WorldWideScience

Sample records for identify parameters affecting

  1. Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders.

    Science.gov (United States)

    Walz, Johanna M; Boehringer, Daniel; Deissler, Heidrun L; Faerber, Lothar; Goepfert, Jens C; Heiduschka, Peter; Kleeberger, Susannah M; Klettner, Alexa; Krohne, Tim U; Schneiderhan-Marra, Nicole; Ziemssen, Focke; Stahl, Andreas

    2016-01-01

    Vascular endothelial growth factor-A (VEGF-A) is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements. Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center) twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD), cannula (butterfly vs. neonatal), type of centrifuge (swing-out vs. fixed-angle), time before and after centrifugation, filling level (completely filled vs. half-filled tubes) and analyzing method (ELISA vs. multiplex bead array). Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model. The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes. VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples.

  2. Pre-Analytical Parameters Affecting Vascular Endothelial Growth Factor Measurement in Plasma: Identifying Confounders.

    Directory of Open Access Journals (Sweden)

    Johanna M Walz

    Full Text Available Vascular endothelial growth factor-A (VEGF-A is intensively investigated in various medical fields. However, comparing VEGF-A measurements is difficult because sample acquisition and pre-analytic procedures differ between studies. We therefore investigated which variables act as confounders of VEGF-A measurements.Following a standardized protocol, blood was taken at three clinical sites from six healthy participants (one male and one female participant at each center twice one week apart. The following pre-analytical parameters were varied in order to analyze their impact on VEGF-A measurements: analyzing center, anticoagulant (EDTA vs. PECT / CTAD, cannula (butterfly vs. neonatal, type of centrifuge (swing-out vs. fixed-angle, time before and after centrifugation, filling level (completely filled vs. half-filled tubes and analyzing method (ELISA vs. multiplex bead array. Additionally, intrapersonal variations over time and sex differences were explored. Statistical analysis was performed using a linear regression model.The following parameters were identified as statistically significant independent confounders of VEGF-A measurements: analyzing center, anticoagulant, centrifuge, analyzing method and sex of the proband. The following parameters were no significant confounders in our data set: intrapersonal variation over one week, cannula, time before and after centrifugation and filling level of collection tubes.VEGF-A measurement results can be affected significantly by the identified pre-analytical parameters. We recommend the use of CTAD anticoagulant, a standardized type of centrifuge and one central laboratory using the same analyzing method for all samples.

  3. Parameter identifiability and redundancy: theoretical considerations.

    Directory of Open Access Journals (Sweden)

    Mark P Little

    Full Text Available BACKGROUND: Models for complex biological systems may involve a large number of parameters. It may well be that some of these parameters cannot be derived from observed data via regression techniques. Such parameters are said to be unidentifiable, the remaining parameters being identifiable. Closely related to this idea is that of redundancy, that a set of parameters can be expressed in terms of some smaller set. Before data is analysed it is critical to determine which model parameters are identifiable or redundant to avoid ill-defined and poorly convergent regression. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we outline general considerations on parameter identifiability, and introduce the notion of weak local identifiability and gradient weak local identifiability. These are based on local properties of the likelihood, in particular the rank of the Hessian matrix. We relate these to the notions of parameter identifiability and redundancy previously introduced by Rothenberg (Econometrica 39 (1971 577-591 and Catchpole and Morgan (Biometrika 84 (1997 187-196. Within the widely used exponential family, parameter irredundancy, local identifiability, gradient weak local identifiability and weak local identifiability are shown to be largely equivalent. We consider applications to a recently developed class of cancer models of Little and Wright (Math Biosciences 183 (2003 111-134 and Little et al. (J Theoret Biol 254 (2008 229-238 that generalize a large number of other recently used quasi-biological cancer models. CONCLUSIONS/SIGNIFICANCE: We have shown that the previously developed concepts of parameter local identifiability and redundancy are closely related to the apparently weaker properties of weak local identifiability and gradient weak local identifiability--within the widely used exponential family these concepts largely coincide.

  4. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  5. Exploiting intrinsic fluctuations to identify model parameters.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  6. Parameter identifiability of linear dynamical systems

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  7. Identifying tectonic parameters that influence tsunamigenesis

    Science.gov (United States)

    van Zelst, Iris; Brizzi, Silvia; van Dinther, Ylona; Heuret, Arnauld; Funiciello, Francesca

    2017-04-01

    The role of tectonics in tsunami generation is at present poorly understood. However, the fact that some regions produce more tsunamis than others indicates that tectonics could influence tsunamigenesis. Here, we complement a global earthquake database that contains geometrical, mechanical, and seismicity parameters of subduction zones with tsunami data. We statistically analyse the database to identify the tectonic parameters that affect tsunamigenesis. The Pearson's product-moment correlation coefficients reveal high positive correlations of 0.65 between, amongst others, the maximum water height of tsunamis and the seismic coupling in a subduction zone. However, these correlations are mainly caused by outliers. The Spearman's rank correlation coefficient results in more robust correlations of 0.60 between the number of tsunamis in a subduction zone and subduction velocity (positive correlation) and the sediment thickness at the trench (negative correlation). Interestingly, there is a positive correlation between the latter and tsunami magnitude. In an effort towards multivariate statistics, a binary decision tree analysis is conducted with one variable. However, this shows that the amount of data is too scarce. To complement this limited amount of data and to assess physical causality of the tectonic parameters with regard to tsunamigenesis, we conduct a numerical study of the most promising parameters using a geodynamic seismic cycle model. We show that an increase in sediment thickness on the subducting plate results in a shift in seismic activity from outerrise normal faults to splay faults. We also show that the splay fault is the preferred rupture path for a strongly velocity strengthening friction regime in the shallow part of the subduction zone, which increases the tsunamigenic potential. A larger updip limit of the seismogenic zone results in larger vertical surface displacement.

  8. Numerical identifiability of the parameters of induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Corcoles, F.; Pedra, J.; Salichs, M. [Dep. d' Eng. Electrica ETSEIB. UPC, Barcelona (Spain)

    2000-08-01

    This paper analyses the numerical identifiability of the electrical parameters of induction machines. Relations between parameters and the impossibility to estimate all of them - when only external measures are used: voltage, current, speed and torque - are shown. Formulations of the single and double-cage induction machine, with and without core losses in both models, are developed. The proposed solution is the formulation of machine equations by using the minimum number of parameters (which are identifiable parameters). As an application example, the parameters of a double-cage induction machine are identified using steady-state measurements corresponding to different angular speeds. (orig.)

  9. Structural parameter identifiability analysis for dynamic reaction networks

    DEFF Research Database (Denmark)

    Davidescu, Florin Paul; Jørgensen, Sten Bay

    2008-01-01

    method based on Lie derivatives. The proposed systematic two phase methodology is illustrated on a mass action based model for an enzymatically catalyzed reaction pathway network where only a limited set of variables is measured. The methodology clearly pinpoints the structurally identifiable parameters...... where for a given set of measured variables it is desirable to investigate which parameters may be estimated prior to spending computational effort on the actual estimation. This contribution addresses the structural parameter identifiability problem for the typical case of reaction network models....... The proposed analysis is performed in two phases. The first phase determines the structurally identifiable reaction rates based on reaction network stoichiometry. The second phase assesses the structural parameter identifiability of the specific kinetic rate expressions using a generating series expansion...

  10. Identifying the effects of parameter uncertainty on the reliability of riverbank stability modelling

    Science.gov (United States)

    Samadi, A.; Amiri-Tokaldany, E.; Darby, S. E.

    2009-05-01

    Bank retreat is a key process in fluvial dynamics affecting a wide range of physical, ecological and socioeconomic issues in the fluvial environment. To predict the undesirable effects of bank retreat and to inform effective measures to prevent it, a wide range of bank stability models have been presented in the literature. These models typically express bank stability by defining a factor of safety as the ratio of driving and resisting forces acting on the incipient failure block. These forces are affected by a range of controlling factors that include such aspects as the bank profile (bank height and angle), the geotechnical properties of the bank materials, as well as the hydrological status of the riverbanks. In this paper we evaluate the extent to which uncertainties in the parameterization of these controlling factors feed through to influence the reliability of the resulting bank stability estimate. This is achieved by employing a simple model of riverbank stability with respect to planar failure (which is the most common type of bank stability model) in a series of sensitivity tests and Monte Carlo analyses to identify, for each model parameter, the range of values that induce significant changes in the simulated factor of safety. These identified parameter value ranges are compared to empirically derived parameter uncertainties to determine whether they are likely to confound the reliability of the resulting bank stability calculations. Our results show that parameter uncertainties are typically high enough that the likelihood of generating unreliable predictions is typically very high (> ˜ 80% for predictions requiring a precision of < ± 15%). Because parameter uncertainties are derived primarily from the natural variability of the parameters, rather than measurement errors, much more careful attention should be paid to field sampling strategies, such that the parameter uncertainties and consequent prediction unreliabilities can be quantified more

  11. Parameter trajectory analysis to identify treatment effects of pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Christian A Tiemann

    Full Text Available The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT, to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR, a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1, a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1

  12. Two statistics for evaluating parameter identifiability and error reduction

    Science.gov (United States)

    Doherty, John; Hunt, Randall J.

    2009-01-01

    Two statistics are presented that can be used to rank input parameters utilized by a model in terms of their relative identifiability based on a given or possible future calibration dataset. Identifiability is defined here as the capability of model calibration to constrain parameters used by a model. Both statistics require that the sensitivity of each model parameter be calculated for each model output for which there are actual or presumed field measurements. Singular value decomposition (SVD) of the weighted sensitivity matrix is then undertaken to quantify the relation between the parameters and observations that, in turn, allows selection of calibration solution and null spaces spanned by unit orthogonal vectors. The first statistic presented, "parameter identifiability", is quantitatively defined as the direction cosine between a parameter and its projection onto the calibration solution space. This varies between zero and one, with zero indicating complete non-identifiability and one indicating complete identifiability. The second statistic, "relative error reduction", indicates the extent to which the calibration process reduces error in estimation of a parameter from its pre-calibration level where its value must be assigned purely on the basis of prior expert knowledge. This is more sophisticated than identifiability, in that it takes greater account of the noise associated with the calibration dataset. Like identifiability, it has a maximum value of one (which can only be achieved if there is no measurement noise). Conceptually it can fall to zero; and even below zero if a calibration problem is poorly posed. An example, based on a coupled groundwater/surface-water model, is included that demonstrates the utility of the statistics. ?? 2009 Elsevier B.V.

  13. Identifying subgroups of CERME affect research papers

    OpenAIRE

    Hannula, Markku S.; Garcia Moreno-Esteva, Enrique

    2017-01-01

    Research in mathematics related affect uses a variety of theoretical frameworks. Three different dimensions have been suggested as significant to characterize concepts in this area: (1) emotional, motivational, and cognitive aspects of affect, (2) state and trait aspects of affect, and (3) physiological, psychological, and sociological level of theorizing affect. In this study, we used the information in reference lists and graph theory to identify Graph Communities (coherent clusters) of res...

  14. Identifiability of altimetry-based rating curve parameters in function of river morphological parameters

    Science.gov (United States)

    Paris, Adrien; André Garambois, Pierre; Calmant, Stéphane; Paiva, Rodrigo; Walter, Collischonn; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Bonnet, Marie-Paule; Seyler, Frédérique; Monnier, Jérôme

    2016-04-01

    Estimating river discharge for ungauged river reaches from satellite measurements is not straightforward given the nonlinearity of flow behavior with respect to measurable and non measurable hydraulic parameters. As a matter of facts, current satellite datasets do not give access to key parameters such as river bed topography and roughness. A unique set of almost one thousand altimetry-based rating curves was built by fit of ENVISAT and Jason-2 water stages with discharges obtained from the MGB-IPH rainfall-runoff model in the Amazon basin. These rated discharges were successfully validated towards simulated discharges (Ens = 0.70) and in-situ discharges (Ens = 0.71) and are not mission-dependent. The rating curve writes Q = a(Z-Z0)b*sqrt(S), with Z the water surface elevation and S its slope gained from satellite altimetry, a and b power law coefficient and exponent and Z0 the river bed elevation such as Q(Z0) = 0. For several river reaches in the Amazon basin where ADCP measurements are available, the Z0 values are fairly well validated with a relative error lower than 10%. The present contribution aims at relating the identifiability and the physical meaning of a, b and Z0given various hydraulic and geomorphologic conditions. Synthetic river bathymetries sampling a wide range of rivers and inflow discharges are used to perform twin experiments. A shallow water model is run for generating synthetic satellite observations, and then rating curve parameters are determined for each river section thanks to a MCMC algorithm. Thanks to twin experiments, it is shown that rating curve formulation with water surface slope, i.e. closer from Manning equation form, improves parameter identifiability. The compensation between parameters is limited, especially for reaches with little water surface variability. Rating curve parameters are analyzed for riffle and pools for small to large rivers, different river slopes and cross section shapes. It is shown that the river bed

  15. Identifying pathways affected by cancer mutations.

    Science.gov (United States)

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Identifying crucial parameter correlations maintaining bursting activity.

    Directory of Open Access Journals (Sweden)

    Anca Doloc-Mihu

    2014-06-01

    Full Text Available Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA to each of these four groups. PCA identified a set of three maximal conductances (leak current, [Formula: see text]Leak; a persistent K current, [Formula: see text]K2; and of a persistent Na+ current, [Formula: see text]P that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of [Formula: see text]Leak, [Formula: see text]K2, and [Formula: see text]P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.

  17. PARAMETERS AFFECTING THE STRUCTURAL ANALYSIS OF A TUNNEL STRUCTURE EXPOSED TO FIRE

    Directory of Open Access Journals (Sweden)

    Omid Pouran

    2016-12-01

    Full Text Available Behaviour of cut-and-cover tunnels exposed to fire should be analysed by using a realistic structural model that takes account of mechanical and thermal effects on the structure. This has been performed with the aid of Finite Element (FE software package called SOFiSTiK in parallel, for two types of elements as a scope of research project financed by the German Bundesanstalt für Straßenwesen BAST. Since the stiffness of the structure at elevated temperatures is highly affected, a realistic model of structural behaviour of the tunnel could be only achieved by considering the nonlinear analysis of the structure. This has been performed for a 2–cell cut and cover tunnel by taking account of simultaneous reduction of stiffness and strength and the time-dependent increasing indirect effects due to axial constraints and temperature gradients induced by elevated temperatures. The thermal analyses have been performed and the effects were implemented into the structural model by the multi-layered strain model. The stress–strain model proposed by EN 1992-1-2 is implemented for the elevated temperature. Since there was sufficient amount of Polypropylene fibres in the concrete mixtures, modelling of spalling was excluded from the analysis. The critical corresponding stresses and material behaviour are compared and interpreted at different time stages. The main parameters affecting the accuracy and convergence of the results of structural analysis for the used model are identified: defining a realistic fire action, using concrete material model fulfilling the requirements of fire situation in tunnels, defining appropriate time intervals for load implementations. These parameters along with other parameters, which influence the results to a lesser degree, are identified and investigated in this paper.

  18. Simultaneous Parameters Identifiability and Estimation of an E. coli Metabolic Network Model

    Directory of Open Access Journals (Sweden)

    Kese Pontes Freitas Alberton

    2015-01-01

    Full Text Available This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.

  19. Identifying the connective strength between model parameters and performance criteria

    Directory of Open Access Journals (Sweden)

    B. Guse

    2017-11-01

    Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria

  20. Genomic Regions Affecting Cheese Making Properties Identified in Danish Holsteins

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl; Bertelsen, Henriette Pasgaard; Poulsen, Nina Aagaard

    The cheese renneting process is affected by a number of factors associated to milk composition and a number of Danish Holsteins has previously been identified to have poor milk coagulation ability. Therefore, the aim of this study was to identify genomic regions affecting the technological...

  1. Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems.

    Science.gov (United States)

    Pant, Sanjay

    2018-05-01

    A new class of functions, called the 'information sensitivity functions' (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters. © 2018 The Authors.

  2. Identifiability and error minimization of receptor model parameters with PET

    International Nuclear Information System (INIS)

    Delforge, J.; Syrota, A.; Mazoyer, B.M.

    1989-01-01

    The identifiability problem and the general framework for experimental design optimization are presented. The methodology is applied to the problem of the receptor-ligand model parameter estimation with dynamic positron emission tomography data. The first attempts to identify the model parameters from data obtained with a single tracer injection led to disappointing numerical results. The possibility of improving parameter estimation using a new experimental design combining an injection of the labelled ligand and an injection of the cold ligand (displacement experiment) has been investigated. However, this second protocol led to two very different numerical solutions and it was necessary to demonstrate which solution was biologically valid. This has been possible by using a third protocol including both a displacement and a co-injection experiment. (authors). 16 refs.; 14 figs

  3. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    Science.gov (United States)

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  4. Assessing soil and plant parameters affecting uranium availability and plant uptake

    International Nuclear Information System (INIS)

    Vandenhove, H.

    2009-01-01

    In the assessment of the potential impact of contaminants in soils and the requirement for the implementation of corrective actions, it is important to determine the contaminant's mobility and bioavailability and to identify the processes and parameters ruling it. Mobility and bioavailability of contaminants are among others affected by the physicochemical characteristics of the environment itself and plant properties. This is also the case for uranium (U), reported to be the most frequent radionuclide contaminant in ground and surface water and soils. The actual failure of the available transfer factor (TF) data and their broad relation to soil type to be an appropriate measure for food chain transfer in assessment models, calls for a more mechanistic understanding of the individual processes affecting bioavailability. The objectives of this study were (1) to test if Diffusive Gradient in Thin film (DGT) measured concentrations adequately assess U bioavailability and (2) to evaluate if differences in U uptake by plants can be explained by variation in root-mediated changes in selected soil properties and assess the role of organic acids in this process

  5. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    Science.gov (United States)

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a

  6. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  7. Affect of different ICT processing parameters to the quality of tomograms

    International Nuclear Information System (INIS)

    Zhou Jiang; Sun Lingxia; Ye Yunchang

    2009-01-01

    The quality of ICT tomograms is affected by detecting processing parameters and image processing methods besides the performances of ICT systems. Optimal processing parameters and image processing methods can promote not only the quality of tomogram but also the resolution. Some research work was carried out about processing parameters and image processing methods including choice of collimator, filter, false color composite image. And some examples were given in this paper, which can provide the ICT analyst with reference. (authors)

  8. Neural underpinnings of the identifiable victim effect: affect shifts preferences for giving.

    Science.gov (United States)

    Genevsky, Alexander; Västfjäll, Daniel; Slovic, Paul; Knutson, Brian

    2013-10-23

    The "identifiable victim effect" refers to peoples' tendency to preferentially give to identified versus anonymous victims of misfortune, and has been proposed to partly depend on affect. By soliciting charitable donations from human subjects during behavioral and neural (i.e., functional magnetic resonance imaging) experiments, we sought to determine whether and how affect might promote the identifiable victim effect. Behaviorally, subjects gave more to orphans depicted by photographs versus silhouettes, and their shift in preferences was mediated by photograph-induced feelings of positive arousal, but not negative arousal. Neurally, while photographs versus silhouettes elicited activity in widespread circuits associated with facial and affective processing, only nucleus accumbens activity predicted and could statistically account for increased donations. Together, these findings suggest that presenting evaluable identifiable information can recruit positive arousal, which then promotes giving. We propose that affect elicited by identifiable stimuli can compel people to give more to strangers, even despite costs to the self.

  9. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  10. Identifying factors affecting about outsourcing in paraclinical services

    African Journals Online (AJOL)

    Objective: Outsourcing refers to the transfer of services or functions to an outsider supplier, which controls them through a contract or cooperative. The main problem of senior managers in health organizations is determining the services which should be outsourced. The present study seeks to identify the factors that affect ...

  11. Hallux valgus surgery affects kinematic parameters during gait.

    Science.gov (United States)

    Klugarova, Jitka; Janura, Miroslav; Svoboda, Zdenek; Sos, Zdenek; Stergiou, Nicholas; Klugar, Miloslav

    2016-12-01

    The aim of our study was to compare spatiotemporal parameters and lower limb and pelvis kinematics during the walking in patients with hallux valgus before and after surgery and in relation to a control group. Seventeen females with hallux valgus, who underwent first metatarsal osteotomy, constituted our experimental group. The control group consisted of thirteen females. Kinematic data during walking were obtained using the Vicon MX system. Our results showed that hallux valgus before surgery affects spatiotemporal parameters and lower limb and pelvis kinematics during walking. Hallux valgus surgery further increased the differences that were present before surgery. Specifically after hallux valgus surgery, the walking speed decreased even more (p=0.09, η 2 =0.19) while step time increased (p=0.002, η 2 =0.44) on both legs. The maximum ankle plantar flexion of the operated leg during toe-off decreased to a greater extend (p=0.03, η 2 =0.26). The asymmetry in the hip and the pelvis movements in the frontal plane (present preoperatively) persisted after surgery. Hallux valgus is not an isolated problem of the first ray, which could be just surgically addressed by correcting the foot's alignment. It is a long-term progressive malfunction of the foot affecting the entire kinematic chain of the lower extremity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Identifying factors affecting destination choice of medical tourists: a ...

    African Journals Online (AJOL)

    medical tourism”, has emerged as a new source of competitive advantage all over the world. The present study seeks to identify the factors that affect destination choice of medical tourists. Methods: We systematically searched relevant databases ...

  13. On the identifiability of linear dynamical systems. [parameters observation in presence of white noise

    Science.gov (United States)

    Glover, K.; Willems, J. C.

    1973-01-01

    Consider the situation in which the unknown parameters of a stationary linear system may be parametrized by a set of unknown parameters. The question thus arises of when such a set of parameters can be uniquely identified on the basis of observed data. This problem is considered here both in the case of input and output observations and in the case of output observations in the presence of a white noise input. Conditions for local identifiability are derived for both situations and a sufficient condition for global identifiability is given for the former situation, i.e., when simultaneous input and output observations are available.

  14. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  15. On the identifiability of inertia parameters of planar Multi-Body Space Systems

    Science.gov (United States)

    Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2018-04-01

    This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.

  16. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters

    Science.gov (United States)

    Werner, René

    2017-01-01

    Radiotherapy of lung and liver lesions has changed from normofractioned 3D-CRT to stereotactic treatment in a single or few fractions, often employing volumetric arc therapy (VMAT)-based techniques. Potential unintended interference of respiratory target motion and dynamically changing beam parameters during VMAT dose delivery motivates establishing 4D quality assurance (4D QA) procedures to assess appropriateness of generated VMAT treatment plans when taking into account patient-specific motion characteristics. Current approaches are motion phantom-based 4D QA and image-based 4D VMAT dose simulation. Whereas phantom-based 4D QA is usually restricted to a small number of measurements, the computational approaches allow simulating many motion scenarios. However, 4D VMAT dose simulation depends on various input parameters, influencing estimated doses along with mitigating simulation reliability. Thus, aiming at routine use of simulation-based 4D VMAT QA, the impact of such parameters as well as the overall accuracy of the 4D VMAT dose simulation has to be studied in detail–which is the topic of the present work. In detail, we introduce the principles of 4D VMAT dose simulation, identify influencing parameters and assess their impact on 4D dose simulation accuracy by comparison of simulated motion-affected dose distributions to corresponding dosimetric motion phantom measurements. Exploiting an ITV-based treatment planning approach, VMAT treatment plans were generated for a motion phantom and different motion scenarios (sinusoidal motion of different period/direction; regular/irregular motion). 4D VMAT dose simulation results and dose measurements were compared by local 3% / 3 mm γ-evaluation, with the measured dose distributions serving as ground truth. Overall γ-passing rates of simulations and dynamic measurements ranged from 97% to 100% (mean across all motion scenarios: 98% ± 1%); corresponding values for comparison of different day repeat measurements were

  17. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations.

    Science.gov (United States)

    Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J

    2011-09-01

    When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Task parameters affecting ergonomic demands and productivity of HVAC duct installation.

    Science.gov (United States)

    Mitropoulos, Panagiotis; Hussain, Sanaa; Guarascio-Howard, Linda; Memarian, Babak

    2014-01-01

    Mechanical installation workers experience work-related musculoskeletal disorders (WMSDs) at high rates. (1) Quantify the ergonomic demands during HVAC installation, (2) identify the tasks and task parameters that generated extreme ergonomic demands, and (3) propose improvements to reduce the WMSDs among mechanical workers. The study focused on installation of rectangular ductwork components using ladders, and analyzed five operations by two mechanical contractors. Using continuous time observational assessment, the videotaped operations were analyzed along two dimensions: (1) the production tasks and durations, and (2) the ergonomic demands for four body regions (neck, arms/shoulders, back, and knees). The analysis identified tasks with low portion of productive time and high portion of extreme postures, and task parameters that generated extreme postures. Duct alignment was the task with the highest portion of extreme postures. The position of the ladder (angle and distance from the duct) was a task parameter that strongly influenced the extreme postures for back, neck and shoulders. Other contributing factors included the difficulty to reach the hand tools when working on the ladder, the congestion of components in the ceiling, and the space between the duct and the ceiling. The identified tasks and factors provide directions for improvement.

  19. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    International Nuclear Information System (INIS)

    George, L.L.; O'Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures

  20. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    Energy Technology Data Exchange (ETDEWEB)

    George, L.L.; O' Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures.

  1. An analysis of parameters affecting slapdown of transportation packages

    International Nuclear Information System (INIS)

    Bergmann, V.L.; Ammerman, D.J.

    1991-01-01

    Several parameters affecting the accelerations experienced by packages for the transport of nuclear material during eccentric impact are evaluated. Eccentric impact on one end of a cask causes rotation leading to secondary impact, referred to as slapdown, at the other end. In a slapdown event, the rotational acceleration during the primary impact can cause accelerations at the nose and tail which are greater than those during a side-on impact. Slapdown can also cause acceleration at the tail during the secondary impact to be more severe than at the nose during primary impact. Both of these effects are investigated for two casks geometries. Other parameters evaluated are the characteristics of impact limiters and friction between the impact limiter the impacted surface. Results were obtained using SLAPDOWN, a code which models the impact response of deformable bodies. 2 refs., 11 figs

  2. Identifying factors affecting optimal management of agricultural water

    Directory of Open Access Journals (Sweden)

    Masoud Samian

    2015-01-01

    In addition to quantitative methodology such as descriptive statistics and factor analysis a qualitative methodology was employed for dynamic simulation among variables through Vensim software. In this study, the factor analysis technique was used through the Kaiser-Meyer-Olkin (KMO and Bartlett tests. From the results, four key elements were identified as factors affecting the optimal management of agricultural water in Hamedan area. These factors were institutional and legal factors, technical and knowledge factors, economic factors and social factors.

  3. A modified Leslie-Gower predator-prey interaction model and parameter identifiability

    Science.gov (United States)

    Tripathi, Jai Prakash; Meghwani, Suraj S.; Thakur, Manoj; Abbas, Syed

    2018-01-01

    In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.

  4. Parameters affecting tooth loss during periodontal maintenance in a Greek population.

    Science.gov (United States)

    Tsami, Alexandra; Pepelassi, Eudoxie; Kodovazenitis, George; Komboli, Mado

    2009-09-01

    Investigators have evaluated predictive parameters of tooth loss during the maintenance phase (MP). The authors conducted a retrospective study to evaluate the rate of tooth loss and to explore the parameters that affect tooth loss during MP in a Greek population. A periodontist administered periodontal treatment and maintenance care to 280 participants with severe periodontitis for a mean period +/- standard deviation of 10.84 +/- 2.13 years. The periodontist recorded the following parameters for each participant: oral hygiene index level, simplified gingival index level, clinical attachment level, probing depth measurements, initial tooth prognosis, smoking status, tooth loss during active periodontal treatment and MP, and compliance with suggested maintenance visits. The authors found that total tooth loss during active treatment (n = 1,427) was greater than during MP (n = 918) and was associated with the initial tooth prognosis, tooth type group, participants' compliance with suggested maintenance visits, smoking status and acceptability of the quality of tooth restorations. Most of the teeth extracted during maintenance had an initial guarded prognosis (n = 612). Participants whose compliance was erratic had a greater risk of undergoing tooth extraction than did participants whose compliance was complete. Participants' initial tooth prognosis, tooth type, compliance with suggested maintenance visits and smoking status affected tooth loss during MP. Initial guarded prognosis and erratic compliance increased the risk of undergoing tooth extraction during maintenance. Determining predictive parameters for disease progression and tooth loss provides critical information to clinicians so that they can develop and implement rational treatment planning.

  5. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer

    Science.gov (United States)

    Lee, Jin-Yong; Cheon, Jeong-Yong; Lee, Kang-Kun; Lee, Seok-Young; Lee, Min-Hyo

    2001-07-01

    The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.

  6. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Yiqing Guan

    2013-01-01

    Full Text Available Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents.

  7. Applying the Taguchi Method for Investigating the Phase-Locked Loop Dynamics Affected by Hybrid Storage System Parameters

    Directory of Open Access Journals (Sweden)

    Mostafa Ahmadzadeh

    2018-01-01

    Full Text Available Storage systems play an important role in performance of micro-grids. Storage systems may decrease fluctuations caused by periodic and unpredictable nature of distributed generation resource. Some micro-grids are connected to the network via a grid-interface converter. The phase-locked loop (PLL is a commonly technique for the grid synchronization of network-connected converters. Various parameters affect the stability of PLL (including the network-side and microgrid-side parameters. The effect of the micro-grid-side parameters on the stability of the PLL has not been studied so far. In this paper, the stability of PLL influenced by microgrid-side parameters has been evaluated after a detailed analytical modeling of micro-grid components (including the production power fluctuations, energy storage system, microgrid-side loads, controller parameters etc.. This paper proposes two new stability analysis criteria for PLL affected by micro-grid and hybrid storage system parameters. Using proposed criteria for stability of PLL, optimized rate of micro-grid and hybrid storage system parameters are obtained using statistical methods (Taguchi approach. Finally, behavior of PLL affected by hybrid storage system is investigated. The simulation results and eigenvalues analysis confirm the theoretical analysis and proposed criteria.

  8. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA.

    Directory of Open Access Journals (Sweden)

    Orr Ashenberg

    2017-03-01

    Full Text Available The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP. Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors.

  9. Studies of Some Parameters Affecting The Efficiency and Accuracy of The Neutron Activation Analysis Technique

    International Nuclear Information System (INIS)

    Abdel-Haleem, A.S.; Zaghloul, R.A.; Sroor, A.; Abdel Sabour, M.F.

    2000-01-01

    The present studies deal with the optimum physical conditions which seriously affect the neutron activation analysis technique efficiency. An experimental work for the efficiency calibration of hyper pure germanium detectors especially for environmental studies is presented. This work showed that the tested parameters, under consideration, distance, mass and measured time, reveal a significant effect on the obtained data. These results, intern, affect the accuracy of the measurements. Further work on the test of other parameters is planned in our laboratory using special treatments and applying special computer programs

  10. Identifying parameter regions for multistationarity

    DEFF Research Database (Denmark)

    Conradi, Carsten; Feliu, Elisenda; Mincheva, Maya

    2017-01-01

    is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell...

  11. The investigation of parameters affecting boron removal by electrocoagulation method

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Keskinler, Buelent

    2005-01-01

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm 2 . The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl 2 . Added CaCl 2 increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions

  12. Biased sampling, over-identified parameter problems and beyond

    CERN Document Server

    Qin, Jing

    2017-01-01

    This book is devoted to biased sampling problems (also called choice-based sampling in Econometrics parlance) and over-identified parameter estimation problems. Biased sampling problems appear in many areas of research, including Medicine, Epidemiology and Public Health, the Social Sciences and Economics. The book addresses a range of important topics, including case and control studies, causal inference, missing data problems, meta-analysis, renewal process and length biased sampling problems, capture and recapture problems, case cohort studies, exponential tilting genetic mixture models etc. The goal of this book is to make it easier for Ph. D students and new researchers to get started in this research area. It will be of interest to all those who work in the health, biological, social and physical sciences, as well as those who are interested in survey methodology and other areas of statistical science, among others. .

  13. Identifiability of parameters and behaviour of the MCMC chains: a case study using the reaction norm model

    DEFF Research Database (Denmark)

    Shariati, M M; Korsgaard, I R; Sorensen, D

    2009-01-01

    model with unknown covariates (RNUC) is a model in which unknown environmental effects can be inferred jointly with the remaining parameters. The problem of identifiability of parameters at the level of the likelihood and the associated behaviour of MCMC chains were discussed using the RNUC...... as fixed and there are other fixed factors in the model, the contrasts involving environmental effects, the variance of environmental sensitivities (genetic slopes) and the residual variance are the only identifiable parameters. These different identifiability scenarios were generated by changing...... as an example. It was shown theoretically that when environmental effects (covariates) are considered as random effects, estimable functions of the fixed effects, (co)variance components and genetic effects are identifiable as well as the environmental effects. When the environmental effects are treated...

  14. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    Science.gov (United States)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  15. Does correlated color temperature affect the ability of humans to identify veins?

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Clemmensen, Line Katrine Harder; Petersen, Paul Michael

    2016-01-01

    In the present study we provide empirical evidence and demonstrate statistically that white illumination settings can affect the human ability to identify veins in the inner hand vasculature. A special light-emitting diode lamp with high color rendering index (CRI 84–95) was developed and the eff......In the present study we provide empirical evidence and demonstrate statistically that white illumination settings can affect the human ability to identify veins in the inner hand vasculature. A special light-emitting diode lamp with high color rendering index (CRI 84–95) was developed...... and the effect of correlated color temperature was evaluated, in the range between 2600 and 5700 K at an illuminance of 40 9 lx on the ability of adult humans to identify veins. It is shown that the ability to identify veins can, on average, be increased up to 24% when white illumination settings that do...... not resemble incandescent light are applied. The illuminance reported together with the effect of white illumination settings on direct visual perception of biosamples are relevant for clinical investigations during the night. © 2015 Optical Society of America...

  16. Parameters affecting the life cycle performance of PV technologies and systems

    International Nuclear Information System (INIS)

    Pacca, Sergio; Sivaraman, Deepak; Keoleian, Gregory A.

    2007-01-01

    This paper assesses modeling parameters that affect the environmental performance of two state-of-the-art photovoltaic (PV) electricity generation technologies: the PVL136 thin film laminates and the KC120 multi-crystalline modules. We selected three metrics to assess the modules' environmental performance, which are part of an actual 33 kW installation in Ann Arbor, MI. The net energy ratio (NER), the energy pay back time (E-PBT), and the CO 2 emissions are calculated using process based LCA methods. The results reveal some of the parameters, such as the level of solar radiation, the position of the modules, the modules' manufacturing energy intensity and its corresponding fuel mix, and the solar radiation conversion efficiency of the modules, which affect the final analytical results. A sensitivity analysis shows the effect of selected parameters on the final results. For the baseline scenario, the E-PBT for the PVL136 and KC120 are 3.2 and 7.5 years, respectively. When expected future conversion efficiencies are tested, the E-PBT is 1.6 and 5.7 years for the PVL136 and the KC120, respectively. Based on the US fuel mix, the CO 2 emissions for the PVL136 and the KC120 are 34.3 and 72.4 g of CO 2 /kW h, respectively. The most effective way to improve the modules' environmental performance is to reduce the energy input in the manufacturing phase of the modules, provided that other parameters remain constant. Consequently, the use of PV as an electricity source during PV manufacturing is also assessed. The NER of the supplier PV is key for the performance of this scheme. The results show that the NER based on a PV system can be 3.7 times higher than the NER based on electricity supplied by the traditional grid mix, and the CO 2 emissions can be reduced by 80%

  17. Methodology for identifying parameters for the TRNSYS model Type 210 - wood pellet stoves and boilers

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Tomas; Fiedler, Frank; Nordlander, Svante

    2006-05-15

    This report describes a method how to perform measurements on boilers and stoves and how to identify parameters from the measurements for the boiler/stove-model TRNSYS Type 210. The model can be used for detailed annual system simulations using TRNSYS. Experience from measurements on three different pellet stoves and four boilers were used to develop this methodology. Recommendations for the set up of measurements are given and the required combustion theory for the data evaluation and data preparation are given. The data evaluation showed that the uncertainties are quite large for the measured flue gas flow rate and for boilers and stoves with high fraction of energy going to the water jacket also the calculated heat rate to the room may have large uncertainties. A methodology for the parameter identification process and identified parameters for two different stoves and three boilers are given. Finally the identified models are compared with measured data showing that the model generally agreed well with measured data during both stationary and dynamic conditions.

  18. The investigation of parameters affecting boron removal by electrocoagulation method

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, 25240, Atatuerk University, Faculty of Engineering Erzurum (Turkey); Keskinler, Buelent [Department of Environmental Engineering, Gebze Institute of Technology, Gebze/Kocaeli 41400 (Turkey)

    2005-10-17

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm{sup 2}. The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl{sub 2}. Added CaCl{sub 2} increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions.

  19. Study of design parameters affecting the motion of DNA for nanoinjection

    International Nuclear Information System (INIS)

    David, Regis A; Jensen, Brian D; Howell, Larry L; Black, Justin L; Burnett, Sandra H

    2012-01-01

    This paper reports the effects of various parameters on the attraction and repulsion of DNA to and from a silicon lance. An understanding of DNA motion is crucial for a new approach to insert DNA, or other foreign microscopic matter, into a living cell. The approach, called nanoinjection, uses electrical forces to attract and repel the desired substance to a micromachined lance designed to pierce the cell membranes. We have developed mathematical models to predict the trajectory of DNA. The mathematical model allows investigation of the attraction/repulsion process by varying specific parameters. We find that the ground electrode placement, lance orientation and lance penetration significantly affect attraction or repulsion efficiency, while the gap, lance direction, lance tip width, lance tip half-angle and lance tip height do not. (paper)

  20. ANALYSIS OF PARAMETERS AFFECTING THE QUALITY OF A CUTTING MACHINE

    Directory of Open Access Journals (Sweden)

    Iveta Onderová

    2014-02-01

    Full Text Available The quality of cutting machines is affected by several factors that can be directly or indirectly influenced by manufacturers, technicians and users of machine tools. The most critical qualitative evaluation parameters of machine tools include accuracy and stability. Investigations of accuracy and repeatable positioning accuracy were essential for the research presented in this paper. The aim was to develop and experimentally verify the design of a methodology for cutting centers aimed at achieving the desired working precision. Before working on the topic described here, it was necessary to make several scientific analyses, which are summarized in this paper. We can build on the initial working hypothesis that by improving the technological parameters (e.g. by increasing the working speed of the machine, or by improving the precision of the positioning the quality of the cutting machine will also be improved. For the purposes of our study, several investigated parameters were set affecting positioning accuracy, such as rigidity, positioning speed, etc. First, the stiffness of the portal structure of the cutting machine was analyzed. FEM analysis was used to investigate several alternative structures of the cutting machine, and also an innovative solution for beam mounting. The second step was to integrate two types of drives into the design of the cutting machine. The first drive is a classic rack and pinion drive for cutting machines. To increase (improve the working speed of the machine, linear motors were designed as an alternative drive. The portal of the cutting machine was designed for a working speed of 260mmin−1 and acceleration of 25 m. s−2. The third step was based on the results of the analysis. In collaboration with Microstep, an experimental cutting machine in a portal version was produced using linear synchronous motors driving the portal on both sides, and with direct linear metering of its position. In the fourth step, an

  1. Parameter sensitivity and identifiability for a biogeochemical model of hypoxia in the northern Gulf of Mexico

    Science.gov (United States)

    Local sensitivity analyses and identifiable parameter subsets were used to describe numerical constraints of a hypoxia model for bottom waters of the northern Gulf of Mexico. The sensitivity of state variables differed considerably with parameter changes, although most variables ...

  2. Parameters affecting mechanical and thermal responses in bone drilling: A review.

    Science.gov (United States)

    Lee, JuEun; Chavez, Craig L; Park, Joorok

    2018-04-11

    Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An approach to identify issues affecting ERP implementation in Indian SMEs

    Directory of Open Access Journals (Sweden)

    Rana Basu

    2012-06-01

    Full Text Available Purpose: The purpose of this paper is to present the findings of a study which is based on the results of a comprehensive compilation of literature and subsequent analysis of ERP implementation success issues in context to Indian Small and Medium scale Enterprises (SME’s. This paper attempts to explore the existing literature and highlight those issues on ERP implementation and further to this the researchers applied TOPSIS (Technique for order preference by similarity to ideal solution method to prioritize issues affecting successful implementation of ERP. Design/methodology/approach: Based on the literature review certain issues leading to successful ERP implementation have been identified and to identify key issues Pareto Analysis (80-20 Rule have been applied. Further to extraction of key issues a survey based on TOPSIS was carried out in Indian small and medium scale enterprises. Findings: Based on review of literature 25 issues have been identified and further Pareto analysis has been done to extract key issues which is further prioritized by applying Topsis method. Research limitations/implications: Beside those identified issues there may be other issues that need to be explored. There is scope to enhance this study by taking into consideration different type of industries and by extending number of respondents. Practical implications: By identifying key issues for SMEs, managers can better prioritize issues to make implementation process smooth without disruption. ERP vendors can take inputs from this study to change their implementation approach while targeting small scale enterprises. Originality/value: There is no published literature available which followed a similar approach in identification of the critical issues affecting ERP in small and mid-sized companies in India or in any developing economy.

  4. Process parameters affecting the delignification of eucalyptus kraft pulp with peroxyacetic acid

    Directory of Open Access Journals (Sweden)

    Chandranupap, P.

    2004-11-01

    Full Text Available Various process parameters affecting eucalyptus kraft pulp delignification with peroxyacetic acid were investigated. The results showed that pH was an important factor. The delignification rate increased with increasing pH to the value of 6. High delignification rate was obtained when the pulp was chelated with Na4-EDTA prior to the peroxyacetic acid stage. Therefore, delignification reaction rate depends on peroxyacid charge, temperature, pH and metal content of pulp.

  5. Affection mechanism research of initiation crack pressure of perforation parameters of horizontal well

    Directory of Open Access Journals (Sweden)

    Hua Tong

    2016-09-01

    Full Text Available Horizontal wells show better affect and higher success rate in low water ratio cement, complex fracture zone, crevice and heavy oil blocks, it is the main measures to expand control area of a single well. Hydraulic fracturing technology is the most financial way to improve the penetration of the reservoir to increase the production. However, compare with the vertical wells, the fracture of Horizontal wells are more complex, and lead to the initiation crack pressure is much higher than vertical wells. In this paper, defined the crack judging basis, and established the finite element model which could compute the initial crack pressure, to research the affection mechanism of perforation azimuth angle, density, diameter and depth, to provide references of perforation project's design and optimize. The research of this paper has significances on further understanding the affection mechanism of perforation parameters.

  6. Hemato-biochemical parameters of Pesti-des Petits Ruminants (PPR affected goats in Chittagong, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Saiful Bari

    2018-06-01

    Materials and methods: A presumptive diagnosis of PPR was done based on clinical signs and symptoms. A structured record keeping sheet was used for the estimation of prevalence and risk factors of PPR in goat. A total of 103 blood samples were collected randomly and analyzed for hemato–biochemical parameters using automated hemo-analyzer. Results: Out of 103 cases, Black Bengal (59% and young goats aging minimum-12 months (43.85% were recognized as highly susceptible to PPR disease. Strong association was found among all the three factors such as age, breed and sex (RR>1. All the values of hematological parameters such as TEC, TLC, Hb, PCV, and DLC were decreased in PPR affected goat as compared to healthy goats except lymphocyte counts, which was increased significantly (P=0.00. The amount of total protein (3.15 gm/L and albumin (16.88 gm/L were reduced drastically in PPR affected goats. Conclusion: The lymphocyte content in blood was significantly increased where as the total protein and albumin percent were decreased in the goats affected with PPR. Moreover, this variation in blood profile due to PPR virus infected in goat might be a good indicator in this disease diagnosis. [J Adv Vet Anim Res 2018; 5(2.000: 211-217

  7. Identifying and assessing the factors affecting skill gap in digital marketing in communication industry companies

    Directory of Open Access Journals (Sweden)

    Fereshteh Ghotbifar

    2017-03-01

    Full Text Available As far as new communication channels are concerned, there have been extensive developments in communications and marketing in digital era. Today, therefore, companies try to take advantage of digital marketing channels to provide suitable services to customers to improve their satisfaction level. However, this study aimed to identify and assess factors affecting skill gap in digital marketing. This was descriptive correlation study. The population consisted of experts in communications industry to identify most important skill gaps in digital marketing and factors affecting them; also, managers and specialists of these companies were investigated to determine the role of identified factors in reducing skills gaps. Using localized questionnaire and interviewing with ten experts who were selected by Delphi snowball method, the skill gaps in marketing and factors affecting them were identified. Also, a researcher made questionnaire with 32 questions was distributed among 226 employees to investigate the identified factors role in reducing skills gap in digital marketing. The results showed that from four identified factors, the components including operational strategic factors and environmental factors had direct and positive impact on creating skill gap in digital marketing of studied companies. The environmental factors such as social and cultural conditions, religion, technology, and economy had more proactive impact on skills gap in digital marketing. Also, the results showed that among skills gaps in digital marketing of studied companies, the skills (Principles of Communication and (Predicting Future had the highest and lowest gaps, respectively.

  8. Comment on “Two statistics for evaluating parameter identifiability and error reduction” by John Doherty and Randall J. Hunt

    Science.gov (United States)

    Hill, Mary C.

