as transcription activity reporters. Our basic assumption is that drugs inducing very similar alteration in transcriptional regulation will produce similar temporal trajectories on many of the reporter proteins and hence be identified as having similarities in their mechanisms of action (MOA). The main body of this work is devoted to characterizing similarity in temporal trajectories/signals. To do so, we must first identify the key points that determine mechanistic similarity between two drug responses. Directly comparing points on the two signals is unrealistic, as it cannot handle delays and speed variations on the time axis. Hence, to capture the similarities between reporter responses, we develop an alignment algorithm that is robust to noise, time delays and is able to find all the contiguous parts of signals centered about a core alignment (reflecting a core mechanism in drug response). Applying the proposed algorithm to a range of real drug experiments shows that the result agrees well with the prior drug MOA knowledge. © The Author 2012. Published by Oxford University Press. All rights reserved.

  7. Identifying Adverse Drug Events by Relational Learning.

    Science.gov (United States)

    Page, David; Costa, Vítor Santos; Natarajan, Sriraam; Barnard, Aubrey; Peissig, Peggy; Caldwell, Michael

    2012-07-01

    The pharmaceutical industry, consumer protection groups, users of medications and government oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a clinical trial of a drug may use only a thousand patients, once a drug is released on the market it may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are observed in the broader population that were not identified during clinical trials. Therefore, there is a need for continued, post-marketing surveillance of drugs to identify previously-unanticipated ADEs. This paper casts this problem as a reverse machine learning task , related to relational subgroup discovery and provides an initial evaluation of this approach based on experiments with an actual EMR/EHR and known adverse drug events.

  8. Use of microdose phenotyping to individualise dosing of patients.

    Science.gov (United States)

    Hohmann, Nicolas; Haefeli, Walter E; Mikus, Gerd

    2015-09-01

    Administering the right amount of the right drug at the right time is a key mission of clinical medicine. This comprises dose adaptation according to a patient's intrinsic and extrinsic factors influencing drug disposition. Several biomarkers are available for dose adaptation; still, prediction of individual drug disposition may be improved. Phenotyping is the quantification of drug metabolism with probe substrates specific to drug-metabolising enzymes. This allows measurement of baseline metabolism and changes after modulation of drug metabolism. This article explores the concept of phenotyping using pharmacologically ineffective microdoses of probe substrates to obtain information on drug metabolism. Several probe drugs such as midazolam for cytochrome P450 3A have already been used, but validation of other microdosed probe drugs, analytical procedures and drug formulations still face some challenges that have to be overcome. Since microdosed probe drugs have no risk of adverse drug reactions or interference with therapy, more widespread use is possible. This allows drug-drug interaction data to be safely obtained during first-in-man studies, enhancing the clinical safety of human healthy volunteers and patients in clinical trials, and, most importantly, allows determination of the drug-metabolising phenotype in severely ill patients. With harmless probe drugs at hand quantifying drug metabolism and adapting the dose accordingly, a phenotyping-based dosing strategy could become reality, offering the possibility of individualised drug therapy with reduced adverse effects and fewer therapeutic failures.

  9. Identifying Human Phenotype Terms by Combining Machine Learning and Validation Rules

    Directory of Open Access Journals (Sweden)

    Manuel Lobo

    2017-01-01

    Full Text Available Named-Entity Recognition is commonly used to identify biological entities such as proteins, genes, and chemical compounds found in scientific articles. The Human Phenotype Ontology (HPO is an ontology that provides a standardized vocabulary for phenotypic abnormalities found in human diseases. This article presents the Identifying Human Phenotypes (IHP system, tuned to recognize HPO entities in unstructured text. IHP uses Stanford CoreNLP for text processing and applies Conditional Random Fields trained with a rich feature set, which includes linguistic, orthographic, morphologic, lexical, and context features created for the machine learning-based classifier. However, the main novelty of IHP is its validation step based on a set of carefully crafted manual rules, such as the negative connotation analysis, that combined with a dictionary can filter incorrectly identified entities, find missed entities, and combine adjacent entities. The performance of IHP was evaluated using the recently published HPO Gold Standardized Corpora (GSC, where the system Bio-LarK CR obtained the best F-measure of 0.56. IHP achieved an F-measure of 0.65 on the GSC. Due to inconsistencies found in the GSC, an extended version of the GSC was created, adding 881 entities and modifying 4 entities. IHP achieved an F-measure of 0.863 on the new GSC.

  10. Identifying niche-mediated regulatory factors of stem cell phenotypic state: a systems biology approach.

    Science.gov (United States)

    Ravichandran, Srikanth; Del Sol, Antonio

    2017-02-01

    Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell-niche interactions. Here, we propose a systems biology view that considers stem cell-niche interactions as a many-body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell-based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  11. Identifying novel drug indications through automated reasoning.

    Directory of Open Access Journals (Sweden)

    Luis Tari

    Full Text Available With the large amount of pharmacological and biological knowledge available in literature, finding novel drug indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses, and identifying new drug indications from large networks can be a time-consuming process.In this work, we developed a method that acquires the necessary facts from literature and knowledge bases, and identifies new drug indications through automated reasoning. This is achieved by encoding the molecular effects caused by drug-target interactions and links to various diseases and drug mechanism as domain knowledge in AnsProlog, a declarative language that is useful for automated reasoning, including reasoning with incomplete information. Unlike other literature-based approaches, our approach is more fine-grained, especially in identifying indirect relationships for drug indications.To evaluate the capability of our approach in inferring novel drug indications, we applied our method to 943 drugs from DrugBank and asked if any of these drugs have potential anti-cancer activities based on information on their targets and molecular interaction types alone. A total of 507 drugs were found to have the potential to be used for cancer treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7% are indeed known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8% are non-cancer drugs that are currently tested in clinical trials for cancer treatments. These results suggest that our method is able to infer drug indications (original or alternative based on their molecular targets and interactions alone and has the potential to discover novel drug indications for

  12. Index to Drug-Specific Information

    Science.gov (United States)

    ... Postmarket Drug Safety Information for Patients and Providers Index to Drug-Specific Information Share Tweet Linkedin Pin ... options Linkedin Pin it Email Print Note: This Index does not include all FDA approved drugs. It ...

  13. The wake-promoting drug modafinil stimulates specific hypothalamic circuits to promote adaptive stress responses in an animal model of PTSD.

    Science.gov (United States)

    Cohen, S; Ifergane, G; Vainer, E; Matar, M A; Kaplan, Z; Zohar, J; Mathé, A A; Cohen, H

    2016-10-11

    Pharmacotherapeutic intervention during traumatic memory consolidation has been suggested to alleviate or even prevent the development of posttraumatic stress disorder (PTSD). We recently reported that, in a controlled, prospective animal model, depriving rats of sleep following stress exposure prevents the development of a PTSD-like phenotype. Here, we report that administering the wake-promoting drug modafinil to rats in the aftermath of a stressogenic experience has a similar prophylactic effect, as it significantly reduces the prevalence of PTSD-like phenotype. Moreover, we show that the therapeutic value of modafinil appears to stem from its ability to stimulate a specific circuit within the hypothalamus, which ties together the neuropeptide Y, the orexin system and the HPA axis, to promote adaptive stress responses. The study not only confirms the value of sleep prevention and identifies the mechanism of action of a potential prophylactic treatment after traumatic exposure, but also contributes to understanding mechanisms underlying the shift towards adaptive behavioral response.

  14. Red blood cell phenotype prevalence in blood donors who self-identify as Hispanic

    DEFF Research Database (Denmark)

    Sheppard, Chelsea A; Bolen, Nicole L; Eades, Beth

    2017-01-01

    CONCLUSIONS: Molecular genotyping platforms provide a quick, high-throughput method for identifying red blood cell units for patients on extended phenotype-matching protocols, such as those with sickle cell disease or thalassemia. Most of the antigen prevalence data reported are for non-Hispanic ......CONCLUSIONS: Molecular genotyping platforms provide a quick, high-throughput method for identifying red blood cell units for patients on extended phenotype-matching protocols, such as those with sickle cell disease or thalassemia. Most of the antigen prevalence data reported are for non...

  15. Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors.

    Science.gov (United States)

    Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît

    2015-01-01

    Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.

  16. Identifying mechanistic similarities in drug responses

    KAUST Repository

    Zhao, C.; Hua, J.; Bittner, M. L.; Ivanov, I.; Dougherty, a. E. R.

    2012-01-01

    Motivation: In early drug development, it would be beneficial to be able to identify those dynamic patterns of gene response that indicate that drugs targeting a particular gene will be likely or not to elicit the desired response. One approach

  17. Association of Immunological Cell Profiles with Specific Clinical Phenotypes of Scleroderma Disease

    Science.gov (United States)

    Calzada, David; Mayayo, Teodoro; González-Rodríguez, María Luisa; Rabasco, Antonio María; Lahoz, Carlos

    2014-01-01

    This study aimed to search the correlation among immunological profiles and clinical phenotypes of scleroderma in well-characterized groups of scleroderma patients, comparing forty-nine scleroderma patients stratified according to specific clinical phenotypes with forty-nine healthy controls. Five immunological cell subpopulations (B, CD4+ and CD8+ T-cells, NK, and monocytes) and their respective stages of apoptosis and activation were analyzed by flow cytometry, in samples of peripheral blood mononuclear cells (PBMCs). Analyses of results were stratified according to disease stage, time since the diagnosis, and visceral damage (pulmonary fibrosis, pulmonary hypertension, and cardiac affliction) and by time of treatment with corticosteroids. An increase in the percentages of monocytes and a decrease in the B cells were mainly related to the disease progression. A general apoptosis decrease was found in all phenotypes studied, except in localized scleroderma. An increase of B and NK cells activation was found in patients diagnosed more than 10 years ago. Specific cell populations like monocytes, NK, and B cells were associated with the type of affected organ. This study shows how, in a heterogeneous disease, proper patient's stratification according to clinical phenotypes allows finding specific cellular profiles. Our data may lead to improvements in the knowledge of prognosis factors and to aid in the analysis of future specific therapies. PMID:24818126

  18. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    Science.gov (United States)

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  19. Ontology-based validation and identification of regulatory phenotypes

    KAUST Repository

    Kulmanov, Maxat

    2018-01-31

    Motivation: Function annotations of gene products, and phenotype annotations of genotypes, provide valuable information about molecular mechanisms that can be utilized by computational methods to identify functional and phenotypic relatedness, improve our understanding of disease and pathobiology, and lead to discovery of drug targets. Identifying functions and phenotypes commonly requires experiments which are time-consuming and expensive to carry out; creating the annotations additionally requires a curator to make an assertion based on reported evidence. Support to validate the mutual consistency of functional and phenotype annotations as well as a computational method to predict phenotypes from function annotations, would greatly improve the utility of function annotations Results: We developed a novel ontology-based method to validate the mutual consistency of function and phenotype annotations. We apply our method to mouse and human annotations, and identify several inconsistencies that can be resolved to improve overall annotation quality. Our method can also be applied to the rule-based prediction of phenotypes from functions. We show that the predicted phenotypes can be utilized for identification of protein-protein interactions and gene-disease associations. Based on experimental functional annotations, we predict phenotypes for 1,986 genes in mouse and 7,301 genes in human for which no experimental phenotypes have yet been determined.

  20. Ontology-based validation and identification of regulatory phenotypes

    KAUST Repository

    Kulmanov, Maxat; Schofield, Paul N; Gkoutos, Georgios V; Hoehndorf, Robert

    2018-01-01

    Motivation: Function annotations of gene products, and phenotype annotations of genotypes, provide valuable information about molecular mechanisms that can be utilized by computational methods to identify functional and phenotypic relatedness, improve our understanding of disease and pathobiology, and lead to discovery of drug targets. Identifying functions and phenotypes commonly requires experiments which are time-consuming and expensive to carry out; creating the annotations additionally requires a curator to make an assertion based on reported evidence. Support to validate the mutual consistency of functional and phenotype annotations as well as a computational method to predict phenotypes from function annotations, would greatly improve the utility of function annotations Results: We developed a novel ontology-based method to validate the mutual consistency of function and phenotype annotations. We apply our method to mouse and human annotations, and identify several inconsistencies that can be resolved to improve overall annotation quality. Our method can also be applied to the rule-based prediction of phenotypes from functions. We show that the predicted phenotypes can be utilized for identification of protein-protein interactions and gene-disease associations. Based on experimental functional annotations, we predict phenotypes for 1,986 genes in mouse and 7,301 genes in human for which no experimental phenotypes have yet been determined.

  1. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria.

    Science.gov (United States)

    Wettstein, Sarah; Underhaug, Jarl; Perez, Belen; Marsden, Brian D; Yue, Wyatt W; Martinez, Aurora; Blau, Nenad

    2015-03-01

    The wide range of metabolic phenotypes in phenylketonuria is due to a large number of variants causing variable impairment in phenylalanine hydroxylase function. A total of 834 phenylalanine hydroxylase gene variants from the locus-specific database PAHvdb and genotypes of 4181 phenylketonuria patients from the BIOPKU database were characterized using FoldX, SIFT Blink, Polyphen-2 and SNPs3D algorithms. Obtained data was correlated with residual enzyme activity, patients' phenotype and tetrahydrobiopterin responsiveness. A descriptive analysis of both databases was compiled and an interactive viewer in PAHvdb database was implemented for structure visualization of missense variants. We found a quantitative relationship between phenylalanine hydroxylase protein stability and enzyme activity (r(s) = 0.479), between protein stability and allelic phenotype (r(s) = -0.458), as well as between enzyme activity and allelic phenotype (r(s) = 0.799). Enzyme stability algorithms (FoldX and SNPs3D), allelic phenotype and enzyme activity were most powerful to predict patients' phenotype and tetrahydrobiopterin response. Phenotype prediction was most accurate in deleterious genotypes (≈ 100%), followed by homozygous (92.9%), hemizygous (94.8%), and compound heterozygous genotypes (77.9%), while tetrahydrobiopterin response was correctly predicted in 71.0% of all cases. To our knowledge this is the largest study using algorithms for the prediction of patients' phenotype and tetrahydrobiopterin responsiveness in phenylketonuria patients, using data from the locus-specific and genotypes database.

  2. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

    Directory of Open Access Journals (Sweden)

    Rust Steven

    2013-02-01

    Full Text Available Abstract Background The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. Methods The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Results All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated

  3. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Hyun-Tae; Hwang, Ildoo; Han, Kyung-Hwan

    2012-06-01

    Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  4. Clinical and molecular characterization of a novel INS mutation identified in patients with MODY phenotype.

    Science.gov (United States)

    Piccini, Barbara; Artuso, Rosangela; Lenzi, Lorenzo; Guasti, Monica; Braccesi, Giulia; Barni, Federica; Casalini, Emilio; Giglio, Sabrina; Toni, Sonia

    2016-11-01

    Correct diagnosis of Maturity-Onset Diabetes of the Young (MODY) is based on genetic tests requiring an appropriate subject selection by clinicians. Mutations in the insulin (INS) gene rarely occur in patients with MODY. This study is aimed at determining the genetic background and clinical phenotype in patients with suspected MODY. 34 patients with suspected MODY, negative for mutations in the GCK, HNF1α, HNF4α, HNF1β and PDX1 genes, were screened by next generation sequencing (NGS). A heterozygous INS mutation was identified in 4 members of the same family. First genetic tests performed identified two heterozygous silent nucleotide substitutions in MODY3/HNF1α gene. An ineffective attempt to suspend insulin therapy, administering repaglinide and sulphonylureas, was made. DNA was re-sequenced by NGS investigating a set of 102 genes. Genes implicated in the pathway of pancreatic β-cells, candidate genes for type 2 diabetes mellitus and genes causative of diabetes in mice were selected. A novel heterozygous variant in human preproinsulin INS gene (c.125T > C) was found in the affected family members. The new INS mutation broadens the spectrum of possible INS phenotypes. Screening for INS mutations is warranted not only in neonatal diabetes but also in MODYx patients and in selected patients with type 1 diabetes mellitus negative for autoantibodies. Subjects with complex diseases without a specific phenotype should be studied by NGS because Sanger sequencing is ineffective and time consuming in detecting rare variants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Breed-specific hematological phenotypes in the dog: a natural resource for the genetic dissection of hematological parameters in a mammalian species.

    Directory of Open Access Journals (Sweden)

    Jennifer Lawrence

    Full Text Available Remarkably little has been published on hematological phenotypes of the domestic dog, the most polymorphic species on the planet. Information on the signalment and complete blood cell count of all dogs with normal red and white blood cell parameters judged by existing reference intervals was extracted from a veterinary database. Normal hematological profiles were available for 6046 dogs, 5447 of which also had machine platelet concentrations within the reference interval. Seventy-five pure breeds plus a mixed breed control group were represented by 10 or more dogs. All measured parameters except mean corpuscular hemoglobin concentration (MCHC varied with age. Concentrations of white blood cells (WBCs, neutrophils, monocytes, lymphocytes, eosinophils and platelets, but not red blood cell parameters, all varied with sex. Neutering status had an impact on hemoglobin concentration, mean corpuscular hemoglobin (MCH, MCHC, and concentrations of WBCs, neutrophils, monocytes, lymphocytes and platelets. Principal component analysis of hematological data revealed 37 pure breeds with distinctive phenotypes. Furthermore, all hematological parameters except MCHC showed significant differences between specific individual breeds and the mixed breed group. Twenty-nine breeds had distinctive phenotypes when assessed in this way, of which 19 had already been identified by principal component analysis. Tentative breed-specific reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis. This study represents the first large-scale analysis of hematological phenotypes in the dog and underlines the important potential of this species in the elucidation of genetic determinants of hematological traits, triangulating phenotype, breed and genetic predisposition.

  6. A phenotypic profile of the Candida albicans regulatory network.

    Directory of Open Access Journals (Sweden)

    Oliver R Homann

    2009-12-01

    Full Text Available Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of

  7. A phenotypic profile of the Candida albicans regulatory network.

    Science.gov (United States)

    Homann, Oliver R; Dea, Jeanselle; Noble, Suzanne M; Johnson, Alexander D

    2009-12-01

    Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but

  8. Pectin-based colon-specific drug delivery

    OpenAIRE

    Shailendra Shukla; Deepak Jain; Kavita Verma; Shiddarth Verma

    2011-01-01

    Colon-specific drug delivery have a great importance in the delivery of drugs for the treatment of local colonic, as well as systemic diseases like Crohn′s disease, ulcerative colitis, colorectal cancer, amoebiasis, asthma, arthritis and inflammation which can be achieved by targeted delivery of drug to colon. Specific systemic absorption in the colon gave interesting possibilities for the delivery of protein and peptides. It contains relatively less proteolytic enzyme activities in the colon...

  9. Drug-related problems identified in medication reviews by Australian pharmacists

    DEFF Research Database (Denmark)

    Stafford, Andrew C; Tenni, Peter C; Peterson, Gregory M

    2009-01-01

    OBJECTIVE: In Australia, accredited pharmacists perform medication reviews for patients to identify and resolve drug-related problems. We analysed the drug-related problems identified in reviews for both home-dwelling and residential care-facility patients. The objective of this study was to exam......OBJECTIVE: In Australia, accredited pharmacists perform medication reviews for patients to identify and resolve drug-related problems. We analysed the drug-related problems identified in reviews for both home-dwelling and residential care-facility patients. The objective of this study....... These reviews had been self-selected by pharmacists and submitted as part of the reaccreditation process to the primary body responsible for accrediting Australian pharmacists to perform medication reviews. The drug-related problems identified in each review were classified by type and drugs involved. MAIN...... OUTCOME MEASURE: The number and nature of drug-related problems identified in pharmacist-conducted medication reviews. RESULTS: There were 1,038 drug-related problems identified in 234 medication reviews (mean 4.6 (+/-2.2) problems per review). The number of problems was higher (4.9 +/- 2.0 vs. 3.9 +/- 2...

  10. Identifying novel phenotypes of vulnerability and resistance to activity-based anorexia in adolescent female rats.

    Science.gov (United States)

    Barbarich-Marsteller, Nicole C; Underwood, Mark D; Foltin, Richard W; Myers, Michael M; Walsh, B Timothy; Barrett, Jeffrey S; Marsteller, Douglas A

    2013-11-01

    Activity-based anorexia is a translational rodent model that results in severe weight loss, hyperactivity, and voluntary self-starvation. The goal of our investigation was to identify vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats. Sprague-Dawley rats were maintained under conditions of restricted access to food (N = 64; or unlimited access, N = 16) until experimental exit, predefined as a target weight loss of 30-35% or meeting predefined criteria for animal health. Nonlinear mixed effects statistical modeling was used to describe wheel running behavior, time to event analysis was used to assess experimental exit, and a regressive partitioning algorithm was used to classify phenotypes. Objective criteria were identified for distinguishing novel phenotypes of activity-based anorexia, including a vulnerable phenotype that conferred maximal hyperactivity, minimal food intake, and the shortest time to experimental exit, and a resistant phenotype that conferred minimal activity and the longest time to experimental exit. The identification of objective criteria for defining vulnerable and resistant phenotypes of activity-based anorexia in adolescent female rats provides an important framework for studying the neural mechanisms that promote vulnerability to or protection against the development of self-starvation and hyperactivity during adolescence. Ultimately, future studies using these novel phenotypes may provide important translational insights into the mechanisms that promote these maladaptive behaviors characteristic of anorexia nervosa. Copyright © 2013 Wiley Periodicals, Inc.

  11. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    Science.gov (United States)

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for

  12. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism’s genome (such as the mouse genome in order to make physiological inferences about the role of genes and proteins in a less characterized organism’s genome (such as the Burmese python. We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1 production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2 enhanced assisted reproduction technology for endangered and captive reptiles; and (3 novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  13. Identification of differentiation-stage specific markers that define the ex vivo osteoblastic phenotype

    DEFF Research Database (Denmark)

    Twine, Natalie A; Chen, Li; Pang, Chi N

    2014-01-01

    The phenotype of osteoblastic (OB) cells in culture is currently defined using a limited number of markers of low sensitivity and specificity. For the clinical use of human skeletal (stromal, mesenchymal) stem cells (hMSC) in therapy, there is also a need to identify a set of gene markers...... clustering and Pearson's correlation generated 4 groups of genes: early stage differentiation genes (peak expression: 0-24h, n=28) which were enriched for extracellular matrix organisation, e.g. COL1A1, LOX, and SERPINH1; middle stage differentiating genes (peak expression days: 3 and 6, n=20) which were...

  14. Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian Familial Adenomatous Polyposis cohort.

    Science.gov (United States)

    Khan, Nikhat; Lipsa, Anuja; Arunachal, Gautham; Ramadwar, Mukta; Sarin, Rajiv

    2017-05-22

    Colo-Rectal Cancer is a common cancer worldwide with 5-10% cases being hereditary. Familial Adenomatous Polyposis (FAP) syndrome is due to germline mutations in the APC or rarely MUTYH gene. NTHL1, POLD1, POLE have been recently reported in previously unexplained FAP cases. Unlike the Caucasian population, FAP phenotype and its genotypic associations have not been widely studied in several geoethnic groups. We report the first FAP cohort from South Asia and the only non-Caucasian cohort with comprehensive analysis of APC, MUTYH, NTHL1, POLD1, POLE genes. In this cohort of 112 individuals from 53 FAP families, we detected germline APC mutations in 60 individuals (45 families) and biallelic MUTYH mutations in 4 individuals (2 families). No NTHL1, POLD1, POLE mutations were identified. Fifteen novel APC mutations and a new Indian APC mutational hotspot at codon 935 were identified. Eight very rare FAP phenotype or phenotypes rarely associated with mutations outside specific APC regions were observed. APC genotype-phenotype association studies in different geo-ethnic groups can enrich the existing knowledge about phenotypic consequences of distinct APC mutations and guide counseling and risk management in different populations. A stepwise cost-effective mutation screening approach is proposed for genetic testing of south Asian FAP patients.

  15. IDEPI: rapid prediction of HIV-1 antibody epitopes and other phenotypic features from sequence data using a flexible machine learning platform.

    Directory of Open Access Journals (Sweden)

    N Lance Hepler

    2014-09-01

    Full Text Available Since its identification in 1983, HIV-1 has been the focus of a research effort unprecedented in scope and difficulty, whose ultimate goals--a cure and a vaccine--remain elusive. One of the fundamental challenges in accomplishing these goals is the tremendous genetic variability of the virus, with some genes differing at as many as 40% of nucleotide positions among circulating strains. Because of this, the genetic bases of many viral phenotypes, most notably the susceptibility to neutralization by a particular antibody, are difficult to identify computationally. Drawing upon open-source general-purpose machine learning algorithms and libraries, we have developed a software package IDEPI (IDentify EPItopes for learning genotype-to-phenotype predictive models from sequences with known phenotypes. IDEPI can apply learned models to classify sequences of unknown phenotypes, and also identify specific sequence features which contribute to a particular phenotype. We demonstrate that IDEPI achieves performance similar to or better than that of previously published approaches on four well-studied problems: finding the epitopes of broadly neutralizing antibodies (bNab, determining coreceptor tropism of the virus, identifying compartment-specific genetic signatures of the virus, and deducing drug-resistance associated mutations. The cross-platform Python source code (released under the GPL 3.0 license, documentation, issue tracking, and a pre-configured virtual machine for IDEPI can be found at https://github.com/veg/idepi.

  16. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  17. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  18. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    2010-12-01

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  19. Drug mules” as a radiological challenge: Sensitivity and specificity in identifying internal cocaine in body packers, body pushers and body stuffers by computed tomography, plain radiography and Lodox

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Patricia M., E-mail: patricia.flach@irm.uzh.ch [Centre for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Bern, Buehlstrasse 20, 3012 Bern (Switzerland); Department of Neuroradiology, Inselspital Bern, University of Bern, 3010 Bern (Switzerland); Centre for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057 Zurich (Switzerland); Department of Radiology, University Hospital USZ, University of Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Ross, Steffen G. [Centre for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Bern, Buehlstrasse 20, 3012 Bern (Switzerland); Ampanozi, Garyfalia; Ebert, Lars [Centre for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Bern, Buehlstrasse 20, 3012 Bern (Switzerland); Centre for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057 Zurich (Switzerland); Germerott, Tanja; Hatch, Gary M. [Centre for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Bern, Buehlstrasse 20, 3012 Bern (Switzerland); Thali, Michael J. [Centre for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Bern, Buehlstrasse 20, 3012 Bern (Switzerland); Centre for Forensic Imaging and Virtopsy, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057 Zurich (Switzerland); Patak, Michael A. [Department of Radiology, Inselspital Bern, University of Bern, 3010 Bern (Switzerland); Department of Radiology, University Hospital USZ, University of Zurich, Raemistrasse 100, 8091 Zurich (Switzerland)

    2012-10-15

    Purpose: The purpose of our study was to retrospectively evaluate the specificity, sensitivity and accuracy of computed tomography (CT), digital radiography (DR) and low-dose linear slit digital radiography (LSDR, Lodox{sup ®}) in the detection of internal cocaine containers. Methods: Institutional review board approval was obtained. The study collectively consisted of 83 patients (76 males, 7 females, 16–45 years) suspected of having incorporated cocaine drug containers. All underwent radiological imaging; a total of 135 exams were performed: nCT = 35, nDR = 70, nLSDR = 30. An overall calculation of all “drug mules” and a specific evaluation of body packers, pushers and stuffers were performed. The gold standard was stool examination in a dedicated holding cell equipped with a drug toilet. Results: There were 54 drug mules identified in this study. CT of all drug carriers showed the highest diagnostic accuracy 97.1%, sensitivity 100% and specificity 94.1%. DR in all cases was 71.4% accurate, 58.3% sensitive and 85.3% specific. LSDR of all patients with internal cocaine was 60% accurate, 57.9% sensitive and 63.4% specific. Conclusions: CT was the most accurate test studied. Therefore, the detection of internal cocaine drug packs should be performed by CT, rather than by conventional X-ray, in order to apply the most sensitive exam in the medico-legal investigation of suspected drug carriers. Nevertheless, the higher radiation applied by CT than by DR or LSDR needs to be considered. Future studies should include evaluation of low dose CT protocols in order to address germane issues and to reduce dosage.

  20. Drug mules” as a radiological challenge: Sensitivity and specificity in identifying internal cocaine in body packers, body pushers and body stuffers by computed tomography, plain radiography and Lodox

    International Nuclear Information System (INIS)

    Flach, Patricia M.; Ross, Steffen G.; Ampanozi, Garyfalia; Ebert, Lars; Germerott, Tanja; Hatch, Gary M.; Thali, Michael J.; Patak, Michael A.

    2012-01-01

    Purpose: The purpose of our study was to retrospectively evaluate the specificity, sensitivity and accuracy of computed tomography (CT), digital radiography (DR) and low-dose linear slit digital radiography (LSDR, Lodox ® ) in the detection of internal cocaine containers. Methods: Institutional review board approval was obtained. The study collectively consisted of 83 patients (76 males, 7 females, 16–45 years) suspected of having incorporated cocaine drug containers. All underwent radiological imaging; a total of 135 exams were performed: nCT = 35, nDR = 70, nLSDR = 30. An overall calculation of all “drug mules” and a specific evaluation of body packers, pushers and stuffers were performed. The gold standard was stool examination in a dedicated holding cell equipped with a drug toilet. Results: There were 54 drug mules identified in this study. CT of all drug carriers showed the highest diagnostic accuracy 97.1%, sensitivity 100% and specificity 94.1%. DR in all cases was 71.4% accurate, 58.3% sensitive and 85.3% specific. LSDR of all patients with internal cocaine was 60% accurate, 57.9% sensitive and 63.4% specific. Conclusions: CT was the most accurate test studied. Therefore, the detection of internal cocaine drug packs should be performed by CT, rather than by conventional X-ray, in order to apply the most sensitive exam in the medico-legal investigation of suspected drug carriers. Nevertheless, the higher radiation applied by CT than by DR or LSDR needs to be considered. Future studies should include evaluation of low dose CT protocols in order to address germane issues and to reduce dosage

  1. Dissecting molecular stress networks: identifying nodes of divergence between life-history phenotypes.

    Science.gov (United States)

    Schwartz, Tonia S; Bronikowski, Anne M

    2013-02-01

    The complex molecular network that underlies physiological stress response is comprised of nodes (proteins, metabolites, mRNAs, etc.) whose connections span cells, tissues and organs. Variable nodes are points in the network upon which natural selection may act. Thus, identifying variable nodes will reveal how this molecular stress network may evolve among populations in different habitats and how it might impact life-history evolution. Here, we use physiological and genetic assays to test whether laboratory-born juveniles from natural populations of garter snakes (Thamnophis elegans), which have diverged in their life-history phenotypes, vary concomitantly at candidate nodes of the stress response network, (i) under unstressed conditions and (ii) in response to an induced stress. We found that two common measures of stress (plasma corticosterone and liver gene expression of heat shock proteins) increased under stress in both life-history phenotypes. In contrast, the phenotypes diverged at four nodes both under unstressed conditions and in response to stress: circulating levels of reactive oxygen species (superoxide, H(2)O(2)); liver gene expression of GPX1 and erythrocyte DNA damage. Additionally, allele frequencies for SOD2 diverge from neutral markers, suggesting diversifying selection on SOD2 alleles. This study supports the hypothesis that these life-history phenotypes have diverged at the molecular level in how they respond to stress, particularly in nodes regulating oxidative stress. Furthermore, the differences between the life-history phenotypes were more pronounced in females. We discuss the responses to stress in the context of the associated life-history phenotype and the evolutionary pressures thought to be responsible for divergence between the phenotypes. © 2012 Blackwell Publishing Ltd.

  2. [Phenotype-based primary screening for drugs promoting neuronal subtype differentiation in embryonic stem cells with light microscope].

    Science.gov (United States)

    Gao, Yi-ning; Wang, Dan-ying; Pan, Zong-fu; Mei, Yu-qin; Wang, Zhi-qiang; Zhu, Dan-yan; Lou, Yi-jia

    2012-07-01

    To set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope. Hanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes. The cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons. Phenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.

  3. Dose-specific adverse drug reaction identification in electronic patient records: temporal data mining in an inpatient psychiatric population.

    Science.gov (United States)

    Eriksson, Robert; Werge, Thomas; Jensen, Lars Juhl; Brunak, Søren

    2014-04-01

    Data collected for medical, filing and administrative purposes in electronic patient records (EPRs) represent a rich source of individualised clinical data, which has great potential for improved detection of patients experiencing adverse drug reactions (ADRs), across all approved drugs and across all indication areas. The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner. We used a psychiatric hospital's EPR system to investigate undesired drug effects. Within one workflow the method identified patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength. When applying the method to the 3,394 patients in the cohort, we identified AEs linked with a drug in 2,402 patients (70.8 %). Of the 43,528 patient-specific drug substances prescribed, 14,736 (33.9 %) were linked with AEs. From these links we identified multiple ADRs (p patient population, larger doses were prescribed to sedated patients than non-sedated patients; five antipsychotics [corrected] exhibited a significant difference (p<0.05). Finally, we present two cases (p < 0.05) identified by the workflow. The method identified the potentially fatal AE QT prolongation caused by methadone, and a non-described likely ADR between levomepromazine and nightmares found among the hundreds of identified novel links between drugs and AEs (p < 0.05). The developed method can be used to extract dose-dependent ADR information from already collected EPR data. Large-scale AE extraction from EPRs may complement or even replace current drug safety monitoring methods in the future, reducing or eliminating manual reporting and enabling much faster ADR detection.

  4. Surprisal analysis of Glioblastoma Multiform (GBM) microRNA dynamics unveils tumor specific phenotype.

    Science.gov (United States)

    Zadran, Sohila; Remacle, Francoise; Levine, Raphael

    2014-01-01

    Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer -specific phenotypic state. Utilizing global miRNA microarray expression data of normal and GBM patients tumors, surprisal analysis characterizes a miRNA system response capable of distinguishing GBM samples from normal tissue biopsy samples. We indicate that the miRNAs contributing to this system behavior is a disease phenotypic state specific to GBM and is therefore a unique GBM-specific thermodynamic signature. MiRNAs implicated in the regulation of stochastic signaling processes crucial in the hallmarks of human cancer, dominate this GBM-cancer phenotypic state. With this theory, we were able to distinguish with high fidelity GBM patients solely by monitoring the dynamics of miRNAs present in patients' biopsy samples. We anticipate that the GBM-specific thermodynamic signature will provide a critical translational tool in better characterizing cancer types and in the development of future therapeutics for GBM.

  5. Individualized Hydrocodone Therapy Based on Phenotype, Pharmacogenetics, and Pharmacokinetic Dosing.

    Science.gov (United States)

    Linares, Oscar A; Fudin, Jeffrey; Daly, Annemarie L; Boston, Raymond C

    2015-12-01

    (1) To quantify hydrocodone (HC) and hydromorphone (HM) metabolite pharmacokinetics with pharmacogenetics in CYP2D6 ultra-rapid metabolizer (UM), extensive metabolizer (EM), and poor metabolizer (PM) metabolizer phenotypes. (2) To develop an HC phenotype-specific dosing strategy for HC that accounts for HM production using clinical pharmacokinetics integrated with pharmacogenetics for patient safety. In silico clinical trial simulation. Healthy white men and women without comorbidities or history of opioid, or any other drug or nutraceutical use, age 26.3±5.7 years (mean±SD; range, 19 to 36 y) and weight 71.9±16.8 kg (range, 50 to 108 kg). CYP2D6 phenotype-specific HC clinical pharmacokinetic parameter estimates and phenotype-specific percentages of HM formed from HC. PMs had lower indices of HC disposition compared with UMs and EMs. Clearance was reduced by nearly 60% and the t1/2 was increased by about 68% compared with EMs. The canonical order for HC clearance was UM>EM>PM. HC elimination mainly by the liver, represented by ke, was reduced about 70% in PM. However, HC's apparent Vd was not significantly different among UMs, EMs, and PM. The canonical order of predicted plasma HM concentrations was UM>EM>PM. For each of the CYP2D6 phenotypes, the mean predicted HM levels were within HM's therapeutic range, which indicates HC has significant phenotype-dependent pro-drug effects. Our results demonstrate that pharmacogenetics afford clinicians an opportunity to individualize HC dosing, while adding enhanced opportunity to account for its conversion to HM in the body.

  6. An integrated chemical biology approach identifies specific vulnerability of Ewing's sarcoma to combined inhibition of Aurora kinases A and B.

    Science.gov (United States)

    Winter, Georg E; Rix, Uwe; Lissat, Andrej; Stukalov, Alexey; Müllner, Markus K; Bennett, Keiryn L; Colinge, Jacques; Nijman, Sebastian M; Kubicek, Stefan; Kovar, Heinrich; Kontny, Udo; Superti-Furga, Giulio

    2011-10-01

    Ewing's sarcoma is a pediatric cancer of the bone that is characterized by the expression of the chimeric transcription factor EWS-FLI1 that confers a highly malignant phenotype and results from the chromosomal translocation t(11;22)(q24;q12). Poor overall survival and pronounced long-term side effects associated with traditional chemotherapy necessitate the development of novel, targeted, therapeutic strategies. We therefore conducted a focused viability screen with 200 small molecule kinase inhibitors in 2 different Ewing's sarcoma cell lines. This resulted in the identification of several potential molecular intervention points. Most notably, tozasertib (VX-680, MK-0457) displayed unique nanomolar efficacy, which extended to other cell lines, but was specific for Ewing's sarcoma. Furthermore, tozasertib showed strong synergies with the chemotherapeutic drugs etoposide and doxorubicin, the current standard agents for Ewing's sarcoma. To identify the relevant targets underlying the specific vulnerability toward tozasertib, we determined its cellular target profile by chemical proteomics. We identified 20 known and unknown serine/threonine and tyrosine protein kinase targets. Additional target deconvolution and functional validation by RNAi showed simultaneous inhibition of Aurora kinases A and B to be responsible for the observed tozasertib sensitivity, thereby revealing a new mechanism for targeting Ewing's sarcoma. We further corroborated our cellular observations with xenograft mouse models. In summary, the multilayered chemical biology approach presented here identified a specific vulnerability of Ewing's sarcoma to concomitant inhibition of Aurora kinases A and B by tozasertib and danusertib, which has the potential to become a new therapeutic option.

  7. Characterization of the Drug Resistance Profiles of Patients Infected with CRF07_BC Using Phenotypic Assay and Ultra-Deep Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Szu-Wei Huang

    Full Text Available The usefulness of ultra-deep pyrosequencing (UDPS for the diagnosis of HIV-1 drug resistance (DR remains to be determined. Previously, we reported an explosive outbreak of HIV-1 circulating recombinant form (CRF 07_BC among injection drug users (IDUs in Taiwan in 2004. The goal of this study was to characterize the DR of CRF07_BC strains using different assays including UDPS. Seven CRF07_BC isolates including 4 from early epidemic (collected in 2004-2005 and 3 from late epidemic (collected in 2008 were obtained from treatment-naïve patient's peripheral blood mononuclear cells. Viral RNA was extracted directly from patient's plasma or from cultural supernatant and the pol sequences were determined using RT-PCR sequencing or UDPS. For comparison, phenotypic drug susceptibility assay using MAGIC-5 cells (in-house phenotypic assay and Antivirogram were performed. In-house phenotypic assay showed that all the early epidemic and none of the late epidemic CRF07_BC isolates were resistant to most protease inhibitors (PIs (4.4-47.3 fold. Neither genotypic assay nor Antivirogram detected any DR mutations. UDPS showed that early epidemic isolates contained 0.01-0.08% of PI DR major mutations. Furthermore, the combinations of major and accessory PI DR mutations significantly correlated with the phenotypic DR. The in-house phenotypic assay is superior to other conventional phenotypic assays in the detection of DR variants with a frequency as low as 0.01%.

  8. The Influence of CYP2D6 Phenotype on the Pharmacokinetic Profile of Atomoxetine in Caucasian Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Todor Ioana

    2017-06-01

    Full Text Available Objective: To analyze a potential phenotypic variation within the studied group based on the pharmacokinetic profile of atomoxetine and its active metabolite, and to further investigate the impact of CYP2D6 phenotype on atomoxetine pharmacokinetics. Methods: The study was conducted as an open-label, non-randomized clinical trial which included 43 Caucasian healthy volunteers. Each subject received a single oral dose of atomoxetine 25 mg. Subsequently, atomoxetine and 4-hydroxyatomoxetine-O-glucuronide (glucuronidated active metabolite plasma concentrations were determined and a noncompartmental method was used to calculate the pharmacokinetic parameters of both compounds. Further on, the CYP2D6 metabolic phenotype was assessed using the area under the curve (AUC metabolic ratio (atomoxetine/ 4-hydroxyatomoxetine-O-glucuronide and specific statistical tests (Lilliefors (Kolgomorov-Smirnov and Anderson-Darling test. The phenotypic differences in atomoxetine disposition were identified based on the pharmacokinetic profile of the parent drug and its metabolite. Results: The statistical analysis revealed that the AUC metabolic ratio data set did not follow a normal distribution. As a result, two different phenotypes were identified, respectively the poor metabolizer (PM group which included 3 individuals and the extensive metabolizer (EM group which comprised the remaining 40 subjects. Also, it was demonstrated that the metabolic phenotype significantly influenced atomoxetine pharmacokinetics, as PMs presented a 4.5-fold higher exposure to the parent drug and a 3.2-fold lower exposure to its metabolite in comparison to EMs. Conclusions: The pharmacokinetic and statistical analysis emphasized the existence of 2 metabolic phenotypes: EMs and PMs. Furthermore, it was proved that the interphenotype variability had a marked influence on atomoxetine pharmacokinetic profile.

  9. A screen to identify drug resistant variants to target-directed anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Azam Mohammad

    2003-01-01

    Full Text Available The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec, a specific inhibitor of the Chronic Myeloid Leukemia (CML-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.

  10. Exploiting Specific Interactions toward Next-Generation Polymeric Drug Transporters

    NARCIS (Netherlands)

    Wieczorek, Sebastian; Krause, Eberhard; Hackbarth, Steffen; Roeder, Beate; Hirsch, Anna K. H.; Boerner, Hans G.

    2013-01-01

    A generic method describes advanced tailoring of polymer drug carriers based on polymer-block-peptides. Combinatorial means are used to select suitable peptide segments to specifically complex small-molecule drugs. The resulting specific drug formulation agents render insoluble drugs water-soluble

  11. Integration of curated databases to identify genotype-phenotype associations

    Directory of Open Access Journals (Sweden)

    Li Jianrong

    2006-10-01

    Full Text Available Abstract Background The ability to rapidly characterize an unknown microorganism is critical in both responding to infectious disease and biodefense. To do this, we need some way of anticipating an organism's phenotype based on the molecules encoded by its genome. However, the link between molecular composition (i.e. genotype and phenotype for microbes is not obvious. While there have been several studies that address this challenge, none have yet proposed a large-scale method integrating curated biological information. Here we utilize a systematic approach to discover genotype-phenotype associations that combines phenotypic information from a biomedical informatics database, GIDEON, with the molecular information contained in National Center for Biotechnology Information's Clusters of Orthologous Groups database (NCBI COGs. Results Integrating the information in the two databases, we are able to correlate the presence or absence of a given protein in a microbe with its phenotype as measured by certain morphological characteristics or survival in a particular growth media. With a 0.8 correlation score threshold, 66% of the associations found were confirmed by the literature and at a 0.9 correlation threshold, 86% were positively verified. Conclusion Our results suggest possible phenotypic manifestations for proteins biochemically associated with sugar metabolism and electron transport. Moreover, we believe our approach can be extended to linking pathogenic phenotypes with functionally related proteins.

  12. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    Science.gov (United States)

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-03-03

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each. Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

  13. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes.

    Science.gov (United States)

    Soto-Feliciano, Yadira M; Bartlebaugh, Jordan M E; Liu, Yunpeng; Sánchez-Rivera, Francisco J; Bhutkar, Arjun; Weintraub, Abraham S; Buenrostro, Jason D; Cheng, Christine S; Regev, Aviv; Jacks, Tyler E; Young, Richard A; Hemann, Michael T

    2017-05-15

    Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6 KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. © 2017 Soto-Feliciano et al.; Published by Cold Spring Harbor Laboratory Press.

  14. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Science.gov (United States)

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  15. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  16. Phenotypic Profiling of Antibiotic Response Signatures in Escherichia coli Using Raman Spectroscopy

    Science.gov (United States)

    Athamneh, A. I. M.; Alajlouni, R. A.; Wallace, R. S.; Seleem, M. N.

    2014-01-01

    Identifying the mechanism of action of new potential antibiotics is a necessary but time-consuming and costly process. Phenotypic profiling has been utilized effectively to facilitate the discovery of the mechanism of action and molecular targets of uncharacterized drugs. In this research, Raman spectroscopy was used to profile the phenotypic response of Escherichia coli to applied antibiotics. The use of Raman spectroscopy is advantageous because it is noninvasive, label free, and prone to automation, and its results can be obtained in real time. In this research, E. coli cultures were subjected to three times the MICs of 15 different antibiotics (representing five functional antibiotic classes) with known mechanisms of action for 30 min before being analyzed by Raman spectroscopy (using a 532-nm excitation wavelength). The resulting Raman spectra contained sufficient biochemical information to distinguish between profiles induced by individual antibiotics belonging to the same class. The collected spectral data were used to build a discriminant analysis model that identified the effects of unknown antibiotic compounds on the phenotype of E. coli cultures. Chemometric analysis showed the ability of Raman spectroscopy to predict the functional class of an unknown antibiotic and to identify individual antibiotics that elicit similar phenotypic responses. Results of this research demonstrate the power of Raman spectroscopy as a cellular phenotypic profiling methodology and its potential impact on antibiotic drug development research. PMID:24295982

  17. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.

    Science.gov (United States)

    Wu, Mengmeng; Lin, Zhixiang; Ma, Shining; Chen, Ting; Jiang, Rui; Wong, Wing Hung

    2017-12-01

    Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hundreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advantages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype. With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the prevention, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

  18. IgE-Api m 4 Is Useful for Identifying a Particular Phenotype of Bee Venom Allergy.

    Science.gov (United States)

    Ruiz, B; Serrano, P; Moreno, C

    Different clinical behaviors have been identified in patients allergic to bee venom. Compound-resolved diagnosis could be an appropriate tool for investigating these differences. The aims of this study were to analyze whether specific IgE to Api m 4 (sIgE-Api m 4) can identify a particular kind of bee venom allergy and to describe response to bee venom immunotherapy (bVIT). Prospective study of 31 patients allergic to bee venom who were assigned to phenotype group A (sIgE-Api m 4 Api m 4 ≥0.98 kU/L), treated with purified aqueous (PA) extract. Sex, age, cardiovascular risk, severity of preceding sting reaction, exposure to beekeeping, and immunological data (intradermal test, sIgE/sIgG4-Apis-nApi m 1, and sIgE-rApi m 2-Api m 4 were analyzed. Systemic reactions (SRs) during bVIT build-up were analyzed. Immunological and sting challenge outcomes were evaluated in each group after 1 and 2 years of bVIT. Phenotype B patients had more severe reactions (P=.049) and higher skin sensitivity (P=.011), baseline sIgE-Apis (P=.0004), sIgE-nApi m 1 (P=.0004), and sIgG4-Apis (P=.027) than phenotype A patients. Furthermore, 41% of patients in group B experienced SRs during the build-up phase with NA; the sting challenge success rate in this group was 82%. There were no significant reductions in serial intradermal test results, but an intense reduction in sIgE-nApi m 1 (P=.013) and sIgE-Api m 4 (P=.004) was observed after the first year of bVIT. Use of IgE-Api m 4 as the only discrimination criterion demonstrated differences in bee venom allergy. Further investigation with larger populations is necessary.

  19. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting.

    Directory of Open Access Journals (Sweden)

    Alyaa M Abdel-Haleem

    2018-01-01

    Full Text Available Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1, choline, and pantothenate (vitamin B5 metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  20. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting

    KAUST Repository

    Abdel-Haleem, Alyaa M.

    2018-01-04

    Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale models (GEMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  1. Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer.

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M Laird

    2015-03-01

    The aim is to develop irradiated nanodiamonds (INDs) as a molecularly targeted contrast agent for high-resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. The surface of acid treated radiation-damaged nanodiamonds was grafted with PEG to improve its stability and circulation time in blood, followed by conjugation to an anti-HER2 peptide with a final nanoparticle size of approximately 92 nm. Immunocompetent mice bearing orthotopic HER2-positive or negative tumors were administered INDs and PA imaged using an 820-nm near-infrared laser. PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 h. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are nontoxic. PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high-resolution (sub-mm) and phenotype-specific monitoring of cancer growth.

