WorldWideScience

Sample records for identify mutant forms

  1. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  2. Isolation and characteristics of minute plaque forming mutant of cyanophage AS-1

    International Nuclear Information System (INIS)

    Amla, D.V.

    1981-01-01

    Minute plaque forming mutant (m) of cyanophage AS-1 infecting unicellular blue-green algae was isolated spontaneously and after mutagenic treatment. Compared to wild type m mutant formed small plaques, adsorption rate was slow and the burst-size was significantly decreased with prolonged eclipse and latent period. The plaque forming ability of mutant phage was sensitive to pH, heat, EDTA shock, distilled water and photosensitisation with acriflavine whereas ultraviolet sensitivity of free and intracellular phage was identical to the parent. The spontaneous reversion frequencies of mutant phage to wild type were between 10 -5 to 10 -3 and appeared to be clonal property. Reversion studies suggested possibilities of frame-shift or base-pair substitution for m mutation. (author)

  3. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  4. Assessment and application of oats mutant forms

    Energy Technology Data Exchange (ETDEWEB)

    Velikovsky, V [Vyzkumny a Slechtitelsky Ustav Obilnarsky, Kromeriz (Czechoslovakia)

    1978-04-01

    Five oat varieties were studied for the effect of X-rays on the degree of survival, on the occurrence rate of mutations, and on the possibility of obtaining improved forms for further breeding work. Oats were treated with doses of 20,000 and 40,000 R and the latter dose was found to be highly lethal. For this reason, further studies were performed with doses of 15,000 and 25,000 R. The 'Diadem' variety (CSSR) showed the highest sensitivity to irradiation. The varieties 'Tiger' (West Germany) and 'Diane' (Belgium) showed medium susceptibility and the 'Permit' and 'Pollux' varieties (both W. Germany) were the least sensitive. In selection oriented mainly to stalk shortening and to higher resistance to lodging, the greatest number of useful macromutations was obtained from the 'Permit' variety after exposure of dry seeds to a dose of 20,000 R. The most promising mutant forms obtained in this variety were sent to some breeding stations of the Plant-Breeding and Seed-Production Enterprise Oseva for further breeding use.

  5. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  6. A patient-derived mutant form of the Fanconi anemia protein, FANCA, is defective in nuclear accumulation.

    Science.gov (United States)

    Kupfer, G; Naf, D; Garcia-Higuera, I; Wasik, J; Cheng, A; Yamashita, T; Tipping, A; Morgan, N; Mathew, C G; D'Andrea, A D

    1999-04-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A-H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but the function of the encoded FA proteins remains unknown. We recently demonstrated that the FANCA and FANCC proteins bind and form a nuclear complex. In the current study, we identified a homozygous mutation in the FANCA gene (3329A>C) in an Egyptian FA patient from a consanguineous family. This mutant FANCA allele is predicted to encode a mutant FANCA protein, FANCA(H1110P), in which histidine 1110 is changed to proline. Initially, we characterized the FANCA(H1110P) protein, expressed in an Epstein Barr virus (EBV)-immortalized lymphoblast line derived from the patient. Unlike wild-type FANCA protein expressed in normal lymphoblasts, FANCA(H1110P) was not phosphorylated and failed to bind to FANCC. To test directly the effect of this mutation on FANCA function, we used retroviral-mediated transduction to express either wild-type FANCA or FANCA(H1110P) protein in the FA-A fibroblast line, GM6914. Unlike wild-type FANCA, the mutant protein failed to complement the mitomycin C sensitivity of these cells. In addition, the FANCA(H1110P) protein was defective in nuclear accumulation in the transduced cells. The characteristics of this mutant protein underscore the importance of FANCA phosphorylation, FANCA/FANCC binding, and nuclear accumulation in the function of the FA pathway.

  7. Resistance to Phytophthora in mutant lines of currant tomato and in their original forms

    International Nuclear Information System (INIS)

    Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Information on the production of currant tomato mutants is contained in a previous report. Evaluation of fruit resistance against Phytophthora infestans (Mont.) de Bary was carried out with pathotypes T 0 and T 1 . For artificial infection we used mainly a culture of T 1 (isolate 275), supplied by the Byelorussian Scientific Research Institute of Potato, Fruit and Vegetable Growing at Samokhvalovich. As inoculum for T 0 , a local population of the potato pathotype from the village of Shebantsevo, Moscow province was used. The standard variety 'Gruntovyj gribovskij 1180' was used as the control. Green fruits were taken from the first or second raceme of 20 plants. They were inoculated by spraying in plastic cuvettes with moist filter paper. The cuvettes were covered with glass and maintained at temperature of 18-20 deg. C. The results were checked 5, 9 and 12 days after inoculation. Under natural conditions, each of the 20 plants was also evaluated. As result, three lines with increased resistance to Phytophthora were selected from the original wild-type of currant tomato. Induced mutant forms were tested in the same way for resistance to Phytophthora. Data is presented from 4 years study. Of 26 mutant lines studied, we identified seven whose fruit displayed a stable and enhanced resistance to Phytophthora under both laboratory and field conditions. With regard to leaf infection of these lines, positive results were not obtained. There appears to be no direct relationship between resistance to Phytophthora of the fruit and the leaves. The mutant lines are of determinate type with early and medium ripening time. The average fruit weight is 5-33 g; in the case of the original specimen, it is only 0.9-1.7 g. The fruits have a pleasant sour-sweet taste and a thick skin. It is noteworthy that the mutant lines selected on the basis of their suitability for cultivation not only showed the resistance selected from the wild-type, but in a number of cases even turned out to

  8. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles

    Directory of Open Access Journals (Sweden)

    Farshad Farshidfar

    2017-03-01

    Full Text Available Cholangiocarcinoma (CCA is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance.

  9. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53

    Directory of Open Access Journals (Sweden)

    Arindam Datta

    2016-06-01

    Full Text Available Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR treated SW480 cells expressing mutant p53R273H (GEO#: GSE77533. We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53.

  10. Use of induced chlorophyll deficient mutants to identify 'heterotic blocks' in pearl millet chromosomes

    International Nuclear Information System (INIS)

    Burton, G.W.

    1989-01-01

    Full text: Chlorophyll deficient mutant stocks induced in 'Tift 23' of pearl millet (Pennisetum americanum L. Leeke) were crossed with 'Tift 23' and 5 other normal inbreds to study the effect of these deleterious recessive genes on yield. The difference between near-isogenic S 1 (F 2 ) populations homozygous or heterozygous for the chlorophyll deficiency was not significant. However among 69 S 1 progenies from crosses with other inbreds the heterozygotes were higher yielding than the homozygotes in 53 cases, 15 of which were significant. A mutant like 'M5' identified a high yield 'heterotic block' in 'Inbred 104' and a very low yield 'heterotic block' in 'Inbred 186'. (author)

  11. Evolution of inhibitor-resistant natural mutant forms of HIV-1 protease probed by pre-steady state kinetic analysis.

    Science.gov (United States)

    Zakharova, Maria Yu; Kuznetsova, Alexandra A; Kaliberda, Elena N; Dronina, Maria A; Kolesnikov, Alexander V; Kozyr, Arina V; Smirnov, Ivan V; Rumsh, Lev D; Fedorova, Olga S; Knorre, Dmitry G; Gabibov, Alexander G; Kuznetsov, Nikita A

    2017-11-01

    Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Isozyme differences in barley mutants

    International Nuclear Information System (INIS)

    AI-Jibouri, A.A.M.; Dham, K.M.

    1990-01-01

    Full text: Thirty mutants (M 11 ) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  13. Isozyme differences in barley mutants

    Energy Technology Data Exchange (ETDEWEB)

    AI-Jibouri, A A.M.; Dham, K M [Department of Botany, Nuclear Research Centre, Baghdad (Iraq)

    1990-01-01

    Full text: Thirty mutants (M{sub 11}) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  14. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  15. Characterization of a Weak Allele of Zebrafish cloche Mutant

    Science.gov (United States)

    Ma, Ning; Huang, Zhibin; Chen, Xiaohui; He, Fei; Wang, Kun; Liu, Wei; Zhao, Linfeng; Xu, Xiangmin; Liao, Wangjun; Ruan, Hua; Luo, Shenqiu; Zhang, Wenqing

    2011-01-01

    Hematopoiesis is a complicated and dynamic process about which the molecular mechanisms remain poorly understood. Danio rerio (zebrafish) is an excellent vertebrate system for studying hematopoiesis and developmental mechanisms. In the previous study, we isolated and identified a cloche 172 (clo 172) mutant, a novel allele compared to the original cloche (clo) mutant, through using complementation test and initial mapping. Here, according to whole mount in-situ hybridization, we report that the endothelial cells in clo 172 mutant embryos, although initially developed, failed to form the functional vascular system eventually. In addition, further characterization indicates that the clo 172 mutant exhibited weaker defects instead of completely lost in primitive erythroid cells and definitive hematopoietic cells compared with the clo s5 mutant. In contrast, primitive myeloid cells were totally lost in clo 172 mutant. Furthermore, these reappeared definitive myeloid cells were demonstrated to initiate from the remaining hematopoietic stem cells (HSCs) in clo 172 mutant, confirmed by the dramatic decrease of lyc in clo 172 runx1w84x double mutant. Collectively, the clo 172 mutant is a weak allele compared to the clo s5 mutant, therefore providing a model for studying the early development of hematopoietic and vascular system, as well as an opportunity to further understand the function of the cloche gene. PMID:22132109

  16. Genetic screens to identify new Notch pathway mutants in Drosophila.

    Science.gov (United States)

    Giagtzoglou, Nikolaos

    2014-01-01

    Notch signaling controls a wide range of developmental processes, including proliferation, apoptosis, and cell fate specification during both development and adult tissue homeostasis. The functional versatility of the Notch signaling pathway is tightly linked with the complexity of its regulation in different cellular contexts. To unravel the complexity of Notch signaling, it is important to identify the different components of the Notch signaling pathway. A powerful strategy to accomplish this task is based on genetic screens. Given that the developmental context of signaling is important, these screens should be customized to specific cell populations or tissues. Here, I describe how to perform F1 clonal forward genetic screens in Drosophila to identify novel components of the Notch signaling pathway. These screens combine a classical EMS (ethyl methanesulfonate) chemical mutagenesis protocol along with clonal analysis via FRT-mediated mitotic recombination. These F1 clonal screens allow rapid phenotypic screening within clones of mutant cells induced at specific developmental stages and in tissues of interest, bypassing the pleiotropic effects of isolated mutations. More importantly, since EMS mutations have been notoriously difficult to map to specific genes in the past, I briefly discuss mapping methods that allow rapid identification of the causative mutations.

  17. NMR studies of differences in the conformations and dynamics of ligand complexes formed with mutant dihydrofolate reductases

    International Nuclear Information System (INIS)

    Birdsall, B.; Andrews, J.; Ostler, G.; Tendler, S.J.B.; Feeney, J.; Roberts, G.C.K.; Davies, R.W.; Cheung, H.T.A.

    1989-01-01

    Two mutants of Lactobacillus casei dihydrofolate reductase, Trp 21 → Leu and Asp 26 → Glu, have been prepared by using site-directed mutagenesis methods, and their ligand binding and structural properties have been compared with those of the wild-type enzyme. 1 H, 13 C, and 31 P NMR studies have been carried out to characterize the structural changes in the complexes of the mutant and wild-type enzymes. Replacement of the conserved Trp 21 by a Leu residue causes a decrease in activity of the enzyme and reduces the NADPH binding constant by a factor of 400. The binding of substrates and substrate analogues is only slightly affected. 1 H NMR studies of the Trp 21 → Leu enzyme complexes have confirmed the original resonance assignments for Trp 21. In complexes formed with methotrexate and the mutant enzyme, the results indicate some small changes in conformation occurring as much as 14 angstrom away from the site of substitution. For the enzyme-NADPH complexes, the chemical shifts of nuclei in the bound coenzyme indicate that the nicotinamide ring binds differently in complexes with the mutant and the wild-type enzyme. There are complexes where the wild-type enzyme has been shown to exist in solution as a mixture of conformations, and studies on the corresponding complexes with the Trp 21 → Leu mutant indicate that the delicately poised equilibria can be perturbed. Some conformational adjustments are required to allow the carboxylate of Glu 26 to bind effectively to the N1 proton of inhibitors such as methotrexate and trimethoprim

  18. Intracellular transport and sorting of mutant human proinsulins that fail to form hexamers.

    Science.gov (United States)

    Quinn, D; Orci, L; Ravazzola, M; Moore, H P

    1991-06-01

    Human proinsulin and insulin oligomerize to form dimers and hexamers. It has been suggested that the ability of prohormones to self associate and form aggregates may be responsible for the sorting process at the trans-Golgi. To examine whether insulin oligomerization is required for proper sorting into regulated storage granules, we have constructed point mutations in human insulin B chain that have been previously shown to prevent formation of insulin hexamers (Brange, J., U. Ribel, J. F. Hansen, G. Dodson, M. T. Hansen, S. Havelund, S. G. Melberg, F. Norris, K. Norris, L. Snel, A. R. Sorensen, and H. O. Voight. 1988. Nature [Lond.]. 333:679-682). One mutant (B10His----Asp) allows formation of dimers but not hexamers and the other (B9Ser----Asp) prevents formation of both dimers and hexamers. The mutants were transfected into the mouse pituitary AtT-20 cells, and their ability to be sorted into regulated secretory granules was compared to wild-type insulin. We found that while B10His----Asp is sorted somewhat less efficiently than wild-type insulin as reported previously (Carroll, R. J., R. E. Hammer, S. J. Chan, H. H. Swift, A. H. Rubenstein, and D. F. Steiner. 1988. Proc. Natl. Acad. Sci. USA. 85:8943-8947; Gross, D. J., P. A. Halban, C. R. Kahn, G. C. Weir, and L. Villa-Kumaroff. 1989. Proc. Natl. Acad. Sci. USA. 86:4107-4111). B9Ser----Asp is targeted to granules as efficiently as wild-type insulin. These results indicate that self association of proinsulin into hexamers is not required for its targeting to the regulated secretory pathway.

  19. A genetic screen in Myxococcus xanthus identifies mutants that uncouple outer membrane exchange from a downstream cellular response.

    Science.gov (United States)

    Dey, Arup; Wall, Daniel

    2014-12-01

    Upon physical contact with sibling cells, myxobacteria transiently fuse their outer membranes (OMs) and exchange OM proteins and lipids. From previous work, TraA and TraB were identified to be essential factors for OM exchange (OME) in donor and recipient cells. To define the genetic complexity of OME, we carried out a comprehensive forward genetic screen. The screen was based on the observation that Myxococcus xanthus nonmotile cells, by a Tra-dependent mechanism, block swarm expansion of motile cells when mixed. Thus, mutants defective in OME or a downstream responsive pathway were readily identified as escape flares from mixed inocula seeded on agar. This screen was surprisingly powerful, as we found >50 mutants defective in OME. Importantly, all of the mutations mapped to the traAB operon, suggesting that there may be few, if any, proteins besides TraA and TraB directly required for OME. We also found a second and phenotypically different class of mutants that exhibited wild-type OME but were defective in a responsive pathway. This pathway is postulated to control inner membrane homeostasis by covalently attaching amino acids to phospholipids. The identified proteins are homologous to the Staphylococcus aureus MprF protein, which is involved in membrane adaptation and antibiotic resistance. Interestingly, we also found that a small number of nonmotile cells were sufficient to block the swarming behavior of a large gliding-proficient population. This result suggests that an OME-derived signal could be amplified from a few nonmotile producers to act on many responder cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Cytoembryologic study of gamma-ray induced sterile Pisum sativum L. mutants

    International Nuclear Information System (INIS)

    Molkhova, E.; Vasileva, M.

    1977-01-01

    Three new pea mutant forms are described - 1878, Crampled petal Waxless type, and Lathyrus type - which were induced by different gamma-ray ( 60 Co) doses and rates. The flowers of the 1878 and Crampled petal Waxless type mutants were very much deformed, while those of the Lathyrus type had smaller flowers with normal morphology. The three mutant forms were entirely sterile and were propagated by segregation in the progeny of heterozygous sister plants. PMC meiosis and the development of the male gametophyte of the Lathyrus type mutant had a normal course, while in the mutant forms Crampled petal Waxless type and 1878 slight disturbances were observed, but the pollen of all three mutants was not functional. The development of the female gametophyte of the three mutants stops at an early phase and only in the Lathyrus type mutant in single cases embryosacks were formed with differentiated sex apparatus and early stages of embryo and endosperm development were scored, but they also soon degenerate. It is pointed out that sterility of the three pea mutant forms studied depends on factors, which stop at different stages the normal development of the generative organs, of the female gametophyte and of embryogenesis. (author)

  1. Stabilization of the E* Form Turns Thrombin into an Anticoagulant

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Alaji; Carrell, Christopher J.; Chen, Zhiwei; Gandhi, Prafull S.; Di Cera, Enrico; (WU-MED)

    2009-07-31

    Previous studies have shown that deletion of nine residues in the autolysis loop of thrombin produces a mutant with an anticoagulant propensity of potential clinical relevance, but the molecular origin of the effect has remained unresolved. The x-ray crystal structure of this mutant solved in the free form at 1.55 {angstrom} resolution reveals an inactive conformation that is practically identical (root mean square deviation of 0.154 {angstrom}) to the recently identified E* form. The side chain of Trp215 collapses into the active site by shifting >10 {angstrom} from its position in the active E form, and the oxyanion hole is disrupted by a flip of the Glu192-Gly193 peptide bond. This finding confirms the existence of the inactive form E* in essentially the same incarnation as first identified in the structure of the thrombin mutant D102N. In addition, it demonstrates that the anticoagulant profile often caused by a mutation of the thrombin scaffold finds its likely molecular origin in the stabilization of the inactive E* form that is selectively shifted to the active E form upon thrombomodulin and protein C binding.

  2. Crystallization and preliminary crystallographic analysis of decameric and monomeric forms of C49S mutant thioredoxin-dependent AhpC from Helicobacter pylori

    International Nuclear Information System (INIS)

    Supangat; Seo, Kyung Hye; Furqoni, Ahmad; Kwon, Young-Chul; Cho, Myung-Je; Rhee, Kwang-Ho; Lee, Sang Yeol; Lee, Kon Ho

    2008-01-01

    Decameric and monomeric forms of recombinant C49S mutant AhpC from H. pylori have been crystallized. Diffraction data were collected to 2.8 and 2.25 Å, respectively. Cys49Ser mutant Helicobacter pylori alkyl hydroperoxide reductase (C49S HpAhpC) was purified under reducing conditions in monomeric and decameric forms. The monomeric form was crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.25 Å resolution and belonged to space group C2, with unit-cell parameters a = 245.8, b = 140.7, c = 189.5 Å, β = 127°, and contained 20 molecules in the asymmetric unit. A crystal of the decameric form was obtained by the microbatch crystallization method and diffracted to 2.8 Å resolution. It belonged to space group C222, with unit-cell parameters a = 257.5, b = 417.5, c = 95.6 Å. The structure of the monomeric form of C49S HpAhpC has been solved by the molecular-replacement method

  3. Studies on leaf mutants of Pea. (Part) I. Morphology, performance and somatic chromosomes

    International Nuclear Information System (INIS)

    Kaul, M.L.H.; Anjali, A.

    1988-01-01

    Three recessive non-allelic mutant genes alter foliar morphology of pea when present singly and in combination. Gene acacia replaces tendrils by a terminal leaflet, afila replaces leaflets by tendrils and cochleata replaces stipules by spoon shaped appendages. In combination, these genes drastically alter leaf morphology; plants can be identified only after flowering. The mutant genes influence shoot height, floral organ number, maturity period, grain yield and seed protein production; inter- and intra-genotypic variability in certain metric traits is significant. Influence of cochleata gene over floral form and function is considerable. In terms of seed yield and protein content, breeding value of all the mutants except of acacia is low because these mutant genes represent foreign untuned genes in pea genome. Segregation deficit is maximum in triple gene mutant with highly impaired fertility and low seed production. Somatic chromosome number in all the mutants and recombinants is 14; in morphology the chromosomes do not differ from the initial line, Bonneville. (author). 9 refs., 4 tabs

  4. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    Science.gov (United States)

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  5. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  6. An extra early mutant of pigeonpea

    International Nuclear Information System (INIS)

    Ravikesavan, R.; Kalaimagal, T.; Rathnaswamy, R.

    2001-01-01

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M 2 to M 4 generation. In the M 4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  7. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants

    International Nuclear Information System (INIS)

    Chandra, P. Manish; Brannigan, James A.; Prabhune, Asmita; Pundle, Archana; Turkenburg, Johan P.; Dodson, G. Guy; Suresh, C. G.

    2004-01-01

    The production, crystallization and characterization of three inactive mutants of penicillin V acylase from B. sphaericus in their respective precursor and processed forms are reported. The space groups are different for the native enzyme and the mutants. The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme–substrate complexes for this industrially important enzyme

  8. Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation

    Directory of Open Access Journals (Sweden)

    Wright Anthony PH

    2010-01-01

    Full Text Available Abstract Background Histone acetyltransferase enzymes (HATs are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity. Results We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Δelp3 mutant. We examined genetic interactions between Δelp3 and two other HAT mutants, Δmst2 and Δgcn5 and used whole genome microarray analysis to analyze their effects on gene expression. Conclusions Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.

  9. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.

    Science.gov (United States)

    Yuan, Fengjie; Yu, Xiaomin; Dong, Dekun; Yang, Qinghua; Fu, Xujun; Zhu, Shenlong; Zhu, Danhua

    2017-01-18

    Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. Seed germination in the soybean low phytate mutants is a very complex process

  11. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen

    2008-01-01

    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11...

  12. Molecular analysis of mutants of the Neurospora adenylosuccinate ...

    Indian Academy of Sciences (India)

    2012-08-07

    Aug 7, 2012 ... and mutants induced with X-ray, UV or chemical mutagens. ... We have sequenced the ad-8 locus from 13 of these mutants and identified the molecular nature ..... mutants in yeast by selection for constitutive behavior in pig-.

  13. Gamma-ray induced mutants in castor (Ricinus communis L.)

    International Nuclear Information System (INIS)

    Janila, P.; Ashok Kumar, A.; Rajashekar Reddy, N.; Hemalatha, V.

    2007-01-01

    We report isolation of three recessive mutants in castor using dry seed irradiation with gamma rays. The crinkled leaf mutant (crf) was identified in K-55-112 M2 family and leafy mutant (lea) in H-55-577 M2 family; both are recessive lethal and thus maintained as heterozygotes. The cri mutant has highly wrinkled leaves resembling finger millet head and failed to enter reproductive phase, consequently did not produce seeds. The number of leaf lobes is reduced in lea mutant and though it produced spikes, the male and female flowers are converted to leafy appendages. The third mutant, fused (Ius) stem identified in H-55-617 M2 family is a recessive mutant. The branches of which are fused at the base and though each branch terminates in to monoceous spike like normal plant, the spike is highly condensed. The three mutants under report are valuable genetic stocks for development of linkage maps in castor, which is at infancy. (author)

  14. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid.

    Directory of Open Access Journals (Sweden)

    Man Hei Cheng

    Full Text Available Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg was investigated by sequencing. A single base deletion (299delG in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the

  15. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Narayanasami [NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States); Dewanti, Asteriani [Department of Chemistry and Physics, Western Carolina University, Cullowhee, NC 28723 (United States); Merli, Angelo; Rossi, Gian Luigi [Department of Biochemistry and Molecular Biology, University of Parma, Parma (Italy); Mitra, Bharati [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Mathews, F. Scott, E-mail: mathews@biochem.wustl.edu [Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110 (United States); NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  16. The chloroplasts membrane phospholipids of Chlamydomonas reinhardii mutant not forming the Photosystem 2

    International Nuclear Information System (INIS)

    Trusova, V.M.; Ladygin, V.G.; Mezentsev, V.V.; Molchanov, M.I.

    1987-01-01

    Study on a component composition and physical state of photosynthetic membranes of Chlamydomonas chloroplasts of the wild type and mutant A-110 with disturbance of electron transfer chain in the photosystem 2 region permitted to conclude that 170 A diameter particles localized on the internal hydrophobic surface of membrane chips are deleted with respect to phosphatidylglycerin. The results obtained permit to suggest that the formation of protein-lipid complexes containing phosphatidylglycerins is suppressed in mutant A-110 which is not capable of the lamellar system differentation in

  17. Efforts to identify spore forming bacillus

    Energy Technology Data Exchange (ETDEWEB)

    Zuleiha, M.S.; Hilmy, N. (National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre)

    1982-04-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans.

  18. Efforts to identify spore forming bacillus

    International Nuclear Information System (INIS)

    Zuleiha, M.S.; Hilmy, Nazly

    1982-01-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans. (author)

  19. Enterocin A mutants identified by saturation mutagenesis enhance potency towards vancomycin-resistant Enterococci.

    Science.gov (United States)

    McClintock, Maria K; Kaznessis, Yiannis N; Hackel, Benjamin J

    2016-02-01

    Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections. © 2015 Wiley Periodicals, Inc.

  20. Analysis on expression of gene for flower shape in Dendrobium sonia mutants using differential display technique

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Ahmad Syazni Kamarudin; Nurul Nadia Aminuddin; Mohd Nazir Basiran

    2004-01-01

    In vitro mutagenesis on Dendrobium Sonia in MINT has produced mutants with wide range of flower form and colour variations. Among the mutants are plants with different flower size and shape. These changes could be caused by alterations to the expression level of the genes responsible for the characteristics. In this studies, Differential Display technique was used to identify and analyse altered gene expression at the mRNA level. Total RNA of the control and mutants were reversed transcribed using three anchored oligo-d T primers. Subsequently, these cDNAs were Pcr amplified in combination with 16 arbitrary primers. The amplified products were electrophoresed side by side on agarose gel. Differentially expressed bands are isolated for further analysis. (Author)

  1. Purification and characterization of mutant miniPlasmin for thrombolytic therapy

    Directory of Open Access Journals (Sweden)

    Lin Xiaotao

    2013-01-01

    Full Text Available Abstract Background Previous animal studies by us and others have indicated that catheter-administered plasmin or its des-kringle derivatives may be more appropriate alternatives to plasminogen activators for treating thrombolytic diseases, since it has a very short serum half-life and therefore does not result in hemorrhaging. We have previously produced recombinant miniPlasmin (mPlasmin that was proven suitable for treating peripheral arterial occlusion in animal models. However, our previous results showed that non-specific cleavage at position K698 of mPlasmin during activation hindered the further development of this promising therapeutic candidate. In order to minimize or eliminate the non-specific cleavage problem, we performed saturation mutagenesis at the K698 position to develop a mutant form of mPlasmin for thrombolytic therapy. Methods We changed K698 to 16 other amino acids, with preferred E. coli codons. Each of these mutants were expressed in E. coli as inclusion bodies and then refolded, purified, and subsequently characterized by detailed kinetic assays/experiments/studies which identified highly active mutants devoid of non-specific cleavage. Results Activation studies indicated that at those conditions in which the wild type enzyme is cut at the non-specific position K698, the active mutants can be activated without being cleaved at this position. Conclusions From the above results, we selected two mutants, K698Q and K698N, as our lead candidates for further thrombolytic drug developments. The selected mutants are potentially better therapeutic candidates for thrombolytic therapy.

  2. Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts

    Directory of Open Access Journals (Sweden)

    Satoru Noguchi

    2014-01-01

    Full Text Available Ullrich congenital muscular dystrophy (UCMD is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.

  3. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile.

    Science.gov (United States)

    Ferreira, Vanessa; Fernandes, Fátima; Pinto-Carnide, Olinda; Valentão, Patrícia; Falco, Virgílio; Martín, Juan Pedro; Ortiz, Jesús María; Arroyo-García, Rosa; Andrade, Paula B; Castro, Isaura

    2016-03-01

    A germplasm set of twenty-five grapevine accessions, forming eleven groups of possible berry skin color mutants, were genotyped with twelve microsatellite loci, being eleven of them identified as true color mutants. The polyphenolic profiling of the confirmed mutant cultivars revealed a total of twenty-four polyphenols, comprising non-colored compounds (phenolic acids, flavan-3-ols, flavonols and a stilbene) and anthocyanins. Results showed differences in the contribution of malvidin-3-O-glucoside to the characteristic Pinot Noir anthocyanins profile. Regarding the two Pique-Poul colored variants, the lighter variant was richer than the darker one in all classes of compounds, excepting anthocyanins. In Moscatel Galego Roxo the F3'H pathway seems to be more active than F3'5'H, resulting in higher amounts of cyanidin, precursor of the cyanidin derivatives. As far as we are aware, this is the first time that a relationship between the content of polyphenolic compounds is established in groups of grape berry skin color mutant cultivars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genetic fingerprinting of mutant rose cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Prasad, K V; Singh, K P; Singh, A.P. [Division of Floriculture and Landscaping, Indian Agricultural Research Institute, Pusa, New Delhi (India)], E-mail: kvprasad66@gmail.com

    2008-07-01

    Six rose mutants evolved at the Indian Agricultural Research Institute, New Delhi from four parent cultivars were characterized based on RAPD markers. Contrary to the earlier findings our effort has conclusively proven that the RAPD markers are indeed robust tools to discern the mutants from their parents. Among 40 primers screened, 7 primers produced inconsistent banding pattern. The number of polymorphic bands varied between 4 (OPA 14) and 10 (OPA1) with an average of 6.5 bands per primer. The percentage polymorphism ranged from 62.5 (OPM 9) to 100 percent (OPA 1). Most of the primers produced monomorphic bands between parent and mutant rose cultivars. When primer OPA 2 was used a specific band of 2.5 kb was noticed in mutant cv. Pusa Urmil and cv. Pusa Abhishek but was absent in parent cv. Jantar Mantar. A polymorphic band of 750 bp was noticed in the parent Kiss of Fire and helped in differentiating the parent from its mutant when amplified with OPK 3. Primer OPS 16 produced discriminatory band of 800 bp in mutant cv. Pink Sport of Montezuma while it was absent in its parent cv. Montezuma. Another specific band of 650 bp was present in parent cv. Montezuma and absent in its mutant cv. Pink Sport of Montezuma signifying the uniqueness of the mutant. Primer OPM 5 brought out distinct polymorphism among the parent Jantar Mantar and its three mutants with absence of a specific band of 1.5 kb in the parent. The four parents and 6 mutants were divided into four distinct groups in the Dendogram constructed by UPGMA method. The most genetically similar cultivar among the 10 cultivars analyzed are Montezuma and its pink sport of Montezuma whereas Abhisarika a mutant of cv. Kiss of Fire was distinctly different and formed a separate cluster. (author)

  5. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    Science.gov (United States)

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  6. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Dusenbery, D B; Sheridan, R E; Russell, R L

    1975-06-01

    The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.

  7. Development mutants of anabaena doliolum defective in repair of UV-damage

    International Nuclear Information System (INIS)

    Tiwari, D.N.; Singh, C.B.

    1980-01-01

    Nitrosoguanidine induced 'blue' pigment mutants of the blue-green alga anabaena doliolum were isolated. The blue-mutants on further characterization were grouped into three developmental phenotypes - (i) those forming doli-form blue-spores of heterogenous size i.e., Ad 011, (ii) those forming spheroidal cells in the stationary phase, some of which behave like spores on transfer to fresh medium i.e., Ad 012, and (iii) those showing no sporulation and conditionally producing abnormal cells in the presence of combined nitrogen only i.e., Ad 007. The former two classes of mutants showed the formation of abnormal cells irrespective of the presence or absence of combined nitrogen sources in the medium. The formation of abnormal cells in the filaments of the above mutants were distinguished by their larger size and irregular mode of division leading to true-branch formation. The comparative characterization of these mutant strains with the parental one showed sluggish growth, increased UV-sensitivity, almost unchanged photorepair capacity, a marked change in the pigment composition and relative resistance to nitrosoguanidine. Irregular cell division in both space and time in the mutant strains and their increased sensitivity to ultraviolet irradiation indicate the possible involvement of dark repair system in maintaining the precision of cell cylce in this alga. (orig.) 891 AJ/orig. 892 HIS

  8. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  9. Sleeping Beauty transposon mutagenesis identifies genes that cooperate with mutant Smad4 in gastric cancer development.

    Science.gov (United States)

    Takeda, Haruna; Rust, Alistair G; Ward, Jerrold M; Yew, Christopher Chin Kuan; Jenkins, Nancy A; Copeland, Neal G

    2016-04-05

    Mutations in SMAD4 predispose to the development of gastrointestinal cancer, which is the third leading cause of cancer-related deaths. To identify genes driving gastric cancer (GC) development, we performed a Sleeping Beauty (SB) transposon mutagenesis screen in the stomach of Smad4(+/-) mutant mice. This screen identified 59 candidate GC trunk drivers and a much larger number of candidate GC progression genes. Strikingly, 22 SB-identified trunk drivers are known or candidate cancer genes, whereas four SB-identified trunk drivers, including PTEN, SMAD4, RNF43, and NF1, are known human GC trunk drivers. Similar to human GC, pathway analyses identified WNT, TGF-β, and PI3K-PTEN signaling, ubiquitin-mediated proteolysis, adherens junctions, and RNA degradation in addition to genes involved in chromatin modification and organization as highly deregulated pathways in GC. Comparative oncogenomic filtering of the complete list of SB-identified genes showed that they are highly enriched for genes mutated in human GC and identified many candidate human GC genes. Finally, by comparing our complete list of SB-identified genes against the list of mutated genes identified in five large-scale human GC sequencing studies, we identified LDL receptor-related protein 1B (LRP1B) as a previously unidentified human candidate GC tumor suppressor gene. In LRP1B, 129 mutations were found in 462 human GC samples sequenced, and LRP1B is one of the top 10 most deleted genes identified in a panel of 3,312 human cancers. SB mutagenesis has, thus, helped to catalog the cooperative molecular mechanisms driving SMAD4-induced GC growth and discover genes with potential clinical importance in human GC.

  10. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    Science.gov (United States)

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  11. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    Full Text Available The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  12. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  13. Influence of ultraviolet light on arising of induced mutants in Cercospora beticola sacc

    Energy Technology Data Exchange (ETDEWEB)

    Brillova, D [Institute of Experimental Phytopathology and Entomology of the Slovak Academy of Sciences, Ivanka pri Dunaji (Czechoslovakia)

    1976-01-01

    Ultraviolet radiation of wavelengths of 254 and 350 nm respectively, applied for 30 to 480 seconds to the conidia of Cercospora beticola, induced a large number of mutants. According to their appearance, the occurring mutants can be considered as visible with effect on morphology and colour. A considerable part of the mutants lost its ability to form reproductive organs in in vitro conditions, as well as on the host plant; they became avirulent. Moreover, mutants occurred with decreased virulence, with a weak forming of conidia and prolonged incubation period. In few cases, also reverse mutations were induced characterized by increased virulence.

  14. Mutant of Japanese pear resistant to Black Spot Disease

    International Nuclear Information System (INIS)

    Sanada, T.; Nishida, T.; Ikeda, F.

    1987-01-01

    Full text: Nijisseike is one of the leading cultivars of Japanese pear (Pyrus serotinea Rehd.), but susceptible to black spot disease. Farmers try to prevent this disease by wrapping the fruit with a paper bag and by repeated spraying of fungicides. The disease is caused by a Japanese pear pathotype of Alternaria alternata (Fr.) Keissler. Susceptibility is controlled by a single dominant gene. In 1962, grafted trees of this cultivar were planted at a distance between 53 and 93 m from the 60 Co source in the gamma-field (daily dose 15-4 rad). One branch on a tree planted at 53 m was detected as resistant in 1981. Under field conditions, black spots were observed on many fruits and leaves of the original trees by natural infection in early July, however, they were not observed on the mutant. To examine the resistance of the mutant, artificial inoculations were made using spores of the pathogen and the host specific toxin produced by germinating spores. When some drops of the spore suspension are placed on leaves, the formation of black spots depends upon the leaf age. In a resistant cv. as Chojuro, black spot symptoms are formed only when inoculated on young leaves. An intermediate reaction was observed in the mutant, whereas the original Nijisseiki showed severe symptoms. When inoculation was made on matured fruit skins, no black spot was formed on the mutant just like on the resistant cv. Chojuro, while many small black spots were formed and grew into large spots overlapping each other on the susceptible cv. Nijisseiki. In case of the crude toxin inoculation (4-0.04 ppm) of cv. Nijisseiki black spots were formed on the surface of the susceptible fruit skin, and necrotic lesions at the cut end of detached small pieces of leaves, although reaction on fruit skins was weaker compared with inoculation by spores. However, no symptoms were observed from the toxin application on the mutant and the resistant cv. Chojuro. That the resistance of the mutant is classified as

  15. FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610

    Science.gov (United States)

    Tugarova, Anna V.; Scheludko, Andrei V.; Dyatlova, Yulia A.; Filip'echeva, Yulia A.; Kamnev, Alexander A.

    2017-07-01

    Biofilms are spatially and metabolically structured communities of microorganisms, representing a mode of their existence which is ubiquitous in nature, with cells localised within an extracellular biopolymeric matrix, attached to each other, at an interface. For plant-growth-promoting rhizobacteria (PGPR), the formation of biofilms is of special importance due to their primary localisation at the surface of plant root systems. In this work, FTIR spectroscopy was used, for the first time for bacteria of the genus Azospirillum, to comparatively study 6-day-mature biofilms formed on the surface of ZnSe discs by the rhizobacterium Azospirillum brasilense Sp245 and its mutant A. brasilense Sp245.1610. The mutant strain, having an Omegon Km insertion in the gene of lipid metabolism fabG1 on the plasmid AZOBR_p1, as compared to the wild-type strain Sp245 (see http://dx.doi.org/10.1134/S1022795413110112)

  16. Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Taylor, David M; Gibbs, Bernard F; Kabashi, Edor; Minotti, Sandra; Durham, Heather D; Agar, Jeffrey N

    2007-06-01

    One familial form of the neurodegenerative disease, amyotrophic lateral sclerosis, is caused by gain-of-function mutations in the gene encoding copper/zinc superoxide dismutase (SOD-1). This study provides in vivo evidence that normally occurring oxidative modification to SOD-1 promotes aggregation and toxicity of mutant proteins. The oxidation of Trp-32 was identified as a normal modification being present in both wild-type enzyme and SOD-1 with the disease-causing mutation, G93A, isolated from erythrocytes. Mutating Trp-32 to a residue with a slower rate of oxidative modification, phenylalanine, decreased both the cytotoxicity of mutant SOD-1 and its propensity to form cytoplasmic inclusions in motor neurons of dissociated mouse spinal cord cultures.

  17. ALS-causing profilin-1-mutant forms a non-native helical structure in membrane environments.

    Science.gov (United States)

    Lim, Liangzhong; Kang, Jian; Song, Jianxing

    2017-11-01

    Despite having physiological functions completely different from superoxide dismutase 1 (SOD1), profilin 1 (PFN1) also carries mutations causing amyotrophic lateral sclerosis (ALS) with a striking similarity to that triggered by SOD1 mutants. Very recently, the C71G-PFN1 has been demonstrated to cause ALS by a gain of toxicity and the acceleration of motor neuron degeneration preceded the accumulation of its aggregates. Here by atomic-resolution NMR determination of conformations and dynamics of WT-PFN1 and C71G-PFN1 in aqueous buffers and in membrane mimetics DMPC/DHPC bicelle and DPC micelle, we deciphered that: 1) the thermodynamic destabilization by C71G transforms PFN1 into coexistence with the unfolded state, which is lacking of any stable tertiary/secondary structures as well as restricted ps-ns backbone motions, thus fundamentally indistinguishable from ALS-causing SOD1 mutants. 2) Most strikingly, while WT-PFN1 only weakly interacts with DMPC/DHPC bicelle without altering the native structure, C71G-PFN1 acquires abnormal capacity in strongly interacting with DMPC/DHPC bicelle and DPC micelle, energetically driven by transforming the highly disordered unfolded state into a non-native helical structure, similar to what has been previously observed on ALS-causing SOD1 mutants. Our results imply that one potential mechanism for C71G-PFN1 to initiate ALS might be the abnormal interaction with membranes as recently established for SOD1 mutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.

    Science.gov (United States)

    Lim, K-H; Chang, Y-C; Chiang, Y-H; Lin, H-C; Chang, C-Y; Lin, C-S; Huang, L; Wang, W-T; Gon-Shen Chen, C; Chou, W-C; Kuo, Y-Y

    2016-10-07

    CALR mutations are identified in about 30% of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs) including essential thrombocythemia (ET) and primary myelofibrosis. Although the molecular pathogenesis of CALR mutations leading to MPNs has been studied using in vitro cell lines models, how mutant CALR may affect developmental hematopoiesis remains unknown. Here we took advantage of the zebrafish model to examine the effects of mutant CALR on early hematopoiesis and model human CALR-mutated MPNs. We identified three zebrafish genes orthologous to human CALR, referred to as calr, calr3a and calr3b. The expression of CALR-del52 and CALR-ins5 mutants caused an increase in the hematopoietic stem/progenitor cells followed by thrombocytosis without affecting normal angiogenesis. The expression of CALR mutants also perturbed early developmental hematopoiesis in zebrafish. Importantly, morpholino knockdown of mpl but not epor or csf3r could significantly attenuate the effects of mutant CALR. Furthermore, the expression of mutant CALR caused jak-stat signaling activation in zebrafish that could be blocked by JAK inhibitors (ruxolitinib and fedratinib). These findings showed that mutant CALR activates jak-stat signaling through an mpl-dependent mechanism to mediate pathogenic thrombopoiesis in zebrafish, and illustrated that the signaling machinery related to mutant CALR tumorigenesis are conserved between human and zebrafish.

  19. Rescue of glaucoma-causing mutant myocilin thermal stability by chemical chaperones

    Science.gov (United States)

    Burns, J. Nicole; Orwig, Susan D.; Harris, Julia L.; Watkins, J. Derrick; Vollrath, Douglas; Lieberman, Raquel L.

    2010-01-01

    Mutations in myocilin cause an inherited form of open angle glaucoma, a prevalent neurodegenerative disorder associated with increased intraocular pressure. Myocilin forms part of the trabecular meshwork extracellular matrix presumed to regulate intraocular pressure. Missense mutations, clustered in the olfactomedin (OLF) domain of myocilin, render the protein prone to aggregation in the endoplasmic reticulum of trabecular meshwork cells, causing cell dysfunction and death. Cellular studies have demonstrated temperature-sensitive secretion of myocilin mutants, but difficulties in expression and purification have precluded biophysical characterization of wild-type (wt) myocilin and disease-causing mutants in vitro. We have overcome these limitations by purifying wt and select glaucoma-causing mutant (D380A, I477N, I477S, K423E) forms of the OLF domain (228–504) fused to maltose binding protein (MBP) from E. coli. Monomeric fusion proteins can be isolated in solution. To determine the relative stability of wt and mutant OLF domains, we developed a fluorescence thermal stability assay without removal of MBP, and provide the first direct evidence that mutated OLF is folded but less thermally stable than wt. We tested the ability of seven chemical chaperones to stabilize mutant myocilin. Only sarcosine and trimethylamine N-oxide were capable of shifting the melting temperature of all mutants tested to near that of wt OLF. Our work lays the foundation for the identification of tailored small molecules capable of stabilizing mutant myocilin and promoting secretion to the extracellular matrix, to better control intraocular pressure and ultimately delay the onset of myocilin glaucoma. PMID:20334347

  20. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  1. A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis

    NARCIS (Netherlands)

    Damveld, R.A.; Franken, A.; Arentshorst, M.; Punt, P.J.; Klis, F.M.; van den Hondel, C.A.M.J.J.; Ram, A.F.J.

    2008-01-01

    To identify cell wall biosynthetic genes in filamentous fungi and thus potential targets for the discovery of new antifungals, we developed a novel screening method for cell wall mutants. It is based on our earlier observation that the Aspergillus niger agsA gene, which encodes a putative

  2. Morphological and physiological investigations on mutants of Fusarium monoliforme IM

    International Nuclear Information System (INIS)

    Gancheva, V.

    1996-01-01

    High-producing mutants of Fusarium moniliforme IM are obtained as a result of gamma irradiation. The cultural characteristics of mutant strains 3284, 3211 and 76 following incubation of the producers for 14 days on potato-glucose agar are described. The colour of the aerial and substrate mycelium and the ability of the mutant strains to form conidiae and pigments are discussed in detail. The differences in the ability of mutants to assimilate different carbon and nitrogen sources are of specific importance for modelling nutrient media for submerged cultivation of F. moniliforme. 2 tabs., 2 figs. 7 refs

  3. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.

    Science.gov (United States)

    Komatsu, Setsuko; Nanjo, Yohei; Nishimura, Minoru

    2013-02-21

    Flooding stress of soybean is a serious problem because it reduces growth; however, flooding-tolerant cultivars have not been identified. To analyze the flooding tolerance mechanism of soybean, the flooding-tolerant mutant was isolated and analyzed using a proteomic technique. Flooding-tolerance tests were repeated five times using gamma-ray irradiated soybeans, whose root growth (M6 stage) was not suppressed even under flooding stress. Two-day-old wild-type and mutant plants were subjected to flooding stress for 2days, and proteins were identified using a gel-based proteomic technique. In wild-type under flooding stress, levels of proteins related to development, protein synthesis/degradation, secondary metabolism, and the cell wall changed; however, these proteins did not markedly differ in the mutant. In contrast, an increased number of fermentation-related proteins were identified in the mutant under flooding stress. The root tips of mutant plants were not affected by flooding stress, even though the wild-type plants had damaged root. Alcohol dehydrogenase activity in the mutant increased at an early stage of flooding stress compared with that of the wild-type. Taken together, these results suggest that activation of the fermentation system in the early stages of flooding may be an important factor for the acquisition of flooding tolerance in soybean. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Cytogenetic characteristics of soft wheat mutants under x-irradiation

    International Nuclear Information System (INIS)

    Shakaryan, Zh.O.; Avakyan, V.A.; Amirbekyan, V.A.

    1981-01-01

    Radiosensitivity of induced mutants of soft wheat is studied by criteria of frequency and character of changes in 1 and 2 divisions of meiosis. Two constant induced mutant forms of soft wheat were investigated. Mutant lines of squareheads with red ear (re) and erectoids 37/1 were obtained by X-ray irradiating hydride seeds F 1 of hybride combination of Alty-Agach Awnless 1. Seeds of mutants and initial kinds were exposed to X-rays at a dose of 10 kR. A conclusion may be drawn on the basis of studying the meiosis process in mutants and initial kinds of soft wheat on X-ray radiation that the mutants are more radiosensitive. This testifies to that that the induced mutants of soft wheat represent new genotypes in comparison with the initial kinds and differ from the latter not only in morphological characters but in the reaction norm with respect to external medium factors, i.e. the limit of possible changeability of the genotype has been extended [ru

  5. Genetics of Ustilago violacea. I. Carotenoid mutants and carotenogenesis

    International Nuclear Information System (INIS)

    Garber, E.D.; Baird, M.L.; Chapman, D.J.

    1975-01-01

    Wild-type strains of Ustilago violacea produce pink colonies on laboratory medium and yield white, orange, pumpkin, and yellow colonies after uv mutagenesis. The wild-type strains contain neurosporene and lycopene; one orange mutant, γ-carotene; and one yellow mutant, β-carotene. One white mutant had no detectable carotenoids. Diploid colonies heterozygous for wild type and orange, pumpkin, yellow, or white are phenotypically wild type. Diploid colonies heterozygous for yellow and orange are also phenotypically wild type. Diploid colonies heterozygous for white and orange; white and yellow; and white, yellow, and orange are phenotypically light orange, light yellow, and orange-yellow, respectively. The white mutants give a circular complementation map; the color mutants fit a linear complementation map. We propose a multienzyme of four identical dehydrogenases and one or two identical cyclases for carotenogenesis in this species. The white and color mutants represent structural mutations altering the conformation of the dehydrogenase or cyclase, respectively. Furthermore, cyclases may or may not aggregate in association with the dehydrogenase aggregate to form the multienzyme aggregate responsible for the color mutants

  6. A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis

    NARCIS (Netherlands)

    Damveld, R.A.; Franken, A.; Arentshorst, M.; Punt, P.J.; Klis, F.M.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.

    2008-01-01

    To identify cell wall biosynthetic genes in filamentous fungi and thus potential targets for the discovery of new antifungals, we developed a novel screening method for cell wall mutants. It is based on our earlier observation that the Aspergillus niger agsA gene, which encodes a putative a-glucan

  7. Mutants induced in winter rye (Secale cereale L.): Short straw-mutant No. 2714 and late-senescence mutant

    Energy Technology Data Exchange (ETDEWEB)

    Muszynski, S; Darlewska, M [Department of Plant Breeding and Seed Science, Warsaw Agricultural University, Warsaw (Poland)

    1990-01-01

    Full text: Mutants were induced by treating dormant seeds with ionizing radiation (fast neutrons) or chemicals (N-nitroso-N-ethyl urea or sodium azide). Among several mutants obtained, of special value is the short-straw mutant No. 2714 and a late senescent mutant. (author)

  8. Generation of mariner-based transposon insertion mutant library of Bacillus sphaericus 2297 and investigation of genes involved in sporulation and mosquito-larvicidal crystal protein synthesis.

    Science.gov (United States)

    Wu, Yiming; Hu, Xiaomin; Ge, Yong; Zheng, Dasheng; Yuan, Zhiming

    2012-05-01

    Bacillus sphaericus has been used with great success in mosquito control programs worldwide. Under conditions of nutrient limitation, it undergoes sporulation via a series of well defined morphological stages. However, only a small number of genes involved in sporulation have been identified. To identify genes associated with sporulation, and to understand the relationship between sporulation and crystal protein synthesis, a random mariner-based transposon insertion mutant library of B. sphaericus strain 2297 was constructed and seven sporulation-defective mutants were selected. Sequencing of the DNA flanking of the transposon insertion identified several genes involved in sporulation. The morphologies of mutants were determined by electron microscopy and synthesis of crystal proteins was analyzed by SDS-PAGE and Western blot. Four mutants blocked at early stages of sporulation failed to produce crystal proteins and had lower larvicidal activity. However, the other three mutants were blocked at later stages and were able to form crystal proteins, and the larvicidal activity was similar to wild type. These results indicated that crystal protein synthesis in B. sphaericus is dependent on sporulation initiation. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase

    DEFF Research Database (Denmark)

    Morris, V. M.; Gunning, A. P.; Faults, C. B.

    2005-01-01

    Atomic force microscopy has been used to investigate the complexes formed between high molecular weight amylose chains and Aspergillus niger glucoamylase mutants (E400Q and W52F), wild-type A. niger starch binding domains (SBDS), and mutant SBDs (W563K and W590K) lacking either of the two starch...

  10. Meiosis in gamma-ray induced tomato mutants of line XXIV-a

    International Nuclear Information System (INIS)

    Zagorcheva, L.; Jordanov, M.

    1976-01-01

    Results are reported of investigations on meiosis in tomato mutants obtained by gamma-irradiation ( 60 Co) of seeds from line XXIV-a with doses of 20 and 30 krad. Two genome mutants (one a triploid and the other a tetraploid form) as well as a chromosome aberration of the translocation type, were selected in the course of the investigations and their meiosis is described. Meiosis in the initial form (line XXIV-a) was also studied. About 16% of the initial line XXIV-a plants proved to be trisomic forms. (author)

  11. Homologous series of induced early mutants in indican rice. Pt.1. The production of homologous series of early mutants

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    1999-01-01

    The percentage of homologous series of early mutants induced from the same Indican rice variety were almost the same (1.37%∼1.64%) in 1983∼1993, but the ones from the different eco-typical varieties were different. The early variety was 0.73%, the mid variety was 1.51%, and the late variety was 1.97%. The percentage of homologous series of early mutants from the varieties with the same pedigree and relationship were similar, but the one from the cog nation were lower than those from distant varieties. There are basic laws and characters in the homologous series of early mutants: 1. The inhibited phenotype is the basic of the homologous series of early mutants; 2. The production of the homologous series of early mutants is closely related with the growing period of the parent; 3. The parallel mutation of the stem and leaves are simultaneously happened with the variation of early or late maturing; 4. The occurrence of the homologous series of early mutants is in a state of imbalance. According to the law of parallel variability, the production of homologous series of early mutants can be predicted as long as the parents' classification of plant, pedigree and ecological type are identified. Therefore, the early breeding can be guided by the law of homologous series of early mutants

  12. Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3.

    Directory of Open Access Journals (Sweden)

    He Meng

    Full Text Available Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells.

  13. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  14. The Neurospora rca-1 gene complements an Aspergillus flbD sporulation mutant but has no identifiable role in Neurospora sporulation.

    OpenAIRE

    Shen, W C; Wieser, J; Adams, T H; Ebbole, D J

    1998-01-01

    The Aspergillus nidulans flbD gene encodes a protein with a Myb-like DNA-binding domain that is proposed to act in concert with other developmental regulators to control initiation of conidiophore development. We have identified a Neurospora crassa gene called rca-1 (regulator of conidiation in Aspergillus) based on its sequence similarity to flbD. We found that N. crassa rca-1 can complement the conidiation defect of an A. nidulans flbD mutant and that induced expression of rca-1 caused coni...

  15. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    Science.gov (United States)

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  16. Molecular mechanism of action of pharmacoperone rescue of misrouted GPCR mutants: the GnRH receptor.

    Science.gov (United States)

    Janovick, Jo Ann; Patny, Akshay; Mosley, Ralph; Goulet, Mark T; Altman, Michael D; Rush, Thomas S; Cornea, Anda; Conn, P Michael

    2009-02-01

    The human GnRH receptor (hGnRHR), a G protein-coupled receptor, is a useful model for studying pharmacological chaperones (pharmacoperones), drugs that rescue misfolded and misrouted protein mutants and restore them to function. This technique forms the basis of a therapeutic approach of rescuing mutants associated with human disease and restoring them to function. The present study relies on computational modeling, followed by site-directed mutagenesis, assessment of ligand binding, effector activation, and confocal microscopy. Our results show that two different chemical classes of pharmacoperones act to stabilize hGnRHR mutants by bridging residues D(98) and K(121). This ligand-mediated bridge serves as a surrogate for a naturally occurring and highly conserved salt bridge (E(90)-K(121)) that stabilizes the relation between transmembranes 2 and 3, which is required for passage of the receptor through the cellular quality control system and to the plasma membrane. Our model was used to reveal important pharmacophoric features, and then identify a novel chemical ligand, which was able to rescue a D(98) mutant of the hGnRHR that could not be rescued as effectively by previously known pharmacoperones.

  17. Commercialization Of Orchid Mutants For Floriculture Industry

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Zaiton Ahmad

    2014-01-01

    Orchids are the main contributors to cut flower industry in Malaysia with an existing good market and a huge business potential. Orchid industry has been established in Malaysia since 1960s but only started to develop and expand since 1980s. Continuous development of new orchid varieties is essential to meet customers' demands. Orchid mutagenesis research using gamma irradiation at Malaysian Nuclear Agency has successfully generated a number of new orchid varieties with commercial potentials. Therefore, Nuclear Malaysia has collaborated with an industrial partner, Hexagon Green Sdn Bhd (HGSB), to carry out commercialization research on these mutants under a Technofund project entitled 'Pre-Commercialization of Mutant Orchids for Cut Flowers Industry' from July 2011 to July 2014. Through this collaboration, Dendrobium orchid mutant plants developed by Nuclear Malaysia were transferred to HGSB's commercial orchid nursery at Bukit Changgang Agrotechnology Park, Banting, Selangor, for mass-propagation. The activities include evaluations on plant growth performance, flower quality, post harvest and market potential of these mutants. Mutants with good field performance have been identified and filed for Plant Variety Protection (PVP) with Department of Agriculture Malaysia. This paper describes outputs from this collaboration and activities undertaken in commercializing these mutants. (author)

  18. Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants

    International Nuclear Information System (INIS)

    Kaefer, E.; Mayor, O.

    1986-01-01

    To identify genes which affect DNA repair and possibly recombination in Aspergillus nidulans, mutants hypersensitive to methyl methanesulphonate (MMS) were induced with ultraviolet light (UV) or γ-rays. To identify functional and epistatic groups, mutants from each uvs gene were tested for effects on recombination and mutation, and double mutant uvs strains were compared for UV survival to their component single mutant strains. (Auth.)

  19. Mutant fatty acid desaturase and methods for directed mutagenesis

    Science.gov (United States)

    Shanklin, John [Shoreham, NY; Whittle, Edward J [Greenport, NY

    2008-01-29

    The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.

  20. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    Science.gov (United States)

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Anders Bøgh; Raventos, D.; Mundy, John Williams

    2002-01-01

    as two recessive mutants, designated joe1 and 2, that overexpress the reporter. Genetic analysis indicated that reporter overexpression in the joe mutants requires COI. joe1 responded to MeJA with increased anthocyanin accumulation, while joe2 responded with decreased root growth inhibition. In addition...... activity was also induced by the protein kinase inhibitor staurosporine and antagonized by the protein phosphatase inhibitor okadaic acid. FLUC bio-imaging, RNA gel-blot analysis and progeny analyses identified three recessive mutants that underexpress the FLUC reporter, designated jue1, 2 and 3, as well...

  2. Functional verification of a porcine myostatin propeptide mutant.

    Science.gov (United States)

    Ma, Dezun; Jiang, Shengwang; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Xiao, Gaojun; Yang, Jinzeng; Cui, Wentao

    2015-10-01

    Myostatin is a member of TGF-β superfamily that acts as a key negative regulator in development and growth of embryonic and postnatal muscles. In this study, the inhibitory activities of recombinant porcine myostatin propeptide and its mutated form (at the cleavage site of metalloproteinases of BMP-1/TLD family) against murine myostatin was evaluated in vivo by intraperitoneal injection into mice. Results showed that both wild type and mutated form of porcine propeptide significantly inhibited myostatin activity in vivo. The average body weight of mice receiving wild type propeptide or its mutated form increased by 12.5 % and 24.14%, respectively, compared to mice injected with PBS, implying that the in vivo efficacy of porcine propeptide mutant is greater than its wild type propeptide. Transgenic mice expressing porcine myostatin propeptide mutant were generated to further verify the results obtained from mice injected with recombinant porcine propeptide mutant. Compared with wild type (non-transgenic) mice, relative weight of gastrocnemius, rectusfemoris, and tibialis anterior increased by 22.14 %, 34.13 %, 25.37%, respectively, in transgenic male mice, and by 19.90 %, 42.47 %, 45.61%, respectively, in transgenic female mice. Our data also demonstrated that the mechanism by which muscle growth enhancement is achieved by these propeptides is due to an increase in fiber sizes, not by an increase in number of fiber cells.

  3. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    International Nuclear Information System (INIS)

    Baum, Bernhard; Lecker, Laura S. M.; Zoltner, Martin; Jaenicke, Elmar; Schnell, Robert; Hunter, William N.; Brenk, Ruth

    2015-01-01

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials

  4. Structures of Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) and a C164Q mutant provide templates for antibacterial drug discovery and identify a buried potassium ion and a ligand-binding site that is an artefact of the crystal form

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Bernhard [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany); Lecker, Laura S. M.; Zoltner, Martin [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Jaenicke, Elmar [Johannes Gutenberg-Universität, Jakob Welder Weg 26, 55128 Mainz (Germany); Schnell, Robert [Karolinska Institutet, 17 177 Stockholm (Sweden); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 4EH, Scotland (United Kingdom); Brenk, Ruth, E-mail: w.n.hunter@dundee.ac.uk [Johannes Gutenberg-Universität, Staudinger Weg 5, 55128 Mainz (Germany)

    2015-07-28

    Three crystal structures of recombinant P. aeruginosa FabF are reported: the apoenzyme, an active-site mutant and a complex with a fragment of a natural product inhibitor. The characterization provides reagents and new information to support antibacterial drug discovery. Bacterial infections remain a serious health concern, in particular causing life-threatening infections of hospitalized and immunocompromised patients. The situation is exacerbated by the rise in antibacterial drug resistance, and new treatments are urgently sought. In this endeavour, accurate structures of molecular targets can support early-stage drug discovery. Here, crystal structures, in three distinct forms, of recombinant Pseudomonas aeruginosa β-ketoacyl-(acyl-carrier-protein) synthase II (FabF) are presented. This enzyme, which is involved in fatty-acid biosynthesis, has been validated by genetic and chemical means as an antibiotic target in Gram-positive bacteria and represents a potential target in Gram-negative bacteria. The structures of apo FabF, of a C164Q mutant in which the binding site is altered to resemble the substrate-bound state and of a complex with 3-(benzoylamino)-2-hydroxybenzoic acid are reported. This compound mimics aspects of a known natural product inhibitor, platensimycin, and surprisingly was observed binding outside the active site, interacting with a symmetry-related molecule. An unusual feature is a completely buried potassium-binding site that was identified in all three structures. Comparisons suggest that this may represent a conserved structural feature of FabF relevant to fold stability. The new structures provide templates for structure-based ligand design and, together with the protocols and reagents, may underpin a target-based drug-discovery project for urgently needed antibacterials.

  5. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Photosynthetic characterization of a rolled leaf mutant of rice ( Oryza ...

    African Journals Online (AJOL)

    A new rolling leaf rice mutant was identified which showed an apparently straighter longitudinal shape normal transverse rolling characters at all developing stages. The chlorophyll contents per fresh weight of this mutant leaves were lower than those of wild-type. The electron transfer rate (ETR) and photochemical ...

  7. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    Science.gov (United States)

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  8. In silico screening of 393 mutants facilitates enzyme engineering of amidase activity in CalB

    DEFF Research Database (Denmark)

    Hediger, Martin Robert; De Vico, Luca; Rannes, Julie Bille

    2013-01-01

    Our previously presented method for high throughput computational screening of mutant activity (Hediger et al., 2012) is benchmarked against experimentally measured amidase activity for 22 mutants of Candida antarctica lipase B (CalB). Using an appropriate cutoff criterion for the computed barriers......, the qualitative activity of 15 out of 22 mutants is correctly predicted. The method identifies four of the six most active mutants with ≥3-fold wild type activity and seven out of the eight least active mutants with ≤0.5-fold wild type activity. The method is further used to screen all sterically possible (386......) double-, triple- and quadruple-mutants constructed from the most active single mutants. Based on the benchmark test at least 20 new promising mutants are identified....

  9. Improved Medium for Selecting Nitrate-Nonutilizing (nit) Mutants of Verticillium dahliae.

    Science.gov (United States)

    Korolev, N; Katan, T

    1997-10-01

    ABSTRACT Nitrate-nonutilizing (nit) mutants are commonly used to determine vegetative compatibility between isolates of Verticillium dahliae by complementation (heterokaryon) testing. These mutants emerge spontaneously as chlorate-resistant sectors growing out of partially restricted, wild-type colonies on chlorate-amended media. The commonly used chlorate media are based on minimal medium (MMC) or cornmeal agar (CMC), amended with potassium chlorate. nit mutants recovered on these media constituted 10 to 36%(on MMC) and 25 to 45%(on CMC) of the apparently resistant sectors. An improved water agar chlorate medium (WAC) is described that is more effective for selecting chlorate-resistant nit mutants. WAC medium consists of agar (2%), glucose (0.02%), and potassium chlorate (2 to 5%). On WAC, growth of most V. dahliae isolates was strongly inhibited, and 66 to 100%(average >80%) of the chlorate-resistant sectors formed were nit mutants. Most mutants were characterized as nit1, and about 6% as NitM.

  10. Semi-dwarf mutant lines of hexaploid triticale

    International Nuclear Information System (INIS)

    Pidra, M.

    1989-01-01

    A spring form of hexaploid secondary triticale ADD 143/71, bred by MOGILEVA at the Plant Breeding Station at Uhretice was used for the mutagen treatment. The mutation experiment started in 1979. Seeds were treated with a 0.8 mM water solution of N-methyl-N-nitrosourea (MNH) (CETL and RELICHOVA, unpublished). From 180 M 1 plants, one spike was harvested per plant. A random sample of these seeds was sown as M 2 in 1980 and several plants with shorter main culm were selected. Selfed progenies of eight mutant plants designated ADD 143-m1, ADD 143-m2, ADD 143-m3 etc. were further tested in M 3 and M 4 . There were significant differences in culm length and in some other characters between the original line and the mutant lines. Especially the line m8 looks like a promising source of semi-dwarfness for breeding programmes of hexaploid triticale. During 1985-1987 genetic analysis was performed on the ADD 143/71 and the mutant lines m2, m6, m7 and m8, which suggest that their mutant genes are allelic and recessive

  11. A mutant screening method by critical annealing temperature-PCR for site-directed mutagenesis.

    Science.gov (United States)

    Liu, Ying; Wu, Ting; Song, Jian; Chen, Xuelian; Zhang, Yu; Wan, Yu

    2013-03-11

    Distinguishing desired mutants from parental templates and undesired mutants is a problem not well solved in Quikchange™ mutagenesis. Although Dpn I digestion can eliminate methylated parental (WT) DNA, the efficiency is not satisfying due to the existence of hemi-methylated DNA in the PCR products, which is resistant to Dpn I. The present study designed a novel critical annealing temperature (T(c))-PCR to replace Dpn I digestion for more perfect mutant distinguishing, in which part-overlapping primers containing mutation(s) were used to reduce initial concentration of template DNA in mutagenic PCR. A T(c)-PCR with the same mutagenic primers was performed without Dpn I digestion. The T(c) for each pair of the primers was identified by gradient PCR. The relationship between PCR-identified T(c) and T(m) of the primers was analyzed and modeled with correlation and regression. Gradient PCR identified a T(c) for each of 14 tested mutagenic primers, which could discriminate mismatched parental molecules and undesired mutants from desired mutants. The PCR-identified T(c) was correlated to the primer's T(m) (r = 0.804, P<0.0001). Thus, in practical applications, the T(c) can be easily calculated with a regression equation, T(c)= 48.81 + 0.253*T(m). The new protocol introduced a novel T(c)-PCR method for mutant screening which can more efficiently and accurately select against parental molecules and undesired mutations in mutagenic sequence segments.

  12. Characterization of Helicobacter pylori dapE and construction of a conditionally lethal dapE mutant.

    Science.gov (United States)

    Karita, M; Etterbeek, M L; Forsyth, M H; Tummuru, M K; Blaser, M J

    1997-10-01

    Helicobacter pylori colonizes the human gastric mucosa and causes gastritis, ulceration, or gastric cancer. A previously uncharacterized region of the H. pylori genome was identified and sequenced. This region includes a putative operon containing three open reading frames termed gidA (1,866 bp), dapE (1,167 bp), and orf2 (753 bp); the gidA and dapE products are highly homologous to other bacterial proteins. In E. coli, dapE encodes N-succinyl-L-diaminopimelic acid desuccinylase, which catalyzes the hydrolysis of N-succinyl-L-diaminopimelic acid to L-diaminopimelic acid (L-DAP) and succinate. When wild-type H. pylori strains were transformed to select for dapE mutagenesis, mutants were present when plates were supplemented with DAP but not with lysine; orf2 mutants were selected without DAP supplementation. Consistent with the finding that GidA is essential in Escherichia coli, we were unable to obtain a gidA mutant in H. pylori despite evidence that insertional mutagenesis had occurred. The positions of gidA, dapE, and orf2 suggest that they form an operon, which was supported by slot blot RNA hybridization and reverse transcriptase PCR studies. The data imply that the H. pylori dapE mutant may be useful as a conditionally lethal vaccine.

  13. Analysis of AtCry1 and Mutants

    Science.gov (United States)

    Burdick, Derek; Purvis, Adam; Ahmad, Margaret; Link, Justin J.; Engle, Dorothy

    Cryptochrome is an incredibly versatile protein that influences numerous biological processes such as plant growth, bird migration, and sleep cycles. Due to the versatility of this protein, understanding the mechanism would allow for advances in numerous fields such as crop growth, animal behavior, and sleep disorders. It is known that cryptochrome requires blue light to function, but the exact processes in the regulation of biological activity are still not fully understood. It is believed that the c-terminal domain of the protein undergoes a conformational change when exposed to blue light which allows for biological function. Three different non-functioning mutants were tested during this study to gain insight on the mechanism of cryptochrome. Absorbance spectra showed a difference between two of the mutants and the wild type with one mutant showing little difference. Immunoprecipitation experiments were also conducted to identify the different c-terminal responses of the mutants. By studying non functioning mutants of this protein, the mechanism of the protein can be further characterized. This two-month research experience in Paris allowed us to experience international and interdisciplinary collaborations in science and immerse in a different culture. The Borcer Fund for Student Research, Xavier University, Cincinnati, OH, and John Hauck Foundation.

  14. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  15. Identification of a novel ga-related bush mutant in pumpkin (cucurbita moschata duchesne)

    International Nuclear Information System (INIS)

    Wu, T.; Cao, J.

    2015-01-01

    Pumpkin (Cucurbita moschata Duchesne) bush mutant plants were characterized by short stems. The sensitivity of pumpkin bush mutant plants to exogenous hormones was identified in this study. Results revealed that internode elongation of bush mutant plants could respond to gibberellins (GA4+7 and GA3), but not to indole acetic acid (IAA) and brassinosteroids (BR); by contrast, the mutant phenotype of bush mutant plants could not be fully rescued by GA4+7 and GA3. The internode of bush mutant plants yielded a lower KS expression level than that of vine plants. Therefore, pumpkin bush mutant plants were designated as GA-related mutant plants eliciting a partial response to GAs; the action of IAA and BR might not be involved in the internode growth of pumpkin bush mutant plants, specifically Cucurbita moschata Duch. (author)

  16. Identification of some Rice Mutants using Morphological and Molecular Methods

    International Nuclear Information System (INIS)

    Sobieh, S.E.S.

    2006-01-01

    This investigation was conducted at the experimental farm of plant research department, nuclear research center, atomic energy authority, abu zaabal in order to verify four rice genotypes i.e sakha 102, giza 178, high yielding mutant (Ms 6) and high yielding mutant (MG 16). the (UPOV) rice descriptor was used to identify the germplasm morphologically .Molecular RAPD-PCR was used to identify genetic variability on the molecular level for the tested genotypes. 1- the results indicated that according to (UPOV) rice descriptor eight morphological traits were completely different between mutant Ms 6 in comparison with the parent sakha 102 and mut. MG 16 in comparison parent giza 178, the traits were ; stem thickness, stem length, panicle length, 1000-grain weight, grain length, grain width decorticated grain length and decorticated grain width. 2- using 10 arbitrary primers, through four rice genotypes on the molecular level using RAPD markers. the size of the amplified fragments were ranged from 0.201 to 2.036 k bp. two primers OPB-13 and OPB-16 showed no polymorphism among genotypes tested. 3- the total number of amplicons produced by the 8 polymorphic RAPD profiels was 66. the total number of monomorphic amplicons was 32. however, the total number of polymorphic amplicons was 34. 4- the percentage of polymorphism ranged from (22.22%) for primer OPA-18 to (90%) for primer OPB-11. 5-the highest genetic similarity (90.3%) was between sakha 102 and high yielding mut. (Ms 6). the genetic similarity (75.5%) was between giza 178 and high yielding mut.(MG 16). 6- one positive unique marker amplified by OPA-18 Primer identified the high yielding mutant Ms 6 but three positive unique markers amplified by OPB-17 primer and OPA-18 primer identified the high yielding mutant MG 16

  17. Root and Nodulation Phenotypes of the Ethylene-Insensitive Sickle Mutant of Medicago truncatula

    Directory of Open Access Journals (Sweden)

    JOKO PRAYITNO

    2010-09-01

    Full Text Available The sickle (skl mutant of the model legume Medicago truncatula is an ethylene-sensitive mutant that have a ten-fold increase in nodule numbers. The nodulation and root phenotypes of the skl mutant were investigated and further characterised. The skl mutant had longer roots than the wild type, but when inoculated with Sinorhizobium, its root length was reduced to the level of wild type. Furthermore, lateral root numbers in uninoculated skl were similar to those in uninoculated wild type. However, when the root tips were decapitated, fewer lateral roots formed in skl than in wild type. Nodule numbers of the skl mutant were significantly reduced by low nitrate concentration (2.5 mM. These results suggest that skl mutant has alterations in both root and nodule development.

  18. Reversion of autocrine transformation by a dominant negative platelet-derived growth factor mutant.

    Science.gov (United States)

    Vassbotn, F S; Andersson, M; Westermark, B; Heldin, C H; Ostman, A

    1993-07-01

    A non-receptor-binding mutant of the platelet-derived growth factor (PDGF) A chain, PDGF-0, was generated by exchanging 7 amino acids in the sequence. The mutant chains formed dimers that were similar to wild-type PDGF-AA with regard to stability and rate of processing to the mature 30-kDa secreted forms. Moreover, the mutant chains formed disulfide-bonded heterodimers with the PDGF B chain in NIH 3T3 cells heterodimer underwent the same processing and secretion as PDGF-AB. Transfection of c-sis-expressing 3T3 cells with PDGF-0 significantly inhibited the transformed phenotype of these cells, as determined by the following criteria. (i) Compared with PDGF-0-negative clones, PDGF-0-producing clones showed a reverted morphology. (ii) Clones producing PDGF-0 grew more slowly than PDGF-0-negative clones, with a fivefold difference in cell number after 14 days in culture. (iii) The expression of PDGF-0 completely inhibited the ability of the c-sis-expressing 3T3 cells to form colonies in soft agar; this inhibition was overcome by the addition of recombinant PDGF-BB to the culture medium, showing that the lack of colony formation of these cells was not due to a general unresponsiveness to PDGF. The specific expression of a PDGF-0/PDGF wild-type heterodimer in COS cells revealed that the affinity of the mutant heterodimer for the PDGF alpha receptor was decreased by approximately 50-fold compared with that of PDGF-AA. Thus, we show that a non-receptor-binding PDGF A-chain mutant neutralizes in a trans-dominant manner the autocrine transforming potential of the c-sis/PDGF B chain by forming low-affinity heterodimers with wild-type PDGF chains. This method of specifically antagonizing the effect of PDGF may be useful in investigations of the role of PDGF in normal and pathological conditions.

  19. Application Of Database Program in selecting Sorghum (Sorghum bicolor L) Mutant Lines

    International Nuclear Information System (INIS)

    H, Soeranto

    2000-01-01

    Computer database software namely MSTAT and paradox have been exercised in the field of mutation breeding especially in the process of selecting plant mutant lines of sorghum. In MSTAT, selecting mutant lines can be done by activating the SELECTION function and then followed by entering mathematical formulas for the selection criterion. Another alternative is by defining the desired selection intensity to the analysis results of subprogram SORT. Including the selected plant mutant lines in BRSERIES program, it will make their progenies be easier to be traced in subsequent generations. In paradox, an application program for selecting mutant lines can be made by combining facilities of Table, form and report. Selecting mutant lines with defined selection criterion can easily be done through filtering data. As a relation database, paradox ensures that the application program for selecting mutant lines and progeny trachings, can be made easier, efficient and interactive

  20. Genetical, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plant

    International Nuclear Information System (INIS)

    Kukimura, H.; Ikeda, F.; Fujita, H.; Maeta, T.; Nakajima, K.; Katagiri, K.; Nakahira, K.; Somegou, M.

    1976-01-01

    The plants studied included apple trees, cryptomeria (japanese cedar) and mulberry. In apple, dwarf and compact types of mutants from cv. Fuji were found to be graft incompatible on Maruba-kaido(Malus prunifolia) rootstock. In Sunki mandarin(Citrus sunki), the number of nucellar embryo per seed was affected by gamma-irradiation, and morphological mutants from nucellar seedlings were obtained at high rate by irradiation at floral bud stage with 2kR exposure. In Cryptomeria, re-irradiated waxless mutants by gamma-rays showed very high rate of somatic mutation when compared to other morphological mutants. Pollen sterility and pollen shaped PMC were found in the most of gamma-induced-mutants. Mutants forming pollen shaped PMC had a genetical tendency of continuous male flower bud formation for a longer term. With mulberry, time of sprouting of induced mutants differed from the originals. Ability of root initiation of semi-softwood cuttings in morphological mutants were tested. Cytochimera induction were found at considerably high rate when actively growing diploid plants were irradiated by gamma-rays. Eight kinds of cytochimeras were induced. Frequency of 2-4-4 was extremely high(approx. 50%), then 4-2-2 and 2-4-2 chimeras followed. Seven kinds were induced by semi-acute irradiation(200R/h), while 4 kinds by acute irradiation(5kR/h). By breeding test it was cleared that the elongate and entire leaf was sexually transmissible, whereas the 'dwarf' was not obvious and the 'marginally curledleaf' was not transmissible. Pyronin-methylgreen staining method proved to be useful in some morphological mutants to distinguish the histo-genetical differences which exist in the shoot apex.

  1. Collection of rice mutants and application studies of their agronomic characters

    International Nuclear Information System (INIS)

    Sun Shuxiang; Jin Wei; Luo Qian; Sheng Ping; Huang Rongmin

    1993-01-01

    More than 1600 accessions of rice mutant germplasm have been collected since 1980, and 1142 accessions of mutants have been identified according to their agronomy and pattern characters. A part of mutants were compared with their original cultivars in eight main agronomic characters. The results showed that the agronomic characters of mutants induced by ionizing radiations changed to both positive and negative directions compared with their original cultivars. Only 6.3% mutants varied in single agronomic character, and 91.1% mutants varied in two to six agronomic characters. Tenetic analysis and Cellular observations were carried out for two kinds of early mutants. It showed that early mutants 'Yuan Feng Zao' are controlled by two independent and incomplete dominant genes. For the dwarf, the reduction of the number of longitudinal cell layers causes the stem shorter and the increase of the number of horizontal cell layers causes the stem wall thicker. More than 100 preserved accessions of mutants were supplied to breeding units as parents or for genetic studies. Sixteen cultivars (lines) were bred from the parents which played an important role in raising the output of rice production

  2. Agronomic performance of rape seed (brassica napus L.) mutant lines under drought conditions

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Shah, S.J.A.; Rehman, K.; Rashid, A.

    1995-01-01

    Oil seed forms of Brassica napus are not well adapted to drought and the warner environments of Pakistan. Induced mutations were, therefore, utilized for improving drought tolerance efficiency of two napus cultivars. Induction of genetic variability, selection of desirable mutants and stabilization of mutants in acceptable agronomic background were carried out during 1988-1991. Fourteen promising mutants each of cv. Pak-cheen and Tower were evaluated for different agronomic characters in separate yield trials, under extremely drought conditions. The results demonstrated that yield potential of some mutants was very high and 9 mutants of cv. Pak-cheen and 8 mutants of cv. Tower significantly (P<0.05) out yield the local commercial cultivar. Eleven mutants in both the trials matured significantly earlier than the check. Nevertheless, more extensive testing of the drought tolerant lines under diversified environs of the country will help confirm these findings. (author)

  3. Internal Dynamics and Ionization States of the Macrophage Migration Inhibitory Factor: Comparison Between Wild-Type and Mutant Forms

    International Nuclear Information System (INIS)

    Soares, T A.; Lins, R D.; Straatsma, TP; Briggs, J M.

    2002-01-01

    The macrophage migration inhibitory factor (MIF) is a cytokine which shares a common structural architecture and catalytic strategy with three isomerases: 4-oxalocrotonate tautomerase, 5-carboxymethyl-2-hydroxymuconate isomerase and D-dopachrome tautomerase. A highly conserved N-terminal proline acts as a base/acid during the proton transfer reaction catalyzed by these enzymes. Such unusual catalytic strategy appears to be possible only due to the N-terminal proline pKa be shifted to 5.0-6.0 units. Mutations of this residue result in a significant decrease of the catalytic activity of MIF. Two hypotheses have been proposed to explain the catalytic inefficiency of MIF: the lower basicity of primary amines with regard to secondary ones and the increased flexibility resulting from the replacement of a proline by residues like glycine. To investigate that, we have performed molecular dynamics simulations of MIF-wt and its mutant P1G as well as calculated the protonation properties of sever al mutant forms. It has been found that the N-terminal glycine does not show larger fluctuations compared to proline, but the former residue is more exposed to the solvent throughout the simulations. The apparent pKa of these residues displays very little change (as expected from the structural rigidity of MIF) and is not significantly affected by the surrounding ionizable residues. Instead, the hydrophobic character of the active site seems to be the main factor in determining the pKa of the N-terminal residue and the catalytic efficiency of MIF

  4. Reversion by calcium of a yeast-like development to the original filamentous form, of the 10V10 5-fluorocytosine-sensitive mutant of Aspergillus niger Reversão pelo cálcio de um desenvolvimento leveduriforme para a forma filamentosa original em um mutante sensível a 5-fluorocitosina na linhagem 10V10 de Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Rosangela de Carvalho Goulart

    2005-09-01

    Full Text Available Some filamentous fungi present the phenomenon of dimorphism, their morphological structure alterations being capable of inducing metabolism changes. The Aspergillus niger strain 10v10, a producer of citric acid, was submitted to the mutagenic action of ultraviolet irradiation which respectively selects mutants sensitive or resistant to the antifungi agent 5 fluorocytosine (5-FC. 5-FC sensitive mutants presented a morphological alteration to a yeast-like form. The effects of pH changes, addition of salts (KH2PO4, NH4NO3, MgSO4 and MgCl2, the presence of osmotic stabilizers, as well as of calcium chloride, on morphological reversal and acid production were studied. Morphological reversal to the filamentous form was observed only in the presence of CaCl2 (500mM for the mutants strains 1 and 2, while the acid production occurred in both, yeast-like and filamentous forms.Alguns fungos filamentosos apresentam o fenômeno de dimorfismo, sendo que as alterações da estrutura morfológica podem induzir alterações metabólicas. A linhagem de Aspergillus niger 10v10, produtora de ácido cítrico foi submetida à ação mutagênica da radiação ultravioleta selecionando mutantes sensíveis ou resistentes ao antifúngico 5-fluorocitosina (5-FC. Os mutantes selecionados como sensíveis a 5-FC apresentaram uma alteração morfológica com desenvolvimento leveduriforme. Nestes mutantes foram avaliados o efeito da alteração de pH, a adição de sais (KH2PO4, NH4NO3, MgSO4e MnCl2, a presença de estabilizadores osmóticos, cloreto de cálcio, e o seu efeito sobre a reversão morfológica e a produção de ácido. A reversão morfológica para a forma filamentosa ocorreu apenas na presença de CaCl2 (500mM para as linhagens mutantes 1 e 2, enquanto que a produção de ácido ocorreu nas duas formas, leveduriforme e filamentosa.

  5. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of PMS1-1 and PMS1-2

    International Nuclear Information System (INIS)

    Williamson, M.S.; Game, J.C.; Fogel, S.

    1985-01-01

    The PMS1 mutants, isolated on the basis of sharply elevated meiotic prototroph frequencies for two closely linked HIS4 alleles, display pleiotropic phenotypes in meiotic and mitotic cells. Two isolates carrying recessive mutations in PMS1 were characterized. They identify a function required to maintain low postmeiotic segregation (PMS) frequencies at many heterozygous sites. In addition, they are mitotic mutators. In mutant diploids, spore viability is reduced, and among survivors, gene conversion and postmeiotic segregation frequencies are increased, but reciprocal exchange frequencies are not affected. The conversion event pattern is also dramatically changed in multiply marked regions in PMS1 homozygotes. The PMS1 locus maps near MET4 on chromosome XIV. The PMS1 gene may identify an excision-resynthesis long patch mismatch correction function or a function that facilitates correction tract elongation. The PMS1 gene product may also play an important role in spontaneous mitotic mutation avoidance and correction of mismatches in heteroduplex DNA formed during spontaneous and UV-induced mitotic recombination. Based on meiotic recombination models emphasizing mismatch correction in heteroduplex DNA intermediates, this interpretation is favored, but alternative interpretations involving longer recombination intermediates in the mutants are also considered

  6. Penicillin production by mutant strains of penicillium chrysogenum

    International Nuclear Information System (INIS)

    Tawfik, Z.S.; Ashour, M.S.; Shihab, A.

    1986-01-01

    The mutagenic agent 8-rays was used to initiate the penicillium chrysogenum isolated from local spices. After irradiation, colonies invariably differing from the parent strain in their morphological and cultural characteristics were tested for antibiotic production on fermentation agar medium. Twenty two isolates were found to be penicillin producing mutant strains. Mutant strain M 24 forming small colonies with white conidia was found to be a high yielding penicillin producer (9550 i.u/ml). All of the 22 isolates obtained lost their ability to produce the antibiotic after 11 months storage at 4 0 with subsequent subculturing

  7. A mutant of a mutant of a mutant of a ...: Irradiation of progressive radiation-induced mutants in a mutation-breeding programme with Chrysanthenum morifolium RAM

    International Nuclear Information System (INIS)

    Broertjes, C.; Koene, P.; Veen, J.W.H. van.

    1980-01-01

    Radiation-induced sports in Chrysanthemum morifolium RAM. have been reported for several years. It has become an everyday practice to produce flower-colour mutants from outstanding cross-breeding products, even before they are distributed for the commercial production of cut flowers. One of the most successful and recent examples is that of cv. Horim, of which hundreds of mutants were produced by successive use of radiation-induced mutants in the mutation-breeding programme. Over about 4 years a variety of flower-colour mutants was obtained, not only largely including the outstanding characteristics of the original cultivar but sometimes even with an appreciable improvement in quality and yield. It is expected that the latter types, the Miros group, will soon completely supersede the spontaneous or raditation-induced Horim sports and mutants and take over the leading position of the Horim group in the production of all-year-round (AYR) cut-flowers. (orig.)

  8. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    : DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6......-fold lower affinity for Ca2+, as judged by the ability of Ca2+ to inhibit the reaction in the presence of 10 mM Mg2+. Wild type PRPP synthetase is subject to product inhibition by AMP, but AMP inhibition of the prsA1 mutant enzyme could not be detected. It has been previously proposed that a divalent...

  9. Competitive Interactions Between Incompatible Mutants of the Social Bacterium Myxococcus xanthus DK1622

    Directory of Open Access Journals (Sweden)

    Ya Gong

    2018-06-01

    Full Text Available Due to the high similarity in their requirements for space and food, close bacterial relatives may be each other's strongest competitors. Close bacterial relatives often form visible boundaries to separate their swarming colonies, a phenomenon termed colony-merger incompatibility. While bacterial species are known to have many incompatible strains, it is largely unclear which traits lead to multiple incompatibilities and the interactions between multiple incompatible siblings. To investigate the competitive interactions of closely related incompatible strains, we mutated Myxococcus xanthus DK1622, a predatory bacterium with complex social behavior. From 3392 random transposon mutations, we obtained 11 self-identification (SI deficient mutants that formed unmerged colony boundaries with the ancestral strain. The mutations were at nine loci with unknown functions and formed nine independent SI mutants. Compared with their ancestral strain, most of the SI mutants showed reduced growth, swarming and development abilities, but some remained unchanged from their monocultures. When pairwise mixed with their ancestral strain for co-cultivation, these mutants exhibited improved, reduced or unchanged competitive abilities compared with the ancestral strain. The sporulation efficiencies were affected by the DK1622 partner, ranging from almost complete inhibition to 360% stimulation. The differences in competitive growth between the SI mutants and DK1622 were highly correlated with the differences in their sporulation efficiencies. However, the competitive efficiencies of the mutants in mixture were inconsistent with their growth or sporulation abilities in monocultures. We propose that the colony-merger incompatibility in M. xanthus is associated with multiple independent genetic loci, and the incompatible strains hold competitive interaction abilities, which probably determine the complex relationships between multiple incompatible M. xanthus strains and

  10. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    Science.gov (United States)

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  11. Data on quantification of signaling pathways activated by KIT and PDGFRA mutants

    Directory of Open Access Journals (Sweden)

    Christelle Bahlawane

    2016-12-01

    Full Text Available The present data are related to the article entitled “Insights into ligand stimulation effects on gastro-intestinal stromal tumors signaling” (C. Bahlawane, M. Schmitz, E. Letellier, K. Arumugam, N. Nicot, P.V. Nazarov, S. Haan, 2016 [1]. Constitutive and ligand-derived signaling pathways mediated by KIT and PDGFRA mutated proteins found in gastrointestinal stromal tumors (GIST were compared. Expression of mutant proteins was induced by doxycycline in an isogenic background (Hek293 cells. Kit was identified by FACS at the cell surface and found to be quickly degraded or internalized upon SCF stimulation for both Kit Wild type and Kit mutant counterparts. Investigation of the main activated pathways in GIST unraveled a new feature specific for oncogenic KIT mutants, namely their ability to be further activated by Kit ligand, the stem cell factor (scf. We were also able to identify the MAPK pathway as the most prominent target for a common inhibition of PDGFRA and KIT oncogenic signaling. Western blotting and micro-array analysis were applied to analyze the capacities of the mutant to induce an effective STATs response. Among all Kit mutants, only Kit Ex11 deletion mutant was able to elicit an effective STATs response whereas all PDGFRA were able to do so.

  12. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages.

    Science.gov (United States)

    Serova, Tatiana A; Tsyganova, Anna V; Tsyganov, Viktor E

    2018-04-03

    Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix - -1 (sym40), SGEFix - -3 (sym26), and SGEFix - -7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix - -2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.

  13. Molecular dynamics simulations of Hsp40 J-domain mutants identifies disruption of the critical HPD-motif as the key factor for impaired curing in vivo of the yeast prion [URE3].

    Science.gov (United States)

    Xue, You-Lin; Wang, Hao; Riedy, Michael; Roberts, Brittany-Lee; Sun, Yuna; Song, Yong-Bo; Jones, Gary W; Masison, Daniel C; Song, Youtao

    2018-05-01

    Genetic screens using Saccharomyces cerevisiae have identified an array of Hsp40 (Ydj1p) J-domain mutants that are impaired in the ability to cure the yeast [URE3] prion through disrupting functional interactions with Hsp70. However, biochemical analysis of some of these Hsp40 J-domain mutants has so far failed to provide major insight into the specific functional changes in Hsp40-Hsp70 interactions. To explore the detailed structural and dynamic properties of the Hsp40 J-domain, 20 ns molecular dynamic simulations of 4 mutants (D9A, D36A, A30T, and F45S) and wild-type J-domain were performed, followed by Hsp70 docking simulations. Results demonstrated that although the Hsp70 interaction mechanism of the mutants may vary, the major structural change was targeted to the critical HPD motif of the J-domain. Our computational analysis fits well with previous yeast genetics studies regarding highlighting the importance of J-domain function in prion propagation. During the molecular dynamics simulations several important residues were identified and predicted to play an essential role in J-domain structure. Among these residues, Y26 and F45 were confirmed, using both in silico and in vivo methods, as being critical for Ydj1p function.

  14. Induced mutants for the improvement of sesame and hybrid seed production

    International Nuclear Information System (INIS)

    Murty, G.S.S.

    2001-01-01

    With an overall objective to develop hybrids in sesame, induced mutants were used in cross breeding and five initial yield trials were conducted. For obtaining the mutant hybrids, recessive morphological mutants were used as female, and check varieties as male parents. In each trial, seed yields of mutant hybrids were compared with: i) the original parent in which the mutants were induced, ii) best check variety and iii) best cultivar hybrid. Among 138 mutant hybrids evaluated between 1994 and 1997, 18 showed superiority. In the development of hybrids, it is also desirable to have male sterile lines. By irradiating seeds with 400 Gy gamma rays, four genetic male sterile mutants were isolated. One of them, TMST-11 appears to be promising for breeding programme showing 100% male sterility and characterised by dark green foliage. To study the percent outcrossing, a monogenic chlorina mutant which can be identified from the seedling stage, was used in experiments conducted for two years. Among open pollinated plants, 92-98% plants were found outcrossed. Based on plant to row progenies, percent outcrossing ranged between 0.0 to 13.8%. (author)

  15. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Nowrousian, Minou; Ringelberg, Carol; Dunlap, Jay C; Loros, Jennifer J; Kück, Ulrich

    2005-04-01

    The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.

  16. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    AMER, I.M.; MOUSTAFA, H.A.M.

    2009-01-01

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  17. Polyploidy and chromosomal aberrations induced by mutagens in open flowering sterile mutants of spring barley

    Energy Technology Data Exchange (ETDEWEB)

    Manzyuk, V T; Kozachenko, M R; Kirichenko, V V

    1975-01-01

    Two types of aberration in meiosis were observed which induced sterility in chemical and radiational mutations of spring wheat: asynapsis and absence of cytokinesis, and chromosomal aberrations in the form of bridges and fragments. Gamma-mutants have many more chromosomal aberrations in the form of fragments, bridges and cells with micronuclei than do chemical mutants. The percent of tetrads with micronuclei is 1.5-2 times greater than the number of dyads with such nuclei. We obtained an original gamma-mutant exhibiting depolyploidization and polyploidization in the mother cells; we also observed cells possessing chromosomal associations of n, 2n, 4n, 68, 8n and greater.

  18. Gamma ray induced male sterility mutant in lentil

    International Nuclear Information System (INIS)

    Srivastava, A.; Yadav, A.K.

    2001-01-01

    Full text: Male sterility refers to the failure of pollen grains to bring about effective fertilization, either due to structural default or physiological disfunctioning and has special significance in hybridization programmes. Male steriles have been produced in a number of crop plants like red gram, pigeon pea, mung bean, khesari and lentil. A completely male sterile mutant was isolated in Lens culinaris Medik, after seed treatment with 100 Gy dose of gamma rays. The male sterile mutant showed 100% pollen sterility but was morphologically more vigorous than the parent plants. It showed more branches and its leaves were bigger, more oblong and dark green. The number of flowers borne by the mutant was significantly higher than any other plant of the treatment. The size of the flowers was also increased but the anthers were smaller in size. Pollen grains were few in number, round in shape but empty and did not take up any stain, indicating that normal microsporogenesis had not taken place. This male sterile mutant was used as the female parent and pollinated with pollen of a parent. Four pods with one seed in each were formed indicating that the mutant was female fertile. The seeds were smaller than those of the parent variety and also dark coloured. The mutant showed increased vigour and flower number as compared to parental plants. Lentil is an important pulse crop and induction of variability in its germplasm is necessary for its improvement. Male steriles can be used conveniently in lentil hybridization programmes. (author)

  19. Thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, K; Some, H; Tamura, G

    1976-01-01

    Thermonsensitive division mutants were derived from Bacillus subtilis Marburg 168 thy trp/sub 2/ by means of membrane filtration after nitrosoguanidine mutagenesis. Among them, ts42 requiring uracil for normal growth at 48/sup 0/C was investigated. In the absence of uracil, the mutant cells grew normally at 37/sup 0/C and stopped dividing after temperature shift to 48/sup 0/C resulting in filaments of two to four times length of normal rods. The total cell number after the temperature shift increased two to three fold in 90 min and remained constant thereafter. The viable count after the temperature shift to 48/sup 0/C, increased 1.5 to 2 fold in initial 60 min and then decreased exponentially. A rapid restoration of colony forming ability was shown when the mutant cells were shifted back to the permissive temperature after 120 to 180 min of incubation at 48/sup 0/C or when uracil was introduced to the culture at 48/sup 0/C. This recovery of viability was partly observed even in the presence of chloramphenicol. The synthesis of RNA of this mutant was shown to decline 20 min after the temperature shift to 48/sup 0/C whereas the syntheses of DNA and protein proceeded for more than 80 min at that temperature. No newly isolated uracil requiring mutants formed filaments in the medium lacking uracil or showed growth pattern like ts42.

  20. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity

    NARCIS (Netherlands)

    Bellaoui, Mohammed; Chang, Michael; Ou, Jiongwen; Xu, Hong; Boone, Charles; Brown, Grant W

    2003-01-01

    Genome-wide synthetic genetic interaction screens with mutants in the mus81 and mms4 replication fork-processing genes identified a novel replication factor C (RFC) homolog, Elg1, which forms an alternative RFC complex with Rfc2-5. This complex is distinct from the DNA replication RFC, the DNA

  1. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    Directory of Open Access Journals (Sweden)

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  2. Modified Starch of Sorghum Mutant Line Zh-30 For High Fiber Muffin Products

    International Nuclear Information System (INIS)

    Santosa, D. D. S; Human, S

    2009-01-01

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30) has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour (author)

  3. Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa

    Science.gov (United States)

    Rebello, George; Ramesar, Rajkumar; Vorster, Alvera; Roberts, Lisa; Ehrenreich, Liezle; Oppon, Ekow; Gama, Dumisani; Bardien, Soraya; Greenberg, Jacquie; Bonapace, Giuseppe; Waheed, Abdul; Shah, Gul N.; Sly, William S.

    2004-01-01

    Genetic and physical mapping of the RP17 locus on 17q identified a 3.6-megabase candidate region that includes the gene encoding carbonic anhydrase IV (CA4), a glycosylphosphatidylinositol-anchored protein that is highly expressed in the choriocapillaris of the human eye. By sequencing candidate genes in this region, we identified a mutation that causes replacement of an arginine with a tryptophan (R14W) in the signal sequence of the CA4 gene at position -5 relative to the signal sequence cleavage site. This mutation was found to cosegregate with the disease phenotype in two large families and was not found in 36 unaffected family members or 100 controls. Expression of the mutant cDNA in COS-7 cells produced several findings, suggesting a mechanism by which the mutation can explain the autosomal dominant disease. In transfected COS-7 cells, the R14W mutation (i) reduced the steady-state level of carbonic anhydrase IV activity expressed by 28% due to a combination of decreased synthesis and accelerated turnover; (ii) led to up-regulation of immunoglobulin-binding protein, double-stranded RNA-regulated protein kinase-like ER kinase, and CCAAT/enhancer-binding protein homologous protein, markers of the unfolded protein response and endoplasmic reticulum stress; and (iii) induced apoptosis, as evidenced by annexin V binding and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining, in most cells expressing the mutant, but not the WT, protein. We suggest that a high level of expression of the mutant allele in the endothelial cells of the choriocapillaris leads to apoptosis, leading in turn to ischemia in the overlying retina and producing autosomal dominant retinitis pigmentosa. PMID:15090652

  4. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  5. Homologous series of induced early mutants in Indica rice. Pt.3: The relationship between the induction of homologous series of early mutants and its different pedigree

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    2002-01-01

    The percentage of homologous series of early mutants (PHSEM) induced by irradiation was closely related to its pedigree. This study showed that PHSEM for varieties with the same pedigree were similar, and there were three different level of dominance (high, low and normal) in the homologous series induced from different pedigree. The PHSEM for varieties derived form distant-relative-parents were higher than that derived from close-relative-parents. There was the dominance pedigree for the induction of homologous series of early mutants. IR8(Peta x DGWG), IR127 (Cpslo x Sigadis) and IR24 (IR8 x IR127) were dominant pedigree, and varieties derived from them could be easily induced the homologous series of early mutants

  6. Plant cultivars derived from mutation induction or the use of induced mutants in cross breeding

    International Nuclear Information System (INIS)

    Micke, A.; Maluszynski, M.; Donini, B.

    1985-01-01

    Since 1969 we have collected information on cultivated varieties of plants, developed by using induced mutations. Whenever we learn about a cultivar presumably derived from an induced mutant or from use of mutants in crosses. we mail a questionnaire to the breeder. The information gathered in this way is stored in our file on ''Mutant Varieties''. Excerpts are published regularly in the form of a list in the FAO/IAEA Mutation Breeding Newsletter. Our mutant variety list has repeatedly provided a basis for analyses on the value and prospects of mutation breeding

  7. Plant cultivars derived from mutation induction or the use of induced mutants in cross breeding

    Energy Technology Data Exchange (ETDEWEB)

    Micke, A; Maluszynski, M; Donini, B [Joint FAO/IAEA Division, Plant Breeding and Genetics Section, Vienna (Austria)

    1985-05-01

    Since 1969 we have collected information on cultivated varieties of plants, developed by using induced mutations. Whenever we learn about a cultivar presumably derived from an induced mutant or from use of mutants in crosses. we mail a questionnaire to the breeder. The information gathered in this way is stored in our file on ''Mutant Varieties''. Excerpts are published regularly in the form of a list in the FAO/IAEA Mutation Breeding Newsletter. Our mutant variety list has repeatedly provided a basis for analyses on the value and prospects of mutation breeding.

  8. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  9. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  10. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism

    International Nuclear Information System (INIS)

    Hugly, S.; McCourt, P.; Somerville, C.; Browse, J.; Patterson, G.W.

    1990-01-01

    A chilling-sensitive mutant of Arabidopsis thaliana was isolated and subjected to genetic, physiological, and biochemical analysis. The chilling-sensitive nature of the mutant line is due to a single recessive nuclear mutation at a locus designated chs1. In contrast to wild-type plants, which are not adversely affected by low temperatures, the chs1 mutant is killed by several days of exposure to temperatures below 18 degree C. Following exposure to chilling temperatures, the mutant displays two common symptoms of chilling injury - leaf chlorosis and electrolyte leakage. In these respects, the physiological response of the mutant to low temperatures mimics the response observed in some naturally occurring chilling sensitive species. The biochemical basis of chilling sensitivity was explored by examining the pattern of incorporation of 14 CO 2 into soluble metabolites and lipids in wild-type and mutant plants. The only difference observed between the mutant and wild type was that following low temperature treatment, the mutant accumulated 10-fold more radioactivity in a specific class of neutral lipids which were identified by a variety of criteria to be steryl-esters. The accumulation of radioactivity in the steryl-ester fraction occurs 24 hours before there is any visible evidence of chilling injury

  11. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    Science.gov (United States)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  12. Temperature-sensitive mutants of fowl plague virus: isolation and genetic characterization

    International Nuclear Information System (INIS)

    Almond, J.W.; McGeoch, D.; Barry, R.D.

    1979-01-01

    Forty-nine temperature-sensitive mutants of fowl plague virus (FPV) strain Rostock and four ts mutants of FPV-strain Dobson were isolated by utilizing two methods of plaque screening, after either spontaneous or chemically induced mutagenesis. Twenty-nine of the FPV-Rostock mutants were further characterized by genetic recombination studies and were found to fall into six high frequency recombination groups. The genome segment carrying the ts mutation in each group was identified by analyzing the gene composition of ts + recombinants generated from crosses between representatives of each group and ts mutants of FPV-Dobson. It was concluded that the six groups correspond to mutations in six different genome segments, namely, those coding for the P 1 , P 2 , P 3 , HA, NP, and NS proteins

  13. Characterization of novel Sorghum brown midrib mutants from an EMS-mutagenized population.

    Science.gov (United States)

    Sattler, Scott E; Saballos, Ana; Xin, Zhanguo; Funnell-Harris, Deanna L; Vermerris, Wilfred; Pedersen, Jeffrey F

    2014-09-02

    Reducing lignin concentration in lignocellulosic biomass can increase forage digestibility for ruminant livestock and saccharification yields of biomass for bioenergy. In sorghum (Sorghum bicolor (L.) Moench) and several other C4 grasses, brown midrib (bmr) mutants have been shown to reduce lignin concentration. Putative bmr mutants isolated from an EMS-mutagenized population were characterized and classified based on their leaf midrib phenotype and allelism tests with the previously described sorghum bmr mutants bmr2, bmr6, and bmr12. These tests resulted in the identification of additional alleles of bmr2, bmr6, and bmr12, and, in addition, six bmr mutants were identified that were not allelic to these previously described loci. Further allelism testing among these six bmr mutants showed that they represented four novel bmr loci. Based on this study, the number of bmr loci uncovered in sorghum has doubled. The impact of these lines on agronomic traits and lignocellulosic composition was assessed in a 2-yr field study. Overall, most of the identified bmr lines showed reduced lignin concentration of their biomass relative to wild-type (WT). Effects of the six new bmr mutants on enzymatic saccharification of lignocellulosic materials were determined, but the amount of glucose released from the stover was similar to WT in all cases. Like bmr2, bmr6, and bmr12, these mutants may affect monolignol biosynthesis and may be useful for bioenergy and forage improvement when stacked together or in combination with the three previously described bmr alleles. Copyright © 2014 Sattler et al.

  14. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    Directory of Open Access Journals (Sweden)

    Amsterdam Adam

    2006-06-01

    Full Text Available Abstract Background Craniofacial birth defects result from defects in cranial neural crest (NC patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1 signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. Results Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. Conclusion This work represents a systematic

  15. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    Science.gov (United States)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  16. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    Directory of Open Access Journals (Sweden)

    Ying Deng

    Full Text Available Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC. These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  17. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    Science.gov (United States)

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Allergenic Characterization of New Mutant Forms of Pru p 3 as New Immunotherapy Vaccines

    Directory of Open Access Journals (Sweden)

    C. Gómez-Casado

    2013-01-01

    Full Text Available Nowadays, treatment of food allergy only considered the avoidance of the specific food. However, the possibility of cross-reactivity makes this practice not very effective. Immunotherapy may exhibit as a good alternative to food allergy treatment. The use of hypoallergenic molecules with reduced IgE binding capacity but with ability to stimulate the immune system is a promising tool which could be developed for immunotherapy. In this study, three mutants of Pru p 3, the principal allergen of peach, were produced based on the described mimotope and T cell epitopes, by changing the specific residues to alanine, named as Pru p 3.01, Pru p 3.02, and Pru p 3.03. Pru p 3.01 showed very similar allergenic activity as the wild type by in vitro assays. However, Pru p 3.02 and Pru p 3.03 presented reduced IgE binding with respect to the native form, by in vitro, ex vivo, and in vivo assays. In addition, Pru p 3.03 had affected the IgG4 binding capacity and presented a random circular dichroism, which was reflected in the nonrecognition by specific antibodies anti-Pru p 3. Nevertheless, both Pru p 3.02 and Pru p 3.03 maintained the binding to IgG1 and their ability to activate T lymphocytes. Thus, Pru p 3.02 and Pru p 3.03 could be good candidates for potential immunotherapy in peach-allergic patients.

  19. Sodium azide mutagenesis in wheat: Mutants with golden glumes

    International Nuclear Information System (INIS)

    Siddiqui, K.A.; Jafri, K.A.; Arain, M.A.

    1989-01-01

    In bread wheat, Triticum aestivum L. (2n=6x=42, AABBDD), detection of induced mutations is hampered by the presence of duplicate and triplicate genes. Induced changes in spike characteristics are known, but mutants with changed glume colour do not seem to have been reported. Physical mutagens such as gamma rays, thermal neutrons and fast neutrons, and chemical mutagens like EMS, El, dES and NEH have been extensively used for induction of mutations in bread wheat but it seems as if these mutagens did not induce mutants with changed glume colour. We used sodium azide for inducing mutations in the widely adapted cultivar 'Sonalika', which is characterized by brown glume colour. Presoaked seeds were treated with 0.2M sodium azide for 3 hours. Three spikes were harvested from each M 1 plant. M 2 generation was space-planted as spike progeny. We were successful in identifying 3 mutants with golden glumes. The mutants resemble 'Sonalika' in other spike characteristics. The mutants glume colour was confirmed in M 3 . The mutants were also evaluated for agronomically important characteristics. Some characters were significantly different from the parent. Glume colours may be useful as genetic markers since such characters are less influenced by the environment. Our investigation confirms that also agronomically useful genetic variation may be readily induced in bread wheat through sodium azide

  20. A sorghum (Sorghum bicolor mutant with altered carbon isotope ratio.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor mutant with a low δ13C characteristic. A mutant (named Mut33 with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT. The back-cross (BC1F1 progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used

  1. Induced high yielding mutant in green gram (Vigna radiata (L.) Wilczek)

    International Nuclear Information System (INIS)

    Pulivarthi, H.R.; Mary, T.N.

    1987-01-01

    Green gram (mungbean) plays a significant role in meeting the protein requirements in India, with its predominantly vegetarian population. Therefore, an attempt was made to induce desirable mutants. Dry seed of cultivar 'Pusa 105' were irradiated with gamma rays ranging from 10 to 50 krad. A high yielding mutant (Hy I) identified in the M 4 generation from 40 krad dose, has shown significant increases in the number of pods/plants, number of branches/plant, and yield/plant. Further work is in progress. Comparison of the mutant HyI with the parent cultivar Pusa 105 is given

  2. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. | Office of Cancer Genomics

    Science.gov (United States)

    A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers.

  3. The Succinated Proteome of FH-Mutant Tumours

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2014-08-01

    Full Text Available Inherited mutations in the Krebs cycle enzyme fumarate hydratase (FH predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC. Loss of FH activity in HLRCC tumours causes accumulation of the Krebs cycle intermediate fumarate to high levels, which may act as an oncometabolite through various, but not necessarily mutually exclusive, mechanisms. One such mechanism, succination, is an irreversible non-enzymatic modification of cysteine residues by fumarate, to form S-(2-succinocysteine (2SC. Previous studies have demonstrated that succination of proteins including glyceraldehyde 3-phosphate dehydrogenase (GAPDH, kelch-like ECH-associated protein 1 (KEAP1 and mitochondrial aconitase (ACO2 can have profound effects on cellular metabolism. Furthermore, immunostaining for 2SC is a sensitive and specific biomarker for HLRCC tumours. Here, we performed a proteomic screen on an FH-mutant tumour and two HLRCC-derived cancer cell lines and identified 60 proteins where one or more cysteine residues were succinated; 10 of which were succinated at cysteine residues either predicted, or experimentally proven, to be functionally significant. Bioinformatic enrichment analyses identified most succinated targets to be involved in redox signaling. To our knowledge, this is the first proteomic-based succination screen performed in human tumours and cancer-derived cells and has identified novel 2SC targets that may be relevant to the pathogenesis of HLRCC.

  4. High throughput phenotypic selection of Mycobacterium tuberculosis mutants with impaired resistance to reactive oxygen species identifies genes important for intracellular growth.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    Full Text Available Mycobacterium tuberculosis has the remarkable capacity to survive within the hostile environment of the macrophage, and to resist potent antibacterial molecules such as reactive oxygen species (ROS. Thus, understanding mycobacterial resistance mechanisms against ROS may contribute to the development of new anti-tuberculosis therapies. Here we identified genes involved in such mechanisms by screening a high-density transposon mutant library, and we show that several of them are involved in the intracellular lifestyle of the pathogen. Many of these genes were found to play a part in cell envelope functions, further strengthening the important role of the mycobacterial cell envelope in protection against aggressions such as the ones caused by ROS inside host cells.

  5. Evaluation of induced mutants of wheat for resistance to fungal diseases

    International Nuclear Information System (INIS)

    Barriga B, P.; Fuentes P, R.; Andrade S, N.; Seeman F, P.

    1990-01-01

    Evaluation of induced mutants of wheat for resistance to fungal diseases. Seeds of spring wheat cultivars Austral and Huenufen were exposed to gamma radiation in doses of 0.10 and 0.25 KGy with the objective of producing genotypes resistant to the main fungal diseases, with a high protein content and grain yield, for the southern region of Chile (39 sup(o)-44 sup(o) Latitude south). The selection process and evaluation up to the generation M sub(8) has made possible to identify mutants with a higher protein content and grain yield. Progress made in improving resistance to Puccinia striiformis and tolerance to Septoria spp., has also been important. Some selected mutants, conditioned to their future performance, could be directly used as commercial varieties and other mutants, on crosses with regionally adapted cultivars. (author)

  6. Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants.

    Science.gov (United States)

    Käfer, E; Mayor, O

    1986-07-01

    To identify genes which affect DNA repair and possibly recombination in Aspergillus nidulans, mutants hypersensitive to methyl methanesulphonate (MMS) were induced with ultraviolet light (UV) or gamma-rays. About half of them contained associated translocations and many were hypersensitive to UV and/or defective in meiosis. Two are alleles of the known uvsB gene while most others define new genes. In addition, among available uvs mutants many were found to be MMS-sensitive. Some of the various uncharacterized ones were identified as alleles of known uvs, but 5 of them were mapped in 2 new genes, uvsH and uvsJ. To identify functional and epistatic groups, mutants from each uvs gene were tested for effects on recombination and mutation, and double mutant uvs strains were compared for UV survival to their component single mutant strains. 3 epistatic pairs were identified, (1) uvsF and H, (2) uvsB and D, and (3) uvsC and E. Conclusive interpair tests were difficult, because such double mutant combinations were frequently lethal or nearly so. The first pair, uvsF and H, shared some of the properties of excision-defective mutants, both uvs being very highly sensitive to UV for mutation as well as survival. But unlike such mutants, uvsH was also sensitive to gamma-rays and defective in meiosis. Both uvs showed normal levels of meiotic recombination, but greatly increased spontaneous mitotic crossing-over, being the most "hyperrec" types among all uvs. The second pair, uvsB and uvsC, which was similarly hyperrec showed only slight increases of UV-induced mutation (less than 2-fold). As a main effect, these uvs caused very high frequencies of unbalanced, unstable segregants from diploid conidia (30 X), but few of these were recognizable aneuploids. The third pair, uvsC and E, which are known to be rec- for gene conversion, caused reduced mitotic crossing-over in diploids and increased levels of haploid segregants. These mutants are spontaneous mutators, but showed less UV

  7. Mutant heterosis in rice

    International Nuclear Information System (INIS)

    1987-01-01

    In the variety TKM6 a high yielding semidwarf mutant has been induced. This TKM6 mutant was used in test crosses with a number of other varieties and mutants to examine the extent of heterosis of dwarfs in rice and to select superior crosses. An excerpt of the published data is given. It appears from the backcross of the mutant with its original variety, that an increase in number of productive tillers occurs in the hybrid, leading to a striking grain yield increase, while the semi-dwarf culm length (the main mutant character) reverts to the normal phenotype. In the cross with IR8 on the other hand, there is only a minimal increase in tiller number but a substantial increase in TGW leading to more than 30% yield increase over the better parent

  8. High lysine and high yielding mutants in wheat (Triticum aestivum) L

    International Nuclear Information System (INIS)

    Mohammad, T.; Mahmood, F.; Ahmad, A.; Sattar, A.; Khan, I.

    1988-01-01

    The dry seeds of the variety Lu-26 were irradiated with 20 krad of gamma rays. In M 2 about 300 mutant plants were selected for short stature, rust resistance and other desirable traits. As a result of further selection, in M 6 , eight superior lines were finally identified. The agronomic characteristics of these mutants, the parent variety (Lu-26) and a standard check variety (Pak-81) are shown. The selected mutants and commercially grown cultivars (Lu-26 and Pak-81) were studied for total protein content and amino acid pattern. The mutants WM-89-1, WM-6-17 and WM-81-2 showing high yield also contained comparatively high amounts of methionine and lysine. The lysine contents were 565, 410, and 370 mg/100g in the mutants WM-89-1, WM-6-17 and WM-81-2, respectively against a range value of 210-370 mg/100g in other mutants and 250-320 in the commercial cultivars. The mutant WM-81-2 was comparable to WM-56-1-5 in lysine content. The results of these experiments show a possibility of developing varieties having high yield and high amounts of essential amino acids such as lysine and methionine

  9. Induction of two mutants in birdsfoot trefoil (Lotus corniculatus) by x-rays and chemical mutagens

    International Nuclear Information System (INIS)

    Therrien, M.C.; Grant, W.F.

    1982-01-01

    The mutagenic effects of X-rays, ethyl methanesulfonate (EMS), 8-ethoxycaffeine (EOC), N-hydroxyurea (HU) and 2-aminopurine (2AP) on seed treatment of birdsfoot trefoil (Lotus corniculatus L. 'Mirabel') were assessed over four generations. Mutants were recovered in the M 2 , M 3 and M 4 generations from selfed lines, from crosses derived form selfed lines and from open pollination lines. Mutant plants exhibiting vestigial floret character were recovered from X-rays, EMS, EOC and HU treatments. Mutant chlorotica plants were obtained from EMS treatment only. No mutants were recovered from 2AP treatment, EMS, the most effective mutagen, produced nine vestigial floret and 12 chlorotica mutants. Mutants were obtained from only one exposure of X-rays (12 krad). There was evidence for preferential elimination of gametes. The chlorotica and vestigial floret mutants were inherited as tetrasomic recessives. Mutation frequencies of 0.4 - 3.1% in a tetrasomic background are indicative of the effectiveness of EMS in birdsfoot trefoil

  10. Induction of two mutants in birdsfoot trefoil (Lotus corniculatus) by x-rays and chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Therrien, M.C.; Grant, W.F. (McGill Univ., Ste. Anne de Bellevue, Quebec (Canada). Macdonald Coll.)

    1982-10-01

    The mutagenic effects of X-rays, ethyl methanesulfonate (EMS), 8-ethoxycaffeine (EOC), N-hydroxyurea (HU) and 2-aminopurine (2AP) on seed treatment of birdsfoot trefoil (Lotus corniculatus L. 'Mirabel') were assessed over four generations. Mutants were recovered in the M/sub 2/, M/sub 3/ and M/sub 4/ generations from selfed lines, from crosses derived form selfed lines and from open pollination lines. Mutant plants exhibiting vestigial floret character were recovered from X-rays, EMS, EOC and HU treatments. Mutant chlorotica plants were obtained from EMS treatment only. No mutants were recovered from 2AP treatment, EMS, the most effective mutagen, produced nine vestigial floret and 12 chlorotica mutants. Mutants were obtained from only one exposure of X-rays (12 krad). There was evidence for preferential elimination of gametes. The chlorotica and vestigial floret mutants were inherited as tetrasomic recessives. Mutation frequencies of 0.4 - 3.1% in a tetrasomic background are indicative of the effectiveness of EMS in birdsfoot trefoil.

  11. Interaction of a non-peptide agonist with angiotensin II AT1 receptor mutants

    DEFF Research Database (Denmark)

    Costa-Neto, Claudio M; Miyakawa, Ayumi A; Pesquero, João B

    2002-01-01

    and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I...... and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared...... with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain...

  12. ISOELECTRIC FOCUSING OF MEMBRANE PROTEINS OF PROBIOTIC B. COAGULANS AND ITS BACTERIOPHAGE RESISTANT MUTANTS

    Directory of Open Access Journals (Sweden)

    Kavita Rajesh Pandey

    2016-09-01

    Full Text Available Bacteriophages are the most notorious type of infection in the probiotic and dairy fermentations. Two phage resistant mutants viz. B. co PIII and B. co MIII (B. coagulans mutants PIII and MIII obtained in previous studies (Dubey and Vakil, 2010, were further characterized for their protein profile in comparison with the parental probiotic strain –B. coagulans. The cell lysates were subjected to ultra-centrifugation and the purified membrane fractions were resolved using 2D gel electrophoresis. The Isoelectric focussing showed 187, 202 and 154 protein spots for the parental strain, mutant B. co PIII and mutant B. co MIII, respectively. Ten and 18 protein spots were missing as compared to parent for mutants B.co PIII and B.co MIII whereas there were 21 and 14 new spots noticed for these two mutants. Eight membrane proteins present only in the phage sensitive parental culture could be tentatively identified by comparison with the complete proteome of B. coagulans by use of UniprotKB and then CELLO database It is quite likely that some of these identified membrane proteins may be also functioning as receptors for phage adsorption followed by entry of nucleic acid into the phage sensitive host cell.

  13. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    Science.gov (United States)

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  14. Nonbehavioral Selection for Pawns, Mutants of PARAMECIUM AURELIA with Decreased Excitability

    Science.gov (United States)

    Schein, Stanley J.

    1976-01-01

    The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the `high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (`extreme' pawns) to nearly wild-type reversal behavior (`partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kung et al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A–B, A–C, B–C), identified in the exautogamous progeny of crosses between `partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (`partial' pawn) parents.———Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation. PMID:1001878

  15. Genetic background of Prop1(df) mutants provides remarkable protection against hypothyroidism-induced hearing impairment.

    Science.gov (United States)

    Fang, Qing; Giordimaina, Alicia M; Dolan, David F; Camper, Sally A; Mustapha, Mirna

    2012-04-01

    Hypothyroidism is a cause of genetic and environmentally induced deafness. The sensitivity of cochlear development and function to thyroid hormone (TH) mandates understanding TH action in this sensory organ. Prop1(df) and Pou1f1(dw) mutant mice carry mutations in different pituitary transcription factors, each resulting in pituitary thyrotropin deficiency. Despite the same lack of detectable serum TH, these mutants have very different hearing abilities: Prop1(df) mutants are mildly affected, while Pou1f1(dw) mutants are completely deaf. Genetic studies show that this difference is attributable to the genetic backgrounds. Using embryo transfer, we discovered that factors intrinsic to the fetus are the major contributor to this difference, not maternal effects. We analyzed Prop1(df) mutants to identify processes in cochlear development that are disrupted in other hypothyroid animal models but protected in Prop1(df) mutants by the genetic background. The development of outer hair cell (OHC) function is delayed, but Prestin and KCNQ4 immunostaining appear normal in mature Prop1(df) mutants. The endocochlear potential and KCNJ10 immunostaining in the stria vascularis are indistinguishable from wild type, and no differences in neurofilament or synaptophysin staining are evident in Prop1(df) mutants. The synaptic vesicle protein otoferlin normally shifts expression from OHC to IHC as temporary afferent fibers beneath the OHC regress postnatally. Prop1(df) mutants exhibit persistent, abnormal expression of otoferlin in apical OHC, suggesting delayed maturation of synaptic function. Thus, the genetic background of Prop1(df) mutants is remarkably protective for most functions affected in other hypothyroid mice. The Prop1(df) mutant is an attractive model for identifying the genes that protect against deafness.

  16. High-content screening of yeast mutant libraries by shotgun lipidomics

    DEFF Research Database (Denmark)

    Tarasov, Kirill; Stefanko, Adam; Casanovas, Albert

    2014-01-01

    To identify proteins with a functional role in lipid metabolism and homeostasis we designed a high-throughput platform for high-content lipidomic screening of yeast mutant libraries. To this end, we combined culturing and lipid extraction in 96-well format, automated direct infusion...... factor KAR4 precipitated distinct lipid metabolic phenotypes. These results demonstrate that the high-throughput shotgun lipidomics platform is a valid and complementary proxy for high-content screening of yeast mutant libraries....... nanoelectrospray ionization, high-resolution Orbitrap mass spectrometry, and a dedicated data processing framework to support lipid phenotyping across hundreds of Saccharomyces cerevisiae mutants. Our novel approach revealed that the absence of genes with unknown function YBR141C and YJR015W, and the transcription...

  17. Screening and identification of respiration deficiency mutants of yeasts (Saccharomyces