    2010-01-01

    Doherty and Hunt (2009) present important ideas for first-order-second moment sensitivity analysis, but five issues are discussed in this comment. First, considering the composite-scaled sensitivity (CSS) jointly with parameter correlation coefficients (PCC) in a CSS/PCC analysis addresses the difficulties with CSS mentioned in the introduction. Second, their new parameter identifiability statistic actually is likely to do a poor job of parameter identifiability in common situations. The statistic instead performs the very useful role of showing how model parameters are included in the estimated singular value decomposition (SVD) parameters. Its close relation to CSS is shown. Third, the idea from p. 125 that a suitable truncation point for SVD parameters can be identified using the prediction variance is challenged using results from Moore and Doherty (2005). Fourth, the relative error reduction statistic of Doherty and Hunt is shown to belong to an emerging set of statistics here named perturbed calculated variance statistics. Finally, the perturbed calculated variance statistics OPR and PPR mentioned on p. 121 are shown to explicitly include the parameter null-space component of uncertainty. Indeed, OPR and PPR results that account for null-space uncertainty have appeared in the literature since 2000.

  9. Identifying the Factors Affecting Science and Mathematics Achievement Using Data Mining Methods

    Science.gov (United States)

    Kiray, S. Ahmet; Gok, Bilge; Bozkir, A. Selman

    2015-01-01

    The purpose of this article is to identify the order of significance of the variables that affect science and mathematics achievement in middle school students. For this aim, the study deals with the relationship between science and math in terms of different angles using the perspectives of multiple causes-single effect and of multiple…

  10. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H. [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH{sub T} was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle.

  11. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    International Nuclear Information System (INIS)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H.

    2016-01-01

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH_T was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle

  12. Investigation of parameters affecting the online combination of supercritical fluid extraction with capillary gas chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1996-01-01

    Two different injectors, a split/splitless injector and a programmed temperature vaporizer (PTV) injector were investigated as the interface in on-line supercritical fluid extraction (SFE)-capillary gas chromatography (cGC). The parameters affecting the chromatographic peak shapes as well as the

  13. TH-C-18A-09: Exam and Patient Parameters Affecting the DNA Damage Response Following CT Studies

    International Nuclear Information System (INIS)

    Elgart, S; Adibi, A; Bostani, M; Ruehm, S; Enzmann, D; McNitt-Gray, M; Iwamoto, K

    2014-01-01

    Purpose: To identify exam and patient parameters affecting the biological response to CT studies using in vivo and ex vivo blood samples. Methods: Blood samples were collected under IRB approval from 16 patients undergoing clinically-indicated CT exams. Blood was procured prior to, immediately after and 30minutes following irradiation. A sample of preexam blood was placed on the patient within the exam region for ex vivo analysis. Whole blood samples were fixed immediately following collection and stained for γH2AX to assess DNA damage response (DDR). Median fluorescence of treated samples was compared to non-irradiated control samples for each patient. Patients were characterized by observed biological kinetic response: (a) fast — phosphorylation increased by 2minutes and fell by 30minutes, (b) slow — phosphorylation continued to increase to 30minutes and (c) none — little change was observed or irradiated samples fell below controls. Total dose values were normalized to exam time for an averaged dose-rate in dose/sec for each exam. Relationships between patient biological responses and patient and exam parameters were investigated. Results: A clearer dose response at 30minutes is observed for young patients (<61yoa; R2>0.5) compared to old patients (>61yoa; R 2 <0.11). Fast responding patients were significantly younger than slow responding patients (p<0.05). Unlike in vivo samples, age did not significantly affect the patient response ex vivo. Additionally, fast responding patients received exams with significantly smaller dose-rate than slow responding patients (p<0.05). Conclusion: Age is a significant factor in the biological response suggesting that DDR may be more rapid in a younger population and slower as the population ages. Lack of an agerelated response ex vivo suggests a systemic response to radiation not present when irradiated outside the body. Dose-rate affects the biological response suggesting that patient response may be related to scan

  14. Working parameters affecting earth-air heat exchanger (EAHE) system performance for passive cooling: A review

    Science.gov (United States)

    Darius, D.; Misaran, M. S.; Rahman, Md. M.; Ismail, M. A.; Amaludin, A.

    2017-07-01

    The study on the effect of the working parameters such as pipe material, pipe length, pipe diameter, depth of burial of the pipe, air flow rate and different types of soils on the thermal performance of earth-air heat exchanger (EAHE) systems is very crucial to ensure that thermal comfort can be achieved. In the past decade, researchers have performed studies to develop numerical models for analysis of EAHE systems. Until recently, two-dimensional models replaced the numerical models in the 1990s and in recent times, more advanced analysis using three-dimensional models, specifically the Computational Fluid Dynamics (CFD) simulation in the analysis of EAHE system. This paper reviews previous models used to analyse the EAHE system and working parameters that affects the earth-air heat exchanger (EAHE) thermal performance as of February 2017. Recent findings on the parameters affecting EAHE performance are also presented and discussed. As a conclusion, with the advent of CFD methods, investigational work have geared up to modelling and simulation work as it saves time and cost. Comprehension of the EAHE working parameters and its effect on system performance is largely established. However, the study on type of soil and its characteristics on the performance of EAHEs systems are surprisingly barren. Therefore, future studies should focus on the effect of soil characteristics such as moisture content, density of soil, and type of soil on the thermal performance of EAHEs system.

  15. Different parameter and technique affecting the rate of evaporation on active solar still -a review

    Science.gov (United States)

    A, Muthu Manokar; D, Prince Winston; A. E, Kabeel; Sathyamurthy, Ravishankar; T, Arunkumar

    2018-03-01

    Water is one of the essential sources for the endurance of human on the earth. As earth having only a small amount of water resources for consumption purpose people in rural and urban areas are getting affected by consuming dirty water that leads to water-borne diseases. Even though ground water is available in small quantity, it has to be treated properly before its use for internal consumption. Brackish water contains dissolve and undissolved contents, and hence it is not suitable for the household purpose. Nowadays, distillation process is done by using passive and active solar stills. The major problem in using passive solar still is meeting higher demand for fresh water. The fresh water production from passive solar still is critically low to meet the demand. To improve the productivity of conventional solar still, input feed water is preheated by integrating the solar still to different collector panels. In this review article, the different parameters that affect the rate of evaporation in an active solar still and the different methods incorporated has been presented. In addition to active distillation system, forced convection technique can be incorporated to increase the yield of fresh water by decreasing the temperature of cover. Furthermore, it is identified that the yield of fresh water from the active desalination system can be improved by sensible and latent heat energy storage. This review will motivate the researchers to decide appropriate active solar still technology for promoting development.

  16. An Investigation of TIG welding parameters on microhardness and microstructure of heat affected zone of HSLA steel

    Science.gov (United States)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2018-01-01

    Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.

  17. Identifying Generalizable Image Segmentation Parameters for Urban Land Cover Mapping through Meta-Analysis and Regression Tree Modeling

    Directory of Open Access Journals (Sweden)

    Brian A. Johnson

    2018-01-01

    Full Text Available The advent of very high resolution (VHR satellite imagery and the development of Geographic Object-Based Image Analysis (GEOBIA have led to many new opportunities for fine-scale land cover mapping, especially in urban areas. Image segmentation is an important step in the GEOBIA framework, so great time/effort is often spent to ensure that computer-generated image segments closely match real-world objects of interest. In the remote sensing community, segmentation is frequently performed using the multiresolution segmentation (MRS algorithm, which is tuned through three user-defined parameters (the scale, shape/color, and compactness/smoothness parameters. The scale parameter (SP is the most important parameter and governs the average size of generated image segments. Existing automatic methods to determine suitable SPs for segmentation are scene-specific and often computationally intensive, so an approach to estimating appropriate SPs that is generalizable (i.e., not scene-specific could speed up the GEOBIA workflow considerably. In this study, we attempted to identify generalizable SPs for five common urban land cover types (buildings, vegetation, roads, bare soil, and water through meta-analysis and nonlinear regression tree (RT modeling. First, we performed a literature search of recent studies that employed GEOBIA for urban land cover mapping and extracted the MRS parameters used, the image properties (i.e., spatial and radiometric resolutions, and the land cover classes mapped. Using this data extracted from the literature, we constructed RT models for each land cover class to predict suitable SP values based on the: image spatial resolution, image radiometric resolution, shape/color parameter, and compactness/smoothness parameter. Based on a visual and quantitative analysis of results, we found that for all land cover classes except water, relatively accurate SPs could be identified using our RT modeling results. The main advantage of our

  18. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  19. Bootstrap analysis of designed experiments for reliability improvement with a non-constant scale parameter

    International Nuclear Information System (INIS)

    Wang, Guodong; He, Zhen; Xue, Li; Cui, Qingan; Lv, Shanshan; Zhou, Panpan

    2017-01-01

    Factors which significantly affect product reliability are of great interest to reliability practitioners. This paper proposes a bootstrap-based methodology for identifying significant factors when both location and scale parameters of the smallest extreme value distribution vary over experimental factors. An industrial thermostat experiment is presented, analyzed, and discussed as an illustrative example. The analysis results show that 1) the misspecification of a constant scale parameter may lead to misidentify spurious effects; 2) the important factors identified by different bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping) are different; 3) the number of factors affecting 10th percentile lifetime significantly is less than the number of important factors identified at 63.21th percentile. - Highlights: • Product reliability is improved by design of experiments under both scale and location parameters of smallest extreme value distribution vary with experimental factors. • A bootstrap-based methodology is proposed to identify important factors which affect 100pth lifetime percentile significantly. • Bootstrapping confidence intervals associating experimental factors are obtained by using three bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping). • The important factors identified by different bootstrap methods are different. • The number of factors affecting 10th percentile significantly is less than the number of important factors identified at 63.21th percentile.

  20. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  1. Modeling of mouse eye and errors in ocular parameters affecting refractive state

    Science.gov (United States)

    Bawa, Gurinder

    Rodents eye are particularly used to study refractive error state of an eye and development of refractive eye. Genetic organization of rodents is similar to that of humans, which makes them interesting candidates to be researched upon. From rodents family mice models are encouraged over rats because of availability of genetically engineered models. Despite of extensive work that has been performed on mice and rat models, still no one is able to quantify an optical model, due to variability in the reported ocular parameters. In this Dissertation, we have extracted ocular parameters and generated schematics of eye from the raw data from School of Medicine, Detroit. In order to see how the rays would travel through an eye and the defects associated with an eye; ray tracing has been performed using ocular parameters. Finally we have systematically evaluated the contribution of various ocular parameters, such as radii of curvature of ocular surfaces, thicknesses of ocular components, and refractive indices of ocular refractive media, using variational analysis and a computational model of the rodent eye. Variational analysis revealed that variation in all the ocular parameters does affect the refractive status of the eye, but depending upon the magnitude of the impact those parameters are listed as critical or non critical. Variation in the depth of the vitreous chamber, thickness of the lens, radius of the anterior surface of the cornea, radius of the anterior surface of the lens, as well as refractive indices for the lens and vitreous, appears to have the largest impact on the refractive error and thus are categorized as critical ocular parameters. The radii of the posterior surfaces of the cornea and lens have much smaller contributions to the refractive state, while the radii of the anterior and posterior surfaces of the retina have no effect on the refractive error. These data provide the framework for further refinement of the optical models of the rat and mouse

  2. Affective State Influences Perception by Affecting Decision Parameters Underlying Bias and Sensitivity

    OpenAIRE

    Lynn, Spencer K.; Zhang, Xuan; Barrett, Lisa Feldman

    2012-01-01

    Studies of the effect of affect on perception often show consistent directional effects of a person’s affective state on perception. Unpleasant emotions have been associated with a “locally focused” style of stimulus evaluation, and positive emotions with a “globally focused” style. Typically, however, studies of affect and perception have not been conducted under the conditions of perceptual uncertainty and behavioral risk inherent to perceptual judgments outside the laboratory. We investiga...

  3. Affective state influences perception by affecting decision parameters underlying bias and sensitivity.

    Science.gov (United States)

    Lynn, Spencer K; Zhang, Xuan; Barrett, Lisa Feldman

    2012-08-01

    Studies of the effect of affect on perception often show consistent directional effects of a person's affective state on perception. Unpleasant emotions have been associated with a "locally focused" style of stimulus evaluation, and positive emotions with a "globally focused" style. Typically, however, studies of affect and perception have not been conducted under the conditions of perceptual uncertainty and behavioral risk inherent to perceptual judgments outside the laboratory. We investigated the influence of perceivers' experienced affect (valence and arousal) on the utility of social threat perception by combining signal detection theory and behavioral economics. We compared 3 perceptual decision environments that systematically differed with respect to factors that underlie uncertainty and risk: the base rate of threat, the costs of incorrect identification threat, and the perceptual similarity of threats and nonthreats. We found that no single affective state yielded the best performance on the threat perception task across the 3 environments. Unpleasant valence promoted calibration of response bias to base rate and costs, high arousal promoted calibration of perceptual sensitivity to perceptual similarity, and low arousal was associated with an optimal adjustment of bias to sensitivity. However, the strength of these associations was conditional upon the difficulty of attaining optimal bias and high sensitivity, such that the effect of the perceiver's affective state on perception differed with the cause and/or level of uncertainty and risk.

  4. Reducing uncertainty at minimal cost: a method to identify important input parameters and prioritize data collection

    NARCIS (Netherlands)

    Uwizeye, U.A.; Groen, E.A.; Gerber, P.J.; Schulte, Rogier P.O.; Boer, de I.J.M.

    2016-01-01

    The study aims to illustrate a method to identify important input parameters that explain most of the output variance ofenvironmental assessment models. The method is tested for the computation of life-cycle nitrogen (N) use efficiencyindicators among mixed dairy production systems in Rwanda. We

  5. Histogram analysis parameters identify multiple associations between DWI and DCE MRI in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Meyer, Hans Jonas; Leifels, Leonard; Schob, Stefan; Garnov, Nikita; Surov, Alexey

    2018-01-01

    Nowadays, multiparametric investigations of head and neck squamous cell carcinoma (HNSCC) are established. These approaches can better characterize tumor biology and behavior. Diffusion weighted imaging (DWI) can by means of apparent diffusion coefficient (ADC) quantitatively characterize different tissue compartments. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) reflects perfusion and vascularization of tissues. Recently, a novel approach of data acquisition, namely histogram analysis of different images is a novel diagnostic approach, which can provide more information of tissue heterogeneity. The purpose of this study was to analyze possible associations between DWI, and DCE parameters derived from histogram analysis in patients with HNSCC. Overall, 34 patients, 9 women and 25 men, mean age, 56.7±10.2years, with different HNSCC were involved in the study. DWI was obtained by using of an axial echo planar imaging sequence with b-values of 0 and 800s/mm 2 . Dynamic T1w DCE sequence after intravenous application of contrast medium was performed for estimation of the following perfusion parameters: volume transfer constant (K trans ), volume of the extravascular extracellular leakage space (Ve), and diffusion of contrast medium from the extravascular extracellular leakage space back to the plasma (Kep). Both ADC and perfusion parameters maps were processed offline in DICOM format with custom-made Matlab-based application. Thereafter, polygonal ROIs were manually drawn on the transferred maps on each slice. For every parameter, mean, maximal, minimal, and median values, as well percentiles 10th, 25th, 75th, 90th, kurtosis, skewness, and entropy were estimated. Сorrelation analysis identified multiple statistically significant correlations between the investigated parameters. Ve related parameters correlated well with different ADC values. Especially, percentiles 10 and 75, mode, and median values showed stronger correlations in comparison to other

  6. Comparison of parameters affecting GNP-loaded choroidal melanoma dosimetry; Monte Carlo study

    Science.gov (United States)

    Sharabiani, Marjan; Asadi, Somayeh; Barghi, Amir Rahnamai; Vaezzadeh, Mehdi

    2018-04-01

    The current study reports the results of tumor dosimetry in the presence of gold nanoparticles (GNPs) with different sizes and concentrations. Due to limited number of works carried out on the brachytherapy of choroidal melanoma in combination with GNPs, this study was performed to determine the optimum size and concentration for GNPs which contributes the highest dose deposition in tumor region, using two phantom test cases namely water phantom and a full Monte Carlo model of human eye. Both water and human eye phantoms were simulated with MCNP5 code. Tumor dosimetry was performed for a typical point photon source with an energy of 0.38 MeV as a high energy source and 103Pd brachytherapy source with an average energy of 0.021 MeV as a low energy source in water phantom and eye phantom respectively. Such a dosimetry was done for different sizes and concentrations of GNPs. For all of the diameters, increase in concentration of GNPs resulted in an increase in dose deposited in the region of interest. In a certain concentration, GNPs with larger diameters contributed more dose to the tumor region, which was more pronounced using eye phantom. 100 nm was reported as the optimum size in order to achieve the highest energy deposition within the target. This work investigated the optimum parameters affecting macroscopic dose enhancement in GNP-aided brachytherapy of choroidal melanoma. The current work also had implications on using low energy photon sources in the presence of GNPs to acquire the highest dose enhancement. This study is conducted through four different sizes and concentrations of GNPs. Considering the sensitivity of human eye tissue, in order to report the precise optimum parameters affecting radiosensitivity, a comprehensive study on a wide range of sizes and concentrations are required.

  7. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm{sup 2}, initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10{sup 6}x[OH]{sup 0.11}x[CD]{sup 0.62}x[IBC]{sup -0.57}x[DSE]{sup -0.}= {sup 04}x[T]{sup -2.98}x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  8. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm 2 , initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10 6 x[OH] 0.11 x[CD] 0.62 x[IBC] -0.57 x[DSE] -0.04 x[T] -2.98 x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  9. Sensitivity analysis on parameters and processes affecting vapor intrusion risk

    KAUST Repository

    Picone, Sara

    2012-03-30

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion. © 2012 SETAC.

  10. Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics.

    Science.gov (United States)

    Severini, Giacomo; Manca, Mario; Ferraresi, Giovanni; Caniatti, Luisa Maria; Cosma, Michela; Baldasso, Francesco; Straudi, Sofia; Morelli, Monica; Basaglia, Nino

    2017-06-01

    Clinical Gait Analysis is commonly used to evaluate specific gait characteristics of patients affected by Multiple Sclerosis. The aim of this report is to present a retrospective cross-sectional analysis of the changes in Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis. In this study a sample of 51 patients with different levels of disability (Expanded Disability Status Scale 2-6.5) was analyzed. We extracted a set of 52 parameters from the Clinical Gait Analysis of each patient and used statistical analysis and linear regression to assess differences among several groups of subjects stratified according to the Expanded Disability Status Scale and 6-Minutes Walking Test. The impact of assistive devices (e.g. canes and crutches) on the kinematics was also assessed in a subsample of patients. Subjects showed decreased range of motion at hip, knee and ankle that translated in increased pelvic tilt and hiking. Comparison between the two stratifications showed that gait speed during 6-Minutes Walking Test is better at discriminating patients' kinematics with respect to Expanded Disability Status Scale. Assistive devices were shown not to significantly impact gait kinematics and the Clinical Gait Analysis parameters analyzed. We were able to characterize disability-related trends in gait kinematics. The results presented in this report provide a small atlas of the changes in gait characteristics associated with different disability levels in the Multiple Sclerosis population. This information could be used to effectively track the progression of MS and the effect of different therapies. Copyright © 2017. Published by Elsevier Ltd.

  11. Parameters affecting TGO growth rate and the lifetime of TBC systems with MCrAlY-bondcoats

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, J.; Naumenko, D.; Singheiser, L.; Quadakkers, W.J. [Forschungszentrum Juelich GmbH, IEF 2, Juelich (Germany); Gil, A. [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow (Poland)

    2008-06-15

    In the present work different parameters which affect the oxide growth on MCrAlY-bondcoats have been studied, in an attempt to find a reliable way to define the critical oxide thickness to failure of an EB-PVD thermal barrier coatings (TBC). It was found that the variation of selected parameters such as oxidation temperature, surface roughness, and bondcoat thickness certainly alters the thermally grown oxide (TGO) growth rate. However, simultaneously the morphology, composition, and/or microstructure of the oxide are changed, which can affect the critical TGO thickness to failure in a TBC system. In contrast, the variation of the oxygen partial pressure of the oxidizing atmosphere led to different TGO growth rates without significantly changing the oxide morphology and composition. Comparing the TGOs grown at different rates in the specimens exposed to high pO{sub 2} and low pO{sub 2} atmospheres, it was estimated that at failure the oxide scales in both specimens have reached a similar critical thickness. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Social support needs identified by mothers affected by intimate partner violence.

    Science.gov (United States)

    Letourneau, Nicole; Morris, Catherine Young; Stewart, Miriam; Hughes, Jean; Critchley, Kim A; Secco, Loretta

    2013-09-01

    In order to offer optimal supports and services for mothers affected by intimate partner violence (IPV), an understanding of these mothers' perceptions of support needs, resources, barriers to support, and preferences for support intervention is warranted. Moreover, the growing recognition of the effects of IPV on maternal-infant relationships and of the importance of these early relationships to long-term child health outcomes suggests interventions are needed to support optimal maternal-infant relationships in these families. Thus, 64 mothers exposed to IPV when their infants were below 12 months of age participated in a retrospective qualitative study to identify mothers' support needs, resources, barriers to support, and preferences for specific support interventions to promote optimal mother-infant relationships. Participants identified both personal needs (including needs for leaving or staying with the violent partner), along with intertwined needs to care for, and help, their infants cope with the experience of violence. Mothers reported that integrated services that include information and practical support from professionals with emotional and affirmation support from peers would promote positive, nurturing mother-infant relationships and healthy child development.

  13. Parameters Affecting Household Income Diversity of Farmer’s Tribes in South Sumatra Tidal Wetland

    Directory of Open Access Journals (Sweden)

    Elisa Wildayana

    2016-12-01

    Full Text Available The research aimed to determine parameters affecting household income diversity of farmer’s tribes in South Sumatra tidal wetland, especially studied from the aspect of land acreage, education level, age of farmers and tribes of farmers. The research was using survey method and carried out from June-August 2016 in the Delta Telang I Banyuasin, South Sumatra. The data were recorded by questionnaire for 145 respondents of farmers. Data was processed, described and correlated to see the relevance of the parameters with other parameters. The research concluded that the character of household economy of farmers explaining the relation between production decisions to increase rice production is land acreage, education, age, experience of farmers, number of household members, and labor allocation. Multi commodities farming (rice and plantation was very favorable compared to monoculture rice fields? But this is a little bit contradictive with government policy that the research area is pointed out as the center of rice production. Therefore, government policy needs to motivate farmers that they can manage their farming from upstream to downstream and they work full in their own farming. The government policy should be site-specific and appropriated with the tribes of farmers

  14. Analysis of the behavior of tubular-type equipment for nuclear waste treatment: sensitivities of the parameters affecting mass transfer yield

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Jik; Shim, Joon Bo; Kim, Eung Ho

    2007-01-01

    It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipment. as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the back mixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface. and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate

  15. An analysis of parameters affecting slapdown of transportation packages

    International Nuclear Information System (INIS)

    Bergmann, V.L.; Ammerman, D.J.

    1991-06-01

    In the certification of packages for transport of radioactive material, the issue of slapdown must be addressed. Slapdown is a secondary impact of the body caused by rotational accelerations induced during eccentric primary impact. In this report, several parameters are evaluated that affect slapdown severity of packages for the transport of nuclear material. The nose and tail accelerations in a slapdown event are compared to those experienced by the same cask in a side-drop configuration, in which there is no rotation, for a range of initial impact angles, impact limiter models, and friction coefficients for two existing cask geometries. In some cases, the rotation induced during a shallow-angle impact is sufficient to cause accelerations at the tail during secondary impact to be greater than those at the nose during initial impact. Furthermore, both nose and tail accelerations are often greater than the side-on accelerations. The results described here have been calculated using the code SLAPDOWN, which approximates the impact response of deformable bodies. Finally, SLAPDOWN has been used to estimate the coefficient of friction acting at the nose and tail for one particular cask during one specific slapdown drop test by comparison of results with experimental data. 2 refs., 16 figs., 3 tabs

  16. STUDY OF IDENTIFYING AND PRIORITIZING THE AFFECTING FACTORS ON BANK BRAND CUSTOMER LOYALTY

    OpenAIRE

    Zahra Aliyari; Yosef Beygzadeh

    2017-01-01

    Today, customer loyalty is the key to business success. By increased customers’ loyalty, market share and profitability level of enterprises will rise. Market perception along with planning and adopting appropriate strategies for making customers loyal and enhancing their rate of loyalty leads to long-term benefits for the enterprises. Given the importance of the issue, the goal of this study was to identify and prioritize the factors affecting loyalty to a banking brand from perspective of K...

  17. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    Science.gov (United States)

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  18. Does Cigarette Smoking Affect Seminal Fluid Parameters? A Comparative Study

    Directory of Open Access Journals (Sweden)

    Zakarya Bani Meri

    2013-01-01

    Full Text Available Objective: To study the effect of cigarette smoking on seminal fluid parameters, namely; volume, sperm concentration, and motility, as well as morphology, leukocyte infiltration, among males complaining of infertility.Methods: Between August 2010 and July 2011, seminal fluid analysis was done for 1438 males who are partners of couples who visited the infertility clinic at Prince Rashid Ben Al Hassan Hospital (PRH for infertility. The men who fit the inclusion criteria (n=960 were classified into two groups: group a (non-smokers; n=564 and group B (smokers; n=396, which represents 41.25% of the study group. Seminal fluid was collected using masturbation after 3-5 days of abstinence then analyzed for volume, sperm count, sperm concentration, motility and morphology. In order to analyze whether the number of cigarettes smoked per day has an effect on the spermatogram; the smoking men were divided into two subgroups: the heavy smokers (n=266 and non-heavy smokers (n=130.Results: A total of 960 adult males were enrolled. Their age ranged between 21 and 76 years, 564 were non-smokers with mean age of 36. 45±6.27 (Mean±SD. Three-hundred-and-ninety-six were smokers with a mean age of 34.35±4.25 (Mean±SD. There was a significant effect of smoking on the motility of sperms and the ratios of abnormality (p<0.005. Concentration appeared not to be affected by smoking. Furthermore, the group of heavy smokers were found to have lower sperm concentrations and a higher percentage of abnormal sperms compared to the non-heavy smokers.Conclusion: Cigarette smoking has a deleterious effect on some of the seminal fluid parameters (motility, morphology and leukocyte count which in turn may result in male subfertility.

  19. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    Science.gov (United States)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  20. Antibiotics in 16-day-old broilers temporarily affect microbial and immune parameters in the gut.

    Science.gov (United States)

    Wisselink, H J; Cornelissen, J B W J; Mevius, D J; Smits, M A; Smidt, H; Rebel, J M J

    2017-09-01

    Animal health benefits from a stable intestinal homeostasis, for which proper development and functioning of the intestinal microbiota and immune system are essential. It has been established that changes in microbial colonization in early life (the first 2 wk post hatch) impacts the functioning of the adult gut and the associated crosstalk between microbiota and intestinal mucosal cells. The aim of the present study was to study the effect of the administration of antibiotics later in life (d 15 to 20 post hatch) on microbiota and immune parameters. For this purpose, chickens received from 15 d post hatch during 5 d amoxicillin or enrofloxacin through their drinking water. Before and at 6, 16, and 27 d after start of the administration of antibiotics, the composition of the microbiota in the jejunum was determined using a 16S ribosomal RNA gene-targeted DNA microarray, the CHICKChip. At 6 d after the start of the administration of the antibiotics, the composition and diversity of the microbiota were affected significantly (P antibiotic administration, the number of CD4+ T-cells and CD8+ T-cells in the duodenum was lower compared to the control animals; however, this difference was not significant. At some time points, significant differences (P antibiotics only temporarily affect intestinal microbial and immune parameters. © 2017 Poultry Science Association Inc.

  1. Seagrass Parameter Affect the Fish Assemblages in Karimunjawa Archipelago

    Science.gov (United States)

    Sri Susilo, Endang; Nugroho Sugianto, Denny; Munasik; Nirwani; Adhi Suryono, Chrisna

    2018-02-01

    Seagrass beds promote high species diversity, abundance and biomass, and become important habitats for some economically important fishes. Plants of seagrasses result in structurally highly complex habitats and offering feeding grounds, shelter from predation as well as nursery areas for diverse fish assemblages. However, research on fish communities in Southeast Asian seagrass bed is rarely conducted. In the present study fish assemblages in seagrass beds with different parameters (cover, diversity and similarity indices, domination) was investigated in the Karimunjawa Islands, Indonesia. The purpose of this study were to assess whether fish assemblages differ concerning on the abundance and the species number. This study was conducted on the seagrass bed on Karimunjawa Islands in Java Sea, particularly in the water of Menjangan Besar and Menjangan Kecil Island. Line-quadrant transect was used to assess seagrass data, while the occurrence and individual number of fish harboured in the selected seagrass bed was counted by using underwater visual census in the stationary point count transects. Seagrass cover in Menjangan Kecil Island (41%) with various canopy included both upper and lower canopy was considerable higher than those in Menjangan Besar Island (5%). Fish diversity, species composition and abundance are considerably different between the two study sites. This study revealed that seagrass density or cover and canopy structure affected the fish abundance and species number harboured.

  2. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing.

    Science.gov (United States)

    Ko, Minsam; Yeo, Jaeryong; Lee, Juyeong; Lee, Uichin; Jang, Young Jae

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers' online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans' interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users.

  3. Parameters affecting level measurement interpretation of nuclear fuel solutions

    International Nuclear Information System (INIS)

    Hunt, B.A.; Landat, D.A.

    1999-01-01

    This paper describes a level measurement technique commonly used in the measurement of radioactive liquids and equipment utilised by the inspectors for safeguards purposes. Some of the influencing parameters affecting the measurement results by this technique are characterised. An essential requisite for successful process operations in chemical facilities involving liquids generally require some physical measurements to be made in-line for both process and quality control in order to achieve the necessary final product specifications . In nuclear fuel reprocessing facilities, the same objectives apply coupled however with an additional requirement of achieving nuclear material accountancy and control. In view of the strategic importance of some of the process vessels in nuclear facilities, accountancy has to be supported by volume and density measurements of low uncertainty. Inspectors therefore require instruments which are at the very least as good as or better than operator's equipment. The classical measurement technique and most widely applied for process liquids in nuclear installations is the bubbler probe or dip-tube technique. Here a regulated flow of air passes through tubes inserted to various depths into the vessel and pressure readings are measured which are a function of the presence of liquid height and density of solution in the tank. These readings, taken together with a pre-determined calibration curve are sufficient for the volume and amount of liquor in a tank to be quantified. All measurement equipment and instrumentation are long distances from the tank environment. The key physical parameter to measure at this location is therefore pressure. Equipment designed developed, commissioned and tested in the tank measurement facilities at Ispra and in nuclear installations in Europe, Japan and the USA, house digital pressure transducer modules with manufacture's declared features of better than 0.01% accuracy and long term stability of 0.01% full

  4. Do It Yourself solution of Internet of Things Healthcare System: Measuring body parameters and environmental parameters affecting health.

    Directory of Open Access Journals (Sweden)

    Mirjana Maksimović

    2016-03-01

    Full Text Available The rapid advancements in information and communications technologies (ICT and the increasing number of smart things shift an old-fashioned healthcare system to a model better suited for a population of the 21st century. New healthcare approaches based on Internet of Things (IoT/Internet of Medical Things (IoMT powered systems make health monitoring, diagnostics and treatment more personalized, timely and convenient, enabling a global approach to the healthcare system infrastructure development. Commercial systems in this area exist in various forms but usually do not fit the general patient needs, and those that do are usually economically unacceptable due to the high operational and development costs. Do It Yourself (DIY healthcare, including mobile applications and consumer medical devices, nowadays is the top healthcare trend. Therefore, this paper, based on well-known low-cost technologies, presents a DIY IoMT solution for observing human vital parameter as well as environmental factors affecting health.

  5. Optimisation of shock absorber process parameters using failure mode and effect analysis and genetic algorithm

    Science.gov (United States)

    Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal

    2013-07-01

    The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.

  6. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability

    Science.gov (United States)

    Debernardi, Laura; de Luca, Domenico Antonio; Lasagna, Manuela

    2008-08-01

    This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 - concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 - concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually

  7. Identifying the sociological implications of the main aspects affecting the optimal sporting career development

    OpenAIRE

    2014-01-01

    M.Phil. (Sport Management) This study is strengthened by several studies that have indicated that the dualist nature of student-athletes is problematic, as well as the management thereof. The study aimed to identify the sociological implications of the main aspects affecting the optimal sporting career development in athletics (throwers) at University of Johannesburg Sport, and offers recommendations for managing student-athletes. The methods utilized for this study included: i) self-desig...

  8. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing.

    Directory of Open Access Journals (Sweden)

    Minsam Ko

    Full Text Available Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers' online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans' interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users.

  9. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing

    Science.gov (United States)

    Yeo, Jaeryong; Lee, Juyeong

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers’ online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans’ interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users. PMID:26849568

  10. Experimental Analyses of the Major Parameters Affecting the Intensity of Outbursts of Coal and Gas

    Science.gov (United States)

    Nie, W.; Peng, S. J.; Xu, J.; Liu, L. R.; Wang, G.; Geng, J. B.

    2014-01-01

    With an increase in mining depth and production, the intensity and frequency of outburst of coal and gas have a tendency to increase. Estimating the intensity of outbursts of coal and gas plays an important role because of its relation with the risk value. In this paper, we described the semiquantitative relations between major parameters and intensity of outburst based on physical experiments. The results showed increment of geostress simulated by horizontal load (from 1.4, 2.4, 3.2, to 3.4 MPa) or vertical load (from 2, 3, 3.6, to 4 MPa) improved the relative intensity rate (3.763–7.403% and 1.273–7.99%); the increment of porosity (from 1.57, 2.51, 3, to 3.6%) improved the relative intensity rate from 3.8 to 13.8%; the increment of gas pressure (from 0, 0.5, 0.65, 0.72, 1, to 1.5 Mpa) induced the relative intensity rate to decrease from 38.22 to 0%; the increment of water content (from 0, 2, 4, to 8%) caused the relative intensity rate to drop from 5.425 to 0.5%. Furthermore, sensitivity and range analysis evaluates coupled factors affecting the relative intensity. In addition, the distinction with initiation of outburst of coal and gas affected by these parameters is discussed by the relative threshold of gas content rate. PMID:25162042

  11. ASSESSING CUSTOMER SATISFACTION BASED ON QoS PARAMETERS

    Directory of Open Access Journals (Sweden)

    Alem Čolaković

    2017-03-01

    Full Text Available Measurement of customer sastisfaction is an efficient tool to detect problems in SP (Services Provider and their relationship with customers. Based on this measurement a relationship between customer satisfaction and loyalty can be established. It can determine the influence of key parameters on the number of users of services. The parameters of customer satisfaction and loyalty are numerous and depend on the network (network quality of services parameters, the client (the perception, expectations, beliefs, etc., employees (implementation of activities, technological developments, organizational structure, etc. This paper aims to show the way to identify key indicators and their weighted factors that affect customer satisfaction. This paper intends to emphasize relationship between quality of services, customer perception and loyalty and to present a model for examining the key parameters that significantly influence customer satisfaction and how these parameters influence customer loyalty.

  12. Relationship between bacterial diversity and environmental parameters during composting of different raw materials.

    Science.gov (United States)

    Wang, Xueqin; Cui, Hongyang; Shi, Jianhong; Zhao, Xinyu; Zhao, Yue; Wei, Zimin

    2015-12-01

    The aim of this study was to compare the bacterial structure of seven different composts. The primary environmental factors affecting bacterial species were identified, and a strategy to enhance the abundance of uncultured bacteria through controlling relevant environmental parameters was proposed. The results showed that the physical-chemical parameters of each different pile changed in its own manner during composting, which affected the structure and succession of bacteria in different ways. DGGE profiles showed that there were 10 prominent species during composting. Among them, four species existed in all compost types, two species existed in several piles and four species were detected in a single material. Redundancy analysis results showed that bacterial species compositions were significantly influenced by C/N and moisture (p<0.05). The optimal range of C/N was 14-27. Based on these results, the primary environmental factors affecting a certain species were further identified as a potential control of bacterial diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Continuosly Stirred Tank Reactor Parameters That Affect Sludge Batch 6 Simulant Properties

    International Nuclear Information System (INIS)

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-01-01

    ). Precipitated MnO 2 is combined with metal nitrates and fed into the CSTR. The metals are precipitated by a caustic NaOH stream. The rates at which these streams are added allows for pH adjustment of the mixture. A graphical representation of this process is given in Figure 1. In using the CSTR method for developing simulant, there are various parameters that can be adjusted in order to effectuate a physical change in the resulting simulant: pH, temperature, mixing speed, and flow rate. How will changing these parameters affect the physical properties of the sludge simulant? The ability to determine which parameter affects a particular property could allow one to develop a simulant that would better match the physical characteristics of HLW sludge.

  14. Parameters affecting temporal resolution of Time Resolved Integrative Optical Neutron Detector (TRION)

    International Nuclear Information System (INIS)

    Mor, I; Vartsky, D; Bar, D; Feldman, G; Goldberg, M B; Brandis, M; Dangendorf, V; Tittelmeier, K; Bromberger, B; Weierganz, M

    2013-01-01

    The Time-Resolved Integrative Optical Neutron (TRION) detector was developed for Fast Neutron Resonance Radiography (FNRR), a fast-neutron transmission imaging method that exploits characteristic energy-variations of the total scattering cross-section in the E n = 1–10 MeV range to detect specific elements within a radiographed object. As opposed to classical event-counting time of flight (ECTOF), it integrates the detector signal during a well-defined neutron Time of Flight window corresponding to a pre-selected energy bin, e.g., the energy-interval spanning a cross-section resonance of an element such as C, O and N. The integrative characteristic of the detector permits loss-free operation at very intense, pulsed neutron fluxes, at a cost however, of recorded temporal resolution degradation This work presents a theoretical and experimental evaluation of detector related parameters which affect temporal resolution of the TRION system

  15. Standardisation of resource-based parameters to assess the welfare status of pigs

    NARCIS (Netherlands)

    Bracke, M.B.M.; Spoolder, H.A.M.

    2006-01-01

    This paper identified resources for pigs, i.e. environment-based factors affecting pig welfare. Lists of resources have been described for both on-farm rearing conditions and for 'transport and slaughter conditions'. On-farm parameters include general information, density, flooring/bedding,

  16. Impacts of Different Types of Measurements on Estimating Unsaturatedflow Parameters

    Science.gov (United States)

    Shi, L.

    2015-12-01

    This study evaluates the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.

  17. Identifying and assessing the factors affecting skill gap in digital marketing in communication industry companies

    OpenAIRE

    Ghotbifar, Fereshteh; Marjani, Mohammad Reza; Ramazani, Abbas

    2017-01-01

    As far as new communication channels are concerned, there have been extensive developments in communications and marketing in digital era. Today, therefore, companies try to take advantage of digital marketing channels to provide suitable services to customers to improve their satisfaction level. However, this study aimed to identify and assess factors affecting skill gap in digital marketing. This was descriptive correlation study. The population consisted of experts in communications indust...

  18. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions?

    Science.gov (United States)

    Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J

    2013-10-28

    Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.

  19. Identifying the effects of parameter uncertainty on the reliability of modeling the stability of overhanging, multi-layered, river banks

    Science.gov (United States)

    Samadi, A.; Amiri-Tokaldany, E.; Davoudi, M. H.; Darby, S. E.

    2011-11-01

    Composite river banks consist of a basal layer of non-cohesive material overlain by a cohesive layer of fine-grained material. In such banks, fluvial erosion of the lower, non-cohesive, layer typically occurs at a much higher rate than erosion of the upper part of the bank. Consequently, such banks normally develop a cantilevered bank profile, with bank retreat of the upper part of the bank taking place predominantly by the failure of these cantilevers. To predict the undesirable impacts of this type of bank retreat, a number of bank stability models have been presented in the literature. These models typically express bank stability by defining a factor of safety as the ratio of resisting and driving forces acting on the incipient failure block. These forces are affected by a range of controlling factors that include such aspects as the overhanging block geometry, and the geotechnical properties of the bank materials. In this paper, we introduce a new bank stability relation (for shear-type cantilever failures) that considers the hydrological status of cantilevered riverbanks, while beam-type failures are analyzed using a previously proposed relation. We employ these stability models to evaluate the effects of parameter uncertainty on the reliability of riverbank stability modeling of overhanging banks. This is achieved by employing a simple model of overhanging failure with respect to shear and beam failure mechanisms in a series of sensitivity tests and Monte Carlo analyses to identify, for each model parameter, the range of values that induce significant changes in the simulated factor of safety. The results show that care is required in parameterising (i) the geometrical shape of the overhanging-block and (ii) the bank material cohesion and unit weight, as predictions of bank stability are sensitive to variations of these factors.

  20. On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: a novel web implementation.

    Science.gov (United States)

    Meshkat, Nicolette; Kuo, Christine Er-zhen; DiStefano, Joseph

    2014-01-01

    Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I-O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and universally-accessible web application (app)-COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and-importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It's illustrated and validated here for models of moderate complexity, with

  1. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  2. Analysis of the heat affected zone in CO2 laser cutting of stainless steel

    Directory of Open Access Journals (Sweden)

    Madić Miloš J.

    2012-01-01

    Full Text Available This paper presents an investigation into the effect of the laser cutting parameters on the heat affected zone in CO2 laser cutting of AISI 304 stainless steel. The mathematical model for the heat affected zone was expressed as a function of the laser cutting parameters such as the laser power, cutting speed, assist gas pressure and focus position using the artificial neural network. To obtain experimental database for the artificial neural network training, laser cutting experiment was planned as per Taguchi’s L27 orthogonal array with three levels for each of the cutting parameter. Using the 27 experimental data sets, the artificial neural network was trained with gradient descent with momentum algorithm and the average absolute percentage error was 2.33%. The testing accuracy was then verified with 6 extra experimental data sets and the average predicting error was 6.46%. Statistically assessed as adequate, the artificial neural network model was then used to investigate the effect of the laser cutting parameters on the heat affected zone. To analyze the main and interaction effect of the laser cutting parameters on the heat affected zone, 2-D and 3-D plots were generated. The analysis revealed that the cutting speed had maximum influence on the heat affected zone followed by the laser power, focus position and assist gas pressure. Finally, using the Monte Carlo method the optimal laser cutting parameter values that minimize the heat affected zone were identified.

  3. Global sensitivity analysis for identifying important parameters of nitrogen nitrification and denitrification under model uncertainty and scenario uncertainty

    Science.gov (United States)

    Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong

    2018-06-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen

  4. Major parameters affecting the calculation of equilibrium factor using SSNTD-measured track densities

    International Nuclear Information System (INIS)

    Abo-Elmagd, M.; Mansy, M.; Eissa, H.M.; El-Fiki, M.A.

    2006-01-01

    The equilibrium factor F between radon and its daughters as a function of the track density ratio D/D 0 between bare and in can track detectors is solved graphically and gave more accurate solution than that solved mathematically elsewhere. The advantages of the graphical solution come from its simplicity and does not need any tedious mathematical formula or a computer program. The simplicity of this solution makes us study many parameters that affect the equilibrium factor determination such as the detector type, the diffusion chamber dimensions, the membrane specifications and the behavior of α-emitters around the detector. The results show that the equilibrium factor as a function of D/D 0 takes different form according to the facility used. The range of this study covers two widely used detectors (CR-39 and LR-115) equipped in two widely used diffusion chambers (small and medium chambers)

  5. Study of the parameters affecting operator doses in interventional radiology using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koukorava, C.; Carinou, E.; Ferrari, P.; Krim, S.; Struelens, L.

    2011-01-01

    Measurements performed within the ORAMED project helped to evaluate the dose levels to the operators’ hands, wrists, legs and eye lenses, during several types of interventional radiology (IR) and cardiology (IC) procedures, and also to determine the parameters that affect the doses. However, the study of the effect of each parameter separately, was possible only through Monte Carlo (MC) simulations, as in clinical practice many of those parameters change simultaneously. The influence of the protective equipment, the beam projections, the beam quality, the field size and the position of the operator according to the position of access of the catheter was investigated, using anthropomorphic phantoms in setups that represent realistic IR/IC procedures. The proper use of protective shields was found to be the most important way of reducing extremity and eye lens exposure during such examinations. Ceiling suspended shields can reduce the doses to the eye lenses up to 97%, but they can also reduce hand doses about 70% when placed correctly. The highest exposure to the operator is observed for left anterior oblique (LAO) and cranial projections. Additionally, for overcouch irradiations the eyes and the hands are about 6 times more exposed compared to the cases where the tube is below the operating table. For the lateral LAO projection, placing the ceiling suspended shield at the left side of the operator is twice more effective for the protection of the eyes compared to the cases where it is placed above the patient. Finally, beam collimation was found to play an important role in the reduction of the hands and wrists doses, especially when the operator is close to the irradiation field.

  6. Carbamazepine-exposure during gestation and lactation affects pubertal onset and spermatic parameters in male pubertal offspring.