  2. SNP-associations and phenotype predictions from hundreds of microbial genomes without genome alignments.

    Science.gov (United States)

    Hall, Barry G

    2014-01-01

    SNP-association studies are a starting point for identifying genes that may be responsible for specific phenotypes, such as disease traits. The vast bulk of tools for SNP-association studies are directed toward SNPs in the human genome, and I am unaware of any tools designed specifically for such studies in bacterial or viral genomes. The PPFS (Predict Phenotypes From SNPs) package described here is an add-on to kSNP , a program that can identify SNPs in a data set of hundreds of microbial genomes. PPFS identifies those SNPs that are non-randomly associated with a phenotype based on the χ² probability, then uses those diagnostic SNPs for two distinct, but related, purposes: (1) to predict the phenotypes of strains whose phenotypes are unknown, and (2) to identify those diagnostic SNPs that are most likely to be causally related to the phenotype. In the example illustrated here, from a set of 68 E. coli genomes, for 67 of which the pathogenicity phenotype was known, there were 418,500 SNPs. Using the phenotypes of 36 of those strains, PPFS identified 207 diagnostic SNPs. The diagnostic SNPs predicted the phenotypes of all of the genomes with 97% accuracy. It then identified 97 SNPs whose probability of being causally related to the pathogenic phenotype was >0.999. In a second example, from a set of 116 E. coli genome sequences, using the phenotypes of 65 strains PPFS identified 101 SNPs that predicted the source host (human or non-human) with 90% accuracy.

  3. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  4. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.

    Science.gov (United States)

    Zhang, Yuanyuan; He, Yujiang; Bharadwaj, Shantaram; Hammam, Nevin; Carnagey, Kristen; Myers, Regina; Atala, Anthony; Van Dyke, Mark

    2009-08-01

    Recent studies have shown that extracellular matrix (ECM) substitutes can have a dramatic impact on cell growth, differentiation and function. However, these ECMs are often applied generically and have yet to be developed for specific cell types. In this study, we developed tissue-specific ECM-based coating substrates for skin, skeletal muscle and liver cell cultures. Cellular components were removed from adult skin, skeletal muscle, and liver tissues, and the resulting acellular matrices were homogenized and dissolved. The ECM solutions were used to coat culture dishes. Tissue matched and non-tissue matched cell types were grown on these coatings to assess adhesion, proliferation, maintenance of phenotype and cell function at several time points. Each cell type showed better proliferation and differentiation in cultures containing ECM from their tissue of origin. Although subtle compositional differences in the three ECM types were not investigated in this study, these results suggest that tissue-specific ECMs provide a culture microenvironment that is similar to the in vivo environment when used as coating substrates, and this new culture technique has the potential for use in drug development and the development of cell-based therapies.

  5. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2015-03-01

    Full Text Available The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage and chronically activated (in senescent or pro-apoptotic conditions p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

  6. Multidimensional clinical phenotyping of an adult cystic fibrosis patient population.

    Directory of Open Access Journals (Sweden)

    Douglas J Conrad

    Full Text Available Cystic Fibrosis (CF is a multi-systemic disease resulting from mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR gene and has major manifestations in the sino-pulmonary, and gastro-intestinal tracts. Clinical phenotypes were generated using 26 common clinical variables to generate classes that overlapped quantiles of lung function and were based on multiple aspects of CF systemic disease.The variables included age, gender, CFTR mutations, FEV1% predicted, FVC% predicted, height, weight, Brasfield chest xray score, pancreatic sufficiency status and clinical microbiology results. Complete datasets were compiled on 211 subjects. Phenotypes were identified using a proximity matrix generated by the unsupervised Random Forests algorithm and subsequent clustering by the Partitioning around Medoids (PAM algorithm. The final phenotypic classes were then characterized and compared to a similar dataset obtained three years earlier.Clinical phenotypes were identified using a clustering strategy that generated four and five phenotypes. Each strategy identified 1 a low lung health scores phenotype, 2 a younger, well-nourished, male-dominated class, 3 various high lung health score phenotypes that varied in terms of age, gender and nutritional status. This multidimensional clinical phenotyping strategy identified classes with expected microbiology results and low risk clinical phenotypes with pancreatic sufficiency.This study demonstrated regional adult CF clinical phenotypes using non-parametric, continuous, ordinal and categorical data with a minimal amount of subjective data to identify clinically relevant phenotypes. These studies identified the relative stability of the phenotypes, demonstrated specific phenotypes consistent with published findings and identified others needing further study.

  7. Two distinct phenotypes of asthma in elite athletes identified by latent class analysis.

    Science.gov (United States)

    Couto, Mariana; Stang, Julie; Horta, Luís; Stensrud, Trine; Severo, Milton; Mowinckel, Petter; Silva, Diana; Delgado, Luís; Moreira, André; Carlsen, Kai-Håkon

    2015-01-01

    Clusters of asthma in athletes have been insufficiently studied. Therefore, the present study aimed to characterize asthma phenotypes in elite athletes using latent class analysis (LCA) and to evaluate its association with the type of sport practiced. In the present cross-sectional study, an analysis of athletes' records was carried out in databases of the Portuguese National Anti-Doping Committee and the Norwegian School of Sport Sciences. Athletes with asthma, diagnosed according to criteria given by the International Olympic Committee, were included for LCA. Sports practiced were categorized into water, winter and other sports. Of 324 files screened, 150 files belonged to asthmatic athletes (91 Portuguese; 59 Norwegian). LCA retrieved two clusters: "atopic asthma" defined by allergic sensitization, rhinitis and allergic co-morbidities and increased exhaled nitric oxide levels; and "sports asthma", defined by exercise-induced respiratory symptoms and airway hyperesponsiveness without allergic features. The risk of developing the phenotype "sports asthma" was significantly increased in athletes practicing water (OR = 2.87; 95% CI [1.82-4.51]) and winter (OR = 8.65; 95% CI [2.67-28.03]) sports, when compared with other athletes. Two asthma phenotypes were identified in elite athletes: "atopic asthma" and "sports asthma". The type of sport practiced was associated with different phenotypes: water and winter sport athletes had three- and ninefold increased risk of "sports asthma". Recognizing different phenotypes is clinically relevant as it would lead to distinct targeted treatments.

  8. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations

    Science.gov (United States)

    Mott, Bryan T.; Eastman, Richard T.; Guha, Rajarshi; Sherlach, Katy S.; Siriwardana, Amila; Shinn, Paul; McKnight, Crystal; Michael, Sam; Lacerda-Queiroz, Norinne; Patel, Paresma R.; Khine, Pwint; Sun, Hongmao; Kasbekar, Monica; Aghdam, Nima; Fontaine, Shaun D.; Liu, Dongbo; Mierzwa, Tim; Mathews-Griner, Lesley A.; Ferrer, Marc; Renslo, Adam R.; Inglese, James; Yuan, Jing; Roepe, Paul D.; Su, Xin-zhuan; Thomas, Craig J.

    2015-01-01

    Drug resistance in Plasmodium parasites is a constant threat. Novel therapeutics, especially new drug combinations, must be identified at a faster rate. In response to the urgent need for new antimalarial drug combinations we screened a large collection of approved and investigational drugs, tested 13,910 drug pairs, and identified many promising antimalarial drug combinations. The activity of known antimalarial drug regimens was confirmed and a myriad of new classes of positively interacting drug pairings were discovered. Network and clustering analyses reinforced established mechanistic relationships for known drug combinations and identified several novel mechanistic hypotheses. From eleven screens comprising >4,600 combinations per parasite strain (including duplicates) we further investigated interactions between approved antimalarials, calcium homeostasis modulators, and inhibitors of phosphatidylinositide 3-kinases (PI3K) and the mammalian target of rapamycin (mTOR). These studies highlight important targets and pathways and provide promising leads for clinically actionable antimalarial therapy. PMID:26403635

  9. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth.

    Directory of Open Access Journals (Sweden)

    Anupama Yadav

    Full Text Available The ability of a genotype to show diverse phenotypes in different environments is called phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel environments, facilitates adaptation and fuels evolution. However, most studies focus on understanding the genetic basis of phenotypic regulation in specific environments. As a result, while it's evolutionary relevance is well established, genetic mechanisms regulating phenotypic plasticity and their overlap with the environment specific regulators is not well understood. Saccharomyces cerevisiae is highly sensitive to the environment, which acts as not just external stimulus but also as signalling cue for this unicellular, sessile organism. We used a previously published dataset of a biparental yeast population grown in 34 diverse environments and mapped genetic loci regulating variation in phenotypic plasticity, plasticity QTL, and compared them with environment-specific QTL. Plasticity QTL is one whose one allele exhibits high plasticity whereas the other shows a relatively canalised behaviour. We mapped phenotypic plasticity using two parameters-environmental variance, an environmental order-independent parameter and reaction norm (slope, an environmental order-dependent parameter. Our results show a partial overlap between pleiotropic QTL and plasticity QTL such that while some plasticity QTL are also pleiotropic, others have a significant effect on phenotypic plasticity without being significant in any environment independently. Furthermore, while some plasticity QTL are revealed only in specific environmental orders, we identify large effect plasticity QTL, which are order-independent such that whatever the order of the environments, one allele is always plastic and the other is canalised. Finally, we show that the environments can be divided into two categories based on the phenotypic diversity of the population within them and the two categories have

  10. Relation between CYP2D6 Genotype, Phenotype and Therapeutic Drug Concentrations among Nortriptyline and Venlafaxine Users in Old Age Psychiatry

    NARCIS (Netherlands)

    Berm, E; Kok, R.; Hak, E; Wilffert, B

    2016-01-01

    Objectives: To determine relations between drug concentrations and the cytochrome P450-CYP2D6 genotype or phenotype among elderly patients treated with nortriptyline or venlafaxine. Methods: A post-hoc analysis of a clinical trial was performed. Patients were grouped into phenotypes according to the

  11. Robust prediction of anti-cancer drug sensitivity and sensitivity-specific biomarker.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis. Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc. and the outliers may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space. Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of our method.

  12. Galactosemia: A strategy to identify new biochemical phenotypes and molecular genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Elsas, L.J.; Langley, S.; Steele, E.; Evinger, J.; Brown, A.; Singh, R.; Fernhoff, P.; Hjelm, L.N.; Dembure, P.P.; Fridovich-Keil, J.L. [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1995-03-01

    We describe a stratagem for identifying new mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. GALT enzyme activity and isoforms were defined in erythrocytes from probands and their first-degree relatives. If the biochemical phenotypes segregated in an autosomal recesssive pattern, we screened for common mutations by using multiplex PCR and restriction endonuclease digestions. If common mutant alleles were not present, the 11 exons of the GALT gene were amplified by PCR, and variations from the normal nucleotide sequences were identified by SSCP. The suspected region(s) was then analyzed by direct DNA sequencing. We identified 86 mutant GALT alleles that reduced erythrocyte GALT activity. Seventy-five of these GALT genomes had abnormal SSCP patterns, of which 41 were sequenced, yielding 12 new and 21 previously reported, rare mutations. Among the novel group of 12 new mutations, an unusual biochemical phenotype was found in a family whose newborn proband has classical galactosemia. He had inherited two mutations in cis (N314D-E204K) from his father, whose GALT activity was near normal, and an additional GALT mutation in the splice-acceptor site of intron C (IVSC) from his mother. The substitution of a positively charged E204K mutation created a unique isoform-banding pattern. An asymptomatic sister`s GALT genes carries three mutations (E203K-N314D/N314D) with eight distinct isoform bands. Surprisingly, her erythrocytes have normal GALT activity. We conclude that the synergism of pedigree, biochemical, SSCP, and direct GALT gene analyses is an efficient protocol for identifying new mutations and speculate that E203K and N314D codon changes produce intra-allelic complementation when in cis. 40 refs., 4 figs., 3 tabs.

  13. Computational Biology Tools for Identifying Specific Ligand Binding Residues for Novel Agrochemical and Drug Design.

    Science.gov (United States)

    Neshich, Izabella Agostinho Pena; Nishimura, Leticia; de Moraes, Fabio Rogerio; Salim, Jose Augusto; Villalta-Romero, Fabian; Borro, Luiz; Yano, Inacio Henrique; Mazoni, Ivan; Tasic, Ljubica; Jardine, Jose Gilberto; Neshich, Goran

    2015-01-01

    The term "agrochemicals" is used in its generic form to represent a spectrum of pesticides, such as insecticides, fungicides or bactericides. They contain active components designed for optimized pest management and control, therefore allowing for economically sound and labor efficient agricultural production. A "drug" on the other side is a term that is used for compounds designed for controlling human diseases. Although drugs are subjected to much more severe testing and regulation procedures before reaching the market, they might contain exactly the same active ingredient as certain agrochemicals, what is the case described in present work, showing how a small chemical compound might be used to control pathogenicity of Gram negative bacteria Xylella fastidiosa which devastates citrus plantations, as well as for control of, for example, meningitis in humans. It is also clear that so far the production of new agrochemicals is not benefiting as much from the in silico new chemical compound identification/discovery as pharmaceutical production. Rational drug design crucially depends on detailed knowledge of structural information about the receptor (target protein) and the ligand (drug/agrochemical). The interaction between the two molecules is the subject of analysis that aims to understand relationship between structure and function, mainly deciphering some fundamental elements of the nanoenvironment where the interaction occurs. In this work we will emphasize the role of understanding nanoenvironmental factors that guide recognition and interaction of target protein and its function modifier, an agrochemical or a drug. The repertoire of nanoenvironment descriptors is used for two selected and specific cases we have approached in order to offer a technological solution for some very important problems that needs special attention in agriculture: elimination of pathogenicity of a bacterium which is attacking citrus plants and formulation of a new fungicide. Finally

  14. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  15. FUNCTIONAL GENOMICS IDENTIFIES TIS21-DEPENDENT MECHANISMS AND PUTATIVE CANCER DRUG TARGETS UNDERLYING MEDULLOBLASTOMA SHH-TYPE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Giulia Gentile

    2016-11-01

    Full Text Available We have recently generated a novel medulloblastoma (MB mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+-Tis21KO.ts main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs. By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+-is21 wild-type versus Ptch1+-Tis21 knockout, among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets.The data analysis using bioinformatic tools revealed: i a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; ii a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype the neural cell type involved in group 3 MB; iii the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.

  16. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2015-01-01

    Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091

  18. Regulation of chromatin states by drugs of abuse.

    Science.gov (United States)

    Walker, Deena M; Cates, Hannah M; Heller, Elizabeth A; Nestler, Eric J

    2015-02-01

    Drug addiction involves long-term behavioral abnormalities and gene expression changes throughout the mesolimbic dopamine system. Epigenetic mechanisms establish/maintain alterations in gene expression in the brain, providing the impetus for investigations characterizing how epigenetic processes mediate the effects of drugs of abuse. This review focuses on evidence that epigenetic events, specifically histone modifications, regulate gene expression changes throughout the reward circuitry. Drugs of abuse induce changes in histone modifications throughout the reward circuitry by altering histone-modifying enzymes, manipulation of which reveals a role for histone modification in addiction-related behaviors. There is a complex interplay between these enzymes, resulting in a histone signature of the addicted phenotype. Insights gained from these studies are key to identifying novel targets for diagnosis and therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Antiretroviral drug susceptibility among drug-naive adults with recent HIV infection in Rakai, Uganda.

    Science.gov (United States)

    Eshleman, Susan H; Laeyendecker, Oliver; Parkin, Neil; Huang, Wei; Chappey, Colombe; Paquet, Agnes C; Serwadda, David; Reynolds, Steven J; Kiwanuka, Noah; Quinn, Thomas C; Gray, Ronald; Wawer, Maria

    2009-04-27

    To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment. Samples obtained at the time of HIV seroconversion (1998-2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA). Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hypersusceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase. Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B

  20. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders.

    Directory of Open Access Journals (Sweden)

    Tallulah Andrews

    2015-03-01

    Full Text Available Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51% groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.

  1. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders.

    Science.gov (United States)

    Andrews, Tallulah; Meader, Stephen; Vulto-van Silfhout, Anneke; Taylor, Avigail; Steinberg, Julia; Hehir-Kwa, Jayne; Pfundt, Rolph; de Leeuw, Nicole; de Vries, Bert B A; Webber, Caleb

    2015-03-01

    Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects.

  2. Lung cancer and risk factors: how to identify phenotypic markers?

    International Nuclear Information System (INIS)

    Clement-Duchene, Christelle

    2009-01-01

    Lung cancer is the leading cause of death in the world. Most lung cancer are diagnosed at an advanced stage (IIIB and IV), with a poor prognosis. The main risk factors are well known like active smoking, and occupational exposure (asbestos), but 10 a 20% occur in never smokers. In this population, various studies have been conducted in order to identify possible risk factors, and although many have been identified, none seem to explain more than a small percentage of the cases. According to the histological types, adenocarcinoma is now the more frequent type, and its association with the main risk factors (tobacco exposure, asbestos exposure) is still studied. The tumoral location is associated with the exposure to the risk factors. Finally, the survival seems to be different between gender, and between smokers, and never smokers. All these characteristics are perhaps associated with different pathways of carcinogenesis. In this context, we have analyzed a cohort of 1493 patients with lung cancer in order to identify phenotypic markers, and to understand the mechanisms of the lung carcinogenesis. (author) [fr

  3. A side-effect free method for identifying cancer drug targets.

    Science.gov (United States)

    Ashraf, Md Izhar; Ong, Seng-Kai; Mujawar, Shama; Pawar, Shrikant; More, Pallavi; Paul, Somnath; Lahiri, Chandrajit

    2018-04-27

    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.

  4. Tightly congruent bursts of lineage and phenotypic diversification identified in a continental ant radiation.

    Science.gov (United States)

    Price, Shauna L; Etienne, Rampal S; Powell, Scott

    2016-04-01

    Adaptive diversification is thought to be shaped by ecological opportunity. A prediction of this ecological process of diversification is that it should result in congruent bursts of lineage and phenotypic diversification, but few studies have found this expected association. Here, we study the relationship between rates of lineage diversification and body size evolution in the turtle ants, a diverse Neotropical clade. Using a near complete, time-calibrated phylogeny we investigated lineage diversification dynamics and body size disparity through model fitting analyses and estimation of per-lineage rates of cladogenesis and phenotypic evolution. We identify an exceptionally high degree of congruence between the high rates of lineage and body size diversification in a young clade undergoing renewed diversification in the ecologically distinct Chacoan biogeographical region of South America. It is likely that the region presented turtle ants with novel ecological opportunity, which facilitated a nested burst of diversification and phenotypic evolution within the group. Our results provide a compelling quantitative example of tight congruence between rates of lineage and phenotypic diversification, meeting the key predicted pattern of adaptive diversification shaped by ecological opportunity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  5. Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2012-02-01

    Full Text Available Abstract Background There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models. Methods To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes. Findings We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1 Changes in brain and neuronal morphology; (2 electrophysiological changes; (3 neurological changes; and (4 higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms. Conclusions The results indicated that mutations

  6. Bayesian model to detect phenotype-specific genes for copy number data

    Directory of Open Access Journals (Sweden)

    González Juan R

    2012-06-01

    Full Text Available Abstract Background An important question in genetic studies is to determine those genetic variants, in particular CNVs, that are specific to different groups of individuals. This could help in elucidating differences in disease predisposition and response to pharmaceutical treatments. We propose a Bayesian model designed to analyze thousands of copy number variants (CNVs where only few of them are expected to be associated with a specific phenotype. Results The model is illustrated by analyzing three major human groups belonging to HapMap data. We also show how the model can be used to determine specific CNVs related to response to treatment in patients diagnosed with ovarian cancer. The model is also extended to address the problem of how to adjust for confounding covariates (e.g., population stratification. Through a simulation study, we show that the proposed model outperforms other approaches that are typically used to analyze this data when analyzing common copy-number polymorphisms (CNPs or complex CNVs. We have developed an R package, called bayesGen, that implements the model and estimating algorithms. Conclusions Our proposed model is useful to discover specific genetic variants when different subgroups of individuals are analyzed. The model can address studies with or without control group. By integrating all data in a unique model we can obtain a list of genes that are associated with a given phenotype as well as a different list of genes that are shared among the different subtypes of cases.

  7. Integrating modelling and phenotyping approaches to identify and screen complex traits - Illustration for transpiration efficiency in cereals.

    Science.gov (United States)

    Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L

    2018-02-21

    Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.

  8. Overeating phenotypes in overweight and obese children.

    Science.gov (United States)

    Boutelle, Kerri N; Peterson, Carol B; Crosby, Ross D; Rydell, Sarah A; Zucker, Nancy; Harnack, Lisa

    2014-05-01

    The purpose of this study was to identify overeating phenotypes and their correlates in overweight and obese children. One hundred and seventeen treatment-seeking overweight and obese 8-12year-old children and their parents completed the study. Children completed an eating in the absence of hunger (EAH) paradigm, the Eating Disorder Examination interview, and measurements of height and weight. Parents and children completed questionnaires that evaluated satiety responsiveness, food responsiveness, negative affect eating, external eating and eating in the absence of hunger. Latent profile analysis was used to identify heterogeneity in overeating phenotypes in the child participants. Latent classes were then compared on measures of demographics, obesity status and nutritional intake. Three latent classes of overweight and obese children were identified: High Satiety Responsive, High Food Responsive, and Moderate Satiety and Food Responsive. Results indicated that the High Food Responsive group had higher BMI and BMI-Z scores compared to the High Satiety Responsive group. No differences were found among classes in demographics or nutritional intake. This study identified three overeating phenotypes, supporting the heterogeneity of eating patterns associated with overweight and obesity in treatment-seeking children. These finding suggest that these phenotypes can potentially be used to identify high risk groups, inform prevention and intervention targets, and develop specific treatments for these behavioral phenotypes. Copyright © 2014. Published by Elsevier Ltd.

  9. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Bo Wang; Xiaoqing Zhang; Xue-Jun Li

    2013-01-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease.Here,we developed a closely representative cell model of SMA by knocking down the disease-determining gene,survival motor neuron (SMN),in human embryonic stem cells (hESCs).Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons.Notably,the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated.Furthermore,these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-A7 (lacking exon 7)knockdown,and were specific to spinal motor neurons.Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes,including specific axonal defects and motor neuron loss.Finally,knockdown of SMNFL led to excessive mitochondrial oxidative stress in human motor neuron progenitors.The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine,a potent antioxidant,which prevented disease-related apoptosis and subsequent motor neuron death.Thus,we report here the successful establishment of an hESC-based SMA model,which exhibits disease gene isoform specificity,cell type specificity,and phenotype reversibility.Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  10. Non-invasive phenotyping and drug testing in single cardiomyocytes or beta-cells by calcium imaging and optogenetics.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Chang

    Full Text Available Identification of drug induced electrical instability of the heart curtails development, and introduction, of potentially proarrhythmic drugs. This problem usually requires complimentary contact based approaches such as patch-clamp electrophysiology combined with field stimulation electrodes to observe and control the cell. This produces data with high signal to noise but requires direct physical contact generally preventing high-throughput, or prolonged, phenotyping of single cells or tissues. Combining genetically encoded optogenetic control and spectrally compatible calcium indicator tools into a single adenoviral vector allows the analogous capability for cell control with simultaneous cellular phenotyping without the need for contact. This combination can be applied to single rodent primary adult cardiomyocytes, and human stem cell derived cardiomyocytes, enabling contactless small molecule evaluation for inhibitors of sodium, potassium and calcium channels suggesting it may be useful for early toxicity work. In pancreatic beta-cells it reveals the effects of glucose and the KATP inhibitor gliclazide.

  11. Spice: discovery of phenotype-determining component interplays

    Directory of Open Access Journals (Sweden)

    Chen Zhengzhang

    2012-05-01

    Full Text Available Abstract Background A latent behavior of a biological cell is complex. Deriving the underlying simplicity, or the fundamental rules governing this behavior has been the Holy Grail of systems biology. Data-driven prediction of the system components and their component interplays that are responsible for the target system’s phenotype is a key and challenging step in this endeavor. Results The proposed approach, which we call System Phenotype-related Interplaying Components Enumerator (Spice, iteratively enumerates statistically significant system components that are hypothesized (1 to play an important role in defining the specificity of the target system’s phenotype(s; (2 to exhibit a functionally coherent behavior, namely, act in a coordinated manner to perform the phenotype-specific function; and (3 to improve the predictive skill of the system’s phenotype(s when used collectively in the ensemble of predictive models. Spice can be applied to both instance-based data and network-based data. When validated, Spice effectively identified system components related to three target phenotypes: biohydrogen production, motility, and cancer. Manual results curation agreed with the known phenotype-related system components reported in literature. Additionally, using the identified system components as discriminatory features improved the prediction accuracy by 10% on the phenotype-classification task when compared to a number of state-of-the-art methods applied to eight benchmark microarray data sets. Conclusion We formulate a problem—enumeration of phenotype-determining system component interplays—and propose an effective methodology (Spice to address this problem. Spice improved identification of cancer-related groups of genes from various microarray data sets and detected groups of genes associated with microbial biohydrogen production and motility, many of which were reported in literature. Spice also improved the predictive skill of the

  12. Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population

    DEFF Research Database (Denmark)

    Eriksson, Robert; Werge, Thomas; Jensen, Lars Juhl

    2014-01-01

    patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength.When applying the method to the 3,394 patients...... all indication areas.The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner.We used a psychiatric hospital’s EPR system to investigate undesired drug effects. Within one workflow the method identified...

  13. Physical constraints in cell fate specification. A case in point: Microgravity and phenotypes differentiation.

    Science.gov (United States)

    Masiello, Maria Grazia; Verna, Roberto; Cucina, Alessandra; Bizzarri, Mariano

    2018-05-01

    Data obtained by studying mammalian cells in absence of gravity strongly support the notion that cell fate specification cannot be understood according to the current molecular model. A paradigmatic case in point is provided by studying cell populations growing in absence of gravity. When the physical constraint (gravity) is 'experimentally removed', cells spontaneously allocate into two morphologically different phenotypes. Such phenomenon is likely enacted by the intrinsic stochasticity, which, in turn, is successively 'canalized' by a specific gene regulatory network. Both phenotypes are thermodynamically and functionally 'compatibles' with the new, modified environment. However, when the two cell subsets are reseeded into the 1g gravity field the two phenotypes collapse into one. Gravity constraints the system in adopting only one phenotype, not by selecting a pre-existing configuration, but more precisely shaping it de-novo through the modification of the cytoskeleton three-dimensional structure. Overall, those findings highlight how macro-scale features are irreducible to lower-scale explanations. The identification of macroscale control parameters - as those depending on the field (gravity, electromagnetic fields) or emerging from the cooperativity among the field's components (tissue stiffness, cell-to-cell connectivity) - are mandatory for assessing boundary conditions for models at lower scales, thus providing a concrete instantiation of top-down effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  15. The Human Phenotype Ontology in 2017

    International Nuclear Information System (INIS)

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie

    2016-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  16. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype.

    Science.gov (United States)

    Ferreira, Manuel A R; Matheson, Melanie C; Tang, Clara S; Granell, Raquel; Ang, Wei; Hui, Jennie; Kiefer, Amy K; Duffy, David L; Baltic, Svetlana; Danoy, Patrick; Bui, Minh; Price, Loren; Sly, Peter D; Eriksson, Nicholas; Madden, Pamela A; Abramson, Michael J; Holt, Patrick G; Heath, Andrew C; Hunter, Michael; Musk, Bill; Robertson, Colin F; Le Souëf, Peter; Montgomery, Grant W; Henderson, A John; Tung, Joyce Y; Dharmage, Shyamali C; Brown, Matthew A; James, Alan; Thompson, Philip J; Pennell, Craig; Martin, Nicholas G; Evans, David M; Hinds, David A; Hopper, John L

    2014-06-01

    To date, no genome-wide association study (GWAS) has considered the combined phenotype of asthma with hay fever. Previous analyses of family data from the Tasmanian Longitudinal Health Study provide evidence that this phenotype has a stronger genetic cause than asthma without hay fever. We sought to perform a GWAS of asthma with hay fever to identify variants associated with having both diseases. We performed a meta-analysis of GWASs comparing persons with both physician-diagnosed asthma and hay fever (n = 6,685) with persons with neither disease (n = 14,091). At genome-wide significance, we identified 11 independent variants associated with the risk of having asthma with hay fever, including 2 associations reaching this level of significance with allergic disease for the first time: ZBTB10 (rs7009110; odds ratio [OR], 1.14; P = 4 × 10(-9)) and CLEC16A (rs62026376; OR, 1.17; P = 1 × 10(-8)). The rs62026376:C allele associated with increased asthma with hay fever risk has been found to be associated also with decreased expression of the nearby DEXI gene in monocytes. The 11 variants were associated with the risk of asthma and hay fever separately, but the estimated associations with the individual phenotypes were weaker than with the combined asthma with hay fever phenotype. A variant near LRRC32 was a stronger risk factor for hay fever than for asthma, whereas the reverse was observed for variants in/near GSDMA and TSLP. Single nucleotide polymorphisms with suggestive evidence for association with asthma with hay fever risk included rs41295115 near IL2RA (OR, 1.28; P = 5 × 10(-7)) and rs76043829 in TNS1 (OR, 1.23; P = 2 × 10(-6)). By focusing on the combined phenotype of asthma with hay fever, variants associated with the risk of allergic disease can be identified with greater efficiency. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Phenotype/genotype correlation in a case series of Stargardt's patients identifies novel mutations in the ABCA4 gene.

    Science.gov (United States)

    Gemenetzi, M; Lotery, A J

    2013-11-01

    To investigate phenotypic variability in terms of best-corrected visual acuity (BCVA) in patients with Stargardt disease (STGD) and confirmed ABCA4 mutations. Entire coding region analysis of the ABCA4 gene by direct sequencing of seven patients with clinical findings of STGD seen in the Retina Clinics of Southampton Eye Unit between 2002 and 2011.Phenotypic variables recorded were BCVA, fluorescein angiographic appearance, electrophysiology, and visual fields. All patients had heterozygous amino acid-changing variants (missense mutations) in the ABCA4 gene. A splice sequence change was found in a 30-year-old patient with severly affected vision. Two novel sequence changes were identified: a missense mutation in a mildly affected 44-year-old patient and a frameshift mutation in a severly affected 34-year-old patient. The identified ABCA4 mutations were compatible with the resulting phenotypes in terms of BCVA. Higher BCVAs were recorded in patients with missense mutations. Sequence changes, predicted to have more deleterious effect on protein function, resulted in a more severe phenotype. This case series of STGD patients demonstrates novel genotype/phenotype correlations, which may be useful to counselling of patients. This information may prove useful in selection of candidates for clinical trials in ABCA4 disease.

  18. 2010 drug packaging review: identifying problems to prevent errors.

    Science.gov (United States)

    2011-06-01

    Prescrire's analyses showed that the quality of drug packaging in 2010 still left much to be desired. Potentially dangerous packaging remains a significant problem: unclear labelling is source of medication errors; dosing devices for some psychotropic drugs create a risk of overdose; child-proof caps are often lacking; and too many patient information leaflets are misleading or difficult to understand. Everything that is needed for safe drug packaging is available; it is now up to regulatory agencies and drug companies to act responsibly. In the meantime, health professionals can help their patients by learning to identify the pitfalls of drug packaging and providing safe information to help prevent medication errors.

  19. SERPINB11 frameshift variant associated with novel hoof specific phenotype in Connemara ponies.

    Directory of Open Access Journals (Sweden)

    Carrie J Finno

    2015-04-01

    Full Text Available Horses belong to the order Perissodactyla and bear the majority of their weight on their third toe; therefore, tremendous force is applied to each hoof. An inherited disease characterized by a phenotype restricted to the dorsal hoof wall was identified in the Connemara pony. Hoof wall separation disease (HWSD manifests clinically as separation of the dorsal hoof wall along the weight-bearing surface of the hoof during the first year of life. Parents of affected ponies appeared clinically normal, suggesting an autosomal recessive mode of inheritance. A case-control allelic genome wide association analysis was performed (ncases = 15, ncontrols = 24. Population stratification (λ = 1.48 was successfully improved by removing outliers (ncontrols = 7 identified on a multidimensional scaling plot. A genome-wide significant association was detected on chromosome 8 (praw = 1.37x10-10, pgenome = 1.92x10-5. A homozygous region identified in affected ponies spanned from 79,936,024-81,676,900 bp and contained a family of 13 annotated SERPINB genes. Whole genome next-generation sequencing at 6x coverage of two cases and two controls revealed 9,758 SNVs and 1,230 indels within the ~1.7-Mb haplotype, of which 17 and 5, respectively, segregated with the disease and were located within or adjacent to genes. Additional genotyping of these 22 putative functional variants in 369 Connemara ponies (ncases = 23, ncontrols = 346 and 169 horses of other breeds revealed segregation of three putative variants adjacent or within four SERPIN genes. Two of the variants were non-coding and one was an insertion within SERPINB11 that introduced a frameshift resulting in a premature stop codon. Evaluation of mRNA levels at the proximal hoof capsule (ncases = 4, ncontrols = 4 revealed that SERPINB11 expression was significantly reduced in affected ponies (p<0.001. Carrier frequency was estimated at 14.8%. This study describes the first genetic variant associated with a hoof wall

  20. Identifying problematic drugs based on the characteristics of their targets.

    Science.gov (United States)

    Lopes, Tiago J S; Shoemaker, Jason E; Matsuoka, Yukiko; Kawaoka, Yoshihiro; Kitano, Hiroaki

    2015-01-01

    Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60-70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  1. Identifying problematic drugs based on the characteristics of their targets

    Directory of Open Access Journals (Sweden)

    Tiago Jose eDa Silva Lopes

    2015-09-01

    Full Text Available Identifying promising compounds during the early stages of drug development is a major challenge for both academia and the pharmaceutical industry. The difficulties are even more pronounced when we consider multi-target pharmacology, where the compounds often target more than one protein, or multiple compounds are used together. Here, we address this problem by using machine learning and network analysis to process sequence and interaction data from human proteins to identify promising compounds. We used this strategy to identify properties that make certain proteins more likely to cause harmful effects when targeted; such proteins usually have domains commonly found throughout the human proteome. Additionally, since currently marketed drugs hit multiple targets simultaneously, we combined the information from individual proteins to devise a score that quantifies the likelihood of a compound being harmful to humans. This approach enabled us to distinguish between approved and problematic drugs with an accuracy of 60%¬–70%. Moreover, our approach can be applied as soon as candidate drugs are available, as demonstrated with predictions for more than 5000 experimental drugs. These resources are available at http://sourceforge.net/projects/psin/.

  2. A Bystander Mechanism Explains the Specific Phenotype of a Broadly Expressed Misfolded Protein.

    Directory of Open Access Journals (Sweden)

    Lauren Klabonski

    2016-12-01

    Full Text Available Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions. We tested the gain-of-function mechanism of a R37C folding mutation in an endogenous IGF-like C.elegans protein DAF-28. DAF-28(R37C is broadly expressed, but only causes dysfunction in one specific neuron, ASI, leading to a distinct developmental phenotype. We find that this phenotype is caused by selective disruption of normal biogenesis of an unrelated endogenous protein, DAF-7/TGF-β. The combined deficiency of DAF-28 and DAF-7 biogenesis, but not of DAF-28 alone, explains the gain-of-function phenotype-deficient pro-growth signaling by the ASI neuron. Using functional, fluorescently-tagged protein, we find that, in animals with mutant DAF-28/IGF, the wild-type DAF-7/TGF-β is mislocalized to and accumulates in the proximal axon of the ASI neuron. Activation of two different branches of the unfolded protein response can modulate both the developmental phenotype and DAF-7 mislocalization in DAF-28(R37C animals, but appear to act through divergent mechanisms. Our finding that bystander targeting of TGF-β explains the phenotype caused by a folding mutation in an IGF-like protein suggests that, in conformational diseases, bystander misfolding may specify the distinct phenotypes caused by different folding mutations.

  3. Towards soft robotic devices for site-specific drug delivery.

    Science.gov (United States)

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  4. Identifying drug risk perceptions in Danish youths: Ranking exercises in focus groups

    DEFF Research Database (Denmark)

    Demant, Jakob; Ravn, Signe

    2010-01-01

    Abstract: Background: This paper develops an analytical approach for understanding the perceptions of risks associated with drugs among youths in general. These perceptions are central in order to understand how certain drugs become popular, leading to increasing prevalence of use, while others do...... not. As such, this approach can become an efficient policy tool. Methods: Focus groups are used to investigate risk perceptions. We develop a specific methodology that combines a ranking exercise with discourse theory as an analytical approach. This methodology produces detailed information...... and provides a relatively efficient way of investigating normative risk perceptions at a national or subcultural level. The paper develops this methodology in relation to a Danish case with 12 focus group interviews with youths aged from 17 to 22. Results: The analysis identifies five discourses articulated...

  5. Identifying drug risk perceptions in Danish youths: Ranking exercises in focus groups

    DEFF Research Database (Denmark)

    Demant, Jakob Johan; Ravn, Signe

    2010-01-01

    not. As such, this approach can become an efficient policy tool. Methods: Focus groups are used to investigate risk perceptions. We develop a specific methodology that combines a ranking exercise with discourse theory as an analytical approach. This methodology produces detailed information......Abstract: Background: This paper develops an analytical approach for understanding the perceptions of risks associated with drugs among youths in general. These perceptions are central in order to understand how certain drugs become popular, leading to increasing prevalence of use, while others do...... and provides a relatively efficient way of investigating normative risk perceptions at a national or subcultural level. The paper develops this methodology in relation to a Danish case with 12 focus group interviews with youths aged from 17 to 22. Results: The analysis identifies five discourses articulated...

  6. Automated local bright feature image analysis of nuclear proteindistribution identifies changes in tissue phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-02-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues.

  7. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-induced Round Bodies of Borrelia burgdorferi Persisters from an FDA Drug Library

    Directory of Open Access Journals (Sweden)

    Jie eFeng

    2016-05-01

    Full Text Available Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that are not killed by current Lyme antibiotics. To identify more effective drugs that are active against the round bodies of B. burgdorferi, we established a round body persister model induced by amoxicillin and screened the Food and Drug Administration (FDA drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide (PI viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven of these scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. While some drug candidates such as daptomycin and clofazimine overlapped with a previous screen against stationary phase B. burgdorferi persisters, additional drug candidates active against round bodies we identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi persisters in vitro, even if pre-treated with amoxicillin. These findings may have implications for improved treatment of Lyme disease.

  8. Machine-learning identifies substance-specific behavioral markers for opiate and stimulant dependence.

    Science.gov (United States)

    Ahn, Woo-Young; Vassileva, Jasmin

    2016-04-01

    Recent animal and human studies reveal distinct cognitive and neurobiological differences between opiate and stimulant addictions; however, our understanding of the common and specific effects of these two classes of drugs remains limited due to the high rates of polysubstance-dependence among drug users. The goal of the current study was to identify multivariate substance-specific markers classifying heroin dependence (HD) and amphetamine dependence (AD), by using machine-learning approaches. Participants included 39 amphetamine mono-dependent, 44 heroin mono-dependent, 58 polysubstance dependent, and 81 non-substance dependent individuals. The majority of substance dependent participants were in protracted abstinence. We used demographic, personality (trait impulsivity, trait psychopathy, aggression, sensation seeking), psychiatric (attention deficit hyperactivity disorder, conduct disorder, antisocial personality disorder, psychopathy, anxiety, depression), and neurocognitive impulsivity measures (Delay Discounting, Go/No-Go, Stop Signal, Immediate Memory, Balloon Analogue Risk, Cambridge Gambling, and Iowa Gambling tasks) as predictors in a machine-learning algorithm. The machine-learning approach revealed substance-specific multivariate profiles that classified HD and AD in new samples with high degree of accuracy. Out of 54 predictors, psychopathy was the only classifier common to both types of addiction. Important dissociations emerged between factors classifying HD and AD, which often showed opposite patterns among individuals with HD and AD. These results suggest that different mechanisms may underlie HD and AD, challenging the unitary account of drug addiction. This line of work may shed light on the development of standardized and cost-efficient clinical diagnostic tests and facilitate the development of individualized prevention and intervention programs for HD and AD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. [Social cognition disorders in Klinefelter syndrome: A specific phenotype? (KS)].

    Science.gov (United States)

    Babinet, M-N; Rigard, C; Peyroux, É; Dragomir, A-R; Plotton, I; Lejeune, H; Demily, C

    2017-10-01

    The Klinefelter syndrome (KS) is a genetic condition characterized by an X supernumerary sex chromosome in males. The syndrome is frequently associated with cognitive impairment. Indeed, the different areas of the executive sphere can be affected such as inhibition, cognitive flexibility but also attentional and visual-spatial domain. Social cognition disorders, predominantly on emotional recognition processes, have also been documented. In addition, the syndrome may be associated with psychiatric symptoms. Our study aims to characterize of the various components of social cognition in the SK: facial emotional recognition, theory of mind and attributional style. For this two groups (SK group versus control group) of participants (n=16) matched for age and sociocultural level were recruited. Participants with intellectual disabilities, psychiatric or neurological disorders were excluded. Three social cognition tests were available: the TREF, the MASC, the AIHQ. Neurocognitive functions were assessed by the fNart, the subtest "logical memory" of the MEM-III, the subtests of the two VOSP battery, the d2, the TMT and the Stroop test. The SK group had specific social cognition disorders in comparison to the control group. Two emotions in particular were less well recognized: fear and contempt. In addition, the SK group had significantly lower results in theory of mind. Regarding the hostile attribution bias, no significant difference was found. Finally, the results showed correlations between specific attentional disorders and facial emotional recognition. Our study emphasizes social cognition disorders in SK. These disorders could be considered as a phenotypic trait in the syndrome. The interest of better characterizing the cognitive phenotype of genetic disorders that can affect the neurodevelopment is to offer specific cognitive remediation strategies. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Carbapenem inactivation: a very affordable and highly specific method for phenotypic detection of carbapenemase-producing Pseudomonas aeruginosa isolates compared with other methods.

    Science.gov (United States)

    Akhi, Mohammad Taghi; Khalili, Younes; Ghotaslou, Reza; Kafil, Hossein Samadi; Yousefi, Saber; Nagili, Behroz; Goli, Hamid Reza

    2017-06-01

    This investigation was undertaken to compare phenotypic and molecular methods for detection of carbapenemase-producing Pseudomonas aeruginosa. A total of 245 non-duplicated isolates of P. aeruginosa were collected from hospitalized patients. Disc diffusion method was used to identify carbapenem-resistant bacteria. Three phenotypic methods, including Modified Hodge Test (MHT), Modified Carba NP (MCNP) test and Carbapenem Inactivation Method (CIM) were used for investigation of carbapenemase production. In addition, polymerase chain reaction (PCR) was used to detect carbapenemase encoding genes. Of 245 P. aeruginosa isolates investigated, 121 isolates were carbapenem-resistant. Among carbapenem-resistant isolates, 40, 39 and 35 isolates exhibited positive results using MHT, MCNP test and CIM, respectively. PCR indicated the presence of carbapenemase genes in 35 of carbapenem-resistant isolates. MHT showed low sensitivity and specificity for carbapenemase detection among P. aeruginosa isolates in comparison to PCR. CIM was most affordable and highly specific than MCNP test compared with the molecular method.

  11. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Phenotypic analysis of perennial airborne allergen-specific CD4+ T cells in atopic and non-atopic individuals.

    Science.gov (United States)

    Crack, L R; Chan, H W; McPherson, T; Ogg, G S

    2011-11-01

    Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.

  13. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.

    Science.gov (United States)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-07-04

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns.

  14. A Class of Diacylglycerol Acyltransferase 1 Inhibitors Identified by a Combination of Phenotypic High-throughput Screening, Genomics, and Genetics

    Directory of Open Access Journals (Sweden)

    Kirsten Tschapalda

    2016-06-01

    Full Text Available Excess lipid storage is an epidemic problem in human populations. Thus, the identification of small molecules to treat or prevent lipid storage-related metabolic complications is of great interest. Here we screened >320.000 compounds for their ability to prevent a cellular lipid accumulation phenotype. We used fly cells because the multifarious tools available for this organism should facilitate unraveling the mechanism-of-action of active small molecules. Of the several hundred lipid storage inhibitors identified in the primary screen we concentrated on three structurally diverse and potent compound classes active in cells of multiple species (including human and negligible cytotoxicity. Together with Drosophila in vivo epistasis experiments, RNA-Seq expression profiles suggested that the target of one of the small molecules was diacylglycerol acyltransferase 1 (DGAT1, a key enzyme in the production of triacylglycerols and prominent human drug target. We confirmed this prediction by biochemical and enzymatic activity tests.

  15. An Updated Review of the Molecular Mechanisms in Drug Hypersensitivity

    Directory of Open Access Journals (Sweden)

    Chun-Bing Chen

    2018-01-01

    Full Text Available Drug hypersensitivity may manifest ranging from milder skin reactions (e.g., maculopapular exanthema and urticaria to severe systemic reactions, such as anaphylaxis, drug reactions with eosinophilia and systemic symptoms (DRESS/drug-induced hypersensitivity syndrome (DIHS, or Stevens–Johnson syndrome (SJS/toxic epidermal necrolysis (TEN. Current pharmacogenomic studies have made important strides in the prevention of some drug hypersensitivity through the identification of relevant genetic variants, particularly for genes encoding drug-metabolizing enzymes and human leukocyte antigens (HLAs. The associations identified by these studies are usually drug, phenotype, and ethnic specific. The drug presentation models that explain how small drug antigens might interact with HLA and T cell receptor (TCR molecules in drug hypersensitivity include the hapten theory, the p-i concept, the altered peptide repertoire model, and the altered TCR repertoire model. The broad spectrum of clinical manifestations of drug hypersensitivity involving different drugs, as well as the various pathomechanisms involved, makes the diagnosis and management of it more challenging. This review highlights recent advances in our understanding of the predisposing factors, immune mechanisms, pathogenesis, diagnostic tools, and therapeutic approaches for drug hypersensitivity.

  16. An Updated Review of the Molecular Mechanisms in Drug Hypersensitivity

    Science.gov (United States)

    Abe, Riichiro; Pan, Ren-You; Wang, Chuang-Wei

    2018-01-01

    Drug hypersensitivity may manifest ranging from milder skin reactions (e.g., maculopapular exanthema and urticaria) to severe systemic reactions, such as anaphylaxis, drug reactions with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS), or Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN). Current pharmacogenomic studies have made important strides in the prevention of some drug hypersensitivity through the identification of relevant genetic variants, particularly for genes encoding drug-metabolizing enzymes and human leukocyte antigens (HLAs). The associations identified by these studies are usually drug, phenotype, and ethnic specific. The drug presentation models that explain how small drug antigens might interact with HLA and T cell receptor (TCR) molecules in drug hypersensitivity include the hapten theory, the p-i concept, the altered peptide repertoire model, and the altered TCR repertoire model. The broad spectrum of clinical manifestations of drug hypersensitivity involving different drugs, as well as the various pathomechanisms involved, makes the diagnosis and management of it more challenging. This review highlights recent advances in our understanding of the predisposing factors, immune mechanisms, pathogenesis, diagnostic tools, and therapeutic approaches for drug hypersensitivity. PMID:29651444

  17. Comparative analysis of Edwardsiella isolates from fish in the eastern United States identifies two distinct genetic taxa amongst organisms phenotypically classified as E. tarda

    Science.gov (United States)

    Griffin, Matt J.; Quiniou, Sylvie M.; Cody, Theresa; Tabuchi, Maki; Ware, Cynthia; Cipriano, Rocco C.; Mauel, Michael J.; Soto, Esteban

    2013-01-01

    Edwardsiella tarda, a Gram-negative member of the family Enterobacteriaceae, has been implicated in significant losses in aquaculture facilities worldwide. Here, we assessed the intra-specific variability of E. tarda isolates from 4 different fish species in the eastern United States. Repetitive sequence mediated PCR (rep-PCR) using 4 different primer sets (ERIC I & II, ERIC II, BOX, and GTG5) and multi-locus sequence analysis of 16S SSU rDNA, groEl, gyrA, gyrB, pho, pgi, pgm, and rpoA gene fragments identified two distinct genotypes of E. tarda (DNA group I; DNA group II). Isolates that fell into DNA group II demonstrated more similarity to E. ictaluri than DNA group I, which contained the reference E. tarda strain (ATCC #15947). Conventional PCR analysis using published E. tarda-specific primer sets yielded variable results, with several primer sets producing no observable amplification of target DNA from some isolates. Fluorometric determination of G + C content demonstrated 56.4% G + C content for DNA group I, 60.2% for DNA group II, and 58.4% for E. ictaluri. Surprisingly, these isolates were indistinguishable using conventional biochemical techniques, with all isolates demonstrating phenotypic characteristics consistent with E. tarda. Analysis using two commercial test kits identified multiple phenotypes, although no single metabolic characteristic could reliably discriminate between genetic groups. Additionally, anti-microbial susceptibility and fatty acid profiles did not demonstrate remarkable differences between groups. The significant genetic variation (<90% similarity at gyrA, gyrB, pho, phi and pgm; <40% similarity by rep-PCR) between these groups suggests organisms from DNA group II may represent an unrecognized, genetically distinct taxa of Edwardsiella that is phenotypically indistinguishable from E. tarda.

  18. FeNO as biomarker for asthma phenotyping and management.

    Science.gov (United States)

    Ricciardolo, Fabio L M; Sorbello, Valentina; Ciprandi, Giorgio

    2015-01-01

    The current review aims to revisit literature on exhaled nitric oxide (FeNO) in asthma phenotyping and management to clarify the utility of this test in clinical practice. It is increasingly evident that multiple profiles characterize asthma as a complex disease for which is necessary to find tools able to discriminate among these phenotypes to achieve the best therapeutic strategy for all asthmatic patients. Current findings indicate that FeNO, a noninvasive and easy-to-obtain biomarker, can be considered a useful tool in predicting asthma developing and exacerbation, in identifying specific asthma phenotypes, in improving asthma diagnosis and management in a selected population, and in monitoring efficacy of standard corticosteroid and biologic therapy. Based on this evidence, FeNO might become an appropriate tool for physicians to better define specific asthma phenotypes and to better deal with asthma worsening.

