WorldWideScience

Sample records for identify optimal advanced

  1. Advanced backend optimization

    CERN Document Server

    Touati, Sid

    2014-01-01

    This book is a summary of more than a decade of research in the area of backend optimization. It contains the latest fundamental research results in this field. While existing books are often more oriented toward Masters students, this book is aimed more towards professors and researchers as it contains more advanced subjects.It is unique in the sense that it contains information that has not previously been covered by other books in the field, with chapters on phase ordering in optimizing compilation; register saturation in instruction level parallelism; code size reduction for software pipe

  2. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench

  3. Mechanical Design Optimization Using Advanced Optimization Techniques

    CERN Document Server

    Rao, R Venkata

    2012-01-01

    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  4. Advanced BDD optimization

    CERN Document Server

    Ebendt, Rudiger; Drechsler, Rolf

    2005-01-01

    BDD and SAT are major concepts in VLSI CADNew objective functions for design space exploration require new algorithms for BDD optimizationLatest trend: fusion of the concepts BDD and SATMajor impulses come from Artificial Intelligence (AI)Unifying view, transfers the latest theoretical insights into practical applications.

  5. Recent advances in computational optimization

    CERN Document Server

    2013-01-01

    Optimization is part of our everyday life. We try to organize our work in a better way and optimization occurs in minimizing time and cost or the maximization of the profit, quality and efficiency. Also many real world problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization. This book presents recent advances in computational optimization. The volume includes important real world problems like parameter settings for con- trolling processes in bioreactor, robot skin wiring, strip packing, project scheduling, tuning of PID controller and so on. Some of them can be solved by applying traditional numerical methods, but others need a huge amount of computational resources. For them it is shown that is appropriate to develop algorithms based on metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming etc...

  6. Recent advances in stellarator optimization

    Science.gov (United States)

    Gates, D. A.; Boozer, A. H.; Brown, T.; Breslau, J.; Curreli, D.; Landreman, M.; Lazerson, S. A.; Lore, J.; Mynick, H.; Neilson, G. H.; Pomphrey, N.; Xanthopoulos, P.; Zolfaghari, A.

    2017-12-01

    Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. The purpose of this paper is to outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—was written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. To this end, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also

  7. Optimal Advance Selling Strategy under Price Commitment

    OpenAIRE

    Chenhang Zeng

    2012-01-01

    This paper considers a two-period model with experienced consumers and inexperienced consumers. The retailer determines both advance selling price and regular selling price at the beginning of the first period. I show that advance selling weekly dominates no advance selling, and the optimal advance selling price may be at a discount, at a premium or at the regular selling price. To help the retailer choose the optimal pricing strategy, conditions for each possible advance selling strategy to ...

  8. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  9. OPTIMIZATION OF ADVANCED FILTER SYSTEMS; TOPICAL

    International Nuclear Information System (INIS)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-01-01

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  10. Advanced commercial Tokamak optimization studies

    International Nuclear Information System (INIS)

    Whitley, R.H.; Berwald, D.H.; Gordon, J.D.

    1985-01-01

    Our recent studies have concentrated on developing optimal high beta (bean-shaped plasma) commercial tokamak configurations using TRW's Tokamak Reactor Systems Code (TRSC) with special emphasis on lower net electric power reactors that are more easily deployable. A wide range of issues were investigated in the search for the most economic configuration: fusion power, reactor size, wall load, magnet type, inboard blanket and shield thickness, plasma aspect ratio, and operational β value. The costs and configurations of both steady-state and pulsed reactors were also investigated. Optimal small and large reactor concepts were developed and compared by studying the cost of electricity from single units and from multiplexed units. Multiplexed units appear to have advantages because they share some plant equipment and have lower initial capital investment as compared to larger single units

  11. Advanced Process Control Application and Optimization in Industrial Facilities

    Directory of Open Access Journals (Sweden)

    Howes S.

    2015-01-01

    Full Text Available This paper describes application of the new method and tool for system identification and PID tuning/advanced process control (APC optimization using the new 3G (geometric, gradient, gravity optimization method. It helps to design and implement control schemes directly inside the distributed control system (DCS or programmable logic controller (PLC. Also, the algorithm helps to identify process dynamics in closed-loop mode, optimizes controller parameters, and helps to develop adaptive control and model-based control (MBC. Application of the new 3G algorithm for designing and implementing APC schemes is presented. Optimization of primary and advanced control schemes stabilizes the process and allows the plant to run closer to process, equipment and economic constraints. This increases production rates, minimizes operating costs and improves product quality.

  12. Identifying optimal models to represent biochemical systems.

    Directory of Open Access Journals (Sweden)

    Mochamad Apri

    Full Text Available Biochemical systems involving a high number of components with intricate interactions often lead to complex models containing a large number of parameters. Although a large model could describe in detail the mechanisms that underlie the system, its very large size may hinder us in understanding the key elements of the system. Also in terms of parameter identification, large models are often problematic. Therefore, a reduced model may be preferred to represent the system. Yet, in order to efficaciously replace the large model, the reduced model should have the same ability as the large model to produce reliable predictions for a broad set of testable experimental conditions. We present a novel method to extract an "optimal" reduced model from a large model to represent biochemical systems by combining a reduction method and a model discrimination method. The former assures that the reduced model contains only those components that are important to produce the dynamics observed in given experiments, whereas the latter ensures that the reduced model gives a good prediction for any feasible experimental conditions that are relevant to answer questions at hand. These two techniques are applied iteratively. The method reveals the biological core of a model mathematically, indicating the processes that are likely to be responsible for certain behavior. We demonstrate the algorithm on two realistic model examples. We show that in both cases the core is substantially smaller than the full model.

  13. Optimal Inventory Control with Advance Supply Information

    Directory of Open Access Journals (Sweden)

    Marko Jaksic

    2016-09-01

    Full Text Available It has been shown in numerous situations that sharing information between the companies leads to improved performance of the supply chain. We study a positive lead time periodic-review inventory system of a retailer facing stochastic demand from his customer and stochastic limited supply capacity of the manufacturer supplying the products to him. The consequence of stochastic supply capacity is that the orders might not be delivered in full, and the exact size of the replenishment might not be known to the retailer. The manufacturer is willing to share the so-called advance supply information (ASI about the actual replenishment of the retailer's pipeline order with the retailer. ASI is provided at a certain time after the orders have been placed and the retailer can now use this information to decrease the uncertainty of the supply, and thus improve its inventory policy. For this model, we develop a dynamic programming formulation, and characterize the optimal ordering policy as a state-dependent base-stock policy. In addition, we show some properties of the base-stock level. While the optimal policy is highly complex, we obtain some additional insights by comparing it to the state-dependent myopic inventory policy. We conduct the numerical analysis to estimate the in uence of the system parameters on the value of ASI. While we show that the interaction between the parameters is relatively complex, the general insight is that due to increasing marginal returns, the majority of the benets are gained only in the case of full, or close to full, ASI visibility.

  14. Optimal primary surgical treatment for advanced epithelial ovarian cancer.

    Science.gov (United States)

    Elattar, Ahmed; Bryant, Andrew; Winter-Roach, Brett A; Hatem, Mohamed; Naik, Raj

    2011-08-10

    -based chemotherapy. We only included studies that defined optimal cytoreduction as surgery leading to residual tumours with a maximum diameter of any threshold up to 2 cm. Two review authors independently abstracted data and assessed risk of bias. Where possible, the data were synthesised in a meta-analysis. There were no RCTs or prospective non-RCTs identified that were designed to evaluate the effectiveness of surgery when performed as a primary procedure in advanced stage ovarian cancer.We found 11 retrospective studies that included a multivariate analysis that met our inclusion criteria. Analyses showed the prognostic importance of complete cytoreduction, where the residual disease was microscopic that is no visible disease, as overall (OS) and progression-free survival (PFS) were significantly prolonged in these groups of women. PFS was not reported in all of the studies but was sufficiently documented to allow firm conclusions to be drawn.When we compared suboptimal (> 1 cm) versus optimal ( 2 cm and factors, selection bias was still likely to be of particular concern.Adverse events, quality of life (QoL) and cost-effectiveness were not reported by treatment arm or to a satisfactory level in any of the studies. During primary surgery for advanced stage epithelial ovarian cancer all attempts should be made to achieve complete cytoreduction. When this is not achievable, the surgical goal should be optimal (related and disease-related factors that are associated with the improved survival in these groups of women. The findings of this review that women with residual disease 1 cm should prompt the surgical community to retain this category and consider re-defining it as 'near optimal' cytoreduction, reserving the term 'suboptimal' cytoreduction to cases where the residual disease is > 1 cm (optimal/near optimal/suboptimal instead of complete/optimal/suboptimal).

  15. Advances in stochastic and deterministic global optimization

    CERN Document Server

    Zhigljavsky, Anatoly; Žilinskas, Julius

    2016-01-01

    Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Žilinskas who is a leading world expert in global optimization. Professor Žilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and mu...

  16. Identifying factors affecting optimal management of agricultural water

    Directory of Open Access Journals (Sweden)

    Masoud Samian

    2015-01-01

    In addition to quantitative methodology such as descriptive statistics and factor analysis a qualitative methodology was employed for dynamic simulation among variables through Vensim software. In this study, the factor analysis technique was used through the Kaiser-Meyer-Olkin (KMO and Bartlett tests. From the results, four key elements were identified as factors affecting the optimal management of agricultural water in Hamedan area. These factors were institutional and legal factors, technical and knowledge factors, economic factors and social factors.

  17. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  18. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  19. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  20. AIC identifies optimal representation of longitudinal dietary variables.

    Science.gov (United States)

    VanBuren, John; Cavanaugh, Joseph; Marshall, Teresa; Warren, John; Levy, Steven M

    2017-09-01

    The Akaike Information Criterion (AIC) is a well-known tool for variable selection in multivariable modeling as well as a tool to help identify the optimal representation of explanatory variables. However, it has been discussed infrequently in the dental literature. The purpose of this paper is to demonstrate the use of AIC in determining the optimal representation of dietary variables in a longitudinal dental study. The Iowa Fluoride Study enrolled children at birth and dental examinations were conducted at ages 5, 9, 13, and 17. Decayed or filled surfaces (DFS) trend clusters were created based on age 13 DFS counts and age 13-17 DFS increments. Dietary intake data (water, milk, 100 percent-juice, and sugar sweetened beverages) were collected semiannually using a food frequency questionnaire. Multinomial logistic regression models were fit to predict DFS cluster membership (n=344). Multiple approaches could be used to represent the dietary data including averaging across all collected surveys or over different shorter time periods to capture age-specific trends or using the individual time points of dietary data. AIC helped identify the optimal representation. Averaging data for all four dietary variables for the whole period from age 9.0 to 17.0 provided a better representation in the multivariable full model (AIC=745.0) compared to other methods assessed in full models (AICs=750.6 for age 9 and 9-13 increment dietary measurements and AIC=762.3 for age 9, 13, and 17 individual measurements). The results illustrate that AIC can help researchers identify the optimal way to summarize information for inclusion in a statistical model. The method presented here can be used by researchers performing statistical modeling in dental research. This method provides an alternative approach for assessing the propriety of variable representation to significance-based procedures, which could potentially lead to improved research in the dental community. © 2017 American

  1. LTE-Advanced Radio and Network Optimization

    DEFF Research Database (Denmark)

    Velez, Fernando J.; Sousa, Sofia; Flores, Jessica Acevedo

    2015-01-01

    In cellular optimization, the UL and DL the values from carrier-to-noise-plus-interference ratio (CNIR) from/at the mobile station are very important parameters. From a detailed analysis of its variation with the coverage and reuse distances for different values of the Channel Quality Indicator (...

  2. Defending against the Advanced Persistent Threat: An Optimal Control Approach

    Directory of Open Access Journals (Sweden)

    Pengdeng Li

    2018-01-01

    Full Text Available The new cyberattack pattern of advanced persistent threat (APT has posed a serious threat to modern society. This paper addresses the APT defense problem, that is, the problem of how to effectively defend against an APT campaign. Based on a novel APT attack-defense model, the effectiveness of an APT defense strategy is quantified. Thereby, the APT defense problem is modeled as an optimal control problem, in which an optimal control stands for a most effective APT defense strategy. The existence of an optimal control is proved, and an optimality system is derived. Consequently, an optimal control can be figured out by solving the optimality system. Some examples of the optimal control are given. Finally, the influence of some factors on the effectiveness of an optimal control is examined through computer experiments. These findings help organizations to work out policies of defending against APTs.

  3. Radiation protection optimization. Advances in practical implementation

    International Nuclear Information System (INIS)

    1989-01-01

    Within the Community, protection against the dangers of ionizing radiation is regulated in conformity with the provisions of two Council Directives. One is of general application for all activities involving a hazard arising from ionizing radiation and lays down the basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation. The other is derived from the abovementioned one and lays down the basic measures for the radiation protection of persons undergoing medical examination or treatment. The Commission, in collaboration with the Spanish Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear and the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, organized on 12, 13 and 14 September 1988 in Madrid, the third scientific seminar on the optimization principle (Alara) which is a key element of the two abovementioned Council Directives. The seminar allowed an analysis of the progress made since the previous seminars of 1979 and 1983, in the practical implementation of the optimization principle, in relation to the design and operation of nuclear and industrial installations, natural radioactivity, medical practices and countermeasures. The report contains the 20 original contributions presented and some general considerations on the results of the seminar

  4. Advanced Electrocardiography Can Identify Occult Cardiomyopathy in Doberman Pinschers

    Science.gov (United States)

    Spiljak, M.; Petric, A. Domanjko; Wilberg, M.; Olsen, L. H.; Stepancic, A.; Schlegel, T. T.; Starc, V.

    2011-01-01

    Recently, multiple advanced resting electrocardiographic (A-ECG) techniques have improved the diagnostic value of short-duration ECG in detection of dilated cardiomyopathy (DCM) in humans. This study investigated whether 12-lead A-ECG recordings could accurately identify the occult phase of DCM in dogs. Short-duration (3-5 min) high-fidelity 12-lead ECG recordings were obtained from 31 privately-owned, clinically healthy Doberman Pinschers (5.4 +/- 1.7 years, 11/20 males/females). Dogs were divided into 2 groups: 1) 19 healthy dogs with normal echocardiographic M-mode measurements: left ventricular internal diameter in diastole (LVIDd . 47mm) and in systole (LVIDs . 38mm) and normal 24-hour ECG recordings (100 VPCs/24h; 1/12 dogs had only abnormal 24-hour ECG recordings (>100 VPCs/24h). ECG recordings were evaluated via custom software programs to calculate multiple parameters of high-frequency (HF) QRS ECG, heart rate variability, QT variability, waveform complexity and 3-D ECG. Student's t-tests determined 19 ECG parameters that were significantly different (P canine DCM as five selected ECG parameters can with reasonable accuracy identify occult DCM in Doberman Pinschers. Future extensive clinical studies need to clarify if 12-lead A-ECG could be useful as an additional screening test for canine DCM.

  5. Identifying Basketball Plays from Sensor Data; towards a Low-Cost Automatic Extraction of Advanced Statistics

    DEFF Research Database (Denmark)

    Sangüesa, Adrià Arbués; Moeslund, Thomas B.; Bahnsen, Chris Holmberg

    2017-01-01

    Advanced statistics have proved to be a crucial tool for basketball coaches in order to improve training skills. Indeed, the performance of the team can be further optimized by studying the behaviour of players under certain conditions. In the United States of America, companies such as STATS...... or Second Spectrum use a complex multi-camera setup to deliver advanced statistics to all NBA teams, but the price of this service is far beyond the budget of the vast majority of European teams. For this reason, a first prototype based on positioning sensors is presented. An experimental dataset has been...... created and meaningful basketball features have been extracted. 97.9% accuracy is obtained using Support Vector Machines when identifying 5 different classic plays: floppy offense, pick and roll, press break, post-up situation and fast breaks. After recognizing these plays in video sequences, advanced...

  6. Advanced metaheuristic algorithms for laser optimization

    International Nuclear Information System (INIS)

    Tomizawa, H.

    2010-01-01

    A laser is one of the most important experimental tools. In synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for Xray-FELs, a laser has important roles as a seed light source or photo-cathode-illuminating light source to generate a high brightness electron bunch. The controls of laser pulse characteristics are required for many kinds of experiments. However, the laser should be tuned and customized for each requirement by laser experts. The automatic tuning of laser is required to realize with some sophisticated algorithms. The metaheuristic algorithm is one of the useful candidates to find one of the best solutions as acceptable as possible. The metaheuristic laser tuning system is expected to save our human resources and time for the laser preparations. I have shown successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles and a hill climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each experimental requirement. (author)

  7. Recent Advances in Multidisciplinary Analysis and Optimization, part 3

    Science.gov (United States)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: aircraft design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  8. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    Science.gov (United States)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  9. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  10. Identifying and addressing specific student difficulties in advanced thermal physics

    Science.gov (United States)

    Smith, Trevor I.

    As part of an ongoing multi-university research study on student understanding of concepts in thermal physics at the upper division, I identified several student difficulties with topics related to heat engines (especially the Carnot cycle), as well as difficulties related to the Boltzmann factor. In an effort to address these difficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for use in advanced undergraduate thermal physics courses. Both tutorials seek to improve student understanding of the utility and physical background of a particular mathematical expression. One tutorial focuses on a derivation of Carnot's theorem regarding the limit on thermodynamic efficiency, starting from the Second Law of Thermodynamics. The other tutorial helps students gain an appreciation for the origin of the Boltzmann factor and when it is applicable; focusing on the physical justification of its mathematical derivation, with emphasis on the connections between probability, multiplicity, entropy, and energy. Student understanding of the use and physical implications of Carnot's theorem and the Boltzmann factor was assessed using written surveys both before and after tutorial instruction within the advanced thermal physics courses at the University of Maine and at other institutions. Classroom tutorial sessions at the University of Maine were videotaped to allow in-depth scrutiny of student successes and failures following tutorial prompts. I also interviewed students on various topics related to the Boltzmann factor to gain a more complete picture of their understanding and inform tutorial revisions. Results from several implementations of my tutorials at the University of Maine indicate that students did not have a robust understanding of these physical principles after lectures alone, and that they gain a better understanding of relevant topics after tutorial instruction; Fisher's exact tests yield statistically significant improvement at the

  11. Optimal advanced credit releases in ecosystem service markets.

    Science.gov (United States)

    BenDor, Todd K; Guo, Tianshu; Yates, Andrew J

    2014-03-01

    Ecosystem service markets are popular policy tools for ecosystem protection. Advanced credit releases are an important factor affecting the supply side of ecosystem markets. Under an advanced credit release policy, regulators give ecosystem suppliers a fraction of the total ecosystem credits generated by a restoration project before it is verified that the project actually achieves the required ecological thresholds. In spite of their prominent role in ecosystem markets, there is virtually no regulatory or research literature on the proper design of advanced credit release policies. Using U.S. aquatic ecosystem markets as an example, we develop a principal-agent model of the behavior of regulators and wetland/stream mitigation bankers to determine and explore the optimal degree of advance credit release. The model highlights the tension between regulators' desire to induce market participation, while at the same time ensuring that bankers successfully complete ecological restoration. Our findings suggest several simple guidelines for strengthening advanced credit release policy.

  12. Evaluation of the effect of advanced coagulation process to optimize ...

    African Journals Online (AJOL)

    Evaluation of the effect of advanced coagulation process to optimize the removal of natural organic matter in water (Case study: drinking water of Mashhad's ... and in addition to giving taste, color and odor to the water, they can intervene in the oxidization and removal of heavy metals such as arsenic, iron and manganese.

  13. Fuzzy portfolio optimization advances in hybrid multi-criteria methodologies

    CERN Document Server

    Gupta, Pankaj; Inuiguchi, Masahiro; Chandra, Suresh

    2014-01-01

    This monograph presents a comprehensive study of portfolio optimization, an important area of quantitative finance. Considering that the information available in financial markets is incomplete and that the markets are affected by vagueness and ambiguity, the monograph deals with fuzzy portfolio optimization models. At first, the book makes the reader familiar with basic concepts, including the classical mean–variance portfolio analysis. Then, it introduces advanced optimization techniques and applies them for the development of various multi-criteria portfolio optimization models in an uncertain environment. The models are developed considering both the financial and non-financial criteria of investment decision making, and the inputs from the investment experts. The utility of these models in practice is then demonstrated using numerical illustrations based on real-world data, which were collected from one of the premier stock exchanges in India. The book addresses both academics and professionals pursuin...

  14. Extending the horizons advances in computing, optimization, and decision technologies

    CERN Document Server

    Joseph, Anito; Mehrotra, Anuj; Trick, Michael

    2007-01-01

    Computer Science and Operations Research continue to have a synergistic relationship and this book represents the results of cross-fertilization between OR/MS and CS/AI. It is this interface of OR/CS that makes possible advances that could not have been achieved in isolation. Taken collectively, these articles are indicative of the state-of-the-art in the interface between OR/MS and CS/AI and of the high caliber of research being conducted by members of the INFORMS Computing Society. EXTENDING THE HORIZONS: Advances in Computing, Optimization, and Decision Technologies is a volume that presents the latest, leading research in the design and analysis of algorithms, computational optimization, heuristic search and learning, modeling languages, parallel and distributed computing, simulation, computational logic and visualization. This volume also emphasizes a variety of novel applications in the interface of CS, AI, and OR/MS.

  15. Recent advances in evolutionary multi-objective optimization

    CERN Document Server

    Datta, Rituparna; Gupta, Abhishek

    2017-01-01

    This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include:< optimization in dynamic environments, multi-objective bilevel programming, handling high ...

  16. Optimal routing of coordinated aircraft to Identify moving surface contacts

    Science.gov (United States)

    2017-06-01

    either model for any asset’s route. Its inclusion may eliminate arcs that could be part of an optimal route for an asset. As such, it should be...Arma Aérea.” Revista general de Marina 8: 319–332. http://www.armada.mde.es/archivo/rgm/ 2016/08/2016_08.pdf. Marine Traffic. n.d. “Density maps

  17. Optimizing Team Dynamics: An Assessment of Physician Trainees and Advanced Practice Providers Collaborative Practice.

    Science.gov (United States)

    Foster, Cortney B; Simone, Shari; Bagdure, Dayanand; Garber, Nan A; Bhutta, Adnan

    2016-09-01

    The presence of advanced practice providers has become increasingly common in many ICUs. The ideal staffing model for units that contain both advanced practice providers and physician trainees has not been described. The objectives of this study were to evaluate ICU staffing models that include physician trainees and advanced practice providers and their effects on patient outcomes, resident and fellow education, and training experience. A second aim was to assess strategies to promote collaboration between team members. PubMed, CINAHL, OVID MEDLINE, and Cochrane Review from 2002 to 2015. Experimental study designs conducted in an ICU setting. Two reviewers screened articles for eligibility and independently abstracted data using the identified search terms. We found 21 articles describing ICU team structure and outcomes. Four articles were found describing the impact of advanced practice providers on resident or fellow education. Two articles were found discussing strategies to promote collaboration between advanced practice providers and critical care fellows or residents. Several articles were identified describing the utilization of advanced practice providers in the ICU and the impact of models of care on patient outcomes. Limited data exist describing the impact of advanced practice providers on resident and fellow education and training experience. In addition, there are minimal data describing methods to enhance collaboration between providers. Future research should focus on determining the optimal ICU team structure to improve patient outcomes, education of trainees, and job satisfaction of team members and methods to promote collaboration between advanced practice providers and physicians in training.

  18. Thermodynamic analysis of multicomponent distillation columns: identifying optimal feed conditions

    Directory of Open Access Journals (Sweden)

    M. L.O. Maia

    2000-12-01

    Full Text Available A new methodology for the optimisation of feed conditions as well as the calculation of minimum reflux ratio of distillation columns is presented. The reversible profile approach used for saturated liquid feeds is extended to consider other feed conditions. For flashed feed, the liquid fraction of the feed stream is used to compute the column pinch conditions and the minimum reflux ratio. The modifications required for subcooled liquid and superheated vapor feed are discussed, and a procedure to estimate the minimum reflux for those conditions is proposed. The methodology presented allows the identification of the optimal feed condition, without having to resort to a full stage-by-stage procedure.

  19. Sediment tolerance mechanisms identified in sponges using advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Brian W. Strehlow

    2017-11-01

    Full Text Available Terrestrial runoff, resuspension events and dredging can affect filter-feeding sponges by elevating the concentration of suspended sediments, reducing light intensity, and smothering sponges with sediments. To investigate how sponges respond to pressures associated with increased sediment loads, the abundant and widely distributed Indo-Pacific species Ianthella basta was exposed to elevated suspended sediment concentrations, sediment deposition, and light attenuation for 48 h (acute exposure and 4 weeks (chronic exposure. In order to visualise the response mechanisms, sponge tissue was examined by 3D X-ray microscopy and scanning electron microscopy (SEM. Acute exposures resulted in sediment rapidly accumulating in the aquiferous system of I. basta, although this sediment was fully removed within three days. Sediment removal took longer (>2 weeks following chronic exposures, and I. basta also exhibited tissue regression and a smaller aquiferous system. The application of advanced imaging approaches revealed that I. basta employs a multilevel system for sediment rejection and elimination, containing both active and passive components. Sponges responded to sediment stress through (i mucus production, (ii exclusion of particles by incurrent pores, (iii closure of oscula and pumping cessation, (iv expulsion of particles from the aquiferous system, and (v tissue regression to reduce the volume of the aquiferous system, thereby entering a dormant state. These mechanisms would result in tolerance and resilience to exposure to variable and high sediment loads associated with both anthropogenic impacts like dredging programs and natural pressures like flood events.

  20. Safe Exploration for Identifying Linear Systems via Robust Optimization

    OpenAIRE

    Lu, Tyler; Zinkevich, Martin; Boutilier, Craig; Roy, Binz; Schuurmans, Dale

    2017-01-01

    Safely exploring an unknown dynamical system is critical to the deployment of reinforcement learning (RL) in physical systems where failures may have catastrophic consequences. In scenarios where one knows little about the dynamics, diverse transition data covering relevant regions of state-action space is needed to apply either model-based or model-free RL. Motivated by the cooling of Google's data centers, we study how one can safely identify the parameters of a system model with a desired ...

  1. Preclinical Evaluations To Identify Optimal Linezolid Regimens for Tuberculosis Therapy

    Science.gov (United States)

    Drusano, George L.; Adams, Jonathan R.; Rodriquez, Jaime L.; Jambunathan, Kalyani; Baluya, Dodge L.; Brown, David L.; Kwara, Awewura; Mirsalis, Jon C.; Hafner, Richard; Louie, Arnold

    2015-01-01

    ABSTRACT Linezolid is an oxazolidinone with potent activity against Mycobacterium tuberculosis. Linezolid toxicity in patients correlates with the dose and duration of therapy. These toxicities are attributable to the inhibition of mitochondrial protein synthesis. Clinically relevant linezolid regimens were simulated in the in vitro hollow-fiber infection model (HFIM) system to identify the linezolid therapies that minimize toxicity, maximize antibacterial activity, and prevent drug resistance. Linezolid inhibited mitochondrial proteins in an exposure-dependent manner, with toxicity being driven by trough concentrations. Once-daily linezolid killed M. tuberculosis in an exposure-dependent manner. Further, 300 mg linezolid given every 12 hours generated more bacterial kill but more toxicity than 600 mg linezolid given once daily. None of the regimens prevented linezolid resistance. These findings show that with linezolid monotherapy, a clear tradeoff exists between antibacterial activity and toxicity. By identifying the pharmacokinetic parameters linked with toxicity and antibacterial activity, these data can provide guidance for clinical trials evaluating linezolid in multidrug antituberculosis regimens. PMID:26530386

  2. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  3. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  4. Advances in metaheuristic algorithms for optimal design of structures

    CERN Document Server

    Kaveh, A

    2017-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  5. Advances in metaheuristic algorithms for optimal design of structures

    CERN Document Server

    Kaveh, A

    2014-01-01

    This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his colleagues, consisting of Democratic Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which were developed by other authors and have been successfully applied to various optimization problems. These consist of Particle Swarm Optimization, Big Bang-Big Crunch Algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm, and Chaos Embedded Metaheuristic Algorithms. Finally a multi-objective optimization method is presented to solve large-scale structural problems based on the Charged System Search algorithm. The concepts and algorithms presented in this book are not only applicable to optimization of skeletal structures and finite element models, but can equally ...

  6. Advanced Variance Reduction Strategies for Optimizing Mesh Tallies in MAVRIC

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Blakeman, Edward D; Wagner, John C

    2007-01-01

    More often than in the past, Monte Carlo methods are being used to compute fluxes or doses over large areas using mesh tallies (a set of region tallies defined on a mesh that overlays the geometry). For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas. The CADIS (Consistent Adjoint Driven Importance Sampling) methodology has been shown to very efficiently optimize the calculation of a response (flux or dose) for a single point or a small region using weight windows and a biased source based on the adjoint of that response. This has been incorporated into codes such as ADVANTG (based on MCNP) and the new sequence MAVRIC, which will be available in the next release of SCALE. In an effort to compute lower uncertainties everywhere in the problem, Larsen's group has also developed several methods to help distribute particles more evenly, based on forward estimates of flux. This paper focuses on the use of a forward estimate to weight the placement of the source in the adjoint calculation used by CADIS, which we refer to as a forward-weighted CADIS (FW-CADIS)

  7. Statistical identifiability and convergence evaluation for nonlinear pharmacokinetic models with particle swarm optimization.

    Science.gov (United States)

    Kim, Seongho; Li, Lang

    2014-02-01

    The statistical identifiability of nonlinear pharmacokinetic (PK) models with the Michaelis-Menten (MM) kinetic equation is considered using a global optimization approach, which is particle swarm optimization (PSO). If a model is statistically non-identifiable, the conventional derivative-based estimation approach is often terminated earlier without converging, due to the singularity. To circumvent this difficulty, we develop a derivative-free global optimization algorithm by combining PSO with a derivative-free local optimization algorithm to improve the rate of convergence of PSO. We further propose an efficient approach to not only checking the convergence of estimation but also detecting the identifiability of nonlinear PK models. PK simulation studies demonstrate that the convergence and identifiability of the PK model can be detected efficiently through the proposed approach. The proposed approach is then applied to clinical PK data along with a two-compartmental model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Use of advanced modeling techniques to optimize thermal packaging designs.

    Science.gov (United States)

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  9. Optimization method for identifying the source term in an inverse wave equation

    Directory of Open Access Journals (Sweden)

    Arumugam Deiveegan

    2017-08-01

    Full Text Available In this work, we investigate the inverse problem of identifying a space-wise dependent source term of wave equation from the measurement on the boundary. On the basis of the optimal control framework, the inverse problem is transformed into an optimization problem. The existence and necessary condition of the minimizer for the cost functional are obtained. The projected gradient method and two-parameter model function method are applied to the minimization problem and numerical results are illustrated.

  10. Application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2007-01-01

    In applying neural network to identification of gamma spectra back propagation (BP) algorithm is usually trapped to a local optimum and has a low speed of convergence, whereas particle swarm optimization (PSO) is advantageous in terms of globe optimal searching. In this paper, we propose a new algorithm for neural network training, i.e. combined BP and PSO optimization, or PSO-BP algorithm. Practical example shows that the new algorithm can overcome shortcomings of BP algorithm and the neural network trained by it has a high ability of generalization with identification result of 100% correctness. It can be used effectively and reliably to identify gamma spectra. (authors)

  11. The application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2006-01-01

    Aiming at the shortcomings that BP algorithm is usually trapped to a local optimum and it has a low speed of convergence in the application of neural network to identify gamma spectrum, according to the advantage of the globe optimal searching of particle swarm optimization, this paper put forward a new algorithm for neural network training by combining BP algorithm and Particle Swarm Optimization-mixed PSO-BP algorithm. In the application to identify gamma spectrum, the new algorithm overcomes the shortcoming that BP algorithm is usually trapped to a local optimum and the neural network trained by it has a high ability of generalization with identification result of one hundred percent correct. Practical example shows that the mixed PSO-BP algorithm can effectively and reliably be used to identify gamma spectrum. (authors)

  12. Optimization of the Phase Advance Between RHIC Interaction Points

    CERN Document Server

    Tomas, Rogelio

    2005-01-01

    We consider the scenario of having two identical Interaction Points (IPs) in the Relativistic Heavy Ion Collider (RHIC). The strengths of beam-beam resonances strongly depend on the phase advance between these two IPs and therefore certain phase advances could improve beam lifetime and luminosity. We compute the dynamic aperture as function of the phase advance between these IPs to find the optimum settings. The beam-beam interaction is treated in the weak-strong approximation and a complete non-linear model of the lattice is used. For the current RHIC proton working point (0.69,0.685) the design lattice is found to have the optimum phase advance. However this is not the case for other working points.

  13. Advanced Gradient Based Optimization Techniques Applied on Sheet Metal Forming

    International Nuclear Information System (INIS)

    Endelt, Benny; Nielsen, Karl Brian

    2005-01-01

    The computational-costs for finite element simulations of general sheet metal forming processes are considerable, especially measured in time. In combination with optimization, the performance of the optimization algorithm is crucial for the overall performance of the system, i.e. the optimization algorithm should gain as much information about the system in each iteration as possible. Least-square formulation of the object function is widely applied for solution of inverse problems, due to the superior performance of this formulation.In this work focus will be on small problems which are defined as problems with less than 1000 design parameters; as the majority of real life optimization and inverse problems, represented in literature, can be characterized as small problems, typically with less than 20 design parameters.We will show that the least square formulation is well suited for two classes of inverse problems; identification of constitutive parameters and process optimization.The scalability and robustness of the approach are illustrated through a number of process optimizations and inverse material characterization problems; tube hydro forming, two step hydro forming, flexible aluminum tubes, inverse identification of material parameters

  14. Issues and recent advances in optimal experimental design for site investigation (Invited)

    Science.gov (United States)

    Nowak, W.

    2013-12-01

    This presentation provides an overview over issues and recent advances in model-based experimental design for site exploration. The addressed issues and advances are (1) how to provide an adequate envelope to prior uncertainty, (2) how to define the information needs in a task-oriented manner, (3) how to measure the expected impact of a data set that it not yet available but only planned to be collected, and (4) how to perform best the optimization of the data collection plan. Among other shortcomings of the state-of-the-art, it is identified that there is a lack of demonstrator studies where exploration schemes based on expert judgment are compared to exploration schemes obtained by optimal experimental design. Such studies will be necessary do address the often voiced concern that experimental design is an academic exercise with little improvement potential over the well- trained gut feeling of field experts. When addressing this concern, a specific focus has to be given to uncertainty in model structure, parameterizations and parameter values, and to related surprises that data often bring about in field studies, but never in synthetic-data based studies. The background of this concern is that, initially, conceptual uncertainty may be so large that surprises are the rule rather than the exception. In such situations, field experts have a large body of experience in handling the surprises, and expert judgment may be good enough compared to meticulous optimization based on a model that is about to be falsified by the incoming data. In order to meet surprises accordingly and adapt to them, there needs to be a sufficient representation of conceptual uncertainty within the models used. Also, it is useless to optimize an entire design under this initial range of uncertainty. Thus, the goal setting of the optimization should include the objective to reduce conceptual uncertainty. A possible way out is to upgrade experimental design theory towards real-time interaction

  15. Assessing the Value of Information for Identifying Optimal Floodplain Management Portfolios

    Science.gov (United States)

    Read, L.; Bates, M.; Hui, R.; Lund, J. R.

    2014-12-01

    Floodplain management is a complex portfolio problem that can be analyzed from an integrated perspective incorporating traditionally structural and nonstructural options. One method to identify effective strategies for preparing, responding to, and recovering from floods is to optimize for a portfolio of temporary (emergency) and permanent floodplain management options. A risk-based optimization approach to this problem assigns probabilities to specific flood events and calculates the associated expected damages. This approach is currently limited by: (1) the assumption of perfect flood forecast information, i.e. implementing temporary management activities according to the actual flood event may differ from optimizing based on forecasted information and (2) the inability to assess system resilience across a range of possible future events (risk-centric approach). Resilience is defined here as the ability of a system to absorb and recover from a severe disturbance or extreme event. In our analysis, resilience is a system property that requires integration of physical, social, and information domains. This work employs a 3-stage linear program to identify the optimal mix of floodplain management options using conditional probabilities to represent perfect and imperfect flood stages (forecast vs. actual events). We assess the value of information in terms of minimizing damage costs for two theoretical cases - urban and rural systems. We use portfolio analysis to explore how the set of optimal management options differs depending on whether the goal is for the system to be risk-adverse to a specified event or resilient over a range of events.

  16. Characteristics of positive-interaction parenting style among primiparous teenage, optimal age, and advanced age mothers in Canada

    OpenAIRE

    Kim, Theresa H. M.; Connolly, Jennifer A.; Rotondi, Michael; Tamim, Hala

    2018-01-01

    Background Positive-interaction parenting early in childhood is encouraged due to its association with behavioural development later in life. The objective of this study was to examine if the level of positive-interaction parenting style differs among teen, optimal age, and advanced age mothers in Canada, and to identify the characteristics associated with positive-interaction parenting style separately for each age group. Methods This was a cross-sectional secondary analysis of the National ...

  17. European advanced driver training programs: Reasons for optimism

    Directory of Open Access Journals (Sweden)

    Simon Washington

    2011-03-01

    This paper reviews the predominant features and empirical evidence surrounding post licensing advanced driver training programs focused on novice drivers. A clear articulation of differences between the renewed and current US advanced driver training programs is provided. While the individual quantitative evaluations range from marginally to significantly effective in reducing novice driver crash risk, they have been criticized for evaluation deficiencies ranging from small sample sizes to confounding variables to lack of exposure metrics. Collectively, however, the programs sited in the paper suggest at least a marginally positive effect that needs to be validated with further studies. If additional well controlled studies can validate these programs, a pilot program in the US should be considered.

  18. Case study: technology initiative led to advanced lead optimization screening processes at Bristol-Myers Squibb, 2004-2009.

    Science.gov (United States)

    Zhang, Litao; Cvijic, Mary Ellen; Lippy, Jonathan; Myslik, James; Brenner, Stephen L; Binnie, Alastair; Houston, John G

    2012-07-01

    In this paper, we review the key solutions that enabled evolution of the lead optimization screening support process at Bristol-Myers Squibb (BMS) between 2004 and 2009. During this time, technology infrastructure investment and scientific expertise integration laid the foundations to build and tailor lead optimization screening support models across all therapeutic groups at BMS. Together, harnessing advanced screening technology platforms and expanding panel screening strategy led to a paradigm shift at BMS in supporting lead optimization screening capability. Parallel SAR and structure liability relationship (SLR) screening approaches were first and broadly introduced to empower more-rapid and -informed decisions about chemical synthesis strategy and to broaden options for identifying high-quality drug candidates during lead optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hajima, Ryoichi [Univ. of Tokyo (Japan)

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  20. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    International Nuclear Information System (INIS)

    Hajima, Ryoichi

    1995-01-01

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms

  1. Optimism, social support, and mental health outcomes in patients with advanced cancer.

    Science.gov (United States)

    Applebaum, Allison J; Stein, Emma M; Lord-Bessen, Jennifer; Pessin, Hayley; Rosenfeld, Barry; Breitbart, William

    2014-03-01

    Optimism and social support serve as protective factors against distress in medically ill patients. Very few studies have specifically explored the ways in which these variables interact to impact quality of life (QOL), particularly among patients with advanced cancer. The present study examined the role of optimism as a moderator of the relationship between social support and anxiety, depression, hopelessness, and QOL among patients with advanced cancer. Participants (N = 168) completed self-report assessments of psychosocial, spiritual, and physical well-being, including social support, optimism, hopelessness, depressive and anxious symptoms, and QOL. Hierarchical multiple regression analyses were conducted to determine the extent to which social support and optimism were associated with depressive and anxious symptomatology, hopelessness and QOL, and the potential role of optimism as a moderator of the relationship between social support and these variables. Higher levels of optimism were significantly associated with fewer anxious and depressive symptoms, less hopelessness, and better QOL. Higher levels of perceived social support were also significantly associated with better QOL. Additionally, optimism moderated the relationship between social support and anxiety, such that there was a strong negative association between social support and anxiety for participants with low optimism. This study highlights the importance of optimism and social support in the QOL of patients with advanced cancer. As such, interventions that attend to patients' expectations for positive experiences and the expansion of social support should be the focus of future clinical and research endeavors. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib.

    Science.gov (United States)

    Klammer, Martin; Dybowski, J Nikolaj; Hoffmann, Daniel; Schaab, Christoph

    2015-01-01

    Multivariate biomarkers that can predict the effectiveness of targeted therapy in individual patients are highly desired. Previous biomarker discovery studies have largely focused on the identification of single biomarker signatures, aimed at maximizing prediction accuracy. Here, we present a different approach that identifies multiple biomarkers by simultaneously optimizing their predictive power, number of features, and proximity to the drug target in a protein-protein interaction network. To this end, we incorporated NSGA-II, a fast and elitist multi-objective optimization algorithm that is based on the principle of Pareto optimality, into the biomarker discovery workflow. The method was applied to quantitative phosphoproteome data of 19 non-small cell lung cancer (NSCLC) cell lines from a previous biomarker study. The algorithm successfully identified a total of 77 candidate biomarker signatures predicting response to treatment with dasatinib. Through filtering and similarity clustering, this set was trimmed to four final biomarker signatures, which then were validated on an independent set of breast cancer cell lines. All four candidates reached the same good prediction accuracy (83%) as the originally published biomarker. Although the newly discovered signatures were diverse in their composition and in their size, the central protein of the originally published signature - integrin β4 (ITGB4) - was also present in all four Pareto signatures, confirming its pivotal role in predicting dasatinib response in NSCLC cell lines. In summary, the method presented here allows for a robust and simultaneous identification of multiple multivariate biomarkers that are optimized for prediction performance, size, and relevance.

  3. Advances in Optimizing Weather Driven Electric Power Systems.

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  4. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  5. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  6. Summary of SMIRT20 Preconference Topical Workshop - Identifying Structural Issues in Advanced Reactors

    International Nuclear Information System (INIS)

    Richins, William; Novascone, Stephen; O'Brien, Cheryl

    2009-01-01

    The Idaho National Laboratory (INL, USA) and IASMiRT sponsored an international forum Nov 5-6, 2008 in Porvoo, Finland for nuclear industry, academic, and regulatory representatives to identify structural issues in current and future advanced reactor design, especially for extreme conditions and external threats. The purpose of this Topical Workshop was to articulate research, engineering, and regulatory Code development needs. The topics addressed by the Workshop were selected to address critical industry needs specific to advanced reactor structures that have long lead times and can be the subject of future SMiRT technical sessions. The topics were; (1) structural/materials needs for extreme conditions and external threats in contemporary (Gen. III) and future (Gen. IV and NGNP) advanced reactors and (2) calibrating simulation software and methods that address topic 1. The workshop discussions and research needs identified are presented. The Workshop successfully produced interactive discussion on the two topics resulting in a list of research and technology needs. It is recommended that IASMiRT communicate the results of the discussion to industry and researchers to encourage new ideas and projects. In addition, opportunities exist to retrieve research reports and information that currently exists, and encourage more international cooperation and collaboration. It is recommended that IASMiRT continue with an off-year workshop series on select topics.

  7. Identifying the sociological implications of the main aspects affecting the optimal sporting career development

    OpenAIRE

    2014-01-01

    M.Phil. (Sport Management) This study is strengthened by several studies that have indicated that the dualist nature of student-athletes is problematic, as well as the management thereof. The study aimed to identify the sociological implications of the main aspects affecting the optimal sporting career development in athletics (throwers) at University of Johannesburg Sport, and offers recommendations for managing student-athletes. The methods utilized for this study included: i) self-desig...

  8. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    DEFF Research Database (Denmark)

    Døssing, Mads

    of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic eects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Ris DTU optimization...... software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplied way allowing fast conceptual design...... studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned...

  9. Optimization of the Neutronics of the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Zakova, Jitka; Talamo, Alberto

    2006-01-01

    In these studies, we have investigated the neutronic and safety performance of the Advanced High Temperature Reactor (AHTR) for plutonium and uranium fuels and we extended the analysis to five different coolants. The AHTR is a graphite-moderated and molten salt-cooled high temperature reactor, which takes advantage of the TRISO particles technology for the fuel utilization. The conceptual design of the core, proposed at the Oak Ridge National Laboratory, aims to provide an alternative to helium as coolant of high-temperature reactors for industrial applications like hydrogen production. We evaluated the influence of the radial reflector on the criticality of the core for the uranium and plutonium fuels and we focused on the void coefficient of 5 different molten salts; since the safety of the reactor is enhanced also by the large and negative coefficient of temperature, we completed our investigation by observing the keff changes when the graphite temperature varies from 300 to 1800 K. (authors)

  10. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Palomera-Perez, Miguel-Angel; Francois, Juan-Luis

    2009-01-01

    This work proposes advances in the implementation of a flexible genetic algorithm (GA) for fuel loading pattern optimization for Boiling Water Reactors (BWRs). In order to avoid specific implementations of genetic operators and to obtain a more flexible treatment, a binary representation of the solution was implemented; this representation had to take into account that a little change in the genotype must correspond to a little change in the phenotype. An identifier number is assigned to each assembly by means of a Gray Code of 7 bits and the solution (the loading pattern) is represented by a binary chain of 777 bits of length. Another important contribution is the use of a Fitness Function which includes a Heuristic Function and an Objective Function. The Heuristic Function which is defined to give flexibility on the application of a set of positioning rules based on knowledge, and the Objective Function that contains all the parameters which qualify the neutronic and thermal hydraulic performances of each loading pattern. Experimental results illustrating the effectiveness and flexibility of this optimization algorithm are presented and discussed.

  11. A Method for Consensus Reaching in Product Kansei Evaluation Using Advanced Particle Swarm Optimization.

    Science.gov (United States)

    Yang, Yan-Pu

    2017-01-01

    Consumers' opinions toward product design alternatives are often subjective and perceptual, which reflect their perception about a product and can be described using Kansei adjectives. Therefore, Kansei evaluation is often employed to determine consumers' preference. However, how to identify and improve the reliability of consumers' Kansei evaluation opinions toward design alternatives has an important role in adding additional insurance and reducing uncertainty to successful product design. To solve this problem, this study employs a consensus model to measure consistence among consumers' opinions, and an advanced particle swarm optimization (PSO) algorithm combined with Linearly Decreasing Inertia Weight (LDW) method is proposed for consensus reaching by minimizing adjustment of consumers' opinions. Furthermore, the process of the proposed method is presented and the details are illustrated using an example of electronic scooter design evaluation. The case study reveals that the proposed method is promising for reaching a consensus through searching optimal solutions by PSO and improving the reliability of consumers' evaluation opinions toward design alternatives according to Kansei indexes.

  12. Discrete particle swarm optimization for identifying community structures in signed social networks.

    Science.gov (United States)

    Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng

    2014-10-01

    Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2011-05-15

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)

  14. Optimal utilization of a breast care advanced practice clinician.

    Science.gov (United States)

    Russell, Katie W; Mone, Mary C; Serpico, Victoria J; Ward, Cori; Lynch, Joanna; Neumayer, Leigh A; Nelson, Edward W

    2014-12-01

    Incorporation of "lean" business philosophy within health care has the goal of adding value by reducing cost and improving quality. Applying these principles to the role of Advance Practice Clinicians (APCs) is relevant because they have become essential members of the healthcare team. An independent surgical breast care clinic directed by an APC was created with measurements of success to include the following: time to obtain an appointment, financial viability, and patient/APC/MD satisfaction. During the study period, there was a trend toward a decreased median time to obtain an appointment. Monthly APC charges increased from $388 to $30,800. The mean provider satisfaction score by Press Ganey was 96% for the APC and 95.8% for the surgeon. Both clinicians expressed significant satisfaction with clinic development. Overall, initiation of an APC breast clinic met the proposed goals of success. The use of lean philosophy demonstrates that implementation of change can result in added value in patient care. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Advanced Neutron Source Reactor zoning, shielding, and radiological optimization guide

    International Nuclear Information System (INIS)

    Westbrook, J.L.; DeVore, J.R.