    Science.gov (United States)

    Andretta, Rhayza Roberta; Okada, Fatima Kazue; Paccola, Camila Cicconi; Stumpp, Taiza; de Oliva, Samara Urban; Miraglia, Sandra M

    2014-04-01

    Carbamazepine (CBZ) is an anti-epileptic drug that acts on Leydig cells, affecting steroidogenesis and causes fetal malformation. The aim of this study was to investigate the effects of CBZ on male sexual maturation and other male parameters. Rat dams were treated with CBZ during pregnancy and breastfeeding. The anogenital distance (AGD) and the anogenital index (AGI) were obtained. Testicular descent and preputial separation were also evaluated. The offspring was euthanized at PND 41 and 63. The accessory glands were weighed and the testes were collected for histopathological, morphometric and sterological analyses. The numerical density of Leydig cells and hormone dosage were obtained. CBZ caused an increase of AGI and a delay of testicular descent and of preputial separation. CBZ also caused a decrease of testosterone level and of sperm count and an increase of abnormal sperm. These results indicate that CBZ delays puberty onset and affects steroidogenesis and sperm quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    Science.gov (United States)

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  8. Parameters Affecting the Transient Response of an Impacting Beam

    Directory of Open Access Journals (Sweden)

    Weiping Xu

    2013-01-01

    Full Text Available Impact causes shock waves that may be unexpected and damaging. A computationally efficient impact model with a generic beam which is discrete in time and continuous in space was undertaken; an Euler-Bernoulli beam with adjustable boundary conditions and variable contact location is numerically studied under a pulse loading. Experiments on a cantilever beam were carried out to verify the effects of influential parameters. A half-sine pulse excitation was applied through a mechanical shaker, and the deflection was captured by a high speed camera. Numerous test cases were conducted that varied pulse duration, pulse amplitude, and clearance. Decreasing the pulse duration lowers all deflection amplitudes, but the time in contact is insensitive. No gap causes minimal beam response, and increasing gap generates greater deflection. Representative test cases were selected for validating the theoretical model. When comparing numerical simulation with experimental results, satisfactory agreement for amplitude and duration can be reached even with raw input parameters. The contribution of this study is the incorporation of unique pulse loading, changeable boundary conditions, adjustable contact/impact situations, comprehensive parameter studies, and high speed photography.

  9. The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure

    DEFF Research Database (Denmark)

    Gaster, M; Schrøder, H D; Handberg, A

    2001-01-01

    results show that chronic exposure of human myotubes to high insulin with or without high glucose did not affect the basal kinetic parameters but abolished the reactivity of GS to acute insulin stimulation. We suggest that insulin induced insulin resistance of GS is caused by a failure of acute insulin......There is no consensus regarding the results from in vivo and in vitro studies on the impact of chronic high insulin and/or high glucose exposure on acute insulin stimulation of glycogen synthase (GS) kinetic parameters in human skeletal muscle. The aim of this study was to evaluate the kinetic...... parameters of glycogen synthase activity in human myotube cultures at conditions of chronic high insulin combined or not with high glucose exposure, before and after a subsequent acute insulin stimulation. Acute insulin stimulation significantly increased the fractional activity (FV(0.1)) of GS, increased...

  10. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    Science.gov (United States)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  11. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review

    Science.gov (United States)

    Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida

    2017-07-01

    Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.

  12. Maternal Body Mass Index Does Not Affect Neonatal Umbilical Artery Blood Gas Parameters

    Directory of Open Access Journals (Sweden)

    Salam E. Chalouhi

    2013-01-01

    Full Text Available This study was undertaken to assess the impact of obesity on fetal well-being in glucose-tolerant and nonhypertensive women. Medical charts of all patients admitted to the labor and delivery department at our institution between January, 2011 and July, 2011 were retrospectively reviewed. Patients with diabetes/impaired glucose tolerance or hypertension were excluded. A total of 100 women, 50 lean and 50 obese, were included. Umbilical artery blood gas parameters (BGPs were compared in lean (<25 kg/m2 and obese (≥30 kg/m2 women. Obese and lean women were comparable with respect to all baseline characteristics. There was no difference in any of the BGP or Apgar scores between obese and lean patients. Pearson’s correlation coefficient found no significant correlation between BMI and BGP/Apgar scores. Maternal obesity does not seem to affect BGP and fetal well-being in glucose-tolerant and nonhypertensive women.

  13. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance

    International Nuclear Information System (INIS)

    Andersen, Erlend K.F.; Hole, Knut Håkon; Lund, Kjersti V.; Sundfør, Kolbein; Kristensen, Gunnar B.; Lyng, Heidi; Malinen, Eirik

    2012-01-01

    Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test, resulting in p value and relative risk maps of all percentile–time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile–time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile–time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile–time interval of nRSI was associated with progression-free survival. Conclusions: The percentile–time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.

  14. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.

    Science.gov (United States)

    Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E

    2013-12-01

    Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.

  15. Do technical parameters affect the diagnostic accuracy of virtual bronchoscopy in patients with suspected airways stenosis?

    International Nuclear Information System (INIS)

    Jones, Catherine M.; Athanasiou, Thanos; Nair, Sujit; Aziz, Omer; Purkayastha, Sanjay; Konstantinos, Vlachos; Paraskeva, Paraskevas; Casula, Roberto; Glenville, Brian; Darzi, Ara

    2005-01-01

    Purpose: Virtual bronchoscopy has gained popularity over the past decade as an alternative investigation to conventional bronchoscopy in the diagnosis, grading and monitoring of airway disease. The effect of technical parameters on diagnostic outcome from virtual bronchoscopy has not been determined. This meta-analysis aims to estimate accuracy of virtual compared to conventional bronchoscopy in patients with suspected airway stenosis, and evaluate the influence of technical parameters. Materials and methods: A MEDLINE search was used to identify relevant published studies. The primary endpoint was the 'correct diagnosis' of stenotic lesions on virtual compared to conventional bronchoscopy. Secondary endpoints included the effects of the technical parameters (pitch, collimation, reconstruction interval, rendering method, and scanner type), and date of publication on the diagnostic accuracy of virtual bronchoscopy. Results: Thirteen studies containing 454 patients were identified. Meta-analysis showed good overall diagnostic performance with 85% calculated pooled sensitivity (95% CI 77-91%), 87% specificity (95% CI 81-92%) and area under the curve (AUC) of 0.947. Subgroups included collimation of 3 mm or more (AUC 0.948), pitch of 1 (AUC 0.955), surface rendering technique (AUC 0.935), and reconstruction interval of more than 1.25 mm (AUC 0.914). There was no significant difference in accuracy accounting for publication date, scanner type or any of the above variables. Weighted regression analysis confirmed none of these variables could significantly account for study heterogeneity. Conclusion: Virtual bronchoscopy performs well in the investigation of patients with suspected airway stenosis. Overall sensitivity and specificity and diagnostic odds ratio for diagnosis of airway stenosis were high. The effects of pitch, collimation, reconstruction interval, rendering technique, scanner type, and publication date on diagnostic accuracy were not significant

  16. Chemical and physical parameters affecting the performance of the Os-191/Ir-191m generator

    International Nuclear Information System (INIS)

    Packard, A.B.; Butler, T.A.; Knapp, F.F.; O'Brien, G.M.; Treves, S.

    1984-01-01

    The development of an Os-191/Ir-191m generator suitable for radionuclide angiography in humans has elicited much interest. This generator employs ''(OsO 2 Cl 4 ) 2- '' on AG MP-1 anion exchange resin with a Dowex-2 scavenger column and is eluted with normal saline at pH 1. The parent Os species is, however, neither welldefined nor homogeneous leading to less than optimal breakthrough of Os-191 (5 x 10 -3 %) and modest Ir-191m yield (10-15%). The effect of a range of parameters on generator performance has been evaluated as has been the way in which the assembly and loading process affects generator performance. In addition, a number of potential alternative generator systems have been evaluated

  17. WE-G-BRA-05: IROC Houston On-Site Audits and Parameters That Affect Performance

    International Nuclear Information System (INIS)

    Kry, S; Dromgoole, L; Alvarez, P; Lowenstein, J; Molineu, A; Taylor, P; Followill, D

    2015-01-01

    Purpose: To highlight the IROC Houston on-site dosimetry audit program, and to investigate the impact of clinical conditions on the frequency of errors/recommendations noted by IROC Houston. Methods: The results of IROC Houston on-site audits from 2000-present were abstracted and compared to clinical parameters, this included 409 institutions and 1020 linacs. In particular, we investigated the frequency of recommendations versus year, and the impact of repeat visits on the number of recommendations. We also investigated the impact on the number of recommendations of several clinical parameters: the number and age of the linacs, the linac/TPS combination, and the scope of the QA program. Results: The number of recommendations per institution (3.1 average) has shown decline between 2000 and present, although the number of recommendations per machine (0.89) has not changed. Previous IROC Houston site visits did not Result in fewer recommendations on a repeat visit, but IROC Houston tests have changed substantially during the last 15 years as radiotherapy technology has changed. There was no impact on the number of recommendations based on the number of machines at the institution or the age of a given machine. The fewest recommendations were observed for Varian-Eclipse combinations (0.71 recs/machine), while Elekta- Pinnacle combinations yielded the most (1.62 recs/machine). Finally, in the TG-142 era (post-2010), those institutions that had a QA recommendation (n=77) had significantly more other recommendations (1.83 per institution) than those that had no QA rec (n=12, 1.33 per institution). Conclusion: Establishing and maintaining a successful radiotherapy program is challenging and areas of improvement can routinely be identified. Clinical conditions such as linac-TPS combinations and the establishment of a good QA program impact the frequency of errors/deficiencies identified by IROC Houston during their on-site review process

  18. WE-G-BRA-05: IROC Houston On-Site Audits and Parameters That Affect Performance

    Energy Technology Data Exchange (ETDEWEB)

    Kry, S; Dromgoole, L; Alvarez, P; Lowenstein, J; Molineu, A; Taylor, P; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To highlight the IROC Houston on-site dosimetry audit program, and to investigate the impact of clinical conditions on the frequency of errors/recommendations noted by IROC Houston. Methods: The results of IROC Houston on-site audits from 2000-present were abstracted and compared to clinical parameters, this included 409 institutions and 1020 linacs. In particular, we investigated the frequency of recommendations versus year, and the impact of repeat visits on the number of recommendations. We also investigated the impact on the number of recommendations of several clinical parameters: the number and age of the linacs, the linac/TPS combination, and the scope of the QA program. Results: The number of recommendations per institution (3.1 average) has shown decline between 2000 and present, although the number of recommendations per machine (0.89) has not changed. Previous IROC Houston site visits did not Result in fewer recommendations on a repeat visit, but IROC Houston tests have changed substantially during the last 15 years as radiotherapy technology has changed. There was no impact on the number of recommendations based on the number of machines at the institution or the age of a given machine. The fewest recommendations were observed for Varian-Eclipse combinations (0.71 recs/machine), while Elekta- Pinnacle combinations yielded the most (1.62 recs/machine). Finally, in the TG-142 era (post-2010), those institutions that had a QA recommendation (n=77) had significantly more other recommendations (1.83 per institution) than those that had no QA rec (n=12, 1.33 per institution). Conclusion: Establishing and maintaining a successful radiotherapy program is challenging and areas of improvement can routinely be identified. Clinical conditions such as linac-TPS combinations and the establishment of a good QA program impact the frequency of errors/deficiencies identified by IROC Houston during their on-site review process.

  19. Humic Fertilizer and Vermicompost Applied to the Soil Can Positively Affect Population Growth Parameters of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) on Eggs of Tuta absoluta (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Mohamadi, P; Razmjou, J; Naseri, B; Hassanpour, M

    2017-12-01

    The tomato leaf miner, Tuta absoluta (Meyrick), is a devastating pest of tomato worldwide. One of the control measures of T. absoluta is the use of biological control agents, such as Trichogramma wasps. Interactions between natural enemies and insect pests may be affected by application of fertilizers, because changes in plant quality through the fertilizer application may therefore affect herbivore characteristics and suitability of them to parasitism. Laboratory tests were carried out to evaluate the life table parameters of Trichogramma brassicae Bezdenko on T. absoluta eggs reared on tomato plants treated either with vermicompost (40%), humic fertilizer (2 g/kg soil), or control (suitable mixture of field soil and sand). Population growth parameters of T. brassicae were affected by fertilizer treatments. Significant differences were found for immature life period and total fecundity of T. brassicae on the treatments. Differences of intrinsic rate of natural increase (r m ), finite rate of increase (λ), net reproductive rate (R 0 ), mean generation time (T), and doubling time (DT) of T. brassicae among treatments were also significant. The lowest values of r m , λ, and R 0 were recorded for T. brassicae developed on T. absoluta eggs on control treatment, whereas the highest values of these parameters were observed on 2 g/kg humic fertilizer. Furthermore, T. brassicae had the shortest T and DT values on 2 g/kg humic fertilizer and 40% vermicompost treatments. Our results showed that application of humic fertilizer and vermicompost could positively affect population growth parameters of T. brassicae on eggs of T. absoluta fed on tomato plants.

  20. Parameters Affecting 137Cs Migration within Soil Profile

    International Nuclear Information System (INIS)

    Sefien, S.M.; Ibrahim, A.S.; Abdelmalik, W.E.Y.

    2013-01-01

    Some studies have been carried out on the adsorption, distribution and migration of 137 Cs within soils of the area in the vicinity of the Nuclear Research Centre, Egypt, and Ismailia Canal. The soil physicochemical and mineralogical characteristics were carried out and indicated that the soil samples consisted mainly of sand fraction (quartz) and silt fractions (semctite minerals). The kinetics of caesium adsorption and its adsorption isotherms for the tested soils were also studied. The sorption of 137 Cs on soil minerals markedly affects its migration rate. The natural background of both locations of study indicated that the amounts of 137 Cs present in the reactor site were found to be originated from the fallout and from the external contamination which affected the background level. The 137 Cs activity at the canal site was found to be 20.01 Bq/m 2 .cm, while that around the reactor site were found to be 231.15 Bq/m2.cm which may be originating from the fallout and from external contamination which affect the background level at that location. The activity in the canal soil which amounted to 20.01 Bq/m2/cm (0.87 Bq/kg) is about that of background.Based on the distribution data, the vertical distribution of 137 Cs has been studied for soil in both locations (the vicinity of the Nuclear Research Centre (NRC) and Ismailia canal). The vertical migration rates of 137 Cs were calculated for soil samples selected from different locations. These rates were found to be 0.056 and 0.031 cm/year for the reactor and canal site respectively.

  1. Sample Size Calculation: Inaccurate A Priori Assumptions for Nuisance Parameters Can Greatly Affect the Power of a Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Elsa Tavernier

    Full Text Available We aimed to examine the extent to which inaccurate assumptions for nuisance parameters used to calculate sample size can affect the power of a randomized controlled trial (RCT. In a simulation study, we separately considered an RCT with continuous, dichotomous or time-to-event outcomes, with associated nuisance parameters of standard deviation, success rate in the control group and survival rate in the control group at some time point, respectively. For each type of outcome, we calculated a required sample size N for a hypothesized treatment effect, an assumed nuisance parameter and a nominal power of 80%. We then assumed a nuisance parameter associated with a relative error at the design stage. For each type of outcome, we randomly drew 10,000 relative errors of the associated nuisance parameter (from empirical distributions derived from a previously published review. Then, retro-fitting the sample size formula, we derived, for the pre-calculated sample size N, the real power of the RCT, taking into account the relative error for the nuisance parameter. In total, 23%, 0% and 18% of RCTs with continuous, binary and time-to-event outcomes, respectively, were underpowered (i.e., the real power was 90%. Even with proper calculation of sample size, a substantial number of trials are underpowered or overpowered because of imprecise knowledge of nuisance parameters. Such findings raise questions about how sample size for RCTs should be determined.

  2. Studies on seasonal variation in water quality parameters of Rana Pratap Sagar lake (1996-99)

    International Nuclear Information System (INIS)

    Verma, R.; Rout, D.; Purohit, K.C.

    2000-01-01

    Water- chemistry monitoring identifies the concentration and patterns of fluctuation in chemical constituents. This information is essential to project future trends monitoring in Lake Water chemistry to identify any potential for affecting plant operation through scaling or corrosion of the circulating and service-water system equipment. Regular water chemistry monitoring provides a useful record of past. This record helps in identification of conditions that would impair station operations before their onset, allowing remedial action to be undertaken before plant performance is significantly affected. Preventive action to control the parameters influencing the corrosion, scaling and bio-fouling in the cooling system, in turn, eliminates excessive maintenance and premature replacement that otherwise would result from damage caused by unforeseen changes in the cooling water. This paper highlights the systematic monitoring approach for the variation of chemical parameters influenced by the seasonal changes in a total period of four years. (author)

  3. On the role of modeling parameters in IMRT plan optimization

    International Nuclear Information System (INIS)

    Krause, Michael; Scherrer, Alexander; Thieke, Christian

    2008-01-01

    The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way

  4. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats.

    Science.gov (United States)

    Ide, Takashi

    2018-06-01

    We studied the combined effect of fish oil and α-lipoic acid on hepatic lipogenesis and fatty acid oxidation and parameters of oxidative stress in rats fed lipogenic diets high in sucrose. A control diet contained a saturated fat (palm oil) that gives high rate of hepatic lipogenesis. Male Sprague-Dawley rats were fed diets supplemented with 0 or 2.5 g/kg α-lipoic acid and containing 0, 20, or 100 g/kg fish oil, for 21 days. α-Lipoic acid significantly reduced food intake during 0-8 days but not the later period of the experiment. Fish oil and α-lipoic acid decreased serum lipid concentrations and their combination further decreased the parameters in an additive fashion. The combination of fish oil and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Fish oil increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid appeared to antagonize the stimulating effects of fish oil of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes. α-Lipoic acid attenuated fish oil-dependent increases in serum and liver malondialdehyde levels, and this compound also reduced the serum 8-hydroxy-2'-deoxyguanosine level. α-Lipoic acid affected various parameters related to the antioxidant system; fish oil also affected some of the parameters. The combination of fish oil and α-lipoic acid effectively reduced serum lipid levels through the additive down-regulation of hepatic lipogenesis. α-Lipoic acid was effective in attenuating fish oil-mediated oxidative stress.

  6. Surgeon Reported Outcome Measure for Spine Trauma an International Expert Survey Identifying Parameters Relevant for The Outcome of Subaxial Cervical Spine Injuries

    NARCIS (Netherlands)

    Sadiqi, Said; Verlaan, Jorrit Jan; Lehr, A. M.; Dvorak, Marcel F.; Kandziora, Frank; Rajasekaran, S.; Schnake, Klaus J.; Vaccaro, Alexander R.; Oner, F. C.

    2016-01-01

    STUDY DESIGN.: International web-based survey OBJECTIVE.: To identify clinical and radiological parameters that spine surgeons consider most relevant when evaluating clinical and functional outcomes of subaxial cervical spine trauma patients. SUMMARY OF BACKGROUND DATA.: While an outcome instrument

  7. Investigation of the parameters affecting the release of flurbiprofen from chitosan microspheres

    Directory of Open Access Journals (Sweden)

    Müşerref Günseli Yüksel Tilkan

    2018-04-01

    Full Text Available ABSTRACT Flurbiprofen (FLB, a NSAID, widely used for preventing pain generally for arthritis or dental problems. In this study, FLB loaded chitosan microspheres were prepared by ionotropic gelation method. In this method, microspheres were formed by dropping chitosan solutions containing FLB into sodium alginate solutions including sodium tripolyphosphate (TPP. A variety of formulation parameters like drug:polymer ratio, drug concentration, polymer’s molecular weight, polymer concentration, pH and the concentration of TPP solutions, drying method and stirring time were analyzed. The dissolution studies were performed in a shaking water bath in pH 7.4 phosphate buffer saline (PBS at 37 °C. Laser diffractometer was used for particle size analysis, and scanning electron microscope (SEM was used for morphological properties. Drug loading and loading efficiency were calculated by using UV spectrophotometer. The particles obtained were spherical with 0.7-1.3 mm size range, and the loading efficiency was approximately 21-79%. The dissolution studies conducted revealed that drug:polimer ratio and the polymer type and concentration affected the drug release from microspheres. It was observed that increasing the polymer concentration, polymer’s molecular weight and TPP concentration decreased the FLB release from microspheres, which was according to Higuchi kinetics.

  8. Identification parameters and criteria affecting airphoto lineations

    International Nuclear Information System (INIS)

    El-Etr, H.A.

    1989-01-01

    In areas where bedrock exposures are predominant, linear features can be seen easily on aerial photographs as expressions of joints, faults, fractures, folds, bedding, etc. In case of limited bedrock exposures, because of surficial blanketing by unconsolidated material and/or vegetation, bedrock lineations may be faintly expressed in different fashions (e.g. subtle vegetation alignments, soil tonal differences, etc.) depending on the nature, thickness, and water content of the unconsolidated cover and the kind and homogenity of vegetation. The most important variables affecting airphoto linear features are: structure, lithology, topography, drainage, erosion, vegetation, climate, tone, scale of photographs, and use of supplementary information. (author). 31 refs

  9. Identifying and Prioritizing the Effective Parameters on Lack of Timeliness of Operations of Sugarcane Production using Analytical Hierarchy Process (AHP

    Directory of Open Access Journals (Sweden)

    N Monjezi

    2017-10-01

    Full Text Available Introduction Planning and scheduling of farming mechanized operations is very important. If the operation is not performed on time, yield will be reduced. Also for sugarcane, any delay in crop planting and harvesting operations reduces the yield. The most useful priority setting method for agricultural projects is the analytic hierarchy process (AHP. So, this article presents an introductry application manner of the Analytical Hierarchy Process (AHP as a mostly common method of setting agricultural projects priorities. Analytic Hierarchy process (AHP is a decision making algorithm developed by Dr. Saatyin 1980. It has many applications as documented in Decision Support System literature. Currently, this technique is widely used in complicated management decision makings which AHP was preferred from other established methodologies as it does not demand prior knowledge of the utility function; it is based on a hierarchy of criteria and attributes reflecting the understanding of the problem, and finally, because it allows relative and absolute comparisons, thus making this method a very robust tool. The purpose of this research is to identify and prioritize the effective parameters on lack of timeliness of operations of sugarcane production using AHP in Khuzestan province of Iran. Materials and Methods The effective parameters effecting on lack of timeliness of operations have been defined based on expert’s opinions. A questionnaire and personal interviews have formed the basis of this research. The study was applied to a panel of qualified informants made up of fourteen experts. Those interviewed were distributed in Sugarcane Development and By-products Company in 2013-2014. Then, by using the Analytical hierarchy process, a questionnaire was designed for defining the weight and importance of parameters affecting on lack of timeliness of operations. For this method of evaluation, three main criteria considered were yield criteria, cost criteria

  10. Optimum design of forging process parameters and preform shape under uncertainties

    International Nuclear Information System (INIS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2004-01-01

    Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness

  11. A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance

    International Nuclear Information System (INIS)

    Elghool, Ali; Basrawi, Firdaus; Ibrahim, Thamir Khalil; Habib, Khairul; Ibrahim, Hassan; Idris, Daing Mohamad Nafiz Daing

    2017-01-01

    Highlights: • Coupling a thermoelectric power generation (TEG) to a heat sink is presented. • Review the classifications and parameters affecting performance of the TEG with heat sink. • Discuss different mathematical models of the heat sinks. • The passive heat sinks are most appropriate because of the inherent efficiency of TEG. • Medium temperature range below 300 °C is found to be most suitable for HPHS. - Abstract: In recent years, there have been growing interests in key areas related to global warming resulting from environmental emissions, and the diminishing sources of fossil fuel. The increased interest has led to significant research efforts towards finding novel technologies in clean energy production. Consequently, the merits of a thermo-electric generator (TEG) have promised a revival of alternative means of producing green energy. It is, however, impractical to account for the cost of thermal energy input to the TEG which is in the form of final waste heat. This is because the technology presents critical limitations in determining its cost efficiency nor its economic disadvantages. This paper reviews the principles of thermo-electric power production, as well the materials use, performance achieved, and application areas. The paper also takes a particular deliberation on TEG heat sinks geometries and categories. The review emphasizes more on the TEG performance while considering a number of heat sink parameters related to its performance.

  12. Selected parameters of arabica coffee quality affected by its geographical origin

    Directory of Open Access Journals (Sweden)

    Alica Bobková

    2017-01-01

    Full Text Available The aim of this paper was to evaluate selected parameters of Arabica coffee quality. Arabica coffee beans originated from 21 different regions of the world. Parameters of their moisture content, water extract, water extract in dry matter, dry mater, caffeine and caffeine content in dry matter were assessed by the Slovak Technical Standard. Dry matter content ranged from 98.64 to 99.07%, the highest content was measured in sample from Cuba. Minimum dry matter content was detected in coffee beans from Mexico. Caffeine in studied samples ranged from 10 200 mg.kg-1 to 13 500 mg.kg-1. The lowest caffeine content was determined in Panama coffee, the highest was found in the sample from Indonesia. The results of moisture content and caffeine in dry mater were evaluated by the Food Code of the Slovak Republic and all observed parameters in the coffee beans meet the maximum levels given in legislation. By statistical procesing it can be seen that coffee samples originating from Ecuador, Indonesia and Nepal were similar in parameters of caffeine content and caffeine in dry matter. Other similar samples originating from Cuba, Peru, Ethiopia and Panama were statistically similar at dry matter content. Special statistical group was coffee from Salvador at the parameters of water extract and water extract in dry matter. Normal 0 21 false false false EN-GB X-NONE X-NONE

  13. growth and yield parameters of sorghum genotypes as affected

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. Field trial was conducted at Bayero University, Kano research farm with the aim of determining the effect of stem injection artificial inoculation technique on the growth and yield parameters of one hundred and four sorghum genotypes against head smut. The trial was laid on a randomized complete block design ...

  14. Combined segregation and linkage analysis of genetic hemochromatosis using affection status, serum iron, and HLA.

    OpenAIRE

    Borecki, I B; Lathrop, G M; Bonney, G E; Yaouanq, J; Rao, D C

    1990-01-01

    Characterizing the distribution of parameters of iron metabolism by hemochromatosis genotype remains an important goal vis-à-vis potential screening strategies to identify individuals at genetic risk, since a specific marker to detect the abnormal gene has not been identified as yet. In the present investigation, we analyze serum iron values in ascertained families using a method which incorporates both segregation of the clinical affection status and the HLA linkage information to identify t...

  15. Sentinel lymph node mapping using SPECT/CT and gamma probe in endometrial cancer: an analysis of parameters affecting detection rate

    Energy Technology Data Exchange (ETDEWEB)

    Sahbai, Samine; La Fougere, Christian; Dittmann, Helmut [University Hospital Tuebingen, Nuclear Medicine and Clinical Molecular Imaging, Tuebingen (Germany); Taran, Florin-Andrei; Wallwiener, Diethelm; Brucker, Sara [University Hospital Tuebingen, Gynecology and Obstetrics, Tuebingen (Germany); Staebler, Annette [University Hospital Tuebingen, Pathology, Tuebingen (Germany)

    2017-08-15

    SPECT/CT after pericervical injection of technetium-99 m-nanocolloid was shown to be suitable for sentinel lymph node (SLN) mapping in endometrial cancer (EC). The aim of this study was to analyze factors affecting successful SLN detection by means of SPECT/CT such as imaging findings, patient characteristics and tumor biology in a large cohort of patients. One hundred and forty-five consecutive patients suffering from EC who received pre-surgical SLN mapping at our institution between 2011 and 2016 were included in this analysis. SPECT/CT data of abdomen and pelvis (mean 4:20 ± 1:20 h p.i.) were acquired after pericervical injection of technetium-99 m-nanocolloid (mean 230 ± 45 MBq) in all patients. Surgical staging was performed on the day after. Acquisition parameters, patient characteristics, SPECT/CT findings as well as histopathological results were collected. A total of 282 SLNs were identified by means of SPECT/CT. Overall, preoperative and intraoperative SLN detection rates were 86%, 76% and 74% respectively. The most important factor associated with failure to detect SLNs was the presence of high bone marrow on SPECT/CT (p = 0.005). Peritoneal/abdominal radioactivity was also associated with missed SLN detection in SPECT/CT (p = 0.02). However, the presence of liver/spleen uptake on its own was not predictive for detection failure. Low numbers of detected SLNs in SPECT/CT were slightly related with older age and lower injected activity. No significant influence was found for the parameters of tumor histology and stage, lymph node involvement and the time gap between injection and imaging. Venous drainage as indicated by bone marrow uptake is the most important factor associated with scintigraphic SLN detection failure. Moreover, high peritoneal and abdominal activity was also associated with detection failure. Thus, meticulous application of the radiotracer is crucial in EC. (orig.)

  16. Review on Development of Ceramic Membrane From Sol-Gel Route: Parameters Affecting Characteristics of the Membrane

    Directory of Open Access Journals (Sweden)

    M. R. Othman and H. Mukhtar

    2012-08-01

    Full Text Available The importance of laboratory scale ceramic membrane preparation using sol-gel technique with pore sizes in the range of 1-10nm is reviewed. Parameters affecting the characteristics of membrane during membrane development are highlighted and discussed in detail. Experimental results from literatures have shown that the correct amount of acid, water, PVA, appropriate membrane thickness, proper control of drying rate, and appropriate temperature profile selection during sintering process are necessary in order to acquire sufficient strength and reduce the formation of crack in the membrane. The different temperature setting during sintering process also influences the size of pore formed.Key Words: Sol-Gel, Inorganic Membrane, Ceramic Membrane, Gas Permeation, Sintering, Sol Properties, Membrane Morphologies, Pore Size Distribution.

  17. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    Science.gov (United States)

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Persistent fatigue in young athletes: measuring the clinical course and identifying variables affecting clinical recovery.

    Science.gov (United States)

    Locke, S; Osborne, M; O'Rourke, P

    2011-02-01

    The objective of this paper is to measure the clinical course (months) in young athletes with persistent fatigue and to identify any covariates affecting the duration of recovery. This was a prospective longitudinal study of 68 athletes; 87% were elite (42 males, 26 females), aged 20.5±3.74 years (SD), who presented with the symptom of persistent fatigue. The collective duration to full clinical recovery was estimated using Kaplan-Meier product-limit curves, and covariates associated with prolonging recovery were identified from Cox proportional hazard models. The median recovery was 5 months (range 1-60 months). The range of presenting symptom duration was 0.5-36 months. The covariates identified were an increased duration of presenting symptoms [hazard ratio (HR), 1.06; 95% confidence interval (CI), 1.02-1.12; P=0.005] and the response of serum cortisol concentration to a standard exercise challenge (HR, 1.92; 95% CI, 1.09-3.38; P=0.03). Delay in recovery was not associated with categories of fatigue that included medical, training-related diagnoses, or other causes. In conclusion, the fatigued athlete represents a significant clinical problem with a median recovery of 5 months, whose collective clinical course to recovery can be estimated by Kaplan-Meier curves and appears to be a continuum. © 2009 John Wiley & Sons A/S.

  19. Visual food cues decrease postprandial glucose concentrations in lean and obese men without affecting food intake and related endocrine parameters.

    Science.gov (United States)

    Brede, Swantje; Sputh, Annika; Hartmann, Ann-Christin; Hallschmid, Manfred; Lehnert, Hendrik; Klement, Johanna

    2017-10-01

    The abundance of highly palatable food items in our environment represents a possible cause of overconsumption. Neuroimaging studies in humans have demonstrated that watching pictures of food increases activation in brain areas involved in homeostatic and hedonic food cue processing. Nevertheless, the impact of food cues on actual food intake and metabolic parameters has not been systematically investigated. We tested the hypothesis that watching high-calorie food cues increases food intake and modifies anticipatory blood parameters in lean and especially in obese men. In 20 normal-weight and 20 obese healthy fasted men, we assessed the effects of watching pictures of high-calorie food items versus neutral contents on food intake measured during a standardized test buffet and subsequent snacking as well as on glucose homeostasis and endocrine parameters. Compared to neutral pictures, viewing food pictures reduced postprandial blood glucose concentrations in lean (p = 0.016) and obese (p = 0.044) subjects, without any differences in insulin or C-peptide concentrations (all p > 0.4). Viewing food pictures did not affect total calorie intake during the buffet (all p > 0.5) and snack consumption (all p > 0.4). Concentrations of ghrelin, adrenocorticotropic hormone (ACTH), cortisol, and glucagon also remained unaffected (all p > 0.08). These data indicate that preprandial processing of food cues curbs postprandial blood glucose excursions, without immediately affecting eating behavior in normal-weight and obese men. Findings indicate that exposure to food cues does not acutely trigger calorie overconsumption but rather improves the glucoregulatory response to food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Designing and determining validity and reliability of a questionnaire to identify factors affecting nutritional behavior among patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Naseh Esmaeili

    2017-06-01

    Full Text Available Background : A number of studies have shown a clear relationship between diet and component of metabolic syndrome. Based on the Theory of Reasoned Action (TRA, attitude and subjective norm are factors affecting behavioral intention and subsequently behavior. The aim of the present study is to design a valid questionnaire identifying factors affecting nutritional behavior among patients with metabolic syndrome. Materials and Methods: Via literature review, six focus group discussion and interview with nutrition specialists were performed to develop an instrument based on the theory of reasoned action. To determine validity of the instrument, content and face validity analyses with 15 expert panels conducted and also to determine reliability, Cronbach’s Alpha coefficient performed. Results: A draft of 100 items questionnaire was developed and after evaluation of validity and reliability, final questionnaire included 46 items: 17 items for attitude, 13 items for subjective norms and 16 items for behavioral intention. For the final questionnaire average of content validity index was 0/92 and Cronbach’s Alpha coefficient was 0/85. Conclusion: Based on the results of the current study the developed questionnaire is a valid and reliable instrument and it can be used to identify factors affecting nutritional behavior among people with metabolic syndrome based on the theory of reasoned action.

  1. Calibration of Local Area Weather Radar-Identifying significant factors affecting the calibration

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth; Jensen, Niels Einar; Madsen, Henrik

    2010-01-01

    A Local Area Weather Radar (LAWR) is an X-band weather radar developed to meet the needs of high resolution rainfall data for hydrological applications. The LAWR system and data processing methods are reviewed in the first part of this paper, while the second part of the paper focuses...... cases when the calibration is based on a factorized 3 parameter linear model instead of a single parameter linear model....

  2. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    Science.gov (United States)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  3. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    Science.gov (United States)

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    . This study elucidated the key parameters for optimizing nanocomposite coatings on Mg-based substrates for skeletal implant applications, and provided rational design guidelines for the nanocomposite coatings on Mg alloys for potential clinical translation of biodegradable Mg-based implants. This manuscript describes the systemic optimization of nanocomposite coatings to control the degradation and bioactivity of magnesium for skeletal implant applications. The key parameters influencing the integrity and functions of the nanocomposite coatings on magnesium were identified, guidelines for the optimization of the coatings were established, and the benefits of coating optimization were demonstrated through reduced magnesium degradation and increased bone marrow derived mesenchymal stem cell (BMSC) adhesion in vitro. The guidelines developed in this manuscript are valuable for the biometal field to improve the design of bioresorbable implants and devices, which will advance the clinical translation of magnesium-based implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Factors affecting the transfer of radionuclides from the environment to plants

    International Nuclear Information System (INIS)

    Golmakani, S.; Moghaddam, V.M.; Hosseini, T.

    2008-01-01

    Much of our food directly or indirectly originates from plant material; thus, detailed studies on plant contamination processes are an essential part of international environmental research. This overview attempts to identify and describe the most important parameters and processes affecting the behaviour of radionuclide transfer to plants. Many parameters influence these processes. These parameters are related to: (1) plant, (2) soil, (3) radionuclide, (4) climate and (5) time. Often there is no boundary between the factors and they are linked to each other. Knowledge of important factors in radionuclide transfer to plants can help to assess and prevent radiological exposure of humans. This knowledge can also help to guide researches and modelling related to transfer of radionuclides to food chain. (authors)

  5. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings

    Directory of Open Access Journals (Sweden)

    S. Vignesh

    2017-04-01

    Full Text Available Flow based Erosion – corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosion–corrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosion–corrosion problems. High velocity oxy-fuel (HVOF spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology (RSM was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.

  6. The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model

    Science.gov (United States)

    Kim, Kyung Yong; Lee, Won-Chan

    2017-01-01

    This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…

  7. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    OpenAIRE

    Abdelaziz Almostafa; Guozhu Liang; Elsayed Anwer

    2018-01-01

    Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning), erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameter...

  8. DIA-datasnooping and identifiability

    Science.gov (United States)

    Zaminpardaz, S.; Teunissen, P. J. G.

    2018-04-01

    In this contribution, we present and analyze datasnooping in the context of the DIA method. As the DIA method for the detection, identification and adaptation of mismodelling errors is concerned with estimation and testing, it is the combination of both that needs to be considered. This combination is rigorously captured by the DIA estimator. We discuss and analyze the DIA-datasnooping decision probabilities and the construction of the corresponding partitioning of misclosure space. We also investigate the circumstances under which two or more hypotheses are nonseparable in the identification step. By means of a theorem on the equivalence between the nonseparability of hypotheses and the inestimability of parameters, we demonstrate that one can forget about adapting the parameter vector for hypotheses that are nonseparable. However, as this concerns the complete vector and not necessarily functions of it, we also show that parameter functions may exist for which adaptation is still possible. It is shown how this adaptation looks like and how it changes the structure of the DIA estimator. To demonstrate the performance of the various elements of DIA-datasnooping, we apply the theory to some selected examples. We analyze how geometry changes in the measurement setup affect the testing procedure, by studying their partitioning of misclosure space, the decision probabilities and the minimal detectable and identifiable biases. The difference between these two minimal biases is highlighted by showing the difference between their corresponding contributing factors. We also show that if two alternative hypotheses, say Hi and Hj , are nonseparable, the testing procedure may have different levels of sensitivity to Hi -biases compared to the same Hj -biases.

  9. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Science.gov (United States)

    2010-10-01

    ... significantly affecting the environment. 520.5 Section 520.5 Transportation Other Regulations Relating to... significantly affecting the environment. (a) General guidelines. The phrase, “major Federal actions significantly affecting the quality of the human environment,” as used in this part, shall be construed with a...

  10. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Vladimir López

    2016-03-01

    Full Text Available Mycobacteria of the Mycobacterium tuberculosis complex (MTBC greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB. In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB- and M. bovis-infected young (TB+ and adult animals with different infection status [TB lesions localized in the head (TB+ or affecting multiple organs (TB++]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to

  11. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Science.gov (United States)

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  12. Thermal study of bare tips with various system parameters and incision sizes.

    Science.gov (United States)

    Osher, Robert H; Injev, Valentine P

    2006-05-01

    To identify major and minor surgeon-controlled parameters that affect incision temperature when performing microincision lens removal using the Alcon Infiniti Vision System. In vitro research and development laboratory, Alcon Research, Irvine, California, USA. Phacoemulsification was performed in eye-bank cadaver eyes and the following parameters evaluated: incision, duty cycle, ultrasound (US) power, aspiration flow rate (AFR), vacuum, pulse, bottle height and balanced salt solution temperature, and tip design/size. Each parameter was varied while the others remained constant. The resulting temperature of the incision and US tip was measured using a thermal camera. Major contributors to elevated incision temperature included incision size, US power, duty cycle, AFR, vacuum setting, tip design, and presence of an ophthalmic viscosurgical device (OVD). Minor contributors included pulse frequency, bottle height, and temperature of the infusate. Microincision lens removal can be performed at safe temperatures with the knowledgeable selection of surgeon-controlled parameters.

  13. Affect as Information in Persuasion: A Model of Affect Identification and Discounting

    Science.gov (United States)

    Albarracín, Dolores; Kumkale, G. Tarcan

    2016-01-01

    Three studies examined the implications of a model of affect as information in persuasion. According to this model, extraneous affect may have an influence when message recipients exert moderate amounts of thought, because they identify their affective reactions as potential criteria but fail to discount them as irrelevant. However, message recipients may not use affect as information when they deem affect irrelevant or when they do not identify their affective reactions at all. Consistent with this curvilinear prediction, recipients of a message that either favored or opposed comprehensive exams used affect as a basis for attitudes in situations that elicited moderate thought. Affect, however, had no influence on attitudes in conditions that elicited either large or small amounts of thought. PMID:12635909

  14. Accuracy-enhanced constitutive parameter identification using virtual fields method and special stereo-digital image correlation

    Science.gov (United States)

    Zhang, Zhongya; Pan, Bing; Grédiac, Michel; Song, Weidong

    2018-04-01

    The virtual fields method (VFM) is generally used with two-dimensional digital image correlation (2D-DIC) or grid method (GM) for identifying constitutive parameters. However, when small out-of-plane translation/rotation occurs to the test specimen, 2D-DIC and GM are prone to yield inaccurate measurements, which further lessen the accuracy of the parameter identification using VFM. In this work, an easy-to-implement but effective "special" stereo-DIC (SS-DIC) method is proposed for accuracy-enhanced VFM identification. The SS-DIC can not only deliver accurate deformation measurement without being affected by unavoidable out-of-plane movement/rotation of a test specimen, but can also ensure evenly distributed calculation data in space, which leads to simple data processing. Based on the accurate kinematics fields with evenly distributed measured points determined by SS-DIC method, constitutive parameters can be identified by VFM with enhanced accuracy. Uniaxial tensile tests of a perforated aluminum plate and pure shear tests of a prismatic aluminum specimen verified the effectiveness and accuracy of the proposed method. Experimental results show that the constitutive parameters identified by VFM using SS-DIC are more accurate and stable than those identified by VFM using 2D-DIC. It is suggested that the proposed SS-DIC can be used as a standard measuring tool for mechanical identification using VFM.

  15. Left Ventricular Myocardial Deformation Parameters Are Affected by Coronary Slow Flow Phenomenon: A Study of Speckle Tracking Echocardiography.

    Science.gov (United States)

    Gulel, Okan; Akcay, Murat; Soylu, Korhan; Aksan, Gokhan; Yuksel, Serkan; Zengin, Halit; Meric, Murat; Sahin, Mahmut

    2016-05-01

    The coronary slow flow phenomenon (CSFP) is defined as a delayed distal vessel contrast opacification in the absence of obstructive epicardial coronary artery disease during coronary angiography. There is conflicting data in medical literature regarding the effects of CSFP on the left ventricular functions assessed by conventional echocardiography or tissue Doppler imaging. Therefore, we aimed to evaluate whether there is any abnormality in the myocardial deformation parameters (strain, strain rate (SR), rotation, twist) of the left ventricle obtained by speckle tracking echocardiography (STE) in patients with CSFP. Twenty patients with CSFP were included prospectively in the study. Another 20 patients with similar demographics and cardiovascular risk factors as well as normal coronary angiography were used as the control group. Two-dimensional echocardiographic images of the left ventricle from the apical long-axis, two-chamber, four-chamber, and parasternal short-axis views were used for STE analysis. The analysis of left ventricular circumferential deformation parameters showed that the averaged peak systolic strain, systolic SR, and early diastolic SR values were significantly lower in patients with CSFP (P = 0.009, P = 0.02, and P = 0.02, respectively). Among the left ventricular rotation and twist values, apical rotation was significantly lower in patients with CSFP (P = 0.02). Further, the mean thrombolysis in myocardial infarction frame count value was found to be negatively correlated with the averaged peak circumferential early diastolic SR (r = -0.35, P = 0.03). It was positively correlated with the averaged peak circumferential systolic strain (r = 0.47, P = 0.003) and circumferential systolic SR (r = 0.46, P = 0.005). Coronary slow flow phenomenon leads to significant alterations in the myocardial deformation parameters of the left ventricle as assessed by STE. Specifically, circumferential deformation parameters are affected in CSFP patients. © 2015

  16. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  17. Alexithymia Components Are Differentially Related to Explicit Negative Affect But Not Associated with Explicit Positive Affect or Implicit Affectivity.

    Science.gov (United States)

    Suslow, Thomas; Donges, Uta-Susan

    2017-01-01

    Alexithymia represents a multifaceted personality construct defined by difficulties in recognizing and verbalizing emotions and externally oriented thinking. According to clinical observations, experience of negative affects is exacerbated and experience of positive affects is decreased in alexithymia. Findings from research based on self-report indicate that all alexithymia facets are negatively associated with the experience of positive affects, whereas difficulties identifying and describing feelings are related to heightened negative affect. Implicit affectivity, which can be measured using indirect assessment methods, relates to processes of the impulsive system. The aim of the present study was to examine, for the first time, the relations between alexithymia components and implicit and explicit positive and negative affectivity in healthy adults. The 20-item Toronto Alexithymia Scale, the Implicit Positive and Negative Affect Test and the Positive and Negative Affect Schedule (PANAS) were administered to two hundred and forty-one healthy individuals along with measures of depression and trait anxiety. Difficulties identifying feelings were correlated with explicit negative trait affect, depressive mood and trait anxiety. Difficulties describing feelings showed smaller but also significant correlations with depressive mood and trait anxiety but were not correlated with explicit state or trait affect as assessed by the PANAS. Externally oriented thinking was not significantly correlated with any of the implicit and explicit affect measures. According to our findings, an externally oriented, concrete way of thinking appears to be generally unrelated to dispositions to develop positive or negative affects. Difficulties identifying feelings seem to be associated with increased conscious negative affects but not with a heightened disposition to develop negative affects at an automatic response level.