  19. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.

    Science.gov (United States)

    Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G

    2018-03-22

    Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN

  20. Active Learning Strategies for Phenotypic Profiling of High-Content Screens.

    Science.gov (United States)

    Smith, Kevin; Horvath, Peter

    2014-06-01

    High-content screening is a powerful method to discover new drugs and carry out basic biological research. Increasingly, high-content screens have come to rely on supervised machine learning (SML) to perform automatic phenotypic classification as an essential step of the analysis. However, this comes at a cost, namely, the labeled examples required to train the predictive model. Classification performance increases with the number of labeled examples, and because labeling examples demands time from an expert, the training process represents a significant time investment. Active learning strategies attempt to overcome this bottleneck by presenting the most relevant examples to the annotator, thereby achieving high accuracy while minimizing the cost of obtaining labeled data. In this article, we investigate the impact of active learning on single-cell-based phenotype recognition, using data from three large-scale RNA interference high-content screens representing diverse phenotypic profiling problems. We consider several combinations of active learning strategies and popular SML methods. Our results show that active learning significantly reduces the time cost and can be used to reveal the same phenotypic targets identified using SML. We also identify combinations of active learning strategies and SML methods which perform better than others on the phenotypic profiling problems we studied. © 2014 Society for Laboratory Automation and Screening.

  1. Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels

    Science.gov (United States)

    van Leeuwen, Elisabeth M.; Karssen, Lennart C.; Deelen, Joris; Isaacs, Aaron; Medina-Gomez, Carolina; Mbarek, Hamdi; Kanterakis, Alexandros; Trompet, Stella; Postmus, Iris; Verweij, Niek; van Enckevort, David J.; Huffman, Jennifer E.; White, Charles C.; Feitosa, Mary F.; Bartz, Traci M.; Manichaikul, Ani; Joshi, Peter K.; Peloso, Gina M.; Deelen, Patrick; van Dijk, Freerk; Willemsen, Gonneke; de Geus, Eco J.; Milaneschi, Yuri; Penninx, Brenda W.J.H.; Francioli, Laurent C.; Menelaou, Androniki; Pulit, Sara L.; Rivadeneira, Fernando; Hofman, Albert; Oostra, Ben A.; Franco, Oscar H.; Leach, Irene Mateo; Beekman, Marian; de Craen, Anton J.M.; Uh, Hae-Won; Trochet, Holly; Hocking, Lynne J.; Porteous, David J.; Sattar, Naveed; Packard, Chris J.; Buckley, Brendan M.; Brody, Jennifer A.; Bis, Joshua C.; Rotter, Jerome I.; Mychaleckyj, Josyf C.; Campbell, Harry; Duan, Qing; Lange, Leslie A.; Wilson, James F.; Hayward, Caroline; Polasek, Ozren; Vitart, Veronique; Rudan, Igor; Wright, Alan F.; Rich, Stephen S.; Psaty, Bruce M.; Borecki, Ingrid B.; Kearney, Patricia M.; Stott, David J.; Adrienne Cupples, L.; Neerincx, Pieter B.T.; Elbers, Clara C.; Francesco Palamara, Pier; Pe'er, Itsik; Abdellaoui, Abdel; Kloosterman, Wigard P.; van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen F.J.; Stoneking, Mark; de Knijff, Peter; Kayser, Manfred; Veldink, Jan H.; van den Berg, Leonard H.; Byelas, Heorhiy; den Dunnen, Johan T.; Dijkstra, Martijn; Amin, Najaf; Joeri van der Velde, K.; van Setten, Jessica; Kattenberg, Mathijs; van Schaik, Barbera D.C.; Bot, Jan; Nijman, Isaäc J.; Mei, Hailiang; Koval, Vyacheslav; Ye, Kai; Lameijer, Eric-Wubbo; Moed, Matthijs H.; Hehir-Kwa, Jayne Y.; Handsaker, Robert E.; Sunyaev, Shamil R.; Sohail, Mashaal; Hormozdiari, Fereydoun; Marschall, Tobias; Schönhuth, Alexander; Guryev, Victor; Suchiman, H. Eka D.; Wolffenbuttel, Bruce H.; Platteel, Mathieu; Pitts, Steven J.; Potluri, Shobha; Cox, David R.; Li, Qibin; Li, Yingrui; Du, Yuanping; Chen, Ruoyan; Cao, Hongzhi; Li, Ning; Cao, Sujie; Wang, Jun; Bovenberg, Jasper A.; Jukema, J. Wouter; van der Harst, Pim; Sijbrands, Eric J.; Hottenga, Jouke-Jan; Uitterlinden, Andre G.; Swertz, Morris A.; van Ommen, Gert-Jan B.; de Bakker, Paul I.W.; Eline Slagboom, P.; Boomsma, Dorret I.; Wijmenga, Cisca; van Duijn, Cornelia M.

    2015-01-01

    Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10−4), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR. PMID:25751400

  2. Identifying Risk Factors for Drug Use in an Iranian Treatment Sample: A Prediction Approach Using Decision Trees.

    Science.gov (United States)

    Amirabadizadeh, Alireza; Nezami, Hossein; Vaughn, Michael G; Nakhaee, Samaneh; Mehrpour, Omid

    2018-05-12

    Substance abuse exacts considerable social and health care burdens throughout the world. The aim of this study was to create a prediction model to better identify risk factors for drug use. A prospective cross-sectional study was conducted in South Khorasan Province, Iran. Of the total of 678 eligible subjects, 70% (n: 474) were randomly selected to provide a training set for constructing decision tree and multiple logistic regression (MLR) models. The remaining 30% (n: 204) were employed in a holdout sample to test the performance of the decision tree and MLR models. Predictive performance of different models was analyzed by the receiver operating characteristic (ROC) curve using the testing set. Independent variables were selected from demographic characteristics and history of drug use. For the decision tree model, the sensitivity and specificity for identifying people at risk for drug abuse were 66% and 75%, respectively, while the MLR model was somewhat less effective at 60% and 73%. Key independent variables in the analyses included first substance experience, age at first drug use, age, place of residence, history of cigarette use, and occupational and marital status. While study findings are exploratory and lack generalizability they do suggest that the decision tree model holds promise as an effective classification approach for identifying risk factors for drug use. Convergent with prior research in Western contexts is that age of drug use initiation was a critical factor predicting a substance use disorder.

  3. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype

    International Nuclear Information System (INIS)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-01-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues

  4. Comment on 'Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets' by Lam et al.

    Science.gov (United States)

    Hill, W David

    2018-04-01

    Intelligence and educational attainment are strongly genetically correlated. This relationship can be exploited by Multi-Trait Analysis of GWAS (MTAG) to add power to Genome-wide Association Studies (GWAS) of intelligence. MTAG allows the user to meta-analyze GWASs of different phenotypes, based on their genetic correlations, to identify association's specific to the trait of choice. An MTAG analysis using GWAS data sets on intelligence and education was conducted by Lam et al. (2017). Lam et al. (2017) reported 70 loci that they described as 'trait specific' to intelligence. This article examines whether the analysis conducted by Lam et al. (2017) has resulted in genetic information about a phenotype that is more similar to education than intelligence.

  5. Drug specificity in drug versus food choice in male rats.

    Science.gov (United States)

    Tunstall, Brendan J; Riley, Anthony L; Kearns, David N

    2014-08-01

    Although different classes of drug differ in their mechanisms of reinforcement and effects on behavior, little research has focused on differences in self-administration behaviors maintained by users of these drugs. Persistent drug choice despite available reinforcement alternatives has been proposed to model behavior relevant to addiction. The present study used a within-subjects procedure, where male rats (Long-Evans, N = 16) were given a choice between cocaine (1.0 mg/kg/infusion) and food (a single 45-mg grain pellet) or between heroin (0.02 mg/kg/infusion) and food in separate phases (drug order counterbalanced). All rats were initially trained to self-administer each drug, and the doses used were based on previous studies showing that small subsets of rats tend to prefer drug over food reinforcement. The goal of the present study was to determine whether rats that prefer cocaine would also prefer heroin. Choice sessions consisted of 2 forced-choice trials with each reinforcer, followed by 14 free-choice trials (all trials separated by 10-min intertrial interval). Replicating previous results, small subsets of rats preferred either cocaine (5 of the 16 rats) or heroin (2 of the 16 rats) to the food alternative. Although 1 of the 16 rats demonstrated a preference for both cocaine and heroin to the food alternative, there was no relationship between degree of cocaine and heroin preference in individual rats. The substance-specific pattern of drug preference observed suggests that at least in this animal model, the tendencies to prefer cocaine or heroin in preference to a nondrug alternative are distinct behavioral phenomena.

  6. Rationale and uses of a public HIV drug-resistance database.

    Science.gov (United States)

    Shafer, Robert W

    2006-09-15

    Knowledge regarding the drug resistance of human immunodeficiency virus (HIV) is critical for surveillance of drug resistance, development of antiretroviral drugs, and management of infections with drug-resistant viruses. Such knowledge is derived from studies that correlate genetic variation in the targets of therapy with the antiretroviral treatments received by persons from whom the variant was obtained (genotype-treatment), with drug-susceptibility data on genetic variants (genotype-phenotype), and with virological and clinical response to a new treatment regimen (genotype-outcome). An HIV drug-resistance database is required to represent, store, and analyze the diverse forms of data underlying our knowledge of drug resistance and to make these data available to the broad community of researchers studying drug resistance in HIV and clinicians using HIV drug-resistance tests. Such genotype-treatment, genotype-phenotype, and genotype-outcome correlations are contained in the Stanford HIV RT and Protease Sequence Database and have specific usefulness.

  7. Firm- and drug-specific patterns of generic drug payments by US medicaid programs: 1991-2008.

    Science.gov (United States)

    Kelton, Christina M L; Chang, Lenisa V; Guo, Jeff J; Yu, Yan; Berry, Edmund A; Bian, Boyang; Heaton, Pamela C

    2014-04-01

    The entry of generic drugs into markets previously monopolized by patented, branded drugs often represents large potential savings for healthcare payers in the USA. Our objectives were to describe and explain the trends in drug reimbursement by public Medicaid programmes post-generic entry for as many drug markets and for as long a time period as possible. The data were the Medicaid State Drug Utilization Data maintained by the Centers for Medicare and Medicaid Services. Quarterly utilization and expenditure data from 1991 to 2008 were extracted for 83 drugs, produced by 229 firms, that experienced initial generic entry between 1992 and 2004. A relative 'price' for a specific drug, firm and quarter was constructed as Medicaid reimbursement per unit (e.g. tablet, capsule or vial) divided by average reimbursement per unit for the branded drug the year before entry. Fixed-effects models controlling for time-, firm- and drug-specific differences were estimated to explain reimbursement. Twelve quarters after generic entry, 18 % of drugs had average per-unit reimbursement less than 50 % of the original branded-drug reimbursement. For each additional firm manufacturing the drug, reimbursement per unit, relative to the pre-generic-entry branded-drug reimbursement, was estimated to fall by 17 (p < 0.01) and 3 (p < 0.01) percentage points for generic and branded-drug companies, respectively. Each additional quarter post-generic entry brought a 2 (p < 0.01) percentage point drop in relative reimbursement. State Medicaid programmes generally have been able to obtain relief from high drug prices following patent expirations for many branded-drug medications by adjusting reimbursement following the expanded competition in the pharmaceutical market.

  8. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2013-11-01

    Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive

  9. New approaches for identifying and testing potential new anti-asthma agents.

    Science.gov (United States)

    Licari, Amelia; Castagnoli, Riccardo; Brambilla, Ilaria; Marseglia, Alessia; Tosca, Maria Angela; Marseglia, Gian Luigi; Ciprandi, Giorgio

    2018-01-01

    Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.

  10. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.).

    Science.gov (United States)

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-06-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.

  11. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library.

    Science.gov (United States)

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10-20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi

  12. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development.

    Science.gov (United States)

    Agarwal, Paresh; Bertozzi, Carolyn R

    2015-02-18

    Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.

  13. Navigating cancer network attractors for tumor-specific therapy

    DEFF Research Database (Denmark)

    Creixell, Pau; Schoof, Erwin; Erler, Janine Terra

    2012-01-01

    understanding of the processes by which genetic lesions perturb these networks and lead to disease phenotypes. Network biology will help circumvent fundamental obstacles in cancer treatment, such as drug resistance and metastasis, empowering personalized and tumor-specific cancer therapies....

  14. Phenotype variations affect genetic association studies of degenerative disc disease: conclusions of analysis of genetic association of 58 single nucleotide polymorphisms with highly specific phenotypes for disc degeneration in 332 subjects.

    Science.gov (United States)

    Rajasekaran, S; Kanna, Rishi Mugesh; Senthil, Natesan; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Subramaniam, Sakthikanal; Shetty, Ajoy Prasad

    2013-10-01

    Although the influence of genetics on the process of disc degeneration is well recognized, in recently published studies, there is a wide variation in the race and selection criteria for such study populations. More importantly, the radiographic features of disc degeneration that are selected to represent the disc degeneration phenotype are variable in these studies. The study presented here evaluates the association between single nucleotide polymorphisms (SNPs) of candidate genes and three distinct radiographic features that can be defined as the degenerative disc disease (DDD) phenotype. The study objectives were to examine the allelic diversity of 58 SNPs related to 35 candidate genes related to lumbar DDD, to evaluate the association in a hitherto unevaluated ethnic Indian population that represents more than one-sixth of the world population, and to analyze how genetic associations can vary in the same study subjects with the choice of phenotype. A cross-sectional, case-control study of an ethnic Indian population was carried out. Fifty-eight SNPs in 35 potential candidate genes were evaluated in 342 subjects and the associations were analyzed against three highly specific markers for DDD, namely disc degeneration by Pfirrmann grading, end-plate damage evaluated by total end-plate damage score, and annular tears evaluated by disc herniations and hyperintense zones. Genotyping of cases and controls was performed on a genome-wide SNP array to identify potential associated disease loci. The results from the genome-wide SNP array were then used to facilitate SNP selection and genotype validation was conducted using Sequenom-based genotyping. Eleven of the 58 SNPs provided evidence of association with one of the phenotypes. For annular tears, rs1042631 SNP of AGC1 and rs467691 SNP of ADAMTS5 were highly significantly associated (p<.01) and SNPs in NGFB, IL1B, IL18RAP, and MMP10 were also significantly associated (p<.05). The rs4076018 SNP of NGFB was highly

  15. Factor analysis in the Genetics of Asthma International Network family study identifies five major quantitative asthma phenotypes

    NARCIS (Netherlands)

    Pillai, S. G.; Tang, Y.; van den Oord, E.; Klotsman, M.; Barnes, K.; Carlsen, K.; Gerritsen, J.; Lenney, W.; Silverman, M.; Sly, P.; Sundy, J.; Tsanakas, J.; von Berg, A.; Whyte, M.; Ortega, H. G.; Anderson, W. H.; Helms, P. J.

    Background Asthma is a clinically heterogeneous disease caused by a complex interaction between genetic susceptibility and diverse environmental factors. In common with other complex diseases the lack of a standardized scheme to evaluate the phenotypic variability poses challenges in identifying the

  16. Genotype and Phenotype Predictors of Relapse of Graves’ Disease after Antithyroid Drug Withdrawal

    Science.gov (United States)

    Wang, Pei-Wen; Chen, I-Ya; Juo, Suh-Hang Hank; Hsi, Edward; Liu, Rue-Tsuan; Hsieh, Ching-Jung

    2013-01-01

    Background For patients with Graves’ disease (GD), the primary goal of antithyroid drug therapy is to temporarily restore the patient to the euthyroid state and wait for a subsequent remission of the disease. This study sought to identify the predictive markers for the relapse of disease. Methods To do this, we studied 262 GD patients with long enough follow-up after drug withdrawal to determine treatment outcome. The patients were divided into three groups by time of relapse: early relapse group (n = 91) had an early relapse within 9 months, late relapse group (n = 65) had a relapse between 10 and 36 months, and long-term remission group (n = 106) were either still in remission after at least 3 years or relapsed after 3 years of drug withdrawal. We assessed the treatment outcome of 23 SNPs of costimulatory genes, phenotype and smoking habits. We used permutation to obtain p values for each SNP as an adjustment for multiple testing. Cox proportional hazards models was performed to assess the strength of association between the treatment outcome and clinical and laboratory variables. Results Four SNPs were significantly associated with disease relapse: rs231775 (OR 1.96, 95% CI 1.18–3.26) at CTLA-4 and rs745307 (OR 7.97, 95% CI 1.01–62.7), rs11569309 (OR 8.09, 95% CI 1.03–63.7), and rs3765457 (OR 2.60, 95% CI 1.08–6.28) at CD40. Combining risk alleles at CTLA-4 and CD40 improved the predictability of relapse. Using 3 years as the cutoff point for multivariate analysis, we found several independent predictors of disease relapse: number of risk alleles (HR 1.30, 95% CI 1.09–1.56), a large goiter size at the end of the treatment (HR 1.30, 95% CI 1.05–1.61), persistent TSH-binding inhibitory Ig (HR 1.64, 95% CI 1.15–2.35), and smoking habit (HR 1.60, 95% CI 1.05–2.42). Conclusion Genetic polymorphism of costimulatory genes, smoking status, persistent goiter, and TSH-binding inhibitory Ig predict disease relapse. PMID:24783027

  17. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer

    International Nuclear Information System (INIS)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-01-01

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns. The online version of this article (doi:10.1186/s12885-016-2452-5) contains supplementary material, which is available to authorized users

  18. CD11c-positive cells from brain, spleen, lung, and liver exhibit site-specific immune phenotypes and plastically adapt to new environments.

    Science.gov (United States)

    Immig, Kerstin; Gericke, Martin; Menzel, Franziska; Merz, Felicitas; Krueger, Martin; Schiefenhövel, Fridtjof; Lösche, Andreas; Jäger, Kathrin; Hanisch, Uwe-Karsten; Biber, Knut; Bechmann, Ingo

    2015-04-01

    The brain's immune privilege has been also attributed to the lack of dendritic cells (DC) within its parenchyma and the adjacent meninges, an assumption, which implies maintenance of antigens rather than their presentation in lymphoid organs. Using mice transcribing the green fluorescent protein under the promoter of the DC marker CD11c (itgax), we identified a juxtavascular population of cells expressing this DC marker and demonstrated their origin from bone marrow and local microglia. We now phenotypically compared this population with CD11c/CD45 double-positive cells from lung, liver, and spleen in healthy mice using seven-color flow cytometry. We identified unique, site-specific expression patterns of F4/80, CD80, CD86, CX3CR1, CCR2, FLT3, CD103, and MHC-II. Furthermore, we observed the two known CD45-positive populations (CD45(high) and CD45(int) ) in the brain, whereas liver, lung, and spleen exhibited a homogeneous CD45(high) population. CD11c-positive microglia lacked MHC-II expression and CD45(high) /CD11c-positive cells from the brain have a lower percentage of MHC-II-positive cells. To test whether phenotypical differences are fixed by origin or specifically develop due to environmental factors, we transplanted brain and spleen mononuclear cells on organotypic slice cultures from brain (OHSC) and spleen (OSSC). We demonstrate that adaption and ramification of MHC-II-positive splenocytes is paralleled by down-regulation of MHC-II, whereas brain-derived mononuclear cells neither ramified nor up-regulated MHC-II in OSSCs. Thus, brain-derived mononuclear cells maintain their MHC-II-negative phenotype within the environment of an immune organ. Intraparenchymal CD11c-positive cells share immunophenotypical characteristics of DCs from other organs but remain unique for their low MHC-II expression. © 2014 Wiley Periodicals, Inc.

  19. Quantitative Seq-LGS: Genome-Wide Identification of Genetic Drivers of Multiple Phenotypes in Malaria Parasites

    KAUST Repository

    Abkallo, Hussein M.

    2016-10-01

    Identifying the genetic determinants of phenotypes that impact on disease severity is of fundamental importance for the design of new interventions against malaria. Traditionally, such discovery has relied on labor-intensive approaches that require significant investments of time and resources. By combining Linkage Group Selection (LGS), quantitative whole genome population sequencing and a novel mathematical modeling approach (qSeq-LGS), we simultaneously identified multiple genes underlying two distinct phenotypes, identifying novel alleles for growth rate and strain specific immunity (SSI), while removing the need for traditionally required steps such as cloning, individual progeny phenotyping and marker generation. The detection of novel variants, verified by experimental phenotyping methods, demonstrates the remarkable potential of this approach for the identification of genes controlling selectable phenotypes in malaria and other apicomplexan parasites for which experimental genetic crosses are amenable.

  20. Redefining Aging in HIV Infection Using Phenotypes.

    Science.gov (United States)

    Stoff, David M; Goodkin, Karl; Jeste, Dilip; Marquine, Maria

    2017-10-01

    This article critically reviews the utility of "phenotypes" as behavioral descriptors in aging/HIV research that inform biological underpinnings and treatment development. We adopt a phenotypic redefinition of aging conceptualized within a broader context of HIV infection and of aging. Phenotypes are defined as dimensions of behavior, closely related to fundamental mechanisms, and, thus, may be more informative than chronological age. Primary emphasis in this review is given to comorbid aging and cognitive aging, though other phenotypes (i.e., disability, frailty, accelerated aging, successful aging) are also discussed in relation to comorbid aging and cognitive aging. The main findings that emerged from this review are as follows: (1) the phenotypes, comorbid aging and cognitive aging, are distinct from each other, yet overlapping; (2) associative relationships are the rule in HIV for comorbid and cognitive aging phenotypes; and (3) HIV behavioral interventions for both comorbid aging and cognitive aging have been limited. Three paths for research progress are identified for phenotype-defined aging/HIV research (i.e., clinical and behavioral specification, biological mechanisms, intervention targets), and some important research questions are suggested within each of these research paths.

  1. Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers.

    Science.gov (United States)

    Kaluarachchi, Manuja R; Boulangé, Claire L; Garcia-Perez, Isabel; Lindon, John C; Minet, Emmanuel F

    2016-10-01

    Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC-MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment.

  2. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  3. Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Lara Marrone

    2018-02-01

    Full Text Available Summary: Perturbations in stress granule (SG dynamics may be at the core of amyotrophic lateral sclerosis (ALS. Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments. : Sterneckert and colleagues generate isogenic FUS-eGFP reporter iPSCs that enable the identification of stress granule (SG phenotypes specifically induced by the ALS mutation FUS P525L. Compound screening shows that modulation of the PI3K/AKT/mTOR pathway regulating autophagy ameliorates SG phenotypes. A second screen identifies similarly acting brain-penetrant US FDA-approved drugs that could be repurposed to treat ALS. Keywords: amyotrophic lateral sclerosis, induced pluripotent stem cells, FUS, stress granules, autophagy, gene editing, CRISPR/Cas9n

  4. Preparation of grafted microspheres CPVA-g-PSSS and studies on their drug-carrying and colon-specific drug delivery properties

    International Nuclear Information System (INIS)

    Gao, Baojiao; Fang, Li; Men, Jiying; Zhang, Yanyan

    2013-01-01

    Sodium 4-styrene sulfonate (SSS) was graft-polymerized on the surfaces of crosslinked polyvinyl alcohol (CPVA) microspheres in a manner of surface-initiated graft-polymerization by using cerium salt-hydroxyl group redox initiation system, obtaining the grafted microspheres CPVA-g-PSSS. The chemical structure and physicochemical characters of CPVA-g-PSSS microspheres were fully characterized with infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and zeta potential determination. The aim of this work is to constitute a novel colon-specific drug delivery system via molecular design by using CPVA-g-PSSS microspheres as the drug-carrying material and by taking metronidazole (MTZ) as the model drug. The drug-carrying ability and mechanism of the grafted microspheres CPVA-g-PSSS for MTZ were investigated. Finally, in-vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in an acidic medium, the grafted microspheres CPVA-g-PSSS exhibit strong adsorption ability for MTZ by driving of electrostatic interaction, and have an adsorption capacity of 112 mg/g, displaying the high efficiency of drug-carrying. The in-vitro release behavior of the drug-carried microspheres is highly pH-sensitive. In the medium of pH = 1, the drug-carrying microspheres do not release the drug, whereas in the medium of pH = 7.4, a sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior. Highlights: ► A metronidazole colon-specific drug delivery was constituted using grafted polymeric microspheres. ► Grafted polymeric microspheres CPVA-g-PSSS were prepared via surface-initiated graft-polymerization. ► The release of the drug-carrying microspheres is highly pH-sensitive. ► The drug-carrying microspheres display an excellent colon-specific drug delivery behavior

  5. Preparation of grafted microspheres CPVA-g-PSSS and studies on their drug-carrying and colon-specific drug delivery properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051, People' s Republic of China (China); Fang, Li [School of Chemistry and Chemical engineering, Shanxi University, Taiyuan 030006 (China); Men, Jiying; Zhang, Yanyan [Department of Chemical Engineering, North University of China, Taiyuan 030051, People' s Republic of China (China)

    2013-04-01

    Sodium 4-styrene sulfonate (SSS) was graft-polymerized on the surfaces of crosslinked polyvinyl alcohol (CPVA) microspheres in a manner of surface-initiated graft-polymerization by using cerium salt-hydroxyl group redox initiation system, obtaining the grafted microspheres CPVA-g-PSSS. The chemical structure and physicochemical characters of CPVA-g-PSSS microspheres were fully characterized with infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and zeta potential determination. The aim of this work is to constitute a novel colon-specific drug delivery system via molecular design by using CPVA-g-PSSS microspheres as the drug-carrying material and by taking metronidazole (MTZ) as the model drug. The drug-carrying ability and mechanism of the grafted microspheres CPVA-g-PSSS for MTZ were investigated. Finally, in-vitro release tests for the drug-carrying microspheres were conducted. The experimental results show that in an acidic medium, the grafted microspheres CPVA-g-PSSS exhibit strong adsorption ability for MTZ by driving of electrostatic interaction, and have an adsorption capacity of 112 mg/g, displaying the high efficiency of drug-carrying. The in-vitro release behavior of the drug-carried microspheres is highly pH-sensitive. In the medium of pH = 1, the drug-carrying microspheres do not release the drug, whereas in the medium of pH = 7.4, a sudden delivery phenomenon of the drug will occur, displaying an excellent colon-specific drug delivery behavior. Highlights: ► A metronidazole colon-specific drug delivery was constituted using grafted polymeric microspheres. ► Grafted polymeric microspheres CPVA-g-PSSS were prepared via surface-initiated graft-polymerization. ► The release of the drug-carrying microspheres is highly pH-sensitive. ► The drug-carrying microspheres display an excellent colon-specific drug delivery behavior.

  6. Use of a single alcohol screening question to identify other drug use.

    Science.gov (United States)

    Smith, Peter C; Cheng, Debbie M; Allensworth-Davies, Donald; Winter, Michael R; Saitz, Richard

    2014-06-01

    People who consume unhealthy amounts of alcohol are more likely to use illicit drugs. We tested the ability of a screening test for unhealthy alcohol use to simultaneously detect drug use. Adult English speaking patients (n=286) were enrolled from a primary care waiting room. They were asked the screening question for unhealthy alcohol use "How many times in the past year have you had X or more drinks in a day?", where X is 5 for men and 4 for women, and a response of one or more is considered positive. A standard diagnostic interview was used to determine current (past year) drug use or a drug use disorder (abuse or dependence). Oral fluid testing was also used to detect recent use of common drugs of abuse. The single screening question for unhealthy alcohol use was 67.6% sensitive (95% confidence interval [CI], 50.2-82.0%) and 64.7% specific (95% CI, 58.4-70.6%) for the detection of a drug use disorder. It was similarly insensitive for drug use detected by oral fluid testing and/or self-report. Although a patient with a drug use disorder has twice the odds of screening positive for unhealthy alcohol use compared to one without a drug use disorder, suggesting patients who screen positive for alcohol should be asked about drug use, a single screening question for unhealthy alcohol use was not sensitive or specific for the detection of other drug use or drug use disorders in a sample of primary care patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  8. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes.

    Science.gov (United States)

    Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I

    2015-10-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (Pmyositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations.

  9. Rapid detection of drug resistance and mutational patterns of extensively drug-resistant strains by a novel GenoType® MTBDRsl assay

    Directory of Open Access Journals (Sweden)

    A K Singh

    2013-01-01

    Full Text Available Background: The emergence of extensively drug-resistant tuberculosis (XDR-TB is a major concern in the India. The burden of XDR-TB is increasing due to inadequate monitoring, lack of proper diagnosis, and treatment. The GenoType ® Mycobacterium tuberculosis drug resistance second line (MTBDRsl assay is a novel line probe assay used for the rapid detection of mutational patterns conferring resistance to XDR-TB. Aim: The aim of this study was to study the rapid detection of drug resistance and mutational patterns of the XDR-TB by a novel GenoType ® MTBDRsl assay. Materials and Methods: We evaluated 98 multidrug-resistant (MDR M. tuberculosis isolates for second line drugs susceptibility testing by 1% proportion method (BacT/ALERT 3D system and GenoType ® MTBDRsl assay for rapid detection of conferring drug resistance to XDR-TB. Results: A total of seven (17.4% were identified as XDR-TB by using standard phenotypic method. The concordance between phenotypic and GenoType ® MTBDRsl assay was 91.7-100% for different antibiotics. The sensitivity and specificity of the MTBDRsl assay were 100% and 100% for aminoglycosides; 100% and 100% for fluoroquinolones; 91.7% and 100% for ethambutol. The most frequent mutations and patterns were gyrA MUT1 (A90V in seven (41.2% and gyrA + WT1-3 + MUT1 in four (23.5%; rrs MUT1 (A1401G in 11 (64.7%, and rrs WT1-2 + MUT1 in eight (47.1%; and embB MUT1B (M306V in 11 (64.7% strains. Conclusions: These data suggest that the GenoType ® MTBDRsl assay is rapid, novel test for detection of resistance to second line anti-tubercular drugs. This assay provides additional information about the frequency and mutational patterns responsible for XDR-TB resistance.

  10. Phenotype heterogeneity in cancer cell populations

    International Nuclear Information System (INIS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-01-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  11. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  12. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  13. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2015-01-01

    for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting...... of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs...... to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches....

  14. Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond.

    Science.gov (United States)

    Zhang, Hongkang; Cohen, Adam E

    2017-07-01

    Recent advances in optogenetics have opened new routes to drug discovery, particularly in neuroscience. Physiological cellular assays probe functional phenotypes that connect genomic data to patient health. Optogenetic tools, in particular tools for all-optical electrophysiology, now provide a means to probe cellular disease models with unprecedented throughput and information content. These techniques promise to identify functional phenotypes associated with disease states and to identify compounds that improve cellular function regardless of whether the compound acts directly on a target or through a bypass mechanism. This review discusses opportunities and unresolved challenges in applying optogenetic techniques throughout the discovery pipeline - from target identification and validation, to target-based and phenotypic screens, to clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Elucidating the genotype-phenotype map by automatic enumeration and analysis of the phenotypic repertoire.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    The gap between genotype and phenotype is filled by complex biochemical systems most of which are poorly understood. Because these systems are complex, it is widely appreciated that quantitative understanding can only be achieved with the aid of mathematical models. However, formulating models and measuring or estimating their numerous rate constants and binding constants is daunting. Here we present a strategy for automating difficult aspects of the process. The strategy, based on a system design space methodology, is applied to a class of 16 designs for a synthetic gene oscillator that includes seven designs previously formulated on the basis of experimentally measured and estimated parameters. Our strategy provides four important innovations by automating: (1) enumeration of the repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter values for any particular phenotype; (3) simultaneous realization of parameter values for several phenotypes to aid visualization of transitions from one phenotype to another, in critical cases from functional to dysfunctional; and (4) identification of ensembles of phenotypes whose expression can be phased to achieve a specific sequence of functions for rationally engineering synthetic constructs. Our strategy, applied to the 16 designs, reproduced previous results and identified two additional designs capable of sustained oscillations that were previously missed. Starting with a system's relatively fixed aspects, its architectural features, our method enables automated analysis of nonlinear biochemical systems from a global perspective, without first specifying parameter values. The examples presented demonstrate the efficiency and power of this automated strategy.

  16. Effect of Surface Modification and Macrophage Phenotype on Particle Internalization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daniel [Iowa State University; Phan, Ngoc [Iowa State University; Isely, Christopher [Iowa State University; Bruene, Lucas [Iowa State University; Bratlie, Kaitlin M [Ames Laboratory

    2014-11-10

    Material properties play a key role in the cellular internalization of polymeric particles. In the present study, we have investigated the effects of material characteristics such as water contact angle, zeta potential, melting temperature, and alternative activation of complement on particle internalization for pro-inflammatory, pro-angiogenic, and naïve macrophages by using biopolymers (~600 nm), functionalized with 13 different molecules. Understanding how material parameters influence particle internalization for different macrophage phenotypes is important for targeted delivery to specific cell populations. Here, we demonstrate that material parameters affect the alternative pathway of complement activation as well as particle internalization for different macrophage phenotypes. Here, we show that the quantitative structure–activity relationship method (QSAR) previously used to predict physiochemical properties of materials can be applied to targeting different macrophage phenotypes. These findings demonstrated that targeted drug delivery to macrophages could be achieved by exploiting material parameters.

  17. Progeny Clustering: A Method to Identify Biological Phenotypes

    Science.gov (United States)

    Hu, Chenyue W.; Kornblau, Steven M.; Slater, John H.; Qutub, Amina A.

    2015-01-01

    Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and data space. Our method was shown successful and robust when applied to two synthetic datasets (datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset. PMID:26267476

  18. Marfan syndrome--a diagnostic challenge caused by phenotypic and genetic heterogeneity.

    Science.gov (United States)

    Baumgartner, C; Mátyás, G; Steinmann, B; Baumgartner, D

    2005-01-01

    Marfan syndrome (MFS) is an autosomal dominant inherited connective tissue disorder caused by mutations in the fibrillin-1 (FBN1) gene with variable clinical manifestations in the cardiovascular, musculoskeletal and ocular systems. Data of moleculor genetic analysis and a catalogue of clinical manifestations including aortic elastic parameters were mined in order to (i) assess aortic abnormality before and during medical treatment, and to (ii) identify novel correlations between the genotype and phenotype of the disease using hierarchical cluster analysis and logistic regression analysis. A score measure describing the similarity between a patient's clinical symptoms and a characteristic phenotype class was introduced. A probabilistic model for monitoring the loss of aortic elasticity was built on merely aortic parameters of 34 patients with classic MFS and 43 control subjects showing a sensitivity of 82% and a specificity of 96%. The clinical phenotypes of 100 individuals with classical or suspected MFS were clustered yielding four different phenotypic expressions. The highest correlation was found between FBN1 missense mutations, which manifested as ectopia lentis, skeletal major and skin minor criteria, and two out of four clustered phenotypes. The probability of the presence of a missense mutation in both phenotype classes is approximately 70%. Monitoring of aortic elastic properties during medical treatment may serve as additional criterion to indicate elective surgical interventions. Genotype-phenotype correlation may contribute to anticipate the clinical consequences of specific FBN1 mutations more comprehensively and may be helpful to identify MFS patients at risk at on early stage of disease.

  19. SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments

    DEFF Research Database (Denmark)

    Jessen, Leon Ivar; Hoof, Ilka; Lund, Ole

    2013-01-01

    Site does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set......) using a set of human immunodeficiency virus protease-inhibitor genotype–phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found...

  20. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bianca De Leo

    2017-05-01

    Full Text Available Background: Human mast cells (MCs are long-lived tissue-resident immune cells characterised by granules containing the proteases chymase and/or tryptase. Their phenotype is modulated by their tissue microenvironment. The human uterus has an outer muscular layer (the myometrium surrounding the endometrium, both of which play an important role in supporting a pregnancy. The endometrium is a sex steroid target tissue consisting of epithelial cells (luminal, glandular surrounded by a multicellular stroma, with the latter containing an extensive vascular compartment as well as fluctuating populations of immune cells that play an important role in regulating tissue function. The role of MCs in the human uterus is poorly understood with little known about their regulation or the impact of steroids on their differentiation status. The current study had two aims: 1 To investigate the spatial and temporal location of uterine MCs and determine their phenotype; 2 To determine whether MCs express receptors for steroids implicated in uterine function, including oestrogen (ERα, ERβ, progesterone (PR and glucocorticoids (GR. Methods: Tissue samples from women (n=46 were used for RNA extraction or fixed for immunohistochemistry. Results: Messenger RNAs encoded by TPSAB1 (tryptase and CMA1 (chymase were detected in endometrial tissue homogenates. Immunohistochemistry revealed the relative abundance of tryptase MCs was myometrium>basal endometrium>functional endometrium. We show for the first time that uterine MCs are predominantly of the classical MC subtypes: (positive, +; negative, - tryptase+/chymase- and tryptase+/chymase+, but a third subtype was also identified (tryptase-/chymase+. Tryptase+ MCs were of an ERβ+/ERα-/PR-/GR+ phenotype mirroring other uterine immune cell populations, including natural killer cells. Conclusions: Endometrial tissue resident immune MCs have three protease-specific phenotypes. Expression of both ERβ and GR in MCs mirrors

  1. Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease.

    Directory of Open Access Journals (Sweden)

    Shilpi Khare

    2015-07-01

    Full Text Available Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1 in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50 of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease.

  2. Longitudinal Investigation into Genetics in the Conservation of Metabolic Phenotypes in Danish and Chinese Twins

    DEFF Research Database (Denmark)

    Li, Shuxia; Kyvik, Kirsten Ohm; Duan, Haiping

    2016-01-01

    twin study on long-term stability of metabolic phenotypes in Danish and Chinese twins identified a common pattern of high genetic control over phenotype conservation, and at the same time revealed population-specific patterns of genetic and common environmental regulation on the variance as well...

  3. Challenging behavior: Behavioral phenotypes of some genetic syndromes

    Directory of Open Access Journals (Sweden)

    Buha Nataša

    2014-01-01

    Full Text Available Challenging behavior in individuals with mental retardation (MR is relatively frequent, and represents a significant obstacle to adaptive skills. The frequency of specific forms and manifestations of challenging behavior can depend on a variety of personal and environmental factors. There are several prominent theoretical models regarding the etiology of challenging behavior and psychopathology in persons with MR: behavioral, developmental, socio-cultural and biological. The biological model emphasizes the physiological, biochemical and genetic factors as the potential source of challenging behavior. The progress in the field of genetics and neuroscience has opened the opportunity to study and discover the neurobiological basis of phenotypic characteristics. Genetic syndromes associated with MR can be followed by a specific set of problems and disorders which constitutes their behavioral phenotype. The aim of this paper was to present challenging behaviors that manifest in the most frequently studied syndromes: Down syndrome, Fragile X syndrome, Williams syndrome, Prader-Willi syndrome and Angelman syndrome. The concept of behavioral phenotype implies a higher probability of manifesting specific developmental characteristics and specific behaviors in individuals with a certain genetic syndrome. Although the specific set of (possible problems and disorders is distinctive for the described genetic syndromes, the connection between genetics and behavior should be viewed through probabilistic dimension. The probabilistic concept takes into consideration the possibility of intra-syndrome variability in the occurrence, intensity and time onset of behavioral characteristics, at which the higher variability the lower is the specificity of the genetic syndrome. Identifying the specific pattern of behavior can be most important for the process of early diagnosis and prognosis. In addition, having knowledge about behavioral phenotype can be a landmark in

  4. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype.

    Directory of Open Access Journals (Sweden)

    Stephanie Plog

    Full Text Available The human CLCA4 (chloride channel regulator, calcium-activated modulates the intestinal phenotype of cystic fibrosis (CF patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.

  5. Cell-specific prediction and application of drug-induced gene expression profiles.

    Science.gov (United States)

    Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David; Dudley, Joel

    2018-01-01

    Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes.

  6. Phenotypic assays for Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Song, Ok-Ryul; Deboosere, Nathalie; Delorme, Vincent; Queval, Christophe J; Deloison, Gaspard; Werkmeister, Elisabeth; Lafont, Frank; Baulard, Alain; Iantomasi, Raffaella; Brodin, Priscille

    2017-10-01

    Tuberculosis (TB) is still a major global threat, killing more than one million persons each year. With the constant increase of Mycobacterium tuberculosis strains resistant to first- and second-line drugs, there is an urgent need for the development of new drugs to control the propagation of TB. Although screenings of small molecules on axenic M. tuberculosis cultures were successful for the identification of novel putative anti-TB drugs, new drugs in the development pipeline remains scarce. Host-directed therapy may represent an alternative for drug development against TB. Indeed, M. tuberculosis has multiple specific interactions within host phagocytes, which may be targeted by small molecules. In order to enable drug discovery strategies against microbes residing within host macrophages, we developed multiple fluorescence-based HT/CS phenotypic assays monitoring the intracellular replication of M. tuberculosis as well as its intracellular trafficking. What we propose here is a population-based, multi-parametric analysis pipeline that can be used to monitor the intracellular fate of M. tuberculosis and the dynamics of cellular events such as phagosomal maturation (acidification and permeabilization), zinc poisoning system or lipid body accumulation. Such analysis allows the quantification of biological events considering the host-pathogen interplay and may thus be derived to other intracellular pathogens. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  7. Integrating phenotype ontologies with PhenomeNET

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2017-12-19

    Background Integration and analysis of phenotype data from humans and model organisms is a key challenge in building our understanding of normal biology and pathophysiology. However, the range of phenotypes and anatomical details being captured in clinical and model organism databases presents complex problems when attempting to match classes across species and across phenotypes as diverse as behaviour and neoplasia. We have previously developed PhenomeNET, a system for disease gene prioritization that includes as one of its components an ontology designed to integrate phenotype ontologies. While not applicable to matching arbitrary ontologies, PhenomeNET can be used to identify related phenotypes in different species, including human, mouse, zebrafish, nematode worm, fruit fly, and yeast. Results Here, we apply the PhenomeNET to identify related classes from two phenotype and two disease ontologies using automated reasoning. We demonstrate that we can identify a large number of mappings, some of which require automated reasoning and cannot easily be identified through lexical approaches alone. Combining automated reasoning with lexical matching further improves results in aligning ontologies. Conclusions PhenomeNET can be used to align and integrate phenotype ontologies. The results can be utilized for biomedical analyses in which phenomena observed in model organisms are used to identify causative genes and mutations underlying human disease.

  8. Identifying and assessing highly hazardous drugs within quality risk management programs.

    Science.gov (United States)

    Sussman, Robert G; Schatz, Anthony R; Kimmel, Tracy A; Ader, Allan; Naumann, Bruce D; Weideman, Patricia A

    2016-08-01

    Historically, pharmaceutical industry regulatory guidelines have assigned certain active pharmaceutical ingredients (APIs) to various categories of concern, such as "cytotoxic", "hormones", and "steroids". These categories have been used to identify APIs requiring segregation or dedication in order to prevent cross-contamination and protect the quality and safety of drug products. Since these terms were never defined by regulatory authorities, and many novel pharmacological mechanisms challenge these categories, there is a recognized need to modify the historical use of these terms. The application of a risk-based approach using a health-based limit, such as an acceptable daily exposure (ADE), is more appropriate for the development of a Quality Risk Management Program (QRMP) than the use of categories of concern. The toxicological and pharmacological characteristics of these categories are discussed to help identify and prioritize compounds requiring special attention. Controlling airborne concentrations and the contamination of product contact surfaces in accordance with values derived from quantitative risk assessments can prevent adverse effects in workers and patients, regardless of specific categorical designations to which these APIs have been assigned. The authors acknowledge the movement away from placing compounds into categories and, while not yet universal, the importance of basing QRMPs on compound-specific ADEs and risk assessments. Based on the results of a risk assessment, segregation and dedication may also be required for some compounds to prevent cross contamination during manufacture of APIs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Juan D Unciti-Broceta

    2015-06-01

    Full Text Available African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.

  10. Integrative Bioinformatics Approaches for Identification of Drug Targets in Hypertension.

    Science.gov (United States)

    Hemerich, Daiane; van Setten, Jessica; Tragante, Vinicius; Asselbergs, Folkert W

    2018-01-01

    High blood pressure or hypertension is an established risk factor for a myriad of cardiovascular diseases. Genome-wide association studies have successfully found over nine hundred loci that contribute to blood pressure. However, the mechanisms through which these loci contribute to disease are still relatively undetermined as less than 10% of hypertension-associated variants are located in coding regions. Phenotypic cell-type specificity analyses and expression quantitative trait loci show predominant vascular and cardiac tissue involvement for blood pressure-associated variants. Maps of chromosomal conformation and expression quantitative trait loci (eQTL) in critical tissues identified 2,424 genes interacting with blood pressure-associated loci, of which 517 are druggable. Integrating genome, regulome and transcriptome information in relevant cell-types could help to functionally annotate blood pressure associated loci and identify drug targets.

  11. Elucidating the genotype–phenotype map by automatic enumeration and analysis of the phenotypic repertoire

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2015-01-01

    Background: The gap between genotype and phenotype is filled by complex biochemical systems most of which are poorly understood. Because these systems are complex, it is widely appreciated that quantitative understanding can only be achieved with the aid of mathematical models. However, formulating models and measuring or estimating their numerous rate constants and binding constants is daunting. Here we present a strategy for automating difficult aspects of the process. Methods: The strategy, based on a system design space methodology, is applied to a class of 16 designs for a synthetic gene oscillator that includes seven designs previously formulated on the basis of experimentally measured and estimated parameters. Results: Our strategy provides four important innovations by automating: (1) enumeration of the repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter values for any particular phenotype; (3) simultaneous realization of parameter values for several phenotypes to aid visualization of transitions from one phenotype to another, in critical cases from functional to dysfunctional; and (4) identification of ensembles of phenotypes whose expression can be phased to achieve a specific sequence of functions for rationally engineering synthetic constructs. Our strategy, applied to the 16 designs, reproduced previous results and identified two additional designs capable of sustained oscillations that were previously missed. Conclusions: Starting with a system’s relatively fixed aspects, its architectural features, our method enables automated analysis of nonlinear biochemical systems from a global perspective, without first specifying parameter values. The examples presented demonstrate the efficiency and power of this automated strategy. PMID:26998346

  12. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    Directory of Open Access Journals (Sweden)

    Neil O Carragher

    2011-04-01

    Full Text Available Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates.

  13. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease.

    Science.gov (United States)

    Cohen, Mark; Appleby, Brian; Safar, Jiri G

    2016-01-01

    Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.

  14. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

  15. Macrophage specific drug delivery in experimental leishmaniasis.

    Science.gov (United States)

    Basu, Mukul Kumar; Lala, Sanchaita

    2004-09-01

    Macrophage-specific delivery systems are the subject of much interest nowadays, because of the fact that macrophages act as host cells for many parasites and bacteria, which give rise to outbreak of so many deadly diseases(eg. leishmaniasis, tuberculosis etc.) in humans. To combat these deadly diseases initially macrophage specific liposomal delivery system were thought of and tested in vivo against experimental leishmaniasis in hamsters using a series of indigenous or synthetic antileishmanial compounds and the results were critically discussed. In vitro testing was also done against macrophages infected with Leishmania donovani, the causative agent for visceral leishmaniasis. The common problem of liposome therapy being their larger size, stability and storage, non-ionic surfactant vesicles, niosomes were prepared, for their different drug distribution and release characteristics compared to liposomes. When tested in vivo, the retention capacity of niosomes was found to be higher than that of liposomes due to the absence of lipid molecules and their smaller size. Thus the therapeutic efficacy of certain antileishmanial compounds was found to be better than that in the liposomal form. The niosomes, being cheaper, less toxic, biodegradable and non-immunogenic, were considered for sometime as suitable alternatives to liposomes as drug carriers. Besides the advent of other classical drugs carriers(e.g. neoglycoproteins), the biggest challenge came from polymeric delivery vehicles, specially the polymeric nanoparticles which were made of cost effective biodegradable polymers and different natural polymers. Because of very small size and highly stable nature, use of nanoparticles as effective drug carriers has been explored in experimental leishmaniasis using a series of antileishmanial compounds, both of indigenous and synthetic origin. The feasibility of application in vivo, when tested for biological as well as for other physicochemical parameters, the polymeric

  16. Genotype-phenotype associations in obesity dependent on definition of the obesity phenotype.

    Science.gov (United States)

    Kring, Sofia Inez Iqbal; Larsen, Lesli Hingstrup; Holst, Claus; Toubro, Søren; Hansen, Torben; Astrup, Arne; Pedersen, Oluf; Sørensen, Thorkild I A

    2008-01-01

    In previous studies of associations of variants in the genes UCP2, UCP3, PPARG2, CART, GRL, MC4R, MKKS, SHP, GHRL, and MCHR1 with obesity, we have used a case-control approach with cases defined by a threshold for BMI. In the present study, we assess the association of seven abdominal, peripheral, and overall obesity phenotypes, which were analyzed quantitatively, and thirteen candidate gene polymorphisms in these ten genes in the same cohort. Obese Caucasian men (n = 234, BMI >or= 31.0 kg/m(2)) and a randomly sampled non-obese group (n = 323), originally identified at the draft board examinations, were re-examined at median ages of 47.0 or 49.0 years by anthropometry and DEXA scanning. Obesity phenotypes included BMI, fat body mass index, waist circumference, waist for given BMI, intra-abdominal adipose tissue, hip circumference and lower body fat mass (%). Using logistic regression models, we estimated the odds for defined genotypes (dominant or recessive genetic transmission) in relation to z-scores of the phenotypes. The minor (rare) allele for SHP 512G>C (rs6659176) was associated with increased hip circumference. The minor allele for UCP2 Ins45bp was associated with increased BMI, increased abdominal obesity, and increased hip circumference. The minor allele for UCP2 -866G>A (rs6593669) was associated with borderline increased fat body mass index. The minor allele for MCHR1 100213G>A (rs133072) was associated with reduced abdominal obesity. None of the other genotype-phenotype combinations showed appreciable associations. If replicated in independent studies with focus on the specific phenotypes, our explorative studies suggest significant associations between some candidate gene polymorphisms and distinct obesity phenotypes, predicting beneficial and detrimental effects, depending on compartments for body fat accumulation. Copyright 2008 S. Karger AG, Basel.