    1995-08-01

    In the design of major nuclear facilities, it is important to protect both humans and equipment excessive radiation dose. Past experience has shown that it is very effective to apply dose reduction principles early in the design of a nuclear facility both to specific design features and to the manner of operation of the facility, where they can aid in making the facility more efficient and cost-effective. Since the appropriate choice of radiological controls and practices varies according to the case, each area of the facility must be analyzed for its radiological impact, both by itself and in interactions with other areas. For the Advanced Neutron Source (ANS) project, a large relational database will be used to collect facility information by system and relate it to areas. The database will also hold the facility dose and shielding information as it is produced during the design process. This report details how the ANS zoning scheme was established and how the calculation of doses and shielding are to be done

  16. Characteristics of positive-interaction parenting style among primiparous teenage, optimal age, and advanced age mothers in Canada.

    Science.gov (United States)

    Kim, Theresa H M; Connolly, Jennifer A; Rotondi, Michael; Tamim, Hala

    2018-01-08

    Positive-interaction parenting early in childhood is encouraged due to its association with behavioural development later in life. The objective of this study was to examine if the level of positive-interaction parenting style differs among teen, optimal age, and advanced age mothers in Canada, and to identify the characteristics associated with positive-interaction parenting style separately for each age group. This was a cross-sectional secondary analysis of the National Longitudinal Survey of Children and Youth. First-time mothers with children 0-23 months were grouped into: teen (15-19 years, N = 53,409), optimal age (20-34 years, N = 790,960), and advanced age (35 years and older, N = 106,536). The outcome was positive-interaction parenting style (Parenting Practices Scale); maternal socio-demographics, health, social, and child characteristics were considered for backward stepwise multiple linear regression modeling, stratified for each of the age groups. Teen, optimal age, and advanced age mothers reported similar levels of positive- interaction parenting style. Covariates differed across the three age groups. Among optimal age mothers, being an ever-landed immigrant, childcare use, and being devoted to religion were found to decrease positive-interaction parenting style, whereas, higher education was found to increase positive-interaction parenting style. Teen mothers were not found to have any characteristics uniquely associated with positive-interaction parenting. Among advanced age mothers, social support was uniquely associated with an increase in positive-interaction parenting. Very good/excellent health was found to be positively associated with parenting in teens but negatively associated with parenting in advanced age mothers. Characteristics associated with positive-interaction parenting varied among the three age groups. Findings may have public health implications through information dissemination to first-time mothers, clinicians

  17. Optimization of advanced plants operation: The Escrime project

    International Nuclear Information System (INIS)

    Fiche, C.; Papin, B.

    1994-01-01

    The Escrime program aims at defining the optimal share of tasks between humans and computers under normal or accidental plant operation. Basic principles we keep in mind are the following: human operators are likely to be necessary in the operation of future plants because we cannot demonstrate that plant design is error free, so unexpected situation can still happen; automation must not release the operators from their decisional role but only help them avoiding situations of cognitive overload which can lead to increase the risk of errors; the optimum share of tasks between human and automatic systems must be based on a critical analysis of the tasks and of the way they are handled. The last point appeared to be of major importance. The corresponding analysis of the French PWR's operating procedures enabled us to define a unified scheme for plant operation under the form of a hierarchy of goals and means. Beyond this analysis, development of a specific testing facility is under way to check the relevance of the proposed plant operation organization and to test the human-machine cooperation in different situations for various levels of automation. 7 refs, 4 figs

  18. Nanotechnology inspired advanced engineering fundamentals for optimizing drug delivery.

    Science.gov (United States)

    Kassem, Ahmed Alaa

    2018-02-06

    Drug toxicity and inefficacy are commonly experienced problems with drug therapy failure. To face these problems, extensive research work took place aiming to design new dosage forms for drug delivery especially nanoparticulate systems. These systems are designed to increase the quantity of the therapeutic molecule delivered to the desired site concurrently with reduced side effects. In order to achieve this objective, nanocarriers must principally display suitable drug vehiculization abilities and a controlled biological destiny of drug molecules. Only the intelligent design of the nanomedicine will accomplish these fundamentals. The present review article is dedicated to the discussion of the important fundamentals to be considered in the fabrication of nanomedicines. These include the therapeutic agent, the nanocarrier and the functionalization moieties. Special consideration is devoted to the explanation and compilation of highly potential fabrication approaches assisting how to control the in vivo destiny of the nanomedicine. Finally, some nanotechnology-based drug delivery systems, for the development of nanomedicine, are also discussed. The nanotechnology-based drug delivery systems showed remarkable outcomes based on passive and active targeting as well as improvement of the drug pharmacodynamic and pharmacokinetic profiles. Multifunctional nanocarrier concept affords a revolutionary drug delivery approach for maximizing the efficacy, safety and monitoring the biological fate of the therapeutic molecule. Nanomedicines may enhance the efficacy of therapeutic molecules and reduce their toxic effects. Meanwhile, further research works are required to rightly optimize (and define) the effectiveness, nanotoxicity, in vivo destiny and feasibility of these nanomedicines which, from a preclinical standpoint, are actually promising. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Challenges in Optimizing a Prostate Carcinoma Binding Peptide, Identified through the Phage Display Technology

    Directory of Open Access Journals (Sweden)

    Jürgen Debus

    2011-02-01

    Full Text Available The transfer of peptides identified through the phage display technology to clinical applications is difficult. Major drawbacks are the metabolic degradation and label instability. The aim of our work is the optimization of DUP-1, a peptide which was identified by phage display to specifically target human prostate carcinoma. To investigate the influence of chelate conjugation, DOTA was coupled to DUP-1 and labeling was performed with 111In. To improve serum stability cyclization of DUP-1 and targeted D-amino acid substitution were carried out. Alanine scanning was performed for identification of the binding site and based on the results peptide fragments were chemically synthesized. The properties of modified ligands were investigated in in vitro binding and competition assays. In vivo biodistribution studies were carried out in mice, carrying human prostate tumors subcutaneously. DOTA conjugation resulted in different cellular binding kinetics, rapid in vivo renal clearance and increased tumor-to-organ ratios. Cyclization and D-amino acid substitution increased the metabolic stability but led to binding affinity decrease. Fragment investigation indicated that the sequence NRAQDY might be significant for target-binding. Our results demonstrate challenges in optimizing peptides, identified through phage display libraries, and show that careful investigation of modified derivatives is necessary in order to improve their characteristics.

  20. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  1. Optimal synthesis and operation of advanced energy supply systems for standard and domotic home

    International Nuclear Information System (INIS)

    Buoro, Dario; Casisi, Melchiorre; Pinamonti, Piero; Reini, Mauro

    2012-01-01

    Highlights: ► Definition of an optimization model for a home energy supply system. ► Optimization of the energy supply system for standard and domotic home. ► Strong improvement can be achieved adopting the optimal system in standard and domotic home. ► The improvements are consistent if supply side and demand side strategies are applied together. ► Solutions with internal combustion engines are less sensible to market price of electricity and gas. - Abstract: The paper deals with the optimization of an advanced energy supply systems for two dwellings: a standard home and an advanced domotic home, where some demand side energy saving strategies have been implemented. In both cases the optimal synthesis, design and operation of the whole energy supply system have been obtained and a sensitivity analysis has been performed, by introducing different economic constraints. The optimization model is based on a Mixed Integer Linear Program (MILP) and includes different kinds of small-scale cogenerators, geothermal heat pumps, boilers, heat storages, solar thermal and photovoltaic panels. In addition, absorption machines, supplied with cogenerated heat, can be used instead of conventional electrical chiller to face the cooling demand. The aim of the analysis is to address the question if advanced demand strategies and supply strategies have to be regarded as alternatives, or if they have to be simultaneously applied, in order to obtain the maximum energy and economic benefit.

  2. An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model

    International Nuclear Information System (INIS)

    Liu, Kailong; Li, Kang; Yang, Zhile; Zhang, Cheng; Deng, Jing

    2017-01-01

    Lithium-ion batteries are widely adopted as the power supplies for electric vehicles. A key but challenging issue is to achieve optimal battery charging, while taking into account of various constraints for safe, efficient and reliable operation. In this paper, a triple-objective function is first formulated for battery charging based on a coupled thermoelectric model. An advanced optimal charging strategy is then proposed to develop the optimal constant-current-constant-voltage (CCCV) charge current profile, which gives the best trade-off among three conflicting but important objectives for battery management. To be specific, a coupled thermoelectric battery model is first presented. Then, a specific triple-objective function consisting of three objectives, namely charging time, energy loss, and temperature rise (both the interior and surface), is proposed. Heuristic methods such as Teaching-learning-based-optimization (TLBO) and particle swarm optimization (PSO) are applied to optimize the triple-objective function, and their optimization performances are compared. The impacts of the weights for different terms in the objective function are then assessed. Experimental results show that the proposed optimal charging strategy is capable of offering desirable effective optimal charging current profiles and a proper trade-off among the conflicting objectives. Further, the proposed optimal charging strategy can be easily extended to other battery types.

  3. A computational technique to identify the optimal stiffness matrix for a discrete nuclear fuel assembly model

    International Nuclear Information System (INIS)

    Park, Nam-Gyu; Kim, Kyoung-Joo; Kim, Kyoung-Hong; Suh, Jung-Min

    2013-01-01

    Highlights: ► An identification method of the optimal stiffness matrix for a fuel assembly structure is discussed. ► The least squares optimization method is introduced, and a closed form solution of the problem is derived. ► The method can be expanded to the system with the limited number of modes. ► Identification error due to the perturbed mode shape matrix is analyzed. ► Verification examples show that the proposed procedure leads to a reliable solution. -- Abstract: A reactor core structural model which is used to evaluate the structural integrity of the core contains nuclear fuel assembly models. Since the reactor core consists of many nuclear fuel assemblies, the use of a refined fuel assembly model leads to a considerable amount of computing time for performing nonlinear analyses such as the prediction of seismic induced vibration behaviors. The computational time could be reduced by replacing the detailed fuel assembly model with a simplified model that has fewer degrees of freedom, but the dynamic characteristics of the detailed model must be maintained in the simplified model. Such a model based on an optimal design method is proposed in this paper. That is, when a mass matrix and a mode shape matrix are given, the optimal stiffness matrix of a discrete fuel assembly model can be estimated by applying the least squares minimization method. The verification of the method is completed by comparing test results and simulation results. This paper shows that the simplified model's dynamic behaviors are quite similar to experimental results and that the suggested method is suitable for identifying reliable mathematical model for fuel assemblies

  4. Topology Optimization and Robotic Fabrication of Advanced Timber Space-frame Structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Amir, Oded; Eversmann, Phillip

    2016-01-01

    This paper presents a novel method for integrated topology optimization and fabrication of advanced timber space-frame structures. The method, developed in research collaboration between ETH Zürich, Aarhus School of Architecture and Israel Institute of Technology, entails the coupling of truss...... processes solving timber joint intersections, robotically controlling member prefabrication, and spatial robotic assembly of the optimized timber structures. The implication of this concept is studied through pilot fabrication and load-testing of a full scale prototype structure.......-based topology optimization with digital procedures for rationalization and robotic assembly of bespoke timber members, through a procedural, cross-application workflow. Through this, a direct chaining of optimization and robotic fabrication is established, in which optimization data is driving subsequent...

  5. Identifying optimal postmarket surveillance strategies for medical and surgical devices: implications for policy, practice and research.

    Science.gov (United States)

    Gagliardi, Anna R; Umoquit, Muriah; Lehoux, Pascale; Ross, Sue; Ducey, Ariel; Urbach, David R

    2013-03-01

    Non-drug technologies offer many benefits, but have been associated with adverse events, prompting calls for improved postmarket surveillance. There is little empirical research to guide the development of such a system. The purpose of this study was to identify optimal postmarket surveillance strategies for medical and surgical devices. Qualitative methods were used for sampling, data collection and analysis. Stakeholders from Canada and the USA representing different roles and perspectives were first interviewed to identify examples and characteristics of different surveillance strategies. These stakeholders and others they recommended were then assembled at a 1-day nominal group meeting to discuss and prioritise the components of a postmarket device surveillance system, and research needed to achieve such a system. Consultations were held with 37 participants, and 47 participants attended the 1-day meeting. They recommended a multicomponent system including reporting by facilities, clinicians and patients, supported with some external surveillance for validation and real-time trials for high-risk devices. Many considerations were identified that constitute desirable characteristics of, and means by which to implement such a system. An overarching network was envisioned to broker linkages, establish a shared minimum dataset, and support communication and decision making. Numerous research questions were identified, which could be pursued in tandem with phased implementation of the system. These findings provide unique guidance for establishing a device safety network that is based on existing initiatives, and could be expanded and evaluated in a prospective, phased fashion as it was developed.

  6. An Advanced Coupled Genetic Algorithm for Identifying Unknown Moving Loads on Bridge Decks

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2014-01-01

    Full Text Available This study deals with an inverse method to identify moving loads on bridge decks using the finite element method (FEM and a coupled genetic algorithm (c-GA. We developed the inverse technique using a coupled genetic algorithm that can make global solution searches possible as opposed to classical gradient-based optimization techniques. The technique described in this paper allows us to not only detect the weight of moving vehicles but also find their moving velocities. To demonstrate the feasibility of the method, the algorithm is applied to a bridge deck model with beam elements. In addition, 1D and 3D finite element models are simulated to study the influence of measurement errors and model uncertainty between numerical and real structures. The results demonstrate the excellence of the method from the standpoints of computation efficiency and avoidance of premature convergence.

  7. Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data

    Science.gov (United States)

    Ming, Jing; Papa, Maria Alessandra; Krishnan, Badri; Prix, Reinhard; Beer, Christian; Zhu, Sylvia J.; Eggenstein, Heinz-Bernd; Bock, Oliver; Machenschalk, Bernd

    2018-02-01

    In this paper we design a search for continuous gravitational waves from three supernova remnants: Vela Jr., Cassiopeia A (Cas A) and G347.3. These systems might harbor rapidly rotating neutron stars emitting quasiperiodic gravitational radiation detectable by the advanced LIGO detectors. Our search is designed to use the volunteer computing project Einstein@Home for a few months and assumes the sensitivity and duty cycles of the advanced LIGO detectors during their first science run. For all three supernova remnants, the sky positions of their central compact objects are well known but the frequency and spin-down rates of the neutron stars are unknown which makes the searches computationally limited. In a previous paper we have proposed a general framework for deciding on what target we should spend computational resources and in what proportion, what frequency and spin-down ranges we should search for every target, and with what search setup. Here we further expand this framework and apply it to design a search directed at detecting continuous gravitational wave signals from the most promising three supernova remnants identified as such in the previous work. Our optimization procedure yields broad frequency and spin-down searches for all three objects, at an unprecedented level of sensitivity: The smallest detectable gravitational wave strain h0 for Cas A is expected to be 2 times smaller than the most sensitive upper limits published to date, and our proposed search, which was set up and ran on the volunteer computing project Einstein@Home, covers a much larger frequency range.

  8. Advanced technologies in biodiesel new advances in designed and optimized catalysts

    CERN Document Server

    Islam, Aminul

    2015-01-01

    The inadequacy of fossil fuel is the main driving force of the future sustainable energy around the world. Since heterogeneous catalysis is used in chemical industry for biodiesel production, achieving optimal catalytic performance is a significant issue for chemical engineers and chemists. Enormous attention has been placed in recent years on the selection of heterogeneous catalyst in biodiesel industry, where the catalyst could be facilitated highly selective toward desired products, easily handled, separated from the reaction medium, and subsequently reused. This book stresses an overview on the contributions of tailored solid acid and base catalysts to catalytic biodiesel synthesis, and the in uences of heterogeneous catalyst properties on biodiesel yield in order to develop a better understanding of catalyst design for the green production process as well as practical applications in the biodiesel industry.

  9. Identifying the optimal depth for mussel suspended culture in shallow and turbid environments

    DEFF Research Database (Denmark)

    Filgueira, Ramón; Grant, Jon; Petersen, Jens Kjerulf

    2017-01-01

    on farm productivity, farmers must position the cultured biomass at the appropriate depth to benefit from or mitigate the impact of this resuspended material. A combination of field measurements, a 1-D vertical resuspension model and a bioenergetic model for mussels based on Dynamic Energy Budget (DEB...... particles for cultured bivalves. The effect of resuspended material on bivalve bioenergetics and growth is a function of the quality and concentration of resuspended particles and background diet in the water column. Given the potential for positive or negative impacts on bivalve growth and consequently......) theory has been carried out for a mussel farm in Skive Fjord, a shallow Danish fjord, with the aim of identifying the optimal depth for culture. Observations at the farm location revealed that horizontal advection is more important than vertical resuspension during periods with predominant Eastern winds...

  10. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Wu Xiwei

    2012-03-01

    Full Text Available Abstract Background MicroRNAs (miRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Discovery profiling of circulating small RNAs has not been reported in breast cancer (BC, and was carried out in this study to identify blood-based small RNA markers of BC clinical outcome. Methods The pre-treatment sera of 42 stage II-III locally advanced and inflammatory BC patients who received neoadjuvant chemotherapy (NCT followed by surgical tumor resection were analyzed for marker identification by deep sequencing all circulating small RNAs. An independent validation cohort of 26 stage II-III BC patients was used to assess the power of identified miRNA markers. Results More than 800 miRNA species were detected in the circulation, and observed patterns showed association with histopathological profiles of BC. Groups of circulating miRNAs differentially associated with ER/PR/HER2 status and inflammatory BC were identified. The relative levels of selected miRNAs measured by PCR showed consistency with their abundance determined by deep sequencing. Two circulating miRNAs, miR-375 and miR-122, exhibited strong correlations with clinical outcomes, including NCT response and relapse with metastatic disease. In the validation cohort, higher levels of circulating miR-122 specifically predicted metastatic recurrence in stage II-III BC patients. Conclusions Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for NCT response, and that miR-122 prevalence in the circulation predicts BC metastasis in early-stage patients. These results may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

  11. Mass Spectrometry-Based Methods for Identifying Oxidized Proteins in Disease: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Ivan Verrastro

    2015-04-01

    Full Text Available Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.

  12. vProtein: identifying optimal amino acid complements from plant-based foods.

    Directory of Open Access Journals (Sweden)

    Peter J Woolf

    Full Text Available BACKGROUND: Indispensible amino acids (IAAs are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. METHODS: vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. RESULTS: For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online

  13. Identifying the optimal depth for mussel suspended culture in shallow and turbid environments

    Science.gov (United States)

    Filgueira, Ramón; Grant, Jon; Petersen, Jens Kjerulf

    2018-02-01

    Bivalve aquaculture is commonly carried out in shallow water systems, which are susceptible to resuspension of benthic particulate matter by natural processes such as tidal currents, winds and wave action, as well as human activity. The resuspended material can alter the availability of food particles for cultured bivalves. The effect of resuspended material on bivalve bioenergetics and growth is a function of the quality and concentration of resuspended particles and background diet in the water column. Given the potential for positive or negative impacts on bivalve growth and consequently on farm productivity, farmers must position the cultured biomass at the appropriate depth to benefit from or mitigate the impact of this resuspended material. A combination of field measurements, a 1-D vertical resuspension model and a bioenergetic model for mussels based on Dynamic Energy Budget (DEB) theory has been carried out for a mussel farm in Skive Fjord, a shallow Danish fjord, with the aim of identifying the optimal depth for culture. Observations at the farm location revealed that horizontal advection is more important than vertical resuspension during periods with predominant Eastern winds. In addition, high background seston in the water column reduces the impact of resuspension on the available food for mussels. The simulation of different scenarios in terms of food availability suggested minimal effects of resuspension on mussel growth. Based on this finding and the fact that phytoplankton concentration, the main food source for mussels, is usually higher in the upper part of the water column, suspended culture in the top 3 m of the water column seems to be the optimal practice to produce mussels in Skive Fjord.

  14. The optimized advanced demonstrator for the SC CW heavy ion linac at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Malte; Basten, Markus; Busch, Marco; Dziuba, Florian; Podlech, Holger; Ratzinger, Ulrich; Tiede, Rudolf [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt am Main (Germany); Gettmann, Viktor; Heilmann, Manuel [GSI Helmholtzzentrum, Darmstadt (Germany); Barth, Winfried; Mickat, Sascha [GSI Helmholtzzentrum, Darmstadt (Germany); HIM, Helmholtzinstitut, Mainz (Germany); Miski-Oglu, Maksym [HIM, Helmholtzinstitut, Mainz (Germany); Aulenbacher, Kurt [KPH, Johannes Gutenberg Universitaet, Mainz (Germany)

    2016-07-01

    For future experiments with heavy ions at the coulomb barrier within the SHE research project a multi-stage R and D program of GSI, HIM and IAP is currently under progress. It aims at developing a superconducting (sc) continuous wave (cw) LINAC with multiple CH-cavities as key components. As intermediate step towards the whole LINAC, the Optimized Advanced Demonstrator is proposed. Consisting of short CH-cavities and cryostats, it could provide several advantages regarding velocity acceptance, higher tolerance with respect to frequency and field deviation, easier mounting, handling and maintenance as well as a more robust longitudinal beam dynamic. The beam dynamics concept is based on EQUUS (Equidistant Multigap Structure) constant-beta cavities. The corresponding simulations for the proposed next extension stage - the Optimized Advanced Demonstrator - will be presented.

  15. Optimization of advanced gas-cooled reactor fuel performance by a stochastic method

    International Nuclear Information System (INIS)

    Parks, G.T.

    1987-01-01

    A brief description is presented of a model representing the in-core behaviour of a single advanced gas-cooled reactor fuel channel, developed specifically for optimization studies. The performances of the only suitable Numerical Algorithms Group (NAG) library package and a Metropolis algorithm routine on this problem are discussed and contrasted. It is concluded that, for the problem in question, the stochastic Metropolis algorithm has distinct advantages over the deterministic NAG routine. (author)

  16. Design and optimization of components and processes for plasma sources in advanced material treatments

    OpenAIRE

    Rotundo, Fabio

    2012-01-01

    The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, whi...

  17. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  18. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  19. Determining the optimal approach to identifying individuals with chronic obstructive pulmonary disease: The DOC study.

    Science.gov (United States)

    Ronaldson, Sarah J; Dyson, Lisa; Clark, Laura; Hewitt, Catherine E; Torgerson, David J; Cooper, Brendan G; Kearney, Matt; Laughey, William; Raghunath, Raghu; Steele, Lisa; Rhodes, Rebecca; Adamson, Joy

    2018-06-01

    Early identification of chronic obstructive pulmonary disease (COPD) results in patients receiving appropriate management for their condition at an earlier stage in their disease. The determining the optimal approach to identifying individuals with chronic obstructive pulmonary disease (DOC) study was a case-finding study to enhance early identification of COPD in primary care, which evaluated the diagnostic accuracy of a series of simple lung function tests and symptom-based case-finding questionnaires. Current smokers aged 35 or more were invited to undertake a series of case-finding tools, which comprised lung function tests (specifically, spirometry, microspirometry, peak flow meter, and WheezoMeter) and several case-finding questionnaires. The effectiveness of these tests, individually or in combination, to identify small airways obstruction was evaluated against the gold standard of spirometry, with the quality of spirometry tests assessed by independent overreaders. The study was conducted with general practices in the Yorkshire and Humberside area, in the UK. Six hundred eighty-one individuals met the inclusion criteria, with 444 participants completing their study appointments. A total of 216 (49%) with good-quality spirometry readings were included in the analysis. The most effective case-finding tools were found to be the peak flow meter alone, the peak flow meter plus WheezoMeter, and microspirometry alone. In addition to the main analysis, where the severity of airflow obstruction was based on fixed ratios and percent of predicted values, sensitivity analyses were conducted by using lower limit of normal values. This research informs the choice of test for COPD identification; case-finding by use of the peak flow meter or microspirometer could be used routinely in primary care for suspected COPD patients. Only those testing positive to these tests would move on to full spirometry, thereby reducing unnecessary spirometric testing. © 2018 John Wiley

  20. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change.

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua

    2017-09-22

    Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.

  1. Identifying optimal remotely-sensed variables for ecosystem monitoring in Colorado Plateau drylands

    Science.gov (United States)

    Poitras, Travis; Villarreal, Miguel; Waller, Eric K.; Nauman, Travis; Miller, Mark E.; Duniway, Michael C.

    2018-01-01

    Water-limited ecosystems often recover slowly following anthropogenic or natural disturbance. Multitemporal remote sensing can be used to monitor ecosystem recovery after disturbance; however, dryland vegetation cover can be challenging to accurately measure due to sparse cover and spectral confusion between soils and non-photosynthetic vegetation. With the goal of optimizing a monitoring approach for identifying both abrupt and gradual vegetation changes, we evaluated the ability of Landsat-derived spectral variables to characterize surface variability of vegetation cover and bare ground across a range of vegetation community types. Using three year composites of Landsat data, we modeled relationships between spectral information and field data collected at monitoring sites near Canyonlands National Park, UT. We also developed multiple regression models to assess improvement over single variables. We found that for all vegetation types, percent cover bare ground could be accurately modeled with single indices that included a combination of red and shortwave infrared bands, while near infrared-based vegetation indices like NDVI worked best for quantifying tree cover and total live vegetation cover in woodlands. We applied four models to characterize the spatial distribution of putative grassland ecological states across our study area, illustrating how this approach can be implemented to guide dryland ecosystem management.

  2. 3rd International Workshop on Advances in Simulation-Driven Optimization and Modeling

    CERN Document Server

    Leifsson, Leifur; Yang, Xin-She

    2016-01-01

    This edited volume is devoted to the now-ubiquitous use of computational models across most disciplines of engineering and science, led by a trio of world-renowned researchers in the field. Focused on recent advances of modeling and optimization techniques aimed at handling computationally-expensive engineering problems involving simulation models, this book will be an invaluable resource for specialists (engineers, researchers, graduate students) working in areas as diverse as electrical engineering, mechanical and structural engineering, civil engineering, industrial engineering, hydrodynamics, aerospace engineering, microwave and antenna engineering, ocean science and climate modeling, and the automotive industry, where design processes are heavily based on CPU-heavy computer simulations. Various techniques, such as knowledge-based optimization, adjoint sensitivity techniques, and fast replacement models (to name just a few) are explored in-depth along with an array of the latest techniques to optimize the...

  3. Optimization and experimental validation of a thermal cycle that maximizes entropy coefficient fisher identifiability for lithium iron phosphate cells

    Science.gov (United States)

    Mendoza, Sergio; Rothenberger, Michael; Hake, Alison; Fathy, Hosam

    2016-03-01

    This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.

  4. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Directory of Open Access Journals (Sweden)

    Carlos Pozo

    Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study

  5. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Science.gov (United States)

    Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano

    2012-01-01

    Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

  6. Synergism between profile and cross section shape optimization for negative central shear advanced tokamaks

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Taylor, T.S.; Lao, L.L.

    1996-01-01

    The Advanced Tokamak (AT) concept is aimed at achieving high beta, high confinement, and a well aligned high bootstrap current fraction in a tokamak configuration consistent with steady state operation. The required improvements over the simple O-D scaling laws, normally used to predict standard, pulsed tokamak performance, axe obtained by taking into account the dependence of the stability and confinement on the 2-D equilibrium; the planned TPX experiment was designed to take full advantage of both advanced profiles and advanced cross-section shaping. Systematic stability studies of the promising Negative Central Shear (NCS) configuration have been performed for a wide variety of cross-section shapes and profile variations. The ideal MHD beta limit is found to be strongly dependent on both and, in fact, there is a clear synergistic relationship between the gains in beta from optimizing the profiles and optimizing the shape. Specifically, for a circular cross-section with highly peaked profiles, β is limited to normalized β values of β N = β/(I/aB) ∼ 2% (mT/MA). A small gain in beta can be achieved by broadening the pressure; however, the root-mean-square beta (β*) is slightly reduced. With peaked pressure profiles, a small increase in β N over that in a circular cross-section is also obtained by strong shaping. At fixed q, this translates to a much larger gain in β and β*. With both optimal profiles and strong shaping, however, the gain in all the relevant fusion performance parameters is dramatic; β and β* can be increased a factor 5 for example. Moreover, the bootstrap alignment is improved. For an optimized strongly shaped configuration, confinement, beta values, and bootstrap alignment adequate for a practical AT power plant appear to be realizable. Data from DIII-D supports these predictions and analysis of the DIII-D data will be presented

  7. Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms

    International Nuclear Information System (INIS)

    Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.

    2003-01-01

    A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed

  8. Novel Handover Optimization with a Coordinated Contiguous Carrier Aggregation Deployment Scenario in LTE-Advanced Systems

    Directory of Open Access Journals (Sweden)

    Ibraheem Shayea

    2016-01-01

    Full Text Available The carrier aggregation (CA technique and Handover Parameters Optimization (HPO function have been introduced in LTE-Advanced systems to enhance system performance in terms of throughput, coverage area, and connection stability and to reduce management complexity. Although LTE-Advanced has benefited from the CA technique, the low spectral efficiency and high ping-pong effect with high outage probabilities in conventional Carrier Aggregation Deployment Scenarios (CADSs have become major challenges for cell edge User Equipment (UE. Also, the existing HPO algorithms are not optimal for selecting the appropriate handover control parameters (HCPs. This paper proposes two solutions by deploying a Coordinated Contiguous-CADS (CC-CADS and a Novel Handover Parameters Optimization algorithm that is based on the Weight Performance Function (NHPO-WPF. The CC-CADS uses two contiguous component carriers (CCs that have two different beam directions. The NHPO-WPF automatically adjusts the HCPs based on the Weight Performance Function (WPF, which is evaluated as a function of the Signal-to-Interference Noise Ratio (SINR, cell load, and UE’s velocity. Simulation results show that the CC-CADS and the NHPO-WPF algorithm provide significant enhancements in system performance over that of conventional CADSs and HPO algorithms from the literature, respectively. The integration of both solutions achieves even better performance than scenarios in which each solution is considered independently.

  9. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    Science.gov (United States)

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Plant protection system optimization studies to mitigate consequences of large breaks in the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khayat, M.I.; March-Leuba, J.

    1993-01-01

    This paper documents some of the optimization studies performed to maximize the performance of the engineered safety features and scram systems to mitigate the consequences of large breaks in the primary cooling system of the Advanced Neutron Source (ANS) Reactor

  11. Optimism, Symptom Distress, Illness Appraisal, and Coping in Patients With Advanced-Stage Cancer Diagnoses Undergoing Chemotherapy Treatment.

    Science.gov (United States)

    Sumpio, Catherine; Jeon, Sangchoon; Northouse, Laurel L; Knobf, M Tish

    2017-05-01

    To explore the relationships between optimism, self-efficacy, symptom distress, treatment complexity, illness appraisal, coping, and mood disturbance in patients with advanced-stage cancer.
. Cross-sectional study.
. Smilow Cancer Hospital at Yale New Haven in Connecticut, an outpatient comprehensive cancer center.
. A convenience sample of 121 adult patients with stages III-IV cancer undergoing active chemotherapy.
. Participants completed common self-report questionnaires to measure variables. Treatment hours and visits were calculated from data retrieved from medical record review. Mediation and path analysis were conducted to identify direct and indirect pathways from the significant antecedent variables to mood disturbance.
. Dispositional optimism, self-efficacy, social support, treatment complexity, symptom distress, illness appraisal, coping, and mood disturbance.
. Greater optimism and self-efficacy were associated with less negative illness appraisal, less avoidant coping, and decreased mood disturbance. Conversely, greater symptom distress was associated with greater negative illness appraisal, greater avoidant coping, and greater mood disturbance. In the final model, optimism and symptom distress had direct and indirect effects on mood disturbance. Indirect effects were partially mediated by illness appraisal.
. Mood disturbance resulted from an interaction of disease stressors, personal resources, and cognitive appraisal of illness. Avoidant coping was associated with greater disturbed mood, but neither avoidant nor active coping had a significant effect on mood in the multivariate model. 
. Illness appraisal, coping style, and symptom distress are important targets for intervention. Optimism is a beneficial trait and should be included, along with coping style, in comprehensive nursing assessments of patients with cancer.

  12. Identifying Core Competencies to Advance Female Professors' Careers: An Exploratory Study in United States Academia

    Science.gov (United States)

    Seo, Ga-eun; Hedayati Mehdiabadi, Amir; Huang, Wenhao

    2017-01-01

    This exploratory study aims to identify the core competencies necessary to successfully advance the careers of female associate professors in higher education. To ascertain these core career competencies, a critical incident interview technique was employed. One-to-one semi-structured interviews with six female full professors at a major research…

  13. Optimization of time distribution for studying the course modules on advanced training of health care administrators

    Directory of Open Access Journals (Sweden)

    Dorovskaya A.l.

    2015-06-01

    Full Text Available The research objective is rational (optimal time management in studying the course modules on Advanced Training of Health Care Administrators. Materials and methods. We conducted expert survey of 73 healthcare administrators from medical organizations of Saratov region. Branch-and-bound method was used for rescheduling the educational program. Results. Both direct and inverse problems have been solved. The direct one refers to time distribution for each module of the advanced Training of Healthcare Administrators course so that the total score is maximum and each module is marked not lower than "satisfactory". The inverse one resulted in achieving minimal time characteristics for varieties of average score. Conclusion. The offered approach allows to solve problems of managing time given for education.

  14. Optimizing the wind power generation in low wind speed areas using an advanced hybrid RBF neural network coupled with the HGA-GSA optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Assareh, Ehsanolah; Poultangari, Iman [Dezful Branch, Islamic Azad University, Dezful (Iran, Islamic Republic of); Tandis, Emad [Mechanical Engineering Department, University of Jundi Shapor, Dezful (Iran, Islamic Republic of); Nedael, Mojtaba [Dept. of Energy Engineering, Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Enhancing the energy production from wind power in low-wind areas has always been a fundamental subject of research in the field of wind energy industry. In the first phase of this research, an initial investigation was performed to evaluate the potential of wind in south west of Iran. The initial results indicate that the wind potential in the studied location is not sufficient enough and therefore the investigated region is identified as a low wind speed area. In the second part of this study, an advanced optimization model was presented to regulate the torque in the wind generators. For this primary purpose, the torque of wind turbine is adjusted using a Proportional and integral (PI) control system so that at lower speeds of the wind, the power generated by generator is enhanced significantly. The proposed model uses the RBF neural network to adjust the net obtained gains of the PI controller for the purpose of acquiring the utmost electricity which is produced through the generator. Furthermore, in order to edify and instruct the neural network, the optimal data set is obtained by a Hybrid genetic algorithm along with a gravitational search algorithm (HGA-GSA). The proposed method is evaluated by using a 5MW wind turbine manufactured by National Renewable Energy Laboratory (NREL). Final results of this study are indicative of the satisfactory and successful performance of the proposed investigated model.

  15. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    Science.gov (United States)

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. [Efficacy of icotinib for advanced non-small cell lung cancer patients with EGFR status identified].

    Science.gov (United States)

    Song, Zhengbo; Yu, Xinmin; Cai, Jufen; Shao, Lan; Lin, Baochai; He, Chunxiao; Zhang, Beibei; Zhang, Yiping

    2013-03-01

    As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN) showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC) compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation) with NSCLC were enrolled in the current study. The patients' overall objective response rate (ORR) was 58.3% and the disease control rate (DCR) in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (Picotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41). Median overall survival (OS) in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II) and reversible with no grade IV toxicity. Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.

  17. Recent experience with multidisciplinary analysis and optimization in advanced aircraft design

    Science.gov (United States)

    Dollyhigh, Samuel M.; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The task of modern aircraft design has always been complicated due to the number of intertwined technical factors from the various engineering disciplines. Furthermore, this complexity has been rapidly increasing by the development of such technologies as aeroelasticity tailored materials and structures, active control systems, integrated propulsion/airframe controls, thrust vectoring, and so on. Successful designs that achieve maximum advantage from these new technologies require a thorough understanding of the physical phenomena and the interactions among these phenomena. A study commissioned by the Aeronautical Sciences and Evaluation Board of the National Research Council has gone so far as to identify technology integration as a new discipline from which many future aeronautical advancements will arise. Regardless of whether one considers integration as a new discipline or not, it is clear to all engineers involved in aircraft design and analysis that better methods are required. In the past, designers conducted parametric studies in which a relatively small number of principal characteristics were varied to determine the effect on design requirements which were themselves often diverse and contradictory. Once a design was chosen, it then passed through the various engineers' disciplines whose principal task was to make the chosen design workable. Working in a limited design space, the discipline expert sometimes improved the concept, but more often than not, the result was in the form of a penalty to make the original concept workable. If an insurmountable problem was encountered, the process began over. Most design systems that attempt to account for disciplinary interactions have large empirical elements and reliance on past experience is a poor guide in obtaining maximum utilizations of new technologies. Further compounding the difficulty of design is that as the aeronautical sciences have matured, the discipline specialist's area of research has generally

  18. An optimization methodology for identifying robust process integration investments under uncertainty

    International Nuclear Information System (INIS)

    Svensson, Elin; Berntsson, Thore; Stroemberg, Ann-Brith; Patriksson, Michael

    2009-01-01

    Uncertainties in future energy prices and policies strongly affect decisions on investments in process integration measures in industry. In this paper, we present a five-step methodology for the identification of robust investment alternatives incorporating explicitly such uncertainties in the optimization model. Methods for optimization under uncertainty (or, stochastic programming) are thus combined with a deep understanding of process integration and process technology in order to achieve a framework for decision-making concerning the investment planning of process integration measures under uncertainty. The proposed methodology enables the optimization of investments in energy efficiency with respect to their net present value or an environmental objective. In particular, as a result of the optimization approach, complex investment alternatives, allowing for combinations of energy efficiency measures, can be analyzed. Uncertainties as well as time-dependent parameters, such as energy prices and policies, are modelled using a scenario-based approach, enabling the identification of robust investment solutions. The methodology is primarily an aid for decision-makers in industry, but it will also provide insight for policy-makers into how uncertainties regarding future price levels and policy instruments affect the decisions on investments in energy efficiency measures. (author)

  19. An optimization methodology for identifying robust process integration investments under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden); Patriksson, Michael [Department of Mathematical Sciences, Chalmers University of Technology and Department of Mathematical Sciences, University of Gothenburg, SE-412 96 Goeteborg (Sweden)

    2009-02-15

    Uncertainties in future energy prices and policies strongly affect decisions on investments in process integration measures in industry. In this paper, we present a five-step methodology for the identification of robust investment alternatives incorporating explicitly such uncertainties in the optimization model. Methods for optimization under uncertainty (or, stochastic programming) are thus combined with a deep understanding of process integration and process technology in order to achieve a framework for decision-making concerning the investment planning of process integration measures under uncertainty. The proposed methodology enables the optimization of investments in energy efficiency with respect to their net present value or an environmental objective. In particular, as a result of the optimization approach, complex investment alternatives, allowing for combinations of energy efficiency measures, can be analyzed. Uncertainties as well as time-dependent parameters, such as energy prices and policies, are modelled using a scenario-based approach, enabling the identification of robust investment solutions. The methodology is primarily an aid for decision-makers in industry, but it will also provide insight for policy-makers into how uncertainties regarding future price levels and policy instruments affect the decisions on investments in energy efficiency measures. (author)

  20. Integrated Circuit Conception: A Wire Optimization Technic Reducing Interconnection Delay in Advanced Technology Nodes

    Directory of Open Access Journals (Sweden)

    Mohammed Darmi

    2017-10-01

    Full Text Available As we increasingly use advanced technology nodes to design integrated circuits (ICs, physical designers and electronic design automation (EDA providers are facing multiple challenges, firstly, to honor all physical constraints coming with cutting-edge technologies and, secondly, to achieve expected quality of results (QoR. An advanced technology should be able to bring better performances with minimum cost whatever the complexity. A high effort to develop out-of-the-box optimization techniques is more than needed. In this paper, we will introduce a new routing technique, with the objective to optimize timing, by only acting on routing topology, and without impacting the IC Area. In fact, the self-aligned double patterning (SADP technology offers an important difference on layer resistance between SADP and No-SADP layers; this property will be taken as an advantage to drive the global router to use No-SADP less resistive layers for critical nets. To prove the benefit on real test cases, we will use Mentor Graphics’ physical design EDA tool Nitro-SoC™ and several 7 nm technology node designs. The experiments show that worst negative slack (WNS and total negative slack (TNS improved up to 13% and 56%, respectively, compared to the baseline flow.

  1. Efficacy of Icotinib for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified

    Directory of Open Access Journals (Sweden)

    Yiping ZHANG

    2013-03-01

    Full Text Available Background and objective As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Methods Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. Results The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation with NSCLC were enrolled in the current study. The patients’ overall objective response rate (ORR was 58.3% and the disease control rate (DCR in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (P<0.001. Nineteen patients with EGFR mutation received icotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41. Median overall survival (OS in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II and reversible with no grade IV toxicity. Conclusion Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.

  2. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    Science.gov (United States)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  3. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource, (2)

    International Nuclear Information System (INIS)

    Ohkubo, Hiroo; Suzuki, Atsuyuki; Kiyose, Ryohei

    1983-01-01

    This is an extension of the Suzuki model (base model) on optimal transition from resource-limited energy (oil) to advanced energy with virtually unlimited resource. The finite length of plant life, fuel cost, technological progress factor of advanced energy and the upper limit upon annual consumption rate of oil are taken into account for such an extension. The difference in optimal solutions obtained from extended and base models is shown by an application of the maximum principle. The implication of advanced energy R and D andenergy conservation effort is also discussed. (author)

  4. Identifying the optimal supply temperature in district heating networks - A modelling approach

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2014-01-01

    of this study is to develop a model for thermo-hydraulic calculation of low temperature DH system. The modelling is performed with emphasis on transient heat transfer in pipe networks. The pseudo-dynamic approach is adopted to model the District Heating Network [DHN] behaviour which estimates the temperature...... dynamically while the flow and pressure are calculated on the basis of steady state conditions. The implicit finite element method is applied to simulate the transient temperature behaviour in the network. Pipe network heat losses, pressure drop in the network and return temperature to the plant...... are calculated in the developed model. The model will serve eventually as a basis to find out the optimal supply temperature in an existing DHN in later work. The modelling results are used as decision support for existing DHN; proposing possible modifications to operate at optimal supply temperature....

  5. Identifying relationships between the professional culture of pharmacy, pharmacists' personality traits, and the provision of advanced pharmacy services.

    Science.gov (United States)

    Rosenthal, Meagen; Tsao, Nicole W; Tsuyuki, Ross T; Marra, Carlo A

    2016-01-01

    Legislative changes are affording pharmacists the opportunity to provide more advanced pharmacy services. However, many pharmacists have not yet been able to provide these services sustainably. Research from implementation science suggests that before sustained change in pharmacy can be achieved an improved understanding of pharmacy context, through the professional culture of pharmacy and pharmacists' personality traits, is required. The primary objective of this study was to investigate possible relationships between cultural factors, and personality traits, and the uptake of advanced practice opportunities by pharmacists in British Columbia, Canada. The study design was a cross-sectional survey of registered, and practicing, pharmacists from one Canadian province. The survey gauged respondents' characteristics, practice setting, and the provision of advanced pharmacy services, and contained the Organizational Culture Profile (OCP), a measure of professional culture, as well as the Big Five Inventory (BFI), a measure of personality traits. A total of 945 completed survey instruments were returned. The majority of respondents were female (61%), the average age of respondents was 42 years (SD: 12), and the average number of years in practice was 19 (SD: 12). A significant positive relationship was identified for respondents perceiving greater value in the OCP factors competitiveness and innovation and providing a higher number of all advanced services. A positive relationship was observed for respondents scoring higher on the BFI traits extraversion and the immunizations provided, and agreeableness and openness and medication reviews completed. This is the first work to identify statistically significant relationships between the OCP and BFI, and the provision of advanced pharmacy services. As such, this work serves as a starting place from which to develop more detailed insight into how the professional culture of pharmacy and pharmacists personality traits may

  6. Identifying optimal agricultural countermeasure strategies for a hypothetical contamination scenario using the strategy model

    International Nuclear Information System (INIS)

    Cox, G.; Beresford, N.A.; Alvarez-Farizo, B.; Oughton, D.; Kis, Z.; Eged, K.; Thorring, H.; Hunt, J.; Wright, S.; Barnett, C.L.; Gil, J.M.; Howard, B.J.; Crout, N.M.J.

    2005-01-01

    A spatially implemented model designed to assist the identification of optimal countermeasure strategies for radioactively contaminated regions is described. Collective and individual ingestion doses for people within the affected area are estimated together with collective exported ingestion dose. A range of countermeasures are incorporated within the model, and environmental restrictions have been included as appropriate. The model evaluates the effectiveness of a given combination of countermeasures through a cost function which balances the benefit obtained through the reduction in dose with the cost of implementation. The optimal countermeasure strategy is the combination of individual countermeasures (and when and where they are implemented) which gives the lowest value of the cost function. The model outputs should not be considered as definitive solutions, rather as interactive inputs to the decision making process. As a demonstration the model has been applied to a hypothetical scenario in Cumbria (UK). This scenario considered a published nuclear power plant accident scenario with a total deposition of 1.7 x 10 14 , 1.2 x 10 13 , 2.8 x 10 10 and 5.3 x 10 9 Bq for Cs-137, Sr-90, Pu-239/240 and Am-241, respectively. The model predicts that if no remediation measures were implemented the resulting collective dose would be approximately 36 000 person-Sv (predominantly from 137 Cs) over a 10-year period post-deposition. The optimal countermeasure strategy is predicted to avert approximately 33 000 person-Sv at a cost of approximately pound 160 million. The optimal strategy comprises a mixture of ploughing, AFCF (ammonium-ferric hexacyano-ferrate) administration, potassium fertiliser application, clean feeding of livestock and food restrictions. The model recommends specific areas within the contaminated area and time periods where these measures should be implemented

  7. Multi-Objective Optimization of a Turbofan for an Advanced, Single-Aisle Transport

    Science.gov (United States)

    Berton, Jeffrey J.; Guynn, Mark D.

    2012-01-01

    Considerable interest surrounds the design of the next generation of single-aisle commercial transports in the Boeing 737 and Airbus A320 class. Aircraft designers will depend on advanced, next-generation turbofan engines to power these airplanes. The focus of this study is to apply single- and multi-objective optimization algorithms to the conceptual design of ultrahigh bypass turbofan engines for this class of aircraft, using NASA s Subsonic Fixed Wing Project metrics as multidisciplinary objectives for optimization. The independent design variables investigated include three continuous variables: sea level static thrust, wing reference area, and aerodynamic design point fan pressure ratio, and four discrete variables: overall pressure ratio, fan drive system architecture (i.e., direct- or gear-driven), bypass nozzle architecture (i.e., fixed- or variable geometry), and the high- and low-pressure compressor work split. Ramp weight, fuel burn, noise, and emissions are the parameters treated as dependent objective functions. These optimized solutions provide insight to the ultrahigh bypass engine design process and provide information to NASA program management to help guide its technology development efforts.

  8. Plasma profile and shape optimization for the advanced tokamak power plant, ARIES-AT

    International Nuclear Information System (INIS)

    Kessel, C.E.; Mau, T.K.; Jardin, S.C.; Najmabadi, F.

    2006-01-01

    An advanced tokamak plasma configuration is developed based on equilibrium, ideal MHD stability, bootstrap current analysis, vertical stability and control, and poloidal field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current drive profiles from ray tracing calculations in combination with optimized pressure profiles, β N values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower β N of 6.0. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field from those found in a previous study [S.C. Jardin, C.E. Kessel, C.G. Bathke, D.A. Ehst, T.K. Mau, F. Najmabadi, T.W. Petrie, the ARIES Team, Physics basis for a reversed shear tokamak power plant, Fusion Eng. Design 38 (1997) 27

  9. Fusion of optimized indicators from Advanced Driver Assistance Systems (ADAS) for driver drowsiness detection.

    Science.gov (United States)

    Daza, Iván García; Bergasa, Luis Miguel; Bronte, Sebastián; Yebes, Jose Javier; Almazán, Javier; Arroyo, Roberto

    2014-01-09

    This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study.

  10. Plasma Profile and Shape Optimization for the Advanced Tokamak Power Plant, ARIES-AT

    International Nuclear Information System (INIS)

    Kessel, C.E.; Mau, T.K.; Jardin, S.C.; Najmabadi, F.

    2001-01-01

    An advanced tokamak plasma configuration is developed based on equilibrium, ideal-MHD stability, bootstrap current analysis, vertical stability and control, and poloidal-field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current-drive profiles from ray-tracing calculations in combination with optimized pressure profiles, beta(subscript N) values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower beta(subscript N) of 5.4. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal-field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field

  11. Fusion of Optimized Indicators from Advanced Driver Assistance Systems (ADAS for Driver Drowsiness Detection

    Directory of Open Access Journals (Sweden)

    Iván G. Daza

    2014-01-01

    Full Text Available This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS. An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study.

  12. Identifying potential disaster zones around the Verkhnekamskoye potash deposit (Russia) using advanced information technology (IT)

    Science.gov (United States)

    Royer, J. J.; Filippov, L. O.