  18. Alexithymia Components Are Differentially Related to Explicit Negative Affect But Not Associated with Explicit Positive Affect or Implicit Affectivity

    Directory of Open Access Journals (Sweden)

    Thomas Suslow

    2017-10-01

    Full Text Available Alexithymia represents a multifaceted personality construct defined by difficulties in recognizing and verbalizing emotions and externally oriented thinking. According to clinical observations, experience of negative affects is exacerbated and experience of positive affects is decreased in alexithymia. Findings from research based on self-report indicate that all alexithymia facets are negatively associated with the experience of positive affects, whereas difficulties identifying and describing feelings are related to heightened negative affect. Implicit affectivity, which can be measured using indirect assessment methods, relates to processes of the impulsive system. The aim of the present study was to examine, for the first time, the relations between alexithymia components and implicit and explicit positive and negative affectivity in healthy adults. The 20-item Toronto Alexithymia Scale, the Implicit Positive and Negative Affect Test and the Positive and Negative Affect Schedule (PANAS were administered to two hundred and forty-one healthy individuals along with measures of depression and trait anxiety. Difficulties identifying feelings were correlated with explicit negative trait affect, depressive mood and trait anxiety. Difficulties describing feelings showed smaller but also significant correlations with depressive mood and trait anxiety but were not correlated with explicit state or trait affect as assessed by the PANAS. Externally oriented thinking was not significantly correlated with any of the implicit and explicit affect measures. According to our findings, an externally oriented, concrete way of thinking appears to be generally unrelated to dispositions to develop positive or negative affects. Difficulties identifying feelings seem to be associated with increased conscious negative affects but not with a heightened disposition to develop negative affects at an automatic response level.

  19. Identification of Affine Linear Parameter Varying Models for Adaptive Interventions in Fibromyalgia Treatment.

    Science.gov (United States)

    Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred

    2013-12-31

    There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.

  20. Parameters affecting profile shape of a high energy low current thin ion beam. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Salam, F W; Moustafa, O A; El-Khabeary, H [Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    The shape of the profile of a high energy, low current beam of finite length has beam investigated. The beam profile shape depends on the initial beam radius, beam perveance, atomic mass number, charge state of ions, and beam length. These parameters can affect the relation between the initial beam radius and the corresponding final one. An optimum initial beam radius corresponding to minimum final beam at the target has been formulated and the relation between them is deduced taking account of the space charge effect. The minimum beam radius at the target was found to be equal to 2.3 of the optimum initial radius. It is concluded that in order to obtain a small beam radius at a target placed at a finite distance from an ion source, a beam of a low perveance, low atomic mass number and high number of electronic charge is required. This is an important detection for micro machining applications using the oscillating electron ion source which produces nearly paraxial thin beam of low perveance. 12 figs.

  1. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    Science.gov (United States)

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Stability of Intercellular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    Science.gov (United States)

    Mihailović, Dragutin T.; Budinčević, Mirko; Balaž, Igor; Mihailović, Anja

    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.

  3. Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs

    Science.gov (United States)

    Dokmanovic, Marija; Baltic, Milan Z.; Duric, Jelena; Ivanovic, Jelena; Popovic, Ljuba; Todorovic, Milica; Markovic, Radmila; Pantic, Srdan

    2015-01-01

    Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness) were determined in pigs (n = 100) using Pearson correlations. After longer lairage, blood lactate (prigor mortis (p<0.05), suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes) deteriorated when blood lactate concentration was above 12 mmol/L. PMID:25656214

  4. Does Methylphenidate Affect Cystometric Parameters in Spontaneously Hypertensive Rats?

    Directory of Open Access Journals (Sweden)

    Khae Hawn Kim

    2015-06-01

    Full Text Available Purpose: Methylphenidate (MPH is one of the most commonly prescribed psychostimulants for attention deficit hyperactivity disorder (ADHD. However, there is limited research on its effects on lower urinary tract function. This study investigated changes in cystometric parameters after intragastric administration of MPH in conscious spontaneously hypertensive rats (SHRs, an animal model of ADHD. Methods: Fourteen- to 16-week-old male SHRs (n=10, weighing between 280 and 315 g, were used. Three micturition cycles were recorded before administering MPH. One hour after each intragastric MPH injection, three cycles of cystometrogram were obtained in the awake condition. Various cystometric parameters were evaluated, including basal pressure (BP, maximal pressure (MP, threshold pressure (TP, bladder capacity (BC, micturition volume (MV, micturition interval (MI, and residual volume (RV. The data were analyzed using paired Student t-tests. Results: Five SHRs were each administered a dose of 3-mg/kg MPH, and the other five received a dose of 6-mg/kg MPH. BP and MP increased significantly in the rats that received the 3-mg/kg MPH injection, but not in those that received the 6-mg/kg injection. BC, MV, and MI significantly increased in the rats that received the 6-mg/kg MPH injection, but not in those that received the 3-mg/kg injection. There were no significant changes in TP after either injection. Conclusions: Significant increases in BC, MV, and MI after the 6-mg/kg MPH injection suggest that the peripheral and the central nervous systems may play important roles in bladder function in those receiving MPH for ADHD.

  5. Spatial-temporal parameters of gait in women with fibromyalgia.

    Science.gov (United States)

    Heredia Jiménez, José María; Aparicio García-Molina, Virginia A; Porres Foulquie, Jesús M; Delgado Fernández, Manuel; Soto Hermoso, Victor M

    2009-05-01

    The aim of the present study was to determine if there are differences in such parameters among patients affected by fibromyalgia (FM) and healthy subjects and whether the degree of affectation by FM can decrease the gait parameters. We studied 55 women with FM and 44 controls. Gait analysis was performed using an instrumented walkway for measurement of the kinematic parameters of gait (GAITRite system), and patients completed a Spanish version of Fibromyalgia Impact Questionnaire (FIQ). Significant differences (p Gait parameters of women affected by FM were severely impaired when compared to those of healthy women. Different factors such as lack of physical activity, bradikinesia, overweight, fatigue, and pain together with a lower isometric force in the legs can be responsible for the alterations in gait and poorer life quality of women with FM.

  6. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    Directory of Open Access Journals (Sweden)

    Jonathan R Karr

    2015-05-01

    Full Text Available Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

  7. An effective automatic procedure for testing parameter identifiability of HIV/AIDS models.

    Science.gov (United States)

    Saccomani, Maria Pia

    2011-08-01

    Realistic HIV models tend to be rather complex and many recent models proposed in the literature could not yet be analyzed by traditional identifiability testing techniques. In this paper, we check a priori global identifiability of some of these nonlinear HIV models taken from the recent literature, by using a differential algebra algorithm based on previous work of the author. The algorithm is implemented in a software tool, called DAISY (Differential Algebra for Identifiability of SYstems), which has been recently released (DAISY is freely available on the web site http://www.dei.unipd.it/~pia/ ). The software can be used to automatically check global identifiability of (linear and) nonlinear models described by polynomial or rational differential equations, thus providing a general and reliable tool to test global identifiability of several HIV models proposed in the literature. It can be used by researchers with a minimum of mathematical background.

  8. Parameter Uncertainty on AGCM-simulated Tropical Cyclones

    Science.gov (United States)

    He, F.

    2015-12-01

    This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.

  9. URBAN MORPHOLOGY AND AIR QUALITY IN DENSE RESIDENTIAL ENVIRONMENTS: CORRELATIONS BETWEEN MORPHOLOGICAL PARAMETERS AND AIR POLLUTION AT STREET-LEVEL

    Directory of Open Access Journals (Sweden)

    PRIYANTHA EDUSSURIYA

    2014-02-01

    Full Text Available This study is the second part of the series that identifies whether site-specific urban morphological parameters are correlated with air quality. This study aims to identify the most important urban morphological parameters that affects air quality at street level that affect air quality in metropolis like Hong Kong through field measurements and statistical analyses. The study considers 20 urban residential areas in five major districts of Hong Kong and real-time street level air pollutant and microclimatic data are collected from these areas. 21 morphological variables are identified and calculated based on the geometry of the urban fabric. Using principal component analyses, it is shown that out of the many urban morphological factors, only five morphological variables (plan area density, occlusivity, aerodynamic roughness height, mean built volume, compactness factor and four land development factors (aspect ratio, distance between building, mean building height and standard deviation of building height correlate with particulate matter. Besides mineralisation factor, contiguity and canyon ratio marginally correlate with particulate matter. On the other hand, nine variables (plan area density, compactness factor, occlusivity, aerodynamic roughness height, average size of building volume, aspect ratio, distance between buildings, mean building height and standard deviations of building heights correlate with NOx. All others play insignificant roles in street-level pollution effect. Moreover statistical analyses show little correlation between CO and ozone with urban morphological parameters. It is also established that the key microclimatic variables that connects PM and NOx with the urban morphological factors are northerly wind, relative humidity and temperature, which in turn translates to affecting the street-level air pollution.

  10. Motion coordination affects movement parameters in a joint pick-and-place task

    DEFF Research Database (Denmark)

    Vesper, Cordula; Soutschek, Alexander; Schubö, Anna

    2009-01-01

    This study examined influences of social context on movement parameters in a pick-and-place task. Participants’ motion trajectories were recorded while they performed sequences of natural movements either working side-by-side with a partner or alone. It was expected that movement parameters would...... person performed the task while being observed by the partner. Results indicate that participants adapted their movements temporally and spatially to the joint action situation: Overall movement duration was shorter, and mean and maximum velocity was higher when actually working together than when...... action tasks....

  11. Identifying the role of initial wave parameters on tsunami focusing

    Science.gov (United States)

    Aydın, Baran

    2018-04-01

    Unexpected local tsunami amplification, which is referred to as tsunami focusing, is attributed to two different mechanisms: bathymetric features of the ocean bottom such as underwater ridges and dipolar shape of the initial wave itself. In this study, we characterize the latter; that is, we explore how amplitude and location of the focusing point vary with certain geometric parameters of the initial wave such as its steepness and crest length. Our results reveal two important features of tsunami focusing: for mild waves maximum wave amplitude increases significantly with transverse length of wave crest, while location of the focusing point is almost invariant. For steep waves, on the other hand, increasing crest length dislocates focusing point significantly, while it causes a rather small increase in wave maximum.

  12. Testing parameters of TMR heads affected by dynamic-tester induced EMI

    International Nuclear Information System (INIS)

    Kruesubthaworn, A.; Sivaratana, R.; Ungvichian, V.; Siritaratiwat, A.

    2007-01-01

    A variety of expected electromagnetic interference (EMI) sources of both radiated and conducted EMI emissions produced by a dynamic tester is studied. It is determined that the power cable connector of the robot arm radiates a significant electric field (E-field) of about 197 V/m at 1 foot away and an estimated calculation of the E-field of about 212 mV/m is at the spindle motor. These fields can be attenuated by about 20-30 dB when using a copper lined Faraday's cage. Furthermore, the study has revealed that the radiated EMI plays a more significant role than the conducted EMI. In addition, it is determined that out of seven selected testing parameters, the SGAW is rather more sensitive to EMI than conventional failure parameters, especially static glitche during the write cycle

  13. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Man Zhu

    2017-03-01

    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  14. Structural Identifiability of Dynamic Systems Biology Models.

    Science.gov (United States)

    Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis

    2016-10-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.

  15. Parameter study on performance of building cooling by night-time ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2008-01-01

    of different parameters such as building construction, heat gains, air change rates, heat transfer coefficients and climatic conditions including annual variations on the number of overheating degree hours (operative room temperature >26 °C) was evaluated. Climatic conditions and air flow rate during night......Especially for commercial buildings in moderate climates, night-time ventilation seems to be a simple and energy-efficient approach to improve thermal comfort in summer. However, due to uncertainties in the prediction of thermal comfort in buildings with night-time ventilation, architects...... and engineers are still hesitant to apply this technique. In order to reduce the uncertainties, the most important parameters affecting night ventilation performance need to be identified. A typical office room was therefore modelled using a building energy simulation programme (HELIOS), and the effect...

  16. Gait parameters in patients with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Cristina Elena Prado Teles Fregonesi

    2010-02-01

    Full Text Available Diabetes mellitus is a chronic disease that results in sensorimotor alterations. These changes affect balance and walking and predispose affected patients to falls. The aim of this review was to identify studies in the recent literature that assess gait parameters and aspects involved in walking. The MEDLINE, SciELO, LILACS and PEDro databases were searched using the following combination of keywords: diabetic neuropathies x gait; diabetes mellitus x gait, and diabetic foot x gait. After the application of selection criteria, 15 articles were retrieved, summarized, discussed, and are included in this review. Diabetic neuropathy was found to lead to deficits in step amplitude, gait velocity and gait cadence on flat surfaces, without sudden changes in direction or stops, and to balance and coordination deficits on inclined and uneven terrain. Diabetic neuropathies also increase plantar pressure rates and lead to difficulties in the terminal stance phase and pre-swing phase due to changes in triceps surae activation. Thus, the next initial contact occurs in an inadequate manner, with the forefoot and without absorption of shocks.

  17. [Dynamics of hormonal parameters changes in workers affected by noise nuisance].

    Science.gov (United States)

    Lizarev, A V

    2008-01-01

    The dynamics of hormonal parameters changes in workers of noise dangerous occupations was studied over 5 year period. It was shown that with extension of length of service the content of hormones in peripheral blood of patients with sensorineural deafness has not changed significantly.

  18. Cellular signaling identifiability analysis: a case study.

    Science.gov (United States)

    Roper, Ryan T; Pia Saccomani, Maria; Vicini, Paolo

    2010-05-21

    Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Temperature responses of photosynthetic capacity parameters were not affected by foliar nitrogen content in mature Pinus sylvestris.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2018-03-01

    A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (V cmax ) and electron transport (J max ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that V cmax and J max exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of V cmax and J max in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of V cmax or J max when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability. © 2017 Scandinavian Plant Physiology Society.

  20. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter.

    Science.gov (United States)

    Leite Figueiredo, Débora Alvares; Branco, Paola Cristina; Dos Santos, Douglas Amaral; Emerenciano, Andrews Krupinski; Iunes, Renata Stecca; Shimada Borges, João Carlos; Machado Cunha da Silva, José Roberto

    2016-11-01

    The rising concentration of atmospheric CO 2 by anthropogenic activities is changing the chemistry of the oceans, resulting in a decreased pH. Several studies have shown that the decrease in pH can affect calcification rates and reproduction of marine invertebrates, but little attention has been drawn to their immune response. Thus this study evaluated in two adult tropical sea urchin species, Lytechinus variegatus and Echinometra lucunter, the effects of ocean acidification over a period of 24h and 5days, on parameters of the immune response, the extracellular acid base balance, and the ability to recover these parameters. For this reason, the phagocytic capacity (PC), the phagocytic index (PI), the capacity of cell adhesion, cell spreading, cell spreading area of phagocytic amebocytes in vitro, and the coelomic fluid pH were analyzed in animals exposed to a pH of 8.0 (control group), 7.6 and 7.3. Experimental pH's were predicted by IPCC for the future of the two species. Furthermore, a recovery test was conducted to verify whether animals have the ability to restore these physiological parameters after being re-exposed to control conditions. Both species presented a significant decrease in PC, in the pH of coelomic fluid and in the cell spreading area. Besides that, Echinometra lucunter showed a significant decrease in cell spreading and significant differences in coelomocyte proportions. The recovery test showed that the PC of both species increased, also being below the control values. Even so, they were still significantly higher than those exposed to acidified seawater, indicating that with the re-establishment of the pH value the phagocytic capacity of cells tends to restore control conditions. These results demonstrate that the immune system and the coelomic fluid pH of these animals can be affected by ocean acidification. However, the effects of a short-term exposure can be reversible if the natural values ​​are re-established. Thus, the effects of

  1. Deviations of Lambert-Beer???s law affect corneal refractive parameters after refractive surgery

    OpenAIRE

    Jim??nez Cuesta, Jos?? Ram??n; Rodr??guez-Mar??n, Francisco; Gonz??lez Anera, Rosario; Jim??nez del Barco Jaldo, Luis Miguel

    2006-01-01

    We calculate whether deviations of Lambert-Beer???s law, which regulates depth ablation during corneal ablation, significantly influence corneal refractive parameters after refractive surgery and whether they influence visual performance. For this, we compute a point-to-point correction on the cornea while assuming a non-linear (including a quadratic term) fit for depth ablation. Post-surgical equations for refractive parameters using a non-linear fit show significant differences with respect...

  2. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development.

    Science.gov (United States)

    Tøndel, Kristin; Niederer, Steven A; Land, Sander; Smith, Nicolas P

    2014-05-20

    Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input-output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on

  3. Parameters affecting the environmental impact of a range of dairy farming systems in Denmark, Germany and Italy

    DEFF Research Database (Denmark)

    Guerci, Matteo; Knudsen, Marie Trydeman; Bava, L.

    2013-01-01

    The environmental impact of 12 dairy farms in Denmark, Germany and Italy was evaluated using an LCA approach and the most important parameters influencing their environmental sustainability were identified. The farms represent different production methods (organic vs. conventional), summer feeding...... intensive Italian farming system with very similar environmental impact values. However, a sensitivity analysis showed that when emissions relating to direct land use change of soybean production were included in the assessment, the GWP changed considerably for the conventional farms due to the inclusion...... of conventional soymeal in the feed concentrate. There were strong and positive correlations between the four impact categories, and overall the results indicate that improving greenhouse gas emissions would improve the general environmental sustainability of the dairy farm. The land occupation was lowest...

  4. Comparison of Parameter Identification Techniques

    Directory of Open Access Journals (Sweden)

    Eder Rafael

    2016-01-01

    Full Text Available Model-based control of mechatronic systems requires excellent knowledge about the physical behavior of each component. For several types of components of a system, e.g. mechanical or electrical ones, the dynamic behavior can be described by means of a mathematic model consisting of a set of differential equations, difference equations and/or algebraic constraint equations. The knowledge of a realistic mathematic model and its parameter values is essential to represent the behaviour of a mechatronic system. Frequently it is hard or impossible to obtain all required values of the model parameters from the producer, so an appropriate parameter estimation technique is required to compute missing parameters. A manifold of parameter identification techniques can be found in the literature, but their suitability depends on the mathematic model. Previous work dealt with the automatic assembly of mathematical models of serial and parallel robots with drives and controllers within the dynamic multibody simulation code HOTINT as fully-fledged mechatronic simulation. Several parameters of such robot models were identified successfully by our embedded algorithm. The present work proposes an improved version of the identification algorithm with higher performance. The quality of the identified parameter values and the computation effort are compared with another standard technique.

  5. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    Science.gov (United States)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for

  6. Parameter identification of civil engineering structures

    Science.gov (United States)

    Juang, J. N.; Sun, C. T.

    1980-01-01

    This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.

  7. A PSO Driven Intelligent Model Updating and Parameter Identification Scheme for Cable-Damper System

    Directory of Open Access Journals (Sweden)

    Danhui Dan

    2015-01-01

    Full Text Available The precise measurement of the cable force is very important for monitoring and evaluating the operation status of cable structures such as cable-stayed bridges. The cable system should be installed with lateral dampers to reduce the vibration, which affects the precise measurement of the cable force and other cable parameters. This paper suggests a cable model updating calculation scheme driven by the particle swarm optimization (PSO algorithm. By establishing a finite element model considering the static geometric nonlinearity and stress-stiffening effect firstly, an automatically finite element method model updating powered by PSO algorithm is proposed, with the aims to identify the cable force and relevant parameters of cable-damper system precisely. Both numerical case studies and full-scale cable tests indicated that, after two rounds of updating process, the algorithm can accurately identify the cable force, moment of inertia, and damping coefficient of the cable-damper system.

  8. STAND STRUCTURE OF Pinus hartwegii AFFECTED BY FIRE USING NEIGHBOURHOOD PARAMETERS IN THE SIERRA MADRE ORIENTAL, MEXICO.

    Directory of Open Access Journals (Sweden)

    Diana Yemilet Avila Flores

    2012-08-01

    Full Text Available The objective of this research was to characterize the pattern of spatial structure of a Pinus hartwegii forest in the Sierra Madre Oriental, affected by a fire in 1998. Sampling was stratified by fire severity. Three fire severity classes were defined based on the degree of crown consumption (low, medium and high. Three sample plots of 40m x 40m were established for each severity. The variables obtained for all trees with a diameter at breast height (DBH ≥ 5 cm in each plot were: DBH to 1.30 m (cm, height (m, spatial location by recording the azimuth (° and distance (m from center of the plot to each tree. To describe the stand structure three groups of indices were employed: “contagion” and “distances” (Wi and Di, “dominance” (Ui, and “size differentiation” (TDi and THi for DBH and height respectively. An analysis of variance was performed to detect differences between dasometrics parameters by fire severity. Statistical analysis shows significant differences (p>0.001 in the parameters such as basal area, diameter, and height, along the low, medium, and high fire severities. The characterization of the Pinus hartwegii spatial structure suggests that, with increasing degree of fire severity, the stands showed an increase on the aggregation index, however, the dimensional differentiation and dominance indices decreases as the fire severity increases.

  9. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  10. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    Science.gov (United States)

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  11. Acute exposure to the biopesticide azadirachtin affects parameters in the gills of common carp (Cyprinus carpio).

    Science.gov (United States)

    Murussi, Camila R; Costa, Maiara D; Leitemperger, Jossiele W; Flores-Lopes, Fábio; Menezes, Charlene C; Loebens, Luisa; de Avila, Luis Antonio; Rizzetti, Tiele M; Adaime, Martha B; Zanella, Renato; Loro, Vania L

    2016-02-01

    The biopesticide, azadirachtin (Aza) is less hazardous to the environment, but may cause several toxic effects in aquatic organisms. The Cyprinus carpio (n=12, for all concentrations) after 10days of acclimation under controlled conditions, were exposed at 20, 40, and 60μL/L of Aza during 96h. After this period, fish were anesthetized and euthanized then mucus layer and gills collected. In this study, the effects of exposure to different Aza concentrations were analysed through a set of biomarkers: Na(+)/K(+-)ATPase, lipid peroxidation (TBARS), protein carbonyl (PC), superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase (CAT), glutathione peroxidase (GPx), non-protein thiols (NPSH), ascorbic acid (AsA) and histological parameters and, yet, protein and glucose concentration in the surface area of mucous layer. Na(+)K(+-)ATPase was inhibited at 40 and 60μL/L compared to control. TBARS decreased at 40μL/L compared to control. PC, SOD and GST increased at 60μL/L in comparison to control. CAT increased at 20 and 60μL/L, and GPx increased in all Aza concentrations compared to control. NPSH decreased and AsA increased in all concentrations in comparison to control. Histological analyses demonstrated an increase in the intensity of the damage with increasing Aza concentration. Alterations in histological examination were elevation and hypertrophy of the epithelial cells of the secondary filament, hypertrophy and hyperplasia of the mucous and chlorate cells and lamellar aneurism. Glucose and protein concentrations in mucus layer increased at 60μL/L compared to control. In general, we suggest that 60μL/L Aza concentration affected several parameters causing disruptions carp metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Science.gov (United States)

    Moon, Hongsik

    changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  13. Selection of Near Optimal Laser Cutting Parameters in CO2 Laser Cutting by the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Miloš MADIĆ

    2013-12-01

    Full Text Available Identification of laser cutting conditions that are insensitive to parameter variations and noise is of great importance. This paper demonstrates the application of Taguchi method for optimization of surface roughness in CO2 laser cutting of stainless steel. The laser cutting experiment was planned and conducted according to the Taguchi’s experimental design using the L27 orthogonal array. Four laser cutting parameters such as laser power, cutting speed, assist gas pressure, and focus position were considered in the experiment. Using the analysis of means and analysis of variance, the significant laser cutting parameters were identified, and subsequently the optimal combination of laser cutting parameter levels was determined. The results showed that the cutting speed is the most significant parameter affecting the surface roughness whereas the influence of the assist gas pressure can be neglected. It was observed, however, that interaction effects have predominant influence over the main effects on the surface roughness.

  14. Dynamic Parameter Identification of Hydrodynamic Bearing-Rotor System

    Directory of Open Access Journals (Sweden)

    Zhiqiang Song

    2015-01-01

    Full Text Available A new method called modal parameter genetic time domain identification was employed to study the characteristics of the bearing-rotor system. A multifrequency signal decomposition technology to identify the main components of the measured signal and reject the image mode produced by noise has been used. The first- and second-order natural frequency and damping ratios of the shaft system are identified. Furthermore, because of the deficiency of the traditional least square method, a new genetic identification method to identify the bearing dynamic characteristic parameters has been proposed. The method has been effective albeit with few testing points and operation cases. The derivation of oil-film dynamic coefficients could also provide a basis for shaft system natural vibration characteristic and vibration response analysis. Using the identified dynamic coefficients as the supporting condition, the shaft system modal characteristics were studied. The calculated first- and second-order natural frequencies match quite well those obtained from the modal parameter identification. It was proved that the modal parameter and physical parameter identification methods utilized in this paper are reasonable.

  15. Examination of Parameters Affecting the House Prices by Multiple Regression Analysis and its Contributions to Earthquake-Based Urban Transformation

    Science.gov (United States)

    Denli, H. H.; Durmus, B.

    2016-12-01

    The purpose of this study is to examine the factors which may affect the apartment prices with multiple linear regression analysis models and visualize the results by value maps. The study is focused on a county of Istanbul - Turkey. Totally 390 apartments around the county Umraniye are evaluated due to their physical and locational conditions. The identification of factors affecting the price of apartments in the county with a population of approximately 600k is expected to provide a significant contribution to the apartment market.Physical factors are selected as the age, number of rooms, size, floor numbers of the building and the floor that the apartment is positioned in. Positional factors are selected as the distances to the nearest hospital, school, park and police station. Totally ten physical and locational parameters are examined by regression analysis.After the regression analysis has been performed, value maps are composed from the parameters age, price and price per square meters. The most significant of the composed maps is the price per square meters map. Results show that the location of the apartment has the most influence to the square meter price information of the apartment. A different practice is developed from the composed maps by searching the ability of using price per square meters map in urban transformation practices. By marking the buildings older than 15 years in the price per square meters map, a different and new interpretation has been made to determine the buildings, to which should be given priority during an urban transformation in the county.This county is very close to the North Anatolian Fault zone and is under the threat of earthquakes. By marking the apartments older than 15 years on the price per square meters map, both older and expensive square meters apartments list can be gathered. By the help of this list, the priority could be given to the selected higher valued old apartments to support the economy of the country

  16. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jakob Laigaard; Brincker, Rune; Rytter, Anders

    In this paper the uncertainties of identified modal parameters such as eigenfrequencies and damping ratios are assessed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the param...

  17. Evaluation of different physical parameters that affect the clinical image quality for gamma camera by using different radionuclides

    International Nuclear Information System (INIS)

    Salah, F.A.; Ziada, G.; Hejazy, M.A.; Khalil, W.A.

    2008-01-01

    Some scintillation camera manufactures adhere to standard code of performance specification established by National Electric Manufactures Association (NEMA). Items such as differential and integral uniformity, spatial resolution energy resolution, etc. are all calculated with reproducible methodology that allows the user reliable technique for creation of these standards to avoid any lack of clinical service that may violate the ethics of patient care. Because 99m Tc is the most frequently used radionuclide in nuclear medicine, many clinics perform the daily uniformity and weekly resolution checks using this radionuclide. But when other commonly used radionuclide such as Tl-201,Ga-67 and I-131 are used, no standardized quality control is performed. So in these study we perform to evaluate the response of ADAC(digital) gamma camera and SELO(analogue) gamma camera to four radionuclide (Tl-201,Ga-67, I-131, and 99m Tc) flood image acquired using different non-uniformity correction tables. In the planer study uniformity and resolution images were obtained using ADAC and SELO cameras, linearity was obtained only by ADAC camera, while in the SPECT study uniformity and contrast images were obtained using ADAC camera only. The response for using different non-uniformity correction tables acquired using different isotopes was different from gamma camera model to another. We can conclude that the most of the gamma camera quality control parameters (uniformity, resolution and contrast) are influenced by variation in the correction tables, while other parameters not affected by this variation like linearity. (author)

  18. Performance analysis of pin fins with temperature dependent thermal parameters using the variation of parameters method

    Directory of Open Access Journals (Sweden)

    Cihat Arslantürk

    2016-08-01

    Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.

  19. Parameters affecting the tidal volume during expiratory abdominal compression in patients with prolonged tracheostomy mechanical ventilation.

    Science.gov (United States)

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Takahashi, Naoaki

    2015-07-01

    [Purpose] The aim of this study was to clarify physical parameters affecting the tidal volume during expiratory abdominal compression in patients with prolonged tracheostomy mechanical ventilation. [Methods] Eighteen patients with prolonged mechanical ventilation were included in this study. Expiratory abdominal compression was performed on patients lying in a supine position. The abdomen above the navel was vertically compressed in synchronization with expiration and released with inspiration. We measured the tidal volume during expiratory abdominal compression. [Results] The mean tidal volume during expiratory abdominal compression was higher than that at rest (430.6 ± 127.1 mL vs. 344.0 ± 94.3 mL). The tidal volume during expiratory abdominal compression was correlated with weight, days of ventilator support, dynamic compliance and abdominal expansion. Stepwise multiple regression analysis revealed that weight (β = 0.499), dynamic compliance (β = 0.387), and abdominal expansion (β = 0.365) were factors contributing to the tidal volume during expiratory abdominal compression. [Conclusion] Expiratory abdominal compression increased the tidal volume in patients with prolonged tracheostomy mechanical ventilation. The tidal volume during expiratory abdominal compression was influenced by each of the pulmonary conditions and the physical characteristics.

  20. How is rainfall interception in urban area affected by meteorological parameters?

    Science.gov (United States)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2017-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The amount of rainfall reaching the ground depends on various meteorological and vegetation parameters. Rainfall, throughfall and stemflow have been measured in the city of Ljubljana, Slovenia since the beginning of 2014. Manual and automatic measurements are performed regularly under Betula pendula and Pinus nigra trees in urban area. In 2014, there were detected 178 rainfall events with total amount of 1672.1 mm. In average B. pendula intercepted 44% of rainfall and P. nigra intercepted 72% of rainfall. In 2015 we have detected 117 events with 1047.4 mm of rainfall, of which 37% was intercepted by B. pendula and 60% by P. nigra. The effect of various meteorological parameters on the rainfall interception was analysed in the study. The parameters included in the analysis were rainfall rate, rainfall duration, drop size distribution (average drop velocity and diameter), average wind speed, and average temperature. The results demonstrate decreasing rainfall interception with longer rainfall duration and higher rainfall intensity although the impact of the latter one is not statistically significant. In the case of very fast or very slow rainfall drops, the interception is higher than for the mean rain drop velocity values. In the case of P. nigra the impact of the rain drop diameter on interception is similar to the one of rain drop velocity while for B. pendula increasing of drop diameter also increases the interception. As expected, interception is higher for warmer events. This trend is more evident for P. nigra than for B. pendula. Furthermore, the amount of intercepted rainfall also increases with wind although it could be

  1. IDENTIFIABILITY VERSUS HETEROGENEITY IN GROUNDWATER MODELING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A M BENALI

    2003-06-01

    Full Text Available Review of history matching of reservoirs parameters in groundwater flow raises the problem of identifiability of aquifer systems. Lack of identifiability means that there exists parameters to which the heads are insensitive. From the guidelines of the study of the homogeneous case, we inspect the identifiability of the distributed transmissivity field of heterogeneous groundwater aquifers. These are derived from multiple realizations of a random function Y = log T  whose probability distribution function is normal. We follow the identifiability of the autocorrelated block transmissivities through the measure of the sensitivity of the local derivatives DTh = (∂hi  ∕ ∂Tj computed for each sample of a population N (0; σY, αY. Results obtained from an analysis of Monte Carlo type suggest that the more a system is heterogeneous, the less it is identifiable.

  2. DEMOGRAPHIC-ANAMNESTIC PARAMETERS WHICH AFFECT IMPLEMENTATION OF BABY FRIENDLY PROGRAM

    Directory of Open Access Journals (Sweden)

    Bozidar Jovanovic

    2005-12-01

    Full Text Available Various studies and extensive researches, particularly during recent years, on the advantages of breastfeeding and the use of breast milk in infant`s nourishment, have stressed its immeasurable benefit to mothers, infants, family and society. The objective of the research was to ascertain demographic and anamnestic factors affecting the implementation of the baby friendly program. The study was undertaken at OGC CC Kragujevac and based on data from 432 women. The mean age of the examinees was 25,9 years and they were 6 months younger than the corresponding examinees from similar world researches. In most cases, the examinees were from urban areas and lived in bigger families, which did not affect the implementation of the program. With equal probability, it was the first or second pregnancy and in most cases, there were no hospitalizations during the pregnancy in both tested groups. Medications are more often used during the implementation of the baby friendly program. The reason for positive influence of the use of medications during the pregnancy on implementation of the baby friendly program probably lies in better supervision of the pregnancy. The gestation age did not influence the selection into the program. By means of higher level of supervision and by the use of medications during pregnancy, we can positively influence mother`s and infant`s starting with the baby friendly programme implementation.

  3. Parameters affecting the performance of a low cost solar still

    International Nuclear Information System (INIS)

    Ahsan, A.; Imteaz, M.; Thomas, U.A.; Azmi, M.; Rahman, A.; Nik Daud, N.N.

    2014-01-01

    Highlights: • The triangular solar still is designed using cheap and durable materials. • The initial water depth has an inverse relationship with the production. • The water productivity is nearly proportional to the solar radiation. • The water quality parameters are within the accepted ranges of drinking water. - Abstract: This study aims at developing a low cost technique to be used in rural and coastal areas for converting saline water into potable water using solar energy. A triangular solar still (TrSS) was, therefore, designed and developed with cheap, lightweight, local and available materials. A number of field experiments were carried out to evaluate the effects of solar radiation intensity, ambient air temperature and the initial water depth on the daily water production of the TrSS. A time lag of about and hour between the hourly peaks of solar radiation and water production is observed. Finally, a few essential relationships were attained, e.g. between the daily production and the initial water depth, between the daily production and daily solar radiation, and between the daily production and the average ambient temperature. The effect of the initial water depth in the basin on the daily water productivity was evaluated by varying the water depths (1.5, 2.5 and 5 cm) with the climatic condition of Malaysia and an inverse proportional relationship was revealed between them. However, the daily water productivity is nearly proportional to the daily solar radiation. In addition, some important water quality parameters were tested in the laboratory to evaluate the distillate quality and were then compared with the drinking water standards

  4. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    International Nuclear Information System (INIS)

    Yacob, S; Ariffin, N; Ali, R; Arshad, A; Wahab, M I A; Ismail, S A; Roji, NS M; Din, W B W; Zakaria, M H; Abdullah, A; Yusof, M I; Kamarulzaman, K Z; Mahyuddin, A; Hamzah, M N; Roslan, R; MAli, M A; Ahsan, Q

    2015-01-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld. (paper)

  5. Using focus groups to identify factors affecting healthy weight maintenance in college men.

    Science.gov (United States)

    Walsh, Jennifer R; White, Adrienne A; Greaney, Mary L

    2009-06-01

    Healthful eating and physical activity are important for healthy weight maintenance. The hypothesis for this study was that college-aged men would perceive factors affecting eating and physical activity as both contributing to and inhibiting healthy weight maintenance. The overall objective was to explore how men view weight maintenance in the context of these aspects. Subjects (n = 47, mean age = 20.3 +/- 1.7 years) completed an online survey, including the 51-item Three-Factor Eating Questionnaire, and participated in 1 of 6 focus groups. Three face-to-face and 3 online synchronous groups were conducted using a 15-question discussion guide to identify weight maintenance issues around eating, physical activity, and body perceptions. Weight satisfaction decreased with increase in both dietary restraint and disinhibition. Number of attempts to lose weight was positively associated with BMI (r [44] = .465, P = .01) and dietary restraint (r [44] = .515, P = .01). Findings from both focus group formats were similar. Motivators (sports performance/fitness, self-esteem, attractiveness, long-term health) were similar for eating healthfully and being physically active; however, more motivators to be physically active than to eat healthfully emerged. Enablers for eating healthfully included liking the taste, availability of healthful foods, using food rules to guide intake, having a habit of healthful eating, and internal drive/will. Barriers to healthful eating included fat in dairy foods, fruit and vegetable taste, and quick spoilage. Barriers to being physically active included lack of time/time management, obligations, being lazy, and girlfriends. Results may be used to inform future obesity prevention interventions.

  6. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-01-01

    Investigations related to the disposal of radioactive wastes in Switzerland are dealing with formations containing natural gas as potential host rock for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that relates field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows to identify key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gastest performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., 100 refs

  7. Infrared Drying Parameter Optimization

    Science.gov (United States)

    Jackson, Matthew R.

    In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a

  8. Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs

    Directory of Open Access Journals (Sweden)

    Marija Dokmanovic

    2015-03-01

    Full Text Available Relationships among different stress parameters (lairage time and blood level of lactate and cortisol, meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness were determined in pigs (n = 100 using Pearson correlations. After longer lairage, blood lactate (p<0.05 and degree of injuries (p<0.001 increased, meat became darker (p<0.001, while drip loss decreased (p<0.05. Higher lactate was associated with lower initial pH value (p<0.01, higher temperature (p<0.001 and skin blemishes score (p<0.05 and more developed rigor mortis (p<0.05, suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes deteriorated when blood lactate concentration was above 12 mmol/L.

  9. Near Identifiability of Dynamical Systems

    Science.gov (United States)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.

  10. Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.

    Science.gov (United States)

    Cuba, Christian E; Valle, Alexander R; Ayala-Charca, Giancarlo; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.

  11. Ranking of input parameters importance for BWR stability based on Ringhals-1

    International Nuclear Information System (INIS)

    Gajev, Ivan; Kozlowski, Tomasz; Xu, Yunlin; Downar, Thomas

    2011-01-01

    Unstable behavior of Boiling Water Reactors (BWRs) is known to occur during operation at certain power and flow conditions. Uncertainty calculations for BWR stability, based on the Wilks' formula, have been already done for the Ringhals-1 benchmark. In this work, these calculations have been used to identify and rank the most important parameters affecting the stability of the Ringhals-1 plant. The ranking has been done in two different ways and a comparison of these two methods has been demonstrated. Results show that the methods provide different, but meaningful evaluations of the ranking. (author)

  12. Design parameters to control synthetic gene expression in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Mark Welch

    Full Text Available BACKGROUND: Production of proteins as therapeutic agents, research reagents and molecular tools frequently depends on expression in heterologous hosts. Synthetic genes are increasingly used for protein production because sequence information is easier to obtain than the corresponding physical DNA. Protein-coding sequences are commonly re-designed to enhance expression, but there are no experimentally supported design principles. PRINCIPAL FINDINGS: To identify sequence features that affect protein expression we synthesized and expressed in E. coli two sets of 40 genes encoding two commercially valuable proteins, a DNA polymerase and a single chain antibody. Genes differing only in synonymous codon usage expressed protein at levels ranging from undetectable to 30% of cellular protein. Using partial least squares regression we tested the correlation of protein production levels with parameters that have been reported to affect expression. We found that the amount of protein produced in E. coli was strongly dependent on the codons used to encode a subset of amino acids. Favorable codons were predominantly those read by tRNAs that are most highly charged during amino acid starvation, not codons that are most abundant in highly expressed E. coli proteins. Finally we confirmed the validity of our models by designing, synthesizing and testing new genes using codon biases predicted to perform well. CONCLUSION: The systematic analysis of gene design parameters shown in this study has allowed us to identify codon usage within a gene as a critical determinant of achievable protein expression levels in E. coli. We propose a biochemical basis for this, as well as design algorithms to ensure high protein production from synthetic genes. Replication of this methodology should allow similar design algorithms to be empirically derived for any expression system.

  13. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    Science.gov (United States)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea

  14. Identifying criteria and establishing parameters for forest-based ecotourism in Northern Ontario, Canada

    Science.gov (United States)

    Stephen W. Boyd; Richard W. Butler; Wolfgang Haider

    1995-01-01

    This paper identifies the following criteria as indicators for ecotourism suitability within a Northern Ontario context: naturalness, wildlife, cultural heritage, landscape and community. A methodology is proposed which uses Geographical Information Systems (GIS) to identify ecotourism sites by linking criteria deemed important with actual landscape characteristics of...

  15. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner.

    Science.gov (United States)

    Rezania, S; Kammerer, S; Li, C; Steinecker-Frohnwieser, B; Gorischek, A; DeVaney, T T J; Verheyen, S; Passegger, C A; Tabrizi-Wizsy, N Ghaffari; Hackl, H; Platzer, D; Zarnani, A H; Malle, E; Jahn, S W; Bauernhofer, T; Schreibmayer, W

    2016-08-12

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K(+) channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235-402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer.

  16. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner

    International Nuclear Information System (INIS)

    Rezania, S.; Kammerer, S.; Li, C.; Steinecker-Frohnwieser, B.; Gorischek, A.; DeVaney, T. T. J.; Verheyen, S.; Passegger, C. A.; Tabrizi-Wizsy, N. Ghaffari; Hackl, H.; Platzer, D.; Zarnani, A. H.; Malle, E.; Jahn, S. W.; Bauernhofer, T.; Schreibmayer, W.

    2016-01-01

    Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K + channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235–402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer. The online

  17. Detecting differences in some elite wheat lines for salt tolerance through multi parameters evaluation i. morphological and yield parameters

    International Nuclear Information System (INIS)

    Akram, M.; Afzal, M.; Ashraf, M.

    2011-01-01

    Salt tolerance potential of a newly developed wheat genotype (N-9760: V3) was assessed by comparing it with a known salt tolerant line (N-1073:V2) and a commercial cultivar (Inqlab: V1) using various growth parameters measured at the vegetative and maturity stages, The objectives were to know qualitative and quantitative tolerance status and possible utilization of the new genotype as well as to examine as to whether the parameters used to assess the tolerance at vegetative and maturity stages are affected differentially by various salinity levels. The experiment was conducted in pots using four salinity levels (EC 1.5, 5, 10 and 15 dS m/sup -1/). Root and shoot length, root and shoot fresh and dry weight, number of leaves and leaf area were recorded at the vegetative stage, while plant height, number of tillers, spike length and grain yield plant/sup -1/ were recorded at the maturity stage. Fresh weight of shoots, fresh and dry weights of roots, plant height, number of productive tillers and grain yield were least affected in V3 while shoot length, shoot fresh weight, number of leaves, leaf area and spike length were least affected in V2 by EC 15 dS m/sup -1/. Both genotypes appeared tolerant but all the parameters studied at both stages were affected differentially by salinity levels and genotypes hence, testing of every new genotype appeared essential. (author)

  18. Quantitative assessment of image artifacts from root filling materials on CBCT scans made using several exposure parameters

    International Nuclear Information System (INIS)

    Rabelo, Katharina Alves; Cavalcanti, Yuri Wanderley; De Oliveira Pinto, Martina Gerlane; De Melo, Daniela Pita; Melo, Saulo Leonardo Sousa; Campos, Paulo Sergio Flores; De Andrade Freitas Oliveira, Luciana Soares

    2017-01-01

    To quantify artifacts from different root filling materials in cone-beam computed tomography (CBCT) images acquired using different exposure parameters. Fifteen single-rooted teeth were scanned using 8 different exposure protocols with 3 different filling materials and once without filling material as a control group. Artifact quantification was performed by a trained observer who made measurements in the central axial slice of all acquired images in a fixed region of interest using ImageJ. Hyperdense artifacts, hypodense artifacts, and the remaining tooth area were identified, and the percentages of hyperdense and hypodense artifacts, remaining tooth area, and tooth area affected by the artifacts were calculated. Artifacts were analyzed qualitatively by 2 observers using the following scores: absence (0), moderate presence (1), and high presence (2) for hypodense halos, hypodense lines, and hyperdense lines. Two-way ANOVA and the post-hoc Tukey test were used for quantitative and qualitative artifact analysis. The Dunnet test was also used for qualitative analysis. The significance level was set at P .05). Different exposure parameters did not affect the objective or subjective observations of artifacts in CBCT images; however, the filling materials used in endodontic restorations did affect both types of assessments

  19. Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells

    International Nuclear Information System (INIS)

    Kuehne, M.; Rothkamm, K.; Loebrich, M.

    2002-01-01

    In an attempt to investigate the effect of radiation quality, dose and specific repair pathways on correct and erroneous rejoining of DNA double strand breaks (DSBs), an assay was applied that allows the identification and quantification of incorrectly rejoined DSB ends produced by ionising radiation. While substantial misrejoining occurs in mammalian cells after high acute irradiation doses, decreasing misrejoining frequencies were observed in dose fractionation experiments with X rays. In line with this finding, continuous irradiation with gamma rays at low dose rate leads to non detectable misrejoining. This indicates that the probability for a DSB to be misrejoined decreases drastically when DSBs are separated in time and space. The same dose fractionation approach was applied to determine DSB misrejoining after a particle exposure. In contrast to the results with X rays, there was no significant decrease in DSB misrejoining with increasing fractionation. This suggests that DSB misrejoining after a irradiation is not significantly affected by a separation of particle tracks. To identify the enzymatic pathways that are involved in DSB misrejoining, cell lines deficient in non-homologous end-joining (NHEJ) were examined. After high X ray doses, DSB misrejoining is considerable reduced in NHEJ mutants. Low dose rate experiments show elevated DSB misrejoining in NHEJ mutants compared with wild-type cells. The authors propose that NHEJ serves as an efficient pathway for rejoining correct break ends in situations of separated breaks but generates genomic rearrangements if DSBs are close in time and space. (author)

  20. Use of stream water pH and specific conductance measurements to identify ground water discharges of fly ash leachate

    International Nuclear Information System (INIS)

    Price, R.M.