  17. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry.

    Science.gov (United States)

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  19. Phenotyping and Visualizing Infusion-Related Reactions for Breast Cancer Patients

    Science.gov (United States)

    Sun, Deyu; Sarda, Gopal; Skube, Steven J.; Blaes, Anne H.; Khairat, Saif; Melton, Genevieve B.; Zhang, Rui

    2018-01-01

    Infusion-related reactions (IRRs) are typical adverse events for breast cancer patients. Detecting IRRs and visualizing their occurance associated with the drug treatment would potentially assist clinicians to improve patient safety and help researchers model IRRs and analyze their risk factors. We developed and evaluated a phenotyping algorithm to detect IRRs for breast cancer patients. We also designed a visualization prototype to render IRR patients’ medications, lab tests and vital signs over time. By comparing with the 42 randomly selected doses that are manually labeled by a domain expert, the sensitivity, positive predictive value, specificity, and negative predictive value of the algorithms are 69%, 60%, 79%, and 85%, respectively. Using the algorithm, an incidence of 6.4% of patients and 1.8% of doses for docetaxel, 8.7% and 3.2% for doxorubicin, 10.4% and 1.2% for paclitaxel, 16.1% and 1.1% for trastuzumab were identified retrospectively. The incidences estimated are consistent with related studies. PMID:29295166

  20. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  1. Detection of mutations related to drug resistance in M. tuberculosis by dot blot hybridization and spoligotyping using specific radiolabelled probes

    International Nuclear Information System (INIS)

    El-Maghraby, T.K.; Abdelazeim, O.

    2002-01-01

    The present work has been conducted to determine the mutations related to drug resistance in M. tuberculosis in 63 Egyptian isolates using dot blot hybridization and spoligotyping. The PCR was done for amplification rpoB and katG genes in isolates. Dot blot hybridization were done to PCR products by using specific radiolabelled probes. Moreover, spoligotyping was done to know about the different strains found in Egypt. The results revealed that 58% from isolates had drug resistance to one or more of antituberculosis drugs. The results of spoligotyping have revealed that some Egyptian isolates are identical with the international code while the rest has not been identified yet. DNA sequencing was done to identify the mutation that not clear in dot blot hybridization. Early diagnosis of geno typing resistance to antituberculosis drugs is important as well as allow appropriate early patients management with few days of TB diagnosis. Using such strategy for early diagnosis of TB drug resistance allow and fast and potent patient's management

  2. Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning.

    Science.gov (United States)

    Kobayashi, Hirofumi; Lei, Cheng; Wu, Yi; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-09-29

    In the last decade, high-content screening based on multivariate single-cell imaging has been proven effective in drug discovery to evaluate drug-induced phenotypic variations. Unfortunately, this method inherently requires fluorescent labeling which has several drawbacks. Here we present a label-free method for evaluating cellular drug responses only by high-throughput bright-field imaging with the aid of machine learning algorithms. Specifically, we performed high-throughput bright-field imaging of numerous drug-treated and -untreated cells (N = ~240,000) by optofluidic time-stretch microscopy with high throughput up to 10,000 cells/s and applied machine learning to the cell images to identify their morphological variations which are too subtle for human eyes to detect. Consequently, we achieved a high accuracy of 92% in distinguishing drug-treated and -untreated cells without the need for labeling. Furthermore, we also demonstrated that dose-dependent, drug-induced morphological change from different experiments can be inferred from the classification accuracy of a single classification model. Our work lays the groundwork for label-free drug screening in pharmaceutical science and industry.

  3. An integrated structure- and system-based framework to identify new targets of metabolites and known drugs

    KAUST Repository

    Naveed, Hammad

    2015-08-18

    Motivation: The inherent promiscuity of small molecules towards protein targets impedes our understanding of healthy versus diseased metabolism. This promiscuity also poses a challenge for the pharmaceutical industry as identifying all protein targets is important to assess (side) effects and repositioning opportunities for a drug. Results: Here, we present a novel integrated structure- and system-based approach of drug-target prediction (iDTP) to enable the large-scale discovery of new targets for small molecules, such as pharmaceutical drugs, co-factors and metabolites (collectively called ‘drugs’). For a given drug, our method uses sequence order–independent structure alignment, hierarchical clustering, and probabilistic sequence similarity to construct a probabilistic pocket ensemble (PPE) that captures promiscuous structural features of different binding sites on known targets. A drug’s PPE is combined with an approximation of its delivery profile to reduce false positives. In our cross-validation study, we use iDTP to predict the known targets of eleven drugs, with 63% sensitivity and 81% specificity. We then predicted novel targets for these drugs—two that are of high pharmacological interest, the nuclear receptor PPARγ and the oncogene Bcl-2, were successfully validated through in vitro binding experiments. Our method is broadly applicable for the prediction of protein-small molecule interactions with several novel applications to biological research and drug development.

  4. Similarity-based search of model organism, disease and drug effect phenotypes

    KAUST Repository

    Hoehndorf, Robert; Gruenberger, Michael; Gkoutos, Georgios V; Schofield, Paul N

    2015-01-01

    Background: Semantic similarity measures over phenotype ontologies have been demonstrated to provide a powerful approach for the analysis of model organism phenotypes, the discovery of animal models of human disease, novel pathways, gene functions

  5. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization

    Science.gov (United States)

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10+ cells. Eight healthy subjects were given a TT booster vacci...

  6. Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes

    Directory of Open Access Journals (Sweden)

    Kent Imaizumi

    2015-12-01

    Full Text Available The CNS contains many diverse neuronal subtypes, and most neurological diseases target specific subtypes. However, the mechanism of neuronal subtype specificity of disease phenotypes remains elusive. Although in vitro disease models employing human pluripotent stem cells (PSCs have great potential to clarify the association of neuronal subtypes with disease, it is currently difficult to compare various PSC-derived subtypes. This is due to the limited number of subtypes whose induction is established, and different cultivation protocols for each subtype. Here, we report a culture system to control the regional identity of PSC-derived neurons along the anteroposterior (A-P and dorsoventral (D-V axes. This system was successfully used to obtain various neuronal subtypes based on the same protocol. Furthermore, we reproduced subtype-specific phenotypes of amyotrophic lateral sclerosis (ALS and Alzheimer’s disease (AD by comparing the obtained subtypes. Therefore, our culture system provides new opportunities for modeling neurological diseases with PSCs.

  7. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes.

    Science.gov (United States)

    Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent

    2017-01-31

    allowed the identification of 3 motor phenotypes (p < 0.01), without any difference for white matter hyperintensities, but with an increased Scheltens score from the first to the third motor phenotype (p = 0.05). Gait analysis under dual-task conditions in elderly people suffering from gait disorders or memory impairment is of great value in assessing the severity of gait disorders, differentiating between peripheral pathologies and central nervous system pathologies, and identifying motor phenotypes. Correlations between motor phenotypes and brain imaging require further studies.

  8. Using Extreme Phenotype Sampling to Identify the Rare Causal Variants of Quantitative Traits in Association Studies

    OpenAIRE

    Li, Dalin; Lewinger, Juan Pablo; Gauderman, William J.; Murcray, Cassandra Elizabeth; Conti, David

    2011-01-01

    Variants identified in recent genome-wide association studies based on the common-disease common-variant hypothesis are far from fully explaining the hereditability of complex traits. Rare variants may, in part, explain some of the missing hereditability. Here, we explored the advantage of the extreme phenotype sampling in rare-variant analysis and refined this design framework for future large-scale association studies on quantitative traits. We first proposed a power calculation approach fo...

  9. ATRX mutation in two adult brothers with non-specific moderate intellectual disability identified by exome sequencing.

    Science.gov (United States)

    Moncini, S; Bedeschi, M F; Castronovo, P; Crippa, M; Calvello, M; Garghentino, R R; Scuvera, G; Finelli, P; Venturin, M

    2013-12-01

    In this report, we describe two adult brothers affected by moderate non-specific intellectual disability (ID). They showed minor facial anomalies, not clearly ascribable to any specific syndromic patterns, microcephaly, brachydactyly and broad toes. Both brothers presented seizures. Karyotype, subtelomeric and FMR1 analysis were normal in both cases. We performed array-CGH analysis that revealed no copy-number variations potentially associated with ID. Subsequent exome sequence analysis allowed the identification of the ATRX c.109C>T (p.R37X) mutation in both the affected brothers. Sanger sequencing confirmed the presence of the mutation in the brothers and showed that the mother is a healthy carrier. Mutations in the ATRX gene cause the X-linked alpha thalassemia/mental retardation (ATR-X) syndrome (MIM #301040), a severe clinical condition usually associated with profound ID, facial dysmorphism and alpha thalassemia. However, the syndrome is clinically heterogeneous and some mutations, including the c.109C>T, are associated with a broad phenotypic spectrum, with patients displaying a less severe phenotype with only mild-moderate ID. In the case presented here, exome sequencing provided an effective strategy to achieve the molecular diagnosis of ATR-X syndrome, which otherwise would have been difficult to consider due to the mild non-specific phenotype and the absence of a family history with typical severe cases.

  10. Application of Combination High-Throughput Phenotypic Screening and Target Identification Methods for the Discovery of Natural Product-Based Combination Drugs.

    Science.gov (United States)

    Isgut, Monica; Rao, Mukkavilli; Yang, Chunhua; Subrahmanyam, Vangala; Rida, Padmashree C G; Aneja, Ritu

    2018-03-01

    Modern drug discovery efforts have had mediocre success rates with increasing developmental costs, and this has encouraged pharmaceutical scientists to seek innovative approaches. Recently with the rise of the fields of systems biology and metabolomics, network pharmacology (NP) has begun to emerge as a new paradigm in drug discovery, with a focus on multiple targets and drug combinations for treating disease. Studies on the benefits of drug combinations lay the groundwork for a renewed focus on natural products in drug discovery. Natural products consist of a multitude of constituents that can act on a variety of targets in the body to induce pharmacodynamic responses that may together culminate in an additive or synergistic therapeutic effect. Although natural products cannot be patented, they can be used as starting points in the discovery of potent combination therapeutics. The optimal mix of bioactive ingredients in natural products can be determined via phenotypic screening. The targets and molecular mechanisms of action of these active ingredients can then be determined using chemical proteomics, and by implementing a reverse pharmacokinetics approach. This review article provides evidence supporting the potential benefits of natural product-based combination drugs, and summarizes drug discovery methods that can be applied to this class of drugs. © 2017 Wiley Periodicals, Inc.

  11. Deploying a Proximal Sensing Cart to Identify Drought-Adaptive Traits in Upland Cotton for High-Throughput Phenotyping

    Directory of Open Access Journals (Sweden)

    Alison L. Thompson

    2018-04-01

    Full Text Available Field-based high-throughput phenotyping is an emerging approach to quantify difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts represent an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the field. A proximal sensing cart and specifically a deployment protocol, were developed to phenotype traits related to drought tolerance in the field. The cart-sensor package included an infrared thermometer, ultrasonic transducer, multi-spectral reflectance sensor, weather station, and RGB cameras. The cart deployment protocol was evaluated on 35 upland cotton (Gossypium hirsutum L. entries grown in 2017 at Maricopa, AZ, United States. Experimental plots were grown under well-watered and water-limited conditions using a (0,1 alpha lattice design and evaluated in June and July. Total collection time of the 0.87 hectare field averaged 2 h and 27 min and produced 50.7 MB and 45.7 GB of data from the sensors and RGB cameras, respectively. Canopy temperature, crop water stress index (CWSI, canopy height, normalized difference vegetative index (NDVI, and leaf area index (LAI differed among entries and showed an interaction with the water regime (p < 0.05. Broad-sense heritability (H2 estimates ranged from 0.097 to 0.574 across all phenotypes and collections. Canopy cover estimated from RGB images increased with counts of established plants (r = 0.747, p = 0.033. Based on the cart-derived phenotypes, three entries were found to have improved drought-adaptive traits compared to a local adapted cultivar. These results indicate that the deployment protocol developed for the cart and sensor package can measure multiple traits rapidly and accurately to characterize complex plant traits under drought conditions.

  12. Integrative Genomics: Quantifying significance of phenotype-genotype relationships from multiple sources of high-throughput data

    Directory of Open Access Journals (Sweden)

    Eric eGamazon

    2013-05-01

    Full Text Available Given recent advances in the generation of high-throughput data such as whole genome genetic variation and transcriptome expression, it is critical to come up with novel methods to integrate these heterogeneous datasets and to assess the significance of identified phenotype-genotype relationships. Recent studies show that genome-wide association findings are likely to fall in loci with gene regulatory effects such as expression quantitative trait loci (eQTLs, demonstrating the utility of such integrative approaches. When genotype and gene expression data are available on the same individuals, we developed methods wherein top phenotype-associated genetic variants are prioritized if they are associated, as eQTLs, with gene expression traits that are themselves associated with the phenotype. Yet there has been no method to determine an overall p-value for the findings that arise specifically from the integrative nature of the approach. We propose a computationally feasible permutation method that accounts for the assimilative nature of the method and the correlation structure among gene expression traits and among genotypes. We apply the method to data from a study of cellular sensitivity to etoposide, one of the most widely used chemotherapeutic drugs. To our knowledge, this study is the first statistically sound quantification of the significance of the genotype-phenotype relationships resulting from applying an integrative approach. This method can be easily extended to cases in which gene expression data are replaced by other molecular phenotypes of interest, e.g., microRNA or proteomic data. This study has important implications for studies seeking to expand on genetic association studies by the use of omics data. Finally, we provide an R code to compute the empirical FDR when p-values for the observed and simulated phenotypes are available.

  13. A comprehensive approach to identifying repurposed drugs to treat SCN8A epilepsy.

    Science.gov (United States)

    Atkin, Talia A; Maher, Chani M; Gerlach, Aaron C; Gay, Bryant C; Antonio, Brett M; Santos, Sonia C; Padilla, Karen M; Rader, JulieAnn; Krafte, Douglas S; Fox, Matthew A; Stewart, Gregory R; Petrovski, Slavé; Devinsky, Orrin; Might, Matthew; Petrou, Steven; Goldstein, David B

    2018-04-01

    Many previous studies of drug repurposing have relied on literature review followed by evaluation of a limited number of candidate compounds. Here, we demonstrate the feasibility of a more comprehensive approach using high-throughput screening to identify inhibitors of a gain-of-function mutation in the SCN8A gene associated with severe pediatric epilepsy. We developed cellular models expressing wild-type or an R1872Q mutation in the Na v 1.6 sodium channel encoded by SCN8A. Voltage clamp experiments in HEK-293 cells expressing the SCN8A R1872Q mutation demonstrated a leftward shift in sodium channel activation as well as delayed inactivation; both changes are consistent with a gain-of-function mutation. We next developed a fluorescence-based, sodium flux assay and used it to assess an extensive library of approved drugs, including a panel of antiepileptic drugs, for inhibitory activity in the mutated cell line. Lead candidates were evaluated in follow-on studies to generate concentration-response curves for inhibiting sodium influx. Select compounds of clinical interest were evaluated by electrophysiology to further characterize drug effects on wild-type and mutant sodium channel functions. The screen identified 90 drugs that significantly inhibited sodium influx in the R1872Q cell line. Four drugs of potential clinical interest-amitriptyline, carvedilol, nilvadipine, and carbamazepine-were further investigated and demonstrated concentration-dependent inhibition of sodium channel currents. A comprehensive drug repurposing screen identified potential new candidates for the treatment of epilepsy caused by the R1872Q mutation in the SCN8A gene. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  14. An approach to analyse the specific impact of rapamycin on mRNA-ribosome association

    Directory of Open Access Journals (Sweden)

    Jaquier-Gubler Pascale

    2008-08-01

    Full Text Available Abstract Background Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background. Methods We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out. For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation. Results High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug. Conclusion The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of

  15. Gene-set analysis based on the pharmacological profiles of drugs to identify repurposing opportunities in schizophrenia.

    Science.gov (United States)

    de Jong, Simone; Vidler, Lewis R; Mokrab, Younes; Collier, David A; Breen, Gerome

    2016-08-01

    Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected pneratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy. © The Author(s) 2016.

  16. The development of a preference for cocaine over food identifies individual rats with addiction-like behaviors.

    Science.gov (United States)

    Perry, Adam N; Westenbroek, Christel; Becker, Jill B

    2013-01-01

    Cocaine dependence is characterized by compulsive drug taking that supercedes other recreational, occupational or social pursuits. We hypothesized that rats vulnerable to addiction could be identified within the larger population based on their preference for cocaine over palatable food rewards. To validate the choice self-administration paradigm as a preclinical model of addiction, we examined changes in motivation for cocaine and recidivism to drug seeking in cocaine-preferring and pellet-preferring rats. We also examined behavior in males and females to identify sex differences in this "addicted" phenotype. Preferences were identified during self-administration on a fixed-ratio schedule with cocaine-only, pellet-only and choice sessions. Motivation for each reward was probed early and late during self-administration using a progressive-ratio schedule. Reinstatement of cocaine- and pellet-seeking was examined following exposure to their cues and non-contingent delivery of each reward. Cocaine preferring rats increased their drug intake at the expense of pellets, displayed increased motivation for cocaine, attenuated motivation for pellets and greater cocaine and cue-induced reinstatement of drug seeking. Females were more likely to develop cocaine preferences and recidivism of cocaine- and pellet-seeking was sexually dimorphic. The choice self-administration paradigm is a valid preclinical model of addiction. The unbiased selection criteria also revealed sex-specific vulnerability factors that could be differentiated from generalized sex differences in behavior, which has implications for the neurobiology of addiction and effective treatments in each sex.

  17. The development of a preference for cocaine over food identifies individual rats with addiction-like behaviors.

    Directory of Open Access Journals (Sweden)

    Adam N Perry

    Full Text Available Cocaine dependence is characterized by compulsive drug taking that supercedes other recreational, occupational or social pursuits. We hypothesized that rats vulnerable to addiction could be identified within the larger population based on their preference for cocaine over palatable food rewards.To validate the choice self-administration paradigm as a preclinical model of addiction, we examined changes in motivation for cocaine and recidivism to drug seeking in cocaine-preferring and pellet-preferring rats. We also examined behavior in males and females to identify sex differences in this "addicted" phenotype.Preferences were identified during self-administration on a fixed-ratio schedule with cocaine-only, pellet-only and choice sessions. Motivation for each reward was probed early and late during self-administration using a progressive-ratio schedule. Reinstatement of cocaine- and pellet-seeking was examined following exposure to their cues and non-contingent delivery of each reward.Cocaine preferring rats increased their drug intake at the expense of pellets, displayed increased motivation for cocaine, attenuated motivation for pellets and greater cocaine and cue-induced reinstatement of drug seeking. Females were more likely to develop cocaine preferences and recidivism of cocaine- and pellet-seeking was sexually dimorphic.The choice self-administration paradigm is a valid preclinical model of addiction. The unbiased selection criteria also revealed sex-specific vulnerability factors that could be differentiated from generalized sex differences in behavior, which has implications for the neurobiology of addiction and effective treatments in each sex.

  18. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  19. Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates.

    Science.gov (United States)

    Lauschke, Volker M; Hendriks, Delilah F G; Bell, Catherine C; Andersson, Tommy B; Ingelman-Sundberg, Magnus

    2016-12-19

    The liver is an organ with critical importance for drug treatment as the disposition and response to a given drug is often determined by its hepatic metabolism. Patient-specific factors can entail increased susceptibility to drug-induced liver injury, which constitutes a major risk for drug development programs causing attrition of promising drug candidates or costly withdrawals in postmarketing stages. Hitherto, mainly animal studies and 2D hepatocyte systems have been used for the examination of human drug metabolism and toxicity. Yet, these models are far from satisfactory due to extensive species differences and because hepatocytes in 2D cultures rapidly dedifferentiate resulting in the loss of their hepatic phenotype and functionality. With the increasing comprehension that 3D cell culture systems more accurately reflect in vivo physiology, in the recent decade more and more research has focused on the development and optimization of various 3D culture strategies in an attempt to preserve liver properties in vitro. In this contribution, we critically review these developments, which have resulted in an arsenal of different static and perfused 3D models. These systems include sandwich-cultured hepatocytes, spheroid culture platforms, and various microfluidic liver or multiorgan biochips. Importantly, in many of these models hepatocytes maintain their phenotype for prolonged times, which allows probing the potential of newly developed chemical entities to cause chronic hepatotoxicity. Moreover, some platforms permit the investigation of drug action in specific genetic backgrounds or diseased hepatocytes, thereby significantly expanding the repertoire of tools to detect drug-induced liver injuries. It is concluded that the development of 3D liver models has hitherto been fruitful and that systems are now at hand whose sensitivity and specificity in detecting hepatotoxicity are superior to those of classical 2D culture systems. For the future, we highlight the

  20. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  1. Drug-perturbation-based stratification of blood cancer

    Science.gov (United States)

    Dietrich, Sascha; Lu, Junyan; Wu, Bian; Hüllein, Jennifer; da Silva Liberio, Michelle; Walther, Tatjana; Wagner, Lena; Rabe, Sophie; Ghidelli-Disse, Sonja; Bantscheff, Marcus; Słabicki, Mikołaj; Mock, Andreas; Oakes, Christopher C.; Wang, Shihui; Oppermann, Sina; Lukas, Marina; Kim, Vladislav; Sill, Martin; Jauch, Anna; Sutton, Lesley Ann; Rosenquist, Richard; Liu, Xiyang; Jethwa, Alexander; Lee, Kwang Seok; Lewis, Joe; Putzker, Kerstin; Lutz, Christoph; Rossi, Davide; Oellerich, Thomas; Herling, Marco; Nguyen-Khac, Florence; Plass, Christoph; von Kalle, Christof; Ho, Anthony D.; Hensel, Manfred; Dürig, Jan; Ringshausen, Ingo; Huber, Wolfgang

    2017-01-01

    As new generations of targeted therapies emerge and tumor genome sequencing discovers increasingly comprehensive mutation repertoires, the functional relationships of mutations to tumor phenotypes remain largely unknown. Here, we measured ex vivo sensitivity of 246 blood cancers to 63 drugs alongside genome, transcriptome, and DNA methylome analysis to understand determinants of drug response. We assembled a primary blood cancer cell encyclopedia data set that revealed disease-specific sensitivities for each cancer. Within chronic lymphocytic leukemia (CLL), responses to 62% of drugs were associated with 2 or more mutations, and linked the B cell receptor (BCR) pathway to trisomy 12, an important driver of CLL. Based on drug responses, the disease could be organized into phenotypic subgroups characterized by exploitable dependencies on BCR, mTOR, or MEK signaling and associated with mutations, gene expression, and DNA methylation. Fourteen percent of CLLs were driven by mTOR signaling in a non–BCR-dependent manner. Multivariate modeling revealed immunoglobulin heavy chain variable gene (IGHV) mutation status and trisomy 12 as the most important modulators of response to kinase inhibitors in CLL. Ex vivo drug responses were associated with outcome. This study overcomes the perception that most mutations do not influence drug response of cancer, and points to an updated approach to understanding tumor biology, with implications for biomarker discovery and cancer care. PMID:29227286

  2. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: Myocardial and infectious adverse reactions as application cases

    International Nuclear Information System (INIS)

    Wang, Kejian; Weng, Zuquan; Sun, Liya; Sun, Jiazhi; Zhou, Shu-Feng; He, Lin

    2015-01-01

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure–activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. - Highlights: • Drugs causing common toxicity lead to similar in vitro gene expression changes. • We built a model to predict drug toxicity with drug-specific expression profiles. • Drugs with FDA black box warnings were effectively identified by our model. • In vitro assay can detect severe toxicity in the early stage of drug development

  3. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: Myocardial and infectious adverse reactions as application cases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kejian, E-mail: kejian.wang.bio@gmail.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China); Weng, Zuquan [Japan National Institute of Occupational Safety and Health, Kawasaki (Japan); Sun, Liya [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China); Sun, Jiazhi; Zhou, Shu-Feng [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States); He, Lin, E-mail: helin@Bio-X.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China)

    2015-02-13

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure–activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. - Highlights: • Drugs causing common toxicity lead to similar in vitro gene expression changes. • We built a model to predict drug toxicity with drug-specific expression profiles. • Drugs with FDA black box warnings were effectively identified by our model. • In vitro assay can detect severe toxicity in the early stage of drug development.

  4. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  5. Phenotypical characteristics of group B streptococcus in parturients

    Directory of Open Access Journals (Sweden)

    Jose Antonio Simoes

    Full Text Available Colonization by Group B Streptococcus (GBS is highly prevalent among pregnant women, with prevalence rates ranging between 4% and 30%. The infection may be transmitted vertically and may result in serious neonatal consequences. In the period from November 2003 to May 2004, a cross-sectional study was carried out among 316 parturients at the Jundiaí Teaching Hospital to establish the prevalence of genital GBS colonization, to identify the factors associated with colonization and the characteristic phenotypes of these streptococci. Samples from rectal and vaginal areas were collected for selective culture in Todd-Hewitt broth. Susceptibility to 7 antimicrobial agents was tested using the antibiotic diffusion disk technique, and the isolated strains were classified using specific antisera. The prevalence of GBS colonization was 14.6%. No strain was resistant to penicillin, ampicillin, erythromycin or nitrofurantoin. The majority of strains were sensitive to cephalothin. Greatest resistance was to gentamicin (76.1%, followed by clindamycin (17.4%. The most frequent serotype was Ib (23.9%, followed by serotypes II and Ia (19.6% and 17.4%, respectively. There was no correlation between serotype and greater antimicrobial resistance. In conclusion, the prevalence of GBS in parturients was high and penicillin continues to be the drug of choice for intrapartum prophylaxis. The most frequent serotype (Ib found in this study differs from those found in the majority of studies carried out in other countries, revealing the need to identify prevalent serotypes in each region so that specific vaccines can be designed.

  6. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia.

    Science.gov (United States)

    Deml, B; Reis, L M; Maheshwari, M; Griffis, C; Bick, D; Semina, E V

    2014-11-01

    Anophthalmia/microphthalmia (A/M) is a developmental ocular malformation defined as complete absence or reduction in size of the eye. A/M is a heterogenous disorder with numerous causative genes identified; however, about half the cases lack a molecular diagnosis. We undertook whole exome sequencing in an A/M family with two affected siblings, two unaffected siblings, and unaffected parents; the ocular phenotype was isolated with only mild developmental delay/learning difficulties reported and a normal brain magnetic resonance imaging (MRI) in the proband at 16 months. No pathogenic mutations were identified in 71 known A/M genes. Further analysis identified a shared heterozygous mutation in COL4A1, c.2317G>A, p.(Gly773Arg) that was not seen in the unaffected parents and siblings. Analysis of 24 unrelated A/M exomes identified a novel c.2122G>A, p.(Gly708Arg) mutation in an additional patient with unilateral microphthalmia, bilateral microcornea and Peters anomaly; the mutation was absent in the unaffected mother and the unaffected father was not available. Mutations in COL4A1 have been linked to a spectrum of human disorders; the most consistent feature is cerebrovascular disease with variable ocular anomalies, kidney and muscle defects. This study expands the spectrum of COL4A1 phenotypes and indicates screening in patients with A/M regardless of MRI findings or presumed inheritance pattern. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Cognitive dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence.

    Science.gov (United States)

    Ersche, Karen D; Turton, Abigail J; Chamberlain, Samuel R; Müller, Ulrich; Bullmore, Edward T; Robbins, Trevor W

    2012-09-01

    Not everyone who takes drugs becomes addicted, but the likelihood of developing drug addiction is greater in people with a family history of drug or alcohol dependence. Relatively little is known about how genetic risk mediates the development of drug dependence. By comparing the phenotypic profile of individuals with and without a family history of addiction, the authors sought to clarify the extent to which cognitive dysfunction and personality traits are shared by family members--and therefore likely to have predated drug dependence--and which aspects are specific to drug-dependent individuals. The authors assessed cognitive function and personality traits associated with drug dependence in stimulant-dependent individuals (N=50), their biological siblings without a history of drug dependence (N=50), and unrelated healthy volunteers (N=50). Cognitive function was significantly impaired in the stimulant-dependent individuals across a range of domains. Deficits in executive function and response control were identified in both the stimulant-dependent individuals and in their non-drug-dependent siblings. Drug-dependent individuals and their siblings also exhibited elevated anxious-impulsive personality traits relative to healthy comparison volunteers. Deficits in executive function and response regulation as well as anxious-impulsive personality traits may represent endophenotypes associated with the risk of developing cocaine or amphetamine dependence. The identification of addiction endophenotypes may be useful in facilitating the rational development of therapeutic and preventive strategies.

  8. Oncology drugs for orphan indications: how are HTA processes evolving for this specific drug category?

    Science.gov (United States)

    Adkins, Elizabeth M; Nicholson, Lindsay; Floyd, David; Ratcliffe, Mark; Chevrou-Severac, Helene

    2017-01-01

    Orphan drugs (ODs) are intended for the diagnosis, prevention, or treatment of rare diseases. Many cancer subtypes, including all childhood cancers, are defined as rare diseases, and over one-third of ODs are now intended to treat oncology indications. However, market access for oncology ODs is becoming increasingly challenging; ODs are prone to significant uncertainty around their cost-effectiveness, while payers must balance the need for these vital innovations with growing sensitivity to rising costs. The objective of this review was to evaluate different mechanisms that have been introduced to facilitate patient access to oncology ODs in five different countries (Australia, Canada, England, France, and Sweden), using eight oncology ODs and non-orphan oncology drugs as examples of their application. A targeted literature review of health technology assessment (HTA) agency websites was undertaken to identify country-specific guidance and HTA documentation for recently evaluated oncology ODs and non-orphan oncology drugs. None of these countries were found to have explicit HTA criteria for the assessment of ODs, and therefore, oncology ODs are assessed through the usual HTA process. However, distinct and additional processes are adopted to facilitate access to oncology ODs. Review of eight case-study drugs showed that these additional assessment processes were rarely used, and decisions were largely driven by proving cost-effectiveness using standard incremental cost-effectiveness ratio (ICER) thresholds. The predominant implication arising from this study is that application of standard HTA criteria to oncology ODs in many countries fails to take into account any uncertainties around their clinical- and cost-effectiveness, resulting in disparities in HTA reimbursement decisions based on differences in addressing or accepting uncertainty. In order to address this issue, HTA agencies should adopt a more flexible approach to cost-effectiveness, as typified by the

  9. Use of genetic data to infer population-specific ecological and phenotypic traits from mixed aggregations.

    Directory of Open Access Journals (Sweden)

    Paul Moran

    Full Text Available Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.

  10. Use of genetic data to infer population-specific ecological and phenotypic traits from mixed aggregations

    Science.gov (United States)

    Moran, Paul; Bromaghin, Jeffrey F.; Masuda, Michele

    2014-01-01

    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.

  11. Mesenchymal change and drug resistance in neuroblastoma.

    Science.gov (United States)

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Case Characterization, Clinical Features and Risk Factors in Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Aida Ortega-Alonso

    2016-05-01

    Full Text Available Idiosyncratic drug-induced liver injury (DILI caused by xenobiotics (drugs, herbals and dietary supplements presents with a range of both phenotypes and severity, from acute hepatitis indistinguishable of viral hepatitis to autoimmune syndromes, steatosis or rare chronic vascular syndromes, and from asymptomatic liver test abnormalities to acute liver failure. DILI pathogenesis is complex, depending on the interaction of drug physicochemical properties and host factors. The awareness of risk factors for DILI is arising from the analysis of large databases of DILI cases included in Registries and Consortia networks around the world. These networks are also enabling in-depth phenotyping with the identification of predictors for severe outcome, including acute liver failure and mortality/liver transplantation. Genome wide association studies taking advantage of these large cohorts have identified several alleles from the major histocompatibility complex system indicating a fundamental role of the adaptive immune system in DILI pathogenesis. Correct case definition and characterization is crucial for appropriate phenotyping, which in turn will strengthen sample collection for genotypic and future biomarkers studies.

  13. Machine-learning phenotypic classification of bicuspid aortopathy.

    Science.gov (United States)

    Wojnarski, Charles M; Roselli, Eric E; Idrees, Jay J; Zhu, Yuanjia; Carnes, Theresa A; Lowry, Ashley M; Collier, Patrick H; Griffin, Brian; Ehrlinger, John; Blackstone, Eugene H; Svensson, Lars G; Lytle, Bruce W

    2018-02-01

    Bicuspid aortic valves (BAV) are associated with incompletely characterized aortopathy. Our objectives were to identify distinct patterns of aortopathy using machine-learning methods and characterize their association with valve morphology and patient characteristics. We analyzed preoperative 3-dimensional computed tomography reconstructions for 656 patients with BAV undergoing ascending aorta surgery between January 2002 and January 2014. Unsupervised partitioning around medoids was used to cluster aortic dimensions. Group differences were identified using polytomous random forest analysis. Three distinct aneurysm phenotypes were identified: root (n = 83; 13%), with predominant dilatation at sinuses of Valsalva; ascending (n = 364; 55%), with supracoronary enlargement rarely extending past the brachiocephalic artery; and arch (n = 209; 32%), with aortic arch dilatation. The arch phenotype had the greatest association with right-noncoronary cusp fusion: 29%, versus 13% for ascending and 15% for root phenotypes (P < .0001). Severe valve regurgitation was most prevalent in root phenotype (57%), followed by ascending (34%) and arch phenotypes (25%; P < .0001). Aortic stenosis was most prevalent in arch phenotype (62%), followed by ascending (50%) and root phenotypes (28%; P < .0001). Patient age increased as the extent of aneurysm became more distal (root, 49 years; ascending, 53 years; arch, 57 years; P < .0001), and root phenotype was associated with greater male predominance compared with ascending and arch phenotypes (94%, 76%, and 70%, respectively; P < .0001). Phenotypes were visually recognizable with 94% accuracy. Three distinct phenotypes of bicuspid valve-associated aortopathy were identified using machine-learning methodology. Patient characteristics and valvular dysfunction vary by phenotype, suggesting that the location of aortic pathology may be related to the underlying pathophysiology of this disease. Copyright © 2017 The American

  14. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    Science.gov (United States)

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10(-8)), with minor allele frequencies of 1.3-23.9%. Novel signals included variants for progesterone (P=7.68 × 10(-12)), oestradiol (P=1.63 × 10(-8)) and FAI (P=1.50 × 10(-8)). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10(-8)) and LH (P=3.94 × 10(-9)) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10(-14)) and progesterone (P=6.09 × 10(-14)). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.

  15. A genome wide association study of Plasmodium falciparum susceptibility to 22 antimalarial drugs in Kenya.

    Directory of Open Access Journals (Sweden)

    Jason P Wendler

    Full Text Available Drug resistance remains a chief concern for malaria control. In order to determine the genetic markers of drug resistant parasites, we tested the genome-wide associations (GWA of sequence-based genotypes from 35 Kenyan P. falciparum parasites with the activities of 22 antimalarial drugs.Parasites isolated from children with acute febrile malaria were adapted to culture, and sensitivity was determined by in vitro growth in the presence of anti-malarial drugs. Parasites were genotyped using whole genome sequencing techniques. Associations between 6250 single nucleotide polymorphisms (SNPs and resistance to individual anti-malarial agents were determined, with false discovery rate adjustment for multiple hypothesis testing. We identified expected associations in the pfcrt region with chloroquine (CQ activity, and other novel loci associated with amodiaquine, quinazoline, and quinine activities. Signals for CQ and primaquine (PQ overlap in and around pfcrt, and interestingly the phenotypes are inversely related for these two drugs. We catalog the variation in dhfr, dhps, mdr1, nhe, and crt, including novel SNPs, and confirm the presence of a dhfr-164L quadruple mutant in coastal Kenya. Mutations implicated in sulfadoxine-pyrimethamine resistance are at or near fixation in this sample set.Sequence-based GWA studies are powerful tools for phenotypic association tests. Using this approach on falciparum parasites from coastal Kenya we identified known and previously unreported genes associated with phenotypic resistance to anti-malarial drugs, and observe in high-resolution haplotype visualizations a possible signature of an inverse selective relationship between CQ and PQ.

  16. Determinants of gingival overgrowth severity in organ transplant patients. An examination of the rôle of HLA phenotype.

    Science.gov (United States)

    Thomason, J M; Seymour, R A; Ellis, J S; Kelly, P J; Parry, G; Dark, J; Wilkinson, R; Ilde, J R

    1996-07-01

    The role of HLA phenotype as a risk factor for drug-induced gingival overgrowth was investigated in a cohort of 172 transplant recipients. Clinically significant overgrowth warranting surgical correction was observed in 72 patients (42%). Using stepwise regression modelling, 6 clinical parameters were identified as significant risk factors for the severity of gingival overgrowth. These were; age, sex, creatinine plasma level, duration of therapy, papilla bleeding index and concomitant medication with a calcium channel blocking drug. 3 HLA alleles were also identified as risk factors when adjusted for other clinically significant risk factors (HLA -DR2, A24, B37). However, when the p-values for the HLA variables were corrected to compensate for the use of multiple significance testing, only HLA-B37 remained statistically significant at the 5% level. Organ transplant patients are at risk of developing gingival overgrowth, with approximately 25% medicated with cyclosporin alone requiring corrective gingival surgery. This figure more than doubles in patients concomitantly medicated with a calcium blocking drug. The data at present available would suggest that the severity of gingival overgrowth is also significantly associated with the HLA-B37 phenotype.

  17. Illicit Drug Use in a Community-Based Sample of Heterosexually Identified Emerging Adults

    Science.gov (United States)

    Halkitis, Perry N.; Manasse, Ashley N.; McCready, Karen C.

    2010-01-01

    In this study we assess lifetime and recent drug use patterns among 261 heterosexually identified 18- to 25-year-olds through brief street intercept surveys conducted in New York City. Marijuana, hallucinogens, powder cocaine, and ecstasy were the most frequently reported drugs for both lifetime and recent use. Findings further suggest significant…

  18. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes

    Science.gov (United States)

    Devulapally, Rammohan; Paulmurugan, Ramasamy

    2013-01-01

    Advances in nanotechnology have provided powerful and efficient tools in development of cancer diagnosis and therapy. There are numerous nanocarriers that are currently approved for clinical use in cancer therapy. In recent years, biodegradable polymer nanoparticles (NPs) have attracted a considerable attention for their ability to function as a possible carrier for target-specific delivery of various drugs, genes, proteins, peptides, vaccines, and other biomolecules in humans without much toxicity. This review will specifically focus on the recent advances in polymer-based nanocarriers for various drugs and small silencing RNA’s loading and delivery to treat different types of cancer. PMID:23996830

  19. Systematic identification of proteins that elicit drug side effects

    DEFF Research Database (Denmark)

    Kuhn, Michael; Al Banchaabouchi, Mumna; Campillos, Monica

    2013-01-01

    Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large-scale analysis to systematically predict and characterize proteins...... that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug-target relations to identify overrepresented protein-side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause......) is responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side effects are mediated by individual proteins and create a reference for such relations....

  20. Global Transcriptome Sequencing Identifies Chlamydospore Specific Markers in Candida albicans and Candida dubliniensis

    LENUS (Irish Health Repository)

    Palige, Katja

    2013-04-15

    Candida albicans and Candida dubliniensis are pathogenic fungi that are highly related but differ in virulence and in some phenotypic traits. During in vitro growth on certain nutrient-poor media, C. albicans and C. dubliniensis are the only yeast species which are able to produce chlamydospores, large thick-walled cells of unknown function. Interestingly, only C. dubliniensis forms pseudohyphae with abundant chlamydospores when grown on Staib medium, while C. albicans grows exclusively as a budding yeast. In order to further our understanding of chlamydospore development and assembly, we compared the global transcriptional profile of both species during growth in liquid Staib medium by RNA sequencing. We also included a C. albicans mutant in our study which lacks the morphogenetic transcriptional repressor Nrg1. This strain, which is characterized by its constitutive pseudohyphal growth, specifically produces masses of chlamydospores in Staib medium, similar to C. dubliniensis. This comparative approach identified a set of putatively chlamydospore-related genes. Two of the homologous C. albicans and C. dubliniensis genes (CSP1 and CSP2) which were most strongly upregulated during chlamydospore development were analysed in more detail. By use of the green fluorescent protein as a reporter, the encoded putative cell wall related proteins were found to exclusively localize to C. albicans and C. dubliniensis chlamydospores. Our findings uncover the first chlamydospore specific markers in Candida species and provide novel insights in the complex morphogenetic development of these important fungal pathogens.

  1. Modeling the Mutational and Phenotypic Landscapes of Pelizaeus-Merzbacher Disease with Human iPSC-Derived Oligodendrocytes

    DEFF Research Database (Denmark)

    Nevin, Zachary S.; Factor, Daniel C.; Karl, Robert T.

    2017-01-01

    in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hi...... individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted...... treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin...

  2. Transgenerational Inheritance of Paternal Neurobehavioral Phenotypes: Stress, Addiction, Ageing and Metabolism.

    Science.gov (United States)

    Yuan, Ti-Fei; Li, Ang; Sun, Xin; Ouyang, Huan; Campos, Carlos; Rocha, Nuno B F; Arias-Carrión, Oscar; Machado, Sergio; Hou, Gonglin; So, Kwok Fai

    2016-11-01

    Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants.

  3. Novel HTS strategy identifies TRAIL-sensitizing compounds acting specifically through the caspase-8 apoptotic axis.

    Directory of Open Access Journals (Sweden)

    Darren Finlay

    Full Text Available Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL is potentially a very important therapeutic as it shows selectivity for inducing apoptosis in cancer cells whilst normal cells are refractory. TRAIL binding to its cognate receptors, Death Receptors-4 and -5, leads to recruitment of caspase-8 and classical activation of downstream effector caspases, leading to apoptosis. As with many drugs however, TRAIL's usefulness is limited by resistance, either innate or acquired. We describe here the development of a novel 384-well high-throughput screening (HTS strategy for identifying potential TRAIL-sensitizing agents that act solely in a caspase-8 dependent manner. By utilizing a TRAIL resistant cell line lacking caspase-8 (NB7 compared to the same cells reconstituted with the wild-type protein, or with a catalytically inactive point mutant of caspase-8, we are able to identify compounds that act specifically through the caspase-8 axis, rather than through general toxicity. In addition, false positive hits can easily be "weeded out" in this assay due to their activity in cells lacking caspase-8-inducible activity. Screening of the library of pharmacologically active compounds (LOPAC was performed as both proof-of-concept and to discover potential unknown TRAIL sensitizers whose mechanism is caspase-8 mediated. We identified known TRAIL sensitizers from the library and identified new compounds that appear to sensitize specifically through caspase-8. In sum, we demonstrate proof-of-concept and discovery of novel compounds with a screening strategy optimized for the detection of caspase-8 pathway-specific TRAIL sensitizers. This screen was performed in the 384-well format, but could easily be further miniaturized, allows easy identification of artifactual false positives, and is highly scalable to accommodate diverse libraries.

  4. Delineation of C12orf65-related phenotypes: a genotype-phenotype relationship.

    Science.gov (United States)

    Spiegel, Ronen; Mandel, Hanna; Saada, Ann; Lerer, Issy; Burger, Ayala; Shaag, Avraham; Shalev, Stavit A; Jabaly-Habib, Haneen; Goldsher, Dorit; Gomori, John M; Lossos, Alex; Elpeleg, Orly; Meiner, Vardiella

    2014-08-01

    C12orf65 participates in the process of mitochondrial translation and has been shown to be associated with a spectrum of phenotypes, including early onset optic atrophy, progressive encephalomyopathy, peripheral neuropathy, and spastic paraparesis.We used whole-genome homozygosity mapping as well as exome sequencing and targeted gene sequencing to identify novel C12orf65 disease-causing mutations in seven affected individuals originating from two consanguineous families. In four family members affected with childhood-onset optic atrophy accompanied by slowly progressive peripheral neuropathy and spastic paraparesis, we identified a homozygous frame shift mutation c.413_417 delAACAA, which predicts a truncated protein lacking the C-terminal portion. In the second family, we studied three affected individuals who presented with early onset optic atrophy, peripheral neuropathy, and spastic gait in addition to moderate intellectual disability. Muscle biopsy in two of the patients revealed decreased activities of the mitochondrial respiratory chain complexes I and IV. In these patients, we identified a homozygous splice mutation, g.21043 T>A (c.282+2 T>A) which leads to skipping of exon 2. Our study broadens the phenotypic spectrum of C12orf65 defects and highlights the triad of optic atrophy, axonal neuropathy and spastic paraparesis as its key clinical features. In addition, a clear genotype-phenotype correlation is anticipated in which deleterious mutations which disrupt the GGQ-containing domain in the first coding exon are expected to result in a more severe phenotype, whereas down-stream C-terminal mutations may result in a more favorable phenotype, typically lacking cognitive impairment.

  5. Subgrouping siblings of people with autism: Identifying the broader autism phenotype

    Science.gov (United States)

    Allison, Carrie; Smith, Paula; Watson, Peter; Auyeung, Bonnie; Ring, Howard; Baron‐Cohen, Simon

    2015-01-01

    We investigate the broader autism phenotype (BAP) in siblings of individuals with autism spectrum conditions (ASC). Autistic traits were measured in typical controls (n = 2,000), siblings (n = 496), and volunteers with ASC (n = 2,322) using the Autism‐Spectrum Quotient (AQ), both self‐report and parent‐report versions. Using cluster analysis of AQ subscale scores, two sibling subgroups were identified for both males and females: a cluster of low‐scorers and a cluster of high‐scorers. Results show that while siblings as a group have intermediate levels of autistic traits compared to control individuals and participants with ASC, when examined on a cluster level, the low‐scoring sibling group is more similar to typical controls while the high‐scoring group is more similar to the ASC clinical group. Further investigation into the underlying genetic and epigenetic characteristics of these two subgroups will be informative in understanding autistic traits, both within the general population and in relation to those with a clinical diagnosis. Autism Res 2016, 9: 658–665. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:26332889

  6. Phenotypic consequences of a mosaic marker chromosome identified by fluorescence in situ hybridization (FISH) as being derived from chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.H.; Zhou, X.; Pletcher, B.A. [Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    De novo marker chromosomes are detected in 1 in 2500 amniotic fluid samples and are associated with a 10-15% risk for phenotypic abnormality. FISH can be utilized as a research tool to identify the origins of marker chromosomes. The phenotypic consequences of a marker chromosome derived from the short arm of chromosome 16 are described. A 26-year-old woman underwent amniocentesis at 28 weeks gestation because of a prenatally diagnosed tetralogy of Fallot. Follow-up ultrasounds also showed ventriculomegaly and cleft lip and palate. 32 of 45 cells had the karyotype 47,XY,+mar; the remaining cells were 46,XY. The de novo marker chromosome was C-band positive and non-satellited and failed to stain with distamycin A/DAPI. At birth the ultrasound findings were confirmed and dysmorphic features and cryptorchidism were noted. Although a newborn blood sample contained only normal cells, mosaicism was confirmed in 2 skin biopsies. FISH using whole-chromosome painting and alpha-satellite DNA probes showed that the marker chromosome had originated from chromosome 16. As proximal 16q is distamycin A/DAPI positive, the marker is apparently derived from proximal 16p. At 15 months of age, this child is hypotonic, globally delayed and is gavage-fed. His physical examination is significant for microbrachycephaly, a round face, sparse scalp hair, ocular hypertelorism, exotropia, a flat, wide nasal bridge and tip, mild micrognathia, and tapered fingers with lymphedema of hands and feet. Inguinal hernias have been repaired. His features are consistent with those described for patients trisomic for most or all of the short arm of chromosome 16. Marker chromosomes derived from the short arm of chromosome 16 appear to have phenotypic consequences. As the origin of more marker chromosomes are identified using FISH, their karyotype/phenotype correlations will become more apparent, which will permit more accurate genetic counseling.

  7. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  8. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion.

    Science.gov (United States)

    Weaver, Cole A; Miller, Steven F; da Fontoura, Clarissa S G; Wehby, George L; Amendt, Brad A; Holton, Nathan E; Allareddy, Veeratrishul; Southard, Thomas E; Moreno Uribe, Lina M

    2017-03-01

    Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. Identifying Drug-Target Interactions with Decision Templates.