    2017-07-01

    This work aims at improving the exploitation of the K, Mg, salts ore of the Verkhnekamskoye deposit using advanced information technology (IT) such as 3D geostatistical modeling techniques together with high performance flotation. It is expected to provide a more profitable exploitation of the actual deposit avoiding the formation of dramatic sinkholes by a better knowledge of the deposit. The GeoChron modelling method for sedimentary formations (Mallet, 2014) was used to improve the knowledge of the Verkhnekamskoye potash deposit, Perm region, Russia. After a short introduction on the modern theory of mathematical modelling applied to mineral resources exploitation and geology, new results are presented on the sedimentary architecture of the ore deposit. They enlighten the structural geology and the fault orientations, a key point for avoiding catastrophic water inflows recharging zone during exploitation. These results are important for avoiding catastrophic sinkholes during exploitation.

  13. Advanced CANDU reactors fuel analysis through optimal fuel management at approach to refuelling equilibrium

    International Nuclear Information System (INIS)

    Tingle, C.P.; Bonin, H.W.

    1999-01-01

    The analysis of alternate CANDU fuels along with natural uranium-based fuel was carried out from the view point of optimal in-core fuel management at approach to refuelling equilibrium. The alternate fuels considered in the present work include thorium containing oxide mixtures (MOX), plutonium-based MOX, and Pressurised Water Reactor (PWR) spent fuel recycled in CANDU reactors (Direct Use of spent PWR fuel in CANDU (DUPIC)); these are compared with the usual natural UO 2 fuel. The focus of the study is on the 'Approach to Refuelling Equilibrium' period which immediately follows the initial commissioning of the reactor. The in-core fuel management problem for this period is treated as an optimization problem in which the objective function is the refuelling frequency to be minimized by adjusting the following decision variables: the channel to be refuelled next, the time of the refuelling and the number of fresh fuel bundles to be inserted in the channel. Several constraints are also included in the optimisation problem which is solved using Perturbation Theory. Both the present 37-rod CANDU fuel bundle and the proposed CANFLEX bundle designs are part of this study. The results include the time to reach refuelling equilibrium from initial start-up of the reactor, the average discharge burnup, the average refuelling frequency and the average channel and bundle powers relative to natural UO 2 . The model was initially tested and the average discharge burnup for natural UO 2 came within 2% of the industry accepted 199 MWh/kgHE. For this type of fuel, the optimization exercise predicted the savings of 43 bundles per full power year. In addition to producing average discharge burnups and other parameters for the advanced fuels investigated, the optimisation model also evidenced some problem areas like high power densities for fuels such as the DUPIC. Perturbation Theory has proven itself to be an accurate and valuable optimization tool in predicting the time between

  14. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors

    Science.gov (United States)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George

    2017-03-01

    Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  15. Design of future municipal wastewater treatment plants: A mathematical approach to manage complexity and identify optimal solutions

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    The increasing number of alternative wastewater treatment (WWT) technologies and stricter effluent requirements imposed by regulations make the early stage decision making for WWTP layout design, which is currently based on expert decisions and previous experiences, much harder. This paper...... therefore proposes a new approach based on mathematical programming to manage the complexity of the problem and generate/identify novel and optimal WWTP layouts for municipal/domestic wastewater treatment. Towards this end, after developing a database consisting of primary, secondary and tertiary WWT...... solved to obtain the optimal WWT network and the optimal wastewater and sludge flow through the network. The tool is evaluated on a case study, which was chosen as the Benchmark Simulation Model no.1 (BSM1) and many retrofitting options for obtaining a cost-effective treatment were investigated...

  16. Duodenoscope-Related Outbreak of a Carbapenem-Resistant Klebsiella pneumoniae Identified Using Advanced Molecular Diagnostics.

    Science.gov (United States)

    Humphries, Romney M; Yang, Shuan; Kim, Stephen; Muthusamy, Venkatara Raman; Russell, Dana; Trout, Alisa M; Zaroda, Teresa; Cheng, Quen J; Aldrovandi, Grace; Uslan, Daniel Zachary; Hemarajata, Peera; Rubin, Zachary Aaron

    2017-10-01

    Carbapenem-resistant Klebsiella pneumoniae infections are increasingly prevalent in North American hospitals. We describe an outbreak of carbapenem-resistant K. pneumoniae containing the blaOXA-232 gene transmitted by contaminated duodenoscopes during endoscopic retrograde cholangiopancreatography (ERCP) procedures. An outbreak investigation was performed when 9 patients with blaOXA-232 carbapenem-resistant K. pneumoniae infections were identified at a tertiary care hospital. The investigation included 2 case-control studies, review of duodenoscope reprocessing procedures, and culture of devices. Carbapenem-resistant Enterobacteriacieae (CRE) isolates were evaluated with polymerase chain reaction analysis for carbapenemase genes, and isolates with the blaOXA-232 gene were subjected to whole-genome sequencing and chromosome single-nucleotide polymorphism analysis. On recognition of ERCP as a key risk factor for infection, targeted patient notification and CRE screening cultures were performed. Molecular testing ultimately identified 17 patients with blaOxa-232 carbapenem-resistant K. pneumoniae isolates, including 9 with infections, 7 asymptomatic carriers who had undergone ERCP, and 1 additional patient who had been hospitalized in India and was probably the initial carrier. Two case-control studies established a point-source outbreak associated with 2 specific duodenoscopes. A field investigation of the use, reprocessing, and storage of deuodenoscopes did not identify deviations from US Food and Drug Administration or manufacturer recommendations for reprocessing. This outbreak demonstrated the previously underappreciated potential for duodenoscopes to transmit disease, even after undergoing high-level disinfection according to manufacturers' guidelines.

  17. Exome sequencing identifies early gastric carcinoma as an early stage of advanced gastric cancer.

    Directory of Open Access Journals (Sweden)

    Guhyun Kang

    Full Text Available Gastric carcinoma is one of the major causes of cancer-related mortality worldwide. Early detection and treatment leads to an excellent prognosis in patients with early gastric cancer (EGC, whereas the prognosis of patients with advanced gastric cancer (AGC remains poor. It is unclear whether EGCs and AGCs are distinct entities or whether EGCs are the beginning stages of AGCs. We performed whole exome sequencing of four samples from patients with EGC and compared the results with those from AGCs. In both EGCs and AGCs, a total of 268 genes were commonly mutated and independent mutations were additionally found in EGCs (516 genes and AGCs (3104 genes. A higher frequency of C>G transitions was observed in intestinal-type compared to diffuse-type carcinomas (P = 0.010. The DYRK3, GPR116, MCM10, PCDH17, PCDHB1, RDH5 and UNC5C genes are recurrently mutated in EGCs and may be involved in early carcinogenesis.

  18. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  19. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  20. Optimized ex-ovo culturing of chick embryos to advanced stages of development.

    Science.gov (United States)

    Cloney, Kellie; Franz-Odendaal, Tamara Anne

    2015-01-24

    Research in anatomy, embryology, and developmental biology has largely relied on the use of model organisms. In order to study development in live embryos model organisms, such as the chicken, are often used. The chicken is an excellent model organism due to its low cost and minimal maintenance, however they present observational challenges because they are enclosed in an opaque eggshell. In order to properly view the embryo as it develops, the shell must be windowed or removed. Both windowing and ex ovo techniques have been developed to assist researchers in the study of embryonic development. However, each of the methods has limitations and challenges. Here, we present a simple, optimized ex ovo culture technique for chicken embryos that enables the observation of embryonic development from stage HH 19 into late stages of development (HH 40), when many organs have developed. This technique is easy to adopt in both undergraduate classes and more advanced research laboratories where embryo manipulations are conducted.

  1. Optimizing the regimes of the Advanced LIGO gravitational wave detector for multiple source types

    International Nuclear Information System (INIS)

    Kondrashov, I. S.; Simakov, D. A.; Khalili, F. Ya.; Danilishin, S. L.

    2008-01-01

    We developed algorithms which allow us to find regimes of the signal-recycled Fabry-Perot-Michelson interferometer [for example, the Advanced Laser Interferometric Gravitational Wave Observatory (LIGO)], optimized concurrently for two (binary inspirals + bursts) and three (binary inspirals + bursts + millisecond pulsars) types of gravitational wave sources. We show that there exists a relatively large area in the interferometer parameters space where the detector sensitivity to the first two kinds of sources differs only by a few percent from the maximal ones for each kind of source. In particular, there exists a specific regime where this difference is ≅0.5% for both of them. Furthermore, we show that even more multipurpose regimes are also possible that provide significant sensitivity gain for millisecond pulsars with only minor sensitivity degradation for binary inspirals and bursts.

  2. Design optimization of JT-60SU for steady-state advanced operation

    International Nuclear Information System (INIS)

    Ushigusa, K.; Kurita, G.; Toyoshima, N.

    2001-01-01

    Design optimization of JT-60SU has been done for a steady-state advanced operation. A transport code simulation indicates that a fully non-inductive reversed shear plasmas with fractions of 70% of the bootstrap current and 30% of beam driven current can be sustained for more than 1,000s without any additional control. Investigations have been progressed on MHD stability, vertical positional stability and dynamics of the vertical displacement events. Significant progress has been achieved in the R and D of Nb 3 Al superconducting wires, low induced activation material (Fe-Cr-Mn steel). A design improvement has been made in TF coils to reduce a local stress on radial disk. Dynamic behaviors of the tokamak machine have been analyzed at emergency events such as an earthquake. (author)

  3. A conceptual framework toward identifying and analyzing challenges to the advancement of pharmacy.

    Science.gov (United States)

    Bader, Lina R; McGrath, Simon; Rouse, Michael J; Anderson, Claire

    Pharmacists and health care professionals are faced with increasing and changing health care needs around the world. To meet these demands, they are required to continuously upgrade and develop their professions. Reprofessionalization is therefore crucial to the successful delivery of health services, but traditional theories might provide little practical guidance to evaluating the overall status of a profession. This study proposes a new conceptual framework of three interrelated professional sectors: education, regulation and practice, and uses it to identify and analyze challenges facing the pharmacy profession in Jordan. A multiple-method qualitative study comprised of semi-structured interviews and focus groups was conducted in Amman, Jordan. To explore and identify the challenges, a purposively recruited cross-sector sample of 53 key informants, stakeholders and pharmacists were interviewed. Interview transcripts were translated and analyzed using QSR NVivo 10. Thematic analysis identified eight main challenges facing pharmacy in Jordan. The original participants were then invited to participate in focus groups, the purpose of which was to validate the interview findings, map them against the conceptual framework and discuss recommendations for development. The eight validated challenges span the following areas: graduates preparedness for practice, pharmacy education accreditation and quality assurance, pre-registration requirements, workforce development, workforce planning, remuneration and wage rate, pharmacy assistants, and Pharm.D. pharmacists. Focus group participants used the framework to map each of the challenges to the primary sector-to-sector disconnect that they perceived to explain it. A list of recommendations addressing each of the challenges was also devised. The framework was found to offer valuable insight as an explanatory and diagnostic tool in policy-relevant research. By emphasizing the processual and contextual nature of

  4. Identifying the optimal resistive load for complex training in male rugby players.

    Science.gov (United States)

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam; Jensen, Randall L

    2007-01-01

    Alternating a resistance exercise with a plyometric exercise is referred to as "complex training". In this study, we examined the effect of various resistive loads on the biomechanics of performance of a fast stretch-shortening cycle activity to determine if an optimal resistive load exists for complex training. Twelve elite rugby players performed three drop jumps before and after three back squat resistive loads of 65%, 80%, and 93% of a single repetition maximum (1-RM) load. All drop jumps were performed on a specially constructed sledge and force platform apparatus. Flight time, ground contact time, peak ground reaction force, reactive strength index, and leg stiffness were the dependent variables. Repeated-measures analysis of variance found that all resistive loads reduced (P benefit performance. However, it is unknown if these acute changes will produce any long-term adaptations to muscle function.

  5. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modelling heteroscedastic residual errors

    Science.gov (United States)

    David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera

    2017-04-01

    This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  6. Different Combinations of Perceived Autonomy Support and Control: Identifying the Most Optimal Motivating Style

    Science.gov (United States)

    Haerens, L.; Vansteenkiste, M.; De Meester, A.; Delrue, J.; Tallir, I.; Vande Broek, G.; Goris, W.; Aelterman, N.

    2018-01-01

    Background: According to Self-Determination Theory, teachers and sport coaches can differ in the motivating style they rely upon to motivate young people. When endorsing an autonomy-supportive motivating style, instructors try to identify, vitalize, and nurture youngsters' inner motivational resources. In contrast, instructors with a dominant…

  7. Advanced fuel for fast breeder reactors: Fabrication and properties and their optimization

    International Nuclear Information System (INIS)

    1988-06-01

    The present design for FBR fuel rods includes usually MOX fuel pellets cladded into stainless steel tubes, together with UO 2 axial blanket and stainless steel hexagonal wrappers. Mixed carbide, nitride and metallic fuels have been tested as alternative fuels in test reactors. Among others, the objectives to develop these alternative fuels are to gain a high breeding ratio, short doubling time and high linear ratings. Fuel rod and assembly designers are now concentrating on finding the combination of optimized fuel, cladding and wrapper materials which could result in improvement of fuel operational reliability under high burnups and load-follow mode of operation. The purpose of the meeting was to review the experience of advanced FBR fuel fabrication technology, its properties before, under and after irradiation, peculiarities of the back-end of the nuclear fuel cycle, and to outline future trends. As a result of the panel discussion, the recommendations on future Agency activities in the area of advanced FBR fuels were developed. A separate abstract was prepared for each of the 10 presentations of this meeting. Refs, figs and tabs

  8. Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka

    2014-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  9. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    Science.gov (United States)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  10. Advanced Harmony Search with Ant Colony Optimization for Solving the Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Ho-Yoeng Yun

    2013-01-01

    Full Text Available We propose a novel heuristic algorithm based on the methods of advanced Harmony Search and Ant Colony Optimization (AHS-ACO to effectively solve the Traveling Salesman Problem (TSP. The TSP, in general, is well known as an NP-complete problem, whose computational complexity increases exponentially by increasing the number of cities. In our algorithm, Ant Colony Optimization (ACO is used to search the local optimum in the solution space, followed by the use of the Harmony Search to escape the local optimum determined by the ACO and to move towards a global optimum. Experiments were performed to validate the efficiency of our algorithm through a comparison with other algorithms and the optimum solutions presented in the TSPLIB. The results indicate that our algorithm is capable of generating the optimum solution for most instances in the TSPLIB; moreover, our algorithm found better solutions in two cases (kroB100 and pr144 when compared with the optimum solution presented in the TSPLIB.

  11. Metabolomic approach to identifying bioactive compounds in berries: advances toward fruit nutritional enhancement.

    Science.gov (United States)

    Stewart, Derek; McDougall, Gordon J; Sungurtas, Julie; Verrall, Susan; Graham, Julie; Martinussen, Inger

    2007-06-01

    Plant polyphenolics continue to be the focus of attention with regard to their putative impact on human health. An increasing and ageing human population means that the focus on nutrition and nutritional enhancement or optimisation of our foodstuffs is paramount. Using the raspberry as a model, we have shown how modern metabolic profiling approaches can be used to identify the changes in the level of beneficial polyphenolics in fruit breeding segregating populations and how the level of these components is determined by genetic and/or environmental control. Interestingly, the vitamin C content appeared to be significantly influenced by environment (growth conditions) whilst the content of the polyphenols such as cyanidin, pelargonidin and quercetin glycosides appeared much more tightly regulated, suggesting a rigorous genetic control. Preliminary metabolic profiling showed that the fruit polyphenolic profiles divided into two gross groups segregating on the basis of relative levels of cyanidin-3-sophoroside and cyanidin-3-rutinoside, compounds implicated as conferring human health benefits.

  12. Advancing the literature on designing audit and feedback interventions: identifying theory-informed hypotheses.

    Science.gov (United States)

    Colquhoun, Heather L; Carroll, Kelly; Eva, Kevin W; Grimshaw, Jeremy M; Ivers, Noah; Michie, Susan; Sales, Anne; Brehaut, Jamie C

    2017-09-29

    Audit and feedback (A&F) is a common strategy for helping health providers to implement evidence into practice. Despite being extensively studied, health care A&F interventions remain variably effective, with overall effect sizes that have not improved since 2003. Contributing to this stagnation is the fact that most health care A&F interventions have largely been designed without being informed by theoretical understanding from the behavioral and social sciences. To determine if the trend can be improved, the objective of this study was to develop a list of testable, theory-informed hypotheses about how to design more effective A&F interventions. Using purposive sampling, semi-structured 60-90-min telephone interviews were conducted with experts in theories related to A&F from a range of fields (e.g., cognitive, health and organizational psychology, medical decision-making, economics). Guided by detailed descriptions of A&F interventions from the health care literature, interviewees described how they would approach the problem of designing improved A&F interventions. Specific, theory-informed hypotheses about the conditions for effective design and delivery of A&F interventions were elicited from the interviews. The resulting hypotheses were assigned by three coders working independently into themes, and categories of themes, in an iterative process. We conducted 28 interviews and identified 313 theory-informed hypotheses, which were placed into 30 themes. The 30 themes included hypotheses related to the following five categories: A&F recipient (seven themes), content of the A&F (ten themes), process of delivery of the A&F (six themes), behavior that was the focus of the A&F (three themes), and other (four themes). We have identified a set of testable, theory-informed hypotheses from a broad range of behavioral and social science that suggest conditions for more effective A&F interventions. This work demonstrates the breadth of perspectives about A&F from non

  13. Identifying yield-optimizing environments for two cowpea breeding lines by manipulating photoperiod and harvest scenario

    Science.gov (United States)

    Ohler, T. A.; Mitchell, C. A.

    1996-01-01

    Photoperiod and harvest scenario of cowpea (Vigna unguiculata L. Walp) canopies were manipulated to optimize productivity for use in future controlled ecological life-support systems. Productivity was measured by edible yield rate (EYR:g m-2 day-1), shoot harvest index (SHI: g edible biomass [g total shoot dry weight]), and yield-efficiency rate (YER:g edible biomass m-2 day-1 per[g nonedible shoot dry weight]). Breeding lines 'IT84S-2246' (S-2246) and "IT82D-889' (D-889) were grown in a greenhouse under 8-, 12-, or 24-h photoperiods. S-2246 was short-day and D-889 was day-neutral for flowering. Under each photoperiod, cowpeas were harvested either for leaves only, seeds only, or leaves plus seeds (mixed harvest). Photoperiod did not affect EYR of either breeding line for any harvest scenario tested. Averaged over both breeding lines, seed harvest gave the highest EYR at 6.7 g m-2 day-1. The highest SHI (65%) and YER (94 mg m-2 day-1 g-1) were achieved for leaf-only harvest of D-889 under an 8-h photoperiod. For leaf-only harvest of S-2246, both SHI and YER increased with increasing photoperiod, but declined for seed-only and mixed harvests. However, photoperiod had no effect on SHI or YER for D-889 for any harvest scenario. A second experiment utilized the short-day cowpea breeding line 'IT89KD-288' (D-288) and the day-neutral breeding line 'IT87D-941-1' (D-941) to compare yield parameters using photoperiod extension under differing lamp types. This experiment confirmed the photoperiod responses of D-889 and S-2246 to a mixed-harvest scenario and indicated that daylength extension with higher irradiance from high pressure sodium lamps further suppressed EYR, SHI, and YER of the short-day breeding line D-288.

  14. Use of GIS to identify optimal settings for cancer prevention and control in African American communities

    Science.gov (United States)

    Alcaraz, Kassandra I.; Kreuter, Matthew W.; Bryan, Rebecca P.

    2009-01-01

    Objective Rarely have Geographic Information Systems (GIS) been used to inform community-based outreach and intervention planning. This study sought to identify community settings most likely to reach individuals from geographically localized areas. Method An observational study conducted in an urban city in Missouri during 2003–2007 placed computerized breast cancer education kiosks in seven types of community settings: beauty salons, churches, health fairs, neighborhood health centers, Laundromats, public libraries and social service agencies. We used GIS to measure distance between kiosk users’ (n=7,297) home ZIP codes and the location where they used the kiosk. Mean distances were compared across settings. Results Mean distance between individuals’ home ZIP codes and the location where they used the kiosk varied significantly (pLaundromats (2.3 miles) and public libraries (2.8 miles) and greatest among kiosk users at health fairs (7.6 miles). Conclusion Some community settings are more likely than others to reach highly localized populations. A better understanding of how and where to reach specific populations can complement the progress already being made in identifying populations at increased disease risk. PMID:19422844

  15. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis

    International Nuclear Information System (INIS)

    Turinsky, Paul; Hays, Ross

    2011-01-01

    Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of finding reactor deployment profiles that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to refine the current results and to extend them to include the other objective functions and to examine the optimization trade-offs that exist between these different objectives.

  16. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Turinsky, Paul; Hays, Ross

    2011-09-02

    Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of nding reactor deployment pro les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o s that exist between these di erent objectives.

  17. Identifying optimal vaccination strategies for serogroup A Neisseria meningitidis conjugate vaccine in the African meningitis belt.

    Directory of Open Access Journals (Sweden)

    Sara Tartof

    Full Text Available The optimal long-term vaccination strategies to provide population-level protection against serogroup A Neisseria meningitidis (MenA are unknown. We developed an age-structured mathematical model of MenA transmission, colonization, and disease in the African meningitis belt, and used this model to explore the impact of various vaccination strategies.The model stratifies the simulated population into groups based on age, infection status, and MenA antibody levels. We defined the model parameters (such as birth and death rates, age-specific incidence rates, and age-specific duration of protection using published data and maximum likelihood estimation. We assessed the validity of the model by comparing simulated incidence of invasive MenA and prevalence of MenA carriage to observed incidence and carriage data.The model fit well to observed age- and season-specific prevalence of carriage (mean pseudo-R2 0.84 and incidence of invasive disease (mean R2 0.89. The model is able to reproduce the observed dynamics of MenA epidemics in the African meningitis belt, including seasonal increases in incidence, with large epidemics occurring every eight to twelve years. Following a mass vaccination campaign of all persons 1-29 years of age, the most effective modeled vaccination strategy is to conduct mass vaccination campaigns every 5 years for children 1-5 years of age. Less frequent campaigns covering broader age groups would also be effective, although somewhat less so. Introducing conjugate MenA vaccine into the EPI vaccination schedule at 9 months of age results in higher predicted incidence than periodic mass campaigns.We have developed the first mathematical model of MenA in Africa to incorporate age structures and progressively waning protection over time. Our model accurately reproduces key features of MenA epidemiology in the African meningitis belt. This model can help policy makers consider vaccine program effectiveness when determining the

  18. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis

    DEFF Research Database (Denmark)

    Leon, Ileana R; Schwämmle, Veit; Jensen, Ole N

    2013-01-01

    a combination of qualitative and quantitative LC-MS/MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein...... conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents prior to analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative LC-MS/MS workflow quantified over 3700 distinct peptides with 96% completeness between all...... protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows...

  19. Identifying and Managing Undue Influence From Family Members in End-of-Life Decisions for Patients With Advanced Cancer.

    Science.gov (United States)

    Baker, Francis X; Gallagher, Colleen M

    2017-10-01

    Undue influence from family members of patients with advanced cancer remains a serious ethical problem in end-of-life decision making. Despite the wealth of articles discussing the problem of undue influence, little has been written by way of practical guidance to help clinicians identify and effectively manage situations of undue influence. This article briefly lays out how to identify and manage situations of undue influence sensitively and effectively. We explain how undue influence may present itself in the clinic and distinguish it from ethically permissible expressions of relational autonomy. In addition, we lay out a process by which any clinician suspecting undue influence may gather additional information and, if necessary, conduct a family meeting to address the undue influence. It is our hope that by providing clinicians at all levels of patient care with such guidance, they will feel empowered to respond to cases of undue influence when they arise.

  20. Identifying optimal areas for REDD intervention: East Kalimantan, Indonesia as a case study

    International Nuclear Information System (INIS)

    Harris, Nancy L; Petrova, Silvia; Brown, Sandra; Stolle, Fred

    2008-01-01

    International discussions on reducing emissions from deforestation and degradation (REDD) as a greenhouse gas (GHG) abatement strategy are ongoing under the United Nations Framework Convention on Climate Change (UNFCCC). In the light of these discussions, it behooves countries to be able to determine the relative likelihood of deforestation over a landscape and perform a first order estimation of the potential reduction in GHGs associated with various protection scenarios. This would allow countries to plan their interventions accordingly to maximize carbon benefits, alongside other environmental and socioeconomic benefits, because forest protection programs might be chosen in places where the perceived threat of deforestation is high whereas in reality the threat is low. In this case study, we illustrate a method for creating deforestation threat maps and estimating potential reductions in GHGs from eighteen protected areas in East Kalimantan, Indonesia, that would occur if protection of these areas was well enforced. Results from our analysis indicate that a further 230 720 ha of East Kalimantan's forest area would be lost and approximately 305 million t CO 2 would be emitted from existing protected areas between 2003 and 2013 if the historical rate of deforestation continued unabated. In other words, the emission of 305 million t CO 2 into the atmosphere would be avoided during this period if protection of the existing areas was well enforced. At a price of $4 per ton of CO 2 (approximate price on the Chicago Climate Exchange in August 2008), this represents an estimated gross income stream of about $120 million per year. We also identified additional areas with high carbon stocks under high deforestation threat that would be important to protect if the carbon benefits of avoided deforestation activities are to be maximized in this region

  1. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1980-01-01

    The paper is aimed at making a theoretical analysis on optimal shift from finite energy resources like presently used oil toward advanced energy sources like nuclear and solar. First, the value of conventional energy as a finite resource is derived based on the variational principle. Second, a simplified model on macroeconomy is used to obtain and optimal relationship between energy production and consumption and thereby the optimality on energy price is provided. Third, the meaning of research and development of advanced energy is shown by taking into account resource constraints and technological progress. Finally, an optimal timing of the shift from conventional to advanced energies is determined by making use of the maximum principle. The methematical model employed there is much simplified but can be used to conclude that in order to make an optimal shift some policy-oriented decision must be made prior to when an economically competitive condition comes and that, even with that decision made, some recession of energy demand is inevitable during the transitional phase. (author)

  2. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  3. Ten years of "Optimal Therapy in Advanced Ovarian Cancer. Update" meeting.

    Science.gov (United States)

    Poveda, A

    2008-01-01

    The International Symposium on Advanced Ovarian Cancer: Optimal Therapy was founded by Dr. Andrés Poveda and Prof. Jan B. Vermorken, and each edition has been directed by them. The 6th edition was held on March 2, 2007. This symposium is organized every other year by GEICO (Grupo Español de Investigación de Cáncer de Ovario/Spanish Ovarian Cancer Research Group), under the auspices of the Spanish Society of Medical Oncology (SEOM), the Gynecologic Cancer Intergroup (GCIG), and the European Society of Medical Oncology (ESMO) Educational Committee for its Medical Oncology Recertification Approval (ESMO/MORA) Program. One hundred and fifty people attended the symposium's 1st edition, held in 1996. Since then, the interest in this meeting has increased. Last year, almost three hundred people coming not only from Spain but also from Europe, North and Latin America, Asia, and Australia were present in the symposium. This is a great challenge for us. Some important international cooperative groups from Europe, America, and Australia collaborate with this symposium, such as GOG, NCIC, EORTC, AGO, Scottish Group, ICON, GINECO, NSGO, ANZGOG, and others.

  4. Optimization of programming parameters in children with the advanced bionics cochlear implant.

    Science.gov (United States)

    Baudhuin, Jacquelyn; Cadieux, Jamie; Firszt, Jill B; Reeder, Ruth M; Maxson, Jerrica L

    2012-05-01

    Cochlear implants provide access to soft intensity sounds and therefore improved audibility for children with severe-to-profound hearing loss. Speech processor programming parameters, such as threshold (or T-level), input dynamic range (IDR), and microphone sensitivity, contribute to the recipient's program and influence audibility. When soundfield thresholds obtained through the speech processor are elevated, programming parameters can be modified to improve soft sound detection. Adult recipients show improved detection for low-level sounds when T-levels are set at raised levels and show better speech understanding in quiet when wider IDRs are used. Little is known about the effects of parameter settings on detection and speech recognition in children using today's cochlear implant technology. The overall study aim was to assess optimal T-level, IDR, and sensitivity settings in pediatric recipients of the Advanced Bionics cochlear implant. Two experiments were conducted. Experiment 1 examined the effects of two T-level settings on soundfield thresholds and detection of the Ling 6 sounds. One program set T-levels at 10% of most comfortable levels (M-levels) and another at 10 current units (CUs) below the level judged as "soft." Experiment 2 examined the effects of IDR and sensitivity settings on speech recognition in quiet and noise. Participants were 11 children 7-17 yr of age (mean 11.3) implanted with the Advanced Bionics High Resolution 90K or CII cochlear implant system who had speech recognition scores of 20% or greater on a monosyllabic word test. Two T-level programs were compared for detection of the Ling sounds and frequency modulated (FM) tones. Differing IDR/sensitivity programs (50/0, 50/10, 70/0, 70/10) were compared using Ling and FM tone detection thresholds, CNC (consonant-vowel nucleus-consonant) words at 50 dB SPL, and Hearing in Noise Test for Children (HINT-C) sentences at 65 dB SPL in the presence of four-talker babble (+8 signal

  5. Optimal anthropometric measures and thresholds to identify undiagnosed type 2 diabetes in three major Asian ethnic groups.

    Science.gov (United States)

    Alperet, Derrick Johnston; Lim, Wei-Yen; Mok-Kwee Heng, Derrick; Ma, Stefan; van Dam, Rob M

    2016-10-01

    To identify optimal anthropometric measures and cutoffs to identify undiagnosed diabetes mellitus (UDM) in three major Asian ethnic groups (Chinese, Malays, and Asian-Indians). Cross-sectional data were analyzed from 14,815 ethnic Chinese, Malay, and Asian-Indian participants of the Singapore National Health Surveys, which included anthropometric measures and an oral glucose tolerance test. Receiver operating characteristic curve analyses were used with calculation of the area under the curve (AUC) to evaluate the performance of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHTR) for the identification of UDM. BMI performed significantly worse (AUCMEN  = 0.70; AUCWOMEN  = 0.75) than abdominal measures, whereas WHTR (AUCMEN  = 0.76; AUCWOMEN  = 0.79) was among the best performing measures in both sexes and all ethnic groups. Anthropometric measures performed better in Chinese than in Asian-Indian participants for the identification of UDM. A WHTR cutoff of 0.52 appeared optimal with a sensitivity of 76% in men and 73% in women and a specificity of 63% in men and 70% in women. Although ethnic differences were observed in the performance of anthropometric measures for the identification of UDM, abdominal adiposity measures generally performed better than BMI, and WHTR performed best in all Asian ethnic groups. © 2016 The Obesity Society.

  6. Advanced interface modelling of n-Si/HNO3 doped graphene solar cells to identify pathways to high efficiency

    Science.gov (United States)

    Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.

    2018-03-01

    In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.

  7. Fifty years of chasing lizards: new insights advance optimal escape theory.

    Science.gov (United States)

    Samia, Diogo S M; Blumstein, Daniel T; Stankowich, Theodore; Cooper, William E

    2016-05-01

    Systematic reviews and meta-analyses often examine data from diverse taxa to identify general patterns of effect sizes. Meta-analyses that focus on identifying generalisations in a single taxon are also valuable because species in a taxon are more likely to share similar unique constraints. We conducted a comprehensive phylogenetic meta-analysis of flight initiation distance in lizards. Flight initiation distance (FID) is a common metric used to quantify risk-taking and has previously been shown to reflect adaptive decision-making. The past decade has seen an explosion of studies focused on quantifying FID in lizards, and, because lizards occur in a wide range of habitats, are ecologically diverse, and are typically smaller and differ physiologically from the better studied mammals and birds, they are worthy of detailed examination. We found that variables that reflect the costs or benefits of flight (being engaged in social interactions, having food available) as well as certain predator effects (predator size and approach speed) had large effects on FID in the directions predicted by optimal escape theory. Variables that were associated with morphology (with the exception of crypsis) and physiology had relatively small effects, whereas habitat selection factors typically had moderate to large effect sizes. Lizards, like other taxa, are very sensitive to the costs of flight. © 2015 Cambridge Philosophical Society.

  8. Evolutionary optimization and game strategies for advanced multi-disciplinary design applications to aeronautics and UAV design

    CERN Document Server

    Periaux, Jacques; Lee, Dong Seop Chris

    2015-01-01

    Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...

  9. Selection of the optimal radiotherapy technique for locally advanced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Lee, Ik-Jae; Seong, Jinsil; Koom, Woong-Sub; Kim, Yong-Bae; Jeon, Byeong-Chul; Kim, Joo-Ho; Han, Kwang-Hyub

    2011-01-01

    Various techniques are available for radiotherapy of hepatocellular carcinoma, including three-dimensional conformal radiotherapy, linac-based intensity-modulated radiotherapy and helical tomotherapy. The purpose of this study was to determine the optimal radiotherapy technique for hepatocellular carcinoma. Between 2006 and 2007, 12 patients underwent helical tomotherapy for locally advanced hepatocellular carcinoma. Helical tomotherapy computerized radiotherapy planning was compared with the best computerized radiotherapy planning for three-dimensional conformal radiotherapy and linac-based intensity-modulated radiotherapy for the delivery of 60 Gy in 30 fractions. Tumor coverage was assessed by conformity index, radical dose homogeneity index and moderated dose homogeneity index. Computerized radiotherapy planning was also compared according to the tumor location. Tumor coverage was shown to be significantly superior with helical tomotherapy as assessed by conformity index and moderated dose homogeneity index (P=0.002 and 0.03, respectively). Helical tomotherapy showed significantly lower irradiated liver volume at 40, 50 and 60 Gy (V40, V50 and V60, P=0.04, 0.03 and 0.01, respectively). On the contrary, the dose-volume of three-dimensional conformal radiotherapy at V20 was significantly smaller than those of linac-based intensity-modulated radiotherapy and helical tomotherapy in the remaining liver (P=0.03). Linac-based intensity-modulated radiotherapy showed better sparing of the stomach compared with helical tomotherapy in the case of separated lesions in both lobes (12.3 vs. 24.6 Gy). Helical tomotherapy showed the high dose-volume exposure to the left kidney due to helical delivery in the right lobe lesion. Helical tomotherapy achieved the best tumor coverage of the remaining normal liver. However, helical tomotherapy showed much exposure to the remaining liver at the lower dose region and left kidney. (author)

  10. Optimal timing of early versus delayed adjuvant radiotherapy following radical prostatectomy for locally advanced prostate cancer.

    Science.gov (United States)

    Kowalczyk, Keith J; Gu, Xiangmei; Nguyen, Paul L; Lipsitz, Stuart R; Trinh, Quoc-Dien; Lynch, John H; Collins, Sean P; Hu, Jim C

    2014-04-01

    Although post-radical prostatectomy (RP) adjuvant radiation therapy (ART) benefits disease that is staged as pT3 or higher, the optimal ART timing remains unknown. Our objective is to characterize the outcomes and optimal timing of early vs. delayed ART. From the Surveillance, Epidemiology and End Results-Medicare data from 1995 to 2007, we identified 963 men with pT3N0 disease receiving early (statistic approach to determine at what time post-RP ART had the most significant effect on outcomes of interest in men with pT3N0 disease. When compared with delayed ART in men with pT3 disease, early ART was associated with improved PCSM (0.47 vs. 1.02 events per 100 person-years; P = 0.038) and less salvage hormonal therapy (2.88 vs. 4.59 events per 100 person-years; P = 0.001). Delaying ART beyond 5 months is associated with worse PCSM (hazard ratio [HR] 2.3; P = 0.020), beyond 3 months is associated with more BRE (HR 1.6; P = 0.025), and beyond 4 months is associated higher rates of salvage hormonal therapy (HR 1.6; P = 0.002). ART performed after 9 months was associated with fewer urethral strictures (HR 0.6; P = 0.042). Initiating ART less than 5 months after RP for pT3 is associated with improved PCSM. Early ART is also associated with fewer BRE and less use of salvage hormonal therapy if administered earlier than 3 and 4 months after RP, respectively. However, ART administered later than 9 months after RP is associated with fewer urethral strictures. Our population-based findings complement randomized trials designed with fixed ART timing. © 2013 Published by Elsevier Inc.

  11. A multi-factor GIS method to identify optimal geographic locations for electric vehicle (EV) charging stations

    Science.gov (United States)

    Zhang, Yongqin; Iman, Kory

    2018-05-01

    Fuel-based transportation is one of the major contributors to poor air quality in the United States. Electric Vehicle (EV) is potentially the cleanest transportation technology to our environment. This research developed a spatial suitability model to identify optimal geographic locations for installing EV charging stations for travelling public. The model takes into account a variety of positive and negative factors to identify prime locations for installing EV charging stations in Wasatch Front, Utah, where automobile emission causes severe air pollution due to atmospheric inversion condition near the valley floor. A walkable factor grid was created to store index scores from input factor layers to determine prime locations. 27 input factors including land use, demographics, employment centers etc. were analyzed. Each factor layer was analyzed to produce a summary statistic table to determine the site suitability. Potential locations that exhibit high EV charging usage were identified and scored. A hot spot map was created to demonstrate high, moderate, and low suitability areas for installing EV charging stations. A spatially well distributed EV charging system was then developed, aiming to reduce "range anxiety" from traveling public. This spatial methodology addresses the complex problem of locating and establishing a robust EV charging station infrastructure for decision makers to build a clean transportation infrastructure, and eventually improve environment pollution.

  12. Advanced computational biology methods identify molecular switches for malignancy in an EGF mouse model of liver cancer.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.

  13. Hierarchthis: An Interactive Interface for Identifying Mission-Relevant Components of the Advanced Multi-Mission Operations System

    Science.gov (United States)

    Litomisky, Krystof

    2012-01-01

    Even though NASA's space missions are many and varied, there are some tasks that are common to all of them. For example, all spacecraft need to communicate with other entities, and all spacecraft need to know where they are. These tasks use tools and services that can be inherited and reused between missions, reducing systems engineering effort and therefore reducing cost.The Advanced Multi-Mission Operations System, or AMMOS, is a collection of multimission tools and services, whose development and maintenance are funded by NASA. I created HierarchThis, a plugin designed to provide an interactive interface to help customers identify mission-relevant tools and services. HierarchThis automatically creates diagrams of the AMMOS database, and then allows users to show/hide specific details through a graphical interface. Once customers identify tools and services they want for a specific mission, HierarchThis can automatically generate a contract between the Multimission Ground Systems and Services Office, which manages AMMOS, and the customer. The document contains the selected AMMOS components, along with their capabilities and satisfied requirements. HierarchThis reduces the time needed for the process from service selections to having a mission-specific contract from the order of days to the order of minutes.

  14. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  15. Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts

    Directory of Open Access Journals (Sweden)

    Hung-Ju Shih

    2018-02-01

    Full Text Available A 12-year sea-state hindcast for Taiwanese waters, covering the period from 2005 to 2016, was conducted using a fully coupled tide-surge-wave model. The hindcasts of significant wave height and peak period were employed to estimate the wave power resources in the waters surrounding Taiwan. Numerical simulations based on unstructured grids were converted to structured grids with a resolution of 25 × 25 km. The spatial distribution maps of offshore annual mean wave power were created for each year and for the 12-year period. Waters with higher wave power density were observed off the northern, northeastern, southeastern (south of Green Island and southeast of Lanyu and southern coasts of Taiwan. Five energetic sea areas with spatial average annual total wave energy density of 60–90 MWh/m were selected for further analysis. The 25 × 25 km square grids were then downscaled to resolutions of 5 × 5 km, and five 5 × 5 km optimal areas were identified for wave energy converter deployments. The spatial average annual total wave energy yields at the five optimal areas (S1–(S5 were estimated to be 64.3, 84.1, 84.5, 111.0 and 99.3 MWh/m, respectively. The prevailing wave directions for these five areas lie between east and northeast.

  16. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    International Nuclear Information System (INIS)

    Svensson, Elin; Berntsson, Thore; Stroemberg, Ann-Brith

    2009-01-01

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO 2 emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO 2 emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives

  17. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)], E-mail: elin.svensson@chalmers.se; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives.

  18. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty. A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, doi:10.1016/j.enpol.2008.10.023] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives. (author)

  19. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings

    Directory of Open Access Journals (Sweden)

    S. Vignesh

    2017-04-01

    Full Text Available Flow based Erosion – corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosion–corrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosion–corrosion problems. High velocity oxy-fuel (HVOF spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology (RSM was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.

  20. Reaction kinetics of hydrazine neutralization in steam generator wet lay-up solution: Identifying optimal degradation conditions

    International Nuclear Information System (INIS)

    Schildermans, Kim; Lecocq, Raphael; Girasa, Emmanuel

    2012-09-01

    During a nuclear power plant outage, hydrazine is used as an oxygen scavenger in the steam generator lay-up solution. However, due to the carcinogenic effects of hydrazine, more stringent discharge limits are or will be imposed in the environmental permits. Hydrazine discharge could even be prohibited. Consequently, hydrazine alternatives or hydrazine degradation before discharge is needed. This paper presents the laboratory tests performed to characterize the reaction kinetics of hydrazine neutralization using bleach or hydrogen peroxide, catalyzed with either copper sulfate (CuSO 4 ) or potassium permanganate (KMnO 4 ). The tests are performed on two standard steam generator lay-up solutions based on different pH control agents: ammonia or ethanolamine. Different neutralization conditions are tested by varying temperature, oxidant addition, and catalyst concentration, among others, in order to identify the optimal parameters for hydrazine neutralization in a steam generator wet lay-up solution. (authors)

  1. Identifying factors for optimal development of health-related websites: a delphi study among experts and potential future users.

    Science.gov (United States)

    Schneider, Francine; van Osch, Liesbeth; de Vries, Hein

    2012-02-14

    The Internet has become a popular medium for offering tailored and targeted health promotion programs to the general public. However, suboptimal levels of program use in the target population limit the public health impact of these programs. Optimizing program development is considered as one of the main processes to increase usage rates. To distinguish factors potentially related to optimal development of health-related websites by involving both experts and potential users. By considering and incorporating the opinions of experts and potential users in the development process, involvement in the program is expected to increase, consequently resulting in increased appreciation, lower levels of attrition, and higher levels of sustained use. We conducted a systematic three-round Delphi study through the Internet. Both national and international experts (from the fields of health promotion, health psychology, e-communication, and technical Web design) and potential users were invited via email to participate. During this study an extensive list of factors potentially related to optimal development of health-related websites was identified, by focusing on factors related to layout, general and risk information provision, questionnaire use, additional services, and ease of use. Furthermore, we assessed the extent to which experts and potential users agreed on the importance of these factors. Differences as well as similarities among experts and potentials users were deduced. In total, 20 of 62 contacted experts participated in the first round (32% response rate); 60 of 200 contacted experts (30% response rate) and 210 potential users (95% response rate) completed the second-round questionnaire, and 32 of 60 contacted experts completed the third round (53% response rate). Results revealed important factors consented upon by experts and potential users (eg, ease of use, clear structure, and detailed health information provision), as well as differences regarding

  2. Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process.

    Science.gov (United States)

    Olszewski, P; Li, J F; Liu, D X; Walsh, J L

    2014-08-30

    The impact of pulse-modulated generation of atmospheric pressure plasma on the efficiency of organic dye degradation has been investigated. Aqueous samples of methyl orange were exposed to low temperature air plasma and the degradation efficiency was determined by absorbance spectroscopy. The plasma was driven at a constant frequency of 35kHz with a duty cycle of 25%, 50%, 75% and 100%. Relative concentrations of dissolved nitrogen oxides, pH, conductivity and the time evolution of gas phase ozone were measured to identify key parameters responsible for the changes observed in degradation efficiency. The results indicate that pulse modulation significantly improved dye degradation efficiency, with a plasma pulsed at 25% duty showing a two-fold enhancement. Additionally, pulse modulation led to a reduction in the amount of nitrate contamination added to the solution by the plasma. The results clearly demonstrate that optimization of the electrical excitation of the plasma can enhance both degradation efficiency and the final water quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cross-Layer Energy Optimization for IoT Environments: Technical Advances and Opportunities

    Directory of Open Access Journals (Sweden)

    Kirshna Kumar

    2017-12-01

    Full Text Available Energy efficiency is a significant characteristic of battery-run devices such as sensors, RFID and mobile phones. In the present scenario, this is the most prominent requirement that must be served while introducing a communication protocol for an IoT environment. IoT network success and performance enhancement depend heavily on optimization of energy consumption that enhance the lifetime of IoT nodes and the network. In this context, this paper presents a comprehensive review on energy efficiency techniques used in IoT environments. The techniques proposed by researchers have been categorized based on five different layers of the energy architecture of IoT. These five layers are named as sensing, local processing and storage, network/communication, cloud processing and storage, and application. Specifically, the significance of energy efficiency in IoT environments is highlighted. A taxonomy is presented for the classification of related literature on energy efficient techniques in IoT environments. Following the taxonomy, a critical review of literature is performed focusing on major functional models, strengths and weaknesses. Open research challenges related to energy efficiency in IoT are identified as future research directions in the area. The survey should benefit IoT industry practitioners and researchers, in terms of augmenting the understanding of energy efficiency and its IoT-related trends and issues.

  4. Multi-center evaluation of post-operative morbidity and mortality after optimal cytoreductive surgery for advanced ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Arash Rafii

    Full Text Available PURPOSE: While optimal cytoreduction is the standard of care for advanced ovarian cancer, the related post-operative morbidity has not been clearly documented outside pioneering centers. Indeed most of the studies are monocentric with inclusions over several years inducing heterogeneity in techniques and goals of surgery. We assessed the morbidity of optimal cytoreduction surgery for advanced ovarian cancer within a short inclusion period in 6 referral centers dedicated to achieve complete cytoreduction. PATIENTS AND METHODS: The 30 last optimal debulking surgeries of 6 cancer centers were included. Inclusion criteria included: stage IIIc- IV ovarian cancer and optimal surgery performed at the site of inclusion. All post-operative complications within 30 days of surgery were recorded and graded using the Memorial secondary events grading system. Student-t, Chi2 and non-parametric statistical tests were performed. RESULTS: 180 patients were included. There was no demographic differences between the centers. 63 patients underwent surgery including intestinal resections (58 recto-sigmoid resection, 24 diaphragmatic resections, 17 splenectomies. 61 patients presented complications; One patient died post-operatively. Major (grade 3-5 complications requiring subsequent surgeries occurred in 21 patients (11.5%. 76% of patients with a major complication had undergone an ultraradical surgery (P = 0.004. CONCLUSION: While ultraradical surgery may result in complete resection of peritoneal disease in advanced ovarian cancer, the associated complication rate is not negligible. Patients should be carefully evaluated and the timing of their surgery optimized in order to avoid major complications.

  5. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    International Nuclear Information System (INIS)

    Abu Amr, Salem S.; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2013-01-01

    Highlights: ► Ozone and persulfate reagent (O 3 /S 2 O 8 2- ) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH 3 –N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O 3 /kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities ( 3 –N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m 3 ozone, 1 g/1 g COD 0 /S 2 O 8 2- ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH 3 –N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O 3 /kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S 2 O 8 2- only, to evaluate its effectiveness. The combined method (i.e., O 3 /S 2 O 8 2- ) achieved higher removal efficiencies for COD, color, and NH 3 –N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate

  6. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    Science.gov (United States)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  7. Development of optimized advanced austenitic steels (II). Evaluation of out-of-pile testing results of the test fuel claddings

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki; Mizuta, Shunji; Ukai, Shigeharu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-03-01

    14Cr-25Ni optimized advanced austenitic steels have been developed to improve the swelling resistance of 15Cr-20Ni austenitic stainless steels used for FBR fuel cladding. In this improvement, Ti, Nb, V and P were dissolved into 14Cr-25Ni matrix by means of the high-temperature solution treatment to make finely distributed and stabilized precipitates in the operation. Furthermore, at the final stage of cold-working, cold-working level increased and residual stress was reduced. In this study, as fabricated microstructure observation, solubility of alloying elements and grain size test in the manufacturing process were evaluated. Following results were obtained. (1) Spherical precipitates were observed in the grain. Most of them were identified as complexed carbide-nitride [Ti,Nb(C,N)] by EDX analysis. (2) The dissolved percentages of Ti and Ni in the matrix were about 70% and 30% respectively. Undissolved Ti and Nb may react with undissolved carbon and precipitate as MC carbides. (3) High-temperature solution treatment is effective for the sufficient solubility of alloying elements, but it is likely to induce very large grains, which is the cause of defective signal in the ultrasonic alloy testing. The results of the grain size test showed that the large grain size is reduced in low Nb (0.1wt%) alloy compared with the standard alloy (0.2wt% Nb), and the effectiveness for the grain size control by reducing the Nb content was confirmed. Also, it was suggested that the intermediate heat treatment and cold work conditions would possibly avoid the occurrence of the large grain at the final heat treatment. (author)

  8. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    2009-01-01

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem...