    1992-01-01

    Low pH and high specific conductance are typical chemical characteristics of coal fly ash leachate. Measurements of these parameters in streams adjacent to a fly ash facility were used to identify areas of ground water discharge into the streams. In-situ specific conductance and pH were determined at approximately 50 surface water stations from on-site and off-site streams. The results of the in-situ determinations were used to select twelve surface water stations for more detailed chemical analyses. The chemical character of the stream water affected by ground water discharges was similar to the water quality of sedimentation ponds which received drainage from the fly ash embankment. The results indicated that in-situ measurements of indicator parameters such as pH and specific conductance can be used as a screening method for identifying surface water quality impacts at fly ash facilities

  1. Exploring innovative techniques for identifying geochemical elements as fingerprints of sediment sources in an agricultural catchment of Argentina affected by soil erosion.

    Science.gov (United States)

    Torres Astorga, Romina; de Los Santos Villalobos, Sergio; Velasco, Hugo; Domínguez-Quintero, Olgioly; Pereira Cardoso, Renan; Meigikos Dos Anjos, Roberto; Diawara, Yacouba; Dercon, Gerd; Mabit, Lionel

    2018-05-15

    Identification of hot spots of land degradation is strongly related with the selection of soil tracers for sediment pathways. This research proposes the complementary and integrated application of two analytical techniques to select the most suitable fingerprint tracers for identifying the main sources of sediments in an agricultural catchment located in Central Argentina with erosive loess soils. Diffuse reflectance Fourier transformed in the mid-infrared range (DRIFT-MIR) spectroscopy and energy-dispersive X-ray fluorescence (EDXRF) were used for a suitable fingerprint selection. For using DRIFT-MIR spectroscopy as fingerprinting technique, calibration through quantitative parameters is needed to link and correlate DRIFT-MIR spectra with soil tracers. EDXRF was used in this context for determining the concentrations of geochemical elements in soil samples. The selected tracers were confirmed using two artificial mixtures composed of known proportions of soil collected in different sites with distinctive soil uses. These fingerprint elements were used as parameters to build a predictive model with the whole set of DRIFT-MIR spectra. Fingerprint elements such as phosphorus, iron, calcium, barium, and titanium were identified for obtaining a suitable reconstruction of the source proportions in the artificial mixtures. Mid-infrared spectra produced successful prediction models (R 2  = 0.91) for Fe content and moderate useful prediction (R 2  = 0.72) for Ti content. For Ca, P, and Ba, the R 2 were 0.44, 0.58, and 0.59 respectively.

  2. Powder properties and compaction parameters that influence punch sticking propensity of pharmaceuticals.

    Science.gov (United States)

    Paul, Shubhajit; Taylor, Lisa J; Murphy, Brendan; Krzyzaniak, Joseph F; Dawson, Neil; Mullarney, Matthew P; Meenan, Paul; Sun, Changquan Calvin

    2017-04-15

    Punch sticking is a frequently occurring problem that challenges successful tablet manufacturing. A mechanistic understanding of the punch sticking phenomenon facilitates the design of effective strategies to solve punch sticking problems of a drug. The first step in this effort is to identify process parameters and particle properties that can profoundly affect sticking performance. This work was aimed at elucidating the key material properties and compaction parameters that influence punch sticking by statistically analyzing punch sticking data of 24 chemically diverse compounds obtained using a set of tooling with removable upper punch tip. Partial least square (PLS) analysis of the data revealed that particle surface area and tablet tensile strength are the most significant factors attributed to punch sticking. Die-wall pressure, ejection force, and take-off force also correlate with sticking, but to a lesser extent. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Selecting Design Parameters for Flying Vehicles

    Science.gov (United States)

    Makeev, V. I.; Strel'nikova, E. A.; Trofimenko, P. E.; Bondar', A. V.

    2013-09-01

    Studying the influence of a number of design parameters of solid-propellant rockets on the longitudinal and lateral dispersion is an important applied problem. A mathematical model of a rigid body of variable mass moving in a disturbed medium exerting both wave drag and friction is considered. The model makes it possible to determine the coefficients of aerodynamic forces and moments, which affect the motion of vehicles, and to assess the effect of design parameters on their accuracy

  4. Sensitivity studies on parameters affecting gas release from an underground rock cavern

    International Nuclear Information System (INIS)

    Schlueter, E.; Pruess, K.

    1990-01-01

    A series of numerical simulation experiments is performed to quantify the effects of the release and migration of non-condensible gas in water-saturated fractured rock formations. The relative importance of multiphase parameters such as relative permeability, capillary pressure, intrinsic permeability, and porosity on system behavior is studied. 10 refs., 28 figs., 5 tabs

  5. Parameters affecting of Akkuyu's safety assessment for severe core damages

    Science.gov (United States)

    Kavun, Yusuf; Karasulu, Muzaffer

    2015-07-01

    We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents) and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO) is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the "what went wrong " scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors'like in TMI); Operator errors combined with design deficiencies(like in Chernobyl) and natural disasters( like in Fukushima) and found operator errors to be more probable event on the Akkuyu's postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  6. Methodology for Evaluating Safety System Operability using Virtual Parameter Network

    International Nuclear Information System (INIS)

    Park, Sukyoung; Heo, Gyunyoung; Kim, Jung Taek; Kim, Tae Wan

    2014-01-01

    KAERI (Korea Atomic Energy Research Institute) and UTK (University of Tennessee Knoxville) are working on the I-NERI project to suggest complement of this problem. This research propose the methodology which provide the alternative signal in case of unable guaranteed reliability of some instrumentation with KAERI. Proposed methodology is assumed that several instrumentations are working normally under the power supply condition because we do not consider the instrumentation survivability itself. Thus, concept of the Virtual Parameter Network (VPN) is used to identify the associations between plant parameters. This paper is extended version of the paper which was submitted last KNS meeting by changing the methodology and adding the result of the case study. In previous research, we used Artificial Neural Network (ANN) inferential technique for estimation model but every time this model showed different estimate value due to random bias each time. Therefore Auto-Associative Kernel Regression (AAKR) model which have same number of inputs and outputs is used to estimate. Also the importance measures in the previous method depend on estimation model but importance measure of improved method independent on estimation model. Also importance index of previous method depended on estimation model but importance index of improved method is independent on estimation model. In this study, we proposed the methodology to identify the internal state of power plant when severe accident happens also it has been validated through case study. SBLOCA which has large contribution to severe accident is considered as initiating event and relationship amongst parameter has been identified. VPN has ability to identify that which parameter has to be observed and which parameter can be alternative to the missing parameter when some instruments are failed in severe accident. In this study we have identified through results that commonly number 2, 3, 4 parameter has high connectivity while

  7. Methodology for Evaluating Safety System Operability using Virtual Parameter Network

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sukyoung; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Wan [Kepco International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    KAERI (Korea Atomic Energy Research Institute) and UTK (University of Tennessee Knoxville) are working on the I-NERI project to suggest complement of this problem. This research propose the methodology which provide the alternative signal in case of unable guaranteed reliability of some instrumentation with KAERI. Proposed methodology is assumed that several instrumentations are working normally under the power supply condition because we do not consider the instrumentation survivability itself. Thus, concept of the Virtual Parameter Network (VPN) is used to identify the associations between plant parameters. This paper is extended version of the paper which was submitted last KNS meeting by changing the methodology and adding the result of the case study. In previous research, we used Artificial Neural Network (ANN) inferential technique for estimation model but every time this model showed different estimate value due to random bias each time. Therefore Auto-Associative Kernel Regression (AAKR) model which have same number of inputs and outputs is used to estimate. Also the importance measures in the previous method depend on estimation model but importance measure of improved method independent on estimation model. Also importance index of previous method depended on estimation model but importance index of improved method is independent on estimation model. In this study, we proposed the methodology to identify the internal state of power plant when severe accident happens also it has been validated through case study. SBLOCA which has large contribution to severe accident is considered as initiating event and relationship amongst parameter has been identified. VPN has ability to identify that which parameter has to be observed and which parameter can be alternative to the missing parameter when some instruments are failed in severe accident. In this study we have identified through results that commonly number 2, 3, 4 parameter has high connectivity while

  8. High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis

    Directory of Open Access Journals (Sweden)

    Imed Miraoui

    2016-01-01

    Full Text Available The thermal effect of CO2 high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ, the heat affected zone depth (HAZ, and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE. The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.

  9. Gait parameters are differently affected by concurrent smartphone-based activities with scaled levels of cognitive effort.

    Directory of Open Access Journals (Sweden)

    Carlotta Caramia

    Full Text Available The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking-in some specific conditions-might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users were instructed to text chat (with two different levels of cognitive load, call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use.

  10. Design parameters and source terms: Volume 1, Design parameters: Revision 0

    International Nuclear Information System (INIS)

    1987-10-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository in Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites

  11. Genome Wide Association Studies (GWAS Identify QTL on SSC2 and SSC17 Affecting Loin Peak Shear Force in Crossbred Commercial Pigs.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Of all the meat quality traits, tenderness is considered the most important with regard to eating quality and market value. In this study we have utilised genome wide association studies (GWAS for peak shear force (PSF of loin muscle as a measure of tenderness for 1,976 crossbred commercial pigs, genotyped for 42,721 informative SNPs using the Illumina PorcineSNP60 Beadchip. Four 1 Mb genomic regions, three on SSC2 (at 4 Mb, 5 Mb and 109 Mb and one on SSC17 (at 20 Mb, were detected which collectively explained about 15.30% and 3.07% of the total genetic and phenotypic variance for PSF respectively. Markers ASGA0008566, ASGA0008695, DRGA0003285 and ASGA0075615 in the four regions were strongly associated with the effects. Analysis of the reference genome sequence in the region with the most important SNPs for SSC2_5 identified FRMD8, SLC25A45 and LTBP3 as potential candidate genes for meat tenderness on the basis of functional annotation of these genes. The region SSC2_109 was close to a previously reported candidate gene CAST; however, the very weak LD between DRGA0003285 (the best marker representing region SSC2_109 and CAST indicated the potential for additional genes which are distinct from, or interact with, CAST to affect meat tenderness. Limited information of known genes in regions SSC2_109 and SSC17_20 restricts further analysis. Re-sequencing of these regions for informative animals may help to resolve the molecular architecture and identify new candidate genes and causative mutations affecting this trait. These findings contribute significantly to our knowledge of the genomic regions affecting pork shear force and will potentially lead to new insights into the molecular mechanisms regulating meat tenderness.

  12. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  13. Non-identifier based adaptive control in mechatronics theory and application

    CERN Document Server

    Hackl, Christoph M

    2017-01-01

    This book introduces non-identifier-based adaptive control (with and without internal model) and its application to the current, speed and position control of mechatronic systems such as electrical synchronous machines, wind turbine systems, industrial servo systems, and rigid-link, revolute-joint robots. In mechatronics, there is often only rough knowledge of the system. Due to parameter uncertainties, nonlinearities and unknown disturbances, model-based control strategies can reach their performance or stability limits without iterative controller design and performance evaluation, or system identification and parameter estimation. The non-identifier-based adaptive control presented is an alternative that neither identifies the system nor estimates its parameters but ensures stability. The adaptive controllers are easy to implement, compensate for disturbances and are inherently robust to parameter uncertainties and nonlinearities. For controller implementation only structural system knowledge (like relativ...

  14. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    Science.gov (United States)

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Structural identifiability analysis of a cardiovascular system model.

    Science.gov (United States)

    Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas

    2016-05-01

    The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Identifying Affective Domains That Correlate and Predict Mathematics Performance in High-Performing Students in Singapore

    Science.gov (United States)

    Lim, Siew Yee; Chapman, Elaine

    2015-01-01

    Past studies have shown that distinct yet highly correlated sub-constructs of three broad mathematics affective variables: (a) motivation, (b) attitudes and (c) anxiety, have varying degree of correlation with mathematics achievement. The sub-constructs of these three affective constructs are as follows: (a) (i) amotivation, (ii) external…

  17. Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering

    Science.gov (United States)

    Engle, B. J.; Roberts, R. A.; Grandin, R. J.

    2018-04-01

    This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.

  18. Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants.

    Science.gov (United States)

    Farré, Maria José; Döderer, Katrin; Hearn, Laurence; Poussade, Yvan; Keller, Jurg; Gernjak, Wolfgang

    2011-01-30

    N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine>in-line formed monochloramine≫pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6h with concentrations consistently NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Visual exploration of parameter influence on phylogenetic trees.

    Science.gov (United States)

    Hess, Martin; Bremm, Sebastian; Weissgraeber, Stephanie; Hamacher, Kay; Goesele, Michael; Wiemeyer, Josef; von Landesberger, Tatiana

    2014-01-01

    Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.

  20. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    Directory of Open Access Journals (Sweden)

    Susan J Cunningham

    Full Text Available Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh = 35.5 °C and the common fiscal Lanius collaris (T(thresh = 33 °C. We used these T(thresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh, in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh technique as a conservation tool.

  1. Acoustical characterization and parameter optimization of polymeric noise control materials

    Science.gov (United States)

    Homsi, Emile N.

    2003-10-01

    The sound transmission loss (STL) characteristics of polymer-based materials are considered. Analytical models that predict, characterize and optimize the STL of polymeric materials, with respect to physical parameters that affect performance, are developed for single layer panel configuration and adapted for layered panel construction with homogenous core. An optimum set of material parameters is selected and translated into practical applications for validation. Sound attenuating thermoplastic materials designed to be used as barrier systems in the automotive and consumer industries have certain acoustical characteristics that vary in function of the stiffness and density of the selected material. The validity and applicability of existing theory is explored, and since STL is influenced by factors such as the surface mass density of the panel's material, a method is modified to improve STL performance and optimize load-bearing attributes. An experimentally derived function is applied to the model for better correlation. In-phase and out-of-phase motion of top and bottom layers are considered. It was found that the layered construction of the co-injection type would exhibit fused planes at the interface and move in-phase. The model for the single layer case is adapted to the layered case where it would behave as a single panel. Primary physical parameters that affect STL are identified and manipulated. Theoretical analysis is linked to the resin's matrix attribute. High STL material with representative characteristics is evaluated versus standard resins. It was found that high STL could be achieved by altering materials' matrix and by integrating design solution in the low frequency range. A suggested numerical approach is described for STL evaluation of simple and complex geometries. In practice, validation on actual vehicle systems proved the adequacy of the acoustical characterization process.

  2. Ideal affect in daily life: implications for affective experience, health, and social behavior.

    Science.gov (United States)

    Tsai, Jeanne L

    2017-10-01

    Over the last decade, researchers have increasingly demonstrated that ideal affect-the affective states that people value and ideally want to feel-shapes different aspects of daily life. Here I briefly review Affect Valuation Theory (AVT), which integrates ideal affect into existing models of affect and emotion by identifying the causes and consequences of variation in ideal affect. I then describe recent research that applies AVT to the valuation of negative states as well as more complex states, examines how ideal affect shapes momentary affective experience, suggests that ideal affect has both direct and indirect effects on health, and illustrates that people's ideal affect shapes how they judge and respond to others. Finally, I discuss the implications of cultural and individual differences in ideal affect for clinical, educational, work, and leisure settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Atmospheric turbidity parameters affecting the incident solar solar radiation for two different areas in (Eg))

    International Nuclear Information System (INIS)

    Tadros, M.T.Y.; Mosalam, M.A.; El-metwally, M.

    1999-01-01

    Atmospheric turbidity parameters such as Linke turbidity (L-0) and true Angstrom parameters (Bita o , Alpha 0 ) have been determined from the measurements of direct solar radiation for entire spectrum and for specified spectral bands during one year starting from june 1992 to may 1993. Comparison between the industrial area in Helwan (south Cairo) with that of the agricultural area in Mansoura, in (Eg), was done. Analysis of data revealed that the atmospheric turbidity parameters (L Beta) in Helwan is higher than that in Mansoura, except for hot wet months. The increase of L in Mansoura, in summer, is due to the increase of water vapor content. The wavelength exponent Alpha shows that the size the size of particles in Helwan is larger than that in Mansoura

  4. Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique

    Science.gov (United States)

    Talakokula, Visalakshi; Bhalla, Suresh; Gupta, Ashok

    2018-01-01

    Concrete is the most widely used material in civil engineering construction. Its life begins when the hydration process is activated after mixing the cement granulates with water. In this paper, a non-dimensional hydration parameter, obtained from piezoelectric ceramic (PZT) patches bonded to rebars embedded inside concrete, is employed to monitor the early age hydration of concrete. The non-dimensional hydration parameter is derived from the equivalent stiffness determined from the piezo-impedance transducers using the electro-mechanical impedance (EMI) technique. The focus of the study is to monitor the hydration process of cementitious materials commencing from the early hours and continue till 28 days using single non-dimensional parameter. The experimental results show that the proposed piezo-based non-dimensional hydration parameter is very effective in monitoring the early age hydration, as it has been derived from the refined structural impedance parameters, obtained by eliminating the PZT contribution, and using both the real and imaginary components of the admittance signature.

  5. Assessing Reliability of Cellulose Hydrolysis Models to Support Biofuel Process Design – Identifiability and Uncertainty Analysis

    DEFF Research Database (Denmark)

    Sin, Gürkan; Meyer, Anne S.; Gernaey, Krist

    2010-01-01

    The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done in the ori......The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done...

  6. Previous bacterial infection affects textural quality parameters of heat-treated fillets from rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Hyldig, Grethe; Przybylska, Dominika Alicja

    2012-01-01

    Sensory quality of fish meat is influenced by many parameters prior to slaughter. In the present study, it was examined if previous infections or damages in the muscle tissue influence product quality parameters in fish. Fillets from rainbow trout (Oncorhynchus mykiss) reared in seawater....... This article was the first to describe a correlation between previous infections in fish and changes in sensory-quality parameters. PRACTICAL APPLICATIONS. This work contributes with knowledge about sensory-quality parameters of fish meat after recovery from infections and physical-tissue damage. Because...... the results demonstrate an influence on the texture from previous disease, the practical potentials of the results are valuable for the aquaculture industry. In order to minimize the effects of previous diseases on the sensory quality regarding the texture, these fishes should be processed as cold...

  7. Optimization of hydraulic turbine governor parameters based on WPA

    Science.gov (United States)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  8. Reionization history and CMB parameter estimation

    International Nuclear Information System (INIS)

    Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y.

    2013-01-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case

  9. Reionization history and CMB parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Dizgah, Azadeh Moradinezhad; Gnedin, Nickolay Y.; Kinney, William H.

    2013-05-01

    We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.

  10. Recurrence in affective disorder

    DEFF Research Database (Denmark)

    Kessing, L V; Olsen, E W; Andersen, P K

    1999-01-01

    The risk of recurrence in affective disorder is influenced by the number of prior episodes and by a person's tendency toward recurrence. Newly developed frailty models were used to estimate the effect of the number of episodes on the rate of recurrence, taking into account individual frailty toward...... recurrence. The study base was the Danish psychiatric case register of all hospital admissions for primary affective disorder in Denmark during 1971-1993. A total of 20,350 first-admission patients were discharged with a diagnosis of major affective disorder. For women with unipolar disorder and for all...... kinds of patients with bipolar disorder, the rate of recurrence was affected by the number of prior episodes even when the effect was adjusted for individual frailty toward recurrence. No effect of episodes but a large effect of the frailty parameter was found for unipolar men. The authors concluded...

  11. Adaptive lag synchronization and parameters adaptive lag identification of chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Mathematics, Yunyang Teachers' College, Hubei, Shiyan 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Key Laboratory of Wireless Sensor Network and Communication, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Jian' an, E-mail: jafang@dhu.edu.c [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Sun Wen, E-mail: sunwen_2201@163.co [School of Mathematics and Information, Yangtze University, Hubei, Jingzhou 434023 (China)

    2010-07-26

    This Letter investigates the problem of adaptive lag synchronization and parameters adaptive lag identification of chaotic systems. In comparison with those of existing parameters identification schemes, the unknown parameters are identified by adaptive lag laws, and the delay time is also identified in this Letter. Numerical simulations are also given to show the effectiveness of the proposed method.

  12. The effects of Islamic fasting on blood hematological-biochemical parameters

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Sedaghat

    2017-06-01

    Conclusion:This study on healthy subjects suggests that fasting could affect some hematological-biochemical parameters but not all of them. Also, these changes in hematological-biochemical parameters were within the normal range and Ramadan fasting seems to be safe for healthy subjects.

  13. On the necessity of identifying the true parameter in adaptive LQ control

    NARCIS (Netherlands)

    Polderman, Jan W.

    1986-01-01

    In adaptive control problems one may drop the requirement of identifying the true system in order to simplify the problem of control. It will be shown that in the adaptive LQ control problem this does not at all lead to an easier problem.

  14. Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade

    Directory of Open Access Journals (Sweden)

    Prashant J. Patil

    2016-09-01

    Full Text Available Close tolerance and good surface finish are achieved by means of grinding process. This study was carried out for multi-objective optimization of MQL grinding process parameters. Water based Al2O3 and CuO nanofluids of various concentrations are used as lubricant for MQL system. Grinding experiments were carried out on instrumented surface grinding machine. For experimentation purpose Taguchi's method was used. Important process parameters that affect the G ratio and surface finish in MQL grinding are depth of cut, type of lubricant, feed rate, grinding wheel speed, coolant flow rate, and nanoparticle size. Grinding performance was calculated by the measurement G ratio and surface finish. For improvement of grinding process a multi-objective process parameter optimization is performed by use of Taguchi based grey relational analysis. To identify most significant factor of process analysis of variance (ANOVA has been used.

  15. Parameter estimation in tree graph metabolic networks

    Directory of Open Access Journals (Sweden)

    Laura Astola

    2016-09-01

    Full Text Available We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  16. Parameter estimation in tree graph metabolic networks.

    Science.gov (United States)

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  17. Uncertainty of Modal Parameters Estimated by ARMA Models

    DEFF Research Database (Denmark)

    Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders

    1990-01-01

    In this paper the uncertainties of identified modal parameters such as eidenfrequencies and damping ratios are assed. From the measured response of dynamic excited structures the modal parameters may be identified and provide important structural knowledge. However the uncertainty of the parameters...... by simulation study of a lightly damped single degree of freedom system. Identification by ARMA models has been choosen as system identification method. It is concluded that both the sampling interval and number of sampled points may play a significant role with respect to the statistical errors. Furthermore......, it is shown that the model errors may also contribute significantly to the uncertainty....

  18. Selection of optimal multispectral imaging system parameters for small joint arthritis detection

    Science.gov (United States)

    Dolenec, Rok; Laistler, Elmar; Stergar, Jost; Milanic, Matija

    2018-02-01

    Early detection and treatment of arthritis is essential for a successful outcome of the treatment, but it has proven to be very challenging with existing diagnostic methods. Novel methods based on the optical imaging of the affected joints are becoming an attractive alternative. A non-contact multispectral imaging (MSI) system for imaging of small joints of human hands and feet is being developed. In this work, a numerical simulation of the MSI system is presented. The purpose of the simulation is to determine the optimal design parameters. Inflamed and unaffected human joint models were constructed with a realistic geometry and tissue distributions, based on a MRI scan of a human finger with a spatial resolution of 0.2 mm. The light transport simulation is based on a weighted-photon 3D Monte Carlo method utilizing CUDA GPU acceleration. An uniform illumination of the finger within the 400-1100 nm spectral range was simulated and the photons exiting the joint were recorded using different acceptance angles. From the obtained reflectance and transmittance images the spectral and spatial features most indicative of inflammation were identified. Optimal acceptance angle and spectral bands were determined. This study demonstrates that proper selection of MSI system parameters critically affects ability of a MSI system to discriminate the unaffected and inflamed joints. The presented system design optimization approach could be applied to other pathologies.

  19. Analyzing parameters optimisation in minimising warpage on side arm using response surface methodology (RSM)

    Science.gov (United States)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    This paper presents a systematic methodology to analyse the warpage of the side arm part using Autodesk Moldflow Insight software. Response Surface Methodology (RSM) was proposed to optimise the processing parameters that will result in optimal solutions by efficiently minimising the warpage of the side arm part. The variable parameters considered in this study was based on most significant parameters affecting warpage stated by previous researchers, that is melt temperature, mould temperature and packing pressure while adding packing time and cooling time as these is the commonly used parameters by researchers. The results show that warpage was improved by 10.15% and the most significant parameters affecting warpage are packing pressure.

  20. Trends in Control Area of PLC Reliability and Safety Parameters

    Directory of Open Access Journals (Sweden)

    Juraj Zdansky

    2008-01-01

    Full Text Available Extension of the PLC application possibilities is closely related to increase of reliability and safety parameters. If the requirement of reliability and safety parameters will be suitable, the PLC could by implemented to specific applications such the safety-related processes control. The goal of this article is to show the way which producers are approaching to increase PLC`s reliability and safety parameters. The second goal is to analyze these parameters for range of present choice and describe the possibility how the reliability and safety parameters can be affected.

  1. Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Prickett, T.A.; Showalter, P.A.

    1979-07-01

    The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive isotopes of neptunium, americium, uranium, and plutonium along with many highly radioactive fission products. A concern with this form of waste disposal is the possibility of ground-water flow occurring in the salt beds and endangering water supplies and the public health. Specifically, the research investigated the processes involved in the movement of radioactive wastes from the repository site by groundwater flow. Since the radioactive waste canisters also generate heat, temperature is an important factor. Among the processes affecting movement of radioactive wastes from a repository site in a salt bed are thermal conduction, groundwater movement, ion exchange, radioactive decay, dissolution and precipitation of salt, dispersion and diffusion, adsorption, and thermomigration. In addition, structural changes in the salt beds as a result of temperature changes are important. Based upon the half-lives of the radioactive wastes, he period of concern is on the order of a million years. As a result, major geologic phenomena that could affect both the salt bed and groundwater flow in the salt beds was considered. These phenomena include items such as volcanism, faulting, erosion, glaciation, and the impact of meteorites. CDM reviewed all of the critical processes involved in regional groundwater movement of radioactive wastes and identified and described the parameters that must be included to mathematically model their behavior. In addition, CDM briefly reviewed available echniques to measure these parameters

  2. Quantitative assessment of image artifacts from root filling materials on CBCT scans made using several exposure parameters

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo, Katharina Alves; Cavalcanti, Yuri Wanderley; De Oliveira Pinto, Martina Gerlane; De Melo, Daniela Pita [Dept. of Oral Diagnosis, State University of Paraiba, Campina Grande (Brazil); Melo, Saulo Leonardo Sousa [Dept. of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City (United States); Campos, Paulo Sergio Flores; De Andrade Freitas Oliveira, Luciana Soares [Federal University of Bahia, Salvador (Brazil)

    2017-09-15

    To quantify artifacts from different root filling materials in cone-beam computed tomography (CBCT) images acquired using different exposure parameters. Fifteen single-rooted teeth were scanned using 8 different exposure protocols with 3 different filling materials and once without filling material as a control group. Artifact quantification was performed by a trained observer who made measurements in the central axial slice of all acquired images in a fixed region of interest using ImageJ. Hyperdense artifacts, hypodense artifacts, and the remaining tooth area were identified, and the percentages of hyperdense and hypodense artifacts, remaining tooth area, and tooth area affected by the artifacts were calculated. Artifacts were analyzed qualitatively by 2 observers using the following scores: absence (0), moderate presence (1), and high presence (2) for hypodense halos, hypodense lines, and hyperdense lines. Two-way ANOVA and the post-hoc Tukey test were used for quantitative and qualitative artifact analysis. The Dunnet test was also used for qualitative analysis. The significance level was set at P<.05. There were no significant interactions among the exposure parameters in the quantitative or qualitative analysis. Significant differences were observed among the studied filling materials in all quantitative analyses. In the qualitative analyses, all materials differed from the control group in terms of hypodense and hyperdense lines (P<.05). Fiberglass posts did not differ statistically from the control group in terms of hypodense halos (P>.05). Different exposure parameters did not affect the objective or subjective observations of artifacts in CBCT images; however, the filling materials used in endodontic restorations did affect both types of assessments.

  3. Identifying Nonprovider Factors Affecting Pediatric Emergency Medicine Provider Efficiency.

    Science.gov (United States)

    Saleh, Fareed; Breslin, Kristen; Mullan, Paul C; Tillett, Zachary; Chamberlain, James M

    2017-10-31

    The aim of this study was to create a multivariable model of standardized relative value units per hour by adjusting for nonprovider factors that influence efficiency. We obtained productivity data based on billing records measured in emergency relative value units for (1) both evaluation and management of visits and (2) procedures for 16 pediatric emergency medicine providers with more than 750 hours worked per year. Eligible shifts were in an urban, academic pediatric emergency department (ED) with 2 sites: a tertiary care main campus and a satellite community site. We used multivariable linear regression to adjust for the impact of shift and pediatric ED characteristics on individual-provider efficiency and then removed variables from the model with minimal effect on productivity. There were 2998 eligible shifts for the 16 providers during a 3-year period. The resulting model included 4 variables when looking at both ED sites combined. These variables include the following: (1) number of procedures billed by provider, (2) season of the year, (3) shift start time, and (4) day of week. Results were improved when we separately modeled each ED location. A 3-variable model using procedures billed by provider, shift start time, and season explained 23% of the variation in provider efficiency at the academic ED site. A 3-variable model using procedures billed by provider, patient arrivals per hour, and shift start time explained 45% of the variation in provider efficiency at the satellite ED site. Several nonprovider factors affect provider efficiency. These factors should be considered when designing productivity-based incentives.

  4. Identifiability Results for Several Classes of Linear Compartment Models.

    Science.gov (United States)

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

  5. A 2-year follow-up of spirometric parameters in workers of a tile and ceramic industry, Yazd, southeastern Iran.

    Science.gov (United States)

    Mehrparvar, A H; Mirmohammadi, S J; Mostaghaci, M; Davari, M H; Hashemi, S H

    2013-04-01

    Respiratory diseases cause a considerable amount of morbidity and mortality in the world. Pulmonary function tests are important measures for the diagnosis and management of respiratory disorders. Workers in tile and ceramic industry are exposed to high amounts of respiratory pollutants. To identify the changes in spirometric parameters in a 2-year period among tile and ceramic workers in Yazd and compare it with a control group. The study was conducted in 5 tile and ceramic factories selected by cluster sampling between 2009 and 2011 in Yazd, southeastern Iran. Demographic data and spirometric parameters of participants were recorded. Spirometric parameters were significantly reduced during the 2 years. The largest decrease was observed in FVC (≈500 mL) in ball-mill and grinding after 2 years. Decrease in all spirometric parameters was significantly higher in industrial workers than office workers. Respiratory exposure in tile and ceramic industry can significantly affect pulmonary function tests.

  6. Physical and chemical parameters affecting transport of 137Cs in arid watersheds

    International Nuclear Information System (INIS)

    McHenry, J.R.; Ritchie, J.C.

    1977-01-01

    The occurrence and amount of fallout 137 Cs were determined in 12 watersheds in the arid southwestern United States. The factors believed to influence the distribution of 137 Cs in the watershed soils and in the reservoir sediments were investigated by using stepwise regression techniques. Seventeen parameters, in the case of soils, and 21 parameters, in the case of sediments, were used in the study. Ninety percent of the variation in the 137 Cs content of soils, per unit weight, could be predicted in terms of the percentage of soil nitrogen, the R factor (rainfall intensity) of the universal soil loss equation, the percentage of sand in the soils, and the soil cation exchange capacity. Also, 90% of the variation in the content of 137 Cs in the watershed soils, per unit area, could be predicted in terms of the fallout intensity, the percentages of silt and clay, and the cation exchange capacity. For reservoir sediments the equivalent predictors of 137 Cs accumulation in the sediment profile, per unit weight, were the soil cation exchange capacity, the January-March average precipitation, and the soil contents of total P and N. The distribution of 137 Cs in sediments per unit area was similarly predicted by watershed area, percentage of total soil C, reservoir surface area, areal concentration of 137 Cs in the watershed soils, and soil organic matter

  7. Study on Developing Degradation Model for Nuclear Power Plants With Ageing Elements Affected on Operation Parameter

    International Nuclear Information System (INIS)

    Choi, Yong Won; Lim, Sung Won; Lee, Un Chul; Kim, Man Woong; Kim, Kab; Ryu, Yong Ho

    2009-01-01

    As a part of development the evaluation system of safety margin effects for degradation of CANDU reactors, it is required that the degradation model represents the distribution of each ageing factor's value during operating year. Unfortunately, it is not easy to make an explicit relation between the RELAP-CANDU parameters and ageing mechanism because of insufficient data and lack of applicable models. So, operating parameter related with ageing is used for range determination of ageing factor. Then, relation between operating parameter and ageing elements is analyzed and ageing constant values for degradation model are determined. Also the other ageing factor is derived for more accurate ageing analysis

  8. Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Science.gov (United States)

    Fujiwara, Yuichiro; Arrigoni, Cristina; Domigan, Courtney; Ferrara, Giuseppina; Pantoja, Carlos; Thiel, Gerhard; Moroni, Anna; Minor, Daniel L.

    2009-01-01

    Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features. PMID:19834614

  9. Identifiability of PBPK Models with Applications to ...

    Science.gov (United States)

    Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss different types of identifiability that occur in PBPK models and give reasons why they occur. We particularly focus on how the mathematical structure of a PBPK model and lack of appropriate data can lead to statistical models in which it is impossible to estimate at least some parameters precisely. Methods are reviewed which can determine whether a purely linear PBPK model is globally identifiable. We propose a theorem which determines when identifiability at a set of finite and specific values of the mathematical PBPK model (global discrete identifiability) implies identifiability of the statistical model. However, we are unable to establish conditions that imply global discrete identifiability, and conclude that the only safe approach to analysis of PBPK models involves Bayesian analysis with truncated priors. Finally, computational issues regarding posterior simulations of PBPK models are discussed. The methodology is very general and can be applied to numerous PBPK models which can be expressed as linear time-invariant systems. A real data set of a PBPK model for exposure to dimethyl arsinic acid (DMA(V)) is presented to illustrate the proposed methodology. We consider statistical analy

  10. Biological parameters for lung cancer in mathematical models of carcinogenesis

    International Nuclear Information System (INIS)

    Jacob, P.; Jacob, V.

    2003-01-01

    Applications of the two-step model of carcinogenesis with clonal expansion (TSCE) to lung cancer data are reviewed, including those on atomic bomb survivors from Hiroshima and Nagasaki, British doctors, Colorado Plateau miners, and Chinese tin miners. Different sets of identifiable model parameters are used in the literature. The parameter set which could be determined with the lowest uncertainty consists of the net proliferation rate gamma of intermediate cells, the hazard h 55 at an intermediate age, and the hazard H? at an asymptotically large age. Also, the values of these three parameters obtained in the various studies are more consistent than other identifiable combinations of the biological parameters. Based on representative results for these three parameters, implications for the biological parameters in the TSCE model are derived. (author)

  11. RMB identification based on polarization parameters inversion imaging

    Science.gov (United States)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  12. A method for model identification and parameter estimation

    International Nuclear Information System (INIS)

    Bambach, M; Heinkenschloss, M; Herty, M

    2013-01-01

    We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)

  13. Reduction of robot base parameters

    International Nuclear Information System (INIS)

    Vandanjon, P.O.

    1995-01-01

    This paper is a new step in the search of minimum dynamic parameters of robots. In spite of planing exciting trajectories and using base parameters, some parameters remain not identifiable due to the perturbation effects. In this paper, we propose methods to reduce the set of base parameters in order to get an essential set of parameters. This new set defines a simplified identification model witch improves the noise immunity of the estimation process. It contributes also in reducing the computation burden of a simplified dynamic model. Different methods are proposed and are classified in two parts: methods, witch perform reduction and identification together, come from statistical field and methods, witch reduces the model before the identification thanks to a priori information, come from numerical field like the QR factorization. Statistical tools and QR reduction are shown to be efficient and adapted to determine the essential parameters. They can be applied to open-loop, or graph structured rigid robot, as well as flexible-link robot. Application for the PUMA 560 robot is given. (authors). 9 refs., 4 tabs

  14. Reduction of robot base parameters

    Energy Technology Data Exchange (ETDEWEB)

    Vandanjon, P O [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes et Systemes Avances; Gautier, M [Nantes Univ., 44 (France)

    1996-12-31

    This paper is a new step in the search of minimum dynamic parameters of robots. In spite of planing exciting trajectories and using base parameters, some parameters remain not identifiable due to the perturbation effects. In this paper, we propose methods to reduce the set of base parameters in order to get an essential set of parameters. This new set defines a simplified identification model witch improves the noise immunity of the estimation process. It contributes also in reducing the computation burden of a simplified dynamic model. Different methods are proposed and are classified in two parts: methods, witch perform reduction and identification together, come from statistical field and methods, witch reduces the model before the identification thanks to a priori information, come from numerical field like the QR factorization. Statistical tools and QR reduction are shown to be efficient and adapted to determine the essential parameters. They can be applied to open-loop, or graph structured rigid robot, as well as flexible-link robot. Application for the PUMA 560 robot is given. (authors). 9 refs., 4 tabs.

  15. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The effect of control parameters to the quality of small-scale wood pellet combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. (Oulu Univ. (Finland). Contol Engineering Lab.), Email: mika.ruusunen@oulu.fi; Korpela, T.; Bjoerkqvist, T. (Tampere Univ. of Technology (Finland). Dept. of Automation Science and Engineering), Email: timo.korpela@tut.fi, Email: tomas.bjorqvist@tut.fi

    2009-07-01

    The target is to clear out control variables and requirements for clean small-scale wood pellet combustion (<100 kW{sub th}). Experimental runs were carried out in the form of design of experiments (DOE) with two commercial 15 kW pellet burners, namely a horizontal gas-burner and a conventional horizontal burner in a 20 kW commercial pellet boiler. Analysed variables were fuel power, draught, air flows, and fuel feed period, and research variables were CO, O{sub 2} and efficiency. The target was to identify and characterise separately the magnitude and direction of the effect of each factor. After process identification and variable optimisation, the results show strong influence of the studied control parameters on the efficiency and the emissions. The effects and interactions between different process variables were rather similar with both burners. The major effects for CO levels were fuel feed and additionally draught affected in case of wood gas combustion. Additionally, the effects on combustion efficiency is described by draught, air feed and fuel feed period. Furthermore, the fuel feed period affected the excess air level in case of direct combustion principle. It was noticed, however, that the combustion properties and optimal parameter values vary significantly between the two cases. (orig.)

  17. A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification

    Science.gov (United States)

    Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.

    The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (<15 °C) were found to

  18. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse

    Science.gov (United States)

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.

    2015-01-01

    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  19. Multi criteria decision making of machining parameters for Die Sinking EDM Process

    Directory of Open Access Journals (Sweden)

    G. K. Bose

    2015-04-01

    Full Text Available Electrical Discharge Machining (EDM is one of the most basic non-conventional machining processes for production of complex geometries and process of hard materials, which are difficult to machine by conventional process. It is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat-treated tool steels, composites, super alloys, ceramics, carbides, heat resistant steels etc. The present study is focusing on the die sinking electric discharge machining (EDM of AISI H 13, W.-Nr. 1.2344 Grade: Ovar Supreme for finding out the effect of machining parameters such as discharge current (GI, pulse on time (POT, pulse off time (POF and spark gap (SG on performance response like Material removal rate (MRR, Surface Roughness (Ra & Overcut (OC using Square-shaped Cu tool with Lateral flushing. A well-designed experimental scheme is used to reduce the total number of experiments. Parts of the experiment are conducted with the L9 orthogonal array based on the Taguchi methodology and significant process parameters are identified using Analysis of Variance (ANOVA. It is found that MRR is affected by gap current & Ra is affected by pulse on time. Moreover, the signal-to-noise ratios associated with the observed values in the experiments are determined by which factor is most affected by the responses of MRR, Ra and OC. These experimental data are further investigated using Grey Relational Analysis to optimize multiple performances in which different levels combination of the factors are ranked based on grey relational grade. The analysis reveals that substantial improvement in machining performance takes place following this technique.

  20. Employment of Some Parameters to Enhance Laser-Drilling of Aluminum

    Directory of Open Access Journals (Sweden)

    Oday A. Hamadi

    2005-06-01

    Full Text Available In this work, some parameters affecting drilling of aluminum samples by a pulsed Nd:YAG laser were studied. These parameters are multi-pulses irradiation, controlling sample temperature, low-pressure ambient and application of electric field on the sample. Results presented in this work explained that these parameters can enhance drilling process throughout increasing hole depth in aluminum samples at the same laser energy used for irradiation.

  1. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  2. Formulation parameters influencing self-stratification of coatings

    NARCIS (Netherlands)

    Vink, P.; Bots, T.L.

    1996-01-01

    Research was carried out aimed at the development of self-stratifying paints for steel which after application during film formation spontaneously form two well established layers of primer and top coat. The parameters affecting stratification were investigated for combinations of epoxy resins and

  3. An information-theoretic approach to assess practical identifiability of parametric dynamical systems.

    Science.gov (United States)

    Pant, Sanjay; Lombardi, Damiano

    2015-10-01

    A new approach for assessing parameter identifiability of dynamical systems in a Bayesian setting is presented. The concept of Shannon entropy is employed to measure the inherent uncertainty in the parameters. The expected reduction in this uncertainty is seen as the amount of information one expects to gain about the parameters due to the availability of noisy measurements of the dynamical system. Such expected information gain is interpreted in terms of the variance of a hypothetical measurement device that can measure the parameters directly, and is related to practical identifiability of the parameters. If the individual parameters are unidentifiable, correlation between parameter combinations is assessed through conditional mutual information to determine which sets of parameters can be identified together. The information theoretic quantities of entropy and information are evaluated numerically through a combination of Monte Carlo and k-nearest neighbour methods in a non-parametric fashion. Unlike many methods to evaluate identifiability proposed in the literature, the proposed approach takes the measurement-noise into account and is not restricted to any particular noise-structure. Whilst computationally intensive for large dynamical systems, it is easily parallelisable and is non-intrusive as it does not necessitate re-writing of the numerical solvers of the dynamical system. The application of such an approach is presented for a variety of dynamical systems--ranging from systems governed by ordinary differential equations to partial differential equations--and, where possible, validated against results previously published in the literature. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. FlowCyl: one-parameter characterisation of matrix rheology

    DEFF Research Database (Denmark)

    Cepuritis, Rolands; Ramenskiy, Evgeny; Mørtsell, Ernst

    The FlowCyl is a simple flow viscometer – a modification of the Marsh Cone test apparatus developed to characterize cement pastes and grouts. The FlowCyl gives a one parameter characterisation of rheology called the flow resistance ratio or λQ for use in the Particle-Matrix concrete proportioning...... Model (PMM) as a description of the viscous phase of the concrete, while another parameter related to packing density is used to describe the particle phase. There have been numerous studies which have shown how the matrix λ Qvalues affect the rheological parameters of concretes with a given particle...

  5. Factors affecting actinide solubility in a repository for spent fuel, 1

    International Nuclear Information System (INIS)

    Snellman, Margit

    1986-07-01

    The main tasks in the study were to get information on the chemical conditions in a repository for spent fuel and information on factors affecting releases of actinides from spent fuel and solubility of actinides in a repository for spent fuel. The work in this field started at the Reactor Laboratory of the Technical Research Centre of Finland (VTT) in 1982. This is a report on the effects on the main parameters, Eh, pH, carbonate, organic compounds, colloids, microbes and radiation on the actinide solubility in the nearfield of the repository. Another task has been to identify available models and reported experience from actinide solubility calculations with different codes. 167 refs

  6. Parameters affecting of Akkuyu’s safety assessment for severe core damages

    Directory of Open Access Journals (Sweden)

    Kavun Yusuf

    2015-01-01

    Full Text Available We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the “what went wrong ” scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors’like in TMI; Operator errors combined with design deficiencies(like in Chernobyl and natural disasters( like in Fukushima and found operator errors to be more probable event on the Akkuyu’s postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  7. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis.

    Science.gov (United States)

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  8. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    Directory of Open Access Journals (Sweden)

    Christian Held

    2013-01-01

    Full Text Available Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline′s modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  9. Temporal variation and scaling of parameters for a monthly hydrologic model

    Science.gov (United States)

    Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang

    2018-03-01

    The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.

  10. Semen parameters and level of microsatellite heterozygosity in Noriker draught horse stallions.

    Science.gov (United States)

    Aurich, Christine; Achmann, Roland; Aurich, Jörg E

    2003-07-01

    It was the aim of the present study to determine physiological values for different semen parameters in an endangered draught horse breed, the Austrian Noriker. Because small population size is often believed to cause a decrease in fertility and/or semen quality through inbreeding and a reduction in genetic variation, the general genomic heterogeneity of the breed was estimated on the basis of microsatellite variation and correlated to semen parameters. Semen could be collected from 104 of 139 stallions with semen collection being more often successful in younger stallions. Mean volume of ejaculates was 90.8+/-55.1 ml, density 243+/-114 x 10(6)ml(-1), total sperm count 21.0+/-23.7 x 10(9), percentage of morphologically normal spermatozoa 38+/-18% and total motility 50+/-23%. Total sperm count and semen motility were significantly affected by age. Blood samples of 134 stallions were analysed for 12 microsatellite DNA markers. Genotypes of 110 stallions with at least 11 successfully typed markers were used for calculation of heterozygosity. A total of 82 alleles was identified with a mean of 6.8 alleles per marker. Heterozygosity varied between 35 and 76% for the different markers, mean heterozygosity was calculated to 63%. No correlation between heterozygosity and semen parameters was found.