    Science.gov (United States)

    Yan, Xiao-Ying; Zhang, Shao-Wu

    2018-01-01

    During the development process of new drugs, identification of the drug-target interactions wins primary concerns. However, the chemical or biological experiments bear the limitation in coverage as well as the huge cost of both time and money. Based on drug similarity and target similarity, chemogenomic methods can be able to predict potential drug-target interactions (DTIs) on a large scale and have no luxurious need about target structures or ligand entries. In order to reflect the cases that the drugs having variant structures interact with common targets and the targets having dissimilar sequences interact with same drugs. In addition, though several other similarity metrics have been developed to predict DTIs, the combination of multiple similarity metrics (especially heterogeneous similarities) is too naïve to sufficiently explore the multiple similarities. In this paper, based on Gene Ontology and pathway annotation, we introduce two novel target similarity metrics to address above issues. More importantly, we propose a more effective strategy via decision template to integrate multiple classifiers designed with multiple similarity metrics. In the scenarios that predict existing targets for new drugs and predict approved drugs for new protein targets, the results on the DTI benchmark datasets show that our target similarity metrics are able to enhance the predictive accuracies in two scenarios. And the elaborate fusion strategy of multiple classifiers has better predictive power than the naïve combination of multiple similarity metrics. Compared with other two state-of-the-art approaches on the four popular benchmark datasets of binary drug-target interactions, our method achieves the best results in terms of AUC and AUPR for predicting available targets for new drugs (S2), and predicting approved drugs for new protein targets (S3).These results demonstrate that our method can effectively predict the drug-target interactions. The software package can

  10. An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval.

    Science.gov (United States)

    Lorberbaum, Tal; Sampson, Kevin J; Woosley, Raymond L; Kass, Robert S; Tatonetti, Nicholas P

    2016-05-01

    Drug-induced prolongation of the QT interval on the electrocardiogram (long QT syndrome, LQTS) can lead to a potentially fatal ventricular arrhythmia known as torsades de pointes (TdP). Over 40 drugs with both cardiac and non-cardiac indications are associated with increased risk of TdP, but drug-drug interactions contributing to LQTS (QT-DDIs) remain poorly characterized. Traditional methods for mining observational healthcare data are poorly equipped to detect QT-DDI signals due to low reporting numbers and lack of direct evidence for LQTS. We hypothesized that LQTS could be identified latently using an adverse event (AE) fingerprint of more commonly reported AEs. We aimed to generate an integrated data science pipeline that addresses current limitations by identifying latent signals for QT-DDIs in the US FDA's Adverse Event Reporting System (FAERS) and retrospectively validating these predictions using electrocardiogram data in electronic health records (EHRs). We trained a model to identify an AE fingerprint for risk of TdP for single drugs and applied this model to drug pair data to predict novel DDIs. In the EHR at Columbia University Medical Center, we compared the QTc intervals of patients prescribed the flagged drug pairs with patients prescribed either drug individually. We created an AE fingerprint consisting of 13 latently detected side effects. This model significantly outperformed a direct evidence control model in the detection of established interactions (p = 1.62E-3) and significantly enriched for validated QT-DDIs in the EHR (p = 0.01). Of 889 pairs flagged in FAERS, eight novel QT-DDIs were significantly associated with prolonged QTc intervals in the EHR and were not due to co-prescribed medications. Latent signal detection in FAERS validated using the EHR presents an automated and data-driven approach for systematically identifying novel QT-DDIs. The high-confidence hypotheses flagged using this method warrant further investigation.

  11. Visualizing Mutation-Specific Differences in the Trafficking-Deficient Phenotype of Kv11.1 Proteins Linked to Long QT Syndrome Type 2.

    Science.gov (United States)

    Hall, Allison R; Anderson, Corey L; Smith, Jennifer L; Mirshahi, Tooraj; Elayi, Claude S; January, Craig T; Delisle, Brian P

    2018-01-01

    KCNH2 encodes the Kv11.1 α-subunit that underlies the rapidly activating delayed-rectifier K + current in the heart. Loss-of-function KCNH2 mutations cause long QT syndrome type 2 (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channel protein to the cell surface membrane. Several trafficking-deficient LQT2 mutations (e.g., G601S) generate Kv11.1 proteins that are sequestered in a microtubule-dependent quality control (QC) compartment in the transitional endoplasmic reticulum (ER). We tested the hypothesis that the QC mechanisms that regulate LQT2-linked Kv11.1 protein trafficking are mutation-specific. Confocal imaging analyses of HEK293 cells stably expressing the trafficking-deficient LQT2 mutation F805C showed that, unlike G601S-Kv11.1 protein, F805C-Kv11.1 protein was concentrated in several transitional ER subcompartments. The microtubule depolymerizing drug nocodazole differentially affected G601S- and F805C-Kv11.1 protein immunostaining. Nocodazole caused G601S-Kv11.1 protein to distribute into peripheral reticular structures, and it increased the diffuse immunostaining of F805C-Kv11.1 protein around the transitional ER subcompartments. Proteasome inhibition also affected the immunostaining of G601S- and F805C-Kv11.1 protein differently. Incubating cells in MG132 minimally impacted G601S-Kv11.1 immunostaining, but it dramatically increased the diffuse immunostaining of F805C-Kv11.1 protein in the transitional ER. Similar results were seen after incubating cells in the proteasome inhibitor lactacystin. Differences in the cellular distribution of G601S-Kv11.1 and F805C-Kv11.1 protein persisted in transfected human inducible pluripotent stem cell derived cardiomyocytes. These are the first data to visually demonstrate mutation-specific differences in the trafficking-deficient LQT2 phenotype, and this study has identified a novel way to categorize trafficking-deficient LQT2 mutations based on differences in intracellular

  12. Early-Life Experience Decreases Drug-Induced Reinstatement of Morphine CPP in Adulthood via Microglial-Specific Epigenetic Programming of Anti-Inflammatory IL-10 Expression

    Science.gov (United States)

    Schwarz, Jaclyn M.; Hutchinson, Mark R.; Bilbo, Staci D.

    2012-01-01

    A critical component of drug addiction research involves identifying novel biological mechanisms and environmental predictors of risk or resilience to drug addiction and associated relapse. Increasing evidence suggests microglia and astrocytes can profoundly affect the physiological and addictive properties of drugs of abuse, including morphine. We report that glia within the rat Nucleus Accumbens (NAcc) respond to morphine with an increase in cytokine/chemokine expression, which predicts future reinstatement of morphine conditioned place preference (CPP) following a priming dose of morphine. This glial response to morphine is influenced by early-life experience. A neonatal handling paradigm that increases the quantity and quality of maternal care significantly increases baseline expression of the anti-inflammatory cytokine IL-10 within the NAcc, attenuates morphine-induced glial activation, and prevents the subsequent reinstatement of morphine CPP in adulthood. IL-10 expression within the NAcc and reinstatement of CPP are negatively correlated, suggesting a protective role for this specific cytokine against morphine-induced glial reactivity and drug-induced reinstatement of morphine CPP. Neonatal handling programs the expression of IL-10 within the NAcc early in development, and this is maintained into adulthood via decreased methylation of the IL-10 gene specifically within microglia. The effect of neonatal handling is mimicked by pharmacological modulation of glia in adulthood with Ibudilast, which increases IL-10 expression, inhibits morphine-induced glial activation within the NAcc, and prevents reinstatement of morphine CPP. Taken together, we have identified a novel gene X early-life environment interaction on morphine-induced glial activation, and a specific role for glial activation in drug-induced reinstatement of drug-seeking behavior. PMID:22159099

  13. Identifying Drug–Drug Interactions by Data Mining

    DEFF Research Database (Denmark)

    Hansen, Peter Wæde; Clemmensen, Line Katrine Harder; Sehested, Thomas S.G.

    2016-01-01

    Background—Knowledge about drug–drug interactions commonly arises from preclinical trials, from adverse drug reports, or based on knowledge of mechanisms of action. Our aim was to investigate whether drug–drug interactions were discoverable without prior hypotheses using data mining. We focused...... registries. Additionally, we discovered a few potentially novel interactions. This opens up for the use of data mining to discover unknown drug–drug interactions in cardiovascular medicine....... on warfarin–drug interactions as the prototype. Methods and Results—We analyzed altered prothrombin time (measured as international normalized ratio [INR]) after initiation of a novel prescription in previously INR-stable warfarin-treated patients with nonvalvular atrial fibrillation. Data sets were retrieved...

  14. In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.

    Science.gov (United States)

    Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica

    2018-01-01

    microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.

  15. The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: Special focus on IK1.

    Science.gov (United States)

    Goversen, Birgit; van der Heyden, Marcel A G; van Veen, Toon A B; de Boer, Teun P

    2018-03-01

    Preclinical drug screens are not based on human physiology, possibly complicating predictions on cardiotoxicity. Drug screening can be humanised with in vitro assays using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, in contrast to adult ventricular cardiomyocytes, iPSC-CMs beat spontaneously due to presence of the pacemaking current I f and reduced densities of the hyperpolarising current I K1 . In adult cardiomyocytes, I K1 finalises repolarisation by stabilising the resting membrane potential while also maintaining excitability. The reduced I K1 density contributes to proarrhythmic traits in iPSC-CMs, which leads to an electrophysiological phenotype that might bias drug responses. The proarrhythmic traits can be suppressed by increasing I K1 in a balanced manner. We systematically evaluated all studies that report strategies to mature iPSC-CMs and found that only few studies report I K1 current densities. Furthermore, these studies did not succeed in establishing sufficient I K1 levels as they either added too little or too much I K1 . We conclude that reduced densities of I K1 remain a major flaw in iPSC-CMs, which hampers their use for in vitro drug screening. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Enu mutagenesis identifies a novel platelet phenotype in a loss-of-function Jak2 allele.

    Directory of Open Access Journals (Sweden)

    Nicole M Anderson

    Full Text Available Utilizing ENU mutagenesis, we identified a mutant mouse with elevated platelets. Genetic mapping localized the mutation to an interval on chromosome 19 that encodes the Jak2 tyrosine kinase. We identified a A3056T mutation resulting in a premature stop codon within exon 19 of Jak2 (Jak2(K915X, resulting in a protein truncation and functionally inactive enzyme. This novel platelet phenotype was also observed in mice bearing a hemizygous targeted disruption of the Jak2 locus (Jak2(+/-. Timed pregnancy experiments revealed that Jak2(K915X/K915X and Jak2(-/- displayed embryonic lethality; however, Jak2(K915X/K915X embryos were viable an additional two days compared to Jak2(-/- embryos. Our data suggest that perturbing JAK2 activation may have unexpected consequences in elevation of platelet number and correspondingly, important implications for treatment of hematological disorders with constitutive Jak2 activity.

  17. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes.

    Science.gov (United States)

    Machado-Schiaffino, Gonzalo; Henning, Frederico; Meyer, Axel

    2014-07-01

    The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  18. DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics.

    Science.gov (United States)

    Giri, Anil K; Bharadwaj, Soham; Banerjee, Priyanka; Chakraborty, Shraddha; Parekatt, Vaisak; Rajashekar, Donaka; Tomar, Abhishek; Ravindran, Aarthi; Basu, Analabha; Tandon, Nikhil; Bharadwaj, Dwaipayan

    2017-06-01

    Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.

  19. Ex vivo analysis identifies effective HIV-1 latency–reversing drug combinations

    Science.gov (United States)

    Laird, Gregory M.; Bullen, C. Korin; Rosenbloom, Daniel I.S.; Martin, Alyssa R.; Hill, Alison L.; Durand, Christine M.; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    Reversal of HIV-1 latency by small molecules is a potential cure strategy. This approach will likely require effective drug combinations to achieve high levels of latency reversal. Using resting CD4+ T cells (rCD4s) from infected individuals, we developed an experimental and theoretical framework to identify effective latency-reversing agent (LRA) combinations. Utilizing ex vivo assays for intracellular HIV-1 mRNA and virion production, we compared 2-drug combinations of leading candidate LRAs and identified multiple combinations that effectively reverse latency. We showed that protein kinase C agonists in combination with bromodomain inhibitor JQ1 or histone deacetylase inhibitors robustly induce HIV-1 transcription and virus production when directly compared with maximum reactivation by T cell activation. Using the Bliss independence model to quantitate combined drug effects, we demonstrated that these combinations synergize to induce HIV-1 transcription. This robust latency reversal occurred without release of proinflammatory cytokines by rCD4s. To extend the clinical utility of our findings, we applied a mathematical model that estimates in vivo changes in plasma HIV-1 RNA from ex vivo measurements of virus production. Our study reconciles diverse findings from previous studies, establishes a quantitative experimental approach to evaluate combinatorial LRA efficacy, and presents a model to predict in vivo responses to LRAs. PMID:25822022

  20. Asthma phenotypes in childhood.

    Science.gov (United States)

    Reddy, Monica B; Covar, Ronina A

    2016-04-01

    This review describes the literature over the past 18 months that evaluated childhood asthma phenotypes, highlighting the key aspects of these studies, and comparing these studies to previous ones in this area. Recent studies on asthma phenotypes have identified new phenotypes on the basis of statistical analyses (using cluster analysis and latent class analysis methodology) and have evaluated the outcomes and associated risk factors of previously established early childhood asthma phenotypes that are based on asthma onset and patterns of wheezing illness. There have also been investigations focusing on immunologic, physiologic, and genetic correlates of various phenotypes, as well as identification of subphenotypes of severe childhood asthma. Childhood asthma remains a heterogeneous condition, and investigations into these various presentations, risk factors, and outcomes are important since they can offer therapeutic and prognostic relevance. Further investigation into the immunopathology and genetic basis underlying childhood phenotypes is important so therapy can be tailored accordingly.

  1. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals.

    Science.gov (United States)

    Doremus-Fitzwater, Tamara L; Spear, Linda P

    2016-11-01

    Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. History as a tool in identifying "new" old drugs.

    Science.gov (United States)

    Riddle, John M

    2002-01-01

    To trace the history of a natural product and its use, it is necessary to identify to correct plant among around a half-million species. One must also know how and when harvest the plant and the morphology of location and extraction. Within the same species plant chemistry varies, depending upon climatic and soil conditions, stage of maturity and even diurnal factors. To all of these variations must be added the diagnostic ability of physicians and native healers (to distinguish between Hippocratically-trained Western physicians and whose knowledge is less formally taught). Seldom was a disease identified as we Know it today, but the constellations of symptoms described, when studied carefully within the framework historical setting of the culture, can be related to modern medicine. It is essential to study the historical contemporary usage data in the language in which those accounts were writTen. Translators are often philologists who are not sensitive to medical nuances. Modern readers of translated historical documents often are unaware of the precision the authors delivered in describing medical afflictions and their treatments. Natural product drugs are truly products of human knowledge. Because so many modern pharmaceuticals are manufactured synthetically we forget that once either the compound or its affinity had a home in a natural product. Over 2,500 years ago man first used a drug obtained from white willow bark, which was aspirin or acetylsalicylic acid. Today's scientists continue to be bewildered by just what aspirin's mechanisms of action are, discovering new modes of action, and how they relate to medical diagnostics. Whatever the science of aspirin, an intelligent person today takes it just as our ancestors did fo millennia. Throughout time, explanations continue to vary just as purpose of administration do as well. Nevertheless, aspirin is perceived as being beneficial. Historical in-use data can also be a factor in judging a drug's safety, since

  3. TBC1D24 genotype–phenotype correlation

    Science.gov (United States)

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  4. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis.

    Science.gov (United States)

    McTaggart, Lisa R; Doucet, Jennifer; Witkowska, Maria; Richardson, Susan E

    2015-01-01

    Antimicrobial susceptibility patterns of 112 clinical isolates, 28 type strains, and 9 reference strains of Nocardia were determined using the Sensititre Rapmyco microdilution panel (Thermo Fisher, Inc.). Isolates were identified by highly discriminatory multilocus sequence analysis and were chosen to represent the diversity of species recovered from clinical specimens in Ontario, Canada. Susceptibility to the most commonly used drug, trimethoprim-sulfamethoxazole, was observed in 97% of isolates. Linezolid and amikacin were also highly effective; 100% and 99% of all isolates demonstrated a susceptible phenotype. For the remaining antimicrobials, resistance was species specific with isolates of Nocardia otitidiscaviarum, N. brasiliensis, N. abscessus complex, N. nova complex, N. transvalensis complex, N. farcinica, and N. cyriacigeorgica displaying the traditional characteristic drug pattern types. In addition, the antimicrobial susceptibility profiles of a variety of rarely encountered species isolated from clinical specimens are reported for the first time and were categorized into four additional drug pattern types. Finally, MICs for the control strains N. nova ATCC BAA-2227, N. asteroides ATCC 19247(T), and N. farcinica ATCC 23826 were robustly determined to demonstrate method reproducibility and suitability of the commercial Sensititre Rapmyco panel for antimicrobial susceptibility testing of Nocardia spp. isolated from clinical specimens. The reported values will facilitate quality control and standardization among laboratories. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. An analytical method for assessing stage-specific drug activity in Plasmodium vivax malaria: implications for ex vivo drug susceptibility testing.

    Directory of Open Access Journals (Sweden)

    Douglas H Kerlin

    Full Text Available The emergence of highly chloroquine (CQ resistant P. vivax in Southeast Asia has created an urgent need for an improved understanding of the mechanisms of drug resistance in these parasites, the development of robust tools for defining the spread of resistance, and the discovery of new antimalarial agents. The ex vivo Schizont Maturation Test (SMT, originally developed for the study of P. falciparum, has been modified for P. vivax. We retrospectively analysed the results from 760 parasite isolates assessed by the modified SMT to investigate the relationship between parasite growth dynamics and parasite susceptibility to antimalarial drugs. Previous observations of the stage-specific activity of CQ against P. vivax were confirmed, and shown to have profound consequences for interpretation of the assay. Using a nonlinear model we show increased duration of the assay and a higher proportion of ring stages in the initial blood sample were associated with decreased effective concentration (EC(50 values of CQ, and identify a threshold where these associations no longer hold. Thus, starting composition of parasites in the SMT and duration of the assay can have a profound effect on the calculated EC(50 for CQ. Our findings indicate that EC(50 values from assays with a duration less than 34 hours do not truly reflect the sensitivity of the parasite to CQ, nor an assay where the proportion of ring stage parasites at the start of the assay does not exceed 66%. Application of this threshold modelling approach suggests that similar issues may occur for susceptibility testing of amodiaquine and mefloquine. The statistical methodology which has been developed also provides a novel means of detecting stage-specific drug activity for new antimalarials.

  6. Studying the Genetics of Complex Disease With Ancestry-Specific Human Phenotype Networks: The Case of Type 2 Diabetes in East Asian Populations.

    Science.gov (United States)

    Qiu, Jingya; Moore, Jason H; Darabos, Christian

    2016-05-01

    Genome-wide association studies (GWAS) have led to the discovery of over 200 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes mellitus (T2DM). Additionally, East Asians develop T2DM at a higher rate, younger age, and lower body mass index than their European ancestry counterparts. The reason behind this occurrence remains elusive. With comprehensive searches through the National Human Genome Research Institute (NHGRI) GWAS catalog literature, we compiled a database of 2,800 ancestry-specific SNPs associated with T2DM and 70 other related traits. Manual data extraction was necessary because the GWAS catalog reports statistics such as odds ratio and P-value, but does not consistently include ancestry information. Currently, many statistics are derived by combining initial and replication samples from study populations of mixed ancestry. Analysis of all-inclusive data can be misleading, as not all SNPs are transferable across diverse populations. We used ancestry data to construct ancestry-specific human phenotype networks (HPN) centered on T2DM. Quantitative and visual analysis of network models reveal the genetic disparities between ancestry groups. Of the 27 phenotypes in the East Asian HPN, six phenotypes were unique to the network, revealing the underlying ancestry-specific nature of some SNPs associated with T2DM. We studied the relationship between T2DM and five phenotypes unique to the East Asian HPN to generate new interaction hypotheses in a clinical context. The genetic differences found in our ancestry-specific HPNs suggest different pathways are involved in the pathogenesis of T2DM among different populations. Our study underlines the importance of ancestry in the development of T2DM and its implications in pharmocogenetics and personalized medicine. © 2016 The Authors. *Genetic Epidemiology Published by Wiley Periodicals, Inc.

  7. Phenotypic and Genotypic Detection of Campylobacter jejuni at Local Chicken and Chicken Meat

    Directory of Open Access Journals (Sweden)

    A Rosyidi

    2010-05-01

    Full Text Available The Objective of this study was to identify the existence of Campylobacter jejuni based on phenotypic and genotypic characteristic in local chicken and chicken meats. Samples of local chicken intestine and meat were tested for the bacterial existence. Phenotypic examination was carried out by means of cultivation followed by gram staining and biochemical tests. Genotypic examination was conducted by polymerase chain reaction (PCR using genus specific16S rRNA gene at 816 bp and membrane-associated protein A (mapA gene at 589 bp as Campylobacter jejuni species-specific gene. The result of phenotypic detection revealed the existence of Campylobacter spp as gram negative, curved rod shape, oxidase positive, urease negative and motile. Genotypic examination also indicated the existence of bacteria using both primers. However, no Campylobacter jejuni detected from meat of the chickens. The results suggest that the method of PCR using a primer detecting species-specific gene of Campylobacter jejuni gives a rapid and accurate detection of the bacteria as compared to that using phenotypic and biochemical test. Identification of Campylobacter spp from chicken meats should be improved with enrichment method and sample collection. (Animal Production 12(2: 128-134 (2010Key Words: Campylobacter jejuni, mapA gene, local chicken

  8. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks

    Science.gov (United States)

    2012-01-01

    Background Age-related macular degeneration (AMD) is a leading cause of blindness that affects the central region of the retinal pigmented epithelium (RPE), choroid, and neural retina. Initially characterized by an accumulation of sub-RPE deposits, AMD leads to progressive retinal degeneration, and in advanced cases, irreversible vision loss. Although genetic analysis, animal models, and cell culture systems have yielded important insights into AMD, the molecular pathways underlying AMD's onset and progression remain poorly delineated. We sought to better understand the molecular underpinnings of this devastating disease by performing the first comparative transcriptome analysis of AMD and normal human donor eyes. Methods RPE-choroid and retina tissue samples were obtained from a common cohort of 31 normal, 26 AMD, and 11 potential pre-AMD human donor eyes. Transcriptome profiles were generated for macular and extramacular regions, and statistical and bioinformatic methods were employed to identify disease-associated gene signatures and functionally enriched protein association networks. Selected genes of high significance were validated using an independent donor cohort. Results We identified over 50 annotated genes enriched in cell-mediated immune responses that are globally over-expressed in RPE-choroid AMD phenotypes. Using a machine learning model and a second donor cohort, we show that the top 20 global genes are predictive of AMD clinical diagnosis. We also discovered functionally enriched gene sets in the RPE-choroid that delineate the advanced AMD phenotypes, neovascular AMD and geographic atrophy. Moreover, we identified a graded increase of transcript levels in the retina related to wound response, complement cascade, and neurogenesis that strongly correlates with decreased levels of phototransduction transcripts and increased AMD severity. Based on our findings, we assembled protein-protein interactomes that highlight functional networks likely to be

  9. Phenotype Instance Verification and Evaluation Tool (PIVET): A Scaled Phenotype Evidence Generation Framework Using Web-Based Medical Literature

    Science.gov (United States)

    Ke, Junyuan; Ho, Joyce C; Ghosh, Joydeep; Wallace, Byron C

    2018-01-01

    Background Researchers are developing methods to automatically extract clinically relevant and useful patient characteristics from raw healthcare datasets. These characteristics, often capturing essential properties of patients with common medical conditions, are called computational phenotypes. Being generated by automated or semiautomated, data-driven methods, such potential phenotypes need to be validated as clinically meaningful (or not) before they are acceptable for use in decision making. Objective The objective of this study was to present Phenotype Instance Verification and Evaluation Tool (PIVET), a framework that uses co-occurrence analysis on an online corpus of publically available medical journal articles to build clinical relevance evidence sets for user-supplied phenotypes. PIVET adopts a conceptual framework similar to the pioneering prototype tool PheKnow-Cloud that was developed for the phenotype validation task. PIVET completely refactors each part of the PheKnow-Cloud pipeline to deliver vast improvements in speed without sacrificing the quality of the insights PheKnow-Cloud achieved. Methods PIVET leverages indexing in NoSQL databases to efficiently generate evidence sets. Specifically, PIVET uses a succinct representation of the phenotypes that corresponds to the index on the corpus database and an optimized co-occurrence algorithm inspired by the Aho-Corasick algorithm. We compare PIVET’s phenotype representation with PheKnow-Cloud’s by using PheKnow-Cloud’s experimental setup. In PIVET’s framework, we also introduce a statistical model trained on domain expert–verified phenotypes to automatically classify phenotypes as clinically relevant or not. Additionally, we show how the classification model can be used to examine user-supplied phenotypes in an online, rather than batch, manner. Results PIVET maintains the discriminative power of PheKnow-Cloud in terms of identifying clinically relevant phenotypes for the same corpus with

  10. Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery.

    Science.gov (United States)

    Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook

    2012-03-31

    The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.

  11. Drug-induced acute myocardial infarction: identifying 'prime suspects' from electronic healthcare records-based surveillance system.

    Directory of Open Access Journals (Sweden)

    Preciosa M Coloma

    Full Text Available Drug-related adverse events remain an important cause of morbidity and mortality and impose huge burden on healthcare costs. Routinely collected electronic healthcare data give a good snapshot of how drugs are being used in 'real-world' settings.To describe a strategy that identifies potentially drug-induced acute myocardial infarction (AMI from a large international healthcare data network.Post-marketing safety surveillance was conducted in seven population-based healthcare databases in three countries (Denmark, Italy, and the Netherlands using anonymised demographic, clinical, and prescription/dispensing data representing 21,171,291 individuals with 154,474,063 person-years of follow-up in the period 1996-2010. Primary care physicians' medical records and administrative claims containing reimbursements for filled prescriptions, laboratory tests, and hospitalisations were evaluated using a three-tier triage system of detection, filtering, and substantiation that generated a list of drugs potentially associated with AMI. Outcome of interest was statistically significant increased risk of AMI during drug exposure that has not been previously described in current literature and is biologically plausible.Overall, 163 drugs were identified to be associated with increased risk of AMI during preliminary screening. Of these, 124 drugs were eliminated after adjustment for possible bias and confounding. With subsequent application of criteria for novelty and biological plausibility, association with AMI remained for nine drugs ('prime suspects': azithromycin; erythromycin; roxithromycin; metoclopramide; cisapride; domperidone; betamethasone; fluconazole; and megestrol acetate.Although global health status, co-morbidities, and time-invariant factors were adjusted for, residual confounding cannot be ruled out.A strategy to identify potentially drug-induced AMI from electronic healthcare data has been proposed that takes into account not only statistical

  12. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses.

    Science.gov (United States)

    Chiang, A P; Butte, A J

    2009-11-01

    Drug repositioning refers to the discovery of alternative uses for drugs--uses that are different from that for which the drugs were originally intended. One challenge in this effort lies in choosing the indication for which a drug of interest could be prospectively tested. We systematically evaluated a drug treatment-based view of diseases in order to address this challenge. Suggestions for novel drug uses were generated using a "guilt by association" approach. When compared with a control group of drug uses, the suggested novel drug uses generated by this approach were significantly enriched with respect to previous and ongoing clinical trials.

  13. Ethnographic research in immigrant-specific drug abuse recovery houses.

    Science.gov (United States)

    Pagano, Anna; Lee, Juliet P; García, Victor; Recarte, Carlos

    2018-01-01

    Access to study populations is a major concern for drug use and treatment researchers. Spaces related to drug use and treatment have varying levels of researcher accessibility based on several issues, including legality, public versus private settings, and insider/outsider status. Ethnographic research methods are indispensable for gaining and maintaining access to hidden or "hard-to-reach" populations. Here, we discuss our long-term ethnographic research on drug abuse recovery houses created by and for Latino migrants and immigrants in Northern California. We take our field work experiences as a case study to examine the problem of researcher access and how ethnographic strategies can be successfully applied to address it, focusing especially on issues of entrée, building rapport, and navigating field-specific challenges related to legality, public/private settings, and insider/outsider status. We conclude that continued funding support for ethnography is essential for promoting health disparities research focused on diverse populations in recovery from substance use disorders.

  14. Signaling Network Assessment of Mutations and Copy Number Variations Predict Breast Cancer Subtype-Specific Drug Targets

    Directory of Open Access Journals (Sweden)

    Naif Zaman

    2013-10-01

    Full Text Available Individual cancer cells carry a bewildering number of distinct genomic alterations (e.g., copy number variations and mutations, making it a challenge to uncover genomic-driven mechanisms governing tumorigenesis. Here, we performed exome sequencing on several breast cancer cell lines that represent two subtypes, luminal and basal. We integrated these sequencing data and functional RNAi screening data (for the identification of genes that are essential for cell proliferation and survival onto a human signaling network. Two subtype-specific networks that potentially represent core-signaling mechanisms underlying tumorigenesis were identified. Within both networks, we found that genes were differentially affected in different cell lines; i.e., in some cell lines a gene was identified through RNAi screening, whereas in others it was genomically altered. Interestingly, we found that highly connected network genes could be used to correctly classify breast tumors into subtypes on the basis of genomic alterations. Further, the networks effectively predicted subtype-specific drug targets, which were experimentally validated.

  15. Drug target identification using side-effect similarity

    DEFF Research Database (Denmark)

    Campillos, Monica; Kuhn, Michael; Gavin, Anne-Claude

    2008-01-01

    Targets for drugs have so far been predicted on the basis of molecular or cellular features, for example, by exploiting similarity in chemical structure or in activity across cell lines. We used phenotypic side-effect similarities to infer whether two drugs share a target. Applied to 746 marketed...... drugs, a network of 1018 side effect-driven drug-drug relations became apparent, 261 of which are formed by chemically dissimilar drugs from different therapeutic indications. We experimentally tested 20 of these unexpected drug-drug relations and validated 13 implied drug-target relations by in vitro...... binding assays, of which 11 reveal inhibition constants equal to less than 10 micromolar. Nine of these were tested and confirmed in cell assays, documenting the feasibility of using phenotypic information to infer molecular interactions and hinting at new uses of marketed drugs....

  16. A Computational Methodology to Overcome the Challenges Associated With the Search for Specific Enzyme Targets to Develop Drugs Against Leishmania major.

    Science.gov (United States)

    Catharina, Larissa; Lima, Carlyle Ribeiro; Franca, Alexander; Guimarães, Ana Carolina Ramos; Alves-Ferreira, Marcelo; Tuffery, Pierre; Derreumaux, Philippe; Carels, Nicolas

    2017-01-01

    We present an approach for detecting enzymes that are specific of Leishmania major compared with Homo sapiens and provide targets that may assist research in drug development. This approach is based on traditional techniques of sequence homology comparison by similarity search and Markov modeling; it integrates the characterization of enzymatic functionality, secondary and tertiary protein structures, protein domain architecture, and metabolic environment. From 67 enzymes represented by 42 enzymatic activities classified by AnEnPi (Analogous Enzymes Pipeline) as specific for L major compared with H sapiens , only 40 (23 Enzyme Commission [EC] numbers) could actually be considered as strictly specific of L major and 27 enzymes (19 EC numbers) were disregarded for having ambiguous homologies or analogies with H sapiens . Among the 40 strictly specific enzymes, we identified sterol 24-C-methyltransferase, pyruvate phosphate dikinase, trypanothione synthetase, and RNA-editing ligase as 4 essential enzymes for L major that may serve as targets for drug development.

  17. Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents.

    Directory of Open Access Journals (Sweden)

    Jennifer O'Loughlin

    Full Text Available While the heritability of cigarette smoking and nicotine dependence (ND is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes.In a prospective study of 1294 adolescents aged 12-13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7-8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator.The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1 were associated with at least one phenotype with a p-value <0.01 using linear mixed models. After permutation and FDR adjustment, none of the associations remained statistically significant, although the p-values for the association between rs557748 in OPRM1 and the ND/craving and self-medication phenotypes were both 0.076.Because the genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3.Dopaminergic pathways may be salient during early smoking and the development of ND.

  18. Antidepressant drugs specifically inhibiting noradrenaline reuptake enhance recognition memory in rats.

    Science.gov (United States)

    Feltmann, Kristin; Konradsson-Geuken, Åsa; De Bundel, Dimitri; Lindskog, Maria; Schilström, Björn

    2015-12-01

    Patients suffering from major depression often experience memory deficits even after the remission of mood symptoms, and many antidepressant drugs do not affect, or impair, memory in animals and humans. However, some antidepressant drugs, after a single dose, enhance cognition in humans (Harmer et al., 2009). To compare different classes of antidepressant drugs for their potential as memory enhancers, we used a version of the novel object recognition task in which rats spontaneously forget objects 24 hr after their presentation. Antidepressant drugs were injected systemically 30 min before or directly after the training phase (Session 1 [S1]). Post-S1 injections were used to test for specific memory-consolidation effects. The noradrenaline reuptake inhibitors reboxetine and atomoxetine, as well as the serotonin noradrenaline reuptake inhibitor duloxetine, injected prior to S1 significantly enhanced recognition memory. In contrast, the serotonin reuptake inhibitors citalopram and paroxetine and the cyclic antidepressant drugs desipramine and mianserin did not enhance recognition memory. Post-S1 injection of either reboxetine or citalopram significantly enhanced recognition memory, indicating an effect on memory consolidation. The fact that citalopram had an effect only when injected after S1 suggests that it may counteract its own consolidation-enhancing effect by interfering with memory acquisition. However, pretreatment with citalopram did not attenuate reboxetine's memory-enhancing effect. The D1/5-receptor antagonist SCH23390 blunted reboxetine's memory-enhancing effect, indicating a role of dopaminergic transmission in reboxetine-induced recognition memory enhancement. Our results suggest that antidepressant drugs specifically inhibiting noradrenaline reuptake enhance cognition and may be beneficial in the treatment of cognitive symptoms of depression. (c) 2015 APA, all rights reserved).

  19. Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits.

    Science.gov (United States)

    Blaazer, Antoni R; Orrling, Kristina M; Shanmugham, Anitha; Jansen, Chimed; Maes, Louis; Edink, Ewald; Sterk, Geert Jan; Siderius, Marco; England, Paul; Bailey, David; de Esch, Iwan J P; Leurs, Rob

    2015-01-01

    Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization. © 2014 Society for Laboratory Automation and Screening.

  20. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients.

    Science.gov (United States)

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-10-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. [Drug-Drug Interactions with Consideration of Pharmacogenetics].

    Science.gov (United States)

    Ozawa, Shogo

    2018-01-01

     Elderly patients often suffer from a variety of diseases and therefore may be prescribed several kinds of drugs. Interactions between these drugs may cause problems in some patients. Guidelines for drug interactions were released on July 8, 2014 "Drug Interaction Guideline for Drug Development and Labeling Recommendations (Final Draft)". These guidelines include the theoretical basis for evaluating the mechanisms of drug interaction, the possible extent of drug interactions, and take into consideration special populations (e.g., infants, children, elderly patients, patients with hepatic or renal dysfunction, and subjects with minor deficient alleles for drug metabolizing enzymes and drug transporters). In this symposium article, I discuss this last special population: altered drug metabolism and drug interactions in subjects with minor alleles of genes encoding deficient drug metabolizing enzymes. I further discuss a drug label for eliglustat (Cerdelga) with instructions for patients with ultra-rapid, extensive, intermediate, and poor metabolizer phenotypes that arise from different CYP2D6 gene alleles.

  2. CpG island methylator phenotype identifies high risk patients among microsatellite stable BRAF mutated colorectal cancers.

    Science.gov (United States)

    Vedeld, Hege Marie; Merok, Marianne; Jeanmougin, Marine; Danielsen, Stine A; Honne, Hilde; Presthus, Gro Kummeneje; Svindland, Aud; Sjo, Ole H; Hektoen, Merete; Eknaes, Mette; Nesbakken, Arild; Lothe, Ragnhild A; Lind, Guro E

    2017-09-01

    The prognostic value of CpG island methylator phenotype (CIMP) in colorectal cancer remains unsettled. We aimed to assess the prognostic value of this phenotype analyzing a total of 1126 tumor samples obtained from two Norwegian consecutive colorectal cancer series. CIMP status was determined by analyzing the 5-markers CAGNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 by quantitative methylation specific PCR (qMSP). The effect of CIMP on time to recurrence (TTR) and overall survival (OS) were determined by uni- and multivariate analyses. Subgroup analyses were conducted according to MSI and BRAF mutation status, disease stage, and also age at time of diagnosis (CIMP positive tumors demonstrated significantly shorter TTR and worse OS compared to those with CIMP negative tumors (multivariate hazard ratio [95% CI] 1.86 [1.31-2.63] and 1.89 [1.34-2.65], respectively). In stratified analyses, CIMP tumors showed significantly worse outcome among patients with microsatellite stable (MSS, P CIMP is significantly associated with inferior outcome for colorectal cancer patients, and can stratify the poor prognostic patients with MSS BRAF mutated tumors. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  3. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  4. Quality Control Test for Sequence-Phenotype Assignments

    Science.gov (United States)

    Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel

    2015-01-01

    Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273

  5. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus

    Directory of Open Access Journals (Sweden)

    Cécile Voisset

    2014-04-01

    Full Text Available Epstein-Barr virus (EBV is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8+ T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II–DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II–DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.

  6. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus.

    Science.gov (United States)

    Voisset, Cécile; Daskalogianni, Chrysoula; Contesse, Marie-Astrid; Mazars, Anne; Arbach, Hratch; Le Cann, Marie; Soubigou, Flavie; Apcher, Sébastien; Fåhraeus, Robin; Blondel, Marc

    2014-04-01

    Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8(+) T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II-DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II-DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.

  7. Phenotypic and molecular identification of Fonsecaea pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela.

    Science.gov (United States)

    Carolina Rojas, O; León-Cachón, Rafael B R; Pérez-Maya, Antonio Alí; Aguirre-Garza, Marcelino; Moreno-Treviño, María G; González, Gloria M

    2015-05-01

    Chromoblastomycosis is a chronic granulomatous disease caused frequently by fungi of the Fonsecaea genus. The objective of this study was the phenotypic and molecular identification of F. pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela. Ten strains were included in this study. For phenotypic identification, we used macroscopic and microscopic morphologies, carbohydrate assimilation test, urea hydrolysis, cixcloheximide tolerance, proteolitic activity and the thermotolerance test. The antifungal activity of five drugs was evaluated against the isolates. Molecular identification was performed by sequencing the internal transcribed spacer (ITS) ribosomal DNA regions of the isolated strains. The physiological analysis and morphological features were variable and the precise identification was not possible. All isolates were susceptible to itraconazole, terbinafine, voriconazole and posaconazole. Amphotericin B was the least effective drug. The alignment of the 559-nucleotide ITS sequences from our strains compared with sequences of GenBank revealed high homology with F. pedrosoi (EU285266.1). In this study, all patients were from rural areas, six from Mexico and four from Venezuela. Ten isolates were identified by phenotypic and molecular analysis, using ITS sequence and demonstrated that nine isolates from Mexico and Venezuela were 100% homologous and one isolate showed a small genetic distance. © 2015 Blackwell Verlag GmbH.

  8. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kirsi Ketola

    Full Text Available Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects.In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression.Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell growth. Disulfiram

  9. Accurate phenotyping: Reconciling approaches through Bayesian model averaging.

    Directory of Open Access Journals (Sweden)

    Carla Chia-Ming Chen

    Full Text Available Genetic research into complex diseases is frequently hindered by a lack of clear biomarkers for phenotype ascertainment. Phenotypes for such diseases are often identified on the basis of clinically defined criteria; however such criteria may not be suitable for understanding the genetic composition of the diseases. Various statistical approaches have been proposed for phenotype definition; however our previous studies have shown that differences in phenotypes estimated using different approaches have substantial impact on subsequent analyses. Instead of obtaining results based upon a single model, we propose a new method, using Bayesian model averaging to overcome problems associated with phenotype definition. Although Bayesian model averaging has been used in other fields of research, this is the first study that uses Bayesian model averaging to reconcile phenotypes obtained using multiple models. We illustrate the new method by applying it to simulated genetic and phenotypic data for Kofendred personality disorder-an imaginary disease with several sub-types. Two separate statistical methods were used to identify clusters of individuals with distinct phenotypes: latent class analysis and grade of membership. Bayesian model averaging was then used to combine the two clusterings for the purpose of subsequent linkage analyses. We found that causative genetic loci for the disease produced higher LOD scores using model averaging than under either individual model separately. We attribute this improvement to consolidation of the cores of phenotype clusters identified using each individual method.

  10. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Directory of Open Access Journals (Sweden)

    Sabine M Hölter

    Full Text Available Huntington's disease (HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  11. Interoperability between phenotype and anatomy ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  12. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice.

    Science.gov (United States)

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-02-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia.

  13. The lymphocyte transformation test for the diagnosis of drug allergy: sensitivity and specificity.

    Science.gov (United States)

    Nyfeler, B; Pichler, W J

    1997-02-01

    The diagnosis of a drug allergy is mainly based upon a very detailed history and the clinical findings. In addition, several in vitro or in vivo tests can be performed to demonstrate a sensitization to a certain drug. One of the in vitro tests is the lymphocyte transformation test (LTT), which can reveal a sensitization of T-cells by an enhanced proliferative response of peripheral blood mononuclear cells to a certain drug. To evaluate the sensitivity and specificity of the LTT, 923 case histories of patients with suspected drug allergy in whom a LTT was performed were retrospectively analysed. Based on the history and provocation tests, the probability (P) of a drug allergy was estimated to be > 0.9, 0.5-0.9, 0.1-0.5 or 0.9) had a positive LTT, which indicates a sensitivity of 78%. If allergies to betalactam-antibiotics were analysed separately, the sensitivity was 74.4%. Fifteen of 102 patients where a classical drug allergy could be excluded (P sensitization could be demonstrated as well (i.e. hen's egg lysozyme, 7/7). In 632 of the 923 cases, skin tests were also performed (scratch and/or epicutaneous), for which we found a lower sensitivity than for the LTT (64%), while the specificity was the same (85%). Although our data are somewhat biased by the high number of penicillin allergies and cannot be generalized to drug allergies caused by other compounds, we conclude that the LTT is a useful diagnostic test in drug allergies, able to support the diagnosis of a drug allergy and to pinpoint the relevant drug.

  14. MODERN APPROACHES TO FRACTIONAL EXHALED NITRIC OXIDE AS A USEFUL BIOMARKER FOR ALLERGIC ASTHMA PHENOTYPING AND MANAGEMENT.

    Science.gov (United States)

    Mgaloblishvili, N; Gotua, M

    2017-12-01

    Asthma is a pathologically heterogeneous disease, consisting of several phenotypes. Different types of airway inflammation are the cornerstone feature of this condition. Fraction of nitric oxide in exhaled air (FENO) has been proposed as a noninvasive, specific biomarker for eosinophilic airway inflammation and has been shown to be elevated in patients with allergic asthma phenotype. More recent studies indicate that FeNO identifies T-helper cell type 2 (Th2)-mediated airway inflammation with a high predictive value for identifying inhaled corticosteroid (ICS) responsive airway inflammation. Taking into account the accumulated evidence,it is possible to consider, that FeNO testing has an important role in the assessment of patients with suspected asthma and in the management of established asthmadiagnosis. In conjunction with symptom scores and lung function tests, FeNO measurement could provide a more useful and effective approach for asthma in terms of: (1) detecting the presence of Th2-mediated airway inflammation, (2) determining the likelihood of ICS responsive (and lack of course), (3) monitoring of airway inflammation to determine risk for future impairment or loss of asthma control during reduction/cessation of ICS treatment, (4) unmasking (otherwise unsuspected) non-adherence to corticosteroid therapy and (5) in severe asthma cases tailoring treatment with biological drugs. However, more work is still needed to address outstanding questions about its exact role in guiding asthma management and better define the use of FENO in different clinical settings.

  15. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    Science.gov (United States)

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  16. Comment on “Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells”

    Science.gov (United States)

    Bilican, Bilada; Serio, Andrea; Barmada, Sami J.; Nishimura, Agnes Lumi; Sullivan, Gareth J.; Carrasco, Monica; Phatnani, Hemali P.; Puddifoot, Clare A.; Story, David; Fletcher, Judy; Park, In-Hyun; Friedman, Brad A.; Daley, George Q.; Wyllie, David J. A.; Hardingham, Giles E.; Wilmut, Ian; Finkbeiner, Steven; Maniatis, Tom; Shaw, Christopher E.; Chandran, Siddharthan

    2014-01-01

    Egawa et al. recently showed the value of patient-specific induced pluripotent stem cells (iPSCs) for modeling amyotrophic lateral sclerosis in vitro. Their study and our work highlight the need for complementary assays to detect small, but potentially important, phenotypic differences between control iPSC lines and those carrying disease mutations. PMID:23740897

  17. Exploring venlafaxine pharmacokinetic variability with a phenotyping approach, a multicentric french-swiss study (MARVEL study).

    Science.gov (United States)

    Lloret-Linares, Célia; Daali, Youssef; Chevret, Sylvie; Nieto, Isabelle; Molière, Fanny; Courtet, Philippe; Galtier, Florence; Richieri, Raphaëlle-Marie; Morange, Sophie; Llorca, Pierre-Michel; El-Hage, Wissam; Desmidt, Thomas; Haesebaert, Frédéric; Vignaud, Philippe; Holtzmann, Jerôme; Cracowski, Jean-Luc; Leboyer, Marion; Yrondi, Antoine; Calvas, Fabienne; Yon, Liova; Le Corvoisier, Philippe; Doumy, Olivier; Heron, Kyle; Montange, Damien; Davani, Siamak; Déglon, Julien; Besson, Marie; Desmeules, Jules; Haffen, Emmanuel; Bellivier, Frank

    2017-11-07

    It is well known that the standard doses of a given drug may not have equivalent effects in all patients. To date, the management of depression remains mainly empirical and often poorly evaluated. The development of a personalized medicine in psychiatry may reduce treatment failure, intolerance or resistance, and hence the burden and costs of mood depressive disorders. The Geneva Cocktail Phenotypic approach presents several advantages including the "in vivo" measure of different cytochromes and transporter P-gp activities, their simultaneous determination in a single test, avoiding the influence of variability over time on phenotyping results, the administration of low dose substrates, a limited sampling strategy with an analytical method developed on DBS analysis. The goal of this project is to explore the relationship between the activity of drug-metabolizing enzymes (DME), assessed by a phenotypic approach, and the concentrations of Venlafaxine (VLX) + O-demethyl-venlafaxine (ODV), the efficacy and tolerance of VLX. This study is a multicentre prospective non-randomized open trial. Eligible patients present a major depressive episode, MADRS over or equal to 20, treatment with VLX regardless of the dose during at least 4 weeks. The Phenotype Visit includes VLX and ODV concentration measurement. Following the oral absorption of low doses of omeprazole, midazolam, dextromethorphan, and fexofenadine, drug metabolizing enzymes activity is assessed by specific metabolite/probe concentration ratios from a sample taken 2 h after cocktail administration for CYP2C19, CYP3A4, CYP2D6; and by the determination of the limited area under the curve from the capillary blood samples taken 2-3 and 6 h after cocktail administration for CYP2C19 and P-gp. Two follow-up visits will take place between 25 and 40 days and 50-70 days after inclusion. They include assessment of efficacy, tolerance and observance. Eleven french centres are involved in recruitment, expected to be

  18. Application of the Pareto principle to identify and address drug-therapy safety issues.

    Science.gov (United States)

    Müller, Fabian; Dormann, Harald; Pfistermeister, Barbara; Sonst, Anja; Patapovas, Andrius; Vogler, Renate; Hartmann, Nina; Plank-Kiegele, Bettina; Kirchner, Melanie; Bürkle, Thomas; Maas, Renke

    2014-06-01

    Adverse drug events (ADE) and medication errors (ME) are common causes of morbidity in patients presenting at emergency departments (ED). Recognition of ADE as being drug related and prevention of ME are key to enhancing pharmacotherapy safety in ED. We assessed the applicability of the Pareto principle (~80 % of effects result from 20 % of causes) to address locally relevant problems of drug therapy. In 752 cases consecutively admitted to the nontraumatic ED of a major regional hospital, ADE, ME, contributing drugs, preventability, and detection rates of ADE by ED staff were investigated. Symptoms, errors, and drugs were sorted by frequency in order to apply the Pareto principle. In total, 242 ADE were observed, and 148 (61.2 %) were assessed as preventable. ADE contributed to 110 inpatient hospitalizations. The ten most frequent symptoms were causally involved in 88 (80.0 %) inpatient hospitalizations. Only 45 (18.6 %) ADE were recognized as drug-related problems until discharge from the ED. A limited set of 33 drugs accounted for 184 (76.0 %) ADE; ME contributed to 57 ADE. Frequency-based listing of ADE, ME, and drugs involved allowed identification of the most relevant problems and development of easily to implement safety measures, such as wall and pocket charts. The Pareto principle provides a method for identifying the locally most relevant ADE, ME, and involved drugs. This permits subsequent development of interventions to increase patient safety in the ED admission process that best suit local needs.