  9. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    Science.gov (United States)

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  10. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process.

    Science.gov (United States)

    Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I

    2014-04-30

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.

  11. Design and Optimization of a Composite Canard Control Surface of an Advanced Fighter Aircraft under Static Loading

    Directory of Open Access Journals (Sweden)

    Shrivastava Sachin

    2015-01-01

    Full Text Available The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI in unidirectional fibrous laminates using Genetic-Algorithms (GA under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT. The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.

  12. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  13. Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco AtlasTM

    OpenAIRE

    Utsler, James

    2006-01-01

    A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM software. The output of the ATLASTM simulation runs served as the input to the genetic algorithm. The genetic algorithm was run as a diffusing computation on a network of eighteen dual processor nodes. Results showed that the genetic algorithm produced better power output optimizations when compared with the results obtained using the hill cli...

  14. Topology optimization and digital assembly of advanced space-frame structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Amir, Oded; Michael, Knauss

    2014-01-01

    this paper presents a novel method for integrated design, optimization and fabrication of optimized space-frame structures in an autonomous, digital process. Comparative numerical studies are presented, demonstrating achievable mass reduction by application of the method by comparison to equivalent...... to normative space truss designs and dimensions. As such, a principal digital fabrication and assembly scheme is developed, where an architectural design methodology relative to the described process is established, and the proposed process demonstrated through scaled digital fabrication experiments....

  15. Optimal debulking targets in women with advanced stage ovarian cancer: a retrospective study of immediate versus interval debulking surgery.

    Science.gov (United States)

    Altman, Alon D; Nelson, Gregg; Chu, Pamela; Nation, Jill; Ghatage, Prafull

    2012-06-01

    The objective of this study was to examine both overall and disease-free survival of patients with advanced stage ovarian cancer after immediate or interval debulking surgery based on residual disease. We performed a retrospective chart review at the Tom Baker Cancer Centre in Calgary, Alberta of patients with pathologically confirmed stage III or IV ovarian cancer, fallopian tube cancer, or primary peritoneal cancer between 2003 and 2007. We collected data on the dates of diagnosis, recurrence, and death; cancer stage and grade, patients' age, surgery performed, and residual disease. One hundred ninety-two patients were included in the final analysis. The optimal debulking rate with immediate surgery was 64.8%, and with interval surgery it was 85.9%. There were improved overall and disease-free survival rates for optimally debulked disease (advanced stage ovarian cancer, the goal of surgery should be resection of disease to microscopic residual at the initial procedure. This results in improved overall survival than lesser degrees of resection. Further studies are required to determine optimal surgical management.

  16. Advanced digital PWR plant protection system based on optimal estimation theory

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-04-01

    An advanced plant protection system for the Loss-of-Fluid Test (LOFT) reactor plant is described and evaluated. The system, based on a Kalman filter estimator, is capable of providing on-line estimates of such critical variables as fuel and cladding temperature, departure from nucleate boiling ratio, and maximum linear heat generation rate. The Kalman filter equations are presented, as is a description of the LOFT plant dynamic model inherent in the filter. Simulation results demonstrate the performance of the advanced system

  17. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    Science.gov (United States)

    Baisden, W. T.; Canessa, S.

    2013-01-01

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of 14C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of ∼500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of 14C to determine residence times, by estimating the amount of ‘bomb 14C’ incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point 14C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C (‘passive fraction’), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  18. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    International Nuclear Information System (INIS)

    Baisden, W.T.; Canessa, S.

    2013-01-01

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of 14 C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of ∼500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of 14 C to determine residence times, by estimating the amount of ‘bomb 14 C’ incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point 14 C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C (‘passive fraction’), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  19. Using 50 years of soil radiocarbon data to identify optimal approaches for estimating soil carbon residence times

    Energy Technology Data Exchange (ETDEWEB)

    Baisden, W.T., E-mail: t.baisden@gns.cri.nz [National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt (New Zealand); Canessa, S. [National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt (New Zealand)

    2013-01-15

    In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of {sup 14}C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of {approx}500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of {sup 14}C to determine residence times, by estimating the amount of 'bomb {sup 14}C' incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point {sup 14}C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C ('passive fraction'), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.

  20. Orbit Transfer Vehicle Engine Study. Phase A, extension 1: Advanced expander cycle engine optimization

    Science.gov (United States)

    Mellish, J. A.

    1979-01-01

    The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.

  1. Optimization of advanced liquid natural gas-fuelled machineries for a high-speed ferry

    DEFF Research Database (Denmark)

    Tveitaskog, Kari Anne; Haglind, Fredrik

    -based optimization routine are used. The top cycle is modeled as the aero-derivative gas turbine LM2500, while the following five options for bottoming cycles are modeled: ∙ Single pressure steam cycle ∙ Dual-pressure steam cycle ∙ ORC using Toluene as the working fluid with an intermediate oil loop ∙ ABC with inter......This report is aimed at designing and optimizing combined cycles in order to define the most suitable machinery system for the future high-speed Incat ferry operated by Mols-Linien. For this purpose, an in-house numerical simulation tool called DNA (Dynamic Network Analysis) and a genetic algorithm...

  2. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    Science.gov (United States)

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  3. Advanced tools for modeling, design and optimization of wind turbine systems

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, A.D.; Jauch, C.

    2005-01-01

    As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more i...

  4. Advanced sorting technologies for optimal wood products and woody biomass utilization

    Science.gov (United States)

    Xiping Wang

    2012-01-01

    Forest materials represent great potential for advancing our goals in the 21st century for sustainable building, energy independence, and carbon sequestration. A critical component of an improved system for producing bioproducts and bioenergr from forest materials is the ability to sort trees, stems, and logs into end-product categories that represent their highest...

  5. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    Science.gov (United States)

    Rampy, Rachel A.

    optimizing the laser beacons used to bring AO correction to parts of the sky that lack a naturally bright light source for measuring atmospheric distortion. Long pulse length laser guide stars (LGS) that use fluorescence from the D 2 transition in mesospheric sodium are valuable both due to their high altitude, and because they permit Rayleigh blanking and fratricide avoidance in multiple LGS systems. Bloch equation simulations of sodium-light interactions in Mathematica show that certain spectral formats and pulse lengths (on the order of 30 μs), with high duty cycles (20-50%), should be able to achieve photon returns within 10% of what is seen from continuous wave (CW) excitation. Utilizing this recently developed code (called LGSBloch), I investigated the time dependent characteristics of sodium fluorescence. I then identified the optimal format for the new LGS that will be part of the upgrade to the AO system on the Shane 3 meter telescope at the Lick Observatory. I discuss these results, along with their general applicability to other LGS systems, and provide a brief description of the potential benefits of uplink correction. Predictions from the LGSBloch simulation package are compared to data from currently operating LGS systems. For a CW LGS, the return flux measurements and theory show reasonable agreement, but for short pulse lasers, such as those at the Lick and Keck Observatories, the code seems to be overestimating the data by a factor of 2--3. Several tactics to explicate this discrepancy are explored, such as verifying parameters involved in the measurements and including greater detail in the modeling. Although these efforts were unsuccessful at removing the discrepancy, they illuminated other facets of the problem that deserve further consideration. Use of the sophisticated LGSBloch model has allowed detailed study of the evolution of the energy level populations and other physical effects (e.g. Larmor precession, atomic recoil, and collisions). This has

  6. Artificial neural network to support thermohydraulic design optimization for an advanced nuclear heat removal system

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira; Linda, Ondrej; Manic, Milos

    2009-01-01

    The U.S. Department of Energy (DOE) is leading a number of initiatives, including one known as the Next Generation Nuclear Plant (NGNP) project. One of the NGNP nuclear system concepts is the Very High Temperature (gas-cooled) Reactor (VHTR) that may be coupled to a hydrogen generating plant to support the anticipated hydrogen economy. For the NGNP, an efficient power conversion system using an Intermediate Heat Exchanger (IHX) is key to electricity and/or process heat generation (hydrogen production). Ideally, it's desirable for the IHX to be compact and thermally efficient. However, traditional heat exchanger design practices do not assure that the design parameters are optimized. As part of NGNP heat exchanger design and optimization project, this research paper thus proposes developing a recurrent-type Artificial Neural Network (ANN), the Hopfield Network (HN) model, in which the activation function is modified, as a design optimization approach to support a NGNP thermal system candidate, the Printed Circuit Heat Exchanger (PCHE). Four quadratic functions, available in literature, were used to test the presented methodology. The results computed by an artificially intelligent approach were compared to another approach, the Genetic Algorithm (GA). The results show that the HN results are close to GA in optimization of multi-variable second-order equations. (author)

  7. Hydrocarbon production and reservoir management: recent advances in closed-loop optimization technology

    NARCIS (Netherlands)

    Abbink, O.A.; Hanea, R.G.; Nennie, E.D.; Peters, R.C.A.M.

    2009-01-01

    Petroleum production is a relatively inefficient process. For oil production, it is, generally, less than 60 % effective on a macro scale and less than 60 % effective on a micro scale. This results, commonly, in an actual oil recovery of less than 35 %. Optimization of the production process will,

  8. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    Science.gov (United States)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  9. Consideration of a design optimization method for advanced nuclear power plant thermal-hydraulic components

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira; Manic, Milos; Patterson, Michael; Danchus, William

    2009-01-01

    In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)

  10. A framework for model-based optimization of bioprocesses under uncertainty: Identifying critical parameters and operating variables

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    This study presents the development and application of a systematic model-based framework for bioprocess optimization, evaluated on a cellulosic ethanol production case study. The implementation of the framework involves the use of dynamic simulations, sophisticated uncertainty analysis (Monte...

  11. Performance analysis and optimization of an advanced pharmaceutical wastewater treatment plant through a visual basic software tool (PWWT.VB).

    Science.gov (United States)

    Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha

    2016-05-01

    A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.

  12. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  13. An optimization study of peak thermal neutron flux in moderators of advanced repetitive pulse reactors

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Watanabe, N.

    1976-01-01

    In achieving a high peak thermal neutron flux in hydrogenous moderators installed in repetitive pulse reactors, the core-moderator arrangement can play as much an important role as the moderator design itself. However, the effect of the former has not been adequately emphasized to date, while a rather extensive study has been made on the latter. The present study concerns with a core-moderator system parameter optimization for a repetitive accelerator pulsed fast reactor. The results have shown that small differences in the arrangement resulting from the optimizations of various parameters are significant and the effects can be summed up to give an increase in the peak thermal flux by a factor of about two. (auth.)

  14. Adaptable structural synthesis using advanced analysis and optimization coupled by a computer operating system

    Science.gov (United States)

    Sobieszczanski-Sobieski, J.; Bhat, R. B.

    1979-01-01

    A finite element program is linked with a general purpose optimization program in a 'programing system' which includes user supplied codes that contain problem dependent formulations of the design variables, objective function and constraints. The result is a system adaptable to a wide spectrum of structural optimization problems. In a sample of numerical examples, the design variables are the cross-sectional dimensions and the parameters of overall shape geometry, constraints are applied to stresses, displacements, buckling and vibration characteristics, and structural mass is the objective function. Thin-walled, built-up structures and frameworks are included in the sample. Details of the system organization and characteristics of the component programs are given.

  15. Advances of radioisotope for design, intensification and optimization of processes and operations in chemical industry

    International Nuclear Information System (INIS)

    Joshi, J.B.

    2002-01-01

    Full text: In chemical industries different processes and operations involve a variety of multiphase contacting schemes for optimal production schedule in terms of ease of handling, time and money. A number of parameters will have to be optimized for this purpose. Further more, during the operation of a process plant, a number of problems such as reduction in process efficiency, deterioration in product quality etc. are encountered due to malfunctioning of one or more components. The successful operation of an industry depends on the early detection of the problems for appropriate remedial action. These are conveniently carried out by the application of radioisotopes either directly or in sealed condition depending upon the problem to be addressed. In this talk both types of radiotracer applications are discussed by taking specific examples

  16. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  17. Advanced methods for the analysis, design, and optimization of SMA-based aerostructures

    International Nuclear Information System (INIS)

    Hartl, D J; Lagoudas, D C; Calkins, F T

    2011-01-01

    Engineers continue to apply shape memory alloys to aerospace actuation applications due to their high energy density, robust solid-state actuation, and silent and shock-free operation. Past design and development of such actuators relied on experimental trial and error and empirically derived graphical methods. Over the last two decades, however, it has been repeatedly demonstrated that existing SMA constitutive models can capture stabilized SMA transformation behaviors with sufficient accuracy. This work builds upon past successes and suggests a general framework by which predictive tools can be used to assess the responses of many possible design configurations in an automated fashion. By applying methods of design optimization, it is shown that the integrated implementation of appropriate analysis tools can guide engineers and designers to the best design configurations. A general design optimization framework is proposed for the consideration of any SMA component or assembly of such components that applies when the set of design variables includes many members. This is accomplished by relying on commercially available software and utilizing tools already well established in the design optimization community. Such tools are combined with finite element analysis (FEA) packages that consider a multitude of structural effects. The foundation of this work is a three-dimensional thermomechanical constitutive model for SMAs applicable for arbitrarily shaped bodies. A reduced-order implementation also allows computationally efficient analysis of structural components such as wires, rods, beams and shells. The use of multiple optimization schemes, the consideration of assembled components, and the accuracy of the implemented constitutive model in full and reduced-order forms are all demonstrated

  18. ASTRID© - Advanced Solar Tubular ReceIver Design: A powerful tool for receiver design and optimization

    Science.gov (United States)

    Frantz, Cathy; Fritsch, Andreas; Uhlig, Ralf

    2017-06-01

    In solar tower power plants the receiver is one of the critical components. It converts the solar radiation into heat and must withstand high heat flux densities and high daily or even hourly gradients (due to passage of clouds). For this reason, the challenge during receiver design is to find a reasonable compromise between receiver efficiency, reliability, lifetime and cost. There is a strong interaction between the heliostat field, the receiver and the heat transfer fluid. Therefore, a proper receiver design needs to consider these components within the receiver optimization. There are several design and optimization tools for receivers, but most of them focus only on the receiver, ignoring the heliostat field and other parts of the plant. During the last years DLR developed the ASTRIDcode for tubular receiver concept simulation. The code comprises both a high and a low-detail model. The low-detail model utilizes a number of simplifications which allow the user to screen a high number of receiver concepts for optimization purposes. The high-detail model uses a FE model and is able to compute local absorber and salt temperatures with high accuracy. One key strength of the ASTRIDcode is its interface to a ray tracing software which simulates a realistic heat flux distributions on the receiver surface. The results generated by the ASTRIDcode have been validated by CFD simulations and measurement data.

  19. [Clinical Observation of Icotinib Hydrochloride for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified].

    Science.gov (United States)

    Li, Xi; Qin, Na; Wang, Jinghui; Yang, Xinjie; Zhang, Xinyong; Lv, Jialin; Wu, Yuhua; Zhang, Hui; Nong, Jingying; Zhang, Quan; Zhang, Shucai

    2015-12-01

    Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. Compared to the other two commercially available epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects. To explore the efficacy and side effects of icotinib hydrochloride in the treatment of the advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation and wild-type. Patients with advanced NSCLC who were treated with icotinib hydrochloride in Beijing Chest Hospital were retrospective analyzed from March 2009 to December 2014. The clinical data of 124 patients (99 with EGFR mutation and 25 with wild type) with advanced NSCLC were enrolled in this study. The patients' overall objective response rate (ORR) was 51.6 % and the disease control rate (DCR) was 79.8%; The patients with EGFR mutation, ORR was 63.6%, DCR was 93.9%. The ORR was 4.0% and the DCR was 24.0% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 10.5 months and 1.0 month in wild-type patients. The major adverse events were mild skin rash (30.6%) and diarrhea (16.1%). Monotherapy with icotinib hydrochloride is effective and tolerable for the advanced NSCLC EGFR mutation patients.


  20. Clinical Observation of Icotinib Hydrochloride for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified

    Directory of Open Access Journals (Sweden)

    Xi LI

    2015-12-01

    Full Text Available Background and objective Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. Compared to the other two commercially available epidermal growth factor receptor (EGFR tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects. To explore the efficacy and side effects of icotinib hydrochloride in the treatment of the advanced non-small cell lung cancer (NSCLC patients with EGFR mutation and wild-type. Methods Patients with advanced NSCLC who were treated with icotinib hydrochloride in Beijing Chest Hospital were retrospective analyzed from March 2009 to December 2014. Results The clinical data of 124 patients (99 with EGFR mutation and 25 with wild type with advanced NSCLC were enrolled in this study. The patients’ overall objective response rate (ORR was 51.6 % and the disease control rate (DCR was 79.8%; The patients with EGFR mutation, ORR was 63.6%, DCR was 93.9%. The ORR was 4.0% and the DCR was 24.0% in the wild-type patients. Median progression-free survival (PFS with icotinib treatment in EGFR mutation patients was 10.5 months and 1.0 month in wild-type patients. The major adverse events were mild skin rash (30.6% and diarrhea (16.1%. Conclusion Monotherapy with icotinib hydrochloride is effective and tolerable for the advanced NSCLC EGFR mutation patients.

  1. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment

    NARCIS (Netherlands)

    Vughs, D.; Baken, K.A.; Kolkman, A.; Martijn, A.J.; de Voogt, P.

    Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H2O2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many

  2. High FDG uptake areas on pre-radiotherapy PET/CT identify preferential sites of local relapse after chemoradiotherapy for locally advanced oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Calais, Jeremie; Lemarignier, Charles; Vera, Pierre [Henri Becquerel Cancer Center and Rouen University Hospital, Nuclear Medicine Department, Rouen (France); University of Rouen, QuantIF-LITIS (Equipe d' Accueil 4108-FR CNRS 3638), Faculty of Medicine, Rouen (France); Dubray, Bernard [University of Rouen, QuantIF-LITIS (Equipe d' Accueil 4108-FR CNRS 3638), Faculty of Medicine, Rouen (France); Centre Henri Becquerel and Rouen University Hospital, Department of Radiotherapy and Medical Physics, Rouen (France); Nkhali, Lamyaa; Thureau, Sebastien; Modzelewski, Romain; Gardin, Isabelle [Henri Becquerel Cancer Center and Rouen University Hospital, Nuclear Medicine Department, Rouen (France); University of Rouen, QuantIF-LITIS (Equipe d' Accueil 4108-FR CNRS 3638), Faculty of Medicine, Rouen (France); Centre Henri Becquerel and Rouen University Hospital, Department of Radiotherapy and Medical Physics, Rouen (France); Di Fiore, Frederic [Rouen University Hospital, Department of Gastroenterology, Rouen (France); Rouen University Hospital, Department of Oncology, Henri Becquerel Cancer Center, IRON, Rouen (France); Michel, Pierre [Rouen University Hospital, Department of Gastroenterology, Rouen (France)

    2015-05-01

    The high failure rates in the radiotherapy (RT) target volume suggest that patients with locally advanced oesophageal cancer (LAOC) would benefit from increased total RT doses. High 2-deoxy-2-[{sup 18}F]fluoro-D-glucose (FDG) uptake (hotspot) on pre-RT FDG positron emission tomography (PET)/CT has been reported to identify intra-tumour sites at increased risk of relapse after RT in non-small cell lung cancer and in rectal cancer. Our aim was to confirm these observations in patients with LAOC and to determine the optimal maximum standardized uptake value (SUV{sub max}) threshold to delineate smaller RT target volumes that would facilitate RT dose escalation without impaired tolerance. The study included 98 consecutive patients with LAOC treated by chemoradiotherapy (CRT). All patients underwent FDG PET/CT at initial staging and during systematic follow-up in a single institution. FDG PET/CT acquisitions were coregistered on the initial CT scan. Various subvolumes within the initial tumour (30, 40, 50, 60, 70, 80 and 90 % SUV{sub max} thresholds) and in the subsequent local recurrence (LR, 40 and 90 % SUV{sub max} thresholds) were pasted on the initial CT scan and compared[Dice, Jaccard, overlap fraction (OF), common volume/baseline volume, common volume/recurrent volume]. Thirty-five patients had LR. The initial metabolic tumour volume was significantly higher in LR tumours than in the locally controlled tumours (mean 25.4 vs 14.2 cc; p = 0.002). The subvolumes delineated on initial PET/CT with a 30-60 % SUV{sub max} threshold were in good agreement with the recurrent volume at 40 % SUV{sub max} (OF = 0.60-0.80). The subvolumes delineated on initial PET/CT with a 30-60 % SUV{sub max} threshold were in good to excellent agreement with the core volume (90 % SUV{sub max}) of the relapse (common volume/recurrent volume and OF indices 0.61-0.89). High FDG uptake on pretreatment PET/CT identifies tumour subvolumes that are at greater risk of recurrence after CRT in

  3. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Arnis Judzis

    2003-01-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting October 2002 through December 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments included the following: (1) Smith International participated in the DOE Mud Hammer program through full scale benchmarking testing during the week of 4 November 2003. (2) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to add to the benchmarking testing program. (3) Following the benchmark testing of the Smith International hammer, representatives from DOE/NETL, TerraTek, Smith International and PDVSA met at TerraTek in Salt Lake City to review observations, performance and views on the optimization step for 2003. (4) The December 2002 issue of Journal of Petroleum Technology (Society of Petroleum Engineers) highlighted the DOE fluid hammer testing program and reviewed last years paper on the benchmark performance of the SDS Digger and Novatek hammers. (5) TerraTek's Sid Green presented a technical review for DOE/NETL personnel in Morgantown on ''Impact Rock Breakage'' and its importance on improving fluid hammer performance. Much discussion has taken place on the issues surrounding mud hammer performance at depth conditions.

  4. Operational freight carrier planning basic concepts, optimization models and advanced memetic algorithms

    CERN Document Server

    Schönberger, Jörn

    2005-01-01

    The modern freight carrier business requires a sophisticated automatic decision support in order to ensure the efficiency and reliability and therefore the survival of transport service providers. This book addresses these challenges and provides generic decision models for the short-term operations planning as well as advanced metaheuristics to obtain efficient operation plans. After a thorough analysis of the operations planning in the freight carrier business, decision models are derived. Their suitability is proven within a large number of numerical experiments, in which a new class of hybrid genetic search approaches demonstrate their appropriateness.

  5. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments

    International Nuclear Information System (INIS)

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-01-01

    Highlights: • Fe-C microelectrolysis-Fenton process is proposed to pretreat landfill leachate. • Operating variables are optimized by response surface methodology (RSM). • 3D-EEMs and MW distribution explain the mechanism of enhanced biodegradability. • Fixed-bed column experiments are performed at different flow rates. - Abstract: A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H_2O_2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD_5/COD) as the responses. The highest COD removal (74.59%) and BOD_5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72 g/L, H_2O_2 concentration 12.32 mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  6. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liqun, E-mail: 691127317@qq.com [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Dongbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Xiaoming, E-mail: xmli121x@hotmail.com [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-11-15

    Highlights: • Fe-C microelectrolysis-Fenton process is proposed to pretreat landfill leachate. • Operating variables are optimized by response surface methodology (RSM). • 3D-EEMs and MW distribution explain the mechanism of enhanced biodegradability. • Fixed-bed column experiments are performed at different flow rates. - Abstract: A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H{sub 2}O{sub 2} concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD{sub 5}/COD) as the responses. The highest COD removal (74.59%) and BOD{sub 5}/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72 g/L, H{sub 2}O{sub 2} concentration 12.32 mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  7. Improved VMAT planning for head and neck tumors with an advanced optimization algorithm

    International Nuclear Information System (INIS)

    Klippel, Norbert; Schmuecking, Michael; Terribilini, Dario; Geretschlaeger, Andreas; Aebersold, Daniel M.; Manser, Peter

    2015-01-01

    In this study, the ''Progressive Resolution Optimizer PRO3'' (Varian Medical Systems) is compared to the previous version PRO2'' with respect to its potential to improve dose sparing to the organs at risk (OAR) and dose coverage of the PTV for head and neck cancer patients. Materials and Methods For eight head and neck cancer patients, volumetric modulated arc therapy (VMAT) treatment plans were generated in this study. All cases have 2-3 phases and the total prescribed dose (PD) was 60-72 Gy in the PTV. The study is mainly focused on the phase 1 plans, which all have an identical PD of 54 Gy, and complex PTV structures with an overlap to the parotids. Optimization was performed based on planning objectives for the PTV according to ICRU83, and with minimal dose to spinal cord, and parotids outside PTV. In order to assess the quality of the optimization algorithms, an identical set of constraints was used for both, PRO2 and PRO3. The resulting treatment plans were investigated with respect to dose distribution based on the analysis of the dose volume histograms. Results For the phase 1 plans (PD = 54 Gy) the near maximum dose D 2% of the spinal cord, could be minimized to 22±5 Gy with PRO3, as compared to 32±12 Gy with PRO2, averaged for all patients. The mean dose to the parotids was also lower in PRO3 plans compared to PRO2, but the differences were less pronounced. A PTV coverage of V 95% = 97±1% could be reached with PRO3, as compared to 86±5% with PRO2. In clinical routine, these PRO2 plans would require modifications to obtain better PTV coverage at the cost of higher OAR doses. Conclusion A comparison between PRO3 and PRO2 optimization algorithms was performed for eight head and neck cancer patients. In general, the quality of VMAT plans for head and neck patients are improved with PRO3 as compared to PRO2. The dose to OARs can be reduced significantly, especially for the spinal cord. These reductions are achieved with better

  8. Technological Advances in the Treatment of Cancer: Combining Modalities to Optimize Outcomes.

    Science.gov (United States)

    Wong, Eric T; Toms, Steven A; Ahluwalia, Manmeet S

    2015-11-01

    The anticancer treatment modality tumor treating fields (TTFields; Optune, Novocure) use the lower frequency range of the electromagnetic spectrum to destroy tumor cells during mitosis. This treatment has been evaluated in several trials of patients with glioblastoma. In these patients, TTFields are delivered through 4 transducer arrays applied to the scalp. In a phase 3 clinical trial of patients with recurrent glioblastoma, TTFields were as effective as chemotherapy, and were associated with fewer and milder systemic toxicities. Data from a phase 3 trial in newly diagnosed glioblastoma suggested that the addition of TTFields to postoperative radiation therapy and chemotherapy represents an important advance in the management of newly diagnosed glioblastoma. Ongoing clinical trials are investigating the efficacy and safety of TTFields in other tumor types, including pancreatic cancer, mesothelioma, ovarian cancer, and non–small cell lung cancer. Other recent advances in the management of cancer have been seen with immunomodulatory therapy, including immune checkpoint inhibitors. Further study will be necessary to evaluate whether TTFields will enhance or impair other established and newly emerging therapies.

  9. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments.

    Science.gov (United States)

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-11-15

    A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H2O2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD5/COD) as the responses. The highest COD removal (74.59%) and BOD5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72g/L, H2O2 concentration 12.32mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Optimizing Greenhouse Lighting for Advanced Agriculture Based on Real Time Electricity Market Price

    Directory of Open Access Journals (Sweden)

    Mehdi Mahdavian

    2017-01-01

    Full Text Available The world’s growing demand for food can be met by agricultural technology. Use of artificial light to supplement natural sunlight in greenhouse cultivation is one of the most common techniques to increase greenhouse production of food crops. However, artificial light requires significant electrical energy, which increases the cost of greenhouse production and can reduce profit. This paper models the increments to greenhouse productivity as well as the increases in cost from supplemental electric lighting, in a situation where the greenhouse is one of the elements of a smart grid, a system where the electric energy market is dynamic and prices vary over time. We used our models to calculate the optimum values for supplemental light and the required electrical energy for HPS lamps in the greenhouse environment, using cherry tomato cultivation as a case study crop. We considered two optimization techniques: iterative search (IS and genetic algorithm (GA. The two approaches produced similar results, although the GA method was much faster. Both approaches verify the advantages of using optimal supplemental light in terms of increasing production and hence profit.

  11. Decomposition with thermoeconomic isolation applied to the optimal synthesis/design and operation of an advanced tactical aircraft system

    International Nuclear Information System (INIS)

    Rancruel, Diego F.; Spakovsky, Michael R. von

    2006-01-01

    A decomposition methodology based on the concept of 'thermoeconomic isolation' and applied to the synthesis/design and operational optimization of an advanced tactical fighter aircraft is the focus of this paper. The total system is composed of six sub-systems of which five participate with degrees of freedom (493) in the optimization. They are the propulsion sub-system (PS), the environmental control sub-system (ECS), the fuel loop subsystem (FLS), the vapor compression and Polyalphaolefin (PAO) loops sub-system (VC/PAOS), and the airframe sub-system (AFS). The sixth subsystem comprises the expendable and permanent payloads as well as the equipment group. For each of the first five, detailed thermodynamic, geometric, physical, and aerodynamic models at both design and off-design were formulated and implemented. The most promising set of aircraft sub-system and system configurations were then determined based on both an energy integration and aerodynamic performance analysis at each stage of the mission (including the transient ones). Conceptual, time, and physical decomposition were subsequently applied to the synthesis/design and operational optimization of these aircraft configurations as well as to the highly dynamic process of heat generation and dissipation internal to the subsystems. The physical decomposition strategy used (i.e. Iterative Local-Global Optimization-ILGO) is the first to successfully closely approach the theoretical condition of 'thermoeconomic isolation' when applied to highly complex, highly dynamic non-linear systems. Developed at our Center for Energy Systems research, it has been effectively applied to a number of complex stationary and transportation applications

  12. Decomposition with thermoeconomic isolation applied to the optimal synthesis/design and operation of an advanced tactical aircraft system

    Energy Technology Data Exchange (ETDEWEB)

    Rancruel, Diego F. [Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States); Spakovsky, Michael R. von [Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States)]. E-mail: vonspako@vt.edu

    2006-12-15

    A decomposition methodology based on the concept of 'thermoeconomic isolation' and applied to the synthesis/design and operational optimization of an advanced tactical fighter aircraft is the focus of this paper. The total system is composed of six sub-systems of which five participate with degrees of freedom (493) in the optimization. They are the propulsion sub-system (PS), the environmental control sub-system (ECS), the fuel loop subsystem (FLS), the vapor compression and Polyalphaolefin (PAO) loops sub-system (VC/PAOS), and the airframe sub-system (AFS). The sixth subsystem comprises the expendable and permanent payloads as well as the equipment group. For each of the first five, detailed thermodynamic, geometric, physical, and aerodynamic models at both design and off-design were formulated and implemented. The most promising set of aircraft sub-system and system configurations were then determined based on both an energy integration and aerodynamic performance analysis at each stage of the mission (including the transient ones). Conceptual, time, and physical decomposition were subsequently applied to the synthesis/design and operational optimization of these aircraft configurations as well as to the highly dynamic process of heat generation and dissipation internal to the subsystems. The physical decomposition strategy used (i.e. Iterative Local-Global Optimization-ILGO) is the first to successfully closely approach the theoretical condition of 'thermoeconomic isolation' when applied to highly complex, highly dynamic non-linear systems. Developed at our Center for Energy Systems research, it has been effectively applied to a number of complex stationary and transportation applications.

  13. Optimal Dimensioning of FiWi Networks over Advanced Metering Infrastructure for the Smart Grid

    DEFF Research Database (Denmark)

    Inga, Esteban; Peralta-Sevilla, Arturo; Hincapié, Roberto

    2015-01-01

    —In this paper, we propose a hybrid wireless mesh network infrastructure which connects the smart meters of each consumer with the data aggregation points (DAP). We suppose a set of smart meters that need to send information, and receive information from a central office on electrical enterprises...... through of the meter data management system (MDMS), and so forming the advanced metering infrastructure (AMI) stage of smart grids. We consider a multi-hop system, where information is routed through several nodes which act as DAP. Wireless mesh networks are known to extend coverage and increase...... deployment efficiency, so they could be an alternative for the connection between Home Area Network (HAN) and the Neighborhood Area Network (NAN). However, the NAN data must be send through wider area cabled networks to Metropolitan Area Network (MAN), and based on the WDM-PON architecture. We consider...

  14. Development of an advanced noise propagation model for noise optimization in wind farm

    DEFF Research Database (Denmark)

    Barlas, Emre

    2017-01-01

    Increasing demand in renewable energy has resulted in large wind energy deployment. Even though wind turbines are among the most environmentally friendly way of generating electricity, the noise emitted by them is one of the main obstacles for further installation. Wind farm developers rely...... wind directions or time of the day). The latter causes turbines to be located at less resourceful sites in advance. Both of these scenarios increase the cost of energy. Hence there is a need for more accurate noise mapping tools. The thesis addresses this issue via development of a new tool based...... field sound pressure levels are addressed both in steady and unsteady manner. Enhanced far fields amplitude modulation is observed and associated with the wake dynamics and the rotating blades. Lastly, the developed tool is used for an onshore wind farm noise prediction taking the terrain and the flow...

  15. Identification of distinct phenotypes of locally advanced pancreatic adenocarcinoma.

    LENUS (Irish Health Repository)

    Teo, Minyuen

    2013-03-01

    A significant number of pancreatic ductal adenocarcinoma present as locally advanced disease. Optimal treatment remains controversial. We sought to analyze the clinical course of locally advanced pancreatic adenocarcinoma (LAPC) in order to identify potential distinct clinical phenotypes.

  16. Methodology for the Integration of Safety in the Optimization of the Advanced Reactors Design

    International Nuclear Information System (INIS)

    Grinblat, P.; Schlamp, M.; Brasnarof, D.; Gimenez, M.

    2003-01-01

    In this work a new methodology has been developed and implemented for taking into account the safety levels of the reactor in a design optimization process, by using Design Maps.They represent a new technique for comparing critical variables in case an accidental sequenced happened, with limit values set by the design criteria.So a good balance is achieved, without allowing the economic performance search to cause a too risky reactor, and guaranteeing the competitiveness of it in spite of the safety costs.Up to the moment, there is no design tool able to accomplish this task in an integrated way.A computational tool based on this methodology has been implemented.These tool specially programmed routines allow carrying out the mentioned tasks

  17. Application of an optimized winglet configuration to an advanced commercial transport

    Science.gov (United States)

    Shollenberger, C. A.

    1979-01-01

    The design is presented of an aircraft which employs an integrated wing and winglet lift system. Comparison was made with a conventional baseline configuration employing a high-aspect-ratio supercritical wing. An optimized wing-winglet combination was selected from four proposed configurations for which aerodynamic, structural, and weight characteristics were evaluated. Each candidate wing-winglet configuration was constrained to the same induced drag coefficient as the baseline aircraft. The selected wing-winglet configuration was resized for a specific medium-range mission requirement, and operating costs were estimated for a typical mission. Study results indicated that the wing-winglet aircraft was lighter and could complete the specified mission at less cost than the conventional wing aircraft. These indications were sensitive to the impact of flutter characteristics and, to a lesser extent, to the performance of the high-lift system. Further study in these areas is recommended to reduce uncertainty in future development.

  18. Advanced experimental method for self-optimizing control system to a new energy converce plant

    International Nuclear Information System (INIS)

    Vasiliev, V.V.

    1992-01-01

    The progress in the development and studying of new methods of producing electric energy, based on direct conversion of heat, light, fuel or chemical energy into electric energy, raises the problem of more effective use of their power characteristics. In this paper, disclosure is made of a self-optimizing control system for an abject with a unimodal quality function. The system comprises an object, a divider, a band-pass filter, an averaging filter, a multiplier, a final control element, and adder and further includes a search signal generator. The fashion and the system are presented in the USSR No. 684510, in the USA No. 4179730, in France No. 2386854, in Germany No. 2814963, in Japan No. 1369882

  19. A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)

    Energy Technology Data Exchange (ETDEWEB)

    Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan [Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Ave, Davis, CA 95616 (United States)

    2010-10-01

    This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and ''through-the-ground'' parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains. (author)

  20. Novel method to identify the optimal antimicrobial peptide in a combination matrix, using anoplin as an example

    DEFF Research Database (Denmark)

    Munk, Jens; Ritz, Christian; Fliedner, Frederikke Petrine

    2014-01-01

    retention time data, we construct analysis of variance models that describe the relationship between these properties and structural characteristics of the analogs. We show that the mathematical models derived from the training set data can be used to predict the properties of other analogs in the chemical......Microbial resistance is an increasing health concern and a true danger to human wellbeing. A worldwide search for new compounds is ongoing and antimicrobial peptides are promising lead candidates for tomorrow's antibiotics. The decapeptide anoplin, GLLKRIKTLL-NH2, is an especially interesting...... candidate because of its small size as well as its antimicrobial and nonhemolytic properties. Optimization of the properties of an antimicrobial peptide such as anoplin requires multidimensional searching in a complex chemical space. Typically such optimization is performed by labor-intensive and costly...

  1. Plant protection system optimization studies to mitigate consequences of large breaks in the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Khayat, M.I.; March-Leuba, J.

    1993-01-01

    This paper documents some of the optimization studies performed to maximize the performance of the engineered safety features and scram systems to mitigate the consequences of large breaks in the primary cooling system of the advanced neutron source (ANS) reactor. The ANS is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the field of material science and engineering, biology, chemistry, material analysis, and nuclear science. To achieve the high neutron fluxes for these state-of-the-art experiments, the ANS design has a very high power density core (330 MW fission with an active volume of 67.6 ell) surrounded by a large heavy-water reflector, where most neutrons are moderated. This design maximizes the number of neutrons available for experiments but results in a low heat capacity core that creates unique challenges to the design of the plant protection system

  2. Analysis of Perioperative Chemotherapy in Resected Pancreatic Cancer: Identifying the Number and Sequence of Chemotherapy Cycles Needed to Optimize Survival.

    Science.gov (United States)

    Epelboym, Irene; Zenati, Mazen S; Hamad, Ahmad; Steve, Jennifer; Lee, Kenneth K; Bahary, Nathan; Hogg, Melissa E; Zeh, Herbert J; Zureikat, Amer H

    2017-09-01

    Receipt of 6 cycles of adjuvant chemotherapy (AC) is standard of care in pancreatic cancer (PC). Neoadjuvant chemotherapy (NAC) is increasingly utilized; however, optimal number of cycles needed alone or in combination with AC remains unknown. We sought to determine the optimal number and sequence of perioperative chemotherapy cycles in PC. Single institutional review of all resected PCs from 2008 to 2015. The impact of cumulative number of chemotherapy cycles received (0, 1-5, and ≥6 cycles) and their sequence (NAC, AC, or NAC + AC) on overall survival was evaluated Cox-proportional hazard modeling, using 6 cycles of AC as reference. A total of 522 patients were analyzed. Based on sample size distribution, four combinations were evaluated: 0 cycles = 12.1%, 1-5 cycles of combined NAC + AC = 29%, 6 cycles of AC = 25%, and ≥6 cycles of combined NAC + AC = 34%, with corresponding survival. 13.1, 18.5, 37, and 36.8 months. On MVA (P cycles AC, receipt of 0 cycles [HR 3.57, confidence interval (CI) 2.47-5.18] or 1-5 cycles in any combination (HR 2.37, CI 1.73-3.23) was associated with increased hazard of death, whereas receipt of ≥6 cycles in any sequence was associated with optimal and comparable survival (HR 1.07, CI 0.78-1.47). Receipt of 6 or more perioperative cycles of chemotherapy either as combined neoadjuvant and adjuvant or adjuvant alone may be associated with optimal and comparable survival in resected PC.

  3. Advanced CANDU reactor: an optimized energy source of oil sands application

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Duffey, R.; Dunbar, R.B.

    2003-01-01

    Atomic Energy of Canada Limited (AECL) is developing the ACR-700 TM (Advanced CANDU Reactor-700 TM ) to meet customer needs for reduced capital cost, shorter construction schedule, high capacity factor while retaining the benefits of the CANDU experience base. The ACR-700 is based on the concept of CANDU horizontal fuel channels surrounded by heavy water moderator. The major innovation of this design is the use of slightly enriched uranium fuel in a CANFLEX bundle that is cooled by light water. This ensures: higher main steam pressures and temperatures providing higher thermal efficiency; a compact and simpler reactor design with reduced capital costs and shorter construction schedules; and reduced heavy water inventory compared to existing CANDU reactors. ACR-700 is not only a technically advanced and cost effective solution for electricity generating utilities, but also a low-cost, long-life and sustainable steam source for increasing Alberta's Oil Sand production rates. Currently practiced commercial surface mining and extraction of Oil Sand resources has been well established over the last three decades. But a majority of the available resources are somewhat deeper underground require in-situ extraction. Economic removal of such underground resources is now possible through the Steam Assisted Gravity Drainage (SAGD) process developed and proto-type tested in-site. SAGD requires the injection of large quantities of high-pressure steam into horizontal wells to form reduced viscosity bitumen and condensate mixture that is then collected at the surface. This paper describes joint AECL studies with CERI (Canadian Energy Research Institute) for the ACR, supplying both electricity and medium-pressure steam to an oil sands facility. The extensive oil sands deposits in northern Alberta are a very large energy resource. Currently, 30% of Canda's oil production is from the oil sands and this is expected to expand greatly over the coming decade. The bitumen deposits in the

  4. Optimization of a Gas Switching Combustion process through advanced heat management strategies

    International Nuclear Information System (INIS)

    Cloete, Schalk; Zaabout, Abdelghafour; Romano, Matteo C.; Chiesa, Paolo; Lozza, Giovanni; Gallucci, Fausto; Sint Annaland, Martin van; Amini, Shahriar

    2017-01-01

    Highlights: • GSC is a promising new reactor concept for power production with cost effective CO 2 capture. • The standalone fluidized bed reactors employed will allow for easy process scale-up. • The GSC simple configuration achieves higher efficiencies than conventional solutions. • Further increases in efficiency can be achieved via advanced heat management. • The 41.9% maximum efficiency is in line with other CLC–IGCC configurations. - Abstract: Gas Switching Combustion (GSC) is a promising new process concept for energy efficient power production with integrated CO 2 capture. In comparison to conventional Chemical Looping Combustion (CLC) carried out in interconnected fluidized beds, the GSC concept will be substantially easier to design and scale up, especially for pressurized conditions. One potential drawback of the GSC concept is the gradual temperature variation over the transient process cycle, which leads to a drop in electric efficiency of the plant. This article investigates heat management strategies to mitigate this issue both through simulations and experiments. Simulation studies of the GSC concept integrated into an IGCC power plant show that heat management using a nitrogen recycle stream can increase plant efficiency by 3 percentage points to 41.6% while maintaining CO 2 capture ratios close to 90%. Reactive multiphase flow simulations of the GSC reactor also showed that heat management can eliminate fuel slip problems. In addition, the GSC concept offers the potential to remove the need for a nitrogen recycle stream by implementing a concentrated air injection that extracts heat while only a small percentage of oxygen reacts. Experiments have shown that, similar to nitrogen recycle, this strategy reduces transient temperature variations across the cycle and therefore merits further investigation.

  5. Optimization of advanced high-temperature Brayton cycles with multiple reheat stages

    International Nuclear Information System (INIS)

    Haihua Zhao; Per F Peterson

    2005-01-01

    Full text of publication follows: This paper presents an overview and a few point designs for multiple-reheat Brayton cycle power conversion systems using high temperature molten salts (or liquid metals). All designs are derived from the General Atomics GT-MHR power conversion unit (PCU). The GT-MHR PCU is currently the only closed helium cycle system that has undergone detailed engineering design analysis, and that has turbomachinery which is sufficiently large to extrapolate to a >1000 MW(e) multiple reheat gas cycle power conversion system. Analysis shows that, with relatively small engineering modifications, multiple GT-MHR PCU's can be connected together to create a power conversion system in the >1000 MW(e) class. The resulting power conversion system is quite compact, and results in what is likely the minimum gas duct volume possible for a multiple-reheat system. To realize this, compact offset fin plate type liquid-to-gas heat exchangers (power densities from 10 to 120 MW/m 3 ) are needed. Both metal and non-metal heat exchangers are being investigated for high-temperature, gas-cooled reactors for temperatures to 1000 deg. C. Recent high temperature heat exchanger studies for nuclear hydrogen production has suggested that carbon-coated composite materials such as liquid silicon infiltrated chopped fiber carbon-carbon preformed material potentially could be used to fabricate plate fin heat exchangers with reasonable price. Different fluids such as helium, nitrogen and helium mixture, and supercritical CO 2 are compared for these multiple reheat Brayton cycles. Nitrogen and helium mixture cycle need about 40% more total PCU volume than helium cycle while keeping the same net cycle efficiency. Supercritical CO 2 needs very high pressure to optimize. Due to relatively detailed design for components such as heat exchangers, turbomachinery, and duct system, relatively accurate total pressure loss can be obtained, which results in more credible net efficiency

  6. Multi level optimization of burnable poison utilization for advanced PWR fuel management

    Science.gov (United States)

    Yilmaz, Serkan

    The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as

  7. Optimal time interval between capecitabine intake and radiotherapy in preoperative chemoradiation for locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Yu, Chang Sik; Kim, Tae Won; Kim, Jong Hoon; Choi, Won Sik; Kim, Hee Cheol; Chang, Heung Moon; Ryu, Min Hee; Jang, Se Jin; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Choi, Eun Kyung; Kim, Jin Cheon

    2007-01-01

    Purpose: Capecitabine and its metabolites reach peak plasma concentrations 1 to 2 hours after a single oral administration, and concentrations rapidly decrease thereafter. We performed a retrospective analysis to find the optimal time interval between capecitabine administration and radiotherapy for rectal cancer. Methods and Materials: The time interval between capecitabine intake and radiotherapy was measured in patients who were treated with preoperative radiotherapy and concurrent capecitabine for rectal cancer. Patients were classified into the following groups. Group A1 included patients who took capecitabine 1 hour before radiotherapy, and Group B1 included all other patients. Group B1 was then subdivided into Group A2 (patients who took capecitabine 2 hours before radiotherapy) and Group B2. Group B2 was further divided into Group A3 and Group B3 with the same method. Total mesorectal excision was performed 6 weeks after completion of chemoradiation and the pathologic response was evaluated. Results: A total of 200 patients were enrolled in this study. Pathologic examination showed that Group A1 had higher rates of complete regression of primary tumors in the rectum (23.5% vs. 9.6%, p = 0.01), good response (44.7% vs. 25.2%, p = 0.006), and lower T stages (p = 0.021) compared with Group B1; however, Groups A2 and A3 did not show any improvement compared with Groups B2 and B3. Multivariate analysis showed that increases in primary tumors in the rectum and good response were only significant when capecitabine was administered 1 hour before radiotherapy. Conclusion: In preoperative chemoradiotherapy for rectal cancer, the pathologic response could be improved by administering capecitabine 1 hour before radiotherapy

  8. ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective.

  9. Optimizing Music Learning: Exploring How Blocked and Interleaved Practice Schedules Affect Advanced Performance.

    Science.gov (United States)

    Carter, Christine E; Grahn, Jessica A

    2016-01-01

    Repetition is the most commonly used practice strategy by musicians. Although blocks of repetition continue to be suggested in the pedagogical literature, work in the field of cognitive psychology suggests that repeated events receive less processing, thereby reducing the potential for long-term learning. Motor skill learning and sport psychology research offer an alternative. Instead of using a blocked practice schedule, with practice completed on one task before moving on to the next task, an interleaved schedule can be used, in which practice is frequently alternated between tasks. This frequent alternation involves more effortful processing, resulting in increased long-term learning. The finding that practicing in an interleaved schedule leads to better retention than practicing in a blocked schedule has been labeled the "contextual interference effect." While the effect has been observed across a wide variety of fields, few studies have researched this phenomenon in a music-learning context, despite the broad potential for application to music practice. This study compared the effects of blocked and interleaved practice schedules on advanced clarinet performance in an ecologically valid context. Ten clarinetists were given one concerto exposition and one technical excerpt to practice in a blocked schedule (12 min per piece) and a second concerto exposition and technical excerpt to practice in an interleaved schedule (3 min per piece, alternating until a total of 12 min of practice were completed on each piece). Participants sight-read the four pieces prior to practice and performed them at the end of practice and again one day later. The sight-reading and two performance run-throughs of each piece were recorded and given to three professional clarinetists to rate using a percentage scale. Overall, whenever there was a ratings difference between the conditions, pieces practiced in the interleaved schedule were rated better than those in the blocked schedule

  10. Optimizing Music Learning: Exploring How Blocked and Interleaved Practice Schedules Affect Advanced Performance

    Science.gov (United States)

    Carter, Christine E.; Grahn, Jessica A.