  11. The Importance of Vocal Parameters Correlation

    Directory of Open Access Journals (Sweden)

    Valentin Ghisa

    2016-06-01

    Full Text Available To analyze communication we need to study the main parameters that describe the vocal sounds from the point of view of information content transfer efficiency. In this paper we analyze the physical quality of the “on air" information transfer, according to the audio streaming parameters and from the particular phonetic nature of the human factor. Applying this statistical analysis we aim to identify and record the correlation level of the acoustical parameters with the vocal ones and the impact which the presence of this cross-correlation can have on communication structures’ improvement.

  12. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    Directory of Open Access Journals (Sweden)

    Su Young Yu

    2015-03-01

    Full Text Available In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear para- meters of soil models was investigated by Dynamic Embedment Factor (DEF concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  13. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    Science.gov (United States)

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and

  14. Intra-burst firing characteristics as network state parameters

    NARCIS (Netherlands)

    Stegenga, J.; le Feber, Jakob; Rutten, Wim; Marani, Enrico; Stett, A

    Introduction In our group we are aiming to demonstrate learning and memory capabilities of cultured networks of cortical neurons. A first step is to identify parameters that accurately describe changes in the network due to learning. Usually, such parameters are calculated from the responses to

  15. Dynamic artificial neural networks with affective systems.

    Directory of Open Access Journals (Sweden)

    Catherine D Schuman

    Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  16. A Systematic Approach of Employing Quality by Design Principles: Risk Assessment and Design of Experiments to Demonstrate Process Understanding and Identify the Critical Process Parameters for Coating of the Ethylcellulose Pseudolatex Dispersion Using Non-Conventional Fluid Bed Process.

    Science.gov (United States)

    Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W

    2017-05-01

    The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.

  17. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    Science.gov (United States)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  18. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    Science.gov (United States)

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  19. Determinatıon of Some Genetic Parameters, Phenotypic, Genetic and Environmental Trends and Environmental Factors Affecting Milk Yield Traits of Brown Swiss Cattle

    Directory of Open Access Journals (Sweden)

    Muhammet Hanifi Selvi

    2016-01-01

    Full Text Available In this study, genetic parameters, macro environmental factors and genetic, phenotypic and environmental trends for actual and 305 day milk yield of Brown Swiss cattle reared in Research Farm of Agricultural College at Atatürk University were estimated. Estimated breeding values that were used for calculation of the genetic trend and genetic parameters were estimated by using MTDFREML computer package program. Environmental factors affecting on actual and 305day milk yields were analysed by using Harvey statistic package program. While effects of the years and parities on the actual and 305-day milk yields were highly significant, the influence of the calving season was found to be insignificant. Environmental and phenotypic trends for actual and 305-day milk yields were determined as -33.2 kg and -29.0 kg; and -27.8±19.1 kg/year and -25.9±8.7 kg/year respectively. Genetic trends for actual and 305-day milk yields were calculated as 5.4±3.8 kg and 3.1±3.4 kg. Heritability’s for actual and 305-day milk yields were 0.21±0.12 and 0.16±0.14 respectively. Repeatability values for actual and 305-day milk yield were found as 0.29 and 0.33 respectively.

  20. Influence of irradiation parameters on damage accumulation in metals and alloys

    DEFF Research Database (Denmark)

    Singh, B.N.; Zinkle, S.J.

    1994-01-01

    , helium production rate and the production rate of transmutant impurities may affect the rate and the magnitude of the damage accumulation. Possible mechanisms by which these parameters may affect the damage accumulation are described. Specific examples are given to illustrate the fact that the recoil...

  1. A systematic experimental investigation of significant parameters affecting model tire hydroplaning

    Science.gov (United States)

    Wray, G. A.; Ehrlich, I. R.

    1973-01-01

    The results of a comprehensive parametric study of model and small pneumatic tires operating on a wet surface are presented. Hydroplaning inception (spin down) and rolling restoration (spin up) are discussed. Conclusions indicate that hydroplaning inception occurs at a speed significantly higher than the rolling restoration speed. Hydroplaning speed increases considerably with tread depth, surface roughness and tire inflation pressure of footprint pressure, and only moderately with increased load. Water film thickness affects spin down speed only slightly. Spin down speed varies inversely as approximately the one-sixth power of film thickness. Empirical equations relating tire inflation pressure, normal load, tire diameter and water film thickness have been generated for various tire tread and surface configurations.

  2. Identifying suitable sites for Florida panther reintroduction

    Science.gov (United States)

    Thatcher, Cindy A.; van Manen, Frank T.; Clark, Joseph D.

    2006-01-01

    A major objective of the 1995 Florida Panther (Puma concolor cory) Recovery Plan is the establishment of 2 additional panther populations within the historic range. Our goal was to identify prospective sites for Florida panther reintroduction within the historic range based on quantitative landscape assessments. First, we delineated 86 panther home ranges using telemetry data collected from 1981 to 2001 in south Florida to develop a Mahalanobis distance (D2) habitat model, using 4 anthropogenic variables and 3 landscape variables mapped at a 500-m resolution. From that analysis, we identified 9 potential reintroduction sites of sufficient size to support a panther population. We then developed a similar D2 model at a higher spatial resolution to quantify the area of favorable panther habitat at each site. To address potential for the population to expand, we calculated the amount of favorable habitat adjacent to each prospective reintroduction site within a range of dispersal distances of female panthers. We then added those totals to the contiguous patches to estimate the total amount of effective panther habitat at each site. Finally, we developed an expert-assisted model to rank and incorporate potentially important habitat variables that were not appropriate for our empirical analysis (e.g., area of public lands, livestock density). Anthropogenic factors heavily influenced both the landscape and the expert-assisted models. Of the 9 areas we identified, the Okefenokee National Wildlife Refuge, Ozark National Forest, and Felsenthal National Wildlife Refuge regions had the highest combination of effective habitat area and expert opinion scores. Sensitivity analyses indicated that variability among key model parameters did not affect the high ranking of those sites. Those sites should be considered as starting points for the field evaluation of potential reintroduction sites.

  3. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    Science.gov (United States)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  4. A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2017-01-01

    Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...... of parameters was performed in order to get a good model fit to the data. However, not all parameters are identifiable with the given data set and model structure. Sensitivity, identifiability, and uncertainty analysis were completed and a relevant identifiable subset of parameters was determined for a new...

  5. Blood parameters and apparent digestibility of concentrate with rice oil for horses

    Directory of Open Access Journals (Sweden)

    Helio Alberto Cumani Garcia

    2013-10-01

    Full Text Available Apparent digestibility coefficients and serum parameters were measured to evaluate the effect of supplementing feed concentrates with rice bran oil in horses. Twelve horses (6 males and 6 females with a mean age of 18 ± 4 months old and mean live weight of 306 ± 22.6 kg were used. Treatments consisted of increasing rice bran oil concentrate levels of 0, 3.5, 7.0, 10.5, 14.0 and 17.5%, considering a daily intake of 2.25% live weight on a dry matter basis. A dietary effect of supplementation on the apparent digestibility of gross energy (y = 64.55 - 0.58x was observed (P0.05. Supplementation did not affect serum glucose levels (P>0.05, but cholesterol was affected (P0.05. A dietary effect on the triglyceride (y = 15.73 - 0.96x + 0.0524x² and HDL (high-density lipoprotein (y = 45.24 + 1.0499x parameters was observed (P<0.01. While the use of rice bran oil does affect blood parameters associated with lipid metabolism, rice bran oil levels up to 17.5% concentrate do not negatively affect the apparent digestibility of dietary nutrients.

  6. A parameter tree approach to estimating system sensitivities to parameter sets

    International Nuclear Information System (INIS)

    Jarzemba, M.S.; Sagar, B.

    2000-01-01

    Total System Performance Assessment Code called TPA, realizations are obtained and analyzed. In the examples presented, groups of five important parameters, one for each level of the tree, are used to identify branches of the tree and construct the bins. In the first example, the five important parameters are selected by more traditional sensitivity analysis techniques. This example shows that relatively few branches of the tree dominate system performance. In another example, the same realizations are used but the most important five-parameter set is determined in a stepwise manner (using the parameter tree technique) and it is found that these five parameters do not match the five of the first example. This important result shows that sensitivities based on individual parameters (i.e. one parameter at a time) may differ from sensitivities estimated based on joint sets of parameters (i.e. two or more parameters at a time). The technique is extended using subsystem outputs to define the branches of the tree. The subsystem outputs used in this example are the total cumulative radionuclide release (TCR) from the engineered barriers, unsaturated zone, and saturated zone over 10,000 yr. The technique is found to be successful in estimating the relative influence of each of these three subsystems on the overall system behavior

  7. Socio-cultural parameters in Yoruba Nigerian patients with affective disorders.

    Science.gov (United States)

    Makanjuola, R O

    1989-09-01

    One hundred and ten consecutive new patients presenting with major affective disorders were divided into five categories according to pattern of presentation: recurrent manic disorder, recurrent depressive disorder, bipolar disorder, single episodes of manic disorder, and single episodes of major depressive disorder. Manic patients predominated, and recurrent manic disorder was much more frequent than either recurrent depressive or bipolar disorder. The manic and bipolar patients were younger. Females predominated in all five groups of patients. The two manic groups were less likely to be married, but this was probably a reflection of their younger age. No differences were demonstrated with regard to educational status or occupation. There were no significant differences with regard to sibship position, family size, or polygamous/monogamous parents. Manic patients were more likely to have suffered permanent separation from one or both parents before the age of 12 years. A relatively low proportion of the patients had a positive history of mental disorder among first- or second-degree relatives. Manic and bipolar patients tended to present in hospital relatively early in their illness.

  8. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    Science.gov (United States)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  9. Reduction of radon concentration in a basement workplace: study of the problem and characterization of the main parameters affecting the radon concentration

    International Nuclear Information System (INIS)

    Chiaberto, E.M.; Magnoni, M.; Righino, F.; Costa Laia, R.

    2002-01-01

    In this work is described the method used for the mitigation of high radon concentrations found in a basement workplace, the ARPA laboratory used for the metrology of EMF. In this lab was in fact measured a radon concentration up to 1900 Bq/m 3 , a value largely exceeding the Italian limit for workplaces (500 Bq/m 3 ). The basement workplace affected by radon is a room of around 500 m 3 with no windows and only one door, during work usually close, and therefore with a very low ventilation rate. In this workplace, usually two persons spent about 6 hour per day. Therefore their exposure to the radon and its decay products can attain a considerable value. For this people, accordingly to the accepted dosimetric models, an effective dose of several mSv per year could be estimated (ICRP Publication n. 65, 1993). It is thus important to reduce the radon concentration to acceptable levels, i.e. at least lower than 500 Bq/m 3 . This paper deals not only with the simple method used for the remedial action, but also to the investigation of the relevant parameters affecting the radon concentration. In particular, the monitoring of the radon concentration before and after the remedial action, allowed the calculation of the radon entry rates (Bq/s) and the ventilation rates (s-1) in the different experimental condition

  10. Identification of parameters underlying emotions and a classification of emotions

    OpenAIRE

    Kumar, N. Arvind

    2008-01-01

    The standard classification of emotions involves categorizing the expression of emotions. In this paper, parameters underlying some emotions are identified and a new classification based on these parameters is suggested.

  11. Regional probability distribution of the annual reference evapotranspiration and its effective parameters in Iran

    Science.gov (United States)

    Khanmohammadi, Neda; Rezaie, Hossein; Montaseri, Majid; Behmanesh, Javad

    2017-10-01

    The reference evapotranspiration (ET0) plays an important role in water management plans in arid or semi-arid countries such as Iran. For this reason, the regional analysis of this parameter is important. But, ET0 process is affected by several meteorological parameters such as wind speed, solar radiation, temperature and relative humidity. Therefore, the effect of distribution type of effective meteorological variables on ET0 distribution was analyzed. For this purpose, the regional probability distribution of the annual ET0 and its effective parameters were selected. Used data in this research was recorded data at 30 synoptic stations of Iran during 1960-2014. Using the probability plot correlation coefficient (PPCC) test and the L-moment method, five common distributions were compared and the best distribution was selected. The results of PPCC test and L-moment diagram indicated that the Pearson type III distribution was the best probability distribution for fitting annual ET0 and its four effective parameters. The results of RMSE showed that the ability of the PPCC test and L-moment method for regional analysis of reference evapotranspiration and its effective parameters was similar. The results also showed that the distribution type of the parameters which affected ET0 values can affect the distribution of reference evapotranspiration.

  12. Parameter setting and input reduction

    NARCIS (Netherlands)

    Evers, A.; van Kampen, N.J.|info:eu-repo/dai/nl/126439737

    2008-01-01

    The language acquisition procedure identifies certain properties of the target grammar before others. The evidence from the input is processed in a stepwise order. Section 1 equates that order and its typical effects with an order of parameter setting. The question is how the acquisition procedure

  13. SME Worker Affective (SWA) index based on environmental ergonomics

    Science.gov (United States)

    Ushada, M.; Kusuma Aji, G.; Okayama, T.; Khidir, M.

    2018-04-01

    Small-Medium sized (SME) is a focal type of Indonesian industry which contributes to national emerging economies. Indonesian goverment has developed employee social security system (BPJS Ketenagakerjaan) to support worker quality of life. However, there were limited research which could assist BPJS Ketenagakerjaan in evaluating worker quality of life. Worker quality of life could be categorized as the highest worker needs or affective states. SME Worker Affective (SWA) index is being concerned as a basic tool to make balance between worker performance and quality of life in workstation of SMEs. The research objectives are: 1) To optimize the environmental ergonomics in SMEs; 2) To quantify SME Worker Affective (SWA) index based on optimized environmental ergonomics. The research advantage is to support Indonesian goverment in monitoring SMEs good practices to its worker quality of life. Simulated annealing optimized the heart rate and environmental ergonomics parameters. SWA index was determined based on comparison between optimized heart rate and environmental ergonomics parameters. SWA index were quantified for 380 data of worker. The evaluation indicated 51.3% worker in affective and 48.7% in non-affective condition. Research results indicated that stakeholders of SMEs should put more attention on environmental ergonomics and worker affective.

  14. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    Science.gov (United States)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  15. Structural identifiability of systems biology models: a critical comparison of methods.

    Directory of Open Access Journals (Sweden)

    Oana-Teodora Chis

    Full Text Available Analysing the properties of a biological system through in silico experimentation requires a satisfactory mathematical representation of the system including accurate values of the model parameters. Fortunately, modern experimental techniques allow obtaining time-series data of appropriate quality which may then be used to estimate unknown parameters. However, in many cases, a subset of those parameters may not be uniquely estimated, independently of the experimental data available or the numerical techniques used for estimation. This lack of identifiability is related to the structure of the model, i.e. the system dynamics plus the observation function. Despite the interest in knowing a priori whether there is any chance of uniquely estimating all model unknown parameters, the structural identifiability analysis for general non-linear dynamic models is still an open question. There is no method amenable to every model, thus at some point we have to face the selection of one of the possibilities. This work presents a critical comparison of the currently available techniques. To this end, we perform the structural identifiability analysis of a collection of biological models. The results reveal that the generating series approach, in combination with identifiability tableaus, offers the most advantageous compromise among range of applicability, computational complexity and information provided.

  16. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    Science.gov (United States)

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  17. Exploration of DGVM Parameter Solution Space Using Simulated Annealing: Implications for Forecast Uncertainties

    Science.gov (United States)

    Wells, J. R.; Kim, J. B.

    2011-12-01

    Parameters in dynamic global vegetation models (DGVMs) are thought to be weakly constrained and can be a significant source of errors and uncertainties. DGVMs use between 5 and 26 plant functional types (PFTs) to represent the average plant life form in each simulated plot, and each PFT typically has a dozen or more parameters that define the way it uses resource and responds to the simulated growing environment. Sensitivity analysis explores how varying parameters affects the output, but does not do a full exploration of the parameter solution space. The solution space for DGVM parameter values are thought to be complex and non-linear; and multiple sets of acceptable parameters may exist. In published studies, PFT parameters are estimated from published literature, and often a parameter value is estimated from a single published value. Further, the parameters are "tuned" using somewhat arbitrary, "trial-and-error" methods. BIOMAP is a new DGVM created by fusing MAPSS biogeography model with Biome-BGC. It represents the vegetation of North America using 26 PFTs. We are using simulated annealing, a global search method, to systematically and objectively explore the solution space for the BIOMAP PFTs and system parameters important for plant water use. We defined the boundaries of the solution space by obtaining maximum and minimum values from published literature, and where those were not available, using +/-20% of current values. We used stratified random sampling to select a set of grid cells representing the vegetation of the conterminous USA. Simulated annealing algorithm is applied to the parameters for spin-up and a transient run during the historical period 1961-1990. A set of parameter values is considered acceptable if the associated simulation run produces a modern potential vegetation distribution map that is as accurate as one produced by trial-and-error calibration. We expect to confirm that the solution space is non-linear and complex, and that

  18. The Identifying, Evaluating and Prioritizing the Factors Affecting Customers’ Satisfaction with E-service Centers of Iran's Police

    Directory of Open Access Journals (Sweden)

    Seyed Ali Ziaee Azimi

    2016-11-01

    Full Text Available The present research is classified as an applied one employing a descriptive survey design to describe the status quo of the factors affecting customers’ satisfaction with the E-service centers of Iran’s police, known as 10 + police centers. The research population involves all the costumers of the 10+ police centers, among which 420 individuals were chosen through simple random sampling technique. Furthermore, 45 10 + police service centers were selected with probability proportional to size. After Determining the validity and reliability of the researcher-made questionnaire, it has been used to collect the required data. Then, a conceptual model was developed using the theoretical framework and background literature. After that, SPSS software was used to examine and make an analysis of the research hypothesises. The findings indicate that all the identified indices to the customers’ satisfaction with the 10 + police e- service centers (including trust and confidence, staff performance, system facility, environmental facility, basic amenity, providing sufficient notification, time and cost, easy access to the office have an effect on the customers’ satisfaction. In the end, some practical suggestions were made for an improvement in the satisfaction level of the customers to the 10 + police e- service centers.

  19. Factors affecting the hot-dip zinc coatings structure

    International Nuclear Information System (INIS)

    Sere, P.R.; Cuclcasi, J.D.; Elsner, C.I.; Sarli, A.R.

    1997-01-01

    Coating solidification during hot-dip galvanizing is a very complex process due to Al-Fe, Al-Fe-Zn and Fe-Zn intermetallic compounds development . Fe-Zn intermetallics are brittle and detrimental for the coating ductility, while the diffusion towards the surface of a segregated insoluble alloying such as antimonium causes the sheet darkness. Steel of different roughness were hot-dip galvanized under different operation conditions using a laboratory scale simulator. The effect of steel roughness and process parameters upon coating characteristics were analysed. Experimental results showed that the steel roughness affects the coating thickness, zinc grain size and texture as well as the out-bursts development, while the process parameters affects the Fe 2 Al 5 morphology and antimonium segregation. (Author) 11 refs

  20. Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation.

    Science.gov (United States)

    Villaverde, Alejandro F; Banga, Julio R

    2017-11-01

    The concept of dynamical compensation has been recently introduced to describe the ability of a biological system to keep its output dynamics unchanged in the face of varying parameters. However, the original definition of dynamical compensation amounts to lack of structural identifiability. This is relevant if model parameters need to be estimated, as is often the case in biological modelling. Care should we taken when using an unidentifiable model to extract biological insight: the estimated values of structurally unidentifiable parameters are meaningless, and model predictions about unmeasured state variables can be wrong. Taking this into account, we explore alternative definitions of dynamical compensation that do not necessarily imply structural unidentifiability. Accordingly, we show different ways in which a model can be made identifiable while exhibiting dynamical compensation. Our analyses enable the use of the new concept of dynamical compensation in the context of parameter identification, and reconcile it with the desirable property of structural identifiability.

  1. Characterisation of demoulding parameters in micro‑injection moulding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Tosello, Guido; Dimov, S.S.

    2015-01-01

    on the process factors that affect parts’ quality. Using a Cyclic Olefin Copolyme (COC) microfluidics demonstrator, the demoulding performance was studied as a function of four process parameters (melt temperature, mould temperature, holding pressure and injection speed), employing the design of experiment...

  2. MANIPULATION, PROFESSIONAL PRACTICES AND DEONTOLOGY IN INFORMATIONAL PHOTOGRAPHY: IDENTIFYING NEW PARAMETERS

    Directory of Open Access Journals (Sweden)

    Paulo Munhoz

    2014-06-01

    Full Text Available This paper investigates impacts of digital technologies on photographic post-production and image manipulation in information photography. An attempt is made to assess the extent to which ethical codes and conventions are being modified concerning the digital treatment of photographic images. We sought to assess whether one can identify, in the rules of photographic competitions, an embryonic process of establishment of new boundaries as to what constitutes content manipulation and what is acceptable as technical adjustments.  We observed that, in a large proportion of cases, competition rules consist of very generic guidelines regarding the acceptable procedures for photo editing, without clear distinctions between technical adjustment and manipulation. Despite such limitations, we conclude that the analysis of photographic competitions can lead to identification of observable regularities that may act as ethical standards in relation to post-production images.

  3. Manipulation, professional practices and deontology in informational photography: identifying new parameters

    Directory of Open Access Journals (Sweden)

    Paulo Munhoz

    2014-06-01

    Full Text Available This paper investigates impacts of digital technologies on photographic post-production and image manipulation in information photography. An attempt is made to assess the extent to which ethical codes and conventions are being modified concerning the digital treatment of photographic images. We sought to assess whether one can identify, in the rules of photographic competitions, an embryonic process of establishment of new boundaries as to what constitutes content manipulation and what is acceptable as technical adjustments.  We observed that, in a large proportion of cases, competition rules consist of very generic guidelines regarding the acceptable procedures for photo editing, without clear distinctions between technical adjustment and manipulation. Despite such limitations, we conclude that the analysis of photographic competitions can lead to identification of observable regularities that may act as ethical standards in relation to post-production images.

  4. Multiobjective Optimization of Turning Cutting Parameters for J-Steel Material

    Directory of Open Access Journals (Sweden)

    Adel T. Abbas

    2016-01-01

    Full Text Available This paper presents a multiobjective optimization study of cutting parameters in turning operation for a heat-treated alloy steel material (J-Steel with Vickers hardness in the range of HV 365–395 using uncoated, unlubricated Tungsten-Carbide tools. The primary aim is to identify proper settings of the cutting parameters (cutting speed, feed rate, and depth of cut that lead to reasonable compromises between good surface quality and high material removal rate. Thorough exploration of the range of cutting parameters was conducted via a five-level full-factorial experimental matrix of samples and the Pareto trade-off frontier is identified. The trade-off among the objectives was observed to have a “knee” shape, in which certain settings for the cutting parameters can achieve both good surface quality and high material removal rate within certain limits. However, improving one of the objectives beyond these limits can only happen at the expense of a large compromise in the other objective. An alternative approach for identifying the trade-off frontier was also tested via multiobjective implementation of the Efficient Global Optimization (m-EGO algorithm. The m-EGO algorithm was successful in identifying two points within the good range of the trade-off frontier with 36% fewer experimental samples.

  5. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  6. Reflow Process Parameters Analysis and Reliability Prediction Considering Multiple Characteristic Values

    Directory of Open Access Journals (Sweden)

    Guo Yu

    2016-01-01

    Full Text Available As a major step surface mount technology, reflow process is the key factor affecting the quality of the final product. The setting parameters and characteristic value of temperature curve shows a nonlinear relationship. So parameter impacts on characteristic values are analyzed and the parameters adjustment process based on orthogonal experiment is proposed in the paper. First, setting parameters are determined and the orthogonal test is designed according to production conditions. Then each characteristic value for temperature profile is calculated. Further, multi-index orthogonal experiment is analyzed for acquiring the setting parameters which impacts the PCBA product quality greater. Finally, reliability prediction is carried out considering the main influencing parameters for providing a theoretical basis of parameters adjustment and product quality evaluation in engineering process.

  7. Approximate effect of parameter pseudonoise intensity on rate of convergence for EKF parameter estimators. [Extended Kalman Filter

    Science.gov (United States)

    Hill, Bryon K.; Walker, Bruce K.

    1991-01-01

    When using parameter estimation methods based on extended Kalman filter (EKF) theory, it is common practice to assume that the unknown parameter values behave like a random process, such as a random walk, in order to guarantee their identifiability by the filter. The present work is the result of an ongoing effort to quantitatively describe the effect that the assumption of a fictitious noise (called pseudonoise) driving the unknown parameter values has on the parameter estimate convergence rate in filter-based parameter estimators. The initial approach is to examine a first-order system described by one state variable with one parameter to be estimated. The intent is to derive analytical results for this simple system that might offer insight into the effect of the pseudonoise assumption for more complex systems. Such results would make it possible to predict the estimator error convergence behavior as a function of the assumed pseudonoise intensity, and this leads to the natural application of the results to the design of filter-based parameter estimators. The results obtained show that the analytical description of the convergence behavior is very difficult.

  8. Factors affecting the concentration of outdoor particles indoors: Existing data and data needs

    International Nuclear Information System (INIS)

    McKone, T.E.; Thatcher, T.L.; Fisk, W.J.; Sextro, R.G.; Sohn, M.D.; Delp, W.W.; Riley, W.J.

    2002-01-01

    Accurate characterization of particle concentrations indoors is critical to exposure assessments. It is estimated that indoor particle concentrations depend strongly on outdoor concentrations. For health scientists, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this paper, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles indoors. To achieve this goal, we (i) identify and assemble relevant information on how particle behavior during air leakage, HVAC operation, and particle filtration effects indoor particle concentration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful; and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations

  9. Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Carton, J.G.; Olabi, A.G.

    2010-01-01

    Low temperature hydrogen fuel cells are electrochemical devices which offer a promising alternative to traditional power sources. Fuel cells produce electricity with a reaction of the fuel (hydrogen) and air. Fuel cells have the advantage of being clean; only producing water and heat as by products. The efficiency of a fuel cell varies depending on the type; SOFC with CHP for example, can have a system efficiency of up to 65%. What the Authors present here is a comparison between three different configurations of flow plates of a proton exchange membrane fuel cell, the manufacturer's serpentine flow plate and two new configurations; the maze flow plate and the parallel flow plate. A study of the input parameters affecting output responses of voltage, current, power and efficiency of a fuel cell is performed through experimentation. The results were taken from direct readings of the fuel cell and from polarisation curves produced. This information was then analysed through a design of experiment to investigate the effects of the changing parameters on different configurations of the fuel cell's flow plates. The results indicate that, in relation to current and voltage response of the polarisation curve and the corresponding graphs produced from the DOE, the serpentine flow plate design is a much more effective design than the maze or parallel flow plate design. It was noted that the parallel flow plate performed reasonably well at higher pressures but over all statically the serpentine flow plate performed better.

  10. Prognostic Significance of Blood, Serum, and Ascites Parameters in Patients with Malignant Peritoneal Mesothelioma or Peritoneal Carcinomatosis.

    Science.gov (United States)

    Su, Shan-Shan; Zheng, Guo-Qi; Yin, Wen-Jie; Liang, Yu-Fei; Liu, Ying-Ying; Song, Hui; Sun, Ning-Ning; Yang, Yu-Xin

    2018-01-01

    To determine effects of the biochemical and cytological properties of blood, serum, and ascites on survival of patients with malignant peritoneal effusion (MPeE), including malignant peritoneal mesothelioma (MPeM) and peritoneal carcinomatosis (PC), we conducted a retrospective study of patients with MPeE and healthy controls. Potential prognostic factors were identified as follows: age, sex, blood neutrophil-to-lymphocyte ratio (NLR), serum parameters, ascites parameters, serum-ascites albumin gradient, and the ascites-serum LDH ratio. Compared to those of the control group, serum albumin levels were significantly lower, and the NLR and serum LDH levels were significantly higher in the MPeE group. Overall survival (OS) was longer in patients with MPeM compared to that in patients with PC. Compared with patients in the MPeM, patients with PC had higher NLRs, ascites glucose levels, serum-ascites albumin gradients, and serum LDH levels. In contrast, their ascites albumin levels and ascites-serum LDH ratios were lower. Univariate analyses indicated that the NLR, serum LDH levels, ascites LDH levels, ascites coenocyte levels, and the ascites coenocyte-to-monocyte ratios affected the OS. Multivariate analyses identified only serum and ascites LDH levels as independent prognostic factors.

  11. Measurement Error Estimation for Capacitive Voltage Transformer by Insulation Parameters

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2017-03-01

    Full Text Available Measurement errors of a capacitive voltage transformer (CVT are relevant to its equivalent parameters for which its capacitive divider contributes the most. In daily operation, dielectric aging, moisture, dielectric breakdown, etc., it will exert mixing effects on a capacitive divider’s insulation characteristics, leading to fluctuation in equivalent parameters which result in the measurement error. This paper proposes an equivalent circuit model to represent a CVT which incorporates insulation characteristics of a capacitive divider. After software simulation and laboratory experiments, the relationship between measurement errors and insulation parameters is obtained. It indicates that variation of insulation parameters in a CVT will cause a reasonable measurement error. From field tests and calculation, equivalent capacitance mainly affects magnitude error, while dielectric loss mainly affects phase error. As capacitance changes 0.2%, magnitude error can reach −0.2%. As dielectric loss factor changes 0.2%, phase error can reach 5′. An increase of equivalent capacitance and dielectric loss factor in the high-voltage capacitor will cause a positive real power measurement error. An increase of equivalent capacitance and dielectric loss factor in the low-voltage capacitor will cause a negative real power measurement error.

  12. Synchronous machine parameter identification in frequency and time domain

    Directory of Open Access Journals (Sweden)

    Hasni M.

    2007-01-01

    Full Text Available This paper presents the results of a frequency and time-domain identification procedure to estimate the linear parameters of a salient-pole synchronous machine at standstill. The objective of this study is to use several input signals to identify the model structure and parameters of a salient-pole synchronous machine from standstill test data. The procedure consists to define, to conduct the standstill tests and also to identify the model structure. The signals used for identification are the different excitation voltages at standstill and the flowing current in different windings. We estimate the parameters of operational impedances, or in other words the reactance and the time constants. The tests were carried out on synchronous machine of 1.5 kVA 380V 1500 rpm.

  13. Parameters Affecting the Extraction Process of Jatropha curcas Oil Using a Single Screw Extruder

    Directory of Open Access Journals (Sweden)

    Ali Nurrakhmad Siregar

    2015-07-01

    Full Text Available The most commonly used technique to separate oil and cake from J. curcas seeds is mechanical extraction. It uses simple tools such as a piston and a screw extruder to produce high pressure, driven by hand or by engine. A single screw extruder has one screw rotating inside the barrel and materials simultaneously flow from the feed to the die zone. The highest oil yield can be obtained by a well-designed oil press as well as finding the optimum conditions for all parameters involved during the extraction process. The influence of the parameters in a single screw extruder was studied using finite element analysis and computational fluid dynamics simulation with ANSYS POLYFLOW. The research focused on predicting the velocity, pressure and shear rate in the metering section that influenced the screw rotational speed and mass flow rate. The obtained results revealed that increasing the screw rotational speed will increase the pressure, velocity and shear rate. Meanwhile, increasing the mass flow rate results in decreasing the pressure while the velocity and shear rate remain constant.

  14. Properties Of Viscose Vortex Yarns Depending On Technological Parameters Of Spinning

    Directory of Open Access Journals (Sweden)

    Moučková Eva

    2015-06-01

    Full Text Available This paper analyzes the relationship between technological parameters of spinning of 100% CV Vortex yarns of different counts and its selected geometrical parameters (a lead of helix of wrapping fibre ribbon, yarn diameter as well as yarn properties. The number of twist of wrapping fibre layer is determined. The effect of the yarn delivery speed, hollow spindle diameter, and the main draft on the hairiness, mass irregularity, tenacity, elongation, resistance to abrasion and bending rigidity of Vortex yarn is observed. The yarn properties are compared with the properties of open-end rotor spun yarns. Slivers of the same spinning lot were used for the production of both kinds of yarn. The results showed that the delivery speed in combination with spindle diameter affects yarn diameter, hairiness and abrasion resistance. Mass irregularity and imperfections of yarn is mainly affected by the main draft of drafting unit. Technological parameters of spinning do not affect the level of bending rigidity of the Vortex yarn. Tested rotor spun yarns had a larger diameter, higher hairiness, lower tenacity and higher elongation, lower mass irregularity and number of imperfections, higher abrasion resistance and lower bending rigidity compared to tested Vortex spun yarns.

  15. Non-Contrast Computed Tomography Scan Based Parameters of Ureteric Stones Affecting the Outcome of Extracorporeal Shock Wave Lithotripsy

    Science.gov (United States)

    Ayaz Khan, Mohammad; Waqas Iqbal, Muhammad; Akbar, Mian Khalid; Saqib, Imad-ud-din; Akhter, Saeed

    2017-01-01

    Objective  To compare the non-contrast computed tomography (NCCT) scan-based parameters of ureteric stones affecting the outcome of extracorporeal shock wave lithotripsy (ESWL). Materials and methods We retrospectively evaluated the pre-procedure NCCT of 74 patients who had ESWL for solitary ureteric calculi of 5-20 mm in diameter. We assessed the age, sex, basal metabolic index (BMI), laterality, location, presence of double 'J' (DJ) stent, skin to stone distance (SSD), stone maximum diameter, Hounsfield unit (HU), Hounsfield density (HD), area, and volume. All those who had no stone on follow-up imaging within 30 days were declared successful while those who had residual stone were declared failures. Results The overall success rate was 78% (58/74). Sixty (81.1%) patients were male. The success of ESWL was correlated with lower SSD, Hounsfield units (HU) and Hounsfield density (HD). However, in multivariate analysis, SSD, Hounsfield unit, and stone area showed correlation with success of procedure but Hounsfield density failed to show correlation. The success rate in patients with stone HU 1000 were 93.9%, 69%, and 58.3%, respectively. Patients with lower BMI (30 kg/m2) and higher HD (>76 HU/mm). Conclusion BMI, SSD, stone Hounsfield units and Hounsfield unit density were strong predictors of outcome of ESWL for ureteric stone. PMID:28589076

  16. Dementia in affective disorder

    DEFF Research Database (Denmark)

    Kessing, L V; Olsen, E W; Mortensen, P B

    1999-01-01

    OBJECTIVE: The aim of the study was to investigate whether patients with affective disorder have increased risk of developing dementia compared to other groups of psychiatric patients and compared to the general population. METHOD: In the Danish psychiatric central register, 3363 patients...... with unipolar affective disorder, 518 patients with bipolar affective disorder, 1025 schizophrenic and 8946 neurotic patients were identified according to the diagnosis at the first ever discharge from psychiatric hospital during the period from 1970 to 1974. The rate of discharge diagnosis of dementia...... on readmission was estimated during 21 years of follow-up. In addition, the rates were compared with the rates for admission to psychiatric hospitals with a discharge diagnosis of dementia for the total Danish population. RESULTS: Patients with unipolar and with bipolar affective disorder had a greater risk...

  17. Factors that affect coseismic folds in an overburden layer

    Science.gov (United States)

    Zeng, Shaogang; Cai, Yongen

    2018-03-01

    Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

  18. State Estimation-based Transmission line parameter identification

    Directory of Open Access Journals (Sweden)

    Fredy Andrés Olarte Dussán

    2010-01-01

    Full Text Available This article presents two state-estimation-based algorithms for identifying transmission line parameters. The identification technique used simultaneous state-parameter estimation on an artificial power system composed of several copies of the same transmission line, using measurements at different points in time. The first algorithm used active and reactive power measurements at both ends of the line. The second method used synchronised phasor voltage and current measurements at both ends. The algorithms were tested in simulated conditions on the 30-node IEEE test system. All line parameters for this system were estimated with errors below 1%.

  19. Factors affecting smartphone adoption for accessing information in medical settings.

    Science.gov (United States)

    Tahamtan, Iman; Pajouhanfar, Sara; Sedghi, Shahram; Azad, Mohsen; Roudbari, Masoud

    2017-06-01

    This study aimed to acquire knowledge about the factors affecting smartphone adoption for accessing information in medical settings in Iranian Hospitals. A qualitative and quantitative approach was used to conduct this study. Semi-structured interviews were conducted with 21 medical residents and interns in 2013 to identify determinant factors for smartphone adoption. Afterwards, nine relationships were hypothesised. We developed a questionnaire to test these hypotheses and to evaluate the importance of each factor. Structural equation modelling was used to analyse the causal relations between model parameters and to accurately identify determinant factors. Eight factors were identified in the qualitative phase of the study, including perceived usefulness, perceived ease of use, training, internal environment, personal experience, social impacts, observability and job related characteristics. Among the studied factors, perceived usefulness, personal experience and job related characteristics were significantly associated with attitude to use a smartphone which accounted for 64% of the variance in attitude. Perceived usefulness had the strongest impact on attitude to use a smartphone. The factors that emerged from interviews were consistent with the Technology Acceptance Model (TAM) and some previous studies. TAM is a reliable model for understanding the factors of smartphone acceptance in medical settings. © 2017 Health Libraries Group.

  20. Bayesian multi-QTL mapping for growth curve parameters

    DEFF Research Database (Denmark)

    Heuven, Henri C M; Janss, Luc L G

    2010-01-01

    % for ASYM and SCAL while the heritability for XMID was approximately 24%. The genome wide scan revealed four QTLs affecting ASYM, one QTL affecting XMID and four QTLs affecting SCAL. The size of the QTL differed. QTL with a larger effect could be more precisely located compared to QTL with small effect....... The locations of the QTLs for separate parameters were very close in some cases and probably caused the genetic correlation observed between ASYM and XMID and SCAL respectively. None of the QTL appeared on chromosome five. Conclusions Repeated observations on individuals were affected by at least nine QTLs....... For most QTL a precise location could be determined. The QTL for the inflection point (XMID) was difficult to pinpoint and might actually exist of two closely linked QTL on chromosome one....

  1. Family Caregivers' Patterns of Positive and Negative Affect

    Science.gov (United States)

    Robertson, Suzanne M.; Zarit, Steven H.; Duncan, Larissa G.; Rovine, Michael J.; Femia, Elia E.

    2007-01-01

    Stressful and positive family caregiving experiences were examined as predictors of caregivers' patterns of positive and negative affect in a sample of families providing care for a relative with dementia (N = 234). Four affect pattern groups were identified: (a) Well Adjusted (i.e., high positive affect, low negative affect); (b) Ambiguous (i.e.,…

  2. Damage characteristics in 3D stitched composites with various stitch parameters under in-plane tension

    KAUST Repository

    Yudhanto, Arief

    2015-04-01

    Three-dimensional (3D) reinforcement by stitching is effective in improving the impact resistance of composites. Stitching, however, adversely affects the composite\\'s in-plane mechanical responses, and alters its damage mechanisms due to stitch-induced irregularities. We experimentally investigate the effect of two important stitch parameters, stitch density and thread diameter, on the damage characteristics of 3D stitched multidirectional composites under in-plane tension using X-ray radiography, X-ray micro-computed tomography and digital image correlation (DIC). Our study shows that composites stitched with thicker thread exhibit improved tensile strength due to effective hindrance of edge-delamination. We also found that stitch thread affects damage behaviors. A higher number of transverse cracks develops in the middle portion of thin 90° fiber tows; the inter-crack distance is reduced by dense stitching. DIC is able to identify the cracks that appear in resin-rich channels and distinguish strain fields due to different stitch densities.

  3. Factors affecting the quality of cardiopulmonary resuscitation in inpatient units: perception of nurses

    Directory of Open Access Journals (Sweden)

    Clairton Marcos Citolino Filho

    2015-12-01

    Full Text Available Abstract OBJECTIVE To identify, in the perception of nurses, the factors that affect the quality of cardiopulmonary resuscitation (CPR in adult inpatient units, and investigate the influence of both work shifts and professional experience length of time in the perception of these factors. METHOD A descriptive, exploratory study conducted at a hospital specialized in cardiology and pneumology with the application of a questionnaire to 49 nurses working in inpatient units. RESULTS The majority of nurses reported that the high number of professionals in the scenario (75.5%, the lack of harmony (77.6% or stress of any member of staff (67.3%, lack of material and/or equipment failure (57.1%, lack of familiarity with the emergency trolleys (98.0% and presence of family members at the beginning of the cardiopulmonary arrest assistance (57.1% are factors that adversely affect the quality of care provided during CPR. Professional experience length of time and the shift of nurses did not influence the perception of these factors. CONCLUSION The identification of factors that affect the quality of CPR in the perception of nurses serves as parameter to implement improvements and training of the staff working in inpatient units.

  4. Identifying landscape factors affecting tiger decline in the Bangladesh Sundarbans

    Directory of Open Access Journals (Sweden)

    Abu Naser Mohsin Hossain

    2018-01-01

    Full Text Available The Sundarbans Forest (∼10,000 km2 represents the only mangrove ecosystem inhabited by tigers Panthera tigris. However, in the Bangladesh portion of the Sundarbans (∼6,000 km2 tigers appear to have declined. The aim of this study was to examine the influence of a range of environmental and landscape variables in possible changes in the relative abundance of tigers in the Bangladesh Sundarbans over a five-year period (2007–2011. In 2007, 2011 tiger relative abundance was assessed using sign surveys. Using regression models we investigated changes in relative abundance versus multiple landscape variables (human disturbance associated with villages and commercial shipping lanes, distance to the international border with India where there is enhanced patrolling, presence of forest guard stations, number of criminal prosecutions and forest protection status. Tiger relative abundance was higher in 2007 and declined by 2011 with changes best explained by the proximity to international boundaries. This result might have been affected by the high levels of security patrols at the India-Bangladesh border along with cross border tiger movement between India and Bangladesh. Neighboring tiger range countries could strengthen cross-border law enforcement, increasing protection of dispersing animals. Particularly alarming was the absence of a positive effect of protected areas relative to those outside the protected area system or forest guard stations, implying a lack of management effectiveness suggesting an urgent need for an improved strategy for managing tigers and their habitats. Keywords: Wildlife poaching, Population declines, Transboundary protection, Joint patrolling, Protected area effectiveness

  5. Relationship of periodontal clinical parameters with bacterial composition in human dental plaque.

    Science.gov (United States)

    Fujinaka, Hidetake; Takeshita, Toru; Sato, Hirayuki; Yamamoto, Tetsuji; Nakamura, Junji; Hase, Tadashi; Yamashita, Yoshihisa

    2013-06-01

    More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.

  6. Identifying variables that influence manufacturing product quality

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2014-10-01

    Full Text Available In the article a risk analysis of the production process of selected products in a plant producing votive candles was conducted. The Pareto-Lorenz diagram and FMEA method were used which indicated the most important areas affecting the production of selected elements of candles. The synthesis of intangible factors affecting production in the audited company was also carried out with particular emphasis on the operation of the production system. The factors determining the validity of studies was examined, describing the principle of BOST 14 Toyota management. The most important areas of the company were identified, positively affecting the production process.

  7. Parameter Subset Selection Techniques for Problems in Mathematical Biology

    DEFF Research Database (Denmark)

    Olsen, Christian; Smith, Ralph; Tran, Hien

    2015-01-01

    Patient-specific models for diagnostics and treatment planning require reliable parameter estimation and model predictions. Mathematical models of physiological systems are often formulated as systems of nonlinear ODEs with many parameters and few options for measuring all state variables....... Consequently, it can be difficult to determine which parameters can reliably be estimated from the available data. This investigation highlights some pitfalls associated with parameters that are unidentifiable in the sense that they are not uniquely determined by responses, and presents methods for recognizing...... and addressing identifiability problems. These methods quantify the magnitude of parameter influence through sensitivity analysis, and parameter interactions that might complicate unambiguous parameter estimation. The methods will be demonstrated using five examples of increasing complexity, as well...

  8. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions.

    Science.gov (United States)

    He, Xiao-Tao; Wu, Rui-Xin; Xu, Xin-Yue; Wang, Jia; Yin, Yuan; Chen, Fa-Ming

    2018-04-15

    Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. The substrate stiffness

  9. Design parameters and source terms: Volume 1, Design parameters: Revision 0

    International Nuclear Information System (INIS)

    1987-09-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan - Conceptual Design Report, SCP-CDR. The previous unpublished SCC Study identified the data needs for the Environmental Assessment effort for seven possible salt repository sites

  10. Some improved classification-based ridge parameter of Hoerl and ...

    African Journals Online (AJOL)

    Some improved classification-based ridge parameter of Hoerl and Kennard estimation techniques. ... This assumption is often violated and Ridge Regression estimator introduced by [2]has been identified to be more efficient than ordinary least square (OLS) in handling it. However, it requires a ridge parameter, K, of which ...

  11. Evaluation of Critical Parameters to Improve Slope Drainage System

    Directory of Open Access Journals (Sweden)

    Yong Weng Long

    2017-01-01

    Full Text Available This study focuses on identifying and evaluating critical parameters of various drainage configurations, arrangement, and filter which affect the efficiency of water draining system in slopes. There are a total of seven experiments with different types of homogeneous soil, drainage envelope, filter material, and quantity of pipes performed utilizing a model box with a dimension of 0.8 m × 0.8 m × 0.6 m. The pipes were orientated at 5 degrees from the horizontal. Rainfall event was introduced via a rainfall simulator with rainfall intensity of 434.1 mm/h. From the experiments performed, the expected outcomes when utilizing double pipes and geotextile as envelope filter were verified in this study. The results obtained from these experiments were reviewed and compared with Chapter 14 “Subsurface Drainage Systems” of DID’s Irrigation and Agricultural Drainage Manual of Malaysia and the European standard. It is recommended that the pipe installed in the slope could be wrapped with geotextile and in tandem with application of granular filter to minimize clogging without affecting the water discharge rate. Terzaghi’s filter criteria could be followed closely when deciding on new materials to act as aggregate filter. A caging system could be introduced as it could maintain the integrity of the drainage system and could ease installation.