  19. The investigation of specific biochemical markers in monitoring kidney function of drug addicts.

    Science.gov (United States)

    Gąsiorowski, Jacek; Marchewka, Zofia; Łapiński, Łukasz; Szymańska, Beata; Głowacka, Krystyna; Knysz, Brygida; Długosz, Anna; Wiela-Hojeńska, Anna

    2013-12-05

    An increasingly important issue in the Polish population is drug abuse. It leads to extensive damage of parenchymal organs, including kidney. Establishing early markers of organ damage and their monitoring during rehabilitation therapy is therefore of pivotal importance. This study evaluated the utility of highly specific and selective markers (NGAL, IL-18, a and π-GST isoenzyme, and ß2-M). The influence of opioid drugs and other factors on kidney function (HIV and HCV infections, duration and the kind of drugs abused) was determined. Urine collected from 83 subjects who abused drugs and 33 healthy volunteers was tested with ELISA using specific antibodies (IBL, Biotron, Bioporto-Diagnostics). HIV infection was confirmed with western-blotting and HCV with PCR. CD4 lymphocytes were quantified with flow cytometry. RFLP and PCR were used to determine the viral load of HIV and HCV (genotype). A significant increase of IL-18, NGAL and β2M activity in heroin addicts compared to the control group was noted as well as the influence of HIV infection on NGAL and β2M excretion. A statistically significant (p=0.04) correlation between the viral load and IL-18 concentration was noted while no significant influence of the duration and the kind of drugs abused, the route of intake or the age of addicts was seen. Only the NGAL concentration was sex dependent and significantly higher in women. This study showed the specific, clinical utility of IL-18, NGAL, and β2M in the evaluation of renal function in drug addicts. Early detection of nephropathy with biochemical indicators might help prevent severe conditions that require hospitalization and intensive care.

  20. Phenotype Instance Verification and Evaluation Tool (PIVET): A Scaled Phenotype Evidence Generation Framework Using Web-Based Medical Literature.

    Science.gov (United States)

    Henderson, Jette; Ke, Junyuan; Ho, Joyce C; Ghosh, Joydeep; Wallace, Byron C

    2018-05-04

    Researchers are developing methods to automatically extract clinically relevant and useful patient characteristics from raw healthcare datasets. These characteristics, often capturing essential properties of patients with common medical conditions, are called computational phenotypes. Being generated by automated or semiautomated, data-driven methods, such potential phenotypes need to be validated as clinically meaningful (or not) before they are acceptable for use in decision making. The objective of this study was to present Phenotype Instance Verification and Evaluation Tool (PIVET), a framework that uses co-occurrence analysis on an online corpus of publically available medical journal articles to build clinical relevance evidence sets for user-supplied phenotypes. PIVET adopts a conceptual framework similar to the pioneering prototype tool PheKnow-Cloud that was developed for the phenotype validation task. PIVET completely refactors each part of the PheKnow-Cloud pipeline to deliver vast improvements in speed without sacrificing the quality of the insights PheKnow-Cloud achieved. PIVET leverages indexing in NoSQL databases to efficiently generate evidence sets. Specifically, PIVET uses a succinct representation of the phenotypes that corresponds to the index on the corpus database and an optimized co-occurrence algorithm inspired by the Aho-Corasick algorithm. We compare PIVET's phenotype representation with PheKnow-Cloud's by using PheKnow-Cloud's experimental setup. In PIVET's framework, we also introduce a statistical model trained on domain expert-verified phenotypes to automatically classify phenotypes as clinically relevant or not. Additionally, we show how the classification model can be used to examine user-supplied phenotypes in an online, rather than batch, manner. PIVET maintains the discriminative power of PheKnow-Cloud in terms of identifying clinically relevant phenotypes for the same corpus with which PheKnow-Cloud was originally developed, but

  1. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.

    Science.gov (United States)

    Cheng, Ru; Meng, Fenghua; Deng, Chao; Klok, Harm-Anton; Zhong, Zhiyuan

    2013-05-01

    In the past decades, polymeric nanoparticles have emerged as a most promising and viable technology platform for targeted and controlled drug delivery. As vehicles, ideal nanoparticles are obliged to possess high drug loading levels, deliver drug to the specific pathological site and/or target cells without drug leakage on the way, while rapidly unload drug at the site of action. To this end, various "intelligent" polymeric nanoparticles that release drugs in response to an internal or external stimulus such as pH, redox, temperature, magnetic and light have been actively pursued. These stimuli-responsive nanoparticles have demonstrated, though to varying degrees, improved in vitro and/or in vivo drug release profiles. In an effort to further improve drug release performances, novel dual and multi-stimuli responsive polymeric nanoparticles that respond to a combination of two or more signals such as pH/temperature, pH/redox, pH/magnetic field, temperature/reduction, double pH, pH and diols, temperature/magnetic field, temperature/enzyme, temperature/pH/redox, temperature/pH/magnetic, pH/redox/magnetic, temperature/redox/guest molecules, and temperature/pH/guest molecules have recently been developed. Notably, these combined responses take place either simultaneously at the pathological site or in a sequential manner from nanoparticle preparation, nanoparticle transporting pathways, to cellular compartments. These dual and multi-stimuli responsive polymeric nanoparticles have shown unprecedented control over drug delivery and release leading to superior in vitro and/or in vivo anti-cancer efficacy. With programmed site-specific drug delivery feature, dual and multi-stimuli responsive nanoparticulate drug formulations have tremendous potential for targeted cancer therapy. In this review paper, we highlight the recent exciting developments in dual and multi-stimuli responsive polymeric nanoparticles for precision drug delivery applications, with a particular focus

  2. Design of Biomedical Robots for Phenotype Prediction Problems.

    Science.gov (United States)

    deAndrés-Galiana, Enrique J; Fernández-Martínez, Juan Luis; Sonis, Stephen T

    2016-08-01

    Genomics has been used with varying degrees of success in the context of drug discovery and in defining mechanisms of action for diseases like cancer and neurodegenerative and rare diseases in the quest for orphan drugs. To improve its utility, accuracy, and cost-effectiveness optimization of analytical methods, especially those that translate to clinically relevant outcomes, is critical. Here we define a novel tool for genomic analysis termed a biomedical robot in order to improve phenotype prediction, identifying disease pathogenesis and significantly defining therapeutic targets. Biomedical robot analytics differ from historical methods in that they are based on melding feature selection methods and ensemble learning techniques. The biomedical robot mathematically exploits the structure of the uncertainty space of any classification problem conceived as an ill-posed optimization problem. Given a classifier, there exist different equivalent small-scale genetic signatures that provide similar predictive accuracies. We perform the sensitivity analysis to noise of the biomedical robot concept using synthetic microarrays perturbed by different kinds of noises in expression and class assignment. Finally, we show the application of this concept to the analysis of different diseases, inferring the pathways and the correlation networks. The final aim of a biomedical robot is to improve knowledge discovery and provide decision systems to optimize diagnosis, treatment, and prognosis. This analysis shows that the biomedical robots are robust against different kinds of noises and particularly to a wrong class assignment of the samples. Assessing the uncertainty that is inherent to any phenotype prediction problem is the right way to address this kind of problem.

  3. A “Forward Genomics” Approach Links Genotype to Phenotype using Independent Phenotypic Losses among Related Species

    Directory of Open Access Journals (Sweden)

    Michael Hiller

    2012-10-01

    Full Text Available Genotype-phenotype mapping is hampered by countless genomic changes between species. We introduce a computational “forward genomics” strategy that—given only an independently lost phenotype and whole genomes—matches genomic and phenotypic loss patterns to associate specific genomic regions with this phenotype. We conducted genome-wide screens for two metabolic phenotypes. First, our approach correctly matches the inactivated Gulo gene exactly with the species that lost the ability to synthesize vitamin C. Second, we attribute naturally low biliary phospholipid levels in guinea pigs and horses to the inactivated phospholipid transporter Abcb4. Human ABCB4 mutations also result in low phospholipid levels but lead to severe liver disease, suggesting compensatory mechanisms in guinea pig and horse. Our simulation studies, counts of independent changes in existing phenotype surveys, and the forthcoming availability of many new genomes all suggest that forward genomics can be applied to many phenotypes, including those relevant for human evolution and disease.

  4. Characterization of multi-drug resistant ESBL producing nonfermenter bacteria isolated from patients blood samples using phenotypic methods in Shiraz (Iran

    Directory of Open Access Journals (Sweden)

    Maneli Amin Shahidi

    2015-10-01

    Full Text Available Background and Aim: The emergence of  nonfermenter bacteria that are resistant to multidrug resistant ESBL  are  nowadays a principal problem  for hospitalized patients. The present study aimed at surveying the emergence of nonfermenter bacteria resistant to multi-drug ESBL producing isolated from patients blood samples using BACTEC 9240 automatic system in Shiraz. Materials and Methods: In this cross-sectional study, 4825 blood specimens were collected from hospitalized patients in Shiraz (Iran, and positive samples were detected by means of  BACTEC 9240 automatic system. The isolates  containing nonfermenter bacteria were identified based on biochemical tests embedded in the API-20E system. Antibiotic sensitivity  test was performed  and identification of  ESBL producing strains were done  using phenotypic detection of extended spectrum beta-lactamase producing isolates(DDST according to CLSI(2013 guidelines.   Results: Out of 4825 blood samples, 1145 (24% specimen were gram-positive using BACTEC system. Among all isolated microorganisms, 206 isolates were non-fermenting gram- negative bacteria. The most common non-fermenter isolates were Pseudomonas spp. (48%, Acinetobacter spp. (41.7% ,and Stenotrophomonas spp. (8.2%. Seventy of them (81.4% were  Acinetobacter spp. which were ESBL positive. Among &beta-lactam antibiotics, Pseudomonas spp. showed  the best sensitivity to piperacillin-tazobactam (46.5%.  Conclusion: It was found that  &beta-lactam antibiotics are not effective against more than 40% of Pseudomonas spp. infections and 78% Acinetobacter infections. Emergence of multi-drug resistant strains that are resistant to most antibiotic classes is a major public health problem in Iran. To resolve this problem using of practical guidelines is critical.

  5. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  6. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival

    International Nuclear Information System (INIS)

    Yuan, Mei; Zhang, Yu-Dong; Pu, Xue-Hui; Zhong, Yan; Yu, Tong-Fu; Li, Hai; Wu, Jiang-Fen

    2017-01-01

    To compare a multi-feature-based radiomic biomarker with volumetric analysis in discriminating lung adenocarcinomas with different disease-specific survival on computed tomography (CT) scans. This retrospective study obtained institutional review board approval and was Health Insurance Portability and Accountability Act (HIPAA) compliant. Pathologically confirmed lung adenocarcinoma (n = 431) manifested as subsolid nodules on CT were identified. Volume and percentage solid volume were measured by using a computer-assisted segmentation method. Radiomic features quantifying intensity, texture and wavelet were extracted from the segmented volume of interest (VOI). Twenty best features were chosen by using the Relief method and subsequently fed to a support vector machine (SVM) for discriminating adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC). Performance of the radiomic signatures was compared with volumetric analysis via receiver-operating curve (ROC) analysis and logistic regression analysis. The accuracy of proposed radiomic signatures for predicting AIS/MIA from IAC achieved 80.5% with ROC analysis (Az value, 0.829; sensitivity, 72.1%; specificity, 80.9%), which showed significantly higher accuracy than volumetric analysis (69.5%, P = 0.049). Regression analysis showed that radiomic signatures had superior prognostic performance to volumetric analysis, with AIC values of 81.2% versus 70.8%, respectively. The radiomic tumour-phenotypes biomarker exhibited better diagnostic accuracy than traditional volumetric analysis in discriminating lung adenocarcinoma with different disease-specific survival. (orig.)

  7. Comparison of a radiomic biomarker with volumetric analysis for decoding tumour phenotypes of lung adenocarcinoma with different disease-specific survival

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mei; Zhang, Yu-Dong; Pu, Xue-Hui; Zhong, Yan; Yu, Tong-Fu [First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing, Jiangsu Province (China); Li, Hai [First Affiliated Hospital of Nanjing Medical University, Department of Pathology, Nanjing (China); Wu, Jiang-Fen [GE Healthcare, Shanghai (China)

    2017-11-15

    To compare a multi-feature-based radiomic biomarker with volumetric analysis in discriminating lung adenocarcinomas with different disease-specific survival on computed tomography (CT) scans. This retrospective study obtained institutional review board approval and was Health Insurance Portability and Accountability Act (HIPAA) compliant. Pathologically confirmed lung adenocarcinoma (n = 431) manifested as subsolid nodules on CT were identified. Volume and percentage solid volume were measured by using a computer-assisted segmentation method. Radiomic features quantifying intensity, texture and wavelet were extracted from the segmented volume of interest (VOI). Twenty best features were chosen by using the Relief method and subsequently fed to a support vector machine (SVM) for discriminating adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma (IAC). Performance of the radiomic signatures was compared with volumetric analysis via receiver-operating curve (ROC) analysis and logistic regression analysis. The accuracy of proposed radiomic signatures for predicting AIS/MIA from IAC achieved 80.5% with ROC analysis (Az value, 0.829; sensitivity, 72.1%; specificity, 80.9%), which showed significantly higher accuracy than volumetric analysis (69.5%, P = 0.049). Regression analysis showed that radiomic signatures had superior prognostic performance to volumetric analysis, with AIC values of 81.2% versus 70.8%, respectively. The radiomic tumour-phenotypes biomarker exhibited better diagnostic accuracy than traditional volumetric analysis in discriminating lung adenocarcinoma with different disease-specific survival. (orig.)

  8. Orphan diseases: state of the drug discovery art.

    Science.gov (United States)

    Volmar, Claude-Henry; Wahlestedt, Claes; Brothers, Shaun P

    2017-06-01

    Since 1983 more than 300 drugs have been developed and approved for orphan diseases. However, considering the development of novel diagnosis tools, the number of rare diseases vastly outpaces therapeutic discovery. Academic centers and nonprofit institutes are now at the forefront of rare disease R&D, partnering with pharmaceutical companies when academic researchers discover novel drugs or targets for specific diseases, thus reducing the failure risk and cost for pharmaceutical companies. Considerable progress has occurred in the art of orphan drug discovery, and a symbiotic relationship now exists between pharmaceutical industry, academia, and philanthropists that provides a useful framework for orphan disease therapeutic discovery. Here, the current state-of-the-art of drug discovery for orphan diseases is reviewed. Current technological approaches and challenges for drug discovery are considered, some of which can present somewhat unique challenges and opportunities in orphan diseases, including the potential for personalized medicine, gene therapy, and phenotypic screening.

  9. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.

    Science.gov (United States)

    Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen

    2015-02-01

    specific patterns and tissue-specificity, which are driven by aging and other cancer-inducing agents. This framework represents the logics of complex cancer biology as a myriad of phenotypic complexities governed by a limited set of underlying organizing principles. It therefore adds to our understanding of tumor evolution and tumorigenesis, and moreover, potential usefulness of predicting tumors' evolutionary paths and clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for cancer patients, as well as cancer risks for healthy individuals are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial impact on timely diagnosis, personalized treatment and personalized prevention of cancer. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. Molecular property diagnostic suite (MPDS): Development of disease-specific open source web portals for drug discovery.

    Science.gov (United States)

    Nagamani, S; Gaur, A S; Tanneeru, K; Muneeswaran, G; Madugula, S S; Consortium, Mpds; Druzhilovskiy, D; Poroikov, V V; Sastry, G N

    2017-11-01

    Molecular property diagnostic suite (MPDS) is a Galaxy-based open source drug discovery and development platform. MPDS web portals are designed for several diseases, such as tuberculosis, diabetes mellitus, and other metabolic disorders, specifically aimed to evaluate and estimate the drug-likeness of a given molecule. MPDS consists of three modules, namely data libraries, data processing, and data analysis tools which are configured and interconnected to assist drug discovery for specific diseases. The data library module encompasses vast information on chemical space, wherein the MPDS compound library comprises 110.31 million unique molecules generated from public domain databases. Every molecule is assigned with a unique ID and card, which provides complete information for the molecule. Some of the modules in the MPDS are specific to the diseases, while others are non-specific. Importantly, a suitably altered protocol can be effectively generated for another disease-specific MPDS web portal by modifying some of the modules. Thus, the MPDS suite of web portals shows great promise to emerge as disease-specific portals of great value, integrating chemoinformatics, bioinformatics, molecular modelling, and structure- and analogue-based drug discovery approaches.

  11. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Directory of Open Access Journals (Sweden)

    Huthmacher Carola

    2010-08-01

    Full Text Available Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte. Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.

  12. Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis.

    Science.gov (United States)

    Brossier, F; Sougakoff, W

    2017-09-01

    Molecular methods predict drug resistance several weeks before phenotypic methods and enable rapid implementation of appropriate therapeutic treatment. We aimed to detail the most representative molecular tools used in routine practice for the rapid detection of resistance to antituberculosis drugs among Mycobacterium tuberculosis strains. The molecular diagnosis of resistance to antituberculosis drugs in clinical samples or from in vitro cultures is based on the detection of the most common mutations in the genes involved in the development of resistance in M. tuberculosis strains (encoding either protein targets of antibiotics, or antibiotic activating enzymes) by commercial molecular kits or by sequencing. Three hypotheses could explain the discrepancies between the genotypic results and the phenotypic drug susceptibility testing results: a low percentage of resistant mutants precluding the detection by genotypic methods on the primary culture; a low level of resistance not detected by phenotypic testing; and other resistance mechanisms not yet characterized. Molecular methods have varying sensitivity with regards to detecting antituberculosis drug resistance; that is why phenotypic susceptibility testing methods are mandatory for detecting antituberculosis drug-resistant isolates that have not been detected by molecular methods. The questionable ability of existing phenotypic and genotypic drug susceptibility testing to properly classify strains as susceptible or resistant, and at what level of resistance, was raised for several antituberculosis agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Drug Resistance and Pseudoresistance: An Unintended Consequence of Enteric Coating Aspirin

    Science.gov (United States)

    Grosser, Tilo; Fries, Susanne; Lawson, John A.; Kapoor, Shiv C.; Grant, Gregory R.; FitzGerald, Garret A.

    2013-01-01

    Background Low dose aspirin reduces the secondary incidence of myocardial infarction and stroke. Drug resistance to aspirin might result in treatment failure. Despite this concern, no clear definition of “aspirin resistance” has emerged and estimates of its incidence have varied remarkably. We aimed to determine the commonality of a mechanistically consistent, stable and specific phenotype of true pharmacological resistance to aspirin – such as might be explained by genetic causes. Methods and Results Healthy volunteers (n=400) were screened for their response to a single oral dose of 325 mg immediate release or enteric coated aspirin. Response parameters reflected the activity of aspirin's molecular target, cyclooxygenase-1. Individuals who appeared “aspirin resistant” on one occasion underwent repeat testing and if still “resistant” were exposed to low dose enteric coated aspirin (81 mg) and clopidogrel (75 mg) for one week each. Variable absorption caused a high frequency of apparent resistance to a single dose of 325 mg enteric coated aspirin (up to 49%) but not to immediate release aspirin (0%). All individuals responded to aspirin upon repeated exposure, extension of the post dosing interval or addition of aspirin to their platelets ex vivo. Conclusions Pharmacological resistance to aspirin is rare; this study failed to identify a single case of true drug resistance. Pseudoresistance, reflecting delayed and reduced drug absorption, complicates enteric coated but not immediate release aspirin administration. Clinical Trial Registration Information clinicaltrials.gov. Identifier: NCT00948987. PMID:23212718

  14. Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans.

    Science.gov (United States)

    Gottlieb, Assaf; Daneshjou, Roxana; DeGorter, Marianne; Bourgeois, Stephane; Svensson, Peter J; Wadelius, Mia; Deloukas, Panos; Montgomery, Stephen B; Altman, Russ B

    2017-11-24

    Genome-wide association studies are useful for discovering genotype-phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into "gene level" effects. Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression-on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort.

  15. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth

    Science.gov (United States)

    Dittmar, Ashley J.; Drozda, Allison A.

    2016-01-01

    ABSTRACT The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several compounds with significant antiparasitic activities. Among these were pimozide and tamoxifen, which are well-characterized drugs prescribed to treat patients with psychiatric disorders and breast cancer

  16. Identifying Demand Responses to Illegal Drug Supply Interdictions.

    Science.gov (United States)

    Cunningham, Scott; Finlay, Keith

    2016-10-01

    Successful supply-side interdictions into illegal drug markets are predicated on the responsiveness of drug prices to enforcement and the price elasticity of demand for addictive drugs. We present causal estimates that targeted interventions aimed at methamphetamine input markets ('precursor control') can temporarily increase retail street prices, but methamphetamine consumption is weakly responsive to higher drug prices. After the supply interventions, purity-adjusted prices increased then quickly returned to pre-treatment levels within 6-12 months, demonstrating the short-term effects of precursor control. The price elasticity of methamphetamine demand is -0.13 to -0.21 for self-admitted drug treatment admissions and between -0.24 and -0.28 for hospital inpatient admissions. We find some evidence of a positive cross-price effect for cocaine, but we do not find robust evidence that increases in methamphetamine prices increased heroin, alcohol, or marijuana drug use. This study can inform policy discussions regarding other synthesized drugs, including illicit use of pharmaceuticals. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Comparative analysis of three drug-drug interaction screening systems against probable clinically relevant drug-drug interactions: a prospective cohort study.

    Science.gov (United States)

    Muhič, Neža; Mrhar, Ales; Brvar, Miran

    2017-07-01

    Drug-drug interaction (DDI) screening systems report potential DDIs. This study aimed to find the prevalence of probable DDI-related adverse drug reactions (ADRs) and compare the clinical usefulness of different DDI screening systems to prevent or warn against these ADRs. A prospective cohort study was conducted in patients urgently admitted to medical departments. Potential DDIs were checked using Complete Drug Interaction®, Lexicomp® Online™, and Drug Interaction Checker®. The study team identified the patients with probable clinically relevant DDI-related ADRs on admission, the causality of which was assessed using the Drug Interaction Probability Scale (DIPS). Sensitivity, specificity, and positive and negative predictive values of screening systems to prevent or warn against probable DDI-related ADRs were evaluated. Overall, 50 probable clinically relevant DDI-related ADRs were found in 37 out of 795 included patients taking at least two drugs, most common of them were bleeding, hyperkalemia, digitalis toxicity, and hypotension. Complete Drug Interaction showed the best sensitivity (0.76) for actual DDI-related ADRs, followed by Lexicomp Online (0.50), and Drug Interaction Checker (0.40). Complete Drug Interaction and Drug Interaction Checker had positive predictive values of 0.07; Lexicomp Online had 0.04. We found no difference in specificity and negative predictive values among these systems. DDI screening systems differ significantly in their ability to detect probable clinically relevant DDI-related ADRs in terms of sensitivity and positive predictive value.

  18. Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening.

    Science.gov (United States)

    Kraniak, Janice M; Chalasani, Anita; Wallace, Margaret R; Mattingly, Raymond R

    2018-01-01

    Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and ‘Schizophrenia-Like Behaviors' in Mice

    Science.gov (United States)

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-01-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia. PMID:26228524

  20. Phenotype prediction for mucopolysaccharidosis type I by in silico analysis.

    Science.gov (United States)

    Ou, Li; Przybilla, Michael J; Whitley, Chester B

    2017-07-04

    Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease due to deficiency of α-L-iduronidase (IDUA), a lysosomal enzyme that degrades glycosaminoglycans (GAG) heparan and dermatan sulfate. To achieve optimal clinical outcomes, early and proper treatment is essential, which requires early diagnosis and phenotype severity prediction. To establish a genotype/phenotype correlation of MPS I disease, a combination of bioinformatics tools including SIFT, PolyPhen, I-Mutant, PROVEAN, PANTHER, SNPs&GO and PHD-SNP are utilized. Through analyzing single nucleotide polymorphisms (SNPs) by these in silico approaches, 28 out of 285 missense SNPs were predicted to be damaging. By integrating outcomes from these in silico approaches, a prediction algorithm (sensitivity 94%, specificity 80%) was thereby developed. Three dimensional structural analysis of 5 candidate SNPs (P533R, P496R, L346R, D349G, T374P) were performed by SWISS PDB viewer, which revealed specific structural changes responsible for the functional impacts of these SNPs. Additionally, SNPs in the untranslated region were analyzed by UTRscan and PolymiRTS. Moreover, by investigating known pathogenic mutations and relevant patient phenotypes in previous publications, phenotype severity (severe, intermediate or mild) of each mutation was deduced. Collectively, these results identified potential candidate SNPs with functional significance for studying MPS I disease. This study also demonstrates the effectiveness, reliability and simplicity of these in silico approaches in addressing complexity of underlying genetic basis of MPS I disease. Further, a step-by-step guideline for phenotype prediction of MPS I disease is established, which can be broadly applied in other lysosomal diseases or genetic disorders.

  1. Systematic genotype-phenotype analysis of autism susceptibility loci implicates additional symptoms to co-occur with autism

    NARCIS (Netherlands)

    Buizer-Voskamp, Jacobine E.; Franke, Lude; Staal, Wouter G.; van Daalen, Emma; Kemner, Chantal; Ophoff, Roel A.; Vorstman, Jacob A. S.; van Engeland, Herman; Wijmenga, Cisca

    2010-01-01

    Many genetic studies in autism have been performed, resulting in the identification of multiple linkage regions and cytogenetic aberrations, but little unequivocal evidence for the involvement of specific genes exists. By identifying novel symptoms in these patients, enhanced phenotyping of autistic

  2. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations

    Directory of Open Access Journals (Sweden)

    Eva Y. G. De Vilder

    2017-01-01

    Full Text Available Gamma-carboxylation, performed by gamma-glutamyl carboxylase (GGCX, is an enzymatic process essential for activating vitamin K-dependent proteins (VKDP with important functions in various biological processes. Mutations in the encoding GGCX gene are associated with multiple phenotypes, amongst which vitamin K-dependent coagulation factor deficiency (VKCFD1 is best known. Other patients have skin, eye, heart or bone manifestations. As genotype–phenotype correlations were never described, literature was systematically reviewed in search of patients with at least one GGCX mutation with a phenotypic description, resulting in a case series of 47 patients. Though this number was too low for statistically valid correlations—a frequent problem in orphan diseases—we demonstrate the crucial role of the horizontally transferred transmembrane domain in developing cardiac and bone manifestations. Moreover, natural history suggests ageing as the principal determinant to develop skin and eye symptoms. VKCFD1 symptoms seemed more severe in patients with both mutations in the same protein domain, though this could not be linked to a more perturbed coagulation factor function. Finally, distinct GGCX functional domains might be dedicated to carboxylation of very specific VKDP. In conclusion, this systematic review suggests that there indeed may be genotype–phenotype correlations for GGCX-related phenotypes, which can guide patient counseling and management.

  3. Membrane vesicles from multidrug-resistant human carcinoma cells contain a specific 150,000-170,000 dalton protein detected by photoaffinity labeling

    International Nuclear Information System (INIS)

    Cornwell, M.M.; Safa, A.R.; Felsted, R.L.; Gottesman, M.M.; Pastan, I.

    1986-01-01

    The authors have selected multidrug-resistant human KB carcinoma cells in high levels of colchicine (KB-C4) or vinblastine (KB-V1) which are cross-resistant to many other structurally unrelated chemotheraputic agents. To determine the mechanism of reduced drug accumulation, they measured 3 H-vinblastine ( 3 H-VBL) association with membrane vesicles made from parental drug sensitive, drug-resistant and revertant cells. Membrane vesicles from highly multidrug resistant cells exhibited increased specific and saturable binding of vinblastine, (Kd = 1 μM) that was temperature dependent and trypsin sensitive. To identify the molecules which bind vinblastine, membrane vesicles were exposed to two photo-activatable analogs of vinblastine, (N-P-(azido-3,5,-[ 3 H]-benzoyl)-N'-β-aminoethylvindisine ( 3 H-NAB) and N-P-(azido-3-[ 125 I]-solicyl)-N'-β-aminoethylvindesine ( 125 I-NASV). The specific labeling of a 150,000-170,000 dalton protein in membrane vesicles from multidrug-resistant KB-C4 and KB-V1 cells was found. 125 I-NASV labeling was inhibited by vinblastine, vincrinstine and verapamil but not by colchicine or dexamethasone. The 150,000-170,000 dalton protein may have an important role in the multidrug resistance phenotype

  4. Pain phenotype as a predictor for drug response in painful polyneuropathy A retrospective analysis of data from controlled clinical trials

    DEFF Research Database (Denmark)

    Holbech, Jakob V; Bach, Flemming W; Finnerup, Nanna B

    2016-01-01

    a better effect in patients with preserved large fiber function with a mean difference in total pain reduction 1.31 (CI: 0.15 to 2.47). No phenotype-specific effects were found for venlafaxine, escitalopram, oxcarbazepine, valproic acid, levetiracetam or St. john's wort. Thus, this post-hoc analysis of 8...

  5. ph Sensitive hydrogel as colon specific drug delivery

    International Nuclear Information System (INIS)

    Alarifi, A.S.

    2011-01-01

    γ-radiation induced graft copolymerization and crosslinking was for the synthesis of ph-sensitive hydrogels composed of poly (vinyl pyrrolidone) acrylic acid. The prepared hydrogels were subjected to swelling test to evaluate the effects of ph and ionic strength of the surrounding solution. Drastic changes in the swelling parameters where observed by changing the surrounding solution ph values. The release of ibuprofen from hydrogels was monitored as a function of time at ph 1 and ph 7 in order to evaluate the prepared copolymer ability for colon- specific drug carrier uses.

  6. A Clinical Drug Library Screen Identifies Tosufloxacin as Being Highly Active against Staphylococcus aureus Persisters

    Directory of Open Access Journals (Sweden)

    Hongxia Niu

    2015-07-01

    Full Text Available To identify effective compounds that are active against Staphylococcus aureus (S. aureus persisters, we screened a clinical drug library consisting of 1524 compounds and identified six drug candidates that had anti-persister activity: tosufloxacin, clinafloxacin, sarafloxacin, doxycycline, thiostrepton, and chlorosalicylanilide. Among them, tosufloxacin had the highest anti-persister activity, which could completely eradicate S. aureus persisters within 2 days in vitro. Clinafloxacin ranked the second with very few persisters surviving the drug exposure. Interestingly, we found that both tosufloxacin and trovafloxacin that had high activity against persisters contained at the N-1 position the 2,4-difluorophenyl group, which is absent in other less active quinolones and may be associated with the high anti-persister activity. Further studies are needed to evaluate tosufloxacin in animal models and to explain its unique activity against bacterial persisters. Our findings may have implications for improved treatment of persistent bacterial infections.

  7. Preclinical optimization of a broad-spectrum anti-bladder cancer tri-drug regimen via the Feedback System Control (FSC) platform

    Science.gov (United States)

    Liu, Qi; Zhang, Cheng; Ding, Xianting; Deng, Hui; Zhang, Daming; Cui, Wei; Xu, Hongwei; Wang, Yingwei; Xu, Wanhai; Lv, Lei; Zhang, Hongyu; He, Yinghua; Wu, Qiong; Szyf, Moshe; Ho, Chih-Ming; Zhu, Jingde

    2015-06-01

    Therapeutic outcomes of combination chemotherapy have not significantly advanced during the past decades. This has been attributed to the formidable challenges of optimizing drug combinations. Testing a matrix of all possible combinations of doses and agents in a single cell line is unfeasible due to the virtually infinite number of possibilities. We utilized the Feedback System Control (FSC) platform, a phenotype oriented approach to test 100 options among 15,625 possible combinations in four rounds of assaying to identify an optimal tri-drug combination in eight distinct chemoresistant bladder cancer cell lines. This combination killed between 82.86% and 99.52% of BCa cells, but only 47.47% of the immortalized benign bladder epithelial cells. Preclinical in vivo verification revealed its markedly enhanced anti-tumor efficacy as compared to its bi- or mono-drug components in cell line-derived tumor xenografts. The collective response of these pathways to component drugs was both cell type- and drug type specific. However, the entire spectrum of pathways triggered by the tri-drug regimen was similar in all four cancer cell lines, explaining its broad spectrum killing of BCa lines, which did not occur with its component drugs. Our findings here suggest that the FSC platform holdspromise for optimization of anti-cancer combination chemotherapy.

  8. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson's Disease Owing Genetic and Anatomical Specificity.

    Science.gov (United States)

    Gambardella, Stefano; Ferese, Rosangela; Biagioni, Francesca; Busceti, Carla L; Campopiano, Rosa; Griguoli, Anna M P; Limanaqi, Fiona; Novelli, Giuseppe; Storto, Marianna; Fornai, Francesco

    2017-01-01

    The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson's disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented.

  9. Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity

    Directory of Open Access Journals (Sweden)

    Mohit Kumar Jolly

    2018-03-01

    Full Text Available It is well known that genetic mutations can drive drug resistance and lead to tumor relapse. Here, we focus on alternate mechanisms—those without mutations, such as phenotypic plasticity and stochastic cell-to-cell variability that can also evade drug attacks by giving rise to drug-tolerant persisters. The phenomenon of persistence has been well-studied in bacteria and has also recently garnered attention in cancer. We draw a parallel between bacterial persistence and resistance against androgen deprivation therapy in prostate cancer (PCa, the primary standard care for metastatic disease. We illustrate how phenotypic plasticity and consequent mutation-independent or non-genetic heterogeneity possibly driven by protein conformational dynamics can stochastically give rise to androgen independence in PCa, and suggest that dynamic phenotypic plasticity should be considered in devising therapeutic dosing strategies designed to treat and manage PCa.

  10. New use of an old drug: Inhibition of breast cancer stem cells by benztropine mesylate

    OpenAIRE

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells...

  11. Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma.

    Science.gov (United States)

    Hong, Aayoung; Moriceau, Gatien; Sun, Lu; Lomeli, Shirley; Piva, Marco; Damoiseaux, Robert; Holmen, Sheri L; Sharpless, Norman E; Hugo, Willy; Lo, Roger S

    2018-01-01

    Melanoma resistant to MAPK inhibitors (MAPKi) displays loss of fitness upon experimental MAPKi withdrawal and, clinically, may be resensitized to MAPKi therapy after a drug holiday. Here, we uncovered and therapeutically exploited the mechanisms of MAPKi addiction in MAPKi-resistant BRAF MUT or NRAS MUT melanoma. MAPKi-addiction phenotypes evident upon drug withdrawal spanned transient cell-cycle slowdown to cell-death responses, the latter of which required a robust phosphorylated ERK (pERK) rebound. Generally, drug withdrawal-induced pERK rebound upregulated p38-FRA1-JUNB-CDKN1A and downregulated proliferation, but only a robust pERK rebound resulted in DNA damage and parthanatos-related cell death. Importantly, pharmacologically impairing DNA damage repair during MAPKi withdrawal augmented MAPKi addiction across the board by converting a cell-cycle deceleration to a caspase-dependent cell-death response or by furthering parthanatos-related cell death. Specifically in MEKi-resistant NRAS MUT or atypical BRAF MUT melanoma, treatment with a type I RAF inhibitor intensified pERK rebound elicited by MEKi withdrawal, thereby promoting a cell death-predominant MAPKi-addiction phenotype. Thus, MAPKi discontinuation upon disease progression should be coupled with specific strategies that augment MAPKi addiction. Significance: Discontinuing targeted therapy may select against drug-resistant tumor clones, but drug-addiction mechanisms are ill-defined. Using melanoma resistant to but withdrawn from MAPKi, we defined a synthetic lethality between supraphysiologic levels of pERK and DNA damage. Actively promoting this synthetic lethality could rationalize sequential/rotational regimens that address evolving vulnerabilities. Cancer Discov; 8(1); 74-93. ©2017 AACR. See related commentary by Stern, p. 20 This article is highlighted in the In This Issue feature, p. 1 . ©2017 American Association for Cancer Research.

  12. A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria.

    Science.gov (United States)

    Li, Liping; Tetu, Sasha G; Paulsen, Ian T; Hassan, Karl A

    2018-01-01

    The core genomes of most bacterial species include a large number of genes encoding putative efflux pumps. The functional roles of most of these pumps are unknown, however, they are often under tight regulatory control and expressed in response to their substrates. Therefore, one way to identify pumps that function in antimicrobial resistance is to examine the transcriptional responses of efflux pump genes to antimicrobial shock. By conducting complete transcriptomic experiments following antimicrobial shock treatments, it may be possible to identify novel drug efflux pumps encoded in bacterial genomes. In this chapter we describe a complete workflow for conducting transcriptomic analyses by RNA sequencing, to determine transcriptional changes in bacteria responding to antimicrobials.

  13. Altered Functional Subnetwork During Emotional Face Processing: A Potential Intermediate Phenotype for Schizophrenia.

    Science.gov (United States)

    Cao, Hengyi; Bertolino, Alessandro; Walter, Henrik; Schneider, Michael; Schäfer, Axel; Taurisano, Paolo; Blasi, Giuseppe; Haddad, Leila; Grimm, Oliver; Otto, Kristina; Dixson, Luanna; Erk, Susanne; Mohnke, Sebastian; Heinz, Andreas; Romanczuk-Seiferth, Nina; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Cichon, Sven; Noethen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas

    2016-06-01

    Although deficits in emotional processing are prominent in schizophrenia, it has been difficult to identify neural mechanisms related to the genetic risk for this highly heritable illness. Prior studies have not found consistent regional activation or connectivity alterations in first-degree relatives compared with healthy controls, suggesting that a more comprehensive search for connectomic biomarkers is warranted. To identify a potential systems-level intermediate phenotype linked to emotion processing in schizophrenia and to examine the psychological association, task specificity, test-retest reliability, and clinical validity of the identified phenotype. The study was performed in university research hospitals from June 1, 2008, through December 31, 2013. We examined 58 unaffected first-degree relatives of patients with schizophrenia and 94 healthy controls with an emotional face-matching functional magnetic resonance imaging paradigm. Test-retest reliability was analyzed with an independent sample of 26 healthy participants. A clinical association study was performed in 31 patients with schizophrenia and 45 healthy controls. Data analysis was performed from January 1 to September 30, 2014. Conventional amygdala activity and seeded connectivity measures, graph-based global and local network connectivity measures, Spearman rank correlation, intraclass correlation, and gray matter volumes. Among the 152 volunteers included in the relative-control sample, 58 were unaffected first-degree relatives of patients with schizophrenia (mean [SD] age, 33.29 [12.56]; 38 were women), and 94 were healthy controls without a first-degree relative with mental illness (mean [SD] age, 32.69 [10.09] years; 55 were women). A graph-theoretical connectivity approach identified significantly decreased connectivity in a subnetwork that primarily included the limbic cortex, visual cortex, and subcortex during emotional face processing (cluster-level P corrected for familywise error =

  14. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery.

    Science.gov (United States)

    Okombo, John; Chibale, Kelly

    2017-07-18

    New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs. However, the advent of new public-private partnerships focused on tropical diseases and the recent release of large data sets by pharmaceutical companies on antimalarial and antituberculosis compounds derived from phenotypic whole cell high throughput screening have spurred renewed interest and opened new frontiers in malaria and tuberculosis drug discovery. This Account recaps the existing challenges facing antimalarial and antituberculosis drug discovery, including limitations associated with experimental animal models as well as biological complexities intrinsic to the causative pathogens. We enlist various highlights from a body of work within our research group aimed at identifying and characterizing new chemical leads, and navigating these challenges to contribute toward the global drug discovery and development pipeline in malaria and tuberculosis. We describe a catalogue of in-house efforts toward deriving safe and efficacious preclinical drug development candidates via cell-based medicinal chemistry optimization of phenotypic whole-cell medium and high throughput screening hits sourced from various small molecule chemical libraries. We also provide an appraisal of target-based screening, as invoked in our laboratory for mechanistic evaluation of the hits generated, with particular focus on the enzymes within the de novo pyrimidine biosynthetic and hemoglobin degradation pathways, the latter constituting a heme detoxification process and an associated cysteine

  15. Monitoring the efficacy of drugs for neglected tropical diseases controlled by preventive chemotherapy.

    Science.gov (United States)

    Albonico, M; Levecke, B; LoVerde, P T; Montresor, A; Prichard, R; Vercruysse, J; Webster, J P

    2015-12-01

    In the last decade, pharmaceutical companies, governments and global health organisations under the leadership of the World Health Organization (WHO) have pledged large-scale donations of anthelmintic drugs, including ivermectin (IVM), praziquantel (PZQ), albendazole (ALB) and mebendazole (MEB). This worldwide scale-up in drug donations calls for strong monitoring systems to detect any changes in anthelmintic drug efficacy. This review reports on the outcome of the WHO Global Working Group on Monitoring of Neglected Tropical Diseases Drug Efficacy, which consists of three subgroups: (i) soil-transmitted helminthiases (ALB and MEB); (ii) onchocerciasis and lymphatic filariasis (IVM); and (iii) schistosomiasis (PZQ). Progress of ongoing work, challenges and research needs for each of the four main drugs used in helminthic preventive chemotherapy (PC) are reported, laying the ground for appropriate implementation of drug efficacy monitoring programmes under the co-ordination and guidelines of the WHO. Best practices for monitoring drug efficacy should be made available and capacity built as an integral part of neglected tropical disease (NTD) programme monitoring. Development of a disease-specific model to predict the impact of PC programmes, to detect outliers and to solicit responses is essential. Research studies on genetic polymorphisms in relation to low-efficacy phenotypes should be carried out to identify markers of putative resistance against all NTD drugs and ultimately to develop diagnostic assays. Development of combination and co-administration of NTD drugs as well as of new drug entities to boost the armamentarium of the few drugs available for NTD control and elimination should be pursued in parallel. Copyright © 2015 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  16. Universal, class-specific and drug-specific reversal agents for the new oral anticoagulants.

    Science.gov (United States)

    Ansell, Jack E

    2016-02-01

    Although there is controversy about the absolute need for a reversal agent for the new direct oral anticoagulants (DOACs), the absence of such an agent is a barrier to more widespread use of these agents. For the management of major life-threatening bleeding with the DOACs, most authorities recommend the use of four factor prothrombin complex concentrates, although the evidence to support their use in terms of improving outcomes is meager. At the present time, there are three antidotes in development and poised to enter the market. Idarucizumab is a drug-specific antidote targeted to reverse the direct thrombin inhibitor, dabigatran. Andexanet alfa is a class-specific antidote targeted to reverse the oral direct factor Xa inhibitors as well as the indirect inhibitor, enoxaparin. Ciraparantag is a universal antidote targeted to reverse the direct thrombin and factor Xa inhibitors as well as the indirect inhibitor, enoxaparin.

  17. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice.

    Science.gov (United States)

    Rakov, Helena; Engels, Kathrin; Hönes, Georg Sebastian; Strucksberg, Karl-Heinz; Moeller, Lars Christian; Köhrle, Josef; Zwanziger, Denise; Führer, Dagmar

    2016-01-01

    Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism. Hypo- and hyperthyroidism were induced in 5-month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 (-) or T4 i.p. treatment over 7 weeks, and control animals underwent sham treatment (N = 8 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination, and strength), liver function, serum thyroid hormone status, and cellular TH effects on gene expression in brown adipose tissue, heart, and liver. Male and female mice showed significant differences in behavioural, functional, metabolic, biochemical, and molecular traits of hyper- and hypothyroidism. Hyperthyroidism resulted in increased locomotor activity in female mice but decreased muscle strength and motor coordination preferably in male animals. Hypothyroidism led to increased water intake in male but not female mice and significantly higher serum cholesterol in male mice. Natural sex differences in body temperature, body weight gain, food and water intake were preserved under hyperthyroid conditions. In contrast, natural sex differences in heart rate disappeared with TH excess and deprivation. The variations of hyper- or hypothyroid traits of male and female mice were not explained by classical T3/T4 serum state. TH serum concentrations were significantly increased in female mice under hyperthyroidism, but no sex differences were found under eu- or hypothyroid conditions. Interestingly, analysis of expression of TH target genes and TH transporters revealed little sex dependency in heart, while sex differences in target genes were present in liver and brown adipose tissue

  18. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome.

    Science.gov (United States)

    Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda

    2015-10-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.

  19. In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Bruno J Neves

    2015-01-01

    Full Text Available Morbidity and mortality caused by schistosomiasis are serious public health problems in developing countries. Because praziquantel is the only drug in therapeutic use, the risk of drug resistance is a concern. In the search for new schistosomicidal drugs, we performed a target-based chemogenomics screen of a dataset of 2,114 proteins to identify drugs that are approved for clinical use in humans that may be active against multiple life stages of Schistosoma mansoni. Each of these proteins was treated as a potential drug target, and its amino acid sequence was used to interrogate three databases: Therapeutic Target Database (TTD, DrugBank and STITCH. Predicted drug-target interactions were refined using a combination of approaches, including pairwise alignment, conservation state of functional regions and chemical space analysis. To validate our strategy, several drugs previously shown to be active against Schistosoma species were correctly predicted, such as clonazepam, auranofin, nifedipine, and artesunate. We were also able to identify 115 drugs that have not yet been experimentally tested against schistosomes and that require further assessment. Some examples are aprindine, gentamicin, clotrimazole, tetrabenazine, griseofulvin, and cinnarizine. In conclusion, we have developed a systematic and focused computer-aided approach to propose approved drugs that may warrant testing and/or serve as lead compounds for the design of new drugs against schistosomes.

  20. Predicting targeted drug combinations based on Pareto optimal patterns of coexpression network connectivity.

    Science.gov (United States)

    Penrod, Nadia M; Greene, Casey S; Moore, Jason H

    2014-01-01

    Molecularly targeted drugs promise a safer and more effective treatment modality than conventional chemotherapy for cancer patients. However, tumors are dynamic systems that readily adapt to these agents activating alternative survival pathways as they evolve resistant phenotypes. Combination therapies can overcome resistance but finding the optimal combinations efficiently presents a formidable challenge. Here we introduce a new paradigm for the design of combination therapy treatment strategies that exploits the tumor adaptive process to identify context-dependent essential genes as druggable targets. We have developed a framework to mine high-throughput transcriptomic data, based on differential coexpression and Pareto optimization, to investigate drug-induced tumor adaptation. We use this approach to identify tumor-essential genes as druggable candidates. We apply our method to a set of ER(+) breast tumor samples, collected before (n = 58) and after (n = 60) neoadjuvant treatment with the aromatase inhibitor letrozole, to prioritize genes as targets for combination therapy with letrozole treatment. We validate letrozole-induced tumor adaptation through coexpression and pathway analyses in an independent data set (n = 18). We find pervasive differential coexpression between the untreated and letrozole-treated tumor samples as evidence of letrozole-induced tumor adaptation. Based on patterns of coexpression, we identify ten genes as potential candidates for combination therapy with letrozole including EPCAM, a letrozole-induced essential gene and a target to which drugs have already been developed as cancer therapeutics. Through replication, we validate six letrozole-induced coexpression relationships and confirm the epithelial-to-mesenchymal transition as a process that is upregulated in the residual tumor samples following letrozole treatment. To derive the greatest benefit from molecularly targeted drugs it is critical to design combination

  1. Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery.

    Science.gov (United States)

    S Kumar, Vrinda; Rijo, John; M, Sabitha

    2018-04-15

    Colorectal cancer, also known as bowel cancer, is the uncontrolled cell growth in the colon or rectum (parts of the large intestine), or in the appendix. The colon specific drug delivery would alleviate the systemic side effects and would assure the safe therapy for colonic disorders with minimum dose and duration of therapy. The liquisolid technique refers to solubilisation of drug in a non-volatile solvent combined with inclusion of appropriate carrier and coating agent required for tableting. Colon specific degradation of natural polymer, guar gum and pH dependant degradative (pH-7) property of eudragit L100 restricts the delivery of curcumin in gastric and intestinal pH. Formulated curcumin liquisolid powder was evaluated for the micrometric properties, solubility and by differential thermal analysis, X ray powder diffraction and scanning electron microscopy. Curcumin loaded liquisolid tablet showed more anticancer activity against HCT-15 compared with free curcumin. Bioavailability study of the coated and uncoated liquisolid tablets were performed using Newzealand white rabbits. The present study concludes that liquisolid technique is a promising alternative for improving oral bioavailability and dissolution rate of water insoluble drug and coating liquisolid tablet with colon sensitive polymers showed site specific release of drug in the colon. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.

    Science.gov (United States)

    Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.

  3. Role of scanning electron microscopy in identifying drugs used in medical practice.

    Science.gov (United States)

    Fazil Marickar, Y M; Sylaja, N; Koshy, Peter

    2009-10-01

    Several plant preparations are administered for treatment of stone disease without scientific basis. This paper presents the results of in vitro and animal experimental studies using scanning electron microscopy (SEM) in the identification of the therapeutic properties of trial drugs in medicine. In the first set of the study, urinary crystals namely calcium oxalate monohydrate and calcium oxalate dehydrate were grown in six sets of Hane's tubes in silica gel medium. Trial drugs namely scoparia dulcis Lynn, musa sapiens and dolicos biflorus were incorporated in the gel medium to identify the dopant effect of the trial drugs on the size and extent of crystal column growth. The changes in morphology of crystals were studied using SEM. In the second set, six male Wistar rats each were calculogenised by administering sodium oxalate and ethylene glycol and diabetised using streptozotocin. The SEM changes of calculogenisation were studied. The rats were administered trial drugs before calculogenisation or after. The kidneys of the rats studied under the scanning electron microscope showed changes in tissue morphology and crystal deposition produced by calculogenisation and alterations produced by addition of trial drugs. The trial drugs produced changes in the pattern of crystal growth and in the crystal morphology of both calcium oxalate monohydrate and calcium oxalate dihydrate grown in vitro. Elemental distribution analysis showed that the crystal purity was not altered by the trial drugs. Scoparia dulcis Lynn was found to be the most effective anticalculogenic agent. Musa sapiens and dolicos biflorus were found to have no significant effect in inhibiting crystal growth. The kidneys of rats on calculogenisation showed different grades of crystals in the glomerulus and interstitial tissues, extrusion of the crystals into the tubular lumen, collodisation and tissue inflammatory cell infiltration. Scoparia dulcis Lynn exhibited maximum protector effect against the

  4. How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.

    Science.gov (United States)

    Lecca, Paola

    2018-01-01

    We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of

  5. Membrane specific drugs as radiosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Mishra, K.P.; Shenoy, M.A.; Singh, B.B.; Srinivasan, V.T.; Verma, N.C.