    2016-01-01

    Repetition is the most commonly used practice strategy by musicians. Although blocks of repetition continue to be suggested in the pedagogical literature, work in the field of cognitive psychology suggests that repeated events receive less processing, thereby reducing the potential for long-term learning. Motor skill learning and sport psychology research offer an alternative. Instead of using a blocked practice schedule, with practice completed on one task before moving on to the next task, an interleaved schedule can be used, in which practice is frequently alternated between tasks. This frequent alternation involves more effortful processing, resulting in increased long-term learning. The finding that practicing in an interleaved schedule leads to better retention than practicing in a blocked schedule has been labeled the “contextual interference effect.” While the effect has been observed across a wide variety of fields, few studies have researched this phenomenon in a music-learning context, despite the broad potential for application to music practice. This study compared the effects of blocked and interleaved practice schedules on advanced clarinet performance in an ecologically valid context. Ten clarinetists were given one concerto exposition and one technical excerpt to practice in a blocked schedule (12 min per piece) and a second concerto exposition and technical excerpt to practice in an interleaved schedule (3 min per piece, alternating until a total of 12 min of practice were completed on each piece). Participants sight-read the four pieces prior to practice and performed them at the end of practice and again one day later. The sight-reading and two performance run-throughs of each piece were recorded and given to three professional clarinetists to rate using a percentage scale. Overall, whenever there was a ratings difference between the conditions, pieces practiced in the interleaved schedule were rated better than those in the blocked schedule

  11. Optimizing music learning: Exploring how blocked and interleaved practice schedules affect advanced performance

    Directory of Open Access Journals (Sweden)

    Christine E Carter

    2016-08-01

    Full Text Available Repetition is the most commonly used practice strategy by musicians. Although blocks of repetition continue to be suggested in the pedagogical literature, work in the field of cognitive psychology suggests that repeated events receive less processing, thereby reducing the potential for long-term learning. Motor skill learning and sport psychology research offer an alternative. Instead of using a blocked practice schedule, with practice completed on one task before moving on to the next task, an interleaved schedule can be used, in which practice is frequently alternated between tasks. This frequent alternation involves more effortful processing, resulting in increased long-term learning. The finding that practicing in an interleaved schedule leads to better retention than practicing in a blocked schedule has been labeled the contextual interference effect. While the effect has been observed across a wide variety of fields, few studies have researched this phenomenon in a music-learning context, despite the broad potential for application to music practice. This study compared the effects of blocked and interleaved practice schedules on advanced clarinet performance in an ecologically valid context. Ten clarinetists were given one concerto exposition and one technical excerpt to practice in a blocked schedule (twelve minutes per piece and a second concerto exposition and technical excerpt to practice in an interleaved schedule (three minutes per piece, alternating until a total of twelve minutes of practice were completed on each piece. Participants sight-read the four pieces prior to practice and performed them at the end of practice and again one day later. The sight-reading and two performance run-throughs of each piece were recorded and given to three professional clarinetists to rate using a percentage scale. Overall, whenever there was a ratings difference between the conditions, pieces practiced in the interleaved schedule were rated

  12. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order

  13. Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-02-01

    Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.

  14. Identifying Psychosocial Distress and Stressors Using Distress-screening Instruments in Patients With Localized and Advanced Penile Cancer.

    Science.gov (United States)

    Dräger, Désirée Louise; Protzel, Chris; Hakenberg, Oliver W

    2017-10-01

    We examined the effects of treatment on the psychological well-being of patients with localized or advanced penile cancer using screening questionnaires to determine the consecutive need for psychosocial care. Penile cancer is a rare, but highly aggressive, malignancy. The psychological stress of patients with penile cancer arises from the cancer diagnosis per se and the corresponding consequences of treatment. In addition, cancer-specific distress results (eg, fear of metastasis, progression, relapse, death). Studies of the psychosocial stress of penile cancer patients are rare. We undertook a prospective analysis of the data from patients with penile cancer who had undergone surgery or chemotherapy from August 2014 to October 2016 at our department. Patients were evaluated using standardized questionnaires for stress screening and the identification for the need for psychosocial care (National Comprehensive Cancer Network Distress Thermometer and Hornheider screening instrument) and by assessing the actual use of psychosocial support. The average stress level was 4.5. Of all the patients, 42.5% showed increased care needs at the time of the survey. Younger patients, patients undergoing chemotherapy, and patients with recurrence were significantly more integrated with the psychosocial care systems. Finally, 67% of all patients received inpatient psychosocial care. Owing to the potentially mutilating surgery, patients with penile cancer experience increased psychological stress and, consequently, have an increased need for psychosocial care. Therefore, the emotional stress of these patients should be recognized and support based on interdisciplinary collaboration offered. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: the project MOIRA

    International Nuclear Information System (INIS)

    Appelgren, A.; Bergstrom, U.; Brittain, J.; Monte, L.

    1996-10-01

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems

  16. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated acquatic ecosystems: The project ``moira``

    Energy Technology Data Exchange (ETDEWEB)

    Appelgren, A.; Bergstrom, U. [Studsvik Eco and AB, Nykoping (Sweden); Brittain, J. [Oslo Univ. (Norway). LFI Zoological Museum; Gallego Diaz, E. [Madrid Universidad Politecnica (Spain). Dept. de Ingenieria Nuclear; Hakanson, L. [KEMA Nuclear, Arnhem (Niger); Monte, L. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-10-01

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems.

  17. A New Approach to Identify Optimal Properties of Shunting Elements for Maximum Damping of Structural Vibration Using Piezoelectric Patches

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.

  18. Intensity-modulated radiation therapy (IMRT) for locally advanced paranasal sinus tumors: incorporating clinical decisions in the optimization process

    International Nuclear Information System (INIS)

    Tsien, Christina; Eisbruch, Avraham; McShan, Daniel; Kessler, Marc; Marsh, Robin C.; Fraass, Benedick

    2003-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) plans require decisions about priorities and tradeoffs among competing goals. This study evaluates the incorporation of various clinical decisions into the optimization system, using locally advanced paranasal sinus tumors as a model. Methods and Materials: Thirteen patients with locally advanced paranasal sinus tumors were retrospectively replanned using inverse planning. Two clinical decisions were assumed: (1) Spare both optic pathways (OP), or (2) Spare only the contralateral OP. In each case, adequate tumor coverage (treated to 70 Gy in 35 fractions) was required. Two beamlet IMRT plans were thus developed for each patient using a class solution cost function. By altering one key variable at a time, different levels of risk of OP toxicity and planning target volume (PTV) compromise were compared in a systematic manner. The resulting clinical tradeoffs were analyzed using dosimetric criteria, tumor control probability (TCP), equivalent uniform dose (EUD), and normal tissue complication probability. Results: Plan comparisons representing the two clinical decisions (sparing both OP and sparing only the contralateral OP), with respect to minimum dose, TCP, V 95 , and EUD, demonstrated small, yet statistically significant, differences. However, when individual cases were analyzed further, significant PTV underdosage (>5%) was present in most cases for plans sparing both OP. In 6/13 cases (46%), PTV underdosage was between 5% and 15%, and in 3 cases (23%) was greater than 15%. By comparison, adequate PTV coverage was present in 8/13 cases (62%) for plans sparing only the contralateral OP. Mean target EUD comparisons between the two plans (including 9 cases where a clinical tradeoff between PTV coverage and OP sparing was required) were similar: 68.6 Gy and 69.1 Gy, respectively (p=0.02). Mean TCP values for those 9 cases were 56.5 vs. 61.7, respectively (p=0.006). Conclusions: In IMRT plans for paranasal sinus tumors

  19. Multicriteria Optimization in Intensity-Modulated Radiation Therapy Treatment Planning for Locally Advanced Cancer of the Pancreatic Head

    International Nuclear Information System (INIS)

    Hong, Theodore S.; Craft, David L.; Carlsson, Fredrik; Bortfeld, Thomas R.

    2008-01-01

    Purpose: Intensity-modulated radiation therapy (IMRT) affords the potential to decrease radiation therapy-associated toxicity by creating highly conformal dose distributions. However, the inverse planning process can create a suboptimal plan despite meeting all constraints. Multicriteria optimization (MCO) may reduce the time-consuming iteration loop necessary to develop a satisfactory plan while providing information regarding trade-offs between different treatment planning goals. In this exploratory study, we examine the feasibility and utility of MCO in physician plan selection in patients with locally advanced pancreatic cancer (LAPC). Methods and Materials: The first 10 consecutive patients with LAPC treated with IMRT were evaluated. A database of plans (Pareto surface) was created that met the inverse planning goals. The physician then navigated to an 'optimal' plan from the point on the Pareto surface at which kidney dose was minimized. Results: Pareto surfaces were created for all 10 patients. A physician was able to select a plan from the Pareto surface within 10 minutes for all cases. Compared with the original (treated) IMRT plans, the plan selected from the Pareto surface had a lower stomach mean dose in 9 of 10 patients, although often at the expense of higher kidney dose than with the treated plan. Conclusion: The MCO is feasible in patients with LAPC and allows the physician to choose a satisfactory plan quickly. Generally, when given the opportunity, the physician will choose a plan with a lower stomach dose. The MCO enables a physician to provide greater active clinical input into the IMRT planning process

  20. Evaluation of the Reliability of Electronic Medical Record Data in Identifying Comorbid Conditions among Patients with Advanced Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Muehlenbein, C. E.; Lawson, A.; Pohl, G.; Hoverman, R.; Gruschkus, S. K.; Forsyth, M.; Chen, C.; Lopez, W.; Hartnett, H. J.

    2011-01-01

    Traditional methods for identifying co morbidity data in EMRs have relied primarily on costly and time-consuming manual chart review. The purpose of this study was to validate a strategy of electronically searching EMR data to identify co morbidities among cancer patients. Methods. Advanced stage NSCLC patients ( N = 2,513) who received chemotherapy from 7/1/2006 to 6/30/2008 were identified using iKnowMed, US Oncology's proprietary oncology-specific EMR system. EMR data were searched for documentation of co morbidities common to advanced stage cancer patients. The search was conducted by a series of programmatic queries on standardized information including concomitant illnesses, patient history, review of systems, and diagnoses other than cancer. The validity of the co morbidity information that we derived from the EMR search was compared to the chart review gold standard in a random sample of 450 patients for whom the EMR search yielded no indication of co morbidities. Negative predictive values were calculated. Results. The overall prevalence of co morbidities of 22%. Overall negative predictive value was 0.92 in the 450 patients randomly sampled patients (36 of 450 were found to have evidence of co morbidities on chart review). Conclusion. Results of this study suggest that efficient queries/text searches of EMR data may provide reliable data on co morbid conditions among cancer patients.

  1. Advances in LWD pressure measurements: smart, time optimized pretests and on demand real-time transmission applications

    Energy Technology Data Exchange (ETDEWEB)

    Serafim, Robson; Ferraris, Paolo [Schlumberger, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The StethoScope Logging While Drilling (LWD) Pressure Measurement, introduced in Brazil in 2005, has been extensively used in deep water environment to provide reservoir pressure and mobility in real-time. In the last three years the StethoScope service was further enhanced to allow better real time monitoring using a larger transmission rate, higher RT data resolution and remote visualization. In order to guarantee stable formation pressures with a limited test duration under a wide range of conditions, Time Optimized Pretests (TOP) were developed. These tests adjust automatically drawdown and buildup parameters as a function of formation characteristics (pressure/mobility) without requiring any input from the operator. On-demand frame (ODF), an advanced telemetry triggered automatically during the pressure tests, allowed to increase equivalent transmission rate and resolution and to include quality indices computed downhole. This paper is focused on the TOP and ODF Field Test results in Brazil, which proved to be useful and reliable options for better real-time decisions together with remote monitoring visualization implemented by the RTMonitor program. (author)

  2. Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Ngo, Ngoc-Tri

    2016-01-01

    Highlights: • This study develops a novel time-series sliding window forecast system. • The system integrates metaheuristics, machine learning and time-series models. • Site experiment of smart grid infrastructure is installed to retrieve real-time data. • The proposed system accurately predicts energy consumption in residential buildings. • The forecasting system can help users minimize their electricity usage. - Abstract: Smart grids are a promising solution to the rapidly growing power demand because they can considerably increase building energy efficiency. This study developed a novel time-series sliding window metaheuristic optimization-based machine learning system for predicting real-time building energy consumption data collected by a smart grid. The proposed system integrates a seasonal autoregressive integrated moving average (SARIMA) model and metaheuristic firefly algorithm-based least squares support vector regression (MetaFA-LSSVR) model. Specifically, the proposed system fits the SARIMA model to linear data components in the first stage, and the MetaFA-LSSVR model captures nonlinear data components in the second stage. Real-time data retrieved from an experimental smart grid installed in a building were used to evaluate the efficacy and effectiveness of the proposed system. A k-week sliding window approach is proposed for employing historical data as input for the novel time-series forecasting system. The prediction system yielded high and reliable accuracy rates in 1-day-ahead predictions of building energy consumption, with a total error rate of 1.181% and mean absolute error of 0.026 kW h. Notably, the system demonstrates an improved accuracy rate in the range of 36.8–113.2% relative to those of the linear forecasting model (i.e., SARIMA) and nonlinear forecasting models (i.e., LSSVR and MetaFA-LSSVR). Therefore, end users can further apply the forecasted information to enhance efficiency of energy usage in their buildings, especially

  3. Identifying optimal reference genes for the normalization of microRNA expression in cucumber under viral stress

    Science.gov (United States)

    Liang, Chaoqiong; Hao, Jianjun; Meng, Yan; Luo, Laixin; Li, Jianqiang

    2018-01-01

    Cucumber green mottle mosaic virus (CGMMV) is an economically important pathogen and causes significant reduction of both yield and quality of cucumber (Cucumis sativus). Currently, there were no satisfied strategies for controlling the disease. A better understanding of microRNA (miRNA) expression related to the regulation of plant-virus interactions and virus resistance would be of great assistance when developing control strategies for CGMMV. However, accurate expression analysis is highly dependent on robust and reliable reference gene used as an internal control for normalization of miRNA expression. Most commonly used reference genes involved in CGMMV-infected cucumber are not universally expressed depending on tissue types and stages of plant development. It is therefore crucial to identify suitable reference genes in investigating the role of miRNA expression. In this study, seven reference genes, including Actin, Tubulin, EF-1α, 18S rRNA, Ubiquitin, GAPDH and Cyclophilin, were evaluated for the most accurate results in analyses using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression was assayed on cucumber leaves, stems and roots that were collected at different days post inoculation with CGMMV. The expression data were analyzed using algorithms including delta-Ct, geNorm, NormFinder, and BestKeeper as well as the comparative tool RefFinder. The reference genes were subsequently validated using miR159. The results showed that EF-1α and GAPDH were the most reliable reference genes for normalizing miRNA expression in leaf, root and stem samples, while Ubiquitin and EF-1α were the most suitable combination overall. PMID:29543906

  4. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    Science.gov (United States)

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  5. Risk management of energy system for identifying optimal power mix with financial-cost minimization and environmental-impact mitigation under uncertainty

    International Nuclear Information System (INIS)

    Nie, S.; Li, Y.P.; Liu, J.; Huang, Charley Z.

    2017-01-01

    An interval-stochastic risk management (ISRM) method is launched to control the variability of the recourse cost as well as to capture the notion of risk in stochastic programming. The ISRM method can examine various policy scenarios that are associated with economic penalties under uncertainties presented as probability distributions and interval values. An ISRM model is then formulated to identify the optimal power mix for the Beijing's energy system. Tradeoffs between risk and cost are evaluated, indicating any change in targeted cost and risk level would yield different expected costs. Results reveal that the inherent uncertainty of system components and risk attitude of decision makers have significant effects on the city's energy-supply and electricity-generation schemes as well as system cost and probabilistic penalty. Results also disclose that import electricity as a recourse action to compensate the local shortage would be enforced. The import electricity would increase with a reduced risk level; under every risk level, more electricity would be imported with an increased demand. The findings can facilitate the local authority in identifying desired strategies for the city's energy planning and management in association with financial-cost minimization and environmental-impact mitigation. - Highlights: • Interval-stochastic risk management method is launched to identify optimal power mix. • It is advantageous in capturing the notion of risk in stochastic programming. • Results reveal that risk attitudes can affect optimal power mix and financial cost. • Developing renewable energies would enhance the sustainability of energy management. • Import electricity as an action to compensate the local shortage would be enforced.

  6. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    Science.gov (United States)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  7. Recent Advances in Fractional Laser Resurfacing: New Paradigm in Optimal Parameters and Post-Treatment Wound Care

    Science.gov (United States)

    Hsiao, Francis C.; Bock, Gerald N.; Eisen, Daniel B.

    2012-01-01

    Background Laser plays an increasingly prominent role in skin rejuvenation. The advent of fractional photothermolysis revolutionizes its application. Microcolumns of skin are focally injured, leaving intervening normal skin to facilitate rapid wound healing and orderly tissue remodeling. The Problem Even with the popularity of fractional laser devices, we still have limited knowledge about the ideal treatment parameters and postlaser wound care. Basic/Clinical Science Advances Many clinicians believe that higher microbream energy in fractional laser devices results in better clinical outcome. Two recent studies argue against this assumption. One article demonstrates that lower fluence can induce comparable molecular changes with fewer side effects. Another study corroborates this by showing that lower-density settings produce similar clinical outcome in scar remodeling as higher-density ones, but with fewer side effects. To shed light on the optimal post-treatment wound care regimen from fractional ablative resurfacing, another paper shows that platelet-rich plasma (PRP) can reduce transepidermal water loss and skin color changes within 1 month after treatment. Clinical Care Relevance For fractional nonablative resurfacing, lower settings in fluence or density may produce similar dermal remodeling as higher settings and with a better side-effect profile. Moreover, autologous PRP appears to expedite wound healing after fractional ablative resurfacing. Conclusion Lower microbeam energy in fractional laser resurfacing produces similar molecular changes and clinical outcome with fewer side effects. The findings might portend a shift in the paradigm of treatment parameters. Autologous PRP can facilitate better wound healing, albeit modestly. Long-term follow-ups and larger studies are necessary to confirm these findings. PMID:24527307

  8. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach.

    Science.gov (United States)

    Hussain, Lal

    2018-06-01

    Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.

  9. Advanced steam power plant concepts with optimized life-cycle costs: A new approach for maximum customer benefit

    Energy Technology Data Exchange (ETDEWEB)

    Seiter, C.

    1998-07-01

    The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.

  10. Identifying and prioritizing indicators and effective solutions to optimization the use of wood in construction classical furniture by using AHP (Case study of Qom

    Directory of Open Access Journals (Sweden)

    Mohammad Ghofrani

    2017-02-01

    Full Text Available AbstractThe aim of this study was to identify and prioritize the indicators and provide effective solutions to optimize the use of wood in construction classical furniture using the analytic hierarchy process (case study in Qom. For this purpose, studies and results of other researchers and interviews with experts, the factors affecting the optimization of wood consumption were divided into 4 main categories and 23 sub-indicators. The importance of the sub after getting feedback furniture producers were determined by AHP. The results show that the original surface design and human resources are of great importance. In addition, among 23 sub-effective optimization of the use of wood in construction classical furniture, ergonomics, style, skill training and inlaid in classical furniture industry in order to weight the value of 0/247, 0/181, 0/124 and 0/087 are of paramount importance and the method of use of force specialist solutions were a priority.

  11. Optimization and Optimal Control

    CERN Document Server

    Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider

    2010-01-01

    During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou

  12. An advanced control system for the optimal operation and management of medium size power systems with a large penetration from renewable power sources

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, E.; Stavrakakis, G.; Kariniotakis, G. [Ecole de Mines de Paris, Centre d`Energetique, Sophia-Antipolis (France)] [and others

    1997-10-01

    An advanced control system for the optimal operation and management of autonomous wind-diesel systems is presented. This system minimises the production costs through an on-line optimal scheduling of the power units, which takes into account the technical constraints of the diesel units, as well as short-term forecasts of the load and renewable resources. The power system security is maximised through on-line security assessment modules, which enable the power system to withstand sudden changes in the production of the renewable sources. The control system was evaluated using data from the island of Lemnos, where it has been installed and operated since January 1995. (Author)

  13. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  14. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.

    Science.gov (United States)

    Zou, Meng; Liu, Zhaoqi; Zhang, Xiang-Sun; Wang, Yong

    2015-10-15

    In prognosis and survival studies, an important goal is to identify multi-biomarker panels with predictive power using molecular characteristics or clinical observations. Such analysis is often challenged by censored, small-sample-size, but high-dimensional genomic profiles or clinical data. Therefore, sophisticated models and algorithms are in pressing need. In this study, we propose a novel Area Under Curve (AUC) optimization method for multi-biomarker panel identification named Nearest Centroid Classifier for AUC optimization (NCC-AUC). Our method is motived by the connection between AUC score for classification accuracy evaluation and Harrell's concordance index in survival analysis. This connection allows us to convert the survival time regression problem to a binary classification problem. Then an optimization model is formulated to directly maximize AUC and meanwhile minimize the number of selected features to construct a predictor in the nearest centroid classifier framework. NCC-AUC shows its great performance by validating both in genomic data of breast cancer and clinical data of stage IB Non-Small-Cell Lung Cancer (NSCLC). For the genomic data, NCC-AUC outperforms Support Vector Machine (SVM) and Support Vector Machine-based Recursive Feature Elimination (SVM-RFE) in classification accuracy. It tends to select a multi-biomarker panel with low average redundancy and enriched biological meanings. Also NCC-AUC is more significant in separation of low and high risk cohorts than widely used Cox model (Cox proportional-hazards regression model) and L1-Cox model (L1 penalized in Cox model). These performance gains of NCC-AUC are quite robust across 5 subtypes of breast cancer. Further in an independent clinical data, NCC-AUC outperforms SVM and SVM-RFE in predictive accuracy and is consistently better than Cox model and L1-Cox model in grouping patients into high and low risk categories. In summary, NCC-AUC provides a rigorous optimization framework to

  15. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Alan Black; Arnis Judzis

    2003-01-01

    Progress during current reporting year 2002 by quarter--Progress during Q1 2002: (1) In accordance to Task 7.0 (D. No.2 Technical Publications) TerraTek, NETL, and the Industry Contributors successfully presented a paper detailing Phase 1 testing results at the February 2002 IADC/SPE Drilling Conference, a prestigious venue for presenting DOE and private sector drilling technology advances. The full reference is as follows: IADC/SPE 74540 ''World's First Benchmarking of Drilling Mud Hammer Performance at Depth Conditions'' authored by Gordon A. Tibbitts, TerraTek; Roy C. Long, US Department of Energy, Brian E. Miller, BP America, Inc.; Arnis Judzis, TerraTek; and Alan D. Black, TerraTek. Gordon Tibbitts, TerraTek, will presented the well-attended paper in February of 2002. The full text of the Mud Hammer paper was included in the last quarterly report. (2) The Phase 2 project planning meeting (Task 6) was held at ExxonMobil's Houston Greenspoint offices on February 22, 2002. In attendance were representatives from TerraTek, DOE, BP, ExxonMobil, PDVSA, Novatek, and SDS Digger Tools. (3) PDVSA has joined the advisory board to this DOE mud hammer project. PDVSA's commitment of cash and in-kind contributions were reported during the last quarter. (4) Strong Industry support remains for the DOE project. Both Andergauge and Smith Tools have expressed an interest in participating in the ''optimization'' phase of the program. The potential for increased testing with additional Industry cash support was discussed at the planning meeting in February 2002. Progress during Q2 2002: (1) Presentation material was provided to the DOE/NETL project manager (Dr. John Rogers) for the DOE exhibit at the 2002 Offshore Technology Conference. (2) Two meeting at Smith International and one at Andergauge in Houston were held to investigate their interest in joining the Mud Hammer Performance study. (3) SDS Digger Tools (Task 3

  16. Pan-Cancer Analysis of the Mediator Complex Transcriptome Identifies CDK19 and CDK8 as Therapeutic Targets in Advanced Prostate Cancer.

    Science.gov (United States)

    Brägelmann, Johannes; Klümper, Niklas; Offermann, Anne; von Mässenhausen, Anne; Böhm, Diana; Deng, Mario; Queisser, Angela; Sanders, Christine; Syring, Isabella; Merseburger, Axel S; Vogel, Wenzel; Sievers, Elisabeth; Vlasic, Ignacija; Carlsson, Jessica; Andrén, Ove; Brossart, Peter; Duensing, Stefan; Svensson, Maria A; Shaikhibrahim, Zaki; Kirfel, Jutta; Perner, Sven

    2017-04-01

    Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches. Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities ( n = 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer ( n = 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq. Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19 In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro , inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion. Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer. Clin Cancer Res; 23(7); 1829-40. ©2016 AACR . ©2016 American Association for Cancer Research.

  17. Estimating of aquifer parameters from the single-well water-level measurements in response to advancing longwall mine by using particle swarm optimization

    Science.gov (United States)

    Buyuk, Ersin; Karaman, Abdullah

    2017-04-01

    We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.

  18. Laparoscopy and computed tomography imaging in advanced ovarian tumors: A roadmap for prediction of optimal cytoreductive surgery

    OpenAIRE

    Ahmed Samy El-Agwany

    2018-01-01

    Introduction: Comprehensive staging laparotomy and cytoreductive surgery followed by chemotherapy has been the standard of care in advanced ovarian cancer. Neoadjuvant chemotherapy is an alternative in inoperable advanced cases. To select patients amenable for successful cytoreduction, major determinants including CT imaging and laparoscopy could be of value. There is no general accepted model for selection and reproducibility of techniques are a major challenge due to different clinical prac...

  19. Waste incineration models for operation optimization. Phase 1: Advanced measurement equipment for improved operation of waste fired plants; Affaldsforbraendingsmodeller til driftsoptimering. Fase 1: Avanceret maeleudstyr til forbedret drift af affaldsfyrede anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    This report describes results from the PSO projects ELTRA-5294 and ELTRA-5348: Waste incineration models for operation optimization. Phase 1, and Advanced measurement equipment for improved operation of waste fired plants. Phase 1. The two projects form the first step in a project course build on a long-term vision of a fully automatic system using a wide range of advanced measurement data, advanced dynamic models for prediction of operation and advanced regulation methods for optimization of the operation of waste incinerator plants. (BA)

  20. How Can Medical Students Add Value? Identifying Roles, Barriers, and Strategies to Advance the Value of Undergraduate Medical Education to Patient Care and the Health System.

    Science.gov (United States)

    Gonzalo, Jed D; Dekhtyar, Michael; Hawkins, Richard E; Wolpaw, Daniel R

    2017-09-01

    As health systems evolve, the education community is seeking to reimagine student roles that combine learning with meaningful contributions to patient care. The authors sought to identify potential stakeholders regarding the value of student work, and roles and tasks students could perform to add value to the health system, including key barriers and associated strategies to promote value-added roles in undergraduate medical education. In 2016, 32 U.S. medical schools in the American Medical Association's (AMA's) Accelerating Change in Education Consortium met for a two-day national meeting to explore value-added medical education; 121 educators, systems leaders, clinical mentors, AMA staff leadership and advisory board members, and medical students were included. A thematic qualitative analysis of workshop discussions and written responses was performed, which extracted key themes. In current clinical roles, students can enhance value by performing detailed patient histories to identify social determinants of health and care barriers, providing evidence-based medicine contributions at the point-of-care, and undertaking health system research projects. Novel value-added roles include students serving as patient navigators/health coaches, care transition facilitators, population health managers, and quality improvement team extenders. Six priority areas for advancing value-added roles are student engagement, skills, and assessments; balance of service versus learning; resources, logistics, and supervision; productivity/billing pressures; current health systems design and culture; and faculty factors. These findings provide a starting point for collaborative work to positively impact clinical care and medical education through the enhanced integration of value-added medical student roles into care delivery systems.

  1. Quantitative Analysis of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yi [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Song, Jie; Pollom, Erqi; Alagappan, Muthuraman [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Shirato, Hiroki [Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Chang, Daniel T.; Koong, Albert C. [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Stanford Cancer Institute, Stanford, California (United States); Li, Ruijiang, E-mail: rli2@stanford.edu [Department of Radiation Oncology, Stanford University, Palo Alto, California (United States); Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Stanford Cancer Institute, Stanford, California (United States)

    2016-09-01

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162 robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6

  2. [Implantable sensors for outpatient assessment of ventricular filling pressure in advanced heart failure : Which telemonitoring design is optimal?

    Science.gov (United States)

    Herrmann, E; Fichtlscherer, S; Hohnloser, S H; Zeiher, A M; Aßmus, B

    2016-12-01

    Patients with advanced heart failure suffer from frequent hospitalizations. Non-invasive hemodynamic telemonitoring for assessment of ventricular filling pressure has been shown to reduce hospitalizations. We report on the right ventricular (RVP), the pulmonary artery (PAP) and the left atrial pressure (LAP) sensor for non-invasive assessment of the ventricular filling pressure. A literature search concerning the available implantable pressure sensors for noninvasive haemodynamic telemonitoring in patients with advanced heart failure was performed. Until now, only implantation of the PAP-sensor was able to reduce hospitalizations for cardiac decompensation and to improve quality of life. The right ventricular pressure sensor missed the primary endpoint of a significant reduction of hospitalizations, clinical data using the left atrial pressure sensor are still pending. The implantation of a pressure sensor for assessment of pulmonary artery filling pressure is suitable for reducing hospitalizations for heart failure and for improving quality of life in patients with advanced heart failure.

  3. Refractive outcomes of an advanced aspherically optimized profile for myopia corrections by LASIK: a retrospective comparison with the standard aspherically optimized profile

    Directory of Open Access Journals (Sweden)

    Meyer B

    2015-02-01

    Full Text Available Bertram Meyer,1 Georg Sluyterman van Langeweyde,2 Matthias Wottke2 1Augencentrum Köln, Cologne, Germany; 2Carl Zeiss Meditec AG, Jena, Germany Purpose: A retrospective comparison of refractive outcomes of a new, aspherically optimized profile with an enhanced energy correction feature (Triple-A and the conventionally used aspherically optimized profile (ASA, or aberration smart ablation for correction of low-to-high myopia.Setting: Augen-OP-Centrum, Cologne, GermanyDesign: Retrospective nonrandomized comparative studyMethods: A central database at the Augen-OP-Centrum was used to gather retrospective data for low-to-high myopia (up to -10 D. One hundred and seven eyes (56 patients were treated with the ASA profile, and 79 eyes (46 patients were treated with the Triple-A profile. Postoperative outcomes were evaluated at 1 month, 3 months, 6 months, and 1 year follow-up time points.Results: The Triple-A profile showed better predictability indicated by a significantly lower standard deviation of residuals (0.32–0.34 vs 0.36–0.44, Triple-A vs ASA in the 6-month to 1-year period. The Triple-A group had better stability across all time intervals and achieved better postoperative astigmatism improvements with significantly lower scatter. This group achieved better safety at 1 year, with 100% of eyes showing no change or gain in Snellen lines, compared with 97% in the ASA group. A better safety index was observed for the Triple-A group at later time points. The Triple-A group had a better efficacy index and a higher percentage of eyes with an uncorrected Snellen visual acuity of 20/20 or greater at all investigated follow-up time points.Conclusion: The new aspherically optimized Triple-A profile can safely and effectively correct low-to-high myopia. It has demonstrated superiority over the ASA profile in most refractive outcomes. Keywords: Triple-A, wavefront measurements, corneal aberrations, corneal asphericity, ablation profile

  4. Association between frequent cardiac resynchronization therapy optimization and long-term clinical response: a post hoc analysis of the Clinical Evaluation on Advanced Resynchronization (CLEAR) pilot study

    Science.gov (United States)

    Delnoy, Peter Paul; Ritter, Philippe; Naegele, Herbert; Orazi, Serafino; Szwed, Hanna; Zupan, Igor; Goscinska-Bis, Kinga; Anselme, Frederic; Martino, Maria; Padeletti, Luigi

    2013-01-01

    Aims The long-term clinical value of the optimization of atrioventricular (AVD) and interventricular (VVD) delays in cardiac resynchronization therapy (CRT) remains controversial. We studied retrospectively the association between the frequency of AVD and VVD optimization and 1-year clinical outcomes in the 199 CRT patients who completed the Clinical Evaluation on Advanced Resynchronization study. Methods and results From the 199 patients assigned to CRT-pacemaker (CRT-P) (New York Heart Association, NYHA, class III/IV, left ventricular ejection fraction failure-related hospitalization, NYHA functional class, and Quality of Life score, at 1 year. Systematic CRT optimization was associated with a higher percentage of improved patients based on the composite endpoint (85% in Group 1 vs. 61% in Group 2, P < 0.001), with fewer deaths (3% in Group 1 vs. 14% in Group 2, P = 0.014) and fewer hospitalizations (8% in Group 1 vs. 23% in Group 2, P = 0.007), at 1 year. Conclusion These results further suggest that AVD and VVD frequent optimization (at implant, at 3 and 6 months) is associated with improved long-term clinical response in CRT-P patients. PMID:23493410

  5. Measuring the influence of a mental health training module on the therapeutic optimism of advanced nurse practitioner students in the United Kingdom.

    Science.gov (United States)

    Hemingway, Steve; Rogers, Melanie; Elsom, Stephen

    2014-03-01

    To evaluate the influence of a mental health training module on the therapeutic optimism of advanced nurse practitioner (ANP) students in primary care (family practice). Three cohorts of ANPs who undertook a Mental Health Problems in Primary Care Module as part of their MSc ANP (primary care) run by the University of Huddersfield completed the Elsom Therapeutic Optimism Scale (ETOS), in a pre- and postformat. The ETOS is a 10-item, self-administered scale, which has been used to evaluate therapeutic optimism previously in mental health professionals. All three cohorts who completed the scale showed an improvement in their therapeutic optimism scores. With stigma having such a detrimental effect for people diagnosed with a mental health problem, ANPs who are more mental health literate facilitated by education and training in turn facilitates them to have the skills and confidence to engage and inspire hope for the person diagnosed with mental health problems. ©2013 The Author(s) ©2013 American Association of Nurse Practitioners.

  6. Optimizing patient treatment decisions in an era of rapid technological advances: the case of hepatitis C treatment.

    Science.gov (United States)

    Liu, Shan; Brandeau, Margaret L; Goldhaber-Fiebert, Jeremy D

    2017-03-01

    How long should a patient with a treatable chronic disease wait for more effective treatments before accepting the best available treatment? We develop a framework to guide optimal treatment decisions for a deteriorating chronic disease when treatment technologies are improving over time. We formulate an optimal stopping problem using a discrete-time, finite-horizon Markov decision process. The goal is to maximize a patient's quality-adjusted life expectancy. We derive structural properties of the model and analytically solve a three-period treatment decision problem. We illustrate the model with the example of treatment for chronic hepatitis C virus (HCV). Chronic HCV affects 3-4 million Americans and has been historically difficult to treat, but increasingly effective treatments have been commercialized in the past few years. We show that the optimal treatment decision is more likely to be to accept currently available treatment-despite expectations for future treatment improvement-for patients who have high-risk history, who are older, or who have more comorbidities. Insights from this study can guide HCV treatment decisions for individual patients. More broadly, our model can guide treatment decisions for curable chronic diseases by finding the optimal treatment policy for individual patients in a heterogeneous population.

  7. TU-CD-BRB-08: Radiomic Analysis of FDG-PET Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated with SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Y; Shirato, H [Hokkaido University, Global Institute for Collaborative Research and Educat, Sapporo, Hokkaido (Japan); Song, J; Pollom, E; Chang, D; Koong, A [Stanford University, Palo Alto, CA (United States); Li, R [Hokkaido University, Global Institute for Collaborative Research and Educat, Sapporo, Hokkaido (Japan); Stanford University, Palo Alto, CA (United States)

    2015-06-15

    Purpose: This study aims to identify novel prognostic imaging biomarkers in locally advanced pancreatic cancer (LAPC) using quantitative, high-throughput image analysis. Methods: 86 patients with LAPC receiving chemotherapy followed by SBRT were retrospectively studied. All patients had a baseline FDG-PET scan prior to SBRT. For each patient, we extracted 435 PET imaging features of five types: statistical, morphological, textural, histogram, and wavelet. These features went through redundancy checks, robustness analysis, as well as a prescreening process based on their concordance indices with respect to the relevant outcomes. We then performed principle component analysis on the remaining features (number ranged from 10 to 16), and fitted a Cox proportional hazard regression model using the first 3 principle components. Kaplan-Meier analysis was used to assess the ability to distinguish high versus low-risk patients separated by median predicted survival. To avoid overfitting, all evaluations were based on leave-one-out cross validation (LOOCV), in which each holdout patient was assigned to a risk group according to the model obtained from a separate training set. Results: For predicting overall survival (OS), the most dominant imaging features were wavelet coefficients. There was a statistically significant difference in OS between patients with predicted high and low-risk based on LOOCV (hazard ratio: 2.26, p<0.001). Similar imaging features were also strongly associated with local progression-free survival (LPFS) (hazard ratio: 1.53, p=0.026) on LOOCV. In comparison, neither SUVmax nor TLG was associated with LPFS (p=0.103, p=0.433) (Table 1). Results for progression-free survival and distant progression-free survival showed similar trends. Conclusion: Radiomic analysis identified novel imaging features that showed improved prognostic value over conventional methods. These features characterize the degree of intra-tumor heterogeneity reflected on FDG

  8. Long-term follow-up in repaired tetralogy of fallot: can deformation imaging help identify optimal timing of pulmonary valve replacement?

    Science.gov (United States)

    Sabate Rotes, Anna; Bonnichsen, Crystal R; Reece, Chelsea L; Connolly, Heidi M; Burkhart, Harold M; Dearani, Joseph A; Eidem, Benjamin W

    2014-12-01

    Novel echocardiographic techniques based on myocardial deformation have not been extensively evaluated to assess right ventricular (RV) and left ventricular (LV) response after pulmonary valve replacement (PVR) in patients with repaired tetralogy of Fallot. Between 2003 and 2012, 133 patients undergoing first-time PVR after tetralogy of Fallot repair underwent echocardiographic assessment at Mayo Clinic. The last echocardiogram before PVR and 1 year after surgery were retrospectively analyzed with Velocity Vector Imaging. Mean age at PVR was 35.5 ± 16.2 years (54% women). Longitudinal peak systolic strain and strain rate before PVR were low: for the left ventricle, -14.8 ± 3.5% and -0.8 ± 0.2 sec(-1), and for the right ventricle, -16.2 ± 4.1% and -0.9 ± 0.3 sec(-1), respectively. There was no significant change in either parameter after surgery. A close correlation between LV and RV deformational parameters was found before PVR and was maintained after surgery. In the multivariate analysis, patients with better LV and RV peak systolic strain preoperatively were found to have better LV and RV peak systolic strain after surgery (P = .004 and P = .006, respectively). However, patients with the most improvement in deformation were those with worse RV function preoperatively (P = .002). Mean New York Heart Association class at early follow-up improved from 2.2 ± 0.8 to 1.2 ± 0.6 (P tetralogy of Fallot undergoing PVR, and there was no significant change after surgery. However, preoperative systolic deformational parameters were predictive of postoperative ventricular function and New York Heart Association class after PVR and may be helpful to identify optimal timing for surgical intervention in this cohort. Copyright © 2014 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  9. Optimal cut points for quality of life questionnaire-core 30 (QLQ-C30) scales: utility for clinical trials and updates of prognostic systems in advanced hepatocellular carcinoma.

    Science.gov (United States)

    Diouf, Momar; Bonnetain, Franck; Barbare, Jean-Claude; Bouché, Olivier; Dahan, Laetitia; Paoletti, Xavier; Filleron, Thomas

    2015-01-01

    Health-related quality of life (QoL) has been validated as a prognostic factor for cancer patients; however, to be used in routine practice, QoL scores must be dichotomized. Cutoff points are usually based on arbitrary percentile values. We aimed to identify optimal cutoff points for six QoL scales and to quantify their added utility in the performance of four prognostic classifications in patients with hepatocellular carcinoma (HCC). We reanalyzed data of 271 patients with advanced HCC recruited between July 2002 and October 2003 from 79 institutions in France in the CHOC trial, designed to assess the efficacy of long-acting octreotide. QoL was assessed with the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 (QLQ-C30). The scores ranged from 0 to 100. Identification of optimal cutoff points was based on the method of Faraggi and Simon [Stat Med 1996;15:2203-2213]. Improvement in the performance of prognostic classifications was studied with Harrell's C-index, the net reclassification improvement (NRI), and integrated discrimination improvement (IDI). We found that optimal cutoff points were 50 for global health, 58.33 for physical functioning, 66.67 for role functioning, 66.67 for fatigue, 0 for dyspnea, and 33.33 for diarrhea. The addition of QoL and clinical factors improved the performance of all four prognostic classifications, with improvement in the range of 0.02-0.09 for the C-index, 0.24-0.78 for 3-month NRI, and 0.02-0.10 for IDI. These cutoff values for QoL scales can be useful to identify HCC patients with very poor prognosis and thus improve design of clinical trials and treatment adjustment for these patients. ©AlphaMed Press.

  10. Advanced MR imaging for the optimal micro neurosurgical planning in patients with the congential spinal meningeal cysts

    International Nuclear Information System (INIS)

    Purvina, J.; Jansone, A.; Krumina, G.; Dzelzite, S.; Platkajis, A.; Ozolins, H.; Dzelzitis, J.

    2001-01-01

    The extramedullar meningeal cysts are congential anomalies of the spinal canal. The neurological manifestation - the syndromes of radicular pain and the dysfunctions of the pelvic organs are indicators for the neurosurgical treatment. The most complete classification of distinguish the different types of these anomalies is the Nabor's classification. The congential anomalies (malformations) are conventionally diagnosed by TC or conventional MR imaging techniques. These methods can't give a precise answer to the Nabor's classification. The new MR sequences offer the possibility to diagnose these anomalies more precisely. Purpose: to create a new MR protocol for a precise topical diagnostic of the meningeal cysts according to the contemporary embriogenetical, neurological and neurosurgical classification. Conclusions: For the optimal topographical visualisation of the congential spinal meningeal cysts MR in 3 orthogonal planes must be performed. The thin slice techniques with the specific parameters for better visualisation of the nerve roots are necessary. The thin slice, fat suppressed MR sequences are very important for the differential diagnosis of the extradural meningeal cysts from the dermoids, para- and infraspinal fat collections. They are very useful in choosing the optimal microneurosurgical way of the surgical treatment. (authors)

  11. The development of advanced robotics for the nuclear industry -The development of optimal design technology in robotics

    International Nuclear Information System (INIS)

    Kim, Tae Ryong; Park, Jin Seok; Jeong, Seung Ho; Park, Jin Ho; Kim, Seung Ho

    1996-07-01

    The materials used in fabrication of the nozzle dam were carbon fabric reinfored plastic(CFRP), honeycomb, aluminum plate and glass fiber. CFRP was used as the main structural material because of its relatively high specific modulus and high specific strength. Honeycomb was used to increase bending stiffness and shear stiffness, aluminum plate to release the stress around bolt hoes, and glass fiber to absorb the impact on nozzle dam. The stiffness-to-weight ratios of the nozzle damII were much improved to 9.15x10 3 and 11.56x10 3 (Nm 2 /kg) for x-radiation and y-direction, respectively than those of KORI nozzle dam, 0.37x10 3 and 18.25x10 3 (Nm 2 /kg). The structural integrity of KAERI nozzle dam II was verified through the stress analysis using ANSYS program. Design and manufacturing of nozzle dam diaphragm seal assembly which consists of inflatable seals(a wet and a dry seal) and a mechanical seal have been completed. From the leak test, it has been proved that there was no leakage under the testing pressure(1.25 operating pressure). Optimal design of the gripper mechanism were carried out. As a performance index of the optimization, the driving force-to-gripping force ratio was proposed. The smaller index stands for the better performance of the gripper

  12. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process.

    Science.gov (United States)

    Rezaee, Reza; Maleki, Afshin; Jafari, Ali; Mazloomi, Sajad; Zandsalimi, Yahya; Mahvi, Amir H

    2014-01-01

    In this research, the removal of natural organic matter from aqueous solutions using advanced oxidation processes (UV/H2O2) was evaluated. Therefore, the response surface methodology and Box-Behnken design matrix were employed to design the experiments and to determine the optimal conditions. The effects of various parameters such as initial concentration of H2O2 (100-180 mg/L), pH (3-11), time (10-30 min) and initial total organic carbon (TOC) concentration (4-10 mg/L) were studied. Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model (R(2) = 0.98). Experimental results showed that with increasing H2O2 concentration, time and decreasing in initial TOC concentration, TOC removal efficiency was increased. Neutral and nearly acidic pH values also improved the TOC removal. Accordingly, the TOC removal efficiency of 78.02% in terms of the independent variables including H2O2 concentration (100 mg/L), pH (6.12), time (22.42 min) and initial TOC concentration (4 mg/L) were optimized. Further confirmation tests under optimal conditions showed a 76.50% of TOC removal and confirmed that the model is accordance with the experiments. In addition TOC removal for natural water based on response surface methodology optimum condition was 62.15%. This study showed that response surface methodology based on Box-Behnken method is a useful tool for optimizing the operating parameters for TOC removal using UV/H2O2 process.

  13. [The optimization of restoration approaches of advanced hand activity using the sensorial glove and the mCIMT method].

    Science.gov (United States)

    Mozheiko, E Yu; Prokopenko, S V; Alekseevich, G V

    To reason the choice of methods of restoration of advanced hand activity depending on severity of motor disturbance in the top extremity. Eighty-eight patients were randomized into 3 groups: 1) the mCIMT group, 2) the 'touch glove' group, 3) the control group. For assessment of physical activity of the top extremity Fugl-Meyer Assessment Upper Extremity, Nine-Hole Peg Test, Motor Assessment Scale were used. Assessment of non-use phenomenon was carried out with the Motor Activity Log scale. At a stage of severe motor dysfunction, there was a restoration of proximal departments of a hand in all groups, neither method was superior to the other. In case of moderate severity of motor deficiency of the upper extremity the most effective was the method based on the principle of biological feedback - 'a touch glove'. In the group with mild severity of motor dysfunction, the best recovery was achieved in the mCIMT group.

  14. Volumetric response analysis during chemoradiation as predictive tool for optimizing treatment strategy in locally advanced unresectable NSCLC

    International Nuclear Information System (INIS)

    Bral, Samuel; Duchateau, Michael; De Ridder, Mark; Everaert, Hendrik; Tournel, Koen; Schallier, Denis; Verellen, Dirk; Storme, Guy

    2009-01-01

    Purpose: To study the feasibility of measuring volumetric changes in the primary tumor on megavoltage-computed tomography (MVCT) during chemoradiation and to examine the correlation with local response. Patients and methods: Fifteen consecutive patients with stage III, inoperable, locally advanced non-small cell lung cancer (NSCLC) were treated in a prospective dose escalation study protocol of concurrent chemoradiation. They were monitored for acute toxicity and evaluated with daily MVCT imaging. The volumetric changes were fitted to a negative exponential resulting in a regression coefficient (RC). Local response evaluation was done with positron emission tomography using the radio-labeled glucose analogue F18 fluorodeoxyglucose (FDG-PET). Results: The mean volume decrease (±standard deviation) was 73% (±18%). With a mean treatment time of 42 days this treatment schedule resulted in a mean decrease of 1.74%/day. Of the 13 evaluable patients seven developed a metabolic complete remission (MCR). The mean RC of the patients with MCR is 0.050 versus a mean RC of 0.023 in non-responders (p = 0.0074). Using a proposed cut-off value for the RC of 0.03 80% of the non-responders will be detected correctly while misclassifying 16.4% of patients who will eventually achieve an MCR. The total cumulative percentage of esophageal grade 3 or more toxicity was 46.7%. Conclusion: The RC derived from volumetric analysis of daily MVCT is prognostic and predictive for local response in patients treated with chemoradiation for a locally advanced NSCLC. Because this treatment schedule is toxic in nearly half of the patient population, MVCT is a tool in the implementation of patient-individualized treatment strategies.

  15. Process Parameter Evaluation and Optimization for Advanced Material Development Final Report CRADA No. TC-1234-96

    Energy Technology Data Exchange (ETDEWEB)

    Hrubesh, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McGann, T. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    This project was established as a three-year collaboration to produce and characterize · silica aerogels prepared by a Rapid Supercritical Extraction (RSCE) process to meet . BNA, Inc. application requirements. The objectives of this project were to study the parameters necessary to produce optimized aerogel parts with narrowly specified properties and establish the range and limits of the process for producing such aerogels. The project also included development of new aerogel materials useful for high temperature applications. The results of the project were expected to set the conditions necessary to produce quantities of aerogels having particular specifications such as size, shape, density, and mechanical strength. BNA, Inc. terminated the project on April 7, 1999, 10-months prior to the anticipated completion date, due to termination of corporate funding for the project. The technical accomplishments achieved are outlined in Paragraph C below.

  16. Optimized spherical manganese oxide-ferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Zhu, Jian; Tang, Shaochun; Vongehr, Sascha; Xie, Hao; Meng, Xiangkang

    2015-09-01

    Inexpensive MnO2 is a promising material for supercapacitors (SCs), but its application is limited by poor electrical conductivity and low specific surface area. We design and fabricate hierarchical MnO2-based ternary composite nanostructures showing superior electrochemical performance via doping with electrochemically active Fe3O4 in the interior and electrically conductive SnO2 nanoparticles in the surface layer. Optimization composition results in a MnO2-Fe3O4-SnO2 composite electrode material with 5.9 wt.% Fe3O4 and 5.3 wt.% SnO2, leading to a high specific areal capacitance of 1.12 F cm-2 at a scan rate of 5 mV s-1. This is two to three times the values for MnO2-based binary nanostructures at the same scan rate. The low amount of SnO2 almost doubles the capacitance of porous MnO2-Fe3O4 (before SnO2 addition), which is attributed to an improved conductivity and remaining porosity. In addition, the optimal ternary composite has a good rate capability and an excellent cycling performance with stable capacitance retention of ˜90% after 5000 charge/discharge cycles at 7.5 mA cm-2. All-solid-state SCs are assembled with such electrodes using polyvinyl alcohol/Na2SO4 electrolyte. An integrated device made by connecting two identical SCs in series can power a light-emitting diode indicator for more than 10 min.

  17. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

  18. Pharmacokinetics and Dosimetry Studies for Optimization of Pretargeted Radioimmunotherapy in CEA-Expressing Advanced Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Caroline eBodet-Milin

    2015-11-01

    Full Text Available Objectives. A phase I pretargeted radioimmunotherapy trial (EudractCT 200800603096 was designed in patients with metastatic lung cancer expressing carcinoembryonic antigen (CEA to optimize bispecific antibody and labelled peptide doses, as well as the delay between their injections.Methods. Three cohorts of 3 patients received the anti-CEA x anti-histamine-succinyl-glycine (HSG humanized trivalent bispecific antibody (TF2 and the IMP288 bivalent HSG-peptide. Patients underwent a pre-therapeutic imaging session S1 (44 or 88 nmol/m2 of TF2 followed by 4.4 nmol/m2, 185 MBq, of 111In-labelled IMP288, and, 1-2 weeks later, a therapy session S2 (240 or 480 nmol/m2 of TF2 followed by 24 nmol/m2, 1.1 GBq/m2, 177Lu-labeled IMP288. The pretargeting delay was 24 or 48 hours. The dose schedule was defined based on pre-clinical TF2 pharmacokinetic studies, on our previous clinical data using the previous anti-CEA pretargeting system and on clinical results observed in the first patients injected using the same system in the Netherlands.Results. TF2 pharmacokinetics (PK was represented by a two-compartment model in which the central compartment volume was linearly dependent on the patient's surface area. PK were remarkably similar, with a clearance of 0.33 +/- 0.03 L/h per m2. 111In- and 177Lu-IMP288 PK were also well represented by a two-compartment model. IMP288 PK were faster (clearance 1.4 to 3.3 l/h. The central compartment volume was proportional to body surface area and IMP288clearance depended on the molar ratio of injected IMP288 to circulating TF2 at the time of IMP288 injection. Modelling of image quantification confirmed the dependence of IMP288 kinetics on circulating TF2, but tumour activity PK were variable. Organ absorbed doses were not significantly different in the 3 cohorts, but the tumour dose was significantly higher with the higher molar doses of TF2 (p < 0.002. S1 imaging predicted absorbed doses calculated in S2. Conclusion. The best

  19. Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

    International Nuclear Information System (INIS)

    Mills, F.; Makino, K.; Berz, M.; Johnstone, C.

    2010-01-01

    With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type output COSY provides.

  20. Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mills, F.; Makino, Kyoko; Berz, Martin; Johnstone, C.

    2010-09-01

    With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type output COSY provides.

  1. Recent advances in PC-Linux systems for electronic structure computations by optimized compilers and numerical libraries.

    Science.gov (United States)

    Yu, Jen-Shiang K; Yu, Chin-Hui

    2002-01-01

    One of the most frequently used packages for electronic structure research, GAUSSIAN 98, is compiled on Linux systems with various hardware configurations, including AMD Athlon (with the "Thunderbird" core), AthlonMP, and AthlonXP (with the "Palomino" core) systems as well as the Intel Pentium 4 (with the "Willamette" core) machines. The default PGI FORTRAN compiler (pgf77) and the Intel FORTRAN compiler (ifc) are respectively employed with different architectural optimization options to compile GAUSSIAN 98 and test the performance improvement. In addition to the BLAS library included in revision A.11 of this package, the Automatically Tuned Linear Algebra Software (ATLAS) library is linked against the binary executables to improve the performance. Various Hartree-Fock, density-functional theories, and the MP2 calculations are done for benchmarking purposes. It is found that the combination of ifc with ATLAS library gives the best performance for GAUSSIAN 98 on all of these PC-Linux computers, including AMD and Intel CPUs. Even on AMD systems, the Intel FORTRAN compiler invariably produces binaries with better performance than pgf77. The enhancement provided by the ATLAS library is more significant for post-Hartree-Fock calculations. The performance on one single CPU is potentially as good as that on an Alpha 21264A workstation or an SGI supercomputer. The floating-point marks by SpecFP2000 have similar trends to the results of GAUSSIAN 98 package.

  2. Clinical significance of circulating tumor cells (CTCs) with respect to optimal cut-off value and tumor markers in advanced/metastatic breast cancer.

    Science.gov (United States)

    Shiomi-Mouri, Yukako; Kousaka, Junko; Ando, Takahito; Tetsuka, Rie; Nakano, Shogo; Yoshida, Miwa; Fujii, Kimihito; Akizuki, Miwa; Imai, Tsuneo; Fukutomi, Takashi; Kobayashi, Katsumasa

    2016-01-01

    Although carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA15-3) are useful tumor markers (TMs) in metastatic breast cancer (MBC), circulating tumor cells (CTCs) are also detected in patients with advanced or metastatic breast cancer. We analyzed CTCs in MBC patients in order to establish the optimal cut-off value, to evaluate the prognostic utility of CTC count, and to clarify whether CTC count could provide information in addition to CEA and CA15-3. We studied 98 MBC patients enrolled between June 2007 and March 2013. To quantify CTCs, 7.5 ml of blood was collected and CEA and CA15-3 were measured simultaneously. CTCs were counted using the CellSearch™ System. The CTC count was dichotomized as 0 (CTC-negative) or ≥1 (CTC-positive). The clinical significance of CTCs was evaluated in terms of its relationship with levels of CEA and CA15-3. Associations between qualitative variables were evaluated using the chi-square test. In order to evaluate the predictive value of CTCs for advanced or metastatic breast cancer, multivariate Cox proportional hazards modeling was used to calculate hazard ratios. With a CTC cut-off value of 1, there were 53 (54.1 %) CTC-negative patients and 45 (45.9 %) CTC-positive patients. Patients in the CTC-positive group had worse survival than those in the CTC-negative group (p CEA and CA15-3.

  3. SU-F-T-377: Monte Carlo Re-Evaluation of Volumetric-Modulated Arc Plans of Advanced Stage Nasopharygeal Cancers Optimized with Convolution-Superposition Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K; Leung, R; Law, G; Wong, M; Lee, V; Tung, S; Cheung, S; Chan, M [Tuen Mun Hospital, Hong Kong (Hong Kong)

    2016-06-15

    Background: Commercial treatment planning system Pinnacle3 (Philips, Fitchburg, WI, USA) employs a convolution-superposition algorithm for volumetric-modulated arc radiotherapy (VMAT) optimization and dose calculation. Study of Monte Carlo (MC) dose recalculation of VMAT plans for advanced-stage nasopharyngeal cancers (NPC) is currently limited. Methods: Twenty-nine VMAT prescribed 70Gy, 60Gy, and 54Gy to the planning target volumes (PTVs) were included. These clinical plans achieved with a CS dose engine on Pinnacle3 v9.0 were recalculated by the Monaco TPS v5.0 (Elekta, Maryland Heights, MO, USA) with a XVMC-based MC dose engine. The MC virtual source model was built using the same measurement beam dataset as for the Pinnacle beam model. All MC recalculation were based on absorbed dose to medium in medium (Dm,m). Differences in dose constraint parameters per our institution protocol (Supplementary Table 1) were analyzed. Results: Only differences in maximum dose to left brachial plexus, left temporal lobe and PTV54Gy were found to be statistically insignificant (p> 0.05). Dosimetric differences of other tumor targets and normal organs are found in supplementary Table 1. Generally, doses outside the PTV in the normal organs are lower with MC than with CS. This is also true in the PTV54-70Gy doses but higher dose in the nasal cavity near the bone interfaces is consistently predicted by MC, possibly due to the increased backscattering of short-range scattered photons and the secondary electrons that is not properly modeled by the CS. The straight shoulders of the PTV dose volume histograms (DVH) initially resulted from the CS optimization are merely preserved after MC recalculation. Conclusion: Significant dosimetric differences in VMAT NPC plans were observed between CS and MC calculations. Adjustments of the planning dose constraints to incorporate the physics differences from conventional CS algorithm should be made when VMAT optimization is carried out directly

  4. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Understanding interdisciplinary health care teams: using simulation design processes from the Air Carrier Advanced Qualification Program to identify and train critical teamwork skills.

    Science.gov (United States)

    Hamman, William R; Beaudin-Seiler, Beth M; Beaubien, Jeffrey M

    2010-09-01

    In the report "Five Years After 'To Err is Human' ", it was noted that "the combination of complexity, professional fragmentation, and a tradition of individualism, enhanced by a well-entrenched hierarchical authority structure and diffuse accountability, forms a daunting barrier to creating the habits and beliefs of common purpose, teamwork, and individual accountability for successful interdependence that a safe culture requires". Training physicians, nurses, and other professionals to work in teams is a concept that has been promoted by many patient safety experts. However the model of teamwork in healthcare is diffusely defined, no clear performance metrics have been established, and the use of simulation to train teams has been suboptimal. This paper reports on the first three years of work performed in the Michigan Economic Development Corporation (MEDC) Tri-Corridor life science grant to apply concepts and processes of simulation design that were developed in the air carrier industry to understand and train healthcare teams. This work has been monitored by the American Academy for the Advancement of Science (AAA) and is based on concepts designed in the Advanced Qualification Program (AQP) from the air carrier industry, which trains and assesses teamwork skills in the same manner as technical skills. This grant has formed the foundation for the Center of Excellence for Simulation Education and Research (CESR).

  6. An inflammation based score can optimize the selection of patients with advanced cancer considered for early phase clinical trials.

    Directory of Open Access Journals (Sweden)

    David J Pinato

    Full Text Available Adequate organ function and good performance status (PS are common eligibility criteria for phase I trials. As inflammation is pathogenic and prognostic in cancer we investigated the prognostic performance of inflammation-based indices including the neutrophil (NLR and platelet to lymphocyte ratio (PLR.We studied inflammatory scores in 118 unselected referrals. NLR normalization was recalculated at disease reassessment. Each variable was assessed for progression-free (PFS and overall survival (OS on uni- and multivariate analyses and tested for 90 days survival (90DS prediction using receiving operator curves (ROC.We included 118 patients with median OS 4.4 months, 23% PS>1. LDH≥450 and NLR≥5 were multivariate predictors of OS (p<0.001. NLR normalization predicted for longer OS (p<0.001 and PFS (p<0.05. PS and NLR ranked as most accurate predictors of both 90DS with area under ROC values of 0.66 and 0.64, and OS with c-score of 0.69 and 0.60. The combination of NLR+PS increased prognostic accuracy to 0.72. The NLR was externally validated in a cohort of 126 subjects.We identified the NLR as a validated and objective index to improve patient selection for experimental therapies, with its normalization following treatment predicting for a survival benefit of 7 months. Prospective validation of the NLR is warranted.

  7. Development and validation of automatic tools for interactive recurrence analysis in radiation therapy: optimization of treatment algorithms for locally advanced pancreatic cancer.

    Science.gov (United States)

    Kessel, Kerstin A; Habermehl, Daniel; Jäger, Andreas; Floca, Ralf O; Zhang, Lanlan; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E

    2013-06-07

    In radiation oncology recurrence analysis is an important part in the evaluation process and clinical quality assurance of treatment concepts. With the example of 9 patients with locally advanced pancreatic cancer we developed and validated interactive analysis tools to support the evaluation workflow. After an automatic registration of the radiation planning CTs with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence and the distance between the boost and recurrence volume. We calculated the percentage of the recurrence volume within the 80%-isodose volume and compared it to the location of the recurrence within the boost volume, boost + 1 cm, boost + 1.5 cm and boost + 2 cm volumes. Recurrence analysis of 9 patients demonstrated that all recurrences except one occurred within the defined GTV/boost volume; one recurrence developed beyond the field border/outfield. With the defined distance volumes in relation to the recurrences, we could show that 7 recurrent lesions were within the 2 cm radius of the primary tumor. Two large recurrences extended beyond the 2 cm, however, this might be due to very rapid growth and/or late detection of the tumor progression. The main goal of using automatic analysis tools is to reduce time and effort conducting clinical analyses. We showed a first approach and use of a semi-automated workflow for recurrence analysis, which will be continuously optimized. In conclusion, despite the limitations of the automatic calculations we contributed to in-house optimization of subsequent study concepts based on an improved and validated target volume definition.

  8. Identifying Strategic Scientific Opportunities

    Science.gov (United States)

    As NCI's central scientific strategy office, CRS collaborates with the institute's divisions, offices, and centers to identify research opportunities to advance NCI's vision for the future of cancer research.

  9. Recent advances in cross-cultural measurement in psychiatric epidemiology: utilizing 'what matters most' to identify culture-specific aspects of stigma.

    Science.gov (United States)

    Yang, Lawrence Hsin; Thornicroft, Graham; Alvarado, Ruben; Vega, Eduardo; Link, Bruce George

    2014-04-01

    While stigma measurement across cultures has assumed growing importance in psychiatric epidemiology, it is unknown to what extent concepts arising from culture have been incorporated. We utilize a formulation of culture-as the everyday interactions that 'matter most' to individuals within a cultural group-to identify culturally-specific stigma dynamics relevant to measurement. A systematic literature review from January 1990 to September 2012 was conducted using PsycINFO, Medline and Google Scholar to identify articles studying: (i) mental health stigma-related concepts; (ii) ≥ 1 non-Western European cultural group. From 5292 abstracts, 196 empirical articles were located. The vast majority of studies (77%) utilized adaptations of existing Western-developed stigma measures to new cultural groups. Extremely few studies (2.0%) featured quantitative stigma measures derived within a non-Western European cultural group. A sizeable amount (16.8%) of studies employed qualitative methods to identify culture-specific stigma processes. The 'what matters most' perspective identified cultural ideals of the everyday activities that comprise 'personhood' of 'preserving lineage' among specific Asian groups, 'fighting hard to overcome problems and taking advantage of immigration opportunities' among specific Latino-American groups, and 'establishing trust among religious institutions due to institutional discrimination' among African-American groups. These essential cultural interactions shaped culture-specific stigma manifestations. Mixed method studies (3.6%) corroborated these qualitative results. Quantitatively-derived, culturally-specific stigma measures were lacking. Further, the vast majority of qualitative studies on stigma were conducted without using stigma-specific frameworks. We propose the 'what matters most' approach to address this key issue in future research.

  10. C-reactive protein in patients with advanced metastatic renal cell carcinoma: Usefulness in identifying patients most likely to benefit from initial nephrectomy

    International Nuclear Information System (INIS)

    Ito, Hiroki; Kishida, Takeshi; Miura, Takeshi; Kubota, Yoshinobu; Yao, Masahiro; Shioi, Koichi; Murakami, Takayuki; Takizawa, Akitoshi; Sano, Futoshi; Kawahara, Takashi; Mizuno, Nobuhiko; Makiyama, Kazuhide; Nakaigawa, Noboru

    2012-01-01

    C-reactive protein (CRP) is considered a useful serum marker for patients with RCC. However, its clinical utility in advanced metastatic renal cell carcinoma (AM-RCC), particularly in deciding whether to perform nephrectomy at the onset, is not well studied. We retrospectively evaluated 181 patients with AM-RCC, including 18 patients underwent potentially curative surgery, 111 underwent cytoreductive nephrectomy, and 52 received medical treatment only. CRP cutoff points were determined by receiver operating characteristic (ROC) curve analysis. Kaplan-Meier and Cox regression analyses were used for survival tests. ROC analysis suggested that grouping patients according to 3 CRP ranges was a rational model. Patients with highly elevated CRP (≥67.0 mg/L) presented remarkably poor prognosis despite treatment (nephrectomy or medical treatment only). Cox regression models demonstrated that risk factors of overall survival for patients who underwent nephrectomy were the CRP ranges defined in this study (≤18.0 mg/L, >18.0 and <67.0 mg/L, and ≥67.0 mg/L), ECOG PS (0, 1, and ≥2), and number of metastatic organ sites (0–1 and ≥2). The retrospective design is a limitation of this study. Our study demonstrated that the serum CRP level is a statistically significant prognostic parameter for patients with AM-RCC. The data also indicated that pretreatment serum CRP level provides useful prognostic information that helps in deciding whether to perform initial nephrectomy for patients with AM-RCC

  11. Exploration of an Optimal Policy for Water Resources Management Including the Introduction of Advanced Sewage Treatment Technologies in Zaozhuang City, China

    Directory of Open Access Journals (Sweden)

    Gengyu He

    2016-12-01

    Full Text Available Water shortage and water pollution are important factors restricting sustainable social and economic development. As a typical coal resource-exhausted city and a node city of the South-to-North Water Transfer East Route Project in China, Zaozhuang City’s water resources management faces multiple constraints such as transformation of economic development, restriction of groundwater exploitation, and improvement of water environment. In this paper, we develop a linear optimization model by input–output analysis to study water resources management with the introduction of three advanced sewage treatment technologies for pollutant treatment and reclaimed water production. The simulation results showed that from 2014 to 2020, Zaozhuang City will realize an annual GDP growth rate of 7.1% with an annual chemical oxygen demand (COD emissions reduction rate of 5.5%. The proportion of primary industry, secondary industry, and tertiary industry would be adjusted to 5.6%, 40.8%, and 53.6%, respectively. The amount of reclaimed water supply could be increased by 91% and groundwater supply could be decreased by 6%. Based on the simulation, this model proposes a scientific reference on water resources management policies, including water environment control, water supply plan, and financial subsidy, to realize the sustainable development of economy and water resources usage.

  12. A scoping study to identify opportunities to advance the ethical implementation and scale-up of HIV treatment as prevention: priorities for empirical research.

    Science.gov (United States)

    Knight, Rod; Small, Will; Pakula, Basia; Thomson, Kimberly; Shoveller, Jean

    2014-07-03

    Despite the evidence showing the promise of HIV treatment as prevention (TasP) in reducing HIV incidence, a variety of ethical questions surrounding the implementation and "scaling up" of TasP have been articulated by a variety of stakeholders including scientists, community activists and government officials. Given the high profile and potential promise of TasP in combatting the global HIV epidemic, an explicit and transparent research priority-setting process is critical to inform ongoing ethical discussions pertaining to TasP. We drew on the Arksey and O'Malley framework for conducting scoping review studies as well as systematic approaches to identifying empirical and theoretical gaps within ethical discussions pertaining to population-level intervention implementation and scale up. We searched the health science database PubMed to identify relevant peer-reviewed articles on ethical and implementation issues pertaining to TasP. We included English language articles that were published after 2009 (i.e., after the emergence of causal evidence within this field) by using search terms related to TasP. Given the tendency for much of the criticism and support of TasP to occur outside the peer-reviewed literature, we also included grey literature in order to provide a more exhaustive representation of how the ethical discussions pertaining to TasP have and are currently taking place. To identify the grey literature, we systematically searched a set of search engines, databases, and related webpages for keywords pertaining to TasP. Three dominant themes emerged in our analysis with respect to the ethical questions pertaining to TasP implementation and scale-up: (a) balancing individual- and population-level interests; (b) power relations within clinical practice and competing resource demands within health care systems; (c) effectiveness considerations and socio-structural contexts of HIV treatment experiences within broader implementation contexts. Ongoing research

  13. Identifying advanced glycation end products as a major source of oxidants in aging: implications for the management and/or prevention of reduced renal function in elderly persons.

    Science.gov (United States)

    Vlassara, Helen; Uribarri, Jaime; Ferrucci, Luigi; Cai, Weijing; Torreggiani, Massimo; Post, James B; Zheng, Feng; Striker, Gary E

    2009-11-01

    Aging is characterized by increasing inflammation and oxidant stress (OS). Reduced renal function was present in more than 20% of normal-aged individuals sampled in the National Health and Nutrition Examination Survey (NHANES) cross-sectional study of the US population. Longitudinal studies in the United States and Italy showed that renal function does not decline in some individuals, suggesting that a search for causes of the loss of renal function in some persons might be indicated and interventions to reduce this outcome should be sought. Because advanced glycation end products (AGEs) induce both inflammation and OS, accumulate with age, and primarily are excreted by the kidney, one outcome of reduced renal function in aging could be decreased AGE disposal. The build-up of AGEs with reduced renal function could contribute to inflammation, increased oxidant stress, and accumulation of AGEs in aging. In fact, results from a longitudinal study of normal aging adults in Italy showed that the most significant correlation with mortality was the level of renal function. A clear link between inflammation, OS, AGEs, and chronic disease was shown in studies of mice that showed that reduction of AGE levels by drugs or decreased intake of AGEs reduces chronic kidney disease (CKD) and cardiovascular disease of aging. The data support a role for AGEs in the development of renal lesions in aging mice and reveal that AGEs in the diet are very important contributors to renal and cardiovascular lesions. AGEs signal through two receptors, one of which is anti-inflammatory (AGER1) and the other is proinflammatory (RAGE). Overexpression of AGER1 protects against OS and acute vascular injury. The reduction of AGEs in the diet is as efficient in preventing aging-related cardiovascular and renal lesions in mice as that seen with calorie restriction. Studies in normal adults of all ages and those with CKD suggest that the findings in mice may be directly applicable to both aging and CKD

  14. Optimizing and Validating a Brief Assessment for Identifying Children of Service Members at Risk for Psychological Health Problems Following Parent Deployment

    Science.gov (United States)

    2016-07-01

    Journal of Family Therapy, 21, 313-323. Behar, L.B. (1997). The Preschool Behavior Questionnaire. Journal of Abnormal Child Psychology , 5, 265-275... Psychological Health Problems Following Parent Deployment PRINCIPAL INVESTIGATOR: Julie Wargo Aikins, PhD CONTRACTING ORGANIZATION: Wayne State...Validating a Brief Assessment for Identifying Children of Service Members at Risk for Psychological Health Problems Following Parent Deployment 5b. GRANT

  15. http://www.D-MELD.com, the Italian survival calculator to optimize donor to recipient matching and to identify the unsustainable matches in liver transplantation.

    Science.gov (United States)

    Avolio, Alfonso W; Agnes, Salvatore; Cillo, Umberto; Lirosi, Maria C; Romagnoli, Renato; Baccarani, Umberto; Zamboni, Fausto; Nicolini, Daniele; Donataccio, Matteo; Perrella, Alessandro; Ettorre, Giuseppe M; Romano, Marina; Morelli, Nicola; Vennarecci, Giovanni; de Waure, Chiara; Fagiuoli, Stefano; Burra, Patrizia; Cucchetti, Alessandro

    2012-03-01

    Optimization of donor-recipient match is one of the exciting challenges in liver transplantation. Using algorithms obtained by the Italian D-MELD study (5256 liver transplants, 21 Centers, 2002-2009 period), a web-based survival calculator was developed. The calculator is available online at the URL http://www.D-MELD.com. The access is free. Registration and authentication are required. The website was developed using PHP scripting language on HTML platform and it is hosted by the web provider Aruba.it. For a given donor (expressed by donor age) and for three potential recipients (expressed by values of bilirubin, creatinine, INR, and by recipient age, HCV, HBV, portal thrombosis, re-transplant status), the website calculates the patient survival at 90days, 1year, 3years, and allows the identification of possible unsustainable matches (i.e. donor-recipient matches with predicted patient survival less than 50% at 5 years). This innovative approach allows the selection of the best recipient for each referred donor, avoiding the allocation of a high-risk graft to a high-risk recipient. The use of the D-MELD.com website can help transplant surgeons, hepatologists, and transplant coordinators in everyday practice of matching donors and recipients, by selecting the more appropriate recipient among various candidates with different prognostic factors. © 2012 The Authors. Transplant International © 2012 European Society for Organ Transplantation.

  16. Shade guide optimization--a novel shade arrangement principle for both ceramic and composite shade guides when identifying composite test objects.

    Science.gov (United States)

    Østervemb, Niels; Jørgensen, Jette Nedergaard; Hørsted-Bindslev, Preben

    2011-02-01

    The most widely used shade guide for composite materials is made of ceramic and arranged according to a non-proven method. There is a need for a composite shade guide using a scientifically based arrangement principle. To compare the shade tab arrangement of the Vitapan Classical shade guide and an individually made composite shade guide using both the originally proposed arrangement principle and arranged according to ΔE2000 values with hue group division. An individual composite shade guide made from Filtek Supreme XT body colors was compared to the Vitapan Classical shade guide. Twenty-five students matched color samples made from Filtek Supreme XT body colors using the two shade guides arranged after the two proposed principles--four shade guides in total. Age, sequence, gender, time, and number of correct matches were recorded. The proposed visually optimal composite shade guide was both fastest and had the highest number of correct matches. Gender was significantly associated with time used for color sampling but not regarding the number of correct shade matches. A composite shade guide is superior compared to the ceramic Vitapan Classical guide when using composite test objects. A rearrangement of the shade guide according to hue, subdivided according to ΔE2000, significantly reduces the time needed to take a color sample and increases the number of correct shade matches. Total color difference in relation to the lightest tab with hue group division is recommended as a possible and universally applicable mode of tab arrangement in dental color standards. Moreover, a shade guide made of the composite materials itself is to be preferred as both a faster and more accurate method of determining color. © 2011, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2011, WILEY PERIODICALS, INC.

  17. Process development of a New Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities.

    Science.gov (United States)

    Hamidi, Ahd; Kreeftenberg, Hans; V D Pol, Leo; Ghimire, Saroj; V D Wielen, Luuk A M; Ottens, Marcel

    2016-05-01

    Vaccination is one of the most successful public health interventions being a cost-effective tool in preventing deaths among young children. The earliest vaccines were developed following empirical methods, creating vaccines by trial and error. New process development tools, for example mathematical modeling, as well as new regulatory initiatives requiring better understanding of both the product and the process are being applied to well-characterized biopharmaceuticals (for example recombinant proteins). The vaccine industry is still running behind in comparison to these industries. A production process for a new Haemophilus influenzae type b (Hib) conjugate vaccine, including related quality control (QC) tests, was developed and transferred to a number of emerging vaccine manufacturers. This contributed to a sustainable global supply of affordable Hib conjugate vaccines, as illustrated by the market launch of the first Hib vaccine based on this technology in 2007 and concomitant price reduction of Hib vaccines. This paper describes the development approach followed for this Hib conjugate vaccine as well as the mathematical modeling tool applied recently in order to indicate options for further improvements of the initial Hib process. The strategy followed during the process development of this Hib conjugate vaccine was a targeted and integrated approach based on prior knowledge and experience with similar products using multi-disciplinary expertise. Mathematical modeling was used to develop a predictive model for the initial Hib process (the 'baseline' model) as well as an 'optimized' model, by proposing a number of process changes which could lead to further reduction in price. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:568-580, 2016. © 2016 American Institute of Chemical Engineers.

  18. Cisplatin and gemcitabine in patients with advanced biliary tract cancer (ABC) and persistent jaundice despite optimal stenting: Effective intervention in patients with luminal disease.

    Science.gov (United States)

    Lamarca, Angela; Benafif, Sarah; Ross, Paul; Bridgewater, John; Valle, Juan W

    2015-09-01

    The advanced biliary tract cancer (ABC)-02 study established cisplatin and gemcitabine (CisGem) as a reference 1(st)-line regimen for patients with advanced/metastatic biliary tract cancer; patients with bilirubin ⩾ 1.5 × upper limit of normal (ULN) were excluded and there are few extant data for systemic treatment in the context of elevated bilirubin. Patients with ABC, receiving CisGem with a baseline bilirubin of ⩾ 1.5 × ULN were eligible for this retrospective analysis; response, toxicity and survival data were collected. Thirty-three patients of 545 screened; median age 59 years, range 23-79; 58% male, 58% with metastases (79% in the liver) of performance status (PS) 0 (33%), 1 (64%) or 2 (3%) were eligible. The median baseline bilirubin was 55 μmol/L (range 32-286); due to biliary tract obstruction (BTO, 76%) or liver metastases (LM, 24%). Toxicity was comparable to the ABC-02 study; bilirubin normalised in 64% during chemotherapy/follow-up. The median progression-free survival (PFS) was 6.9 months (95% confidence interval (CI): 4.4-9.0) and median overall survival (OS) 9.5 months (95% CI: 5.7-12.8). Patients with BTO had a longer PFS and OS than those with LM (7.0 versus 2.6 months; p = 0.1633 and 9.8 versus 4.4 months, hazard ratio (HR) 0.74; p = 0.465, respectively); not statistically significant (due to small sample size). Normalisation of bilirubin and completion of eight CisGem cycles were associated with longer OS (11.4 versus 2.9 months, HR 0.49; p = 0.08 and 15.2 versus 5.4 months, HR 0.12 p < 0.001, respectively). No difference in OS was shown between the bilirubin percentiles (for either PFS or OS). For PS 0-1 patients with ABC and high bilirubin due to luminal disease despite optimal stenting CisGem can be used safely with results similar to those in patients with normal bilirubin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Optimal screening of children with acute malnutrition requires a change in current WHO guidelines as MUAC and WHZ identify different patient groups

    DEFF Research Database (Denmark)

    Laillou, Arnaud; Prak, Sophonneary; de Groot, Richard

    2014-01-01

    BACKGROUND: Timely treatment of acute malnutrition in children 500,000 deaths annually. Screening at community level is essential to identify children with malnutrition. Current WHO guidelines for community screening for malnutrition recommend a Mid Upper Arm...... Circumference (MUAC) of malnutrition (SAM). However, it is currently unclear how MUAC relates to the other indicator used to define acute malnutrition: weight-for-height Z-score (WHZ). METHODS: Secondary data from >11,000 Cambodian children, obtained by different surveys between...... 2010 and 2012, was used to calculate sensitivity and ROC curves for MUAC and WHZ. FINDINGS: The secondary analysis showed that using the current WHO cut-off of 115 mm for screening for severe acute malnutrition over 90% of children with a weight-for-height z-score (WHZ)

  20. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance.

    Directory of Open Access Journals (Sweden)

    Simonete Silva

    Full Text Available Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP. We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9-15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR, handgrip strength (HG, standing long jump (SLJ and the shuttle run speed (SR tests; physical activity (PA was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences.

  1. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance

    Science.gov (United States)

    Silva, Simonete; Bustamante, Alcibíades; Nevill, Alan; Katzmarzyk, Peter T.; Freitas, Duarte; Prista, António; Maia, José

    2016-01-01

    Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP). We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9–15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR), handgrip strength (HG), standing long jump (SLJ) and the shuttle run speed (SR) tests; physical activity (PA) was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI) was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences. PMID:26939118

  2. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance.

    Science.gov (United States)

    Silva, Simonete; Bustamante, Alcibíades; Nevill, Alan; Katzmarzyk, Peter T; Freitas, Duarte; Prista, António; Maia, José

    2016-01-01

    Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP). We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9-15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR), handgrip strength (HG), standing long jump (SLJ) and the shuttle run speed (SR) tests; physical activity (PA) was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI) was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences.

  3. Optimal screening of children with acute malnutrition requires a change in current WHO guidelines as MUAC and WHZ identify different patient groups.

    Science.gov (United States)

    Laillou, Arnaud; Prak, Sophonneary; de Groot, Richard; Whitney, Sophie; Conkle, Joel; Horton, Lindsey; Un, Sam Oeurn; Dijkhuizen, Marjoleine A; Wieringa, Frank T

    2014-01-01

    Timely treatment of acute malnutrition in children 500,000 deaths annually. Screening at community level is essential to identify children with malnutrition. Current WHO guidelines for community screening for malnutrition recommend a Mid Upper Arm Circumference (MUAC) of malnutrition (SAM). However, it is currently unclear how MUAC relates to the other indicator used to define acute malnutrition: weight-for-height Z-score (WHZ). Secondary data from >11,000 Cambodian children, obtained by different surveys between 2010 and 2012, was used to calculate sensitivity and ROC curves for MUAC and WHZ. The secondary analysis showed that using the current WHO cut-off of 115 mm for screening for severe acute malnutrition over 90% of children with a weight-for-height z-score (WHZ) children with a MUAC65% of children with a WHZchildren with acute malnutrition, therefore these 2 indicators should be regarded as independent from each other. We suggest a 2-step model with MUAC used a screening at community level, followed by MUAC and WHZ measured at a primary health care unit, with both indicators used independently to diagnose severe acute malnutrition. Current guidelines should be changed to reflect this, with treatment initiated when either MUAC <115 mm or WHZ<-3.

  4. Establishment of the Pediatric Obesity Weight Evaluation Registry: A National Research Collaborative for Identifying the Optimal Assessment and Treatment of Pediatric Obesity.

    Science.gov (United States)

    Kirk, Shelley; Armstrong, Sarah; King, Eileen; Trapp, Christine; Grow, Mollie; Tucker, Jared; Joseph, Madeline; Liu, Lenna; Weedn, Ashley; Sweeney, Brooke; Fox, Claudia; Fathima, Samreen; Williams, Ronald; Kim, Roy; Stratbucker, William

    2017-02-01

    Prospective patient registries have been successfully utilized in several disease states with a goal of improving treatment approaches through multi-institutional collaboration. The prevalence of youth with severe obesity is at a historic high in the United States, yet evidence to guide effective weight management is limited. The Pediatric Obesity Weight Evaluation Registry (POWER) was established in 2013 to identify and promote effective intervention strategies for pediatric obesity. Sites in POWER provide multicomponent pediatric weight management (PWM) care for youth with obesity and collect a defined set of demographic and clinical parameters, which they regularly submit to the POWER Data Coordinating Center. A program profile survey was completed by sites to describe characteristics of the respective PWM programs. From January 2014 through December 2015, 26 US sites were enrolled in POWER and had submitted data on 3643 youth with obesity. Ninety-five percent were 6-18 years of age, 54% female, 32% nonwhite, 32% Hispanic, and 59% publicly insured. Over two-thirds had severe obesity. All sites included a medical provider and used weight status in their referral criteria. Other program characteristics varied widely between sites. POWER is an established national registry representing a diverse sample of youth with obesity participating in multicomponent PWM programs across the United States. Using high-quality data collection and a collaborative research infrastructure, POWER aims to contribute to the development of evidence-based guidelines for multicomponent PWM programs.

  5. Optimal Screening of Children with Acute Malnutrition Requires a Change in Current WHO Guidelines as MUAC and WHZ Identify Different Patient Groups

    Science.gov (United States)

    Laillou, Arnaud; Prak, Sophonneary; de Groot, Richard; Whitney, Sophie; Conkle, Joel; Horton, Lindsey; Un, Sam Oeurn; Dijkhuizen, Marjoleine A.; Wieringa, Frank T.

    2014-01-01

    Background Timely treatment of acute malnutrition in children 500,000 deaths annually. Screening at community level is essential to identify children with malnutrition. Current WHO guidelines for community screening for malnutrition recommend a Mid Upper Arm Circumference (MUAC) of malnutrition (SAM). However, it is currently unclear how MUAC relates to the other indicator used to define acute malnutrition: weight-for-height Z-score (WHZ). Methods Secondary data from >11,000 Cambodian children, obtained by different surveys between 2010 and 2012, was used to calculate sensitivity and ROC curves for MUAC and WHZ. Findings The secondary analysis showed that using the current WHO cut-off of 115 mm for screening for severe acute malnutrition over 90% of children with a weight-for-height z-score (WHZ) 65% of children with a WHZmalnutrition, therefore these 2 indicators should be regarded as independent from each other. We suggest a 2-step model with MUAC used a screening at community level, followed by MUAC and WHZ measured at a primary health care unit, with both indicators used independently to diagnose severe acute malnutrition. Current guidelines should be changed to reflect this, with treatment initiated when either MUAC <115 mm or WHZ<−3. PMID:24983995

  6. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    International Nuclear Information System (INIS)

    Mays, Gary T.; Belles, Randy; Cetiner, Mustafa Sacit; Howard, Rob L.; Liu, Cheng; Mueller, Don; Omitaomu, Olufemi A.; Peterson, Steven K.; Scaglione, John M.

    2012-01-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  7. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Sacit M [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  8. Optimization of the Swift X-Ray Follow-Up of Advanced LIGO and Virgo Gravitational Wave Triggers in 2015-16

    Science.gov (United States)

    Evans, P. A.; Osborne, J. P.; Kennea, J. A.; Campana, S.; O'Brien, P. T.; Tanvir, N. R.; Racusin, J. L.; Burrows, D. N.; Cenko, S. B.; Gehrels, N.

    2015-01-01

    One of the most exciting near-term prospects in physics is the potential discovery of gravitational waves by the Advanced LIGO and Virgo detectors. To maximize both the confidence of the detection and the science return, it is essential to identify an electromagnetic counterpart.This is not trivial, as the events are expected to be poorly localized, particularly in the near-term, with error regions covering hundreds or even thousands of square degrees. In this paper, we discuss the prospects for finding an X-ray counterpart to a gravitational wave trigger with the Swift X-ray Telescope, using the assumption that the trigger is caused by a binary neutron star merger which also produces a short gamma-ray burst. We show that it is beneficial to target galaxies within the GW error region, highlighting the need for substantially complete galaxy catalogues out to distances of 300 Mpc. We also show that nearby, on-axis short GRBs are either extremely rare, or are systematically less luminous than those detected to date. We consider the prospects for detecting afterglow emission from an off-axis GRB which triggered the GW facilities, finding that the detectability, and the best time to look,are strongly dependent on the characteristics of the burst such as circumburst density and our viewing angle.

  9. Patients' understanding of treatment goals and disease course and their relationship with optimism, hope, and quality of life: a preliminary study among advanced breast cancer outpatients before receiving palliative treatment.

    Science.gov (United States)

    Soylu, Cem; Babacan, Taner; Sever, Ali R; Altundag, Kadri

    2016-08-01

    The aims of this study were to explore advanced breast cancer patients' knowledge of treatment intent and expectation of illness course and to evaluate their relationship with optimism, hope, and quality of life (QoL). Patients with advanced breast cancer (n = 55) who were treated in the ambulatory clinic of the University of Hacettepe were included in the study. They completed Life Orientation Scale, The Hope Scale, and the European Organization for Research and Treatment of Cancer Quality of Life questionnaires. The data regarding the knowledge of illness progression and the perceptions of therapy intent were assessed using self-administered open-ended questionnaires that were answered by the patients. The data revealed that 58.2 % of the patients had an inaccurate perception of treatment intent, believing the aim of treatment was cure, whereas only 38.2 % of the patients had a realistic expectation that their disease may remain stable or may progress over a year. In addition, the awareness of disease progression and perception of goals of treatment was significantly related to hope and optimism scores but not to QoL. A large proportion of patients diagnosed with advanced breast cancer believed that their treatment was "curative", and they would improve within a year. Findings of our study suggest that patients with inaccurate perception of treatment intent and unrealistic expectation of prognosis have higher hope and optimism scores than those who do not, but there were no significant differences in terms of global health status.

  10. Identifying Optimal Temporal Scale for the Correlation of AOD and Ground Measurements of PM2.5 to Improve the Model Performance in a Real-time Air Quality Estimation System

    Science.gov (United States)

    Li, Hui; Faruque, Fazlay; Williams, Worth; Al-Hamdan, Mohammad; Luvall, Jeffrey C.; Crosson, William; Rickman, Douglas; Limaye, Ashutosh

    2009-01-01

    Aerosol optical depth (AOD), an indirect estimate of particle matter using satellite observations, has shown great promise in improving estimates of PM 2.5 air quality surface. Currently, few studies have been conducted to explore the optimal way to apply AOD data to improve the model accuracy of PM 2.5 surface estimation in a real-time air quality system. We believe that two major aspects may be worthy of consideration in that area: 1) the approach to integrate satellite measurements with ground measurements in the pollution estimation, and 2) identification of an optimal temporal scale to calculate the correlation of AOD and ground measurements. This paper is focused on the second aspect on the identifying the optimal temporal scale to correlate AOD with PM2.5. Five following different temporal scales were chosen to evaluate their impact on the model performance: 1) within the last 3 days, 2) within the last 10 days, 3) within the last 30 days, 4) within the last 90 days, and 5) the time period with the highest correlation in a year. The model performance is evaluated for its accuracy, bias, and errors based on the following selected statistics: the Mean Bias, the Normalized Mean Bias, the Root Mean Square Error, Normalized Mean Error, and the Index of Agreement. This research shows that the model with the temporal scale of within the last 30 days displays the best model performance in this study area using 2004 and 2005 data sets.

  11. NERI FINAL TECHNICAL REPORT, DE-FC07-O5ID14647. OPTIMIZATION OF OXIDE COMPOUNDS FOR ADVANCED INERT MATRIX MATERIALS

    International Nuclear Information System (INIS)

    Nino, Juan C.

    2009-01-01

    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K · m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO 2 composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO 2 is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO 2 is low and typically less than 3 W · m -1 · K -1 at 1000 C. In search for an alternative composite strategy, Nd 2 Zr 2 O 7 , an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd 2 Zr 2 O 7 composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W · m - 1 · K -1 at 1000 C for the MgO-Nd 2 Zr 2 O 7 composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd 2 Zr 2 O 7 composite that burnup calculations had shown to have the closest profile to that of MOX fuel. Theoretical calculations also indicated that

  12. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    International Nuclear Information System (INIS)

    Omelyan, Igor; Kovalenko, Andriy

    2013-01-01

    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  13. NERI FINAL TECHNICAL REPORT, DE-FC07-O5ID14647, OPTIMIZATION OF OXIDE COMPOUNDS FOR ADVANCED INERT MATRIX MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    PI: JUAN C. NINO, ASSOCIATE PROFESSOR

    2009-01-11

    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K {center_dot} m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO{sub 2} composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO{sub 2} is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO{sub 2} is low and typically less than 3 W {center_dot} m{sup -1} {center_dot} K{sup -1} at 1000 C. In search for an alternative composite strategy, Nd{sub 2}Zr{sub 2}O{sub 7}, an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W {center_dot} m{sup -} 1 {center_dot} K{sup -1} at 1000 C for the MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd{sub 2}Zr{sub 2}O{sub 7

  14. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  15. Optimal Cut-Offs of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to Identify Dysglycemia and Type 2 Diabetes Mellitus: A 15-Year Prospective Study in Chinese.

    Science.gov (United States)

    Lee, C H; Shih, A Z L; Woo, Y C; Fong, C H Y; Leung, O Y; Janus, E; Cheung, B M Y; Lam, K S L

    The optimal reference range of homeostasis model assessment of insulin resistance (HOMA-IR) in normal Chinese population has not been clearly defined. Here we address this issue using the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS), a prospective population-based cohort study with long-term follow-up. In this study, normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) were defined according to the 1998 World Health Organization criteria. Dysglycemia referred to IFG, IGT or T2DM. This study comprised two parts. Part one was a cross-sectional study involving 2,649 Hong Kong Chinese subjects, aged 25-74 years, at baseline CRISPS-1 (1995-1996). The optimal HOMA-IR cut-offs for dysglycemia and T2DM were determined by the receiver-operating characteristic (ROC) curve. Part two was a prospective study involving 872 subjects who had persistent NGT at CRISPS-4 (2010-2012) after 15 years of follow-up. At baseline, the optimal HOMA-IR cut-offs to identify dysglyceia and T2DM were 1.37 (AUC = 0.735; 95% confidence interval [CI] = 0.713-0.758; Sensitivity [Se] = 65.6%, Specificity [Sp] = 71.3%] and 1.97 (AUC = 0.807; 95% CI = 0.777-0.886; Se = 65.5%, Sp = 82.9%) respectively. These cut-offs, derived from the cross-sectional study at baseline, corresponded closely to the 75th (1.44) and 90th (2.03) percentiles, respectively, of the HOMA-IR reference range derived from the prospective study of subjects with persistent NGT. HOMA-IR cut-offs, of 1.4 and 2.0, which discriminated dysglycemia and T2DM respectively from NGT in Southern Chinese, can be usefully employed as references in clinical research involving the assessment of insulin resistance.

  16. ACR-700 advanced technologies

    International Nuclear Information System (INIS)

    Tapping, R.L.; Turner, C.W.; Yu, S.K.W.; Olmstead, R.; Speranzini, R.A.

    2004-01-01

    A successful advanced reactor plant will have optimized economics including reduced operating and maintenance costs, improved performance, and enhanced safety. Incorporating improvements based on advanced technologies ensures cost, safety and operational competitiveness of the ACR-700. These advanced technologies include modern configuration management; construction technologies; operational technology for the control centre and information systems for plant monitoring and analysis. This paper summarizes the advanced technologies used to achieve construction and operational improvements to enhance plant economic competitiveness, advances in the operational technology used for reactor control, and presents the development of the Smart CANDU suite of tools and its application to existing operating reactors and to the ACR-700. (author)

  17. Optimism and survival: does an optimistic outlook predict better survival at advanced ages? A twelve-year follow-up of Danish nonagenarians

    DEFF Research Database (Denmark)

    Engberg, Henriette; Jeune, Bernard; Andersen-Ranberg, Karen

    2013-01-01

    BACKGROUND AND AIMS: Studies examining predictors of survival among the oldest-old have primarily focused on objective measures, such as physical function and health status. Only a few studies have examined the effect of personality traits on survival, such as optimism. The aim of this study...... physical and cognitive functioning and disease were taken into account the association between optimism and survival weakened in both sexes, but the general pattern persisted. Optimistic women were still at lower risk of death compared to neutral women [HR 0.85, 95 % CI (0.74-0.97)]. The risk of death...

  18. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    The broad objective of this NEUP was to further develop a class of 12-15Cr ferritic alloys that are dispersion strengthened and made radiation tolerant by an ultrahigh density of Y-Ti-O nanofeatures (NFs) in the size range of less than 5 nm. We call these potentially transformable materials nanostructured ferritic alloys (NFAs). NFAs are typically processed by ball milling pre-alloyed rapidly solidified powders and yttria (Y2O3) powders. Proper milling effectively dissolves the Ti, Y and O solutes that precipitate as NFs during hot consolidation. The tasks in the present study included examining alternative processing paths, characterizing and optimizing the NFs and investigating solid state joining. Alternative processing paths involved rapid solidification by gas atomization of Fe, 14% Cr, 3% W, and 0.4% Ti powders that are also pre-alloyed with 0.2% Y (14YWT), where the compositions are in wt.%. The focus is on exploring the possibility of minimizing, or even eliminating, the milling time, as well as producing alloys with more homogeneous distributions of NFs and a more uniform, fine grain size. Three atomization environments were explored: Ar, Ar plus O (Ar/O) and He. The characterization of powders and alloys occurred through each processing step: powder production by gas atomization; powder milling; and powder annealing or hot consolidation by hot isostatic pressing (HIPing) or hot extrusion. The characterization studies of the materials described here include various combinations of: a) bulk chemistry; b) electron probe microanalysis (EPMA); c) atom probe tomography (APT); d) small angle neutron scattering (SANS); e) various types of scanning and transmission electron microscopy (SEM and TEM); and f) microhardness testing. The bulk chemistry measurements show that preliminary batches of gas-atomized powders could be produced within specified composition ranges. However, EPMA and TEM showed that the Y is heterogeneously distributed and phase separated, but

  19. Advancing PWR fuel to meet customer needs

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, F W

    1987-03-01

    Since the introduction of the Optimized Fuel Assembly (OFA) for PWRs in the late 1970s, Westinghouse has continued to work with the utility customers to identify the greatest needs for further advance in fuel performance and reliability. The major customer requirements include longer fuel cycle at lower costs, increased fuel discharge burn-up, enhanced operating flexibility, all accompanied by even greater reliability. In response to these needs, Westinghouse developed Vantage 5 PWR fuel. To optimize reactor operations, Vantage 5 fuel features distinct advantages: integral fuel burnable absorbers, axial and radial blankets, intermediate flow mixers, a removable top nozzle, and assembly modifications to accommodate increased discharge burn-up.

  20. A novel two-step optimization method for tandem and ovoid high-dose-rate brachytherapy treatment for locally advanced cervical cancer.

    Science.gov (United States)

    Sharma, Manju; Fields, Emma C; Todor, Dorin A

    2015-01-01

    To present a novel method allowing fast volumetric optimization of tandem and ovoid high-dose-rate treatments and to quantify its benefits. Twenty-seven CT-based treatment plans from 6 consecutive cervical cancer patients treated with four to five intracavitary tandem and ovoid insertions were used. Initial single-step optimized plans were manually optimized, approved, and delivered plans created with a goal to cover high-risk clinical target volume (HR-CTV) with D90 >90% and minimize rectum, bladder, and sigmoid D2cc. For the two-step optimized (TSO) plan, each single-step optimized plan was replanned adding a structure created from prescription isodose line to the existent physician delineated HR-CTV, rectum, bladder, and sigmoid. New, more rigorous dose-volume histogram constraints for the critical organs at risks (OARs) were used for the optimization. HR-CTV D90 and OAR D2ccs were evaluated in both plans. TSO plans had consistently smaller D2ccs for all three OARs while preserving HR-CTV D90. On plans with "excellent" CTV coverage, average D90 of 96% (91-102%), sigmoid, bladder, and rectum D2cc, respectively, reduced on average by 37% (16-73%), 28% (20-47%), and 27% (15-45%). Similar reductions were obtained on plans with "good" coverage, average D90 of 93% (90-99%). For plans with "inferior" coverage, average D90 of 81%, the coverage increased to 87% with concurrent D2cc reductions of 31%, 18%, and 11% for sigmoid, bladder, and rectum, respectively. The TSO can be added with minimal planning time increase but with the potential of dramatic and systematic reductions in OAR D2ccs and in some cases with concurrent increase in target dose coverage. These single-fraction modifications would be magnified over the course of four to five intracavitary insertions and may have real clinical implications in terms of decreasing both acute and late toxicities. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. SU-E-T-23: A Novel Two-Step Optimization Scheme for Tandem and Ovoid (T and O) HDR Brachytherapy Treatment for Locally Advanced Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M; Todor, D [Virginia Commonwealth University, Richmond, VA (United States); Fields, E [Virginia Commonwealth University, Richmond, Virginia (United States)

    2014-06-01

    Purpose: To present a novel method allowing fast, true volumetric optimization of T and O HDR treatments and to quantify its benefits. Materials and Methods: 27 CT planning datasets and treatment plans from six consecutive cervical cancer patients treated with 4–5 intracavitary T and O insertions were used. Initial treatment plans were created with a goal of covering high risk (HR)-CTV with D90 > 90% and minimizing D2cc to rectum, bladder and sigmoid with manual optimization, approved and delivered. For the second step, each case was re-planned adding a new structure, created from the 100% prescription isodose line of the manually optimized plan to the existent physician delineated HR-CTV, rectum, bladder and sigmoid. New, more rigorous DVH constraints for the critical OARs were used for the optimization. D90 for the HR-CTV and D2cc for OARs were evaluated in both plans. Results: Two-step optimized plans had consistently smaller D2cc's for all three OARs while preserving good D90s for HR-CTV. On plans with “excellent” CTV coverage, average D90 of 96% (range 91–102), sigmoid D2cc was reduced on average by 37% (range 16–73), bladder by 28% (range 20–47) and rectum by 27% (range 15–45). Similar reductions were obtained on plans with “good” coverage, with an average D90 of 93% (range 90–99). For plans with inferior coverage, average D90 of 81%, an increase in coverage to 87% was achieved concurrently with D2cc reductions of 31%, 18% and 11% for sigmoid, bladder and rectum. Conclusions: A two-step DVH-based optimization can be added with minimal planning time increase, but with the potential of dramatic and systematic reductions of D2cc for OARs and in some cases with concurrent increases in target dose coverage. These single-fraction modifications would be magnified over the course of 4–5 intracavitary insertions and may have real clinical implications in terms of decreasing both acute and late toxicity.

  2. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  3. Optimization of an Advanced Multi-Junction Solar-Cell Design for Space Environments (AM0) Using Nearly Orthogonal Latin Hypercubes

    Science.gov (United States)

    2017-06-01

    Example 32-bit Chromosome Genetic Representation of a Semiconductor Application . Source: Bates (2004). The algorithm chooses a random instance of the...generated by a certain input parameter combination may be found. That was the achievement of the genetic algorithm application as well, but neither...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This thesis focuses on the replacement of a genetic algorithm currently used to optimize

  4. Indoor environment and energy consumption optimization using field measurements and building energy simulation

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Chasapis, Kleanthis; Gazovic, Libor

    2015-01-01

    Modern buildings are usually equipped with advanced climate conditioning systems to ensure comfort of their occupants. However, analysis of their actual operation usually identifies large potential for improvements with respect to their efficiency. Present study investigated potential for improve......, which was used for optimization of building’s performance. Proposed optimization scenarios bring 21-37% reduction on heating consumption and thermal comfort improvement by 7-12%. The approach (procedure) can help to optimize building operation and shorten the adjustment period....

  5. Optimal Implantation Depth and Adherence to Guidelines on Permanent Pacing to Improve the Results of Transcatheter Aortic Valve Replacement With the Medtronic CoreValve System: The CoreValve Prospective, International, Post-Market ADVANCE-II Study.

    Science.gov (United States)

    Petronio, Anna S; Sinning, Jan-Malte; Van Mieghem, Nicolas; Zucchelli, Giulio; Nickenig, Georg; Bekeredjian, Raffi; Bosmans, Johan; Bedogni, Francesco; Branny, Marian; Stangl, Karl; Kovac, Jan; Schiltgen, Molly; Kraus, Stacia; de Jaegere, Peter

    2015-05-01

    The aim of the CoreValve prospective, international, post-market ADVANCE-II study was to define the rates of conduction disturbances and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement with the Medtronic CoreValve System (Minneapolis, Minnesota) using optimized implantation techniques and application of international guidelines on cardiac pacing. Conduction disturbances are a frequent complication of transcatheter aortic valve replacement. The rates of PPI in the published reports vary according to bioprosthesis type and the indications for PPI. The primary endpoint was the 30-day incidence of PPI with Class I/II indications when the Medtronic CoreValve System was implanted at an optimal depth (≤6 mm below the aortic annulus). The timing and resolution of all new-onset conduction disturbances were analyzed. A total of 194 patients were treated. The overall rate of PPI for Class I/II indications was 18.2%. An optimal depth was reached in 43.2% of patients, with a nonsignificantly lower incidence of PPI in patients with depths ≤6 mm, compared with those with deeper implants (13.3% vs. 21.1%; p = 0.14). In a paired analysis, new-onset left bundle branch block and first-degree atrioventricular block occurred in 45.4% and 39.0% of patients, respectively, and resolved spontaneously within 30 days in 43.2% and 73.9%, respectively. In patients with new PPI, the rate of intrinsic sinus rhythm increased from 25.9% at 7 days to 59.3% at 30 days (p = 0.004). Optimal Medtronic CoreValve System deployment and adherence to international guidelines on cardiac pacing are associated with a lower rate of new PPI after transcatheter aortic valve replacement, compared with results reported in previous studies. (CoreValve Advance-II Study: Prospective International Post-Market Study [ADVANCE II]; NCT01624870). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Quantitative Analysis of "1"8F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Cui, Yi; Song, Jie; Pollom, Erqi; Alagappan, Muthuraman; Shirato, Hiroki; Chang, Daniel T.; Koong, Albert C.; Li, Ruijiang

    2016-01-01

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT "1"8F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162 robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6

  7. Optimal FDG PET/CT volumetric parameters for risk stratification in patients with locally advanced non-small cell lung cancer: results from the ACRIN 6668/RTOG 0235 trial

    Energy Technology Data Exchange (ETDEWEB)

    Salavati, Ali [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); University of Minnesota, Department of Radiology, Minneapolis, MN (United States); Duan, Fenghai [Brown University School of Public Health, Department of Biostatistics and Center for Statistical Sciences, Providence, RI (United States); Snyder, Bradley S. [Brown University School of Public Health, Center for Statistical Sciences, Providence, RI (United States); Wei, Bo [Emory University, Department of Biostatistics, Rollins School of Public Health, Atlanta, GA (United States); Houshmand, Sina; Alavi, Abass [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Khiewvan, Benjapa [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Mahidol University, Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok (Thailand); Opanowski, Adam [ACR Center for Research and Innovation, American College of Radiology, Philadelphia, PA (United States); Simone, Charles B. [University of Maryland Medical Center, Department of Radiation Oncology, Baltimore, MD (United States); Siegel, Barry A. [Washington University School of Medicine, Mallinckrodt Institute of Radiology and the Alvin J. Siteman Cancer Center, St, Louis, MO (United States); Machtay, Mitchell [Case Western Reserve University and University Hospitals Case Medical Center, Department of Radiation Oncology, Cleveland, OH (United States)

    2017-11-15

    In recent years, multiple studies have demonstrated the value of volumetric FDG-PET/CT parameters as independent prognostic factors in patients with non-small cell lung cancer (NSCLC). We aimed to determine the optimal cut-off points of pretreatment volumetric FDG-PET/CT parameters in predicting overall survival (OS) in patients with locally advanced NSCLC and to recommend imaging biomarkers appropriate for routine clinical applications. Patients with inoperable stage IIB/III NSCLC enrolled in ACRIN 6668/RTOG 0235 were included. Pretreatment FDG-PET scans were quantified using semiautomatic adaptive contrast-oriented thresholding and local-background partial-volume-effect-correction algorithms. For each patient, the following indices were measured: metabolic tumor volume (MTV), total lesion glycolysis (TLG), SUVmax, SUVmean, partial-volume-corrected TLG (pvcTLG), and pvcSUVmean for the whole-body, primary tumor, and regional lymph nodes. The association between each index and patient outcome was assessed using Cox proportional hazards regression. Optimal cut-off points were estimated using recursive binary partitioning in a conditional inference framework and used in Kaplan-Meier curves with log-rank testing. The discriminatory ability of each index was examined using time-dependent receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC(t)). The study included 196 patients. Pretreatment whole-body and primary tumor MTV, TLG, and pvcTLG were independently prognostic of OS. Optimal cut-off points were 175.0, 270.9, and 35.5 cm{sup 3} for whole-body TLG, pvcTLG, and MTV, and were 168.2, 239.8, and 17.4 cm{sup 3} for primary tumor TLG, pvcTLG, and MTV, respectively. In time-dependent ROC analysis, AUC(t) for MTV and TLG were uniformly higher than that of SUV measures over all time points. Primary tumor and whole-body parameters demonstrated similar patterns of separation for those patients above versus below the optimal cut

  8. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  9. Optimally Stopped Optimization

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known, and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time, optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark the performance of a D-Wave 2X quantum annealer and the HFS solver, a specialized classical heuristic algorithm designed for low tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N = 1098 variables, the D-Wave device is between one to two orders of magnitude faster than the HFS solver.

  10. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: A vital transition for low-carbon power generation industry

    International Nuclear Information System (INIS)

    Milani, Dia; Luu, Minh Tri; McNaughton, Robbie; Abbas, Ali

    2017-01-01

    Highlights: • The layout of 14 demonstrative supercritical CO 2 closed Brayton cycles are analysed. • The key parameters of the “combined” cycle are sensitized and optimized. • The effect of thermal efficiency vs HX area on techno-economic nexus is highlighted. • The design of a matching solar heliostat field in direct configuration is revealed. • The water demand for hybrid vs water-only cooling scenarios are assessed. - Abstract: Current worldwide infrastructure of electrical power generation would mostly continue to rely on fossil-fuel but require a modest transition for the ultimate goal of decarbonizing power generation industry. By relying on those already established and carefully managed centrepiece power plants (PPs), we aim at filling the deficits of the current electrical networks with smaller, cleaner, and also more efficient PPs. In this context, we present a unique model for a small-scale decentralized solar-assisted supercritical CO 2 closed Brayton cycle (sCO 2 -CBC). Our model is based on the optimized values of three key performance indicators (KPIs); thermal efficiency, concentrated solar power (CSP) compatibility, and water demand for cooling. For a case-study of 10 MW e CSP-assisted sCO 2 -CBC power plant, our dynamic model shows a 52.7% thermal efficiency and 25.9% solar penetration and up to 80% of water saving in heat-rejection units. These KPIs show significant promise of the solar-assisted supercritical CO 2 power cycle for an imperative transformation in the power industry towards future sustainable electricity generation.

  11. Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast

    International Nuclear Information System (INIS)

    Albrecht, Moritz H.; Scholtz, Jan-Erik; Huesers, Kristina; Beeres, Martin; Bucher, Andreas M.; Kaup, Moritz; Martin, Simon S.; Fischer, Sebastian; Bodelle, Boris; Bauer, Ralf W.; Lehnert, Thomas; Vogl, Thomas J.; Wichmann, Julian L.

    2016-01-01

    To compare quantitative image quality parameters in abdominal dual-energy computed tomography angiography (DE-CTA) using an advanced image-based (Mono+) reconstruction algorithm for virtual monoenergetic imaging and standard DE-CTA. Fifty-five patients (36 men; mean age, 64.2 ± 12.7 years) who underwent abdominal DE-CTA were retrospectively included. Mono + images were reconstructed at 40, 50, 60, 70, 80, 90 and 100 keV levels and as standard linearly blended M 0 .6 images (60 % 100 kV, 40 % 140 kV). The contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of the common hepatic (CHA), splenic (SA), superior mesenteric (SMA) and left renal arteries (LRA) were objectively measured. Mono+ DE-CTA series showed a statistically superior CNR for 40, 50, 60, 70 and 80 keV (P < 0.031) compared to M 0 .6 images for all investigated arteries except SMA at 80 keV (P = 0.08). CNR at 40 keV revealed a mean relative increase of 287.7 % compared to linearly blended images among all assessed arteries (P < 0.001). SNR of Mono+ images was consistently significantly higher at 40, 50, 60 and 70 keV compared to M 0 .6 for CHA and SA (P < 0.009). Compared to linearly blended images, Mono+ reconstructions at low keV levels of abdominal DE-CTA datasets significantly improve quantitative image quality. (orig.)

  12. Optimization of the Carbon Dioxide Removal Assembly (CDRA-4EU) in Support of the International Space System and Advanced Exploration Systems

    Science.gov (United States)

    Knox, James C.; Stanley, Christine M.

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.

  13. Pseudodynamic Bearing Capacity Analysis of Shallow Strip Footing Using the Advanced Optimization Technique “Hybrid Symbiosis Organisms Search Algorithm” with Numerical Validation

    Directory of Open Access Journals (Sweden)

    Arijit Saha

    2018-01-01

    Full Text Available The analysis of shallow foundations subjected to seismic loading has been an important area of research for civil engineers. This paper presents an upper-bound solution for bearing capacity of shallow strip footing considering composite failure mechanisms by the pseudodynamic approach. A recently developed hybrid symbiosis organisms search (HSOS algorithm has been used to solve this problem. In the HSOS method, the exploration capability of SQI and the exploitation potential of SOS have been combined to increase the robustness of the algorithm. This combination can improve the searching capability of the algorithm for attaining the global optimum. Numerical analysis is also done using dynamic modules of PLAXIS-8.6v for the validation of this analytical solution. The results obtained from the present analysis using HSOS are thoroughly compared with the existing available literature and also with the other optimization techniques. The significance of the present methodology to analyze the bearing capacity is discussed, and the acceptability of HSOS technique is justified to solve such type of engineering problems.

  14. Full space device optimization for solar cells.

    Science.gov (United States)

    Baloch, Ahmer A B; Aly, Shahzada P; Hossain, Mohammad I; El-Mellouhi, Fedwa; Tabet, Nouar; Alharbi, Fahhad H

    2017-09-20

    Advances in computational materials have paved a way to design efficient solar cells by identifying the optimal properties of the device layers. Conventionally, the device optimization has been governed by single or double descriptors for an individual layer; mostly the absorbing layer. However, the performance of the device depends collectively on all the properties of the material and the geometry of each layer in the cell. To address this issue of multi-property optimization and to avoid the paradigm of reoccurring materials in the solar cell field, a full space material-independent optimization approach is developed and presented in this paper. The method is employed to obtain an optimized material data set for maximum efficiency and for targeted functionality for each layer. To ensure the robustness of the method, two cases are studied; namely perovskite solar cells device optimization and cadmium-free CIGS solar cell. The implementation determines the desirable optoelectronic properties of transport mediums and contacts that can maximize the efficiency for both cases. The resulted data sets of material properties can be matched with those in materials databases or by further microscopic material design. Moreover, the presented multi-property optimization framework can be extended to design any solid-state device.

  15. Identifying Knowledge and Communication

    Directory of Open Access Journals (Sweden)

    Eduardo Coutinho Lourenço de Lima

    2006-12-01

    Full Text Available In this paper, I discuss how the principle of identifying knowledge which Strawson advances in ‘Singular Terms and Predication’ (1961, and in ‘Identifying Reference and Truth-Values’ (1964 turns out to constrain communication. The principle states that a speaker’s use of a referring expression should invoke identifying knowledge on the part of the hearer, if the hearer is to understand what the speaker is saying, and also that, in so referring, speakers are attentive to hearers’ epistemic states. In contrasting it with Russell’s Principle (Evans 1982, as well as with the principle of identifying descriptions (Donnellan 1970, I try to show that the principle of identifying knowledge, ultimately a condition for understanding, makes sense only in a situation of conversation. This allows me to conclude that the cooperative feature of communication (Grice 1975 and reference (Clark andWilkes-Gibbs 1986 holds also at the understanding level. Finally, I discuss where Strawson’s views seem to be unsatisfactory, and suggest how they might be improved.

  16. Internally readable identifying tag

    International Nuclear Information System (INIS)

    Jefferts, K.B.; Jefferts, E.R.

    1980-01-01

    A method of identifying non-metallic objects by means of X-ray equipment is described in detail. A small metal pin with a number of grooves cut in a pre-determined equi-spaced pattern is implanted into the non-metallic object and by decoding the groove patterns using X-ray equipment, the object is uniquely identified. A specific example of such an application is in studying the migratory habits of fish. The pin inserted into the snout of the fish is 0.010 inch in diameter, 0.040 inch in length with 8 possible positions for grooves if spaced 0.005 inch apart. With 6 of the groove positions available for data, the capacity is 2 6 or 64 combinations; clearly longer pins would increase the data capacity. This method of identification is a major advance over previous techniques which necessitated destruction of the fish in order to recover the identification tag. (UK)

  17. Workshop on Computational Optimization

    CERN Document Server

    2015-01-01

    Our everyday life is unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many real world and industrial problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2013. It presents recent advances in computational optimization. The volume includes important real life problems like parameter settings for controlling processes in bioreactor, resource constrained project scheduling, problems arising in transport services, error correcting codes, optimal system performance and energy consumption and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others.

  18. BRAIN Journal - Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    OpenAIRE

    Ahmet Demir; Utku Kose

    2016-01-01

    ABSTRACT In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Sc...

  19. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    OpenAIRE

    Ahmet Demir; Utku kose

    2017-01-01

    In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an...

  20. Advanced compiler design and implementation

    CERN Document Server

    Muchnick, Steven S

    1997-01-01

    From the Foreword by Susan L. Graham: This book takes on the challenges of contemporary languages and architectures, and prepares the reader for the new compiling problems that will inevitably arise in the future. The definitive book on advanced compiler design This comprehensive, up-to-date work examines advanced issues in the design and implementation of compilers for modern processors. Written for professionals and graduate students, the book guides readers in designing and implementing efficient structures for highly optimizing compilers for real-world languages. Covering advanced issues in fundamental areas of compiler design, this book discusses a wide array of possible code optimizations, determining the relative importance of optimizations, and selecting the most effective methods of implementation. * Lays the foundation for understanding the major issues of advanced compiler design * Treats optimization in-depth * Uses four case studies of commercial compiling suites to illustrate different approache...

  1. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  2. Advances in Male Contraception

    Science.gov (United States)

    Page, Stephanie T.; Amory, John K.; Bremner, William J.

    2008-01-01

    Despite significant advances in contraceptive options for women over the last 50 yr, world population continues to grow rapidly. Scientists and activists alike point to the devastating environmental impacts that population pressures have caused, including global warming from the developed world and hunger and disease in less developed areas. Moreover, almost half of all pregnancies are still unwanted or unplanned. Clearly, there is a need for expanded, reversible, contraceptive options. Multicultural surveys demonstrate the willingness of men to participate in contraception and their female partners to trust them to do so. Notwithstanding their paucity of options, male methods including vasectomy and condoms account for almost one third of contraceptive use in the United States and other countries. Recent international clinical research efforts have demonstrated high efficacy rates (90–95%) for hormonally based male contraceptives. Current barriers to expanded use include limited delivery methods and perceived regulatory obstacles, which stymie introduction to the marketplace. However, advances in oral and injectable androgen delivery are cause for optimism that these hurdles may be overcome. Nonhormonal methods, such as compounds that target sperm motility, are attractive in their theoretical promise of specificity for the reproductive tract. Gene and protein array technologies continue to identify potential targets for this approach. Such nonhormonal agents will likely reach clinical trials in the near future. Great strides have been made in understanding male reproductive physiology; the combined efforts of scientists, clinicians, industry and governmental funding agencies could make an effective, reversible, male contraceptive an option for family planning over the next decade. PMID:18436704

  3. Advanced Architectures for Astrophysical Supercomputing

    Science.gov (United States)

    Barsdell, B. R.; Barnes, D. G.; Fluke, C. J.

    2010-12-01

    Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100×) in general-purpose computation - performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.

  4. Global Microbial Identifier

    DEFF Research Database (Denmark)

    Wielinga, Peter; Hendriksen, Rene S.; Aarestrup, Frank Møller

    2017-01-01

    ) will likely also enable a much better understanding of the pathogenesis of the infection and the molecular basis of the host response to infection. But the full potential of these advances will only transpire if the data in this area become transferable and thereby comparable, preferably in open-source...... of microorganisms, for the identification of relevant genes and for the comparison of genomes to detect outbreaks and emerging pathogens. To harness the full potential of WGS, a shared global database of genomes linked to relevant metadata and the necessary software tools needs to be generated, hence the global...... microbial identifier (GMI) initiative. This tool will ideally be used in amongst others in the diagnosis of infectious diseases in humans and animals, in the identification of microorganisms in food and environment, and to track and trace microbial agents in all arenas globally. This will require...

  5. Workshop on Computational Optimization

    CERN Document Server

    2016-01-01

    This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2014, held at Warsaw, Poland, September 7-10, 2014. The book presents recent advances in computational optimization. The volume includes important real problems like parameter settings for controlling processes in bioreactor and other processes, resource constrained project scheduling, infection distribution, molecule distance geometry, quantum computing, real-time management and optimal control, bin packing, medical image processing, localization the abrupt atmospheric contamination source and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks.

  6. Optimal body fat percentage cut-off values for identifying cardiovascular risk factors in Mongolian and Han adults: a population-based cross-sectional study in Inner Mongolia, China.

    Science.gov (United States)

    Li, Yanlong; Wang, Hailing; Wang, Ke; Wang, Wenrui; Dong, Fen; Qian, Yonggang; Gong, Haiying; Xu, Guodong; Li, Guoju; Pan, Li; Zhu, Guangjin; Shan, Guangliang

    2017-04-17

    The present study was designed to determine the optimal cut-off values of body fat percentage (BF%) for the detection of cardiovascular disease (CVD) risk factors in Mongolian and Han adults. This cross-sectional study involving 3221 Chinese adults (2308 Han and 913 Mongolian) aged 20-80 years was conducted in Inner Mongolia Autonomous Region, China, in 2014. Data from a standardised questionnaire, physical examination and blood sample were obtained. The BF% was estimated using bioelectrical impedance analysis. Optimal BF% cut-offs were analysed by receiver operating characteristic curves to predict the risk of diabetes, hypertension and dyslipidaemia. Binary logistic regression analysis was performed to evaluate the OR of each CVD risk factor according to obesity defined by BF%. Mean BF% levels were lower in men than in women (22.54±5.77 vs 32.95±6.18 in Han, 23.86±5.72 vs 33.98±6.40 in Mongolian population, respectively; ppopulation, the area under curve (AUC) values for BF% ranged from 0.589 to 0.699 for men and from 0.711 to 0.763 for women. Compared with men, AUCs for diabetes and clustering of ≥2 risk factors in women were significantly higher (ppopulation. In Han adults, the optimal BF% cut-off values to detect CVD risk factors varied from 18.7% to 24.2% in men and 32.7% to 35.4% in women. In Mongolian population, the optimal cut-off values of BF% for men and women ranged from 21.0% to 24.6% and from 35.7% to 40.0%, respectively. Subjects with high BF% (≥24% in men, ≥34% in women) had higher risk of CVD risk factors in Han (age-adjusted ORs from 1.479 to 3.680, 2.660 to 4.016, respectively). In Mongolia, adults with high BF% (≥25% in men, ≥35% in women) had higher risk of CVD risk factors (age-adjusted ORs from 2.587 to 3.772, 2.061 to 4.882, respectively). The optimal BF% cut-offs for obesity for the prediction of CVD risk factors in Chinese men and women were approximately 24% and 34% for Han adults and 25% and 35% for Mongolian

  7. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC and dipalmitoylphosphatidylethanolamine poly(ethylene glycol (DPPE-PEG microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

    Directory of Open Access Journals (Sweden)

    Meenach SA

    2013-01-01

    Full Text Available Samantha A Meenach,1,2 Frederick G Vogt,3 Kimberly W Anderson,2,4 J Zach Hilt,2,4 Ronald C McGarry,5Heidi M Mansour1,41Department of Pharmaceutical Sciences-Drug Development Division, University of Kentucky College of Pharmacy, Lexington, KY; 2Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA; 3Analytical Sciences, Product Development, GlaxoSmithKline, King of Prussia, PA; 4Center of Membrane Sciences, University of Kentucky, Lexington, KY, 5Department of Radiation Medicine, University of Kentucky College of Medicine, Lexington, KY, USAAbstract: Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol (PEGylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC and powder X-ray diffraction (PXRD were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated

  8. Optimal Market Design

    NARCIS (Netherlands)

    Boone, J.; Goeree, J.K.

    2010-01-01

    This paper introduces three methodological advances to study the optimal design of static and dynamic markets. First, we apply a mechanism design approach to characterize all incentive-compatible market equilibria. Second, we conduct a normative analysis, i.e. we evaluate alternative competition and

  9. Optimization of surface maintenance

    International Nuclear Information System (INIS)

    Oeverland, E.

    1990-01-01

    The present conference paper deals with methods of optimizing the surface maintenance of steel-made offshore installations. The paper aims at identifying important approaches to the problems regarding the long-range planning of an economical and cost effective maintenance program. The methods of optimization are based on the obtained experiences from the maintenance of installations on the Norwegian continental shelf. 3 figs

  10. Advanced Functional Polymers for Increasing the Stability of Organic Photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Helgesen, Martin; Carlé, Jon Eggert

    2013-01-01

    The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important nanostruct......The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important...... nanostructure. Chemical units can be introduced that impart an increased stability. Similarly, the morphological degradation of the optimal nanostructure can be reduced. Active polymers and blends with acceptor material are used to create nanoparticle links with controlled size. Most of these advanced polymers...

  11. Center for Advanced Computational Technology

    Science.gov (United States)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  12. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  13. Giga-Voxel Structural Optimization

    DEFF Research Database (Denmark)

    Aage, Niels; Andreassen, Erik; Lazarov, Boyan Stefanov

    2017-01-01

    The optimal topology of large structural systems has until now been concerned with the design of individual parts and not that of complete assemblies. However, due to recent advances in numerical algorithms tailored for large scale structural optimization this limitation can now be circumvented....... In this work we present several examplesdisplaying how high resolution topology optimization can be used to obtain new, as well as already known, insight within the field of structural optimization. To demonstrate the capabilities of the developed framework we apply it to the design of the supporting structure...... topology optimization provides new insight and possible weight savings forfuture aircraft designs....

  14. The Theory of Optimal Taxation

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    The paper discusses the implications of optimal tax theory for the debates on uniform commodity taxation and neutral capital income taxation. While strong administrative and political economy arguments in favor of uniform and neutral taxation remain, recent advances in optimal tax theory suggest...... that the information needed to implement the differentiated taxation prescribed by optimal tax theory may be easier to obtain than previously believed. The paper also points to the strong similarity between optimal commodity tax rules and the rules for optimal source-based capital income taxation...

  15. The theory of optimal taxation

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    2007-01-01

    The paper discusses the implications of optimal tax theory for the debates on uniform commodity taxation and neutral capital income taxation. While strong administrative and political economy arguments in favor of uniform and neutral taxation remain, recent advances in optimal tax theory suggest...... that the information needed to implement the differentiated taxation prescribed by optimal tax theory may be easier to obtain than previously believed. The paper also points to the strong similarity between optimal commodity tax rules and the rules for optimal source-based capital income taxation...

  16. Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2: Optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures

    International Nuclear Information System (INIS)

    Yu Chuang; Li Guangshe; Guan Xiangfeng; Zheng Jing; Li Liping; Chen Tianwen

    2012-01-01

    Highlights: ► Composites xLi 2 MnO 3 ·(1 − x)LiMn 1/3 Ni 1/3 Co 1/3 O 2 (x = 0.1–0.4) were prepared by a novel two-step molten-salt route. ► Structure and chemical compositions of the composites were optimized to show an optimum electrochemical property. ► Composite electrode 0.3Li 2 MnO 3 ·0.7LiMn 1/3 Ni 1/3 Co 1/3 O 2 exhibited an excellent electrochemical performance at elevated temperature of 45.4 °C. ► Electrode kinetics of composites was uncovered for the excellent electrochemical performance at elevated temperature. - Abstract: This work reports on the optimized preparation of a series of composites xLi 2 MnO 3 ·(1 − x)LiMn 1/3 Ni 1/3 Co 1/3 O 2 (x = 0.1–0.4) with an aim to find an advanced high-voltage cathode for lithium-ion batteries that can work at elevated temperatures. Developing a two-step molten-salt method leads to composites with a layered-type structure, showing a particle size distribution ranging from 350 to 450 nm. The composites are featured by oxidation states stabilized as Mn 4+ , Ni 2+ , and Co 3+ , and by lattice occupation of Li + in both transition-metal layers and lithium layer of LiMn 1/3 Ni 1/3 Co 1/3 O 2 . When acting as a cathode of lithium-ion batteries, the composite at x = 0.3 shows an optimum electrochemical performance as characterized by a discharge capacity of 120 mAh g −1 at a high current density of 500 mA g −1 and a capacity retention of 64% after 20 cycles. Surprisingly, this electrochemical performance is significantly improved at elevated temperatures. Namely, discharge capacity is increased to 140.4 mAh g −1 at a high current density of 500 mA g −1 , while average capacity decay rate becomes very small to 0.76%. These excellent performance is explained in terms of the dramatically improved lithium-ion diffusions in both electrode and surface films at elevated temperatures.

  17. Optimization in liner shipping

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Karsten, Christian Vad; Pisinger, David

    2017-01-01

    Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling...... still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner...... shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem...

  18. Handbook of simulation optimization

    CERN Document Server

    Fu, Michael C

    2014-01-01

    The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science,...

  19. A qualitative approach using the integrative model of behaviour change to identify intervention strategies to increase optimal child restraint practices among culturally and linguistically diverse families in New South Wales.

    Science.gov (United States)

    Brown, Julie; Burton, Danielle; Nikolin, Stevan; Crooks, Philippa Jane; Hatfield, Julie; Bilston, Lynne E

    2013-02-01

    To qualitatively explore barriers to optimal child restraint use using the integrative behaviour change model in culturally and linguistically diverse (CALD) communities in New South Wales (NSW), Australia. A semi-structured discussion was used to conduct 11 language specific focus groups in Arabic, Assyrian, Cantonese, Mandarin, Vietnamese and Turkish. Translated transcriptions were analysed using the major concepts of the integrative behaviour change model. Restraint use intent among CALD community carers is related to perceived safety of their children and complying with the law. While most participants appreciated the safety benefits of correct and appropriate use, a minority did not. Child restraint legislation may positively influence social norms, and enforcement appears to increase parental self-efficacy. However, concerns over child comfort may negatively influence both norms and self-efficacy. There are clear deficits in knowledge that may act as barriers as well as confusion over best practice in safely transporting children. Large family size, vehicle size and cost appear to be real environmental constraints in CALD communities. Determinants of intent and deficits in knowledge in this diverse range of CALD communities in NSW Australia are similar to those reported in other qualitative studies regardless of the population studied. This indicates that key messages should be the same regardless of the target population. However, for CALD communities there is a specific need to ensure access to detailed information through appropriate delivery strategies and languages. Furthermore, practical constraints such as cost of restraints and family size may be particularly important in CALD communities.

  20. 6 Sigma project advance

    International Nuclear Information System (INIS)

    2002-12-01

    This book deals with 6 sigma project advance which introduces 6 sigma project in Changwon special steel, how is failure accepted? CTQ selection which is starting line, definition of performance standard, measurement system check on reliability of measurement data, check of process capacity for current level, establishment of target, optimal design and performance of application, practice of management system for maintain of improved result, CTQ selection, check of measurement system and practice of management system.

  1. Analytical methods of optimization

    CERN Document Server

    Lawden, D F

    2006-01-01

    Suitable for advanced undergraduates and graduate students, this text surveys the classical theory of the calculus of variations. It takes the approach most appropriate for applications to problems of optimizing the behavior of engineering systems. Two of these problem areas have strongly influenced this presentation: the design of the control systems and the choice of rocket trajectories to be followed by terrestrial and extraterrestrial vehicles.Topics include static systems, control systems, additional constraints, the Hamilton-Jacobi equation, and the accessory optimization problem. Prereq

  2. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmet Demir

    2017-01-01

    Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions. 

  3. Technological advances for interrogating the human kinome.

    Science.gov (United States)

    Baharani, Akanksha; Trost, Brett; Kusalik, Anthony; Napper, Scott

    2017-02-08

    There is increasing appreciation among researchers and clinicians of the value of investigating biology and pathobiology at the level of cellular kinase (kinome) activity. Kinome analysis provides valuable opportunity to gain insights into complex biology (including disease pathology), identify biomarkers of critical phenotypes (including disease prognosis and evaluation of therapeutic efficacy), and identify targets for therapeutic intervention through kinase inhibitors. The growing interest in kinome analysis has fueled efforts to develop and optimize technologies that enable characterization of phosphorylation-mediated signaling events in a cost-effective, high-throughput manner. In this review, we highlight recent advances to the central technologies currently available for kinome profiling and offer our perspectives on the key challenges remaining to be addressed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  4. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    Science.gov (United States)

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  5. Optimization of Antivirus Software

    OpenAIRE

    Catalin BOJA; Adrian VISOIU

    2007-01-01

    The paper describes the main techniques used in development of computer antivirus software applications. For this particular category of software, are identified and defined optimum criteria that helps determine which solution is better and what are the objectives of the optimization process. From the general viewpoint of software optimization are presented methods and techniques that are applied at code development level. Regarding the particularities of antivirus software, the paper analyze...

  6. Design and analysis challenges for advanced nuclear fuel

    International Nuclear Information System (INIS)

    Klepfer, H.; Abdollahian, D.; Dias, A.; Durston, C.; Eisenhart, L.; Engel, R.; Gilmore, P.; Rank, P.; Kjaer-Pedersen, N.; Sorensen, J.; Yang, R.; Agee, L.

    2004-01-01

    Significant changes have been incorporated in the light water reactor (LWR) fuel designs now being offered, and advanced fuel designs are currently being developed for the existing and the next generation of reactor designs. These advanced fuel design configurations are intended to offer utilities major economic gains, including: (1) improved fuel characteristics through optimized hydrogen to uranium ratio within the core; (2) increased capacity factor by allowing longer operating cycles, which is implemented by increasing the fuel enrichment and the amount and distribution of burnable poison, gadolinia, boron, or erbium within the fuel assembly to achieve higher discharge burnup; and (3) increased plant power output, if it can be accommodated by the balance of plant, by increasing the power density of the fuel assembly. The authors report here work being done to identify emerging technical issues in support of utility industry evaluations of advanced fuel designs. (author)

  7. ADVANCE PAYMENTS

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Administrative Circular Nº 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  8. Advance payments

    CERN Multimedia

    Human Resources Division

    2003-01-01

    Administrative Circular N 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  9. Optimization of Antivirus Software

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The paper describes the main techniques used in development of computer antivirus software applications. For this particular category of software, are identified and defined optimum criteria that helps determine which solution is better and what are the objectives of the optimization process. From the general viewpoint of software optimization are presented methods and techniques that are applied at code development level. Regarding the particularities of antivirus software, the paper analyzes some of the optimization concepts applied to this category of applications

  10. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...

  11. Website Optimization

    CERN Document Server

    King, Andrew

    2008-01-01

    Remember when an optimized website was one that merely didn't take all day to appear? Times have changed. Today, website optimization can spell the difference between enterprise success and failure, and it takes a lot more know-how to achieve success. This book is a comprehensive guide to the tips, techniques, secrets, standards, and methods of website optimization. From increasing site traffic to maximizing leads, from revving up responsiveness to increasing navigability, from prospect retention to closing more sales, the world of 21st century website optimization is explored, exemplified a

  12. Advanced Electronics

    Science.gov (United States)

    2017-07-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0114 TR-2017-0114 ADVANCED ELECTRONICS Ashwani Sharma 21 Jul 2017 Interim Report APPROVED FOR PUBLIC RELEASE...NUMBER Advanced Electronics 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) 5d. PROJECT NUMBER 4846 Ashwani Sharma 5e. TASK NUMBER...Approved for public release; distribution is unlimited. (RDMX-17-14919 dtd 20 Mar 2018) 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Space Electronics

  13. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  14. Optimality Conditions in Vector Optimization

    CERN Document Server

    Jiménez, Manuel Arana; Lizana, Antonio Rufián

    2011-01-01

    Vector optimization is continuously needed in several science fields, particularly in economy, business, engineering, physics and mathematics. The evolution of these fields depends, in part, on the improvements in vector optimization in mathematical programming. The aim of this Ebook is to present the latest developments in vector optimization. The contributions have been written by some of the most eminent researchers in this field of mathematical programming. The Ebook is considered essential for researchers and students in this field.

  15. Medicinsk Optimering

    DEFF Research Database (Denmark)

    Birkholm, Klavs

    2010-01-01

    En undersøgelse af anvendelsen af medicin til optimering af koncentration, hukommelse og følelsestonus. Efterfulgt af etiske overvejelser og anbefalinger til det politiske system......En undersøgelse af anvendelsen af medicin til optimering af koncentration, hukommelse og følelsestonus. Efterfulgt af etiske overvejelser og anbefalinger til det politiske system...

  16. Structural optimization

    CERN Document Server

    MacBain, Keith M

    2009-01-01

    Intends to supplement the engineer's box of analysis and design tools making optimization as commonplace as the finite element method in the engineering workplace. This title introduces structural optimization and the methods of nonlinear programming such as Lagrange multipliers, Kuhn-Tucker conditions, and calculus of variations.

  17. Strategies to identify microRNA targets: New advances

    Science.gov (United States)

    MicroRNAs (miRNAs) are small regulatory RNA molecules functioning to modulate gene expression at the post-transcriptional level, and playing an important role in many developmental and physiological processes. Ten thousand miRNAs have been discovered in various organisms. Although considerable progr...

  18. Topology Optimization

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt; Damkilde, Lars

    2007-01-01

    . A way to solve the initial design problem namely finding a form can be solved by so-called topology optimization. The idea is to define a design region and an amount of material. The loads and supports are also fidefined, and the algorithm finds the optimal material distribution. The objective function...... dictates the form, and the designer can choose e.g. maximum stiness, maximum allowable stresses or maximum lowest eigenfrequency. The result of the topology optimization is a relatively coarse map of material layout. This design can be transferred to a CAD system and given the necessary geometrically...... refinements, and then remeshed and reanalysed in other to secure that the design requirements are met correctly. The output of standard topology optimization has seldom well-defined, sharp contours leaving the designer with a tedious interpretation, which often results in less optimal structures. In the paper...

  19. Dispositional Optimism

    Science.gov (United States)

    Carver, Charles S.; Scheier, Michael F.

    2014-01-01

    Optimism is a cognitive construct (expectancies regarding future outcomes) that also relates to motivation: optimistic people exert effort, whereas pessimistic people disengage from effort. Study of optimism began largely in health contexts, finding positive associations between optimism and markers of better psychological and physical health. Physical health effects likely occur through differences in both health-promoting behaviors and physiological concomitants of coping. Recently, the scientific study of optimism has extended to the realm of social relations: new evidence indicates that optimists have better social connections, partly because they work harder at them. In this review, we examine the myriad ways this trait can benefit an individual, and our current understanding of the biological basis of optimism. PMID:24630971

  20. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Science.gov (United States)

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  1. Taking Stock of Unrealistic Optimism

    Science.gov (United States)

    Shepperd, James A.; Klein, William M. P.; Waters, Erika A.; Weinstein, Neil D.

    2015-01-01

    Researchers have used terms such as unrealistic optimism and optimistic bias to refer to concepts that are similar but not synonymous. Drawing from three decades of research, we critically discuss how researchers define unrealistic optimism and we identify four types that reflect different measurement approaches: unrealistic absolute optimism at the individual and group level and unrealistic comparative optimism at the individual and group level. In addition, we discuss methodological criticisms leveled against research on unrealistic optimism and note that the criticisms are primarily relevant to only one type—the group form of unrealistic comparative optimism. We further clarify how the criticisms are not nearly as problematic even for unrealistic comparative optimism as they might seem. Finally, we note boundary conditions on the different types of unrealistic optimism and reflect on five broad questions that deserve further attention. PMID:26045714

  2. Taking Stock of Unrealistic Optimism.

    Science.gov (United States)

    Shepperd, James A; Klein, William M P; Waters, Erika A; Weinstein, Neil D

    2013-07-01

    Researchers have used terms such as unrealistic optimism and optimistic bias to refer to concepts that are similar but not synonymous. Drawing from three decades of research, we critically discuss how researchers define unrealistic optimism and we identify four types that reflect different measurement approaches: unrealistic absolute optimism at the individual and group level and unrealistic comparative optimism at the individual and group level. In addition, we discuss methodological criticisms leveled against research on unrealistic optimism and note that the criticisms are primarily relevant to only one type-the group form of unrealistic comparative optimism. We further clarify how the criticisms are not nearly as problematic even for unrealistic comparative optimism as they might seem. Finally, we note boundary conditions on the different types of unrealistic optimism and reflect on five broad questions that deserve further attention.

  3. Advanced exergetic analysis of five natural gas liquefaction processes

    International Nuclear Information System (INIS)

    Vatani, Ali; Mehrpooya, Mehdi; Palizdar, Ali

    2014-01-01

    Highlights: • Advanced exergetic analysis was investigated for five LNG processes. • Avoidable/unavoidable and endogenous/exogenous irreversibilities were calculated. • Advanced exergetic analysis identifies the potentials for improving the system. - Abstract: Conventional exergy analysis cannot identify portion of inefficiencies which can be avoided. Also this analysis does not have ability to calculate a portion of exergy destruction which has been produced through performance of a component alone. In this study advanced exergetic analysis was performed for five mixed refrigerant LNG processes and four parts of irreversibility (avoidable/unavoidable) and (endogenous/exogenous) were calculated for the components with high inefficiencies. The results showed that portion of endogenous exergy destruction in the components is higher than the exogenous one. In fact interactions among the components do not affect the inefficiencies significantly. Also this analysis showed that structural optimization cannot be useful to decrease the overall process irreversibilities. In compressors high portion of the exergy destruction is related to the avoidable one, thus they have high potential to improve. But in multi stream heat exchangers and air coolers, unavoidable inefficiencies were higher than the other parts. Advanced exergetic analysis can identify the potentials and strategies to improve thermodynamic performance of energy intensive processes

  4. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE

    2011-01-01

    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  5. Advancing Physics evaluated

    Science.gov (United States)

    Ogborn, Jon

    2003-07-01

    The first phase of an evaluation of the new AS/A-level course Advancing Physics, sponsored by the Institute of Physics, is now complete. It shows that the course has achieved very high satisfaction ratings from teachers of the course, and that a majority of these teachers see it as achieving its main aims. The first phase of the evaluation was designed to pinpoint aspects of Advancing Physics that offer scope for improvement. Two such aspects have been identified: course planning and use of the CD-ROM material, and arrangements for coursework in the examination.

  6. Advances in transport phenomena 2011

    CERN Document Server

    2014-01-01

    This new volume of the annual review “Advances in Transport Phenomena” series contains three in-depth review articles on the microfluidic fabrication of vesicles, the dielectrophoresis field-flow fractionation for continuous-flow separation of particles and cells in microfluidic devices, and the thermodynamic analysis and optimization of heat exchangers, respectively.

  7. Identifying the challenges of creating an optimal dissemination ...

    African Journals Online (AJOL)

    It is crucial that census data is disseminated in such a way that it satisfies most user needs as far as possible, to ensure that there is optimum use of the information and that maximum value for money is provided. In the past, Statistics South Africa disseminated data at the same geographic level created for data collection.

  8. Modeling of CPDOs - Identifying Optimal and Implied Leverage

    DEFF Research Database (Denmark)

    Dorn, Jochen

    famous notably by Standard & Poor's rating model error which illustrated that closed-form analytical pricing is necessary in order to evaluate and understand complex derivatives. This article aims to shed a light on CPDOs specific structural enhancements and mechanisms. The author quantifies inherent...... risks and provides a dynamic closed-form pricing formula....

  9. Modeling of CPDOs - Identifying optimal and implied leverage

    DEFF Research Database (Denmark)

    Dorn, Jochen

    2010-01-01

    by Standard & Poor's rating model error which illustrated that closed-form analytical pricing is necessary in order to evaluate and understand complex derivatives. This article aims to shed a light on CPDOs' specific structural enhancements and mechanisms. We quantify inherent risks and provide a dynamic...

  10. Modeling of CPDOs - Identifying Optimal and Implied Leverage

    DEFF Research Database (Denmark)

    Dorn, Jochen

    When the subprime crisis started emerging, collateralized products based on Credit Default Swap (CDS) exposures combined with security features seemed to be a more rational alternative to classic asset backed securities. Constant Proportion Collateralized Debt Obligations (CPDOs) are a mixture...... risks and provides a dynamic closed-form pricing formula....

  11. Identifying the Optimal Age to Perform Newborn Screening for ...

    African Journals Online (AJOL)

    of disability worldwide affecting up to 6/1000 births. ... particularly vulnerable to social isolation and abuse due to the ... 1Ian Hutcheon Clinic for Children, Harpenden, 2Ugandan Maternal and .... developmental milestones for hearing and speech and contact ..... Outcomes of children with mild‑profound congenital hearing.

  12. Modeling of CPDOs - Identifying Optimal and Implied Leverage

    DEFF Research Database (Denmark)

    Dorn, Jochen

    When the subprime crisis started emerging, collateralized products based on Credit Default Swap (CDS) exposures combined with security features seemed to be a more rational alternative to classic asset backed securities. Constant Proportion Collateralized Debt Obligations (CPDOs) are a mixture...... of Collateralized Debt Obligations (CDOs) and CPPIs with inverse mechanism. This new asset targets to meet the investors' demand for credit derivatives with security enhancements, but quantitative approaches for pricing except for simulation algorithms do not exist yet up to he author's knowledge. CPDOs became...... risks and provides a dynamic closed-form pricing formula....

  13. Co-Optimization of Fuels and Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2016-04-11

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energy savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.