  12. Identification of parameters of discrete-continuous models

    International Nuclear Information System (INIS)

    Cekus, Dawid; Warys, Pawel

    2015-01-01

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible

  13. Identification of parameters of discrete-continuous models

    Energy Technology Data Exchange (ETDEWEB)

    Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)

    2015-03-10

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.

  14. Identifying parameters in active magnetic bearing system using LFT formulation and Youla factorization

    DEFF Research Database (Denmark)

    Lauridsen, Jonas; Sekunda, André Krabdrup; Santos, Ilmar

    2015-01-01

    the LFT matrices represent the mapping of the uncertainties in and out of the full and reduced FE system matrices. Scaling the LFT matrices easily leads to the amplitudes of the uncertainty parameters., Youla Parametrization method is applied to transform the identification problem into an open...... for model-based control design and fast identification., The paper elucidates how nodal parametric uncertainties, which are easily represented in the full FE coordinate system, can be represented in the new coordinate system of the reduced model. The uncertainty is described as a single column vector...... of the system matrix A of the full FE model while it is represented as several elements spread over multiple rows and columns of the system matrix of the reduced model. The parametric uncertainty, for both the full and reduced FE model, is represented using Linear Fractional Transformation (LFT). In this way...

  15. Identifying and ranking the factors affecting entrepreneurial marketing to facilitate exports

    Directory of Open Access Journals (Sweden)

    Mehdi Habibzadeh

    2016-04-01

    Full Text Available Small and medium enterprises (SMEs are believed the most important components of today’s businesses and they can boost the growth of economy. This paper presents an empirical investigation to identify and rank important factors influencing on entrepreneurial marketing to facilitate exports of SMEs. The study designs a questionnaire in Likert scale and distributes it among 387 randomly selected entrepreneurs who act as managers of some SMEs in city of Tehran, Iran. Cronbach alpha is calculated as 0.873, which is well above the acceptable level. Using principle component analysis, the study has determined four factors including competitive intelligence, competitive advantage, external factors and internal factors to facilitate the export of SMEs.

  16. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  17. Basic technical parameters of magnetometers with ferromagnetic transducers and a method to define them

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1980-01-01

    The basic technical parameters of magnetometers with ferromagnetic transducers and measuring methods to define these parameters have been discussed. Special attention was paid to factors which essentially affect the inaccuracy of these measuring instruments. (author)

  18. Animal based parameters are no panacea for on-farm monitoring of animal welfare

    NARCIS (Netherlands)

    Bracke, M.B.M.

    2007-01-01

    On-farm monitoring of animal welfare is an important, present-day objective in animal welfare science. Scientists tend to focus exclusively on animal-based parameters, possibly because using environment-based parameters could be begging the question why welfare has been affected and because

  19. Objective voice parameters in Colombian school workers with healthy voices

    NARCIS (Netherlands)

    L.C. Cantor Cutiva (Lady Catherine); A. Burdorf (Alex)

    2015-01-01

    textabstractObjectives: To characterize the objective voice parameters among school workers, and to identify associated factors of three objective voice parameters, namely fundamental frequency, sound pressure level and maximum phonation time. Materials and methods: We conducted a cross-sectional

  20. Tables of nuclear level density parameters

    International Nuclear Information System (INIS)

    Chatterjee, A.; Ghosh, S.K.; Majumdar, H.

    1976-03-01

    The Renormalized Gas Model (RGM) has been used to calculate single particle level density parameters for more than 2000 nucleides over the range 9<=Z<=126 (15<=A<=338). Three separate tables present the elements on or near the valley of beta stability, neutron-rich fission fragment nucleides, and transitional nuclei, actinides and light-mass super heavy elements. Each table identifies the nucleus in terms of Z and N and presents the RGM deformation energy of binding, the total RGM structural energy correction over the free gas Fermi surface, and the level density parameter

  1. Experimental parameters differentially affect the humoral response of the cholera-toxin-based murine model of food allergy

    DEFF Research Database (Denmark)

    Kroghsbo, S.; Christensen, Hanne Risager; Frøkiær, Hanne

    2003-01-01

    Background: Recent studies have developed a murine model of IgE-mediated food allergy based on oral coadministration of antigen and cholera toxin (CT) to establish a maximal response for studying immunopathogenic mechanisms and immunotherapeutic strategies. However, for studying subtle...... interested in characterizing the individual effects of the parameters in the CT-based model: CT dose, antigen type and dose, and number of immunizations. Methods: BALB/c mice were orally sensitized weekly for 3 or 7 weeks with graded doses of CT and various food antigens (soy-trypsin inhibitor, ovalbumin...... of the antibody response depended on the type of antigen and number of immunizations. Conclusions: The critical parameters of the CT-based murine allergy model differentially control the intensity and kinetics of the developing immune response. Adjustment of these parameters could be a key tool for tailoring...

  2. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    Science.gov (United States)

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effects of structural error on the estimates of parameters of dynamical systems

    Science.gov (United States)

    Hadaegh, F. Y.; Bekey, G. A.

    1986-01-01

    In this paper, the notion of 'near-equivalence in probability' is introduced for identifying a system in the presence of several error sources. Following some basic definitions, necessary and sufficient conditions for the identifiability of parameters are given. The effects of structural error on the parameter estimates for both the deterministic and stochastic cases are considered.

  4. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

    Science.gov (United States)

    Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin

    2011-09-15

    Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  5. Clinical parameters predictive of malignancy of thyroid follicular neoplasms

    International Nuclear Information System (INIS)

    Davis, N.L.; Gordon, M.; Germann, E.; Robins, R.E.; McGregor, G.I.

    1991-01-01

    Needle aspiration biopsy is commonly employed in the evaluation of thyroid nodules. Unfortunately, the cytologic finding of a 'follicular neoplasm' does not distinguish between a thyroid adenoma and a follicular cancer. The purpose of this study was to identify clinical parameters that characterize patients with an increased risk of having a thyroid follicular cancer who preoperatively have a 'follicular neoplasm' identified by needle aspiration biopsy. A total of 395 patients initially treated at Vancouver General Hospital and the British Columbia Cancer Agency between the years of 1965 and 1985 were identified and their data were entered into a computer database. Patients with thyroid adenomas were compared to patients with follicular cancer using the chi-square test and Student's t-test. Statistically significant parameters that distinguished patients at risk of having a thyroid cancer (p less than 0.05) included age greater than 50 years, nodule size greater than 3 cm, and a history of neck irradiation. Sex, family history of goiter or neoplasm, alcohol and tobacco use, and use of exogenous estrogen were not significant parameters. Patients can be identified preoperatively to be at an increased risk of having a follicular cancer and accordingly appropriate surgical resection can be planned

  6. Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men?

    NARCIS (Netherlands)

    Ebisch, T.M.; Pierik, F.H.; Jong, F.H. de; Thomas, C.M.; Steegers-Theunissen, R.P.

    2006-01-01

    We evaluated pre- and post-intervention endocrine and semen parameters in a double-blind, placebo-controlled intervention study to investigate the underlying mechanism of increased sperm concentration after folic acid and zinc sulphate intervention. A total of 47 fertile and 40 subfertile males

  7. Experimental and Numerical Investigation of Design Parameters for Hydronic Embedded Thermally Active Surfaces

    DEFF Research Database (Denmark)

    Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren

    2015-01-01

    This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux i...

  8. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    Science.gov (United States)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  9. Structural identifiability of polynomial and rational systems

    NARCIS (Netherlands)

    J. Nemcová (Jana)

    2010-01-01

    htmlabstractSince analysis and simulation of biological phenomena require the availability of their fully specified models, one needs to be able to estimate unknown parameter values of the models. In this paper we deal with identifiability of parametrizations which is the property of one-to-one

  10. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Hendrikse, Maas; Gaspari, Daniel P; Calomeni, Alyssa J; Iwinski, Kyla J; Castle, James W; Haakensen, Monique C; Peru, Kerry M; Headley, John V; Rodgers, John H

    2017-04-01

    Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H 2 O 2 +UV 254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm

    International Nuclear Information System (INIS)

    Oliva, Diego; Abd El Aziz, Mohamed; Ella Hassanien, Aboul

    2017-01-01

    Highlights: •We modify the whale algorithm using chaotic maps. •We apply a chaotic algorithm to estimate parameter of photovoltaic cells. •We perform a study of chaos in whale algorithm. •Several comparisons and metrics support the experimental results. •We test the method with data from real solar cells. -- Abstract: The using of solar energy has been increased since it is a clean source of energy. In this way, the design of photovoltaic cells has attracted the attention of researchers over the world. There are two main problems in this field: having a useful model to characterize the solar cells and the absence of data about photovoltaic cells. This situation even affects the performance of the photovoltaic modules (panels). The characteristics of the current vs. voltage are used to describe the behavior of solar cells. Considering such values, the design problem involves the solution of the complex non-linear and multi-modal objective functions. Different algorithms have been proposed to identify the parameters of the photovoltaic cells and panels. Most of them commonly fail in finding the optimal solutions. This paper proposes the Chaotic Whale Optimization Algorithm (CWOA) for the parameters estimation of solar cells. The main advantage of the proposed approach is using the chaotic maps to compute and automatically adapt the internal parameters of the optimization algorithm. This situation is beneficial in complex problems, because along the iterative process, the proposed algorithm improves their capabilities to search for the best solution. The modified method is able to optimize complex and multimodal objective functions. For example, the function for the estimation of parameters of solar cells. To illustrate the capabilities of the proposed algorithm in the solar cell design, it is compared with other optimization methods over different datasets. Moreover, the experimental results support the improved performance of the proposed approach

  12. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  13. Efficient classification of complete parameter regions based on semidefinite programming

    Directory of Open Access Journals (Sweden)

    Parrilo Pablo A

    2007-01-01

    Full Text Available Abstract Background Current approaches to parameter estimation are often inappropriate or inconvenient for the modelling of complex biological systems. For systems described by nonlinear equations, the conventional approach is to first numerically integrate the model, and then, in a second a posteriori step, check for consistency with experimental constraints. Hence, only single parameter sets can be considered at a time. Consequently, it is impossible to conclude that the "best" solution was identified or that no good solution exists, because parameter spaces typically cannot be explored in a reasonable amount of time. Results We introduce a novel approach based on semidefinite programming to directly identify consistent steady state concentrations for systems consisting of mass action kinetics, i.e., polynomial equations and inequality constraints. The duality properties of semidefinite programming allow to rigorously certify infeasibility for whole regions of parameter space, thus enabling the simultaneous multi-dimensional analysis of entire parameter sets. Conclusion Our algorithm reduces the computational effort of parameter estimation by several orders of magnitude, as illustrated through conceptual sample problems. Of particular relevance for systems biology, the approach can discriminate between structurally different candidate models by proving inconsistency with the available data.

  14. Identification of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents, Using a PSO and GAs

    Directory of Open Access Journals (Sweden)

    Abdelhafid HASNI

    2010-08-01

    Full Text Available Although natural ventilation plays an important role in the affecting greenhouse climate, as defined by temperature, humidity and CO2 concentration, particularly in Mediterranean countries, little information and data are presently available on full-scale greenhouse ventilation mechanisms. In this paper, we present a new method for selecting the parameters based on a particle swarm optimization (PSO algorithm and a genetic algorithm (GA which optimize the choice of parameters by minimizing a cost function. The simulator was based on a published model with some minor modifications as we were interested in the parameter of ventilation. The function is defined by a reduced model that could be used to simulate and predict the greenhouse environment, as well as the tuning methods to compute their parameters. This study focuses on the dynamic behavior of the inside air temperature and humidity during ventilation. Our approach is validated by comparison with some experimental results. Various experimental techniques were used to make full-scale measurements of the air exchange rate in a 400 m2 plastic greenhouse. The model which we propose based on natural ventilation parameters optimized by a particle swarm optimization was compared with the measurements results. Furthermore, the PSO and the GA are used to identify the natural ventilation parameters in a greenhouse. In all cases, identification goal is successfully achieved using the PSO and compared with that obtained using the GA. For the problem at hand, it is found that the PSO outperforms the GA.

  15. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    Science.gov (United States)

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  16. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    Science.gov (United States)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  17. Adaptive firefly algorithm: parameter analysis and its application.

    Directory of Open Access Journals (Sweden)

    Ngaam J Cheung

    Full Text Available As a nature-inspired search algorithm, firefly algorithm (FA has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa. There are three strategies in AdaFa including (1 a distance-based light absorption coefficient; (2 a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3 five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.

  18. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  19. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  20. Impact of initial surface parameters on the final quality of laser micro-polished surfaces

    Science.gov (United States)

    Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.

    2012-03-01

    Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.

  1. Sensitivity of Footbridge Vibrations to Stochastic Walking Parameters

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2010-01-01

    of the pedestrian. A stochastic modelling approach is adopted for this paper and it facilitates quantifying the probability of exceeding various vibration levels, which is useful in a discussion of serviceability of a footbridge design. However, estimates of statistical distributions of footbridge vibration levels...... to walking loads might be influenced by the models assumed for the parameters of the load model (the walking parameters). The paper explores how sensitive estimates of the statistical distribution of vertical footbridge response are to various stochastic assumptions for the walking parameters. The basis...... for the study is a literature review identifying different suggestions as to how the stochastic nature of these parameters may be modelled, and a parameter study examines how the different models influence estimates of the statistical distribution of footbridge vibrations. By neglecting scatter in some...

  2. Influence of corneal parameters in keratoconus on IOP readings obtained with different tonometers.

    Science.gov (United States)

    Firat, Penpe Gul; Orman, Gozde; Doganay, Selim; Demirel, Soner

    2013-03-01

    Accurate intraocular pressure (IOP) measurement is important but of unsure reliability in patients with keratoconus. Different types and models of tonometers are available. This study investigated the influence of corneal parameters on IOP readings obtained by a Goldmann applanation tonometer, a non-contact tonometer and a dynamic contour tonometer. IOP readings with the Goldmann applanation, non-contact and dynamic contour tonometers were obtained from 52 patients with keratoconus and from 50 normal subjects and their corneal parameters were measured using a Pentacam. The mean IOP measurements in keratoconus obtained with the Goldmann applanation, non-contact and dynamic contour tonometers were statistically significantly different from the mean IOP measurements in the normal subjects (p contact tonometers but not on the dynamic contour tonometer. In the control group, thinnest and central corneal thicknesses had a significant effect on findings with the Goldmann and non-contact tonometers but not on the dynamic contour tonometer. The corneal volume (CV) had no significant effect on the three tonometers in both groups. The corneal parameters affecting the IOP readings of the Goldmann applanation tonometers, non-contact tonometers and the dynamic contour tonometers are not the same. While the Goldmann applanation and non-contact tonometers were significantly affected by the corneal parameters that were measured, the dynamic contour tonometer was not affected by any of these corneal parameters. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  3. Effect of dietary plant extract on meat quality and sensory parameters of meat from Equidae.

    Science.gov (United States)

    Rossi, Raffaella; Ratti, Sabrina; Pastorelli, Grazia; Maghin, Federica; Martemucci, Giovanni; Casamassima, Donato; D'Alessandro, Angela Gabriella; Corino, Carlo

    2017-11-01

    Plant extracts as Lippia spp. have been proven antioxidant properties. Recent studies have been shown that dietary supplementation with plant extracts is able to enhance meat quality parameters. Studies regarding meat quality in Equidae are limited. The effect of dietary plant extract (PE), containing verbascoside, on meat quality, oxidative stability and sensory parameters of Longissimus Lumborum (LL) muscle in Equidae was studied. Dietary treatment did not affect (P > 0.05) pH, colour indices and chemical parameters of muscle in both donkey and horse. Dietary PE improved (P meat and to affect the sensory attributes of Equidae meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Observations of multiple order parameters in 5f electron systems

    International Nuclear Information System (INIS)

    Blackburn, E.

    2005-12-01

    In this thesis, multiple order parameters originating in the same electronic system are studied. The multi-k magnetic structures, where more than one propagation wavevector, k, is observed in the same volume, are considered as prototypical models. The effect of this structure on the elastic and inelastic response is studied. In cubic 3-k uranium rock-salts, unexpected elastic diffraction events were observed at positions in reciprocal space where the structure factor should have been zero. These diffraction peaks are identified with correlations between the (orthogonal) magnetic order parameters. The 3-k structure also affects the observed dynamics; the spin-wave fluctuations in uranium dioxide as observed by inelastic neutron polarization analysis can only be explained on the basis of a 3-k structure. In the antiferromagnetic superconductor UPd 2 Al 3 the magnetic order and the super-conducting state coexist, and are apparently generated by the same heavy fermions. The effect of an external magnetic field on both the normal and superconducting states is examined. In the normal state, the compound displays Fermi-liquid-like behaviour. The inelastic neutron response is strongly renormalized on entering the superconducting state, and high-precision measurements of the low-energy transfer part of this response confirm that the superconducting energy gap has the same symmetry as the antiferromagnetic lattice. (author)

  5. Identification of ecosystem parameters by SDE-modelling

    DEFF Research Database (Denmark)

    Stochastic differential equations (SDEs) for ecosystem modelling have attracted increasing attention during recent years. The modelling has mostly been through simulation experiments in order to analyse how system noise propagates through the ordinary differential equation formulation of ecosystem...... models. Estimation of parameters in SDEs is, however, possible by combining Kalman filter techniques and likelihood estimation. By modelling parameters as random walks it is possible to identify linear as well as non-linear interactions between ecosystem components. By formulating a simple linear SDE...

  6. Correlation among the spectral parameters for qualitative analysis of Alpha Liquid Scintillation Spectra

    International Nuclear Information System (INIS)

    Bhade, Sonali P.D.; Reddy, P.J.; Kolekar, R.V.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    The potential use of alpha LSC technique is nowadays recognized widely. However the energy resolution of α particle is poor with liquid scintillators. Moreover, α peak positions are influenced by the level of quenching in the samples. To overcome this problem, a thorough study of all concerned parameters that affect spectral information was carried out. The parameters such as peak's centroid, quenching, % resolution, energy of α particle were investigated and the correlation between them was evaluated. In the present work, the qualitative analysis of α spectrum was carried out. Correlations between the energy of α particle and various parameters affecting the peaks of the collected spectra with respect to quenching were established. These correlations will be useful for the deconvolution studies of composite samples containing different alpha radionuclides

  7. Comparison of two methods for calculating the P sorption capacity parameter in soils

    Science.gov (United States)

    Phosphorus (P) cycling in soils is an important process affecting P movement through the landscape. The P cycling routines in many computer models are based on the relationships developed for the EPIC model. An important parameter required for this model is the P sorption capacity parameter (PSP). I...

  8. Sensitivity Analysis and Identification of Parameters to the Van Genuchten Equation

    Directory of Open Access Journals (Sweden)

    Guangzhou Chen

    2016-01-01

    Full Text Available Van Genuchten equation is the soil water characteristic curve equation used commonly, and identifying (estimating accurately its parameters plays an important role in the study on the movement of soil water. Selecting the desorption and absorption experimental data of silt loam from a northwest region in China as an instance, Monte-Carlo method was firstly applied to analyze sensitivity of the parameters and uncertainty of model so as to get the key parameters and posteriori parameter distribution to guide subsequent parameter identification. Then, the optimization model of the parameters was set up, and a new type of intelligent algorithm-difference search algorithm was employed to identify them. In order to overcome the fault that the base difference search algorithm needed more iterations and to further enhance the optimization performance, a hybrid algorithm, which coupled the difference search algorithm with simplex method, was employed to identification of the parameters. By comparison with other optimization algorithms, the results show that the difference search algorithm has the following characteristics: good optimization performance, the simple principle, easy implement, short program code, and less control parameters required to run the algorithm. In addition, the proposed hybrid algorithm outperforms the basic difference search algorithm on the comprehensive performance of algorithm.

  9. Neutrino oscillation parameter sampling with MonteCUBES

    Science.gov (United States)

    Blennow, Mattias; Fernandez-Martinez, Enrique

    2010-01-01

    We present MonteCUBES ("Monte Carlo Utility Based Experiment Simulator"), a software package designed to sample the neutrino oscillation parameter space through Markov Chain Monte Carlo algorithms. MonteCUBES makes use of the GLoBES software so that the existing experiment definitions for GLoBES, describing long baseline and reactor experiments, can be used with MonteCUBES. MonteCUBES consists of two main parts: The first is a C library, written as a plug-in for GLoBES, implementing the Markov Chain Monte Carlo algorithm to sample the parameter space. The second part is a user-friendly graphical Matlab interface to easily read, analyze, plot and export the results of the parameter space sampling. Program summaryProgram title: MonteCUBES (Monte Carlo Utility Based Experiment Simulator) Catalogue identifier: AEFJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 69 634 No. of bytes in distributed program, including test data, etc.: 3 980 776 Distribution format: tar.gz Programming language: C Computer: MonteCUBES builds and installs on 32 bit and 64 bit Linux systems where GLoBES is installed Operating system: 32 bit and 64 bit Linux RAM: Typically a few MBs Classification: 11.1 External routines: GLoBES [1,2] and routines/libraries used by GLoBES Subprograms used:Cat Id ADZI_v1_0, Title GLoBES, Reference CPC 177 (2007) 439 Nature of problem: Since neutrino masses do not appear in the standard model of particle physics, many models of neutrino masses also induce other types of new physics, which could affect the outcome of neutrino oscillation experiments. In general, these new physics imply high-dimensional parameter spaces that are difficult to explore using classical methods such as multi-dimensional projections and minimizations, such as those

  10. Assumptions of the primordial spectrum and cosmological parameter estimation

    International Nuclear Information System (INIS)

    Shafieloo, Arman; Souradeep, Tarun

    2011-01-01

    The observables of the perturbed universe, cosmic microwave background (CMB) anisotropy and large structures depend on a set of cosmological parameters, as well as the assumed nature of primordial perturbations. In particular, the shape of the primordial power spectrum (PPS) is, at best, a well-motivated assumption. It is known that the assumed functional form of the PPS in cosmological parameter estimation can affect the best-fit-parameters and their relative confidence limits. In this paper, we demonstrate that a specific assumed form actually drives the best-fit parameters into distinct basins of likelihood in the space of cosmological parameters where the likelihood resists improvement via modifications to the PPS. The regions where considerably better likelihoods are obtained allowing free-form PPS lie outside these basins. In the absence of a preferred model of inflation, this raises a concern that current cosmological parameter estimates are strongly prejudiced by the assumed form of PPS. Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of the primordial spectrum from upcoming cosmological data. It is equally important for theorists to keep an open mind towards early universe scenarios that produce features in the PPS. (paper)

  11. Analysis of factors that affect shoulder balance after correction surgery in scoliosis: a global analysis of all the curvature types.

    Science.gov (United States)

    Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Yang, Jae-Hyuk; Park, Si-Young

    2013-06-01

    To identify factors that can affect postoperative shoulder balance in AIS. 89 adolescent idiopathic scoliosis patients with six types of curvatures who underwent surgery were included in this study. Whole spine antero-posterior and lateral radiographs were obtained pre- and postoperatively. In radiograms, shape and changes in curvatures were analyzed. In addition, four shoulder parameters and coronal balance were analyzed in an effort to identify factors significantly related to postoperative shoulder balance. In general, all the four shoulder parameters (CHD, CA, CRID, RSH) were slightly increased at final follow up (t test, P shoulder parameters were not significantly different between each curvature types (ANOVA, P > 0.05). Moreover, no significant differences of pre- and postoperative shoulder level between different level of proximal fusion groups (ANOVA, P > 0.05) existed. In the analysis of coronal curvature changes, no difference was observed in every individual coronal curvatures between improved shoulder balance and aggravated groups (P > 0.05). However, the middle to distal curve change ratio was significantly lower in patients with aggravated shoulder balance (P shoulder imbalance showed the higher chance of aggravation after surgery with similar postoperative changes (P shoulder balance. In addition, preoperative shoulder level difference can be a determinant of postoperative shoulder balance.

  12. Correlation of dynamic parameter modification and ASET sensitivity in a shunt voltage reference

    International Nuclear Information System (INIS)

    Roche, N.J.H.; Buchner, S.P.; Warner, J.H.; McMorrow, D.; Dusseau, L.; Boch, J.; Saigne, F.; Kruckmeyer, K.; Auriel, G.; Azais, B.

    2012-01-01

    Analog Single Event Transients (ASETs) in two different shunt voltage references used in power management systems are investigated. Little has been published regarding how the dynamic parameter changes induced by external circuit design, such as time constant, damping coefficient or natural frequency affect ASET shapes. Modifications of the dynamic parameters of the circuit are measured by step response measurement. A correlation between dynamic parameters and ASET laser testing results is proposed. This study establishes the correlation between the dynamic parameters of a shunt voltage reference and ASET parameters such as pulse duration, and positive and negative amplitude. (authors)

  13. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal; Alshehri, Abdullah; Almansouri, Abdullah Saud Mohammed; Al-Turki, Abdullah Turki

    2017-01-01

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  14. Critical parameters affecting the design of high frequency transmission lines in standard CMOS technology

    KAUST Repository

    Al Attar, Talal

    2017-05-13

    Different structures of transmission lines were designed and fabricated in standard CMOS technology to estimate some critical parameters including the RMS value of the surface roughness and the loss tangent. The input impedances for frequencies up to 50 GHz were modeled and compared with measurements. The results demonstrated a strong correlation between the used model with the proposed coefficients and the measured results, attesting the robustness of the model and the reliability of the incorporated coefficients values.

  15. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    Ebert, W.L.; Mazer, J.J.

    1993-01-01

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  16. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.

  17. Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes.

    Science.gov (United States)

    Brunner, Matthias; Fricke, Jens; Kroll, Paul; Herwig, Christoph

    2017-02-01

    Understanding process parameter interactions and their effects on mammalian cell cultivations is an essential requirement for robust process scale-up. Furthermore, knowledge of the relationship between the process parameters and the product critical quality attributes (CQAs) is necessary to satisfy quality by design guidelines. So far, mainly the effect of single parameters on CQAs was investigated. Here, we present a comprehensive study to investigate the interactions of scale-up relevant parameters as pH, pO 2 and pCO 2 on CHO cell physiology, process performance and CQAs, which was based on design of experiments and extended product quality analytics. The study used a novel control strategy in which process parameters were decoupled from each other, and thus allowed their individual control at defined set points. Besides having identified the impact of single parameters on process performance and product quality, further significant interaction effects of process parameters on specific cell growth, specific productivity and amino acid metabolism could be derived using this method. Concerning single parameter effects, several monoclonal antibody (mAb) charge variants were affected by process pCO 2 and pH. N-glycosylation analysis showed positive correlations between mAb sialylation and high pH values as well as a relationship between high mannose variants and process pH. This study additionally revealed several interaction effects as process pH and pCO 2 interactions on mAb charge variants and N-glycosylation pattern. Hence, through our process control strategy and multivariate investigation, novel significant process parameter interactions and single effects were identified which have to be taken into account especially for process scale-up.

  18. Identification of Constitutive Parameters Using Inverse Strategy Coupled to an ANN Model

    International Nuclear Information System (INIS)

    Aguir, H.; Chamekh, A.; BelHadjSalah, H.; Hambli, R.

    2007-01-01

    This paper deals with the identification of material parameters using an inverse strategy. In the classical methods, the inverse technique is generally coupled with a finite element code which leads to a long computing time. In this work an inverse strategy coupled with an ANN procedure is proposed. This method has the advantage of being faster than the classical one. To validate this approach an experimental plane tensile and bulge tests are used in order to identify material behavior. The ANN model is trained from finite element simulations of the two tests. In order to reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure to identify material parameters for the AISI304. The identified material parameters are the hardening curve and the anisotropic coefficients

  19. In vitro acute exposure to DEHP affects oocyte meiotic maturation, energy and oxidative stress parameters in a large animal model.

    Directory of Open Access Journals (Sweden)

    Barbara Ambruosi

    Full Text Available Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl phthalate (DEHP is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM, CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL and intracellular reactive oxygen species (ROS levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05. This effect was related to increased CC apoptosis (P<0.001 and reduced ROS levels (P<0.0001. At higher doses (12 and 1200 µM, DEHP induced apoptosis (P<0.0001 and ROS increase (P<0.0001 in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity, intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05, possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into

  20. In vitro acute exposure to DEHP affects oocyte meiotic maturation, energy and oxidative stress parameters in a large animal model.

    Science.gov (United States)

    Ambruosi, Barbara; Uranio, Manuel Filioli; Sardanelli, Anna Maria; Pocar, Paola; Martino, Nicola Antonio; Paternoster, Maria Stefania; Amati, Francesca; Dell'Aquila, Maria Elena

    2011-01-01

    Phthalates are ubiquitous environmental contaminants because of their use in plastics and other common consumer products. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate and it impairs fertility by acting as an endocrine disruptor. The aim of the present study was to analyze the effects of in vitro acute exposure to DEHP on oocyte maturation, energy and oxidative status in the horse, a large animal model. Cumulus cell (CC) apoptosis and oxidative status were also investigated. Cumulus-oocyte complexes from the ovaries of slaughtered mares were cultured in vitro in presence of 0.12, 12 and 1200 µM DEHP. After in vitro maturation (IVM), CCs were removed and evaluated for apoptosis (cytological assessment and TUNEL) and intracellular reactive oxygen species (ROS) levels. Oocytes were evaluated for nuclear chromatin configuration. Matured (Metaphase II stage; MII) oocytes were further evaluated for cytoplasmic energy and oxidative parameters. DEHP significantly inhibited oocyte maturation when added at low doses (0.12 µM; P<0.05). This effect was related to increased CC apoptosis (P<0.001) and reduced ROS levels (P<0.0001). At higher doses (12 and 1200 µM), DEHP induced apoptosis (P<0.0001) and ROS increase (P<0.0001) in CCs without affecting oocyte maturation. In DEHP-exposed MII oocytes, mitochondrial distribution patterns, apparent energy status (MitoTracker fluorescence intensity), intracellular ROS localization and levels, mt/ROS colocalization and total SOD activity did not vary, whereas increased ATP content (P<0.05), possibly of glycolytic origin, was found. Co-treatment with N-Acetyl-Cysteine reversed apoptosis and efficiently scavenged excessive ROS in DEHP-treated CCs without enhancing oocyte maturation. In conclusion, acute in vitro exposure to DEHP inhibits equine oocyte maturation without altering ooplasmic energy and oxidative stress parameters in matured oocytes which retain the potential to be fertilized and develop into embryos

  1. Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method

    International Nuclear Information System (INIS)

    Sun Jun; Zhao Ji; Wu Xiaojun; Fang Wei; Cai Yujie; Xu Wenbo

    2010-01-01

    Inspired by the motion of electrons in metal conductors in an electric field, we propose a variant of Particle Swarm Optimization (PSO), called Drift Particle Swarm Optimization (DPSO) algorithm, and apply it in estimating the unknown parameters of chaotic dynamic systems. The principle and procedure of DPSO are presented, and the algorithm is used to identify Lorenz system and Chen system. The experiment results show that for the given parameter configurations, DPSO can identify the parameters of the systems accurately and effectively, and it may be a promising tool for chaotic system identification as well as other numerical optimization problems in physics.

  2. Determination of parameters for successful spray coating of silicon microneedle arrays.

    Science.gov (United States)

    McGrath, Marie G; Vrdoljak, Anto; O'Mahony, Conor; Oliveira, Jorge C; Moore, Anne C; Crean, Abina M

    2011-08-30

    Coated microneedle patches have demonstrated potential for effective, minimally invasive, drug and vaccine delivery. To facilitate cost-effective, industrial-scale production of coated microneedle patches, a continuous coating method which utilises conventional pharmaceutical processes is an attractive prospect. Here, the potential of spray-coating silicon microneedle patches using a conventional film-coating process was evaluated and the key process parameters which impact on coating coalescence and weight were identified by employing a fractional factorial design to coat flat silicon patches. Processing parameters analysed included concentration of coating material, liquid input rate, duration of spraying, atomisation air pressure, gun-to-surface distance and air cap setting. Two film-coating materials were investigated; hydroxypropylmethylcellulose (HPMC) and carboxymethylcellulose (CMC). HPMC readily formed a film-coat on silicon when suitable spray coating parameter settings were determined. CMC films required the inclusion of a surfactant (1%, w/w Tween 80) to facilitate coalescence of the sprayed droplets on the silicon surface. Spray coating parameters identified by experimental design, successfully coated 280μm silicon microneedle arrays, producing an intact film-coat, which follows the contours of the microneedle array without occlusion of the microneedle shape. This study demonstrates a novel method of coating microneedle arrays with biocompatible polymers using a conventional film-coating process. It is the first study to indicate the thickness and roughness of coatings applied to microneedle arrays. The study also highlights the importance of identifying suitable processing parameters when film coating substrates of micron dimensions. The ability of a fractional factorial design to identify these critical parameters is also demonstrated. The polymer coatings applied in this study can potentially be drug loaded for intradermal drug and vaccine delivery

  3. Identifying and Ranking the Determinants of Tourism Performance

    DEFF Research Database (Denmark)

    Assaf, A.George; Josiassen, Alexander

    2012-01-01

    , their tourism industries, and tourism businesses seek to improve the performance of the tourism industry and its constituents by vigorously promoting themselves to international tourists, cutting costs, and identifying synergies in their tourism endeavors. In seeking to improve the tourism industry......, the determinants that affect tourism performance are of key interest to the stakeholders. A key obstacle toward improving performance is the multitude of determinants that can affect tourism performance. The literature has yet to provide concrete insights into the determinants of tourism performance...... and their relative importance. The present study addresses this important gap. We identify and rank the determinants of tourism performance. We also provide performance measures of international tourism destinations. The results are derived using the Data Envelopment Analysis (DEA) and bootstrap truncated regression...

  4. Identifying mechanisms that structure ecological communities by snapping model parameters to empirically observed tradeoffs.

    Science.gov (United States)

    Thomas Clark, Adam; Lehman, Clarence; Tilman, David

    2018-04-01

    Theory predicts that interspecific tradeoffs are primary determinants of coexistence and community composition. Using information from empirically observed tradeoffs to augment the parametrisation of mechanism-based models should therefore improve model predictions, provided that tradeoffs and mechanisms are chosen correctly. We developed and tested such a model for 35 grassland plant species using monoculture measurements of three species characteristics related to nitrogen uptake and retention, which previous experiments indicate as important at our site. Matching classical theoretical expectations, these characteristics defined a distinct tradeoff surface, and models parameterised with these characteristics closely matched observations from experimental multi-species mixtures. Importantly, predictions improved significantly when we incorporated information from tradeoffs by 'snapping' characteristics to the nearest location on the tradeoff surface, suggesting that the tradeoffs and mechanisms we identify are important determinants of local community structure. This 'snapping' method could therefore constitute a broadly applicable test for identifying influential tradeoffs and mechanisms. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  5. Factors affecting nuclear development

    International Nuclear Information System (INIS)

    Stevens, G.H.; Girouard, P.

    1995-01-01

    Among the factors affecting nuclear development, some depend more or less on public authorities, but many are out of public authorities control (foreign policies, market and deregulation, socials and environmental impacts, public opinion). As far as possible, the following study tries to identify those factors. (D.L.). 2 photos

  6. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics

    Science.gov (United States)

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2012-01-01

    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  7. Estimating cellular parameters through optimization procedures: elementary principles and applications

    Directory of Open Access Journals (Sweden)

    Akatsuki eKimura

    2015-03-01

    Full Text Available Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE in a prediction or to maximize likelihood. A (local maximum of likelihood or (local minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.

  8. Effectiveness of random search in SVM hyper-parameter tuning

    NARCIS (Netherlands)

    Gomes Mantovani, R.; Rossi, A.L.D.; Vanschoren, J.; Bischl, B.; de Carvalho, A.C.P.L.F.

    2015-01-01

    Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of

  9. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    International Nuclear Information System (INIS)

    Cui, J.; Shek, G.K.; Wang, Z.R.

    2007-01-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  10. Does Leisure Time as a Stress Coping Resource Increase Affective Complexity? Applying the Dynamic Model of Affect (DMA)

    Science.gov (United States)

    Qian, Xinyi (Lisa); Yarnal, Careen M.; Almeida, David M.

    2013-01-01

    Affective complexity, a manifestation of psychological well-being, refers to the relative independence between positive and negative affect (PA, NA). According to the Dynamic Model of Affect (DMA), stressful situations lead to highly inverse PA-NA relationship, reducing affective complexity. Meanwhile, positive events can sustain affective complexity by restoring PA-NA independence. Leisure, a type of positive events, has been identified as a coping resource. This study used the DMA to assess whether leisure time helps restore affective complexity on stressful days. We found that on days with more leisure time than usual, an individual experienced less negative PA-NA relationship after daily stressful events. The finding demonstrates the value of leisure time as a coping resource and the DMA’s contribution to coping research. PMID:24659826

  11. Environmental Parameters Affecting the Algal Diversity in a Sewage Water Treatment Plant

    International Nuclear Information System (INIS)

    Hammad, D.M.; Tawfik, T.A.; Ismail, G.A.; Abou El-Khair, W.S.; Abou El-Nour, F.

    2008-01-01

    The present investigation was carried out at a tertiary sewage water treatment plant located at El-Kattameya city, Cairo, Egypt, for a duration period of 12 months during 2004. The present work aimed to study the algal diversity (phyto benthos and phytoplankton) of the different tanks (collector, oxidation, settling and effluent) included in the tertiary sewage treatment system with respect to changes in physico-chemical characteristics of sewage water during the different seasons to be used for golf course irrigation. The treatment system is of the physico-biological type. Representing data of the physico-chemical parameters are air and water temperatures, ph, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended salts (TSS), total alkalinity, nutrients (nitrate, ammonia, phosphate, ortho-phosphorus, phosphorus and silicate), as well as major ions (calcium, potassium, sodium, magnesium, sulfate and chloride). In addition, the treatment efficiency of the system was evaluated and the suitability of using the effluent in irrigation purposes was discussed

  12. Parameter extraction from I-V characteristics of PV devices

    Energy Technology Data Exchange (ETDEWEB)

    Macabebe, Erees Queen B. [Department of Electronics, Computer and Communications Engineering, Ateneo de Manila University, Loyola Heights, Quezon City 1108 (Philippines); Department of Physics and Centre for Energy Research, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Sheppard, Charles J. [Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006 (South Africa); Dyk, E. Ernest van [Department of Physics and Centre for Energy Research, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2011-01-15

    Device parameters such as series and shunt resistances, saturation current and diode ideality factor influence the behaviour of the current-voltage (I-V) characteristics of solar cells and photovoltaic modules. It is necessary to determine these parameters since performance parameters are derived from the I-V curve and information provided by the device parameters are useful in analyzing performance losses. This contribution presents device parameters of CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells, as well as, CuInSe{sub 2}, mono- and multicrystalline silicon modules determined using a parameter extraction routine that employs Particle Swarm Optimization. The device parameters of the CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells show that the contribution of recombination mechanisms exhibited by high saturation current when coupled with the effects of parasitic resistances result in lower maximum power and conversion efficiency. Device parameters of photovoltaic modules extracted from I-V characteristics obtained at higher temperature show increased saturation current. The extracted values also reflect the adverse effect of temperature on parasitic resistances. The parameters extracted from I-V curves offer an understanding of the different mechanisms involved in the operation of the devices. The parameter extraction routine utilized in this study is a useful tool in determining the device parameters which reveal the mechanisms affecting device performance. (author)

  13. An approach of parameter estimation for non-synchronous systems

    International Nuclear Information System (INIS)

    Xu Daolin; Lu Fangfang

    2005-01-01

    Synchronization-based parameter estimation is simple and effective but only available to synchronous systems. To come over this limitation, we propose a technique that the parameters of an unknown physical process (possibly a non-synchronous system) can be identified from a time series via a minimization procedure based on a synchronization control. The feasibility of this approach is illustrated in several chaotic systems

  14. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  15. Equipment for the measurement of non-electrical parameters

    International Nuclear Information System (INIS)

    Lewin, M.I.; Ewtuchow, A.N.

    1977-01-01

    The invention concerns equipment for the measurement of non-electrical parameters, which can be used in data processing and control equipment. The transducer converts non-electrical parameters into electrical signals. The process according to the invention is explained using the example of an inductive transducer, which is fed with alternating current. The measured parameter affects the mutual inductance of the transducer, so that the secondary voltage supplied by it is a function of the measured parameter. Amplitude measurement of this voltage by means of rectification and filtering has the disadvantage of long time constants, where the measuring period would amount to 6 to 10 cycles of the supply voltage. According to the invention the secondary voltage of the transducer is connected to an integrator during a half-cycle between two zeros, which charges a capacitor to a voltage proportional to the amplitude. An analogue-digital converter now produces a digital signal corresponding to the capacitor voltage, which is taken to the control equipment. This conversion occurs during a fraction of the second half-cycle, so that there is still time before the end of this half-cycle, so that there is still time before the end of this half-cycle to discharge the capacitor and to reproduce the initial conditions. In the next cycle the whole process is repeated, so that the measuring process only takes one cycle. In order to make the digital signal independent of the amplitude of the current fed in, this also flows through an identical transducer with constant mutual inductance, and affects the analogue-digital converter via a comparative circuit. (ORU) [de

  16. Assigning dates and identifying areas affected by fires in Portugal based on MODIS data

    Directory of Open Access Journals (Sweden)

    JESSICA PANISSET

    Full Text Available ABSTRACT An automated procedure is here presented that allows identifying and dating burned areas in Portugal using values of daily reflectance from near-infrared and middle-infrared bands, as obtained from the MODIS instrument. The algorithm detects persistent changes in monthly composites of the so-called (V,W Burn-Sensitive Index and the day of maximum change in daily time series of W is in turn identified as the day of the burning event. The procedure is tested for 2005, the second worst fire season ever recorded in Portugal. Comparison between the obtained burned area map and the reference derived from Landsat imagery resulted in a Proportion Correct of 95.6%. Despite being applied only to the months of August and September, the algorithm is able to identify almost two-thirds of all scars that have occurred during the entire year of 2005. An assessment of the temporal accuracy of the dating procedure was also conducted, showing that 75% of estimated dates presented deviations between -5 and 5 days from dates of hotspots derived from the MODIS instrument. Information about location and date of burning events as provided by the proposed procedure may be viewed as complementary to the currently available official maps based on end-of-season Landsat imagery.

  17. Investigation on the Ultrasonic Nozzle Parameters Affecting Physical Properties of Tomato Powder

    Directory of Open Access Journals (Sweden)

    M. R Arjomandi

    2017-10-01

    Full Text Available Introduction Preserving food products has been much regarded due to the population growth and food scarcity. Drying food is one of the methods of preventing the waste of food products. Spray drying for which products that are initially in the liquid phase is the most suitable method of drying the moisture. In this method, the solution is turned into particles and droplets via mechanism and synchronous collision with the hot air that enters the drying case. Moisture content is one important aspect of the food powder which is associated with an increase of adhesion. The particles size is an important feature of the product due to its effect on the product appearance, solubility, and powder fluidity. Materials and Methods In this study for producing tomato powder, 10 kg of tomato available in the market which was not good and did not have a good appearance but suitable for juicing was supplied. A meat grinder was used for juicing. Tomato juice was filtered to become pure. Tomato juice was put in the 1.5 lit bottles and was kept in the refrigerator for experiments. To spray the tomato juice, an ultrasonic nozzle with 20 kHz frequency was used. Energy sources (TOPSONICS 400W, 20 kHz was used to provide the atomizer power with adjustable power from 0 to 400 W. In this study a hot-plate spray dryer was used to change the tomato juice into powder. An oven was used to measure the tomato powder moisture content. 0.5 g of tomato powder was weighed and was put in the oven with 70°C for 24 hours to be dried to lose moisture. To measure the size of the particles the analysis of two-dimensional images was used. The photos were taken with optical microscope OLYMPUS CX21‏equipped with a digital camera- SONY DSC-HX1. To illustrate the photos, the Digimizer software was applied. SAS software was used for further statistical analysis. Results and Discussion Analysis of variance results indicated that the effect of the studied parameters was significant on the

  18. Parametric sensitivity analysis for techno-economic parameters in Indian power sector

    International Nuclear Information System (INIS)

    Mallah, Subhash; Bansal, N.K.

    2011-01-01

    Sensitivity analysis is a technique that evaluates the model response to changes in input assumptions. Due to uncertain prices of primary fuels in the world market, Government regulations for sustainability and various other technical parameters there is a need to analyze the techno-economic parameters which play an important role in policy formulations. This paper examines the variations in technical as well as economic parameters that can mostly affect the energy policy of India. MARKAL energy simulation model has been used to analyze the uncertainty in all techno-economic parameters. Various ranges of input parameters are adopted from previous studies. The results show that at lower discount rate coal is the least preferred technology and correspondingly carbon emission reduction. With increased gas and nuclear fuel prices they disappear from the allocations of energy mix.

  19. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

    Science.gov (United States)

    Yu, Fengyi; Wei, Yanhong

    2018-05-01

    The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

  20. Modelling of intermittent microwave convective drying: parameter sensitivity

    Directory of Open Access Journals (Sweden)

    Zhang Zhijun

    2017-06-01

    Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  1. Vector neural net identifying many strongly distorted and correlated patterns

    Science.gov (United States)

    Kryzhanovsky, Boris V.; Mikaelian, Andrei L.; Fonarev, Anatoly B.