    1981-01-01

    Procaine, paracetamol, and chlorpromazine showed inhibition of post irradiation repair. The chlorpromazie effect could be further augmented by treatment of cells with procaine. Chlorpromazine was also found to be preferentially toxic to hypoxid bacterial cells, and the survivors showed extreme radiosensitivity to gamma rays. Chlorpromazine was found to inhibit tumour growth in swiss mice when given intraperitoneally as well as when injected directly into the tumour. When combined with single x-ray doses, significant radiosensitization was observed in two in vivo tumours sarcoma 180A and fibrosarcoma. These results indicated that chlorpromazine may prove a good drug for combined chemo-radiotherapy of solid tumours. Investigations continued studying various aspects such as effectiveness in other tumour lines, distribution in healthy and tumour bearing animals, hyperthermia and drug combination effects, and encapsulation of the drug in artificial liposomes and blood cells. (ERB)

  6. Application of RNAi to Genomic Drug Target Validation in Schistosomes.

    Directory of Open Access Journals (Sweden)

    Alessandra Guidi

    2015-05-01

    Full Text Available Concerns over the possibility of resistance developing to praziquantel (PZQ, has stimulated efforts to develop new drugs for schistosomiasis. In addition to the development of improved whole organism screens, the success of RNA interference (RNAi in schistosomes offers great promise for the identification of potential drug targets to initiate drug discovery. In this study we set out to contribute to RNAi based validation of putative drug targets. Initially a list of 24 target candidates was compiled based on the identification of putative essential genes in schistosomes orthologous of C. elegans essential genes. Knockdown of Calmodulin (Smp_026560.2 (Sm-Calm, that topped this list, produced a phenotype characterised by waves of contraction in adult worms but no phenotype in schistosomula. Knockdown of the atypical Protein Kinase C (Smp_096310 (Sm-aPKC resulted in loss of viability in both schistosomula and adults and led us to focus our attention on other kinase genes that were identified in the above list and through whole organism screening of known kinase inhibitor sets followed by chemogenomic evaluation. RNAi knockdown of these kinase genes failed to affect adult worm viability but, like Sm-aPKC, knockdown of Polo-like kinase 1, Sm-PLK1 (Smp_009600 and p38-MAPK, Sm-MAPK p38 (Smp_133020 resulted in an increased mortality of schistosomula after 2-3 weeks, an effect more marked in the presence of human red blood cells (hRBC. For Sm-PLK-1 the same effects were seen with the specific inhibitor, BI2536, which also affected viable egg production in adult worms. For Sm-PLK-1 and Sm-aPKC the in vitro effects were reflected in lower recoveries in vivo. We conclude that the use of RNAi combined with culture with hRBC is a reliable method for evaluating genes important for larval development. However, in view of the slow manifestation of the effects of Sm-aPKC knockdown in adults and the lack of effects of Sm-PLK-1 and Sm-MAPK p38 on adult viability

  7. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  8. Exome sequencing identifies mutations in ABCD1 and DACH2 in two brothers with a distinct phenotype.

    Science.gov (United States)

    Zhang, Yanliang; Liu, Yanhui; Li, Ya; Duan, Yong; Zhang, Keyun; Wang, Junwang; Dai, Yong

    2014-09-19

    We report on two brothers with a distinct syndromic phenotype and explore the potential pathogenic cause. Cytogenetic tests and exome sequencing were performed on the two brothers and their parents. Variants detected by exome sequencing were validated by Sanger sequencing. The main phenotype of the two brothers included congenital language disorder, growth retardation, intellectual disability, difficulty in standing and walking, and urinary and fecal incontinence. To the best of our knowledge, no similar phenotype has been reported previously. No abnormalities were detected by G-banding chromosome analysis or array comparative genomic hybridization. However, exome sequencing revealed novel mutations in the ATP-binding cassette, sub-family D member 1 (ABCD1) and Dachshund homolog 2 (DACH2) genes in both brothers. The ABCD1 mutation was a missense mutation c.1126G > C in exon 3 leading to a p.E376Q substitution. The DACH2 mutation was also a missense mutation c.1069A > T in exon 6, leading to a p.S357C substitution. The mother was an asymptomatic heterozygous carrier. Plasma levels of very-long-chain fatty acids were increased in both brothers, suggesting a diagnosis of adrenoleukodystrophy (ALD); however, their phenotype was not compatible with any reported forms of ALD. DACH2 plays an important role in the regulation of brain and limb development, suggesting that this mutation may be involved in the phenotype of the two brothers. The distinct phenotype demonstrated by these two brothers might represent a new form of ALD or a new syndrome. The combination of mutations in ABCD1 and DACH2 provides a plausible mechanism for this phenotype.

  9. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.

    Science.gov (United States)

    Liu, Ruifeng; AbdulHameed, Mohamed Diwan M; Kumar, Kamal; Yu, Xueping; Wallqvist, Anders; Reifman, Jaques

    2017-06-08

    The expanded use of multiple drugs has increased the occurrence of adverse drug reactions (ADRs) induced by drug-drug interactions (DDIs). However, such reactions are typically not observed in clinical drug-development studies because most of them focus on single-drug therapies. ADR reporting systems collect information on adverse health effects caused by both single drugs and DDIs. A major challenge is to unambiguously identify the effects caused by DDIs and to attribute them to specific drug interactions. A computational method that provides prospective predictions of potential DDI-induced ADRs will help to identify and mitigate these adverse health effects. We hypothesize that drug-protein interactions can be used as independent variables in predicting ADRs. We constructed drug pair-protein interaction profiles for ~800 drugs using drug-protein interaction information in the public domain. We then constructed statistical models to score drug pairs for their potential to induce ADRs based on drug pair-protein interaction profiles. We used extensive clinical database information to construct categorical prediction models for drug pairs that are likely to induce ADRs via synergistic DDIs and showed that model performance deteriorated only slightly, with a moderate amount of false positives and false negatives in the training samples, as evaluated by our cross-validation analysis. The cross validation calculations showed an average prediction accuracy of 89% across 1,096 ADR models that captured the deleterious effects of synergistic DDIs. Because the models rely on drug-protein interactions, we made predictions for pairwise combinations of 764 drugs that are currently on the market and for which drug-protein interaction information is available. These predictions are publicly accessible at http://avoid-db.bhsai.org . We used the predictive models to analyze broader aspects of DDI-induced ADRs, showing that ~10% of all combinations have the potential to induce ADRs

  10. Miniaturizing 3D assay for high-throughput drug and genetic screens for small patient-derived tumor samples (Conference Presentation)

    Science.gov (United States)

    Rotem, Asaf; Garraway, Levi; Su, Mei-Ju; Basu, Anindita; Regev, Aviv; Struhl, Kevin

    2017-02-01

    Three-dimensional growth conditions reflect the natural environment of cancer cells and are crucial to be performed at drug screens. We developed a 3D assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the 50-year old benchmark assay-soft agar. Using GILA, we performed high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. This phenotypic approach is complementary to our genetic approach that utilizes single-cell RNA-sequencing of a patient sample to identify putative oncogenes that confer sensitivity to drugs designed to specifically inhibit the identified oncoprotein. Currently, we are dealing with a big challenge in our field- the limited number of cells that might be extracted from a biopsy. Small patient-derived samples are hard to test in the traditional multiwell plate and it will be helpful to minimize the culture area and the experimental system. We managed to design a suitable microfluidic device for limited number of cells and perform the assay using image analysis. We aim to test drugs on tumor cells, outside of the patient body- and recommend on the ideal treatment that is tailored to the individual. This device will help to minimize biopsy-sampling volumes and minimize interventions in the patient's tumor.

  11. Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nassirpour, Rounak, E-mail: Rounak.nassirpour@pfizer.com [Drug Safety, Pfizer Worldwide Research and Development, 1 Burtt Rd, Andover, MA 01810 (United States); Ramaiah, Shashi K. [Drug Safety, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA 02139 (United States); Whiteley, Laurence O. [Drug Safety, Pfizer Worldwide Research and Development, 1 Burtt Rd, Andover, MA 01810 (United States)

    2016-12-01

    Drug-induced nephrotoxicity is a common drug development complication for pharmaceutical companies. Sensitive, specific, translatable and non-invasive biomarkers of renal toxicity are urgently needed to diagnose nephron segment specific injury. The currently available gold standard biomarkers for nephrotoxicity are not kidney-specific, lack sensitivity for early detection, and are not suitable for renal damage localization (glomerular vs tubulointerstitial injury). MicroRNAs (miRNAs) are increasingly gaining momentum as promising biomarkers of various organ toxicities, including drug induced renal injury. This is mostly due to their stability in easily accessible biofluids, ease of developing nucleic acids detection compared to protein detection assays, as well as their interspecies translatability. Increasing concordance of miRNA findings by standardizing methodology most suitable for their detection and quantitation, as well as characterization of their expression pattern in a cell type specific manner, will accelerate progress toward validation of these miRNAs as biomarkers in pre-clinical, and clinical settings. This review aims to highlight the current pre-clinical findings surrounding miRNAs as biomarkers in two important segments of the nephron, the glomerulus and tubules. - Highlights: • miRNAs are promising biomarkers of drug-induced kidney injury. • Summarized pre-clinical miRNA biomarkers of drug-induced nephrotoxicity. • Described the strengths and challenges associated with miRNAs as biomarkers.

  12. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    Science.gov (United States)

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described.

  13. The role of general parenting and cannabis-specific parenting practices in adolescent cannabis and other illicit drug use.

    Science.gov (United States)

    Vermeulen-Smit, E; Verdurmen, J E E; Engels, R C M E; Vollebergh, W A M

    2015-02-01

    To investigate general and cannabis-specific parenting practices in relation to adolescent cannabis and other illicit drug use. Data were derived from the Dutch National School Survey on Substance Use among students (N=3209; aged 12-16 years) and one of their parents in 2011. Logistic regression analyses revealed that 1) parental cannabis use was significantly related to more adolescent lifetime and recent cannabis use, and 2) restrictive cannabis-specific parental rules were associated with less adolescent recent cannabis and lifetime use of other illicit drugs, even when controlled for sociodemographic factors, general parenting, adolescent tobacco use, and tobacco-specific parenting. In addition, no significant interaction was observed between parental cannabis use and cannabis-specific rules in their relation to adolescent cannabis and other illicit drug use, indicating that cannabis rules are evenly associated with adolescent drug use for families with and without parental cannabis experience. In addition to general parenting practices, restrictive cannabis-specific rules are related to lower adolescent cannabis and other illicit drug rates. Parents who ever used cannabis have children with a higher prevalence of cannabis use. However, their restrictive cannabis-specific rules are equally related to a lower chance of adolescent cannabis use. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Phenotypes Determined by Cluster Analysis in Moderate to Severe Bronchial Asthma.

    Science.gov (United States)

    Youroukova, Vania M; Dimitrova, Denitsa G; Valerieva, Anna D; Lesichkova, Spaska S; Velikova, Tsvetelina V; Ivanova-Todorova, Ekaterina I; Tumangelova-Yuzeir, Kalina D

    2017-06-01

    Bronchial asthma is a heterogeneous disease that includes various subtypes. They may share similar clinical characteristics, but probably have different pathological mechanisms. To identify phenotypes using cluster analysis in moderate to severe bronchial asthma and to compare differences in clinical, physiological, immunological and inflammatory data between the clusters. Forty adult patients with moderate to severe bronchial asthma out of exacerbation were included. All underwent clinical assessment, anthropometric measurements, skin prick testing, standard spirometry and measurement fraction of exhaled nitric oxide. Blood eosinophilic count, serum total IgE and periostin levels were determined. Two-step cluster approach, hierarchical clustering method and k-mean analysis were used for identification of the clusters. We have identified four clusters. Cluster 1 (n=14) - late-onset, non-atopic asthma with impaired lung function, Cluster 2 (n=13) - late-onset, atopic asthma, Cluster 3 (n=6) - late-onset, aspirin sensitivity, eosinophilic asthma, and Cluster 4 (n=7) - early-onset, atopic asthma. Our study is the first in Bulgaria in which cluster analysis is applied to asthmatic patients. We identified four clusters. The variables with greatest force for differentiation in our study were: age of asthma onset, duration of diseases, atopy, smoking, blood eosinophils, nonsteroidal anti-inflammatory drugs hypersensitivity, baseline FEV1/FVC and symptoms severity. Our results support the concept of heterogeneity of bronchial asthma and demonstrate that cluster analysis can be an useful tool for phenotyping of disease and personalized approach to the treatment of patients.

  15. Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles

    International Nuclear Information System (INIS)

    Rodriguez-Antona, Cristina; Sayi, Jane G.; Gustafsson, Lars L.; Bertilsson, Leif; Ingelman-Sundberg, Magnus

    2005-01-01

    The human cytochrome P450 3A (CYP3A) enzymes, which metabolize 50% of currently used therapeutic drugs, exhibit great interindividual differences in activity that have a major impact on drug treatment outcome, but hitherto no genetic background importantly contributing to this variation has been identified. In this study we show that CYP3A4 mRNA and hnRNA contents with a few exceptions vary in parallel in human liver, suggesting that mechanisms affecting CYP3A4 transcription, such as promoter polymorphisms, are relevant for interindividual differences in CYP3A4 expression. Tanzanian (n = 143) healthy volunteers were phenotyped using quinine as a CYP3A probe and the results were used for association studies with CYP3A4 genotypes. Carriers of CYP3A4*1B had a significantly lower activity than those with CYP3A4*1 whereas no differences were seen for five other SNPs investigated. Nuclear proteins from the B16A2 hepatoma cells were found to bind with less affinity to the CYP3A4*1B element around -392 bp as compared to CYP3A4*1. The data indicate the existence of a genetic CYP3A4 polymorphism with functional importance for interindividual differences in enzyme expression

  16. Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data

    OpenAIRE

    Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor, Maureen

    2014-01-01

    We discuss a cancer hallmark network framework for modelling genome-sequencing data to predict cancer clonal evolution and associated clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for a cancer patient, as well as cancer risks for a healthy individual are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial i...

  17. PhenoTips: Patient Phenotyping Software for Clinical and Research Use.

    OpenAIRE

    Girdea, Marta; Dumitriu, Sergiu; Fiume, Marc; Buske, Orion; Bowdin, Sarah; Boycott, Kym M.; Chénier, Sébastien; Chitayat, David; Faghfoury, Hanna; Meyn, Stephen; Ray, Peter N.; So, Joyce; Stavropoulos, Dimitri J.; Brudno, Michael

    2014-01-01

    We have developed PhenoTips, a deep phenotyping tool and database, specifically designed for phenotyping patients with genetic disorders. Our tool closely mirrors clinician workflows so as to facilitate the recording of observations made during the patient encounter. Phenotypic information is represented using the Human Phenotype Ontology; however, the complexity of the ontology is hidden behind a user interface, which combines simple selection of common phenotypes with error-tolerant, predic...

  18. Deep sequencing identifies ethnicity-specific bacterial signatures in the oral microbiome.

    Directory of Open Access Journals (Sweden)

    Matthew R Mason

    Full Text Available Oral infections have a strong ethnic predilection; suggesting that ethnicity is a critical determinant of oral microbial colonization. Dental plaque and saliva samples from 192 subjects belonging to four major ethnicities in the United States were analyzed using terminal restriction fragment length polymorphism (t-RFLP and 16S pyrosequencing. Ethnicity-specific clustering of microbial communities was apparent in saliva and subgingival biofilms, and a machine-learning classifier was capable of identifying an individual's ethnicity from subgingival microbial signatures. The classifier identified African Americans with a 100% sensitivity and 74% specificity and Caucasians with a 50% sensitivity and 91% specificity. The data demonstrates a significant association between ethnic affiliation and the composition of the oral microbiome; to the extent that these microbial signatures appear to be capable of discriminating between ethnicities.

  19. Feasibility of applying the life history calendar in a population of chronic opioid users to identify patterns of drug use and addiction treatment.

    Science.gov (United States)

    Fikowski, Jill; Marchand, Kirsten; Palis, Heather; Oviedo-Joekes, Eugenia

    2014-01-01

    Uncovering patterns of drug use and treatment access is essential to improving treatment for opioid dependence. The life history calendar (LHC) could be a valuable instrument for capturing time-sensitive data on lifetime patterns of drug use and addiction treatment. This study describes the methodology applied when collecting data using the LHC in a sample of individuals with long-term opioid dependence and aims to identify specific factors that impact the feasibility of administering the LHC interview. In this study, the LHC allowed important events such as births, intimate relationships, housing, or incarcerations to become reference points for recalling details surrounding drug use and treatment access. The paper concludes that the administration of the LHC was a resource-intensive process and required special attention to interviewer training and experience with the study population. These factors should be considered and integrated into study plans by researchers using the LHC in addiction research.

  20. The Monoamine Brainstem Reticular Formation as a Paradigm for Re-Defining Various Phenotypes of Parkinson’s Disease Owing Genetic and Anatomical Specificity

    Science.gov (United States)

    Gambardella, Stefano; Ferese, Rosangela; Biagioni, Francesca; Busceti, Carla L.; Campopiano, Rosa; Griguoli, Anna M. P.; Limanaqi, Fiona; Novelli, Giuseppe; Storto, Marianna; Fornai, Francesco

    2017-01-01

    The functional anatomy of the reticular formation (RF) encompasses a constellation of brain regions which are reciprocally connected to sub-serve a variety of functions. Recent evidence indicates that neuronal degeneration within one of these regions spreads synaptically along brainstem circuitries. This is exemplified by the recruitment of various brainstem reticular nuclei in specific Parkinson’s disease (PD) phenotypes, and by retrospective analysis of lethargic post-encephalitic parkinsonism. In fact, the spreading to various monoamine reticular nuclei can be associated with occurrence of specific motor and non-motor symptoms (NMS). This led to re-consider PD as a brainstem monoamine disorder (BMD). This definition surpasses the anatomy of meso-striatal motor control to include a variety of non-motor domains. This concept clearly emerges from the quite specific clinical-anatomical correlation which can be drawn in specific paradigms of PD genotypes. Therefore, this review article focuses on the genetics and neuroanatomy of three PD genotypes/phenotypes which can be selected as prototype paradigms for a differential recruitment of the RF leading to differential occurrence of NMS: (i) Parkin-PD, where NMS are rarely reported; (ii) LRRK2-PD and slight SNC point mutations, where the prevalence of NMS resembles idiopathic PD; (iii) Severe SNCA point mutations and multiplications, where NMS are highly represented. PMID:28458632

  1. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice

    OpenAIRE

    Rakov, Helena; Engels, Kathrin; H?nes, Georg Sebastian; Strucksberg, Karl-Heinz; Moeller, Lars Christian; K?hrle, Josef; Zwanziger, Denise; F?hrer, Dagmar

    2016-01-01

    Background Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism. Methods Hypo- and hyperthyroidism were induced in 5-month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 ? or T4 i.p. treatment over 7?weeks, and control animals unde...

  2. Legislations combating counterfeit drugs in Hong Kong.

    Science.gov (United States)

    Lai, C W; Chan, W K

    2013-08-01

    To understand legislation combating counterfeit drugs in Hong Kong. This study consisted of two parts. In part I, counterfeit drugs–related ordinances and court cases were reviewed. In part II, indepth interviews of the stakeholders were described. Hong Kong. All Hong Kong ordinances were screened manually to identify those combating counterfeit drugs. Court cases were searched for each of the identified cases. Then, the relevant judgement justifications were analysed to identify sentencing issues. Indepth interviews with the stakeholders were conducted to understand their perceptions about such legislation. Trade Marks Ordinance, Patents Ordinance, Trade Descriptions Ordinance, and Pharmacy and Poisons Ordinance were current legislative items combating counterfeit drugs. Sentencing criteria depended on: intention to deceive, quantity of seized drugs, presence of expected therapeutic effect or toxic ingredients, previous criminal records, cooperativeness with Customs officers, honest confessions, pleas of guilty, types of drugs, and precautionary measures to prevent sale of counterfeit drugs. Stakeholders’ perceptions were explored with respect to legislation regarding the scale and significance of the counterfeit drug problem, penalties and deterrents, drug-specific legislation and authority, and inspections and enforcement. To plug the loopholes, a specific law with heavy penalties should be adopted. This could be supplemented by non-legal measures like education of judges, lawyers, and the public; publishing the names of offending pharmacies; and emphasising the role of pharmacists to the public.

  3. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2013-03-01

    Full Text Available Genome-wide association studies (GWAS have identified ~100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG, high-density lipoprotein cholesterol (HDL-C, and low-density lipoprotein cholesterol (LDL-C, respectively, in individuals of African American (n = 6,832, East Asian (n = 9,449, and European (n = 10,829 ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1 × 10(-4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies.

  4. Imaging biomarkers as surrogate endpoints for drug development

    International Nuclear Information System (INIS)

    Richter, Wolf S.

    2006-01-01

    The employment of biomarkers (including imaging biomarkers, especially PET) in drug development has gained increasing attention during recent years. This has been partly stimulated by the hope that the integration of biomarkers into drug development programmes may be a means to increase the efficiency and effectiveness of the drug development process by early identification of promising drug candidates - thereby counteracting the rising costs of drug development. More importantly, however, the interest in biomarkers for drug development is the logical consequence of recent advances in biosciences and medicine which are leading to target-specific treatments in the framework of ''personalised medicine''. A considerable proportion of target-specific drugs will show effects in subgroups of patients only. Biomarkers are a means to identify potential responders, or patient subgroups at risk for specific side-effects. Biomarkers are used in early drug development in the context of translational medicine to gain information about the drug's potential in different patient groups and disease states. The information obtained at this stage is mainly important for designing subsequent clinical trials and to identify promising drug candidates. Biomarkers in later phases of clinical development may - if properly validated - serve as surrogate endpoints for clinical outcomes. Regulatory agencies in the EU and the USA have facilitated the use of biomarkers early in the development process. The validation of biomarkers as surrogate endpoints is part of FDA's ''critical path initiative''. (orig.)

  5. Phenotype of CNTNAP1: a study of patients demonstrating a specific severe congenital hypomyelinating neuropathy with survival beyond infancy.

    Science.gov (United States)

    Low, K J; Stals, K; Caswell, R; Wakeling, M; Clayton-Smith, J; Donaldson, A; Foulds, N; Norman, A; Splitt, M; Urankar, K; Vijayakumar, K; Majumdar, A; Study, Ddd; Ellard, S; Smithson, S F

    2018-06-01

    CHN is genetically heterogeneous and its genetic basis is difficult to determine on features alone. CNTNAP1 encodes CASPR, integral in the paranodal junction high molecular mass complex. Nineteen individuals with biallelic variants have been described in association with severe congenital hypomyelinating neuropathy, respiratory compromise, profound intellectual disability and death within the first year. We report 7 additional patients ascertained through exome sequencing. We identified 9 novel CNTNAP1 variants in 6 families: three missense variants, four nonsense variants, one frameshift variant and one splice site variant. Significant polyhydramnios occurred in 6/7 pregnancies. Severe respiratory compromise was seen in 6/7 (tracheostomy in 5). A complex neurological phenotype was seen in all patients who had marked brain hypomyelination/demyelination and profound developmental delay. Additional neurological findings included cranial nerve compromise: orobulbar dysfunction in 5/7, facial nerve weakness in 4/7 and vocal cord paresis in 5/7. Dystonia occurred in 2/7 patients and limb contractures in 5/7. All had severe gastroesophageal reflux, and a gastrostomy was required in 5/7. In contrast to most previous reports, only one patient died in the first year of life. Protein modelling was performed for all detected CNTNAP1 variants. We propose a genotype-phenotype correlation, whereby hypomorphic missense variants partially ameliorate the phenotype, prolonging survival. This study suggests that biallelic variants in CNTNAP1 cause a distinct recognisable syndrome, which is not caused by other genes associated with CHN. Neonates presenting with this phenotype will benefit from early genetic definition to inform clinical management and enable essential genetic counselling for their families.

  6. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    Full Text Available Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ methodology, wherein the affected entity (E and how it is affected (Q are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM. These human annotations were loaded into our Ontology-Based Database (OBD along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify

  7. Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans

    Directory of Open Access Journals (Sweden)

    Assaf Gottlieb

    2017-11-01

    Full Text Available Abstract Background Genome-wide association studies are useful for discovering genotype–phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into “gene level” effects. Methods Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression—on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. Results We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Conclusions Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort

  8. E-pharmacovigilance: development and implementation of a computable knowledge base to identify adverse drug reactions.

    Science.gov (United States)

    Neubert, Antje; Dormann, Harald; Prokosch, Hans-Ulrich; Bürkle, Thomas; Rascher, Wolfgang; Sojer, Reinhold; Brune, Kay; Criegee-Rieck, Manfred

    2013-09-01

    Computer-assisted signal generation is an important issue for the prevention of adverse drug reactions (ADRs). However, due to poor standardization of patients' medical data and a lack of computable medical drug knowledge the specificity of computerized decision support systems for early ADR detection is too low and thus those systems are not yet implemented in daily clinical practice. We report on a method to formalize knowledge about ADRs based on the Summary of Product Characteristics (SmPCs) and linking them with structured patient data to generate safety signals automatically and with high sensitivity and specificity. A computable ADR knowledge base (ADR-KB) that inherently contains standardized concepts for ADRs (WHO-ART), drugs (ATC) and laboratory test results (LOINC) was built. The system was evaluated in study populations of paediatric and internal medicine inpatients. A total of 262 different ADR concepts related to laboratory findings were linked to 212 LOINC terms. The ADR knowledge base was retrospectively applied to a study population of 970 admissions (474 internal and 496 paediatric patients), who underwent intensive ADR surveillance. The specificity increased from 7% without ADR-KB up to 73% in internal patients and from 19.6% up to 91% in paediatric inpatients, respectively. This study shows that contextual linkage of patients' medication data with laboratory test results is a useful and reasonable instrument for computer-assisted ADR detection and a valuable step towards a systematic drug safety process. The system enables automated detection of ADRs during clinical practice with a quality close to intensive chart review. © 2013 The Authors. British Journal of Clinical Pharmacology © 2013 The British Pharmacological Society.

  9. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    Science.gov (United States)

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of

  10. Novel anti-Sialyl-Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity.

    Science.gov (United States)

    Prendergast, Jillian M; Galvao da Silva, Ana Paula; Eavarone, David A; Ghaderi, Darius; Zhang, Mai; Brady, Dane; Wicks, Joan; DeSander, Julie; Behrens, Jeff; Rueda, Bo R

    Targeted therapeutics that can differentiate between normal and malignant tumor cells represent the ideal standard for the development of a successful anti-cancer strategy. The Sialyl-Thomsen-nouveau antigen (STn or Sialyl-Tn, also known as CD175s) is rarely seen in normal adult tissues, but it is abundantly expressed in many types of human epithelial cancers. We have identified novel antibodies that specifically target with high affinity the STn glycan independent of its carrier protein, affording the potential to recognize a wider array of cancer-specific sialylated proteins. A panel of murine monoclonal anti-STn therapeutic antibodies were generated and their binding specificity and efficacy were characterized in vitro and in in vivo murine cancer models. A subset of these antibodies were conjugated to monomethyl auristatin E (MMAE) to generate antibody-drug conjugates (ADCs). These ADCs demonstrated in vitro efficacy in STn-expressing cell lines and significant tumor growth inhibition in STn-expressing tumor xenograft cancer models with no evidence of overt toxicity.

  11. Drug-Driven Phenotypic Convergence Supports Rational Treatment Strategies of Chronic Infections

    DEFF Research Database (Denmark)

    Imamovic, Lejla; Ellabaan, Mostafa Mostafa Hashim; Dantas Machado, Ana Manuel

    2018-01-01

    Chronic Pseudomonas aeruginosa infections evade antibiotic therapy and are associated with mortality in cystic fibrosis (CF) patients. We find that in vitro resistance evolution of P. aeruginosa toward clinically relevant antibiotics leads to phenotypic convergence toward distinct states. These s...

  12. Association of genetic and phenotypic variability with geography and climate in three southern California oaks.

    Science.gov (United States)

    Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L

    2016-01-01

    Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.

  13. Cycling Hypoxia Induces a Specific Amplified Inflammatory Phenotype in Endothelial Cells and Enhances Tumor-Promoting Inflammation In Vivo

    Directory of Open Access Journals (Sweden)

    Céline Tellier

    2015-01-01

    Full Text Available Abnormal architecture of the tumor blood network, as well as heterogeneous erythrocyte flow, leads to temporal fluctuations in tissue oxygen tension exposing tumor and stromal cells to cycling hypoxia. Inflammation is another feature of tumor microenvironment and is considered as a new enabling characteristic of tumor progression. As cycling hypoxia is known to participate in tumor aggressiveness, the purpose of this study was to evaluate its role in tumor-promoting inflammation. Firstly, we assessed the impact of cycling hypoxia in vitro on endothelial inflammatory response induced by tumor necrosis factor α. Results showed that endothelial cells exposed to cycling hypoxia displayed an amplified proinflammatory phenotype, characterized by an increased expression of inflammatory cytokines, namely, interleukin (IL-6 and IL-8; by an increased expression of adhesion molecules, in particular intercellular adhesion molecule–1 (ICAM-1; and consequently by an increase in THP-1 monocyte adhesion. This exacerbation of endothelial inflammatory phenotype occurs through nuclear factor–κB overactivation. Secondly, the role of cycling hypoxia was studied on overall tumor inflammation in vivo in tumor-bearing mice. Results showed that cycling hypoxia led to an enhanced inflammation in tumors as prostaglandin-endoperoxide synthase 2 (PTGS2, IL-6, CXCL1 (C-X-C motif ligand 1, and macrophage inflammatory protein 2 (murine IL-8 functional homologs mRNA expression was increased and as a higher leukocyte infiltration was evidenced. Furthermore, cycling hypoxia–specific inflammatory phenotype, characterized by a simultaneous (baculoviral inhibitor of apoptosis repeat-containing 5low/PTGS2high/ICAM-1high/IL-6high/IL-8high expression, is associated with a poor prognosis in human colon cancer. This new phenotype could thus be used in clinic to more precisely define prognosis for colon cancer patients. In conclusion, our findings evidenced for the first time the

  14. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system.

    Science.gov (United States)

    Hur, Matthew; Gistelinck, Charlotte A; Huber, Philippe; Lee, Jane; Thompson, Marjorie H; Monstad-Rios, Adrian T; Watson, Claire J; McMenamin, Sarah K; Willaert, Andy; Parichy, David M; Coucke, Paul; Kwon, Ronald Y

    2017-09-08

    Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.

  15. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype.

    Directory of Open Access Journals (Sweden)

    Gunnveig Grødeland

    Full Text Available Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA to different surface molecules on antigen presenting cells (APC. We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8(+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m delivery as compared to intradermal (i.d. vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.

  16. IN IDENTIFYING FAKE AND SUBSTANDARD DRUGS IN NIGERIA ...

    African Journals Online (AJOL)

    user

    2017-07-01

    Jul 1, 2017 ... The high prevalence of counterfeit medicines particularly anti-malaria ... ofMobile Authentication Service (MAS) put the power of fake drugs .... In Nigeria today, it is common knowledge that drugs are treated as general ...

  17. Drug delivery systems--2. Site-specific drug delivery utilizing monoclonal antibodies.

    Science.gov (United States)

    Ranade, V V

    1989-10-01

    for studies of chromosome structure and function, gene mapping, embryogenesis, characterization and biosynthesis of developmental and differentiation antigens. These antigens are those that are specific for various cell types and tissues, species specific antigen, antigens involved in chemotaxis, immunogenetics and clinical genetics including genetically inherited disorders, chromosome aberrations and transplantation antigens. Besides these monoclonal antibodies, their complexes have recently been investigated as exquisitely sensitive probes to be guided to target cells or organs. They have been used to deliver cytotoxic drugs to malignant cells or enzymes to specific cell types.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse.

    Science.gov (United States)

    Shipley, Adam T; Imeh-Nathaniel, Adebobola; Orfanakos, Vasiliki B; Wormack, Leah N; Huber, Robert; Nathaniel, Thomas I

    2017-01-01

    The idea that addiction occurs when the brain is not able to differentiate whether specific reward circuits were triggered by adaptive natural rewards or falsely activated by addictive drugs exist in several models of drug addiction. The suitability of crayfish ( Orconectes rusticus ) for drug addiction research arises from developmental variation of growth, life span, reproduction, behavior and some quantitative traits, especially among isogenic mates reared in the same environment. This broad spectrum of traits makes it easier to analyze the effect of mammalian drugs of abuse in shaping behavioral phenotype. Moreover, the broad behavioral repertoire allows the investigation of self-reinforcing circuitries involving appetitive and exploratory motor behavior, while the step-wise alteration of the phenotype by metamorphosis allows accurate longitudinal analysis of different behavioral states. This paper reviews a series of recent experimental findings that evidence the suitability of crayfish as an invertebrate model system for the study of drug addiction. Results from these studies reveal that unconditioned exposure to mammalian drugs of abuse produces a variety of stereotyped behaviors. Moreover, if presented in the context of novelty, drugs directly stimulate exploration and appetitive motor patterns along with molecular processes for drug conditioned reward. Findings from these studies indicate the existence of drug sensitive circuitry in crayfish that facilitates exploratory behavior and appetitive motor patterns via increased incentive salience of environmental stimuli or by increasing exploratory motor patterns. This work demonstrates the potential of crayfish as a model system for research into the neural mechanisms of addiction, by contributing an evolutionary, comparative context to our understanding of natural reward as an important life-sustaining process.

  19. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse

    Directory of Open Access Journals (Sweden)

    Adam T. Shipley

    2017-12-01

    Full Text Available The idea that addiction occurs when the brain is not able to differentiate whether specific reward circuits were triggered by adaptive natural rewards or falsely activated by addictive drugs exist in several models of drug addiction. The suitability of crayfish (Orconectes rusticus for drug addiction research arises from developmental variation of growth, life span, reproduction, behavior and some quantitative traits, especially among isogenic mates reared in the same environment. This broad spectrum of traits makes it easier to analyze the effect of mammalian drugs of abuse in shaping behavioral phenotype. Moreover, the broad behavioral repertoire allows the investigation of self-reinforcing circuitries involving appetitive and exploratory motor behavior, while the step-wise alteration of the phenotype by metamorphosis allows accurate longitudinal analysis of different behavioral states. This paper reviews a series of recent experimental findings that evidence the suitability of crayfish as an invertebrate model system for the study of drug addiction. Results from these studies reveal that unconditioned exposure to mammalian drugs of abuse produces a variety of stereotyped behaviors. Moreover, if presented in the context of novelty, drugs directly stimulate exploration and appetitive motor patterns along with molecular processes for drug conditioned reward. Findings from these studies indicate the existence of drug sensitive circuitry in crayfish that facilitates exploratory behavior and appetitive motor patterns via increased incentive salience of environmental stimuli or by increasing exploratory motor patterns. This work demonstrates the potential of crayfish as a model system for research into the neural mechanisms of addiction, by contributing an evolutionary, comparative context to our understanding of natural reward as an important life-sustaining process.

  20. Phenotype ontologies and cross-species analysis for translational research.

    Directory of Open Access Journals (Sweden)

    Peter N Robinson

    2014-04-01

    Full Text Available The use of model organisms as tools for the investigation of human genetic variation has significantly and rapidly advanced our understanding of the aetiologies underlying hereditary traits. However, while equivalences in the DNA sequence of two species may be readily inferred through evolutionary models, the identification of equivalence in the phenotypic consequences resulting from comparable genetic variation is far from straightforward, limiting the value of the modelling paradigm. In this review, we provide an overview of the emerging statistical and computational approaches to objectively identify phenotypic equivalence between human and model organisms with examples from the vertebrate models, mouse and zebrafish. Firstly, we discuss enrichment approaches, which deem the most frequent phenotype among the orthologues of a set of genes associated with a common human phenotype as the orthologous phenotype, or phenolog, in the model species. Secondly, we introduce and discuss computational reasoning approaches to identify phenotypic equivalences made possible through the development of intra- and interspecies ontologies. Finally, we consider the particular challenges involved in modelling neuropsychiatric disorders, which illustrate many of the remaining difficulties in developing comprehensive and unequivocal interspecies phenotype mappings.

  1. Gene duplication and divergence affecting drug content in Cannabis sativa.

    Science.gov (United States)

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Allele-specific gene expression in a wild nonhuman primate population

    Science.gov (United States)

    Tung, J.; Akinyi, M. Y.; Mutura, S.; Altmann, J.; Wray, G. A.; Alberts, S. C.

    2015-01-01

    Natural populations hold enormous potential for evolutionary genetic studies, especially when phenotypic, genetic and environmental data are all available on the same individuals. However, untangling the genotype-phenotype relationship in natural populations remains a major challenge. Here, we describe results of an investigation of one class of phenotype, allele-specific gene expression (ASGE), in the well-studied natural population of baboons of the Amboseli basin, Kenya. ASGE measurements identify cases in which one allele of a gene is overexpressed relative to the alternative allele of the same gene, within individuals, thus providing a control for background genetic and environmental effects. Here, we characterize the incidence of ASGE in the Amboseli baboon population, focusing on the genetic and environmental contributions to ASGE in a set of eleven genes involved in immunity and defence. Within this set, we identify evidence for common ASGE in four genes. We also present examples of two relationships between cis-regulatory genetic variants and the ASGE phenotype. Finally, we identify one case in which this relationship is influenced by a novel gene-environment interaction. Specifically, the dominance rank of an individual’s mother during its early life (an aspect of that individual’s social environment) influences the expression of the gene CCL5 via an interaction with cis-regulatory genetic variation. These results illustrate how environmental and ecological data can be integrated into evolutionary genetic studies of functional variation in natural populations. They also highlight the potential importance of early life environmental variation in shaping the genetic architecture of complex traits in wild mammals. PMID:21226779

  3. Genetic variants influencing phenotypic variance heterogeneity.

    Science.gov (United States)

    Ek, Weronica E; Rask-Andersen, Mathias; Karlsson, Torgny; Enroth, Stefan; Gyllensten, Ulf; Johansson, Åsa

    2018-03-01

    Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene × gene or gene × environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

  4. Combinatorial synthesis and screening of cancer cell-specific nanomedicines targeted via phage fusion proteins

    Directory of Open Access Journals (Sweden)

    James W. Gillespie

    2015-06-01

    Full Text Available Active tumor targeting of nanomedicines has recently shown significant improvements in the therapeutic activity of currently existing drug delivery systems, such as liposomal doxorubicin (Doxil/Caelyx/Lipodox. Previously, we have shown that isolated pVIII major coat proteins of the fd tet filamentous phage vector, containing cancer cell-specific peptide fusions at their N terminus, can be used as active targeting ligands in a liposomal doxorubicin delivery system in vitro and in vivo. Here, we show a novel major coat protein isolation procedure in 2-propanol that allows spontaneous incorporation of the hydrophobic protein core into preformed liposomal doxorubicin with minimal damage or drug loss while still retaining the targeting ligand exposed for cell-specific targeting. Using a panel of 12 structurally unique ligands with specificity towards breast, lung, and/or pancreatic cancer, we showed the feasibility of pVIII major coat proteins to significantly increase the throughput of targeting ligand screening in a common nanomedicine core. Phage protein-modified Lipodox samples showed an average doxorubicin recovery of 82.8% across all samples with 100% of protein incorporation in the correct orientation (N-terminus exposed. Following cytotoxicity screening in a doxorubicin-sensitive breast cancer line (MCF-7, three major groups of ligands were identified. Ligands showing the most improved cytotoxicity included: DMPGTVLP, ANGRPSMT, VNGRAEAP, and ANDVYLD showing a 25-fold improvement (p < 0.05 in toxicity. Similarly DGQYLGSQ, ETYNQPYL, and GSSEQLYL ligands with specificity towards a doxorubicin-insensitive pancreatic cancer line (PANC-1 showed significant increases in toxicity (2-fold; p < 0.05. Thus, we demonstrated proof-of-concept that pVIII major coat proteins can be screened in significantly higher throughput to identify novel ligands displaying improved therapeutic activity in a desired cancer phenotype.

  5. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.

    Science.gov (United States)

    Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E

    2017-02-14

    Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Comparison of duplex PCR and phenotypic analysis in differentiating Candida dubliniensis from Candida albicans from oral samples.

    Science.gov (United States)

    Sampath, Asanga; Weerasekera, Manjula; Dilhari, Ayomi; Gunasekara, Chinthika; Bulugahapitiya, Uditha; Fernando, Neluka; Samaranayake, Lakshman

    2017-12-01

    Candida dubliniensis shares a wide range of phenotypic characteristics with Candida albicans including a common trait called germ tube positivity. Hence, laboratory differentiation of these two species is cumbersome. Duplex PCR analyses for C. albicans and C. dubliniensis was performed directly on DNA extracted from a total of 122 germ tube positive isolates derived from 100 concentrated oral rinse samples from a random cohort of diabetics attending a clinic in Sri Lanka. These results were confirmed by DNA sequencing of internal transcribed spacer (ITS) region of rDNA of the yeasts. Performance efficacy of duplex PCR was then compared with phenotypic identification using a standard battery of phenotypic tests. Of the 122 germ tube positive isolates three were identified by duplex PCR as C. dubliniensis and the remainder as C. albicans. On the contrary, when the standard phenotypic tests, sugar assimilation and chlamydospore formation, were used to differentiate the two species 13 germ tube positive isolates were erroneously identified as C. dubliniensis. Duplex PCR was found to be rapid, sensitive and more specific than phenotypic identification methods in discriminating C. dubliniensis from C. albicans. This is also the first report on the oral carriage of C. dubliniensis in a Sri Lankan population.

  7. Phenex: ontological annotation of phenotypic diversity.

    Directory of Open Access Journals (Sweden)

    James P Balhoff

    2010-05-01

    Full Text Available Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge.Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices.Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

  8. Phenex: ontological annotation of phenotypic diversity.

    Science.gov (United States)

    Balhoff, James P; Dahdul, Wasila M; Kothari, Cartik R; Lapp, Hilmar; Lundberg, John G; Mabee, Paula; Midford, Peter E; Westerfield, Monte; Vision, Todd J

    2010-05-05

    Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

  9. Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype.

    Directory of Open Access Journals (Sweden)

    Saumya Gupta

    2015-06-01

    Full Text Available Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants' effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage

  10. Association Study of Three Gene Polymorphisms Recently Identified by a Genome-Wide Association Study with Obesity-Related Phenotypes in Chinese Children.

    Science.gov (United States)

    Song, Qi-Ying; Song, Jie-Yun; Wang, Yang; Wang, Shuo; Yang, Yi-De; Meng, Xiang-Rui; Ma, Jun; Wang, Hai-Jun; Wang, Yan

    2017-01-01

    This study aimed to examine associations of three single-nucleotide polymorphisms (SNPs) with obesity-related phenotypes in Chinese children. These SNPs were identified by a recent genome-wide association (GWA) study among European children. Given that varied genetic backgrounds across different ethnicity may result in different association, it is necessary to study these associations in a different ethnic population. A total of 3,922 children, including 2,191 normal-weight, 873 overweight and 858 obese children, from three independent studies were included in the study. Logistic and linear regressions were performed, and meta-analyses were conducted to assess the associations between the SNPs and obesity-related phenotypes. The pooled odds ratios of the A-allele of rs564343 in PACS1 for obesity and severe obesity were 1.180 (p = 0.03) and 1.312 (p = 0.004), respectively. We also found that rs564343 was nominally associated with BMI, BMI standard deviation score (BMI-SDS), waist circumference, and waist-to-height ratio (p obesity in a non-European population. This SNP was also found to be associated with common obesity and various obesity-related phenotypes in Chinese children, which had not been reported in the original study. The results demonstrated the value of conducting genetic researches in populations with different ethnicity. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  11. Identifying prognostic features by bottom-up approach and correlating to drug repositioning.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Traditionally top-down method was used to identify prognostic features in cancer research. That is to say, differentially expressed genes usually in cancer versus normal were identified to see if they possess survival prediction power. The problem is that prognostic features identified from one set of patient samples can rarely be transferred to other datasets. We apply bottom-up approach in this study: survival correlated or clinical stage correlated genes were selected first and prioritized by their network topology additionally, then a small set of features can be used as a prognostic signature.Gene expression profiles of a cohort of 221 hepatocellular carcinoma (HCC patients were used as a training set, 'bottom-up' approach was applied to discover gene-expression signatures associated with survival in both tumor and adjacent non-tumor tissues, and compared with 'top-down' approach. The results were validated in a second cohort of 82 patients which was used as a testing set.Two sets of gene signatures separately identified in tumor and adjacent non-tumor tissues by bottom-up approach were developed in the training cohort. These two signatures were associated with overall survival times of HCC patients and the robustness of each was validated in the testing set, and each predictive performance was better than gene expression signatures reported previously. Moreover, genes in these two prognosis signature gave some indications for drug-repositioning on HCC. Some approved drugs targeting these markers have the alternative indications on hepatocellular carcinoma.Using the bottom-up approach, we have developed two prognostic gene signatures with a limited number of genes that associated with overall survival times of patients with HCC. Furthermore, prognostic markers in these two signatures have the potential to be therapeutic targets.

  12. Cancer Chemotherapy Specific to Acidic Nests.

    Science.gov (United States)

    Kobayashi, Hiroshi

    2017-04-20

    The realization of cancer therapeutics specific to cancer cells with less of an effect on normal tissues is our goal. Many trials have been carried out for this purpose, but this goal is still far from being realized. It was found more than 80 years ago that solid cancer nests are acidified, but in vitro studies under acidic conditions have not been extensively studied. Recently, in vitro experiments under acidic conditions were started and anti-cancer drugs specific to acidic areas have been identified. Many genes have been reported to be expressed at a high level under acidic conditions, and such genes may be potent targets for anti-cancer drugs specific to acidic nests. In this review article, recent in vitro, in vivo, and clinical achievements in anti-cancer drugs with marked efficacy under acidic conditions are summarized, and the clinical use of anti-cancer drugs specific to acidic nests is discussed.

  13. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific

  14. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  15. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells.

    Science.gov (United States)

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-08-18

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.

  16. Functional Characterization and Drug Response of Freshly Established Patient-Derived Tumor Models with CpG Island Methylator Phenotype.

    Directory of Open Access Journals (Sweden)

    Claudia Maletzki

    Full Text Available Patient-individual tumor models constitute a powerful platform for basic and translational analyses both in vitro and in vivo. However, due to the labor-intensive and highly time-consuming process, only few well-characterized patient-derived cell lines and/or corresponding xenografts exist. In this study, we describe successful generation and functional analysis of novel tumor models from patients with sporadic primary colorectal carcinomas (CRC showing CpG island methylator phenotype (CIMP. Initial DNA fingerprint analysis confirmed identity with the patient in all four cases. These freshly established cells showed characteristic features associated with the CIMP-phenotype (HROC40: APCwt, TP53 mut, KRAS mut; 3/8 marker methylated; HROC43: APC mut, TP53 mut, KRAS mut; 4/8 marker methylated; HROC60: APCwt, TP53 mut, KRASwt; 4/8 marker methylated; HROC183: APC mut, TP53 mut, KRAS mut; 6/8 marker methylated. Cell lines were of epithelial origin (EpCAM+ with distinct morphology and growth kinetics. Response to chemotherapeutics was quite individual between cells, with stage I-derived cell line HROC60 being most susceptible towards standard clinically approved chemotherapeutics (e.g. 5-FU, Irinotecan. Of note, most cell lines were sensitive towards "non-classical" CRC standard drugs (sensitivity: Gemcitabin > Rapamycin > Nilotinib. This comprehensive analysis of tumor biology, genetic alterations and assessment of chemosensitivity towards a broad range of (chemo- therapeutics helps bringing forward the concept of personalized tumor therapy.

  17. COPD: Definition and Phenotypes

    DEFF Research Database (Denmark)

    Vestbo, J.

    2014-01-01

    particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients. The evolution of this definition and the diagnostic criteria currently in use are discussed. COPD is increasingly divided in subgroups or phenotypes based on specific features and association...

  18. Drug and Alcohol Exposed Children: Implications for Special Education for Students Identified as Behaviorally Disordered.

    Science.gov (United States)

    Bauer, Anne M.

    1991-01-01

    This article reviews the literature on children prenatally exposed to drugs and alcohol, the potential impact on the educational and social services systems, and implications for programing for children identified as behaviorally disordered. (Author/JDD)

  19. Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for chagas' disease treatment.

    Science.gov (United States)

    Capriles, Priscila V S Z; Guimarães, Ana C R; Otto, Thomas D; Miranda, Antonio B; Dardenne, Laurent E; Degrave, Wim M

    2010-10-29

    Trypanosoma cruzi is the etiological agent of Chagas' disease, an endemic infection that causes thousands of deaths every year in Latin America. Therapeutic options remain inefficient, demanding the search for new drugs and/or new molecular targets. Such efforts can focus on proteins that are specific to the parasite, but analogous enzymes and enzymes with a three-dimensional (3D) structure sufficiently different from the corresponding host proteins may represent equally interesting targets. In order to find these targets we used the workflows MHOLline and AnEnΠ obtaining 3D models from homologous, analogous and specific proteins of Trypanosoma cruzi versus Homo sapiens. We applied genome wide comparative modelling techniques to obtain 3D models for 3,286 predicted proteins of T. cruzi. In combination with comparative genome analysis to Homo sapiens, we were able to identify a subset of 397 enzyme sequences, of which 356 are homologous, 3 analogous and 38 specific to the parasite. In this work, we present a set of 397 enzyme models of T. cruzi that can constitute potential structure-based drug targets to be investigated for the development of new strategies to fight Chagas' disease. The strategies presented here support the concept of structural analysis in conjunction with protein functional analysis as an interesting computational methodology to detect potential targets for structure-based rational drug design. For example, 2,4-dienoyl-CoA reductase (EC 1.3.1.34) and triacylglycerol lipase (EC 3.1.1.3), classified as analogous proteins in relation to H. sapiens enzymes, were identified as new potential molecular targets.

  20. Newly identified CHO ERCC3/XPB mutations and phenotype characterization

    Science.gov (United States)

    Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav

    2010-01-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  1. Grass-specific CD4+ T-cells exhibit varying degrees of cross-reactivity, implications for allergen-specific immunotherapy

    Science.gov (United States)

    Archila, LD; DeLong, JH; Wambre, E; James, EA; Robinson, DM; Kwok, WW

    2014-01-01

    Background Conceptually, allergic responses may involve cross-reactivity by antibodies or T-cells. While IgE cross-reactivity amongst grass pollen allergens has been observed, cross-reactivity at the allergen-specific T-cell level has been less documented. Identification of the patterns of cross-reactivity may improve our understanding, allowing optimization of better immunotherapy strategies. Objectives We use Phleum pratense as model for the studying of cross-reactivity at the allergen-specific CD4+ T cell level amongst DR04:01 restricted Pooideae grass pollen T-cell epitopes. Methods After In vitro culture of blood mononucleated cells from Grass-pollen allergic subjects with specific Pooideae antigenic epitopes, dual tetramer staining with APC-labeled DR04:01/Phleum pratense tetramers and PE-labeled DR04:01/Pooideae grass homolog tetramers was assessed to identify cross-reactivity amongst allergen-specific DR04:01-restricted T-cells in 6 subjects. Direct ex vivo staining enabled the comparison of frequency and phenotype of different Pooideae grass pollen reactive T-cells. Intracellular cytokine staining (ICS) assays were also used to examine phenotypes of these T-cells. Results T-cells with various degree of cross reactive profiles could be detected. Poa p 1 97-116, Lol p 1 221-240, Lol p 5a 199-218, and Poa p 5a 199-218 were identified as minimally-cross-reactive T-cell epitopes that do not show cross reactivity to Phl p 1 and Phl p 5a epitopes. Ex vivo tetramer staining assays demonstrated T-cells that recognized these minimally-cross reactive T-cell epitopes are present in Grass-pollen allergic subjects. Conclusions Our results suggest that not all Pooideae grass epitopes with sequence homology are cross-reactive. Non-cross reactive T-cells with comparable frequency, phenotype and functionality to Phl p-specific T-cells, suggest that a multiple allergen system should be considered for immunotherapy instead of a mono allergen system. PMID:24708411

  2. Grass-specific CD4(+) T-cells exhibit varying degrees of cross-reactivity, implications for allergen-specific immunotherapy.

    Science.gov (United States)

    Archila, L D; DeLong, J H; Wambre, E; James, E A; Robinson, D M; Kwok, W W

    2014-07-01

    Conceptually, allergic responses may involve cross-reactivity by antibodies or T-cells. While IgE cross-reactivity among grass-pollen allergens has been observed, cross-reactivity at the allergen-specific T-cell level has been less documented. Identification of the patterns of cross-reactivity may improve our understanding, allowing optimization of better immunotherapy strategies. We use Phleum pratense as model for the studying of cross-reactivity at the allergen-specific CD4(+) T cell level among DR04:01 restricted Pooideae grass-pollen T-cell epitopes. After in vitro culture of blood mono-nucleated cells from grass-pollen-allergic subjects with specific Pooideae antigenic epitopes, dual tetramer staining with APC-labelled DR04:01/Phleum pratense tetramers and PE-labelled DR04:01/Pooideae grass homolog tetramers was assessed to identify cross-reactivity among allergen-specific DR04:01-restricted T-cells in six subjects. Direct ex vivo staining enabled the comparison of frequency and phenotype of different Pooideae grass-pollen reactive T-cells. Intracellular cytokine staining (ICS) assays were also used to examine phenotypes of these T-cells. T-cells with various degrees of cross-reactive profiles could be detected. Poa p 1 97-116 , Lol p 1 221-240 , Lol p 5a 199-218 , and Poa p 5a 199-218 were identified as minimally cross-reactive T-cell epitopes that do not show cross-reactivity to Phl p 1 and Phl p 5a epitopes. Ex vivo tetramer staining assays demonstrated T-cells that recognized these minimally cross-reactive T-cell epitopes are present in Grass-pollen-allergic subjects. Our results suggest that not all Pooideae grass epitopes with sequence homology are cross-reactive. Non-cross-reactive T-cells with comparable frequency, phenotype and functionality to Phl p-specific T-cells suggest that a multiple allergen system should be considered for immunotherapy instead of a mono-allergen system. © 2014 John Wiley & Sons Ltd.

  3. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  4. MECP2 variation in Rett syndrome-An overview of current coverage of genetic and phenotype data within existing databases.

    Science.gov (United States)

    Townend, Gillian S; Ehrhart, Friederike; van Kranen, Henk J; Wilkinson, Mark; Jacobsen, Annika; Roos, Marco; Willighagen, Egon L; van Enckevort, David; Evelo, Chris T; Curfs, Leopold M G

    2018-04-27

    Rett syndrome (RTT) is a monogenic rare disorder that causes severe neurological problems. In most cases, it results from a loss-of-function mutation in the gene encoding methyl-CPG-binding protein 2 (MECP2). Currently, about 900 unique MECP2 variations (benign and pathogenic) have been identified and it is suspected that the different mutations contribute to different levels of disease severity. For researchers and clinicians, it is important that genotype-phenotype information is available to identify disease-causing mutations for diagnosis, to aid in clinical management of the disorder, and to provide counseling for parents. In this study, 13 genotype-phenotype databases were surveyed for their general functionality and availability of RTT-specific MECP2 variation data. For each database, we investigated findability and interoperability alongside practical user functionality, and type and amount of genetic and phenotype data. The main conclusions are that, as well as being challenging to find these databases and specific MECP2 variants held within, interoperability is as yet poorly developed and requires effort to search across databases. Nevertheless, we found several thousand online database entries for MECP2 variations and their associated phenotypes, diagnosis, or predicted variant effects, which is a good starting point for researchers and clinicians who want to provide, annotate, and use the data. © 2018 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  5. Association of various blood pressure variables and vascular phenotypes with coronary, stroke and renal deaths: Potential implications for prevention.

    Science.gov (United States)

    Harbaoui, Brahim; Courand, Pierre-Yves; Milon, Hughes; Fauvel, Jean-Pierre; Khettab, Fouad; Mechtouff, Laura; Cassar, Emmanuel; Girerd, Nicolas; Lantelme, Pierre

    2015-11-01

    The relationship between blood pressure (BP) and cardiovascular diseases has been extensively documented. However, the benefit of anti-hypertensive drugs differs according to the type of cardiovascular event. Aortic stiffness is tightly intertwined with BP and aorta cross-talk with small arteries. We endeavored to elucidate which BP component and type of vessel remodeling was predictive of the following outcomes: fatal myocardial infarction (MI), fatal stroke, renal -, coronary- or cerebrovascular-related deaths. Large vessel remodeling was estimated by an aortography-based aortic atherosclerosis score (ATS) while small vessel disease was documented by the presence of a hypertensive retinopathy. We included 1031 subjects referred for hypertension workup and assessed outcomes 30 years later. After adjustment for major risk factors, ATS and pulse pressure (PP) were predictive of coronary events while mean BP (MBP) and retinopathy were not. On the contrary, MBP was predictive of cerebrovascular and renal related deaths while ATS and PP were not. Retinopathy was only predictive of cerebrovascular related deaths. Lastly, the aortic atherosclerosis phenotype and increased PP identified patients prone to develop fatal MI whereas the retinopathy phenotype and increased MBP identified patients at higher risk of fatal stroke. These results illustrate the particular feature of the resistive coronary circulation comparatively to the brain and kidneys' low-resistance circulation. Our results advocate for a rational preventive strategy based on the identification of distinct clinical phenotypes. Accordingly, decreasing MBP levels could help preventing stroke in retinopathy phenotypes whereas targeting PP is possibly more efficient in preventing MI in atherosclerotic phenotypes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity.

    Science.gov (United States)

    Tordjman, S; Cohen, D; Coulon, N; Anderson, G M; Botbol, M; Canitano, R; Roubertoux, P L

    2017-01-30

    Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism. Copyright © 2017. Published by Elsevier Ltd.

  7. MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity

    International Nuclear Information System (INIS)

    Samaraweera, Leleesha; Grandinetti, Kathryn B; Huang, Ruojun; Spengler, Barbara A; Ross, Robert A

    2014-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. NB tumors and derived cell lines are phenotypically heterogeneous. Cell lines are classified by phenotype, each having distinct differentiation and tumorigenic properties. The neuroblastic phenotype is tumorigenic, has neuronal features and includes stem cells (I-cells) and neuronal cells (N-cells). The non-neuronal phenotype (S-cell) comprises cells that are non-tumorigenic with features of glial/smooth muscle precursor cells. This study identified miRNAs associated with each distinct cell phenotypes and investigated their role in regulating associated differentiation and tumorigenic properties. A miRNA microarray was performed on the three cell phenotypes and expression verified by qRT-PCR. miRNAs specific for certain cell phenotypes were modulated using miRNA inhibitors or stable transfection. Neuronal differentiation was induced by RA; non-neuronal differentiation by BrdU. Changes in tumorigenicity were assayed by soft agar colony forming ability. N-myc binding to miR-375 promoter was assayed by chromatin-immunoprecipitation. Unsupervised hierarchical clustering of miRNA microarray data segregated neuroblastic and non-neuronal cell lines and showed that specific miRNAs define each phenotype. qRT-PCR validation confirmed that increased levels of miR-21, miR-221 and miR-335 are associated with the non-neuronal phenotype, whereas increased levels of miR-124 and miR-375 are exclusive to neuroblastic cells. Downregulation of miR-335 in non-neuronal cells modulates expression levels of HAND1 and JAG1, known modulators of neuronal differentiation. Overexpression of miR-124 in stem cells induces terminal neuronal differentiation with reduced malignancy. Expression of miR-375 is exclusive for N-myc-expressing neuroblastic cells and is regulated by N-myc. Moreover, miR-375 downregulates expression of the neuronal-specific RNA binding protein HuD. Thus, miRNAs define distinct NB cell phenotypes

  8. Is there any relationship between haptoglobin phenotypes and ...

    African Journals Online (AJOL)

    This study was conducted to examine the possible association between Haptoglobin (Hp) phenotypes and diabetes retinopathy in some Ghanaians to determine whether a specific Hp phenotype predisposes diabetics to retinopathy. A total of 110 diabetics were enrolled into the study. Blood samples were taken from each ...

  9. Region-specific role for Pten in maintenance of epithelial phenotype and integrity

    Science.gov (United States)

    Flodby, Per; Sunohara, Mitsuhiro; Castillo, Dan R.; McConnell, Alicia M.; Krishnaveni, Manda S.; Banfalvi, Agnes; Li, Min; Stripp, Barry; Zhou, Beiyun; Crandall, Edward D.; Minoo, Parviz

    2017-01-01

    Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and β-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific. PMID:27864284

  10. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    Science.gov (United States)

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.

    Science.gov (United States)

    Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S

    2014-07-21

    Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for

  12. Modelling the pathogenesis of Myotonic Dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Spitalieri, Paola; Talarico, Rosa V; Caioli, Silvia; Murdocca, Michela; Serafino, Annalucia; Girasole, Marco; Dinarelli, Simone; Longo, Giovanni; Pucci, Sabina; Botta, Annalisa; Novelli, Giuseppe; Zona, Cristina; Mango, Ruggiero; Sangiuolo, Federica

    2018-03-15

    Myotonic Dystrophy type 1 (DM1) is a multisystemic disease, autosomal dominant, caused by a CTG repeat expansion in DMPK gene. We assessed the appropriateness of patient-specific induced pluripotent stem cell-derived cardiomyocytes (CMs) as a model to recapitulate some aspects of the pathogenetic mechanism involving cardiac manifestations in DM1 patients. Once obtained in vitro, CMs have been characterized for their morphology and their functionality. CMs DM1 show intranuclear foci and transcript markers abnormally spliced respect to WT ones, as well as several irregularities in nuclear morphology, probably caused by an unbalanced lamin A/C ratio. Electrophysiological characterization evidences an abnormal profile only in CMs DM1 such that the administration of antiarrythmic drugs to these cells highlights even more the functional defect linked to the disease. Finally, Atomic Force Measurements reveal differences in the biomechanical behaviour of CMs DM1, in terms of frequencies and synchronicity of the beats. Altogether the complex phenotype described in this work, strongly reproduces some aspects of the human DM1 cardiac phenotype. Therefore, the present study provides an in vitro model suggesting novel insights into the mechanisms leading to the development of arrhythmogenesis and dilatative cardiomyopathy to consider when approaching to DM1 patients, especially for the risk assessment of sudden cardiac death (SCD). These data could be also useful in identifying novel biomarkers effective in clinical settings and patient-tailored therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Functional characterizations of venom phenotypes in the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for expression-driven divergence in toxic activities among populations

    Science.gov (United States)

    Margres, Mark J.; Walls, Robert; Suntravat, Montamas; Lucena, Sara; Sánchez, Elda E.; Rokyta, Darin R.

    2016-01-01

    Phenotypes frequently vary across and within species. The connection between specific phenotypic effects and function, however, is less understood despite being essential to our understanding of the adaptive process. Snake venoms are ideal for identifying functionally important phenotypic variation because venom variation is common, and venoms can be functionally characterized through simple assays and toxicity measurements. Previous work with the eastern diamondback rattlesnake (Crotalus adamanteus) used multivariate statistical approaches to identify six unique venom phenotypes. We functionally characterized hemolytic, gelatinase, fibrinogenolytic, and coagulant activity for all six phenotypes, as well as one additional venom, to determine if the statistically significant differences in toxin expression levels previously documented corresponded to differences in venom activity. In general, statistical differences in toxin expression predicted the identified functional differences, or lack thereof, in toxic activity, demonstrating that the statistical approach used to characterize C. adamanteus venoms was a fair representation of biologically meaningful differences. Minor differences in activity not accounted for by the statistical model may be the result of amino-acid differences and/or post-translational modifications, but overall we were able to link variation in protein expression levels to variation in function as predicted by multivariate statistical approaches. PMID:27179420

  14. Common and specific liability to addiction: approaches to association studies of opioid addiction.

    Science.gov (United States)

    Nielsen, David A; Kreek, Mary Jeanne

    2012-06-01

    Opioid addiction, whether to opiates such as heroin and morphine, and/or to non-medical use of opioids, is a major problem worldwide. Although drug-induced and environmental factors are essential for the liability to develop opioid addiction, the genetic background of an individual is now known also to play a substantial role. The overall goal of this article is to address the common and specific liabilities to addiction in the context of approaches to studies of one addiction, opioid addiction. Literature on identifying genetic variants that may play a role in the development of opioid addiction was reviewed. A substantial number of genetic variants have been reported to be associated with opioid addiction. No single variant has been found in any of the reported GWAS studies with a substantial effect size on the liability to develop heroin addiction. It appears that there is a complex interaction of a large number of variants, some rare, some common, which interact with the environment and in response to specific drugs of abuse to increase the liability of developing opioid addiction. In spite of the inherent difficulties in obtaining large well-phenotyped cohorts for genetic studies, new findings have been reported that are being used to develop testable hypotheses into the biological basis of opioid addiction. Copyright © 2012. Published by Elsevier Ireland Ltd.

  15. Recombinant yeast screen for new inhibitors of human acetyl-CoA carboxylase 2 identifies potential drugs to treat obesity

    Science.gov (United States)

    Marjanovic, Jasmina; Chalupska, Dominika; Patenode, Caroline; Coster, Adam; Arnold, Evan; Ye, Alice; Anesi, George; Lu, Ying; Okun, Ilya; Tkachenko, Sergey; Haselkorn, Robert; Gornicki, Piotr

    2010-01-01

    Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism with multiple isozymes often expressed in different eukaryotic cellular compartments. ACC-made malonyl-CoA serves as a precursor for fatty acids; it also regulates fatty acid oxidation and feeding behavior in animals. ACC provides an important target for new drugs to treat human diseases. We have developed an inexpensive nonradioactive high-throughput screening system to identify new ACC inhibitors. The screen uses yeast gene-replacement strains depending for growth on cloned human ACC1 and ACC2. In “proof of concept” experiments, growth of such strains was inhibited by compounds known to target human ACCs. The screen is sensitive and robust. Medium-size chemical libraries yielded new specific inhibitors of human ACC2. The target of the best of these inhibitors was confirmed with in vitro enzymatic assays. This compound is a new drug chemotype inhibiting human ACC2 with 2.8 μM IC50 and having no effect on human ACC1 at 100 μM. PMID:20439761

  16. Proof of region-specific multipotent progenitors in human breast epithelia

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J; Villadsen, René; Morsing, Mikkel

    2017-01-01

    in luminal progenitors to interrogate the differentiation repertoire of candidate stem cells in TDLUs. We show that stem-like activity in serial passage culture and in vivo breast morphogenesis relies on the preservation of a myoepithelial phenotype. By enrichment for region-specific progenitors, we identify...

  17. New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

    Science.gov (United States)

    Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael

    2017-01-03

    Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.

  18. A probabilistic model to predict clinical phenotypic traits from genome sequencing.

    Science.gov (United States)

    Chen, Yun-Ching; Douville, Christopher; Wang, Cheng; Niknafs, Noushin; Yeo, Grace; Beleva-Guthrie, Violeta; Carter, Hannah; Stenson, Peter D; Cooper, David N; Li, Biao; Mooney, Sean; Karchin, Rachel

    2014-09-01

    Genetic screening is becoming possible on an unprecedented scale. However, its utility remains controversial. Although most variant genotypes cannot be easily interpreted, many individuals nevertheless attempt to interpret their genetic information. Initiatives such as the Personal Genome Project (PGP) and Illumina's Understand Your Genome are sequencing thousands of adults, collecting phenotypic information and developing computational pipelines to identify the most important variant genotypes harbored by each individual. These pipelines consider database and allele frequency annotations and bioinformatics classifications. We propose that the next step will be to integrate these different sources of information to estimate the probability that a given individual has specific phenotypes of clinical interest. To this end, we have designed a Bayesian probabilistic model to predict the probability of dichotomous phenotypes. When applied to a cohort from PGP, predictions of Gilbert syndrome, Graves' disease, non-Hodgkin lymphoma, and various blood groups were accurate, as individuals manifesting the phenotype in question exhibited the highest, or among the highest, predicted probabilities. Thirty-eight PGP phenotypes (26%) were predicted with area-under-the-ROC curve (AUC)>0.7, and 23 (15.8%) of these were statistically significant, based on permutation tests. Moreover, in a Critical Assessment of Genome Interpretation (CAGI) blinded prediction experiment, the models were used to match 77 PGP genomes to phenotypic profiles, generating the most accurate prediction of 16 submissions, according to an independent assessor. Although the models are currently insufficiently accurate for diagnostic utility, we expect their performance to improve with growth of publicly available genomics data and model refinement by domain experts.

  19. Phenotypic and genotypic profiling of antimicrobial resistance in enteric Escherichia coli communities isolated from finisher pigs in Australia.

    Science.gov (United States)

    Smith, M G; Jordan, D; Gibson, J S; Cobbold, R N; Chapman, T A; Abraham, S; Trott, D J

    2016-10-01

    To assess herd-to-herd variation in antimicrobial resistance phenotypes and associated antimicrobial resistance genes (ARGs) in faecal commensal Escherichia coli communities isolated from Australian slaughter-age pigs. Hydrophobic grid-membrane filtration (HGMF) was used to screen populations of E. coli isolated from faecal samples obtained from pigs prior to or at slaughter. Multiplex PCRs were applied to the pooled DNA extracted from the samples to identify specific ARGs. Pooled faecal samples from 30 finishers, from 72 different Australian pig farms, produced 5003 isolates for screening. HGMF techniques and image analysis were used to confirm E. coli resistance phenotypes to four antimicrobial agents (ampicillin, gentamicin, florfenicol and ceftiofur) using selective agars. Multiplex PCRs were performed on DNA from pooled samples for 35 ARGs associated with seven chemical classes. The prevalence of E. coli isolates showing no resistance to any of the drugs was 50.2% (95% confidence interval (CI) 41.8-58.6%). Ceftiofur resistance was very low (1.8%; CI 0.8-3.9%) and no ARGs associated with 3rd-generation cephalosporin resistance were detected. By contrast, ampicillin (29.4%, CI 22.8-37.0%), florfenicol (24.3%, CI 17.8-32.3%) and gentamicin (CI 17.5%, 10.7-27.2%) resistance prevalence varied greatly between farms and associated ARGs were common. The most common combined resistance phenotype was ampicillin-florfenicol. The use of registered antimicrobials in Australian pigs leads to the enteric commensal populations acquiring associated ARGs. However, despite a high intensity of sampling, ARGs imparting resistance to the critically important 3rd-generation cephalosporins were not detected. © 2016 Australian Veterinary Association.

  20. Ceramic/polymer nanocomposites with tunable drug delivery capability at specific disease sites.

    Science.gov (United States)

    Liu, Huinan; Webster, Thomas J

    2010-06-01

    Pharmaceutical agents are often used to stimulate new bone formation for the treatment of bone injuries or diseases (such as osteoporosis). However, there are several problems associated with current orthopedic drug delivery methods. First, conventional systemic administration of pharmaceutical agents may not effectively reach targeted sites and, thus, they can cause nonspecific bone formation in areas not affected by injury or disease. Second, even if intentionally delivered or implanted locally to the damaged bone tissue, these agents tend to rapidly diffuse into adjacent tissues due to weak physical bonding to their drug carriers, which limits their potential to promote prolonged bone formation in targeted areas of bone disease. Therefore, in this study, biodegradable ceramic/polymer nanocomposites were explored as novel drug carriers for orthopedic applications to prolong local drug release and, thus, improve drug effectiveness at bone disease sites. Specifically, a bone morphogenetic protein (BMP-7) derived peptide (DIF-7c) was used as a model drug in this study and was first loaded onto nanocrystalline hydroxyapatite (nano-HA) by either covalent chemical attachment or physical adsorption. These drug-carrying nano-HA particles were then dispersed into a degradable polymer (poly-lactide-co-glycolide or PLGA) matrix to create an implantable system capable of long-term drug release. The aminophase silane covalent chemical immobilization process was utilized in this study. These nanocomposite-based drug delivery systems were then characterized for drug loading efficiency and in vitro drug release. Results demonstrated that DIF-7c was successfully immobilized onto nano-HA placed in PLGA. Moreover, a greater prolonged two-phase release profile (of more than 3 months) was achieved when using aminophase silane chemical immobilization to nano-HA particles. Since previous studies have demonstrated greater in vivo bone growth on nano- compared with micron-HA particles

  1. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data

    Science.gov (United States)

    Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F.; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A.; Kurbatova, Natalja; Mason, Jeremy C.; Matthews, Peter; Oakley, Darren J.; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A.; Sneddon, Duncan J.; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J.; Melvin, David G.; Smedley, Damian; Brown, Steve D. M.; Flicek, Paul; Skarnes, William C.; Mallon, Ann-Marie; Parkinson, Helen

    2014-01-01

    The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases. PMID:24194600

  2. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    Science.gov (United States)

    LaBute, Montiago X; Zhang, Xiaohua; Lenderman, Jason; Bennion, Brian J; Wong, Sergio E; Lightstone, Felice C

    2014-01-01

    Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number

  3. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    Directory of Open Access Journals (Sweden)

    Montiago X LaBute

    Full Text Available Late-stage or post-market identification of adverse drug reactions (ADRs is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409 of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively. Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with

  4. Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery.

    Directory of Open Access Journals (Sweden)

    Albert H Gough

    Full Text Available One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.

  5. Identify alternative splicing events based on position-specific evolutionary conservation.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available The evolution of eukaryotes is accompanied by the increased complexity of alternative splicing which greatly expands genome information. One of the greatest challenges in the post-genome era is a complete revelation of human transcriptome with consideration of alternative splicing. Here, we introduce a comparative genomics approach to systemically identify alternative splicing events based on the differential evolutionary conservation between exons and introns and the high-quality annotation of the ENCODE regions. Specifically, we focus on exons that are included in some transcripts but are completely spliced out for others and we call them conditional exons. First, we characterize distinguishing features among conditional exons, constitutive exons and introns. One of the most important features is the position-specific conservation score. There are dramatic differences in conservation scores between conditional exons and constitutive exons. More importantly, the differences are position-specific. For flanking intronic regions, the differences between conditional exons and constitutive exons are also position-specific. Using the Random Forests algorithm, we can classify conditional exons with high specificities (97% for the identification of conditional exons from intron regions and 95% for the classification of known exons and fair sensitivities (64% and 32% respectively. We applied the method to the human genome and identified 39,640 introns that actually contain conditional exons and classified 8,813 conditional exons from the current RefSeq exon list. Among those, 31,673 introns containing conditional exons and 5,294 conditional exons classified from known exons cannot be inferred from RefSeq, UCSC or Ensembl annotations. Some of these de novo predictions were experimentally verified.

  6. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    Science.gov (United States)

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    KAUST Repository

    Hoehndorf, Robert

    2015-06-08

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  8. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  9. AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening

    Science.gov (United States)

    Weeks, Jon W.; Celaya-Kolb, Teresa; Pecora, Sara; Misra, Rajeev

    2010-01-01

    Summary In Escherichia coli, the TolC–AcrAB complex forms a major antibiotic efflux system with broad substrate specificity. During the complex assembly, the periplasmic helices and bottom turns of TolC are thought to interact with a hairpin helix of AcrA and hairpin loops of AcrB respectively. In the present study we show that a four-residue substitution in TolC’s turn 1, which connects outer helices 3 and 4 proximal to TolC’s periplasmic aperture, confers antibiotic hypersensitivity without affecting TolC-mediated phage or colicin infection. However, despite the null-like drug sensitivity phenotype, chemical cross-linking analysis revealed no apparent defects in the ability of the mutant TolC protein to physically interact with AcrA and AcrB. A role for TolC turn 1 residues in the functional assembly of the tripartite efflux pump complex was uncovered through isolating suppressor mutations of the mutant TolC protein that mapped within acrA and by utilizing a labile AcrA protein. The data showed that AcrA-mediated suppression of antibiotic sensitivity was achieved by dilating the TolC aperture/channel in an AcrB-dependent manner. The results underscore the importance of the periplasmic turn 1 of TolC in the functional assembly of the tripartite efflux complex and AcrA in transitioning TolC from its closed to open state. PMID:20132445

  10. Crystallography and Drug Design

    Indian Academy of Sciences (India)

    IAS Admin

    is of immense help in developing drugs for specific diseases by targeting molecules ... tions, or selected from a large pool of available libraries and the binding strengths can ... was identified to be caused by a virus named later as the human.

  11. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a.

    Science.gov (United States)

    Yelin-Bekerman, Laura; Elbaz, Idan; Diber, Alex; Dahary, Dvir; Gibbs-Bar, Liron; Alon, Shahar; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-10-01

    Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep\\wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a (kcnh4a(-/-)) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.

  12. CKD Self-management: Phenotypes and Associations With Clinical Outcomes.

    Science.gov (United States)

    Schrauben, Sarah J; Hsu, Jesse Y; Rosas, Sylvia E; Jaar, Bernard G; Zhang, Xiaoming; Deo, Rajat; Saab, Georges; Chen, Jing; Lederer, Swati; Kanthety, Radhika; Hamm, L Lee; Ricardo, Ana C; Lash, James P; Feldman, Harold I; Anderson, Amanda H

    2018-03-24

    To slow chronic kidney disease (CKD) progression and its complications, patients need to engage in self-management behaviors. The objective of this study was to classify CKD self-management behaviors into phenotypes and assess the association of these phenotypes with clinical outcomes. Prospective cohort study. Adults with mild to moderate CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study. 3,939 participants in the CRIC Study recruited between 2003 and 2008 served as the derivation cohort and 1,560 participants recruited between 2013 and 2015 served as the validation cohort. CKD self-management behavior phenotypes. CKD progression, atherosclerotic events, heart failure events, death from any cause. Latent class analysis stratified by diabetes was used to identify CKD self-management phenotypes based on measures of body mass index, diet, physical activity, blood pressure, smoking status, and hemoglobin A 1c concentration (if diabetic); Cox proportional hazards models. 3 identified phenotypes varied according to the extent of implementation of recommended CKD self-management behaviors: phenotype I characterized study participants with the most recommended behaviors; phenotype II, participants with a mixture of recommended and not recommended behaviors; and phenotype III, participants with minimal recommended behaviors. In multivariable-adjusted models for those with and without diabetes, phenotype III was strongly associated with CKD progression (HRs of 1.82 and 1.49), death (HRs of 1.95 and 4.14), and atherosclerotic events (HRs of 2.54 and 1.90; each P diabetes. No consensus definition of CKD self-management; limited to baseline behavior data. There are potentially 3 CKD self-management behavior phenotypes that distinguish risk for clinical outcomes. These phenotypes may inform the development of studies and guidelines regarding optimal self-management. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights

  13. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia

    Science.gov (United States)

    Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568

  14. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.

    Science.gov (United States)

    Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K

    2016-10-01

    Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.

  15. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  16. Field Phenotyping and Long-Term Platforms to Characterise How Crop Genotypes Interact with Soil Processes and the Environment

    Directory of Open Access Journals (Sweden)

    Timothy S. George

    2014-05-01

    Full Text Available Unsustainable agronomic practices and environmental change necessitate a revolution in agricultural production to ensure food security. A new generation of crops that yield more with fewer inputs and are adapted to more variable environments is needed. However, major changes in breeding programmes may be required to achieve this goal. By using the genetic variation in crop yield in specific target environments that vary in soil type, soil management, nutrient inputs and environmental stresses, robust traits suited to specific conditions can be identified. It is here that long-term experimental platforms and field phenotyping have an important role to play. In this review, we will provide information about some of the field-based platforms available and the cutting edge phenotyping systems at our disposal. We will also identify gaps in our field phenotyping resources that should be filled. We will go on to review the challenges in producing crop ideotypes for the dominant management systems for which we need sustainable solutions, and we discuss the potential impact of three-way interactions between genetics, environment and management. Finally, we will discuss the role that modelling can play in allowing us to fast-track some of these processes to allow us to make rapid gains in agricultural sustainability.

  17. Chronic obstructive pulmonary disease phenotypes: the future of COPD

    DEFF Research Database (Denmark)

    Han, MeiLan K; Agusti, Alvar; Calverley, Peter M

    2010-01-01

    (s) to guide the development of therapy where possible. It follows that any proposed phenotype, whether defined by symptoms, radiography, physiology, or cellular or molecular fingerprint will require an iterative validation process in which "candidate" phenotypes are identified before their relevance...

  18. Impact of germline and somatic missense variations on drug binding sites.

    Science.gov (United States)

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  19. Characterization of drug-related problems identified by clinical pharmacy staff at Danish hospitals

    DEFF Research Database (Denmark)

    Kjeldsen, Lene Juel; Birkholm, Trine; Fischer, Hanne

    2014-01-01

    Background In 2010, a database of drug related problems (DRPs) was implemented to assist clinical pharmacy staff in documenting clinical pharmacy activities locally. A study of quality, reliability and generalisability showed that national analyses of the data could be conducted. Analyses...... at the national level may help identify and prevent DRPs by performing national interventions. Objective The aim of the study was to explore the DRP characteristics as documented by clinical pharmacy staff at hospital pharmacies in the Danish DRP-database during a 3-year period. Setting Danish hospital pharmacies....... Method Data documented in the DRP-database during the initial 3 years after implementation were analyzed retrospectively. The DRP-database contains DRPs reported at hospitals by clinical pharmacy staff. The analyses focused on DRP categories, implementation rates and drugs associated with the DRPs. Main...

  20. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2001-12-01

    Full Text Available Abstract Background Post-transcriptional gene silencing (PTGS by short interfering RNA has opened up new directions in the phenotypic mutation of cellular genes. However, its efficacy on non-nuclear genes and its effect on the interferon pathway remain unexplored. Since directed mutation of RNA genomes is not possible through conventional mutagenesis, we have tested sequence-specific 21-nucleotide long double-stranded RNAs (dsRNAs for their ability to silence cytoplasmic RNA genomes. Results Short dsRNAs were generated against specific mRNAs of respiratory syncytial virus, a nonsegmented negative-stranded RNA virus with a cytoplasmic life cycle. At nanomolar concentrations, the dsRNAs specifically abrogated expression of the corresponding viral proteins, and produced the expected mutant phenotype ex vivo. The dsRNAs did not induce an interferon response, and did not inhibit cellular gene expression. The ablation of the viral proteins correlated with the loss of the specific mRNAs. In contrast, viral genomic and antigenomic RNA, which are encapsidated, were not directly affected. Conclusions Synthetic inhibitory dsRNAs are effective in specific silencing of RNA genomes that are exclusively cytoplasmic and transcribed by RNA-dependent RNA polymerases. RNA-directed RNA gene silencing does not require cloning, expression, and mutagenesis of viral cDNA, and thus, will allow the generation of phenotypic null mutants of specific RNA viral genes under normal infection conditions and at any point in the infection cycle. This will, for the first time, permit functional genomic studies, attenuated infections, reverse genetic analysis, and studies of host-virus signaling pathways using a wild type RNA virus, unencumbered by any superinfecting virus.

  1. HPMA copolymer-drug conjugates with controlled tumor-specific drug release

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Roč. 18, č. 1 (2018), s. 1-15, č. článku 1700209. ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA17-13283S; GA ČR(CZ) GA17-08084S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : biodegradable spacer * controlled drug release * drug delivery systems Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.238, year: 2016

  2. Phenotypic feature quantification of patient derived 3D cancer spheroids in fluorescence microscopy image

    Science.gov (United States)

    Kang, Mi-Sun; Rhee, Seon-Min; Seo, Ji-Hyun; Kim, Myoung-Hee

    2017-03-01

    Patients' responses to a drug differ at the cellular level. Here, we present an image-based cell phenotypic feature quantification method for predicting the responses of patient-derived glioblastoma cells to a particular drug. We used high-content imaging to understand the features of patient-derived cancer cells. A 3D spheroid culture formation resembles the in vivo environment more closely than 2D adherent cultures do, and it allows for the observation of cellular aggregate characteristics. However, cell analysis at the individual level is more challenging. In this paper, we demonstrate image-based phenotypic screening of the nuclei of patient-derived cancer cells. We first stitched the images of each well of the 384-well plate with the same state. We then used intensity information to detect the colonies. The nuclear intensity and morphological characteristics were used for the segmentation of individual nuclei. Next, we calculated the position of each nucleus that is appeal of the spatial pattern of cells in the well environment. Finally, we compared the results obtained using 3D spheroid culture cells with those obtained using 2D adherent culture cells from the same patient being treated with the same drugs. This technique could be applied for image-based phenotypic screening of cells to determine the patient's response to the drug.

  3. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  4. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    Directory of Open Access Journals (Sweden)

    Alexander Patronis

    2018-04-01

    Full Text Available Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.. We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  5. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    Science.gov (United States)

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  6. Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner.

    Science.gov (United States)

    Sadagurski, Marianna; Cady, Gillian; Miller, Richard A

    2017-08-01

    Aging leads to hypothalamic inflammation, but does so more slowly in mice whose lifespan has been extended by mutations that affect GH/IGF-1 signals. Early-life exposure to GH by injection, or to nutrient restriction in the first 3 weeks of life, also modulate both lifespan and the pace of hypothalamic inflammation. Three drugs extend lifespan of UM-HET3 mice in a sex-specific way: acarbose (ACA), 17-α-estradiol (17αE2), and nordihydroguaiaretic acid (NDGA), with more dramatic longevity increases in males in each case. In this study, we examined the effect of these anti-aging drugs on neuro-inflammation in hypothalamus and hippocampus. We found that age-associated hypothalamic inflammation is reduced in males but not in females at 12 months of age by ACA and 17αE2 and at 22 months of age in NDGA-treated mice. The three drugs blocked indices of hypothalamic reactive gliosis associated with aging, such as Iba-1-positive microglia and GFAP-positive astrocytes, as well as age-associated overproduction of TNF-α. This effect was not observed in drug-treated female mice or in the hippocampus of the drug-treated animals. On the other hand, caloric restriction (CR; an intervention that extends the lifespan in both sexes) significantly reduced hypothalamic microglia and TNF-α in both sexes at 12 months of age. Together, these results suggest that the extent of drug-induced changes in hypothalamic inflammatory processes is sexually dimorphic in a pattern that parallels the effects of these agents on mouse longevity and that mimics the changes seen, in both sexes, of long-lived nutrient restricted or mutant mice. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions.

    Science.gov (United States)

    Alvarado-Vazquez, Perla Abigail; Bernal, Laura; Paige, Candler A; Grosick, Rachel L; Moracho Vilrriales, Carolina; Ferreira, David Wilson; Ulecia-Morón, Cristina; Romero-Sandoval, E Alfonso

    2017-08-01

    M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1β, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive

  8. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Taylor, David J; Parsons, Christine E; Han, Haiyong; Jayaraman, Arul; Rege, Kaushal

    2011-01-01

    Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells

  9. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  10. Tightly congruent bursts of lineage and phenotypic diversification identified in a continental ant radiation

    NARCIS (Netherlands)

    Price, Shauna L; Etienne, Rampal S; Powell, Scott

    Adaptive diversification is thought to be shaped by ecological opportunity. A prediction of this ecological process of diversification is that it should result in congruent bursts of lineage and phenotypic diversification, but few studies have found this expected association. Here, we study the

  11. Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance.

    Science.gov (United States)

    Jeyapalan, J N; Noor, D A Mohamed; Lee, S-H; Tan, C L; Appleby, V A; Kilday, J P; Palmer, R D; Schwalbe, E C; Clifford, S C; Walker, D A; Murray, M J; Coleman, N; Nicholson, J C; Scotting, P J

    2011-08-09

    Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a 'methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy.

  12. SMM-system: A mining tool to identify specific markers in Salmonella enterica.

    Science.gov (United States)

    Yu, Shuijing; Liu, Weibing; Shi, Chunlei; Wang, Dapeng; Dan, Xianlong; Li, Xiao; Shi, Xianming

    2011-03-01

    This report presents SMM-system, a software package that implements various personalized pre- and post-BLASTN tasks for mining specific markers of microbial pathogens. The main functionalities of SMM-system are summarized as follows: (i) converting multi-FASTA file, (ii) cutting interesting genomic sequence, (iii) automatic high-throughput BLASTN searches, and (iv) screening target sequences. The utility of SMM-system was demonstrated by using it to identify 214 Salmonella enterica-specific protein-coding sequences (CDSs). Eighteen primer pairs were designed based on eighteen S. enterica-specific CDSs, respectively. Seven of these primer pairs were validated with PCR assay, which showed 100% inclusivity for the 101 S. enterica genomes and 100% exclusivity of 30 non-S. enterica genomes. Three specific primer pairs were chosen to develop a multiplex PCR assay, which generated specific amplicons with a size of 180bp (SC1286), 238bp (SC1598) and 405bp (SC4361), respectively. This study demonstrates that SMM-system is a high-throughput specific marker generation tool that can be used to identify genus-, species-, serogroup- and even serovar-specific DNA sequences of microbial pathogens, which has a potential to be applied in food industries, diagnostics and taxonomic studies. SMM-system is freely available and can be downloaded from http://foodsafety.sjtu.edu.cn/SMM-system.html. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Evaluation of limited sampling models for prediction of oral midazolam AUC for CYP3A phenotyping and drug interaction studies.

    Science.gov (United States)

    Mueller, Silke C; Drewelow, Bernd

    2013-05-01

    The area under the concentration-time curve (AUC) after oral midazolam administration is commonly used for cytochrome P450 (CYP) 3A phenotyping studies. The aim of this investigation was to evaluate a limited sampling strategy for the prediction of AUC with oral midazolam. A total of 288 concentration-time profiles from 123 healthy volunteers who participated in four previously performed drug interaction studies with intense sampling after a single oral dose of 7.5 mg midazolam were available for evaluation. Of these, 45 profiles served for model building, which was performed by stepwise multiple linear regression, and the remaining 243 datasets served for validation. Mean prediction error (MPE), mean absolute error (MAE) and root mean squared error (RMSE) were calculated to determine bias and precision The one- to four-sampling point models with the best coefficient of correlation were the one-sampling point model (8 h; r (2) = 0.84), the two-sampling point model (0.5 and 8 h; r (2) = 0.93), the three-sampling point model (0.5, 2, and 8 h; r (2) = 0.96), and the four-sampling point model (0.5,1, 2, and 8 h; r (2) = 0.97). However, the one- and two-sampling point models were unable to predict the midazolam AUC due to unacceptable bias and precision. Only the four-sampling point model predicted the very low and very high midazolam AUC of the validation dataset with acceptable precision and bias. The four-sampling point model was also able to predict the geometric mean ratio of the treatment phase over the baseline (with 90 % confidence interval) results of three drug interaction studies in the categories of strong, moderate, and mild induction, as well as no interaction. A four-sampling point limited sampling strategy to predict the oral midazolam AUC for CYP3A phenotyping is proposed. The one-, two- and three-sampling point models were not able to predict midazolam AUC accurately.

  14. Atypical disease phenotypes in pediatric ulcerative colitis

    DEFF Research Database (Denmark)

    Levine, Arie; de Bie, Charlotte I; Turner, Dan

    2013-01-01

    Definitive diagnosis of pediatric ulcerative colitis (UC) may be particularly challenging since isolated colitis with overlapping features is common in pediatric Crohn's disease (CD), while atypical phenotypes of UC are not uncommon. The Paris classification allows more accurate phenotyping...... of atypical inflammatory bowel disease (IBD) patients. Our aim was to identify the prevalence of atypical disease patterns in new-onset pediatric UC using the Paris classification....

  15. Automatic identification of optimal marker genes for phenotypic and taxonomic groups of microorganisms.

    Directory of Open Access Journals (Sweden)

    Elad Segev

    Full Text Available Finding optimal markers for microorganisms important in the medical, agricultural, environmental or ecological fields is of great importance. Thousands of complete microbial genomes now available allow us, for the first time, to exhaustively identify marker proteins for groups of microbial organisms. In this work, we model the biological task as the well-known mathematical "hitting set" problem, solving it based on both greedy and randomized approximation algorithms. We identify unique markers for 17 phenotypic and taxonomic microbial groups, including proteins related to the nitrite reductase enzyme as markers for the non-anammox nitrifying bacteria group, and two transcription regulation proteins, nusG and yhiF, as markers for the Archaea and Escherichia/Shigella taxonomic groups, respectively. Additionally, we identify marker proteins for three subtypes of pathogenic E. coli, which previously had no known optimal markers. Practically, depending on the completeness of the database this algorithm can be used for identification of marker genes for any microbial group, these marker genes may be prime candidates for the understanding of the genetic basis of the group's phenotype or to help discover novel functions which are uniquely shared among a group of microbes. We show that our method is both theoretically and practically efficient, while establishing an upper bound on its time complexity and approximation ratio; thus, it promises to remain efficient and permit the identification of marker proteins that are specific to phenotypic or taxonomic groups, even as more and more bacterial genomes are being sequenced.

  16. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  17. Linking MedDRA(®)-Coded Clinical Phenotypes to Biological Mechanisms by the Ontology of Adverse Events: A Pilot Study on Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Sarntivijai, Sirarat; Zhang, Shelley; Jagannathan, Desikan G; Zaman, Shadia; Burkhart, Keith K; Omenn, Gilbert S; He, Yongqun; Athey, Brian D; Abernethy, Darrell R

    2016-07-01

    A translational bioinformatics challenge exists in connecting population and individual clinical phenotypes in various formats to biological mechanisms. The Medical Dictionary for Regulatory Activities (MedDRA(®)) is the default dictionary for adverse event (AE) reporting in the US Food and Drug Administration Adverse Event Reporting System (FAERS). The ontology of adverse events (OAE) represents AEs as pathological processes occurring after drug exposures. The aim of this work was to establish a semantic framework to link biological mechanisms to phenotypes of AEs by combining OAE with MedDRA(®) in FAERS data analysis. We investigated the AEs associated with tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) targeting tyrosine kinases. The five selected TKIs/mAbs (i.e., dasatinib, imatinib, lapatinib, cetuximab, and trastuzumab) are known to induce impaired ventricular function (non-QT) cardiotoxicity. Statistical analysis of FAERS data identified 1053 distinct MedDRA(®) terms significantly associated with TKIs/mAbs, where 884 did not have corresponding OAE terms. We manually annotated these terms, added them to OAE by the standard OAE development strategy, and mapped them to MedDRA(®). The data integration to provide insights into molecular mechanisms of drug-associated AEs was performed by including linkages in OAE for all related AE terms to MedDRA(®) and the existing ontologies, including the human phenotype ontology (HP), Uber anatomy ontology (UBERON), and gene ontology (GO). Sixteen AEs were shared by all five TKIs/mAbs, and each of 17 cardiotoxicity AEs was associated with at least one TKI/mAb. As an example, we analyzed "cardiac failure" using the relations established in OAE with other ontologies and demonstrated that one of the biological processes associated with cardiac failure maps to the genes associated with heart contraction. By expanding the existing OAE ontological design, our TKI use case demonstrated that the combination

  18. Syndromic (phenotypic diarrhea in early infancy

    Directory of Open Access Journals (Sweden)

    Bodemer Christine

    2008-02-01

    Full Text Available Abstract Syndromic diarrhea (SD, also known as phenotypic diarrhea (PD or tricho-hepato-enteric syndrome (THE, is a congenital enteropathy presenting with early-onset of severe diarrhea requiring parenteral nutrition (PN. To date, no epidemiological data are available. The estimated prevalence is approximately 1/300,000–400,000 live births in Western Europe. Ethnic origin does not appear to be associated with SD. Infants are born small for gestational age and present with facial dysmorphism including prominent forehead and cheeks, broad nasal root and hypertelorism. Hairs are woolly, easily removed and poorly pigmented. Severe and persistent diarrhea starts within the first 6 months of life (≤ 1 month in most cases and is accompanied by severe malabsorption leading to early and relentless protein energy malnutrition with failure to thrive. Liver disease affects about half of patients with extensive fibrosis or cirrhosis. There is currently no specific biochemical profile, though a functional T-cell immune deficiency with defective antibody production was reported. Microscopic analysis of the hair show twisted hair (pili torti, aniso- and poilkilotrichosis, and trichorrhexis nodosa. Histopathological analysis of small intestine biopsy shows non-specific villous atrophy with low or no mononuclear cell infiltration of the lamina propria, and no specific histological abnormalities involving the epithelium. The etiology remains unknown. The frequent association of the disorder with parental consanguinity and/or affected siblings suggests a genetic origin with an autosomal recessive mode of transmission. Early management consists of total PN. Some infants have a rather milder phenotype with partial PN dependency or require only enteral feeding. Prognosis of this syndrome is poor, but most patients now survive, and about half of the patients may be weaned from PN at adolescence, but experience failure to thrive and final short stature. Disease name

  19. Phenotypic Screening of Primary Human Cell Culture Systems to Identify Potential for Compound Toxicity (CHI Phenotypic Screening)

    Science.gov (United States)

    Addressing safety aspects of drugs and environmental chemicals has historically been undertaken through animal testing. However, the quantity of chemicals needing assessment and the challenge of species extrapolation require development of alternative approaches. Assessing phenot...

  20. Exome sequencing identifies mutations in ABCD1 and DACH2 in two brothers with a distinct phenotype

    OpenAIRE

    Zhang, Yanliang; Liu, Yanhui; Li, Ya; Duan, Yong; Zhang, Keyun; Wang, Junwang; Dai, Yong

    2014-01-01

    Background We report on two brothers with a distinct syndromic phenotype and explore the potential pathogenic cause. Methods Cytogenetic tests and exome sequencing were performed on the two brothers and their parents. Variants detected by exome sequencing were validated by Sanger sequencing. Results The main phenotype of the two brothers included congenital language disorder, growth retardation, intellectual disability, difficulty in standing and walking, and urinary and fecal incontinence. T...