  14. Advances in iterative methods

    International Nuclear Information System (INIS)

    Beauwens, B.; Arkuszewski, J.; Boryszewicz, M.

    1981-01-01

    Results obtained in the field of linear iterative methods within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations are summarized. The general convergence theory of linear iterative methods is essentially based on the properties of nonnegative operators on ordered normed spaces. The following aspects of this theory have been improved: new comparison theorems for regular splittings, generalization of the notions of M- and H-matrices, new interpretations of classical convergence theorems for positive-definite operators. The estimation of asymptotic convergence rates was developed with two purposes: the analysis of model problems and the optimization of relaxation parameters. In the framework of factorization iterative methods, model problem analysis is needed to investigate whether the increased computational complexity of higher-order methods does not offset their increased asymptotic convergence rates, as well as to appreciate the effect of standard relaxation techniques (polynomial relaxation). On the other hand, the optimal use of factorization iterative methods requires the development of adequate relaxation techniques and their optimization. The relative performances of a few possibilities have been explored for model problems. Presently, the best results have been obtained with optimal diagonal-Chebyshev relaxation

  15. Portfolio Optimization

    OpenAIRE

    Issagali, Aizhan; Alshimbayeva, Damira; Zhalgas, Aidana

    2015-01-01

    In this paper Portfolio Optimization techniques were used to determine the most favorable investment portfolio. In particular, stock indices of three companies, namely Microsoft Corporation, Christian Dior Fashion House and Shevron Corporation were evaluated. Using this data the amounts invested in each asset when a portfolio is chosen on the efficient frontier were calculated. In addition, the Portfolio with minimum variance, tangency portfolio and optimal Markowitz portfolio are presented.

  16. The Theory of Optimal Taxation

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    The theory of optimal taxation has often been criticized for being of little practical policy relevance, due to a lack of robust theoretical results. This paper argues that recent advances in optimal tax theory has made that theory easier to apply and may help to explain some current trends...... in international tax policy. Covering the taxation of labour income and capital income as well as indirect taxation, the paper also illustrates how some of the key results in optimal tax theory may be derived in a simple, heuristic manner....

  17. NonLinear Parallel OPtimization Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The technological advancement proposed is a novel large-scale Noninear Parallel OPtimization Tool (NLPAROPT). This software package will eliminate the computational...

  18. Advanced bioanalytics for precision medicine.

    Science.gov (United States)

    Roda, Aldo; Michelini, Elisa; Caliceti, Cristiana; Guardigli, Massimo; Mirasoli, Mara; Simoni, Patrizia

    2018-01-01

    Precision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional "one size fits all" concept, according to which researchers develop disease treatments and preventions for an "average" patient without considering individual differences. The "one size fits all" concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer's disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient's specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine. Graphical abstract Precision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.

  19. Advances in the Ignitor program

    International Nuclear Information System (INIS)

    Coppi, B.; Airoldi, A.; Alladio, F.; Bombarda, F.; Capriccioli, A.; Cenacchi, G.; Coletti, A.; Coletti, R.; Cucchiaro, A.; Detragiache, P.; Frattolillo, A.; Frosi, P.; Galbiati, L.; Lucchini, F.; Maddaluno, G.; Migliori, S.; Pierattini, S.; Pizzuto, A.; Ramogida, G.; Roccella, M.; Romanelli, M.; Santinelli, M.; Sassi, M.; Bianchi, A.; Parodi, B.; Maggiora, R.; Sestero, A.; Subba, F.; Zanino, R.

    2005-01-01

    The most significant recent advances that have been made within the Ignitor program are described. For physics, these involve the analysis of the confinement properties of plasmas produced in recent experiments with peaked density profiles relevant to Ignitor, the characterization of the regimes with double X-point configurations that Ignitor can generate, and the study of oscillatory states for the plasma pressure near ignition that can be obtained by both external and internal forms of control. On the engineering side, the second generation prototypes of the toroidal magnet plates that have been constructed are described. The completion of the design of the plasma chamber that withstands the estimated disruption forces, of the first wall system, including Mo tiles and associated supporting plates, and of the remote handling system is reported. Other relevant R and D activities (i.e. construction of a fast pellet injector) are being carried out. The design of all elements of the poloidal field system has been re-optimized. The analysis of the connection of Ignitor to a node of the European grid has been completed with positive results and official authorization. The set of currents in the machine coils, for a plasma current pulse of 11 MA, that minimizes the requirements of the machine electrical power supply system has been identified. (author)

  20. Well-posed optimization problems

    CERN Document Server

    Dontchev, Asen L

    1993-01-01

    This book presents in a unified way the mathematical theory of well-posedness in optimization. The basic concepts of well-posedness and the links among them are studied, in particular Hadamard and Tykhonov well-posedness. Abstract optimization problems as well as applications to optimal control, calculus of variations and mathematical programming are considered. Both the pure and applied side of these topics are presented. The main subject is often introduced by heuristics, particular cases and examples. Complete proofs are provided. The expected knowledge of the reader does not extend beyond textbook (real and functional) analysis, some topology and differential equations and basic optimization. References are provided for more advanced topics. The book is addressed to mathematicians interested in optimization and related topics, and also to engineers, control theorists, economists and applied scientists who can find here a mathematical justification of practical procedures they encounter.

  1. Optimal dynamic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  2. Optimization problem in quantum cryptography

    International Nuclear Information System (INIS)

    Brandt, Howard E

    2003-01-01

    A complete optimization was recently performed, yielding the maximum information gain by a general unitary entangling probe in the four-state protocol of quantum cryptography. A larger set of optimum probe parameters was found than was known previously from an incomplete optimization. In the present work, a detailed comparison is made between the complete and incomplete optimizations. Also, a new set of optimum probe parameters is identified for the four-state protocol

  3. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  4. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  5. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  6. Motion feedback in advanced driving manoeuvres

    NARCIS (Netherlands)

    Correia Grácio, B.; Wentink, M.; Feenstra, P.J; Mulder, M.; Paassen M.M. van; Bles, W.

    2009-01-01

    During advanced driving manoeuvres, drivers can be hypothesized to use all the available cues to optimize their performance. Fixed-base simulators are commonly used for training of these advanced driving manoeuvres, despite the fact that motion cues are not present. In this experiment we hypothesize

  7. Optimal implantation depth and adherence to guidelines on permanent pacing to improve the results of transcatheter aortic valve replacement with the medtronic corevalve system: The CoreValve prospective, international, post-market ADVANCE-II study

    NARCIS (Netherlands)

    A.S. Petronio (Anna); J.-M. Sinning (Jan-Malte); N.M. van Mieghem (Nicolas); G. Zucchelli (Giulio); G. Nickenig (Georg); R. Bekeredjian (Raffi); J. Bosmans (Johan); F. Bedogni (Francesco); M. Branny (Marian); K. Stangl (Karl); J. Kovac (Jan); M. Schiltgen (Molly); S. Kraus (Stacia); P.P.T. de Jaegere (Peter)

    2015-01-01

    textabstractObjectives The aim of the CoreValve prospective, international, post-market ADVANCE-II study was to define the rates of conduction disturbances and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement with the Medtronic CoreValve System (Minneapolis,

  8. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  9. Optimization of Premix Powders for Tableting Use.

    Science.gov (United States)

    Todo, Hiroaki; Sato, Kazuki; Takayama, Kozo; Sugibayashi, Kenji

    2018-05-08

    Direct compression is a popular choice as it provides the simplest way to prepare the tablet. It can be easily adopted when the active pharmaceutical ingredient (API) is unstable in water or to thermal drying. An optimal formulation of preliminary mixed powders (premix powders) is beneficial if prepared in advance for tableting use. The aim of this study was to find the optimal formulation of the premix powders composed of lactose (LAC), cornstarch (CS), and microcrystalline cellulose (MCC) by using statistical techniques. Based on the "Quality by Design" concept, a (3,3)-simplex lattice design consisting of three components, LAC, CS, and MCC was employed to prepare the model premix powders. Response surface method incorporating a thin-plate spline interpolation (RSM-S) was applied for estimation of the optimum premix powders for tableting use. The effect of tablet shape identified by the surface curvature on the optimization was investigated. The optimum premix powder was effective when the premix was applied to a small quantity of API, although the function of premix was limited in the case of the formulation of large amount of API. Statistical techniques are valuable to exploit new functions of well-known materials such as LAC, CS, and MCC.

  10. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  11. DIRAC optimized workload management

    CERN Document Server

    Paterson, S K

    2008-01-01

    The LHCb DIRAC Workload and Data Management System employs advanced optimization techniques in order to dynamically allocate resources. The paradigms realized by DIRAC, such as late binding through the Pilot Agent approach, have proven to be highly successful. For example, this has allowed the principles of workload management to be applied not only at the time of user job submission to the Grid but also to optimize the use of computing resources once jobs have been acquired. Along with the central application of job priorities, DIRAC minimizes the system response time for high priority tasks. This paper will describe the recent developments to support Monte Carlo simulation, data processing and distributed user analysis in a consistent way across disparate compute resources including individual PCs, local batch systems, and the Worldwide LHC Computing Grid. The Grid environment is inherently unpredictable and whilst short-term studies have proven to deliver high job efficiencies, the system performance over ...

  12. Learning optimal embedded cascades.

    Science.gov (United States)

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  13. Supply-Chain Optimization Template

    Science.gov (United States)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  14. Radiological optimization

    International Nuclear Information System (INIS)

    Zeevaert, T.

    1998-01-01

    Radiological optimization is one of the basic principles in each radiation-protection system and it is a basic requirement in the safety standards for radiation protection in the European Communities. The objectives of the research, performed in this field at the Belgian Nuclear Research Centre SCK-CEN, are: (1) to implement the ALARA principles in activities with radiological consequences; (2) to develop methodologies for optimization techniques in decision-aiding; (3) to optimize radiological assessment models by validation and intercomparison; (4) to improve methods to assess in real time the radiological hazards in the environment in case of an accident; (5) to develop methods and programmes to assist decision-makers during a nuclear emergency; (6) to support the policy of radioactive waste management authorities in the field of radiation protection; (7) to investigate existing software programmes in the domain of multi criteria analysis. The main achievements for 1997 are given

  15. Optimizing detectability

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    HPLC is useful for trace and ultratrace analyses of a variety of compounds. For most applications, HPLC is useful for determinations in the nanogram-to-microgram range; however, detection limits of a picogram or less have been demonstrated in certain cases. These determinations require state-of-the-art capability; several examples of such determinations are provided in this chapter. As mentioned before, to detect and/or analyze low quantities of a given analyte at submicrogram or ultratrace levels, it is necessary to optimize the whole separation system, including the quantity and type of sample, sample preparation, HPLC equipment, chromatographic conditions (including column), choice of detector, and quantitation techniques. A limited discussion is provided here for optimization based on theoretical considerations, chromatographic conditions, detector selection, and miscellaneous approaches to detectability optimization. 59 refs

  16. Toward Optimal Transport Networks

    Science.gov (United States)

    Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.

    2008-01-01

    Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.

  17. Unconstrained Optimization

    DEFF Research Database (Denmark)

    Frandsen, P. E.; Jonasson, K.; Nielsen, Hans Bruun

    1999-01-01

    This lecture note is intended for use in the course 04212 Optimization and Data Fitting at the Technincal University of Denmark. It covers about 25% of the curriculum. Hopefully, the note may be useful also to interested persons not participating in that course. The aim of the note is to give...... an introduction to algorithms for unconstrained optimization. We present Conjugate Gradient, Damped Newton and Quasi Newton methods together with the relevant theoretical background. The reader is assumed to be familiar with algorithms for solving linear and nonlinear system of equations, at a level corresponding...

  18. Identifying Dieters Who Will Develop an Eating Disorder: A Prospective, Population-Based Study

    Science.gov (United States)

    Fairburn, Christopher G.; Cooper, Zafra; Doll, Helen A.; Davies, Beverley A.

    2010-01-01

    Objective The aims of the study were to identify the characteristics of the dieters most at risk of subsequently developing an eating disorder and to evaluate the feasibility of using a brief questionnaire to identify such dieters in advance. Method A general population cohort of 2,992 young women who were dieting was identified. On four occasions over the subsequent 2 years, this cohort was sent a questionnaire concerning eating habits and attitudes. Participants whose responses suggested that they had developed an eating disorder were interviewed to establish their true case status. The baseline questionnaires of those who did and did not subsequently develop an eating disorder were compared to identify features that predicted future case status. Results One hundred four of the dieters developed an eating disorder of clinical severity during the 2 years of follow-up. Their baseline questionnaire scores differed in many respects from those who had not developed an eating disorder. Items associated with developing an eating disorder were selected by using three different statistical methods. A simple case-predicting instrument based on one of five items scoring above an optimal cut point had a sensitivity of 71% and a specificity of 72% (overall efficiency of 72%). Conclusions Dieters who will develop an eating disorder within the next 2 years have distinctive features. It is feasible to identify them in advance with reasonable efficiency with a brief questionnaire. This questionnaire could be incorporated into routine health assessments, thereby identifying those at high risk. PMID:16330587

  19. Thoughts on identifiers

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    As business processes and information transactions have become an inextricably intertwined with the Web, the importance of assignment, registration, discovery, and maintenance of identifiers has increased. In spite of this, integrated frameworks for managing identifiers have been slow to emerge. Instead, identification systems arise (quite naturally) from immediate business needs without consideration for how they fit into larger information architectures. In addition, many legacy identifier systems further complicate the landscape, making it difficult for content managers to select and deploy identifier systems that meet both the business case and long term information management objectives. This presentation will outline a model for evaluating identifier applications and the functional requirements of the systems necessary to support them. The model is based on a layered analysis of the characteristics of identifier systems, including: * Functional characteristics * Technology * Policy * Business * Social T...

  20. Identifiability in stochastic models

    CERN Document Server

    1992-01-01

    The problem of identifiability is basic to all statistical methods and data analysis, occurring in such diverse areas as Reliability Theory, Survival Analysis, and Econometrics, where stochastic modeling is widely used. Mathematics dealing with identifiability per se is closely related to the so-called branch of ""characterization problems"" in Probability Theory. This book brings together relevant material on identifiability as it occurs in these diverse fields.

  1. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  2. Optimal transport

    CERN Document Server

    Eckmann, B

    2008-01-01

    At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area.

  3. Topology optimization

    DEFF Research Database (Denmark)

    Bendsøe, Martin P.; Sigmund, Ole

    2007-01-01

    Taking as a starting point a design case for a compliant mechanism (a force inverter), the fundamental elements of topology optimization are described. The basis for the developments is a FEM format for this design problem and emphasis is given to the parameterization of design as a raster image...

  4. Advanced calculus

    CERN Document Server

    Friedman, Avner

    2007-01-01

    This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several

  5. Advanced calculus

    CERN Document Server

    Fitzpatrick, Patrick M

    2009-01-01

    Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclide

  6. Advanced trigonometry

    CERN Document Server

    Durell, C V; Robson, A

    1950-01-01

    This volume will provide a welcome resource for teachers seeking an undergraduate text on advanced trigonometry, when few are readily available. Ideal for self-study, this text offers a clear, logical presentation of topics and an extensive selection of problems with answers. Contents include the properties of the triangle and the quadrilateral; equations, sub-multiple angles, and inverse functions; hyperbolic, logarithmic, and exponential functions; and expansions in power-series. Further topics encompass the special hyperbolic functions; projection and finite series; complex numbers; de Moiv

  7. Optimization and Logistics Challenges in the Enterprise

    CERN Document Server

    Chaovalitwongse, Wanpracha; Pardalos, Panos M

    2009-01-01

    Presents advances in supply chain and logistics research and computational optimization that apply to a collaborative environment in the enterprise. This book intends to bridge the gap between operations research and mathematical optimization research from the academic arena with industrial practice

  8. Nomogram for 30-day morbidity after primary cytoreductive surgery for advanced stage ovarian cancer.

    Science.gov (United States)

    Nieuwenhuyzen-de Boer, G M; Gerestein, C G; Eijkemans, M J C; Burger, C W; Kooi, G S

    2016-01-01

    Extensive surgical procedures to achieve maximal cytoreduction in patients with advanced stage epithelial ovarian cancer (EOC) are inevitably associated with postoperative morbidity and mortality. This study aimed to identify preoperative predictors of 30-day morbidity after primary cytoreductive surgery for advanced stage EOC and to develop a nomogram for individual risk assessment. Patients in The Netherlands who underwent primary cytoreductive surgery for advanced stage EOC between January 2004 and December 2007. All peri- and postoperative complications within 30 days after surgery were registered and classified. To investigate predictors of 30-day morbidity, a Cox proportional hazard model with backward stepwise elimination was utilized. The identified predictors were entered into a nomogram. The main outcome was to identify parameters that predict operative risk. 293 patients entered the study protocol. Optimal cytoreduction was achieved in 136 (46%) patients. Thirty-day morbidity was seen in 99 (34%) patients. Morbidity could be predicted by age (p = 0.033; OR 1.024), preoperative hemoglobin (p = 0.194; OR 0.843), and WHO performance status (p = 0.015; OR 1.821) with a optimism-corrected c-statistic of 0.62. Determinants co-morbidity status, serum CA125 level, platelet count, and presence of ascites were comparable in both groups. Thirty-day morbidity after primary cytoreductive surgery for advanced stage EOC could be predicted by age, hemoglobin, and WHO performance status. The generated nomogram could be valuable for predicting operative risk in the individual patient.

  9. Multi-net optimization of VLSI interconnect

    CERN Document Server

    Moiseev, Konstantin; Wimer, Shmuel

    2015-01-01

    This book covers layout design and layout migration methodologies for optimizing multi-net wire structures in advanced VLSI interconnects. Scaling-dependent models for interconnect power, interconnect delay and crosstalk noise are covered in depth, and several design optimization problems are addressed, such as minimization of interconnect power under delay constraints, or design for minimal delay in wire bundles within a given routing area. A handy reference or a guide for design methodologies and layout automation techniques, this book provides a foundation for physical design challenges of interconnect in advanced integrated circuits.  • Describes the evolution of interconnect scaling and provides new techniques for layout migration and optimization, focusing on multi-net optimization; • Presents research results that provide a level of design optimization which does not exist in commercially-available design automation software tools; • Includes mathematical properties and conditions for optimal...

  10. Intelligent flame analysis for an optimized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Peper; Dirk Schmidt [ABB Utilities GmbH, Mainheimm (Germany)

    2003-07-01

    One of the primary challenges in the area of process control is to ensure that many competing optimization goals are accomplished at the same time and be considered in time. This paper describes a successful approach through the use of an advanced pattern recognition technology and intelligent optimization tool modeling combustion processes more precisely and optimizing them based on a holistic view. 17 PowerPoint slides are also available in the proceedings. 5 figs., 1 tab.

  11. Matlab enhanced multi-threaded tomography optimization sequence (MEMTOS)

    International Nuclear Information System (INIS)

    Lum, Edward S.; Pope, Chad L.

    2016-01-01

    Highlights: • Monte Carlo simulation of spent nuclear fuel assembly neutron computed tomography. • Optimized parallel calculations conducted from within the MATLAB environment. • Projection difference technique used to identify anomalies in spent nuclear fuel assemblies. - Abstract: One challenge associated with spent nuclear fuel assemblies is the lack of non-destructive analysis techniques to determine if fuel pins have been removed or replaced or if there are significant defects associated with fuel pins deep within a fuel assembly. Neutron computed tomography is a promising technique for addressing these qualitative issues. Monte Carlo simulation of spent nuclear fuel neutron computed tomography allows inexpensive process investigation and optimization. The main purpose of this work is to provide a fully automated advanced simulation framework for the analysis of spent nuclear fuel inspection using neutron computed tomography. The simulation framework, called Matlab Enhanced Multi-Threaded Tomography Optimization Sequence (MEMTOS) not only automates the simulation process, but also generates superior tomography image results. MEMTOS is written in the MATLAB scripting language and addresses file management, parallel Monte Carlo execution, results extraction, and tomography image generation. This paper describes the mathematical basis for neutron computed tomography, the Monte Carlo technique used to simulate neutron computed tomography, and the overall tomography simulation optimization algorithm. Sequence results presented include overall simulation speed enhancement, tomography and image results obtained for Experimental Breeder Reactor II spent fuel assemblies and light water reactor fuel assemblies. Optimization using a projection difference technique are also described.

  12. Optimal control

    CERN Document Server

    Aschepkov, Leonid T; Kim, Taekyun; Agarwal, Ravi P

    2016-01-01

    This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes. In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for prob...

  13. Advanced Pacemaker

    Science.gov (United States)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  14. Convex analysis and global optimization

    CERN Document Server

    Tuy, Hoang

    2016-01-01

    This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;

  15. Optimization and industry new frontiers

    CERN Document Server

    Korotkikh, Victor

    2003-01-01

    Optimization from Human Genes to Cutting Edge Technologies The challenges faced by industry today are so complex that they can only be solved through the help and participation of optimization ex­ perts. For example, many industries in e-commerce, finance, medicine, and engineering, face several computational challenges due to the mas­ sive data sets that arise in their applications. Some of the challenges include, extended memory algorithms and data structures, new program­ ming environments, software systems, cryptographic protocols, storage devices, data compression, mathematical and statistical methods for knowledge mining, and information visualization. With advances in computer and information systems technologies, and many interdisci­ plinary efforts, many of the "data avalanche challenges" are beginning to be addressed. Optimization is the most crucial component in these efforts. Nowadays, the main task of optimization is to investigate the cutting edge frontiers of these technologies and systems ...

  16. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2011-10-01

    cells we observed that it promoted transformation of HMLE cells, suggesting a tumor suppressive role of Merlin in breast cancer (Figure 4B). A...08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 W81XWH-08-1-0767 Identifying Breast Cancer Oncogenes Yashaswi Shrestha Dana-Farber

  17. Identifying subgroup markers in heterogeneous populations

    NARCIS (Netherlands)

    de Ronde, Jorma J.; Rigaill, Guillem; Rottenberg, Sven; Rodenhuis, Sjoerd; Wessels, Lodewyk F. A.

    2013-01-01

    Traditional methods that aim to identify biomarkers that distinguish between two groups, like Significance Analysis of Microarrays or the t-test, perform optimally when such biomarkers show homogeneous behavior within each group and differential behavior between the groups. However, in many

  18. Advances in Photovoltaics at NREL

    Energy Technology Data Exchange (ETDEWEB)

    von Roedern, B.

    1999-09-09

    This paper discusses the critical strategic research and development issues in the development of next-generation photovoltaic technologies, emphasizing thin-film technologies that are believed to ultimately lead to lower production costs. The critical research and development issues for each technology are identified. An attempt is made to identify the strengths and weaknesses of the different technologies, and to identify opportunities for fundamental research activities suited to advance the introduction of improved photovoltaic modules.

  19. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  20. Neoadjuvant Chemotherapy for Advanced Epithelial Ovarian Cancer

    International Nuclear Information System (INIS)

    Avendano Juan; Buitrago, Giancarlo; Ramos, Pedro; Suescun Oscar

    2010-01-01

    Objective: To describe the experience at the National Cancer Institute (NCI) on the use of neoadjuvant chemotherapy as primary treatment for epithelial ovarian cancer among patients in stages IIIC and IV. Methods: We conducted a descriptive retrospective study (case series type) of patients diagnosed with epithelial ovarian cancer in stages IIIC and IV, treated at the NCI from January 1, 2003 to December 31,2006, who underwent neoadjuvant chemotherapy as primary treatment. Demographic characteristics and clinical outcomes are described. Results: Seventeen patients who fulfilled the above mentioned criteria were selected. Once neoadjuvant chemotherapy ended, 5 patients (29.4%) achieved complete or partial clinical response; 4 (23.8%) remained in stable condition, and 8 (47.6%) showed signs of progressive illness. Interval debulking surgery was performed on objective response patients. Maximum cytoreduction was achieved in 5 patients (100%); first relapse was reported at month 18 of follow-up; 2 disease-free survivors were identified in December, 2007; 8 (49%) reported some degree of non-severe chemotherapy-related toxicity. No mortality was related to chemotherapy, no post surgical complications were observed and no patient required advanced support management. Conclusions: Neoadjuvant chemotherapy, followed by optimal interval debulking surgery among selected patients, can be an alternative treatment for advanced epithelial ovarian cancer among women with irresecability or the critically ill. Further studies with improved design are required to confirm these findings.

  1. Advanced transport aircraft technology

    Energy Technology Data Exchange (ETDEWEB)

    Winblade, R L

    1980-06-01

    Various elements of the NASA aircraft energy efficiency program are described. Regarding composite structures, the development of three secondary and three medium-primary components to validate structural and fabrication technology is discussed. In laminar flow control, the design of advanced airfoils having large regions of supercritical flow with features which simplify laminarization are considered. Emphasis is placed on engine performance improvement, directed at developing advanced components to reduce fuel consumption in current production engines, and engine diagnostics aimed at identifying the sources and causes of performance deterioration in high-bypass turbofan engines. In addition, the results of propeller aerodynamic and acoustic tests have substantiated the feasibility of achieving the propeller efficiency goal of 80% and confirmed that the effect of blade sweep on reducing propeller source noise was 5-6 dB.

  2. The Advanced Light Source

    International Nuclear Information System (INIS)

    Jackson, A.

    1991-05-01

    The Advanced Light Source (ALS), a national user facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation in the energy range from a few eV to 10 keV. The design is based on a 1--1.9-GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. The facility is scheduled to begin operating in April 1993. In this paper we describe the progress in the design, construction, and commissioning of the accelerator systems, insertion devices, and beamlines. Companion presentations at this conference give more detail of specific components in the ALS, and describe the activities towards establishing an exciting user program. 3 figs., 2 tabs

  3. Advances in nanosized zeolites

    Science.gov (United States)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  4. Discrete optimization

    CERN Document Server

    Parker, R Gary

    1988-01-01

    This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o

  5. Identifying target processes for microbial electrosynthesis by elementary mode analysis.

    Science.gov (United States)

    Kracke, Frauke; Krömer, Jens O

    2014-12-30

    Microbial electrosynthesis and electro fermentation are techniques that aim to optimize microbial production of chemicals and fuels by regulating the cellular redox balance via interaction with electrodes. While the concept is known for decades major knowledge gaps remain, which make it hard to evaluate its biotechnological potential. Here we present an in silico approach to identify beneficial production processes for electro fermentation by elementary mode analysis. Since the fundamentals of electron transport between electrodes and microbes have not been fully uncovered yet, we propose different options and discuss their impact on biomass and product yields. For the first time 20 different valuable products were screened for their potential to show increased yields during anaerobic electrically enhanced fermentation. Surprisingly we found that an increase in product formation by electrical enhancement is not necessarily dependent on the degree of reduction of the product but rather the metabolic pathway it is derived from. We present a variety of beneficial processes with product yield increases of maximal 36% in reductive and 84% in oxidative fermentations and final theoretical product yields up to 100%. This includes compounds that are already produced at industrial scale such as succinic acid, lysine and diaminopentane as well as potential novel bio-commodities such as isoprene, para-hydroxybenzoic acid and para-aminobenzoic acid. Furthermore, it is shown that the way of electron transport has major impact on achievable biomass and product yields. The coupling of electron transport to energy conservation could be identified as crucial for most processes. This study introduces a powerful tool to determine beneficial substrate and product combinations for electro-fermentation. It also highlights that the maximal yield achievable by bio electrochemical techniques depends strongly on the actual electron transport mechanisms. Therefore it is of great importance to

  6. Identifying and Managing Risk.

    Science.gov (United States)

    Abraham, Janice M.

    1999-01-01

    The role of the college or university chief financial officer in institutional risk management is (1) to identify risk (physical, casualty, fiscal, business, reputational, workplace safety, legal liability, employment practices, general liability), (2) to develop a campus plan to reduce and control risk, (3) to transfer risk, and (4) to track and…

  7. Licensing and advanced fuel designs

    International Nuclear Information System (INIS)

    Davidson, S.L.; Novendstern, E.H.

    1991-01-01

    For the past 15 years, Westinghouse has been actively involved in the development and licensing of fuel designs that contain major advanced features. These designs include the optimized fuel assembly, The VANTAGE 5 fuel assembly, the VANTAGE 5H, and most recently the VANTAGE+ fuel assembly. Each of these designs was supported by extensive experimental data, safety evaluations, and design efforts and required intensive interaction with the US Nuclear Regulatory Commission (NRC) during the review and approval process. This paper presents a description of the licensing approach and how it was utilized by the utilities to facilitate the licensing applications of the advanced fuel designs for their plants. The licensing approach described in this paper has been successfully applied to four major advanced fuel design changes ∼40 plant-specific applications, and >350 cycle-specific reloads in the past 15 years

  8. Reliability and optimization of structural systems

    International Nuclear Information System (INIS)

    Thoft-Christensen, P.

    1987-01-01

    The proceedings contain 28 papers presented at the 1st working conference. The working conference was organized by the IFIP Working Group 7.5. The proceedings also include 4 papers which were submitted, but for various reasons not presented at the working conference. The working conference was attended by 50 participants from 18 countries. The conference was the first scientific meeting of the new IFIP Working Group 7.5 on 'Reliability and Optimization of Structural Systems'. The purpose of the Working Group 7.5 is to promote modern structural system optimization and reliability theory, to advance international cooperation in the field of structural system optimization and reliability theory, to stimulate research, development and application of structural system optimization and reliability theory, to further the dissemination and exchange of information on reliability and optimization of structural system optimization and reliability theory, and to encourage education in structural system optimization and reliability theory. (orig./HP)

  9. Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, Dennis D.

    2006-08-01

    This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

  10. Pyomo optimization modeling in Python

    CERN Document Server

    Hart, William E; Watson, Jean-Paul; Woodruff, David L; Hackebeil, Gabriel A; Nicholson, Bethany L; Siirola, John D

    2017-01-01

    This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. This second edition provides an expanded presentation of Pyomo’s modeling capabilities, providing a broader description of the software that will enable the user to develop and optimize models. Introductory chapters have been revised to extend tutorials; chapters that discuss advanced features now include the new functionalities added to Pyomo since the first edition including generalized disjunctive programming, mathematical programming with equilibrium constraints, and bilevel programming. Pyomo is an open source software package fo...

  11. Advanced Covariance-Based Stochastic Inversion and Neuro-Genetic Optimization for Rosetta CONSERT Radar Data to Improve Spatial Resolution of Multi-Fractal Depth Profiles for Cometary Nucleus

    Science.gov (United States)

    Edenhofer, Peter; Ulamec, Stephan

    2015-04-01

    The paper is devoted to results of doctoral research work at University of Bochum as applied to the radar transmission experiment CONSERT of the ESA cometary mission Rosetta. This research aims at achieving the limits of optimum spatial (and temporal) resolution for radar remote sensing by implementation of covariance informations concerned with error-balanced control as well as coherence of wave propagation effects through random composite media involved (based on Joel Franklin's approach of extended stochastic inversion). As a consequence the well-known inherent numerical instabilities of remote sensing are significantly reduced in a robust way by increasing the weight of main diagonal elements of the resulting composite matrix to be inverted with respect to off-diagonal elements following synergy relations as to the principle of correlation receiver in wireless telecommunications. It is shown that the enhancement of resolution for remote sensing holds for an integral and differential equation approach of inversion as well. In addition to that the paper presents a discussion on how the efficiency of inversion for radar data gets achieved by an overall optimization of inversion due to a novel neuro-genetic approach. Such kind of approach is in synergy with the priority research program "Organic Computing" of DFG / German Research Organization. This Neuro-Genetic Optimization (NGO) turns out, firstly, to take into account more detailed physical informations supporting further improved resolution such as the process of accretion for cometary nucleus, wave propagation effects from rough surfaces, ground clutter, nonlinear focusing, etc. as well as, secondly, to accelerate the computing process of inversion in a really significantly enhanced and fast way, e.g., enabling online-control of autonomous processes such as detection of unknown objects, navigation, etc. The paper describes in some detail how this neuro-genetic approach of optimization is incorporated into the

  12. Superlattice design for optimal thermoelectric generator performance

    Science.gov (United States)

    Priyadarshi, Pankaj; Sharma, Abhishek; Mukherjee, Swarnadip; Muralidharan, Bhaskaran

    2018-05-01

    We consider the design of an optimal superlattice thermoelectric generator via the energy bandpass filter approach. Various configurations of superlattice structures are explored to obtain a bandpass transmission spectrum that approaches the ideal ‘boxcar’ form, which is now well known to manifest the largest efficiency at a given output power in the ballistic limit. Using the coherent non-equilibrium Green’s function formalism coupled self-consistently with the Poisson’s equation, we identify such an ideal structure and also demonstrate that it is almost immune to the deleterious effect of self-consistent charging and device variability. Analyzing various superlattice designs, we conclude that superlattice with a Gaussian distribution of the barrier thickness offers the best thermoelectric efficiency at maximum power. It is observed that the best operating regime of this device design provides a maximum power in the range of 0.32–0.46 MW/m 2 at efficiencies between 54%–43% of Carnot efficiency. We also analyze our device designs with the conventional figure of merit approach to counter support the results so obtained. We note a high zT el   =  6 value in the case of Gaussian distribution of the barrier thickness. With the existing advanced thin-film growth technology, the suggested superlattice structures can be achieved, and such optimized thermoelectric performances can be realized.

  13. Co-Optimization of Fuels and Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2016-03-24

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energy savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.

  14. Optimization of investments in gas networks

    International Nuclear Information System (INIS)

    Andre, J.

    2010-09-01

    The natural gas networks require very important investments to cope with a still growing demand and to satisfy the new regulatory constraints. The gas market deregulation imposed to the gas network operators, first, transparency rules of a natural monopoly to justify their costs and ultimately their tariffs, and, second, market fluidity objectives in order to facilitate access for competition to the end-users. These major investments are the main reasons for the use of optimization techniques aiming at reducing the costs. Due to the discrete choices (investment location, limited choice of additional capacities, timing) crossed with physical non linear constraints (flow/pressures relations in the pipe or operating ranges of compressors), the programs to solve are Large Mixed Non Linear Programs (MINLP). As these types of programs are known to be hard to solve exactly in polynomial times (NP-hard), advanced optimization methods have to be implemented to obtain realistic results. The objectives of this thesis are threefold. First, one states several investment problems modeling of natural gas networks from industrial world motivations. Second, one identifies the most suitable methods and algorithms to the formulated problems. Third, one exposes the main advantages and drawbacks of these methods with the help of numerical applications on real cases. (author)

  15. Advanced Magnetoimpedance Sensors

    KAUST Repository

    Li, Bodong

    2015-02-01

    This thesis is concerned with the advanced topics of thin film magnetoimpedance (MI) sensors. The author proposes and develops novel MI sensors that target on the challenges arising from emerging applications such as flexible electronics, passive wireless sensing, etc. In the study of flexible MI sensor, the investigated sensors of NiFe/Cu/NiFe tri-layersare fabricated on three flexible substrates having different surface roughness: Kapton, standard and premiumphotopaper. Sensitivity versus substrate roughness analysis is carried out for the selection of optimal substrate material. The high magnetic sensing performance is achieved by using Kapton substrate. Stress simulation, incorporated with the theory of magnetostriction effect, reveals the material composition of Ni/Fe being as a key factor of the stress dependent MI effect for the flexible MI sensors. In the development of MI-SAW device for passive wireless magnetic field sensing, NiFe/Cu/NiFe tri-layersand interdigital transducers(IDT) are designed and fabricated on a single piece of LiNbO3substrate, providing a high degree of integration and the advantage of standard microfabrication. The double-electrodeIDT has been utilized and proven to have an optimal sensing performance in comparison to the bi-directional IDT design. The optimized high frequency performance of the thin film MI sensor results in a MI-SAW passive wireless magnetic sensor with high magnetic sensitivity comparing to the MI microwire approach. Benefiting from the high degree of integration of the MI thin film element, in the following study, two additional sensing elements are integrated to the SAW device to have a multifunctional passive wireless sensor with extended temperature and humidity sensing capabilities. Analytical models havebeen developed to eliminate the crossovers of different sensing signals through additional reference IDTs, resulting in a multifunctional passive wireless sensor with the capability of detecting all three

  16. Identifying Breast Cancer Oncogenes

    Science.gov (United States)

    2010-10-01

    tyrosine kinases with an SH3, SH2 and catalytic domain, it lacks a native myristylation signal shared by most members of this class [14], [38]. The...therapeutics and consequently, improve clinical outcomes. We aim to identify novel drivers of breast oncogenesis. We hypothesize that a kinase gain-of...human mammary epithelial cells. A pBabe-Puro-Myr-Flag kinase open reading frame (ORF) library was screened in immortalized human mammary epithelial

  17. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  18. A Multivariate Quality Loss Function Approach for Optimization of Spinning Processes

    Science.gov (United States)

    Chakraborty, Shankar; Mitra, Ankan

    2018-05-01

    Recent advancements in textile industry have given rise to several spinning techniques, such as ring spinning, rotor spinning etc., which can be used to produce a wide variety of textile apparels so as to fulfil the end requirements of the customers. To achieve the best out of these processes, they should be utilized at their optimal parametric settings. However, in presence of multiple yarn characteristics which are often conflicting in nature, it becomes a challenging task for the spinning industry personnel to identify the best parametric mix which would simultaneously optimize all the responses. Hence, in this paper, the applicability of a new systematic approach in the form of multivariate quality loss function technique is explored for optimizing multiple quality characteristics of yarns while identifying the ideal settings of two spinning processes. It is observed that this approach performs well against the other multi-objective optimization techniques, such as desirability function, distance function and mean squared error methods. With slight modifications in the upper and lower specification limits of the considered quality characteristics, and constraints of the non-linear optimization problem, it can be successfully applied to other processes in textile industry to determine their optimal parametric settings.

  19. Optimization of multi-stage dynamic treatment regimes utilizing accumulated data.

    Science.gov (United States)

    Huang, Xuelin; Choi, Sangbum; Wang, Lu; Thall, Peter F

    2015-11-20

    In medical therapies involving multiple stages, a physician's choice of a subject's treatment at each stage depends on the subject's history of previous treatments and outcomes. The sequence of decisions is known as a dynamic treatment regime or treatment policy. We consider dynamic treatment regimes in settings where each subject's final outcome can be defined as the sum of longitudinally observed values, each corresponding to a stage of the regime. Q-learning, which is a backward induction method, is used to first optimize the last stage treatment then sequentially optimize each previous stage treatment until the first stage treatment is optimized. During this process, model-based expectations of outcomes of late stages are used in the optimization of earlier stages. When the outcome models are misspecified, bias can accumulate from stage to stage and become severe, especially when the number of treatment stages is large. We demonstrate that a modification of standard Q-learning can help reduce the accumulated bias. We provide a computational algorithm, estimators, and closed-form variance formulas. Simulation studies show that the modified Q-learning method has a higher probability of identifying the optimal treatment regime even in settings with misspecified models for outcomes. It is applied to identify optimal treatment regimes in a study for advanced prostate cancer and to estimate and compare the final mean rewards of all the possible discrete two-stage treatment sequences. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  1. Optimization of Transmon Qubit Fabrication

    Science.gov (United States)

    Chang, Josephine; Rothwell, Mary; Keefe, George; IBM Quantum Computing Group Team

    2013-03-01

    Rapid advances in the field of superconducting transmon qubits have refined our understanding of the role that substrate and interfaces play in qubit decoherence. Here, we review strategies for enhancing coherence times in both 2D and 3D transmon qubits through substrate design, structural improvements, and process optimization. Results correlating processing techniques to decoherence times are presented, and some novel structures are proposed for further consideration. We acknowledge support from IARPA under contract W911NF-10-1-0324

  2. I-optimal mixture designs

    OpenAIRE

    GOOS, Peter; JONES, Bradley; SYAFITRI, Utami

    2013-01-01

    In mixture experiments, the factors under study are proportions of the ingredients of a mixture. The special nature of the factors in a mixture experiment necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal desi...

  3. A probabilistic approach for optimal sensor allocation in structural health monitoring

    International Nuclear Information System (INIS)

    Azarbayejani, M; Reda Taha, M M; El-Osery, A I; Choi, K K

    2008-01-01

    Recent advances in sensor technology promote using large sensor networks to efficiently and economically monitor, identify and quantify damage in structures. In structural health monitoring (SHM) systems, the effectiveness and reliability of the sensor network are crucial to determine the optimal number and locations of sensors in SHM systems. Here, we suggest a probabilistic approach for identifying the optimal number and locations of sensors for SHM. We demonstrate a methodology to establish the probability distribution function that identifies the optimal sensor locations such that damage detection is enhanced. The approach is based on using the weights of a neural network trained from simulations using a priori knowledge about damage locations and damage severities to generate a normalized probability distribution function for optimal sensor allocation. We also demonstrate that the optimal sensor network can be related to the highest probability of detection (POD). The redundancy of the proposed sensor network is examined using a 'leave one sensor out' analysis. A prestressed concrete bridge is selected as a case study to demonstrate the effectiveness of the proposed method. The results show that the proposed approach can provide a robust design for sensor networks that are more efficient than a uniform distribution of sensors on a structure

  4. Identifying phenomenal consciousness.

    Science.gov (United States)

    Schier, Elizabeth

    2009-03-01

    This paper examines the possibility of finding evidence that phenomenal consciousness is independent of access. The suggestion reviewed is that we should look for isomorphisms between phenomenal and neural activation spaces. It is argued that the fact that phenomenal spaces are mapped via verbal report is no problem for this methodology. The fact that activation and phenomenal space are mapped via different means does not mean that they cannot be identified. The paper finishes by examining how data addressing this theoretical question could be obtained.

  5. MO-FG-207-00: Technological Advances in PET/MR Imaging

    International Nuclear Information System (INIS)

    2015-01-01

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applications that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee

  6. MO-FG-207-00: Technological Advances in PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applications that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.

  7. Optimal Responsible Investment

    DEFF Research Database (Denmark)

    Jessen, Pernille

    Numerous institutions are now engaged in Socially Responsible Investment or have signed the "UN Principles for Responsible Investment". Retail investors, however, are still lacking behind. This is peculiar since the sector constitutes key stakeholders in environmental, social and governmental...... standards. This paper considers optimal responsible investment for a small retail investor. It extends conventional portfolio theory by allowing for a personal-value based investment decision. Preferences for responsibility are defined in the framework of mean-variance analysis and an optimal responsible...... investment model identified. Implications of the altered investment problem are investigated when the dynamics between portfolio risk, expected return and responsibility is considered. Relying on the definition of a responsible investor, it is shown how superior investment opportunities can emerge when...

  8. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    Science.gov (United States)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  9. Comparison of allogeneic stem cell transplantation and non-transplant approaches in elderly patients with advanced myelodysplastic syndrome: optimal statistical approaches and a critical appraisal of clinical results using non-randomized data.

    Directory of Open Access Journals (Sweden)

    Ronald Brand

    Full Text Available Allogeneic stem cell transplantation (ASCT from related or unrelated donors may cure patients with myelodysplastic syndromes (MDS, a heterogeneous group of clonal stem cell disorders. We analysed 384 elderly patients (55-69 years with advanced MDS who received either ASCT (n=247 and were reported to The European Group for Blood and Marrow Transplantation (EBMT or a non -transplant approach (n=137 reported to the Düsseldorf registry. Besides an attempt to answer the question of "comparison", the purpose of this work is to explain the difficulties in comparing a non-transplant with a transplant cohort, when death before transplant is likely but unknown and the selection of patients for transplant is based on assumptions. It shows which methods are almost always biased and that even the most sophisticated approaches crucially rely on clinical assumptions. Using the most appropriate model for our data, we derive an overall univariate non-significant survival disadvantage for the transplant cohort (HR: 1.29, p = 0.11. We show that such an "average" hazard ratio is however misleading due to non-proportionality of the hazards reflecting early treatment related mortality, the occurring of which is logically correlated with the interval between diagnosis and transplant creating a disproportional drop in the (reconstructed survival curve of the transplanted patients. Also in multivariate analysis (correcting for age > 60 (HR: 1.4, p = 0.02 and abnormal cytogenetics (HR: 1.46, p = 0.01, transplantation seems to be worse (HR: 1.39, p = 0.05 but only in the (incorrect but commonly applied model without time varying covariates. The long term (time depending hazard ratio is shown to be virtually 1 and overall survival is virtually identical in both groups. Nonetheless no conclusion can be reached from a clinical point of view without assumptions which are by their very nature untestable unless all patients would be followed from diagnosis.

  10. [SIAM conference on optimization

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-10

    Abstracts are presented of 63 papers on the following topics: large-scale optimization, interior-point methods, algorithms for optimization, problems in control, network optimization methods, and parallel algorithms for optimization problems.

  11. Portfolio Optimization and Mortgage Choice

    Directory of Open Access Journals (Sweden)

    Maj-Britt Nordfang

    2017-01-01

    Full Text Available This paper studies the optimal mortgage choice of an investor in a simple bond market with a stochastic interest rate and access to term life insurance. The study is based on advances in stochastic control theory, which provides analytical solutions to portfolio problems with a stochastic interest rate. We derive the optimal portfolio of a mortgagor in a simple framework and formulate stylized versions of mortgage products offered in the market today. This allows us to analyze the optimal investment strategy in terms of optimal mortgage choice. We conclude that certain extreme investors optimally choose either a traditional fixed rate mortgage or an adjustable rate mortgage, while investors with moderate risk aversion and income prefer a mix of the two. By matching specific investor characteristics to existing mortgage products, our study provides a better understanding of the complex and yet restricted mortgage choice faced by many household investors. In addition, the simple analytical framework enables a detailed analysis of how changes to market, income and preference parameters affect the optimal mortgage choice.

  12. Advanced liquid metal reactor plant control system

    International Nuclear Information System (INIS)

    Dayal, Y.; Wagner, W.; Zizzo, D.; Carroll, D.

    1993-01-01

    The modular Advanced Liquid Metal Reactor (ALMR) power plant is controlled by an advanced state-of-the-art control system designed to facilitate plant operation, optimize availability, and protect plant investment. The control system features a high degree of automatic control and extensive amount of on-line diagnostics and operator aids. It can be built with today's control technology, and has the flexibility of adding new features that benefit plant operation and reduce O ampersand M costs as the technology matures

  13. Divertor design through shape optimization

    International Nuclear Information System (INIS)

    Dekeyser, W.; Baelmans, M.; Reiter, D.

    2012-01-01

    Due to the conflicting requirements, complex physical processes and large number of design variables, divertor design for next step fusion reactors is a challenging problem, often relying on large numbers of computationally expensive numerical simulations. In this paper, we attempt to partially automate the design process by solving an appropriate shape optimization problem. Design requirements are incorporated in a cost functional which measures the performance of a certain design. By means of changes in the divertor shape, which in turn lead to changes in the plasma state, this cost functional can be minimized. Using advanced adjoint methods, optimal solutions are computed very efficiently. The approach is illustrated by designing divertor targets for optimal power load spreading, using a simplified edge plasma model (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. The optimal blood glucose level for critically ill adult patients.

    Science.gov (United States)

    Lv, Shaoning; Ross, Paul; Tori, Kathleen

    2017-09-01

    Glycaemic control is recognized as one of the important aspects in managing critically ill patients. Both hyperglycaemia and hypoglycaemia independently increase the risk of patient mortality. Hence, the identification of optimal glycaemic control is of paramount importance in the management of critically ill patients. The aim of this literature review is to examine the current status of glycaemic control in critically ill adult patients. This literature review will focus on randomized controlled trials comparing intensive insulin therapy to conventional insulin therapy, with an objective to identify optimal blood glucose level targets for critically ill adult patients. A literature review was conducted to identify large randomized controlled trials for the optimal targeted blood glucose level for critically ill adult patients published since 2000. A total of eight studies fulfilled the selection criteria of this review. With current human and technology resources, the results of the studies support commencing glycaemic control once the blood glucose level of critically ill patients reaches 10 mmol/L and maintaining this level between 8 mmol/L and 10 mmol/L. This literature review provides a recommendation for targeting the optimal blood glucose level for critically ill patients within moderate blood glucose level target range (8-10 mmol/L). The need for uniformed glucometrics for unbiased reporting and further research for optimal blood glucose target is required, especially in light of new technological advancements in closed-loop insulin delivery and monitoring devices. This literature review has revealed a need to call for consensus in the measurement and reporting of glycaemic control using standardized glucometrics. © 2017 British Association of Critical Care Nurses.

  15. Optimal control applications in electric power systems

    CERN Document Server

    Christensen, G S; Soliman, S A

    1987-01-01

    Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...

  16. List identifies threatened ecosystems

    Science.gov (United States)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  17. Optimal GENCO bidding strategy

    Science.gov (United States)

    Gao, Feng

    Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional mode