    2005-01-01

    We suggest an effective and simple algorithm providing a polynomial storage capacity of a network of the form M ~ N2s+1, where N is the dimension of the stored binary patterns. In this problem the value of the free parameter s is restricted by the inequalities N >> slnN >= 1. The algorithm allows us to identify a large number of highly distorted similar patterns. The negative influence of correlations of the patterns is suppressed by choosing a sufficiently large value of the parameter s. We show the efficiency of the algorithm by the example of a perceptron identifier, but it also can be used to increase the storage capacity of full connected systems of associative memory.

  2. Online learning dynamics of multilayer perceptrons with unidentifiable parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyeyoung [Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Inoue, Masato [Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); ' Intelligent Cooperation and Control' , PRESTO, JST, c/o RIKEN BSI, Saitama 351-0198 (Japan); Okada, Masato [Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2003-11-28

    In the over-realizable learning scenario of multilayer perceptrons, in which the student network has a larger number of hidden units than the true or optimal network, some of the weight parameters are unidentifiable. In this case, the teacher network consists of a union of optimal subspaces included in the parameter space. The optimal subspaces, which lead to singularities, are known to affect the estimation performance of neural networks. Using statistical mechanics, we investigate the online learning dynamics of two-layer neural networks in the over-realizable scenario with unidentifiable parameters. We show that the convergence speed strongly depends on the initial parameter conditions. We also show that there is a quasi-plateau around the optimal subspace, which differs from the well-known plateaus caused by permutation symmetry. In addition, we discuss the property of the final learning state, relating this to the singular structures.

  3. Online learning dynamics of multilayer perceptrons with unidentifiable parameters

    International Nuclear Information System (INIS)

    Park, Hyeyoung; Inoue, Masato; Okada, Masato

    2003-01-01

    In the over-realizable learning scenario of multilayer perceptrons, in which the student network has a larger number of hidden units than the true or optimal network, some of the weight parameters are unidentifiable. In this case, the teacher network consists of a union of optimal subspaces included in the parameter space. The optimal subspaces, which lead to singularities, are known to affect the estimation performance of neural networks. Using statistical mechanics, we investigate the online learning dynamics of two-layer neural networks in the over-realizable scenario with unidentifiable parameters. We show that the convergence speed strongly depends on the initial parameter conditions. We also show that there is a quasi-plateau around the optimal subspace, which differs from the well-known plateaus caused by permutation symmetry. In addition, we discuss the property of the final learning state, relating this to the singular structures

  4. Parameter identification in multinomial processing tree models

    NARCIS (Netherlands)

    Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.

    2010-01-01

    Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis

  5. Effects of measurement noise on modal parameter identification

    International Nuclear Information System (INIS)

    Dorvash, S; Pakzad, S N

    2012-01-01

    In the past decade, much research has been conducted on data-driven structural health monitoring (SHM) algorithms with use of sensor measurements. A fundamental step in this SHM application is to identify the dynamic characteristics of structures. Despite the significant efforts devoted to development and enhancement of the modal parameter identification algorithms, there are still substantial uncertainties in the results obtained in real-life deployments. One of the sources of uncertainties in the results is the existence of noise in the measurement data. Depending on the subsequent application of the system identification, the level of uncertainty in the results and, consequently, the level of noise contamination can be very important. As an effort towards understanding the effect of measurement noise on the modal identification, this paper presents parameters that quantify the effects of measurement noise on the modal identification process and determine their influence on the accuracy of results. The performance of these parameters is validated by a numerically simulated example. They are then used to investigate the accuracy of identified modal properties of the Golden Gate Bridge using ambient data collected by wireless sensors. The vibration monitoring tests of the Golden Gate Bridge provided two synchronized data sets collected by two different sensor types. The influence of the sensor noise level on the accuracy of results is investigated throughout this work and it is shown that high quality sensors provide more accurate results as the physical contribution of response in their measured data is significantly higher. Additionally, higher purity and consistency of modal parameters, identified by higher quality sensors, is observed in the results. (paper)

  6. Comparison of different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters: an animal model.

    Science.gov (United States)

    Panda, Shasanka Shekhar; Bajpai, Minu; Mallick, Saumyaranjan; Sharma, Mehar C

    2014-01-01

    The objective of the following study is to determine and to compare the different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters of rats. Unilateral upper ureteric obstruction was created in 60 adult Wistar rats that were reversed after predetermined intervals. Rats were sacrificed and ipsilateral kidneys were subjected for analysis of morphological parameters such as renal height, cranio-caudal diameter, antero-posterior diameter, lateral diameter, volume of the pelvis and average cortical thickness: Renal height. Renal height and cranio-caudal diameter of renal pelvis after ipsilateral upper ureteric obstruction started rising as early as 7 days of creating obstruction and were affected earlier than antero-posterior and lateral diameter and also were reversed earlier than other parameters after reversal of obstruction. Renal cortical thickness and volume of the pelvis were affected after prolonged obstruction (> 3 weeks) and were the late parameters to be reversed after reversal of obstruction. Cranio-caudal diameter and renal height were the early morphological parameters to be affected and reversed after reversal of obstruction in experimentally created ipsilateral upper ureteric obstruction.

  7. Effect of Thermo-extrusion Process Parameters on Selected Quality ...

    African Journals Online (AJOL)

    Effect of Thermo-extrusion Process Parameters on Selected Quality Attributes of Meat Analogue from Mucuna Bean Seed Flour. ... Nigerian Food Journal ... The product functional responses with coefficients of determination (R2) ranging between 0.658 and 0.894 were most affected by changes in barrel temperature and ...

  8. Parameters Affecting the Extraction Process of Jatropha Curcas Oil Using a Single Screw Extruder

    OpenAIRE

    Siregar, Ali Nurrakhmad; Ghani, Jaharah A; Che Haron, Che Hassan; Rizal, Muhammad

    2015-01-01

    The most commonly used technique to separate oil and cake from J. curcas seeds is mechanical extraction. It uses simple tools such as a piston and a screw extruder to produce high pressure, driven by hand or by engine. A single screw extruder has one screw rotating inside the barrel and materials simultaneously flow from the feed to the die zone. The highest oil yield can be obtained by a well-designed oil press as well as finding the optimum conditions for all parameters involved during the ...

  9. Predictive Blood Chemistry Parameters for Pansteatitis-Affected Mozambique Tilapia (Oreochromis mossambicus)

    Science.gov (United States)

    Chapman, Robert W.; Somerville, Stephen E.; Guillette, Matthew P.; Botha, Hannes; Hoffman, Andre; Luus-Powell, Wilmien J.; Smit, Willem J.; Lebepe, Jeffrey; Myburgh, Jan; Govender, Danny; Tucker, Jonathan; Boggs, Ashley S. P.

    2016-01-01

    One of the largest river systems in South Africa, the Olifants River, has experienced significant changes in water quality due to anthropogenic activities. Since 2005, there have been various “outbreaks” of the inflammatory disease pansteatitis in several vertebrate species. Large-scale pansteatitis-related mortality events have decimated the crocodile population at Lake Loskop and decreased the population at Kruger National Park. Most pansteatitis-related diagnoses within the region are conducted post-mortem by either gross pathology or histology. The application of a non-lethal approach to assess the prevalence and pervasiveness of pansteatitis in the Olifants River region would be of great importance for the development of a management plan for this disease. In this study, several plasma-based biomarkers accurately classified pansteatitis in Mozambique tilapia (Oreochromis mossambicus) collected from Lake Loskop using a commercially available benchtop blood chemistry analyzer combined with data interpretation via artificial neural network analysis. According to the model, four blood chemistry parameters (calcium, sodium, total protein and albumin), in combination with total length, diagnose pansteatitis to a predictive accuracy of 92 percent. In addition, several morphometric traits (total length, age, weight) were also associated with pansteatitis. On-going research will focus on further evaluating the use of blood chemistry to classify pansteatitis across different species, trophic levels, and within different sites along the Olifants River. PMID:27115488

  10. Predictive Blood Chemistry Parameters for Pansteatitis-Affected Mozambique Tilapia (Oreochromis mossambicus.

    Directory of Open Access Journals (Sweden)

    John A Bowden

    Full Text Available One of the largest river systems in South Africa, the Olifants River, has experienced significant changes in water quality due to anthropogenic activities. Since 2005, there have been various "outbreaks" of the inflammatory disease pansteatitis in several vertebrate species. Large-scale pansteatitis-related mortality events have decimated the crocodile population at Lake Loskop and decreased the population at Kruger National Park. Most pansteatitis-related diagnoses within the region are conducted post-mortem by either gross pathology or histology. The application of a non-lethal approach to assess the prevalence and pervasiveness of pansteatitis in the Olifants River region would be of great importance for the development of a management plan for this disease. In this study, several plasma-based biomarkers accurately classified pansteatitis in Mozambique tilapia (Oreochromis mossambicus collected from Lake Loskop using a commercially available benchtop blood chemistry analyzer combined with data interpretation via artificial neural network analysis. According to the model, four blood chemistry parameters (calcium, sodium, total protein and albumin, in combination with total length, diagnose pansteatitis to a predictive accuracy of 92 percent. In addition, several morphometric traits (total length, age, weight were also associated with pansteatitis. On-going research will focus on further evaluating the use of blood chemistry to classify pansteatitis across different species, trophic levels, and within different sites along the Olifants River.

  11. Freedom poverty: a new tool to identify the multiple disadvantages affecting those with CVD.

    Science.gov (United States)

    Callander, Emily J; Schofield, Deborah J; Shrestha, Rupendra N

    2013-06-20

    It is recognised that CVD affects an individual's financial situation, placing them in income poverty. However, recent developments in poverty measurement practice recognises other forms of disadvantage other than low income, such as poor health and insufficient education also affect living standards. Using the Freedom Poverty Measure, the multiple forms of disadvantage experienced by those with no health condition, heart disease, other diseases of the circulatory system, and all other health conditions was assessed using data on the adult Australian population contained in the 2003 Survey of Disability, Ageing and Carers. 24% of those with heart disease and 23% of those with other diseases of the circulatory system were in freedom poverty, suffering from multiple forms of disadvantage. Those with heart disease and those with other diseases of the circulatory system were around three times more likely to be in freedom poverty (OR 3.02, 95% CI: 2.29-3.99, p<.0001; OR 2.78, 95% CI: 1.94-3.98, p<.0001) than those with no health condition. Recognising the multiple forms of disadvantage suffered by those with CVD provides a clearer picture of their living standards than just looking at their income alone and the high proportion of individuals with CVD that are suffering from multiple forms of disadvantage should make them a target for policy makers wishing to improve living standards. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Colloid facilitated transport in fractured rocks: parameter estimation and comparison with experimental data

    International Nuclear Information System (INIS)

    Viswanthan, H.S.; Wolfsberg, A.V.; Reimus, P.W.; Ware, D.; Lu, G.

    2003-01-01

    Colloid-facilitated migration of plutonium in fractured rock has been implicated in both field and laboratory studies. Other reactive radionuclides may also experience enhanced mobility due to groundwater colloids. Model prediction of this process is necessary for assessment of contaminant boundaries in systems for which radionuclides are already in the groundwater and for performance assessment of potential repositories for radioactive waste. Therefore, a reactive transport model is developed and parameterized using results from controlled laboratory fracture column experiments. Silica, montmorillonite and clinoptilolite colloids are used in the experiments along with plutonium and Tritium. The goal of the numerical model is to identify and parameterize the physical and chemical processes that affect the colloid-facilitated transport of plutonium in the fractures. The parameters used in this model are similar in form to those that might be used in a field-scale transport model

  13. Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty

    Science.gov (United States)

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.

    2014-01-01

    Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.

  14. Approaches that Affect Consumer-Based Brand Equity

    Directory of Open Access Journals (Sweden)

    Denise Santos de Oliveira

    2017-08-01

    Full Text Available Current studies on factors affecting the dimensions of consumer-based brand equity have been dispersed, applicable to specific contexts and not systematized in the literature. So, the purpose of this paper is to identify and categorize factors that create, increase or decrease each of the consumer-based brand equity dimensions: brand associations, brand awareness, perceived quality and brand loyalty. The extensive analysis of literature shows that there are significant differences between factors affecting each of the brand equity dimensions. Factors that positively affect one dimension cannot have the same effect on another. Moreover, it notes that the effect of such factors is variations when analyzed in different sectors and economic contexts. The main contribution of this research lies in the fact that it provides a research panorama already conducted on factors affecting the dimensions of consumer-based brand equity, indicating a potential for development of future studies. This research also enriches the literature categorizing the factors identified in the literature in four sets that allow the future targeting studies.

  15. Realistic Affective Forecasting: The Role of Personality

    Science.gov (United States)

    Hoerger, Michael; Chapman, Ben; Duberstein, Paul

    2016-01-01

    Affective forecasting often drives decision making. Although affective forecasting research has often focused on identifying sources of error at the event level, the present investigation draws upon the ‘realistic paradigm’ in seeking to identify factors that similarly influence predicted and actual emotions, explaining their concordance across individuals. We hypothesized that the personality traits neuroticism and extraversion would account for variation in both predicted and actual emotional reactions to a wide array of stimuli and events (football games, an election, Valentine’s Day, birthdays, happy/sad film clips, and an intrusive interview). As hypothesized, individuals who were more introverted and neurotic anticipated, correctly, that they would experience relatively more unpleasant emotional reactions, and those who were more extraverted and less neurotic anticipated, correctly, that they would experience relatively more pleasant emotional reactions. Personality explained 30% of the concordance between predicted and actual emotional reactions. Findings suggest three purported personality processes implicated in affective forecasting, highlight the importance of individual-differences research in this domain, and call for more research on realistic affective forecasts. PMID:26212463

  16. American National Standard: guidelines for evaluating site-related geotechnical parameters at nuclear power sites

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This standard presents guidelines for evaluating site-related geotechnical parameters for nuclear power sites. Aspects considered include geology, ground water, foundation engineering, and earthwork engineering. These guidelines identify the basic geotechnical parameters to be considered in site evaluation, and in the design, construction, and performance of foundations and earthwork aspects for nuclear power plants. Also included are tabulations of typical field and laboratory investigative methods useful in identifying geotechnical parameters. Those areas where interrelationships with other standards may exist are indicated

  17. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    International Nuclear Information System (INIS)

    Tonk, Elisa C.M.; Verhoef, Aart; Gremmer, Eric R.; Loveren, Henk van; Piersma, Aldert H.

    2012-01-01

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 at doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the

  18. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    Energy Technology Data Exchange (ETDEWEB)

    Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Verhoef, Aart; Gremmer, Eric R. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Loveren, Henk van [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Piersma, Aldert H. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Veterinary Faculty, Utrecht University, Utrecht (Netherlands)

    2012-04-01

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 at doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the

  19. The influence of source term release parameters on health effects

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Ha, Jae Joo

    1998-08-01

    In this study, the influence of source term release parameters on the health effects was examined. This is very useful in identifying the relative importance of release parameters and can be an important factor in developing a strategy for reducing offsite risks. The release parameters investigated in this study are release height, heat content, fuel burnup, release time, release duration, and warning time. The health effects affected by the change of release parameters are early fatalities, cancer fatalities, early injuries, cancer injuries, early fatality risk, population weighted early fatality risk, population weighted cancer fatality risk, effective whole body population dose, population exceeding an early acute red bone marrow dose of 1.5 Sv, and distance at which early fatalities are expected to occur. As release height increases, the values of early health effects such as early fatalities and injuries decrease. However, the release height dose not have significant influences on late health effects. The values of both early and late health effects decrease as heat content increases. The increase fuel burnup, i.e., the increase of core inventories increases the late health effects, however, has small influence on the early health effects. But, the number of early injuries increases as the fuel burnup increases. The effects of release time increase shows very similar influence on both the early and late health effects. As the release time increases to 2 hours, the values of health effects increase and then decrease rapidly. As release duration increases, the values of late health effects increase slightly, however, the values of early health effects decrease. As warning time increases to 2 hours, the values of late health effects decrease and then shows no variation. The number of early injuries decreases rapidly as the warning time increases to 2 hours. However, the number of early fatalities and the early fatality risk increase as the warning time increases

  20. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    Science.gov (United States)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  1. Radon decay product in-door behaviour - parameter, measurement method, and model review

    International Nuclear Information System (INIS)

    Scofield, P.

    1988-01-01

    This report reviews parameters used to characterize indoor radon daughter behavior and concentrations. Certain parameters that affect indoor radon daughter concentrations are described and the values obtained experimentally or theoretically are summarized. Radon daughter measurement methods are reviewed, such as, PAEC, unattached daughters, particle size distributions, and plateout measurement methods. In addition, certain radon pressure driven/diffusion models and indoor radon daughter models are briefly described. (orig.)

  2. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  3. Consensus conference on core radiological parameters to describe lumbar stenosis - an initiative for structured reporting

    Energy Technology Data Exchange (ETDEWEB)

    Andreisek, Gustav; Winklhofer, Sebastian F.X. [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Deyo, Richard A. [Oregon Health and Science University, Portland, OR (United States); Jarvik, Jeffrey G. [University of Washington, Seattle, WA (United States); Porchet, Francois [Schulthess Klinik, Zuerich (Switzerland); Steurer, Johann [University Hospital Zurich, Horten Center for patient oriented research and knowledge transfer, Zurich (Switzerland); Collaboration: On behalf of the LSOS working group

    2014-12-15

    To define radiological criteria and parameters as a minimum standard in a structured radiological report for patients with lumbar spinal stenosis (LSS) and to identify criteria and parameters for research purposes. All available radiological criteria and parameters for LSS were identified using systematic literature reviews and a Delphi survey. We invited to the consensus meeting, and provided data, to 15 internationally renowned experts from different countries. During the meeting, these experts reached consensus in a structured and systematic discussion about a core list of radiological criteria and parameters for standard reporting. We identified a total of 27 radiological criteria and parameters for LSS. During the meeting, the experts identified five of these as core items for a structured report. For central stenosis, these were ''compromise of the central zone'' and ''relation between fluid and cauda equina''. For lateral stenosis, the group agreed that ''nerve root compression in the lateral recess'' was a core item. For foraminal stenosis, we included ''nerve root impingement'' and ''compromise of the foraminal zone''. As a minimum standard, five radiological criteria should be used in a structured radiological report in LSS. Other parameters are well suited for research. (orig.)

  4. IDENTIFYING DEMENTIA IN ELDERLY POPULATION : A CAMP APPROACH

    OpenAIRE

    Anand P; Chaukimath; Srikanth; Koli

    2015-01-01

    BACKGROUND: Dementia is an emerging medico social problem affecting elderly, and poses a challenge to clinician and caregivers. It is usually identified in late stage where management becomes difficult. AIM: The aim of camp was to identify dementia in elderly population participating in screening camp. MATERIAL AND METHODS : The geriatric clinic and department of psychiatry jointly organised screening camp to detect dementia in elderly for five days in Sept...

  5. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses.

    Science.gov (United States)

    Korem, Tal; Zeevi, David; Zmora, Niv; Weissbrod, Omer; Bar, Noam; Lotan-Pompan, Maya; Avnit-Sagi, Tali; Kosower, Noa; Malka, Gal; Rein, Michal; Suez, Jotham; Goldberg, Ben Z; Weinberger, Adina; Levy, Avraham A; Elinav, Eran; Segal, Eran

    2017-06-06

    Bread is consumed daily by billions of people, yet evidence regarding its clinical effects is contradicting. Here, we performed a randomized crossover trial of two 1-week-long dietary interventions comprising consumption of either traditionally made sourdough-leavened whole-grain bread or industrially made white bread. We found no significant differential effects of bread type on multiple clinical parameters. The gut microbiota composition remained person specific throughout this trial and was generally resilient to the intervention. We demonstrate statistically significant interpersonal variability in the glycemic response to different bread types, suggesting that the lack of phenotypic difference between the bread types stems from a person-specific effect. We further show that the type of bread that induces the lower glycemic response in each person can be predicted based solely on microbiome data prior to the intervention. Together, we present marked personalization in both bread metabolism and the gut microbiome, suggesting that understanding dietary effects requires integration of person-specific factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Thoracic radiography and oxidative stress indices in heartworm affected dogs

    Directory of Open Access Journals (Sweden)

    P. K. Rath

    2014-09-01

    Full Text Available Aim: The aim was to study the pathomorphological changes through thoracic radiography and status of oxidative stress parameters in heartworm affected dogs in Odisha. Materials and Methods: A total of 16 dogs with clinically established diagnosis of dirofilariasis by wet blood smear and modified Knott’s test and equal numbers of dogs as control were included in this study. The present study was conducted in heartworm affected dogs to see the pathomorphological changes through thoracic radiography. Similarly, the evaluation was undertaken for observing any alterations in oxidative stress status in affected as well as non-affected, but healthy control dogs by adopting standard procedure. Results: Thoracic radiography revealed cardiac enlargement, round heart appearance suggestive of right ventricular hypertrophy, tortuous pulmonary artery and darkening of lungs. Alterations in oxidative stress indices showed a significant rise of lipid peroxidase activity, non-significant rise of superoxide dismutase and a significant although reverse trend for catalase levels in affected dogs in comparison to Dirofilaria negative control but apparently healthy dogs. Conclusions: Radiographic changes, as well as alterations in oxidative stress parameters, may not be diagnostic for heartworm infection, but useful for detecting heartworm disease, assessing severity and evaluating cardiopulmonary parenchyma changes and gives a fair idea about the degree of severity of the disease. It aids as contributing factors in disease pathogenesis.

  7. Human comfort and self-estimated performance in relation to indoor environmental parameters and building features

    DEFF Research Database (Denmark)

    Frontczak, Monika Joanna

    The main objective of the Ph.D. study was to examine occupants’ perception of comfort and self-estimated job performance in non-industrial buildings (homes and offices), in particular how building occupants understand comfort and which parameters, not necessarily related to indoor environments...... and storage, noise level and visual privacy. However, if job performance is considered, then satisfaction with the main indoor environmental parameters should be addressed first as they affected self-estimated job performance to the highest extent. The present study showed that overall satisfaction...... with personal workspace affected significantly the self-estimated job performance. Increasing overall satisfaction with the personal workspace by about 15% would correspond to an increase of self-estimated job performance by 3.7%. Among indoor environmental parameters and building features, satisfaction...

  8. Quantization of parameters and the string landscape problem

    Science.gov (United States)

    Bouhmadi-López, Mariam; Vargas Moniz, Paulo

    2007-05-01

    We broaden the domain of application of Brustein and de Alwis's recent paper, where they introduce a (dynamical) selection principle on the landscape of string solutions using FRW quantum cosmology. More precisely, we (i) explain how their analysis is based in choosing a restrictive range of parameters, thereby affecting the validity of the predictions extracted and (ii) subsequently provide a wider and cohesive description, regarding the probability distribution induced by quantum cosmological transition amplitudes. In addition, employing DeWitt's argument for an initial condition on the wavefunction of the Universe, we found that the string and gravitational parameters become related through interesting expressions involving an integer n, suggesting a quantization relation for some of the involved parameters. This research work was supported by the grants POCI/FP/63916/2005, FEDER-POCI/P/FIS/57547/2004 and Acções Integradas (CRUP-CSIC) Luso-Espanholas E-138/04.

  9. A software for parameter estimation in dynamic models

    Directory of Open Access Journals (Sweden)

    M. Yuceer

    2008-12-01

    Full Text Available A common problem in dynamic systems is to determine parameters in an equation used to represent experimental data. The goal is to determine the values of model parameters that provide the best fit to measured data, generally based on some type of least squares or maximum likelihood criterion. In the most general case, this requires the solution of a nonlinear and frequently non-convex optimization problem. Some of the available software lack in generality, while others do not provide ease of use. A user-interactive parameter estimation software was needed for identifying kinetic parameters. In this work we developed an integration based optimization approach to provide a solution to such problems. For easy implementation of the technique, a parameter estimation software (PARES has been developed in MATLAB environment. When tested with extensive example problems from literature, the suggested approach is proven to provide good agreement between predicted and observed data within relatively less computing time and iterations.

  10. GSI Quantitative Parameters: Preoperative Diagnosis of Metastasis Lymph Nodes in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Fengfeng YANG

    2016-11-01

    Full Text Available Background and objective Mediastinal involvement in lung cancer is an important prognostic factor affecting survival, and accurate staging of the mediastinum lymph node correctly identifies patients who can benefit the most from surgery. The aim of this study is to investigate the value of dual-energy spectral computed tomography (DEsCT imaging in differentiating metastatic from non-metastatic lymph nodes in lung cancer. Methods Forty-eight patients with non-small cell lung cancer (NSCLC underwent arterial (AP and portal venous (PP phase contrast-enhanced DEsCT imaging followed by surgical treatment. gemstone spectral imaging (GSI data images were reconstructed and transmitted to an offline workstation. GSI quantitative parameters, including lymph-node size, CT value, IC, water concentration, and spectral curve. Differences were tested for statistical significance using the two-sample t test. ROC analysis was performed to assess diagnostic performance. Results The mean short-axis diameter of metastatic LNs, slope of the spectral Hounsfield unit curve (λHU, normalized iodine concentration measured during, and both AP and PP were significantly higher in metastatic lymph node than that in benign lymph nodes. The best parameter for detecting metastatic lymph nodes was AP λHU when a threshold λHU of 2.75 was used; sensitivity, specificity, and accuracy were 88.2%, 88.4%, and 87.0%, respectively. Conclusion Quantitative assessment with gemstone spectral imaging quantitative parameters showed higher accuracy than the qualitative assessment of conventional CT imaging features for the preoperative diagnosis of metastatic lymph nodes in patients with lung cancer.

  11. What Clinical and Laboratory Parameters Distinguish Between ...

    African Journals Online (AJOL)

    Introduction: In developing countries, a large number of patients presenting acutely in renal failure are indeed cases of advanced chronic renal failure. In this study, we compared clinical and laboratory parameters between patients with acute renal failure (ARF) and chronic renal failure (CRF), to identify discriminatory ...

  12. Morphology parameters for intracranial aneurysm rupture risk assessment.

    Science.gov (United States)

    Dhar, Sujan; Tremmel, Markus; Mocco, J; Kim, Minsuok; Yamamoto, Junichi; Siddiqui, Adnan H; Hopkins, L Nelson; Meng, Hui

    2008-08-01

    The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture. For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture. Parameters were analyzed with a two-tailed independent Student's t test for significance; significant parameters (P 41; 95% confidence interval, 1.03-1.92) and undulation index (odds ratio, 1.51; 95% confidence interval, 1.08-2.11) had the strongest independent correlation with ruptured IA. From the receiver operating characteristic analysis, size ratio and aneurysm angle had the highest area under the curve values of 0.83 and 0.85, respectively. Size ratio and aneurysm angle are promising new morphological metrics for IA rupture risk assessment. Because these parameters account for vessel geometry, they may bridge the gap between morphological studies and more qualitative location-based studies.

  13. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jeong, Kwangsup; Jung, Wondea

    2005-01-01

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operators' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration

  14. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinkyun [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of)]. E-mail: kshpjk@kaeri.re.kr; Jeong, Kwangsup [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of); Jung, Wondea [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, P.O. Box 105, Duckjin-Dong, Yusong-Ku, Taejon 305-600 (Korea, Republic of)

    2005-08-01

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operators' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration.

  15. Identifying cognitive complexity factors affecting the complexity of procedural steps in emergency operating procedures of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jinkyun Park; Kwangsup Jeong; Wondea Jung [Korea Atomic Energy Research Institute, Taejon (Korea). Integrated Safety Assessment Division

    2005-08-15

    In complex systems such as a nuclear and chemical plant, it is well known that the provision of understandable procedures that allow operators to clarify what needs to be done and how to do it is one of the requisites to secure their safety. As a previous study in providing understandable procedures, the step complexity (SC) measure that can quantify the complexity of procedural steps in emergency operating procedures (EOPs) of a nuclear power plant (NPP) was suggested. However, the necessity of additional complexity factors that can consider a cognitive aspect in evaluating the complexity of procedural steps is raised. To this end, the comparisons between operator' performance data measured by the form of a step performance time with their behavior in carrying out the prescribed activities of procedural steps are conducted in this study. As a result, two kinds of complexity factors (the abstraction level of knowledge and the level of engineering decision) that could affect an operator's cognitive burden are identified. Although a well-designed experiment is indispensable for confirming the appropriateness of the additional complexity factors, it is strongly believed that the change of operators' performance data can be more authentically explained if the additional complexity factors are taken into consideration. (author)

  16. Soil physical properties influencing the fitting parameters in Philip and Kostiakov infiltration models

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1994-05-01

    Among the many models developed for monitoring the infiltration process those of Philip and Kostiakov have been studied in detail because of their simplicity and the ease of estimating their fitting parameters. The important soil physical factors influencing the fitting parameters in these infiltration models are reported in this study. The results of the study show that the single most important soil property affecting the fitting parameters in these models is the effective porosity. 36 refs, 2 figs, 5 tabs

  17. Identifiability in N-mixture models: a large-scale screening test with bird data.

    Science.gov (United States)

    Kéry, Marc

    2018-02-01

    Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.

  18. Effect of 4-nonylphenol on the sperm dynamic parameters ...

    African Journals Online (AJOL)

    4-Nonylphenol (NP) is a compound that causes endocrine disruption and affects sperm quality of mammals and fish. However, the effects of NP on the sperm and fertilization rate of amphibians remain unknown. This study investigates the in vivo and in vitro effects of NP on the sperm dynamic parameters and fertilization ...

  19. Discovery of a new ECE parameter affecting the response of polymer track detectors

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1993-01-01

    The pressure applied to the electrochemical etching (ECE) chamber system and in turn to the rubber washers holding a detector tight in place was discovered to be a new parameter in ECE having a direct effect on internal heating and thus on the detector's response. The type, material, shape and size of the washers showed significant effects on the detector's response. Special pressure ECE (PECE) chambers with measurable and reproducible pressure were designed, constructed and used in this study. The effects observed seem to be due to forced vibrations of the detector in an electric field the degree of which depends on the pressure applied and stretching the detectors, like winding the strings of a musical instrument. The results of the above studies are presented and discussed. (author)

  20. Parameters of Concrete Modified with Glass Meal and Chalcedonite Dust

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Additives used for production of concrete mixtures affect the rheological properties and parameters of hardened concrete, including compressive strength, water resistance, durability and shrinkage of hardened concrete. By their application, the use of cement and production costs may be reduced. The scheduled program of laboratory tests included preparation of six batches of concrete mixtures with addition of glass meal and / or chalcedonite dust. Mineral dust is a waste product obtained from crushed aggregate mining, with grain size below 0,063μm. The main ingredient of chalcedonite dust is silica. Glass meal used in the study is a material with very fine grain size, less than 65μm. This particle size is present in 60% - 90% of the sample. Additives were used to replace cement in concrete mixes in an amount of 15% and 25%. The amount of aggregate was left unchanged. The study used Portland cement CEM I 42.5R. Concrete mixes were prepared with a constant rate w / s = 0.4. The aim of the study was to identify the effect of the addition of chalcedonite dust and / or glass meal on the parameters of hardened concrete, i.e. compressive strength, water absorption and capillarity. Additives used in the laboratory tests significantly affect the compressive strength. The largest decrease in compressive strength of concrete samples was recorded for samples with 50% substitutes of cement additives. This decrease is 34.35%. The smallest decrease in compressive strength was noted in concrete with the addition of 15% of chalcedonite dust or 15% glass meal, it amounts to an average of 15%. The study of absorption shows that all concrete with the addition of chalcedonite dust and glass meal gained a percentage weight increase between 2.7 ÷ 3.1% for the test batches. This is a very good result, which is probably due to grout sealing. In capillary action for the test batches, the percentage weight gains of samples ranges from 4.6% to 5.1%. However, the reference concrete obtained

  1. Investigation of the Parameters affecting CO2 —assisted Polyaniline Polymerization

    Directory of Open Access Journals (Sweden)

    Noby H.

    2016-01-01

    Full Text Available Specific Polyaniline (PANI morphologies such as nanotubes and nanofiber are required for enhancing its performance in the various applications. CO2 —assisted Polyaniline polymerization is a method recently used to produce these anticipated morphologies. In this study, polyaniline nanotube was prepared successfully in the presence of compressed CO2 utilizing Aniline as a monomer and Ammonium peroxydisulfate (APS as an oxidizing agent. The effect of both reaction temperature and the oxidizing agent feed rate on the morphology and surface area of the produced PANI was investigated. The synthesized PANI was examined by FT-IR, XRD, and BET surface area analysis. Furthermore, SEM was carried out to figure out the morphology of the prepared PANI. It was indicated that Polyaniline nanotubes PANNTs size and homogeneity were affected by the reaction temperature. The averages of the outer and inner diameters of the PANNTs at 25 °C, 45 °C, 65 °C were found to be about (120, 60 nm, (140, 65 nm, and (175, 75 nm respectively. Also, the produced surface area was slightly augmented with the increase of the temperature. In addition, it was observed that increasing the feeding rate of the APS was associated with the reduction of the size and the surface area of the produced PANI nanotubes.

  2. Thermal-Hydraulic Sensitivity Study of Intermediate Loop Parameters for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Hwa; Lee, Heung Nae; Park, Jea Ho [KONES Corp., Seoul (Korea, Republic of); Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Co., Seoul (Korea, Republic of)

    2016-10-15

    The heat generated from the VHTR is transferred to the intermediate loop through Intermediate Heat Exchanger (IHX). It is further passed on to the Sulfur-Iodine (SI) hydrogen production system (HPS) through Process Heat Exchanger (PHX). The IL provides the safety distance between the VHTR and HPS. Since the IL performance affects the overall nuclear HPS efficiency, it is required to optimize its design and operation parameters. In this study, the thermal-hydraulic sensitivity of IL parameters with various coolant options has been examined by using MARS-GCR code, which was already applied for the case of steam generator. Sensitivity study of the IL and PHX parameters has been carried out based on their thermal-hydraulic performance. Several parameters for design and operation, such as the pipe diameter, safety distance and surface area, are considered for different coolant options, He, CO{sub 2} and He-CO{sub 2} (2:8). It was found that the circulator work is the major factor affecting on the overall nuclear hydrogen production system efficiency. Circulator work increases with the safety distance, and decreases with the operation pressure and loop pipe diameter. Sensitivity results obtained from this study will contribute to the optimization of the IL design and operation parameters and the optimal coolant selection.

  3. How preparation and modification parameters affect PB-PEO polymersome properties in aqueous solution

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Ogbonna, Anayo; Larsen, Nanna

    2016-01-01

    polybutadiene-polyethylene oxide diblock copolymers: detergent-mediated film rehydration (DFR) and solvent evaporation (SE). DFR-prepared polymersomes showed a three times higher permeability compared to SE-prepared polymersomes as revealed by stopped-flow light scattering. SE-prepared polymersomes broke down......), a detergent typically used for reconstitution of membrane proteins into lipid bilayers. Specifically, we compared dialysis and biobeads for OG removal to investigate the influence of these methods on bilayer conformation and polymer rearrangement following detergent removal. There was no significant...... difference found between method, temperature, or time within each method. Our findings provide insight on how biocompatible polymersome production affects the physical properties of the resulting polymersomes....

  4. Economic and Cultural Factors Affecting University Excellence

    Science.gov (United States)

    Jabnoun, Naceur

    2009-01-01

    Purpose: The ranking of top universities in the world has generated increased interest in the factors that enhance university performance. The purpose of this paper is to identify economic and cultural factors that affect the number of top ranking universities in each country. Design/methodology/approach: This paper first identifies the number of…

  5. Films, Affective Computing and Aesthetic Experience: Identifying Emotional and Aesthetic Highlights from Multimodal Signals in a Social Setting

    OpenAIRE

    Kostoulas, Theodoros; Chanel, Guillaume; Muszynski, Michal; Lombardo, Patrizia; Pun, Thierry

    2017-01-01

    Over the last years, affective computing has been strengthening its ties with the humanities, exploring and building understanding of people’s responses to specific artistic multimedia stimuli. “Aesthetic experience” is acknowledged to be the subjective part of some artistic exposure, namely, the inner affective state of a person exposed to some artistic object. In this work, we describe ongoing research activities for studying the aesthetic experience of people when exposed to movie artistic...

  6. Altruistic behavior in cohesive social groups: The role of target identifiability.

    Science.gov (United States)

    Ritov, Ilana; Kogut, Tehila

    2017-01-01

    People's tendency to be more generous toward identifiable victims than toward unidentifiable or statistical victims is known as the Identifiable Victim Effect. Recent research has called the generality of this effect into question, showing that in cross-national contexts, identifiability mostly affects willingness to help victims of one's own "in-group." Furthermore, in inter-group conflict situations, identifiability increased generosity toward a member of the adversary group, but decreased generosity toward a member of one's own group. In the present research we examine the role of group-cohesiveness as an underlying factor accounting for these divergent findings. In particular, we examined novel groups generated in the lab, using the minimal group paradigm, as well as natural groups of students in regular exercise sections. Allocation decisions in dictator games revealed that a group's cohesiveness affects generosity toward in-group and out-group recipients differently, depending on their identifiability. In particular, in cohesive groups the identification of an in-group recipient decreased, rather than increased generosity.

  7. Altruistic behavior in cohesive social groups: The role of target identifiability.

    Directory of Open Access Journals (Sweden)

    Ilana Ritov

    Full Text Available People's tendency to be more generous toward identifiable victims than toward unidentifiable or statistical victims is known as the Identifiable Victim Effect. Recent research has called the generality of this effect into question, showing that in cross-national contexts, identifiability mostly affects willingness to help victims of one's own "in-group." Furthermore, in inter-group conflict situations, identifiability increased generosity toward a member of the adversary group, but decreased generosity toward a member of one's own group. In the present research we examine the role of group-cohesiveness as an underlying factor accounting for these divergent findings. In particular, we examined novel groups generated in the lab, using the minimal group paradigm, as well as natural groups of students in regular exercise sections. Allocation decisions in dictator games revealed that a group's cohesiveness affects generosity toward in-group and out-group recipients differently, depending on their identifiability. In particular, in cohesive groups the identification of an in-group recipient decreased, rather than increased generosity.

  8. Use of strontium isotopes to identify buried water main leakage into groundwater in a highly urbanized coastal area.

    Science.gov (United States)

    Leung, Chi-Man; Jiao, Jiu Jimmy

    2006-11-01

    Previous studies indicate that the local aquifer systems in the Mid-Levels, a highly urbanized coastal area in Hong Kong, have commonly been affected by leakage from water mains. The identification of leakage locations was done by conventional water quality parameters including major and trace elements. However, these parameters may lead to ambiguous results and fail to identify leakage locations especially where the leakage is from drinking water mains because the chemical composition of drinking water is similar to that of natural groundwater. In this study, natural groundwater, seepage in the developed spaces, leakage from water mains, and parent aquifer materials were measured for strontium isotope (87Sr/86Sr) compositions to explore the feasibility of using these ratios to better constrain the seepage sources. The results show that the 87Sr/86Sr ratios of natural groundwater and leakage from water mains are distinctly different and thus, they can provide additional information on the sources of seepage in developed spaces. A classification system based on the aqueous 87Sr/86Sr ratio is proposed for seepage source identification.

  9. Arousal and exposure duration affect forward step initiation

    Directory of Open Access Journals (Sweden)

    Daniëlle eBouman

    2015-11-01

    Full Text Available Emotion influences parameters of goal-directed whole-body movements in several ways. For instance, previous research has shown that approaching (moving toward pleasant stimuli is easier compared to approaching unpleasant stimuli. However, some studies found that when emotional pictures are viewed for a longer time, approaching unpleasant stimuli may in fact be facilitated. The effect of viewing duration may modulate whole-body approach movement in previous research but this has not been investigated before. In the current study, participants initiated a step forward after viewing neutral, high-arousal pleasant and high-arousal unpleasant stimuli. The viewing duration of the stimuli was set to 7 different durations, varying from 100 to 4000ms. Valence and arousal scores were collected for all stimuli.The results indicate that both viewing duration and the arousal of the stimuli influence kinematic parameters in forward gait initiation. Specifically, longer viewing duration, compared to shorter viewing duration, (a diminished the step length and peak velocity in both neutral and emotional stimuli, (b increased reaction time in neutral stimuli and, (c decreased reaction time in pleasant and unpleasant stimuli. Strikingly, no differences were found between high-arousal pleasant and high-arousal unpleasant stimuli. In other words, the valence of the stimuli did not influence kinematic parameters of forward step initiation. In contrast, the arousal level (neutral: low; pleasant and unpleasant: high explained the variance found in the results. The kinematics of forward gait initiation seemed to be reflected in the subjective arousal scores, but not the valence scores. So it seems arousal affects forward gait initiation parameters more strongly than valence. In addition, longer viewing duration seemed to cause diminished alertness, affecting GI parameters. These results shed new light on the prevailing theoretical interpretations regarding approach

  10. An Experimental Study of the Local Parameters of a Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Brincker, Rune; Kirkegaard, Poul Henning

    of results from experimental tests with six hollow section steel cantilevers containing a fatigue crack introduced from a narrow laser cut slot. The modal parameters have been identified for different size and location of a crack. The modal parameters have been estimated by mean of frequency domain and time...

  11. An Experimental Study of the Modal Parameters of a Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Brincker, Rune; Kirkegaard, Poul Henning

    of results from experimental tests with six hollow section steel cantilevers containing a fatigue crack introduced from a narrow laser cut slot. The modal parameters have been identified for different size and location of a crack. The modal parameters have been estimated by mean of frequency domain and time...

  12. Determination of Geometric Parameters of Space Steel Constructions

    Directory of Open Access Journals (Sweden)

    Jitka Suchá

    2005-06-01

    Full Text Available The paper contains conclusions of the PhD thesis „Accuracy of determination of geometric parameters of space steel construction using geodetic methods“. Generally it is a difficult task with high requirements for the accuracy and reliability of results, i.e. space coordinates of assessed points on a steel construction. A solution of this task is complicated by the effects of atmospheric influences to begin with the temperature, which strongly affects steel constructions. It is desirable to eliminate the influence of the temperature for the evaluation of the geometric parameters. A choice of an efficient geodetic method, which fulfils demanding requirements, is often affected with a constrained place in an immediate neighbourhood of the measured construction. These conditions disable the choice of efficient points configuration of a geodetic micro network, e.g. the for forward intersection. In addition, points of a construction are often hardly accessible and therefore marking is difficult. The space polar method appears efficient owing to the mentioned reasons and its advantages were increased with the implementation of self-adhesive reflex targets for the distance measurement which enable the ermanent marking of measured points already in the course of placing the construction.

  13. Ensemble-based flash-flood modelling: Taking into account hydrodynamic parameters and initial soil moisture uncertainties

    Science.gov (United States)

    Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique

    2018-05-01

    Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.

  14. Investigation into the influence of build parameters on failure of 3D printed parts

    Science.gov (United States)

    Fornasini, Giacomo

    Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.

  15. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...

  16. Rationale for statistical characteristics of road safety parameters

    Directory of Open Access Journals (Sweden)

    Dormidontova Tatiana

    2017-01-01

    Full Text Available When making engineering decisions at the stage of designing auto-roads and man-made structures it is necessary to take into account the statistical variability of physical and mechanical characteristics of the used materials as well as the different effects on the structures. Thus the rationale for the statistical characteristics of the parameters that determine the reliability of roads and man-made engineering facilities is of particular importance.There are many factors to be considered while designing roads, such as natural climatic factors, the accidental effects of the operating loads, the strength and deformation characteristics of the materials, the geometric parameters of the structure, etc. which affect the strength characteristics of roads and man-made structures. The rationale for statistical characteristics of the parameters can help an engineer assess the reliability of the decision and the economic risk, as well as avoid making mistakes in the design of roads and man-made structures.However, some statistical characteristics of the parameters that define the reliability of a road and man-made structures play a key role in the design. These are the visibility distance in daytime for the peak curve, variation coefficient of radial acceleration, the reliability of visibility distance and other parameters.

  17. Influence of Norton's law parameters in the determination of stresses and deformation in materials undergo creep phenomenon

    International Nuclear Information System (INIS)

    Bevilacqua, L.; Freire, J.L.; Monteiro, E.; Miranda, P.E.V. de

    1980-01-01

    Experimental results obtained from creep essays for AISI 316 stainless-steel in different temperatures are presented. These results are rounded off by Norton's law for which parameters A e n are determined. It is studied how variations of Norton's law parameters affect the state of stresses and deformation in thin and thick pipes subjected, to internal pressure and constant temperature. It is concluded that for the cases studied the stresses are little affected by the variations of the parameter n and it is difficult too anticipate degrees of the accumulated deformation since the uncertainties or variations in A and n introduce serious errors in the calculation of the deformation velocity [pt

  18. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  19. A Immirzi-like parameter for 3D quantum gravity

    International Nuclear Information System (INIS)

    Bonzom, Valentin; Livine, Etera R

    2008-01-01

    We study an Immirzi-like ambiguity in three-dimensional quantum gravity. It shares some features with the Immirzi parameter of four-dimensional loop quantum gravity: it does not affect the equations of motion, but modifies the Poisson brackets and the constraint algebra at the canonical level. We focus on the length operator and show how to define it through non-commuting fluxes. We compute its spectrum and show the effect of this Immirzi-like ambiguity. Finally, we extend these considerations to 4D gravity and show how the different topological modifications of the action affect the canonical structure of loop quantum gravity

  20. Investigation of parameters that affect the success rate of microarray-based allele-specific hybridization assays.

    Directory of Open Access Journals (Sweden)

    Lena Poulsen

    Full Text Available BACKGROUND: The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins. METHODS/FINDINGS: We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20-75%. Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. CONCLUSIONS: Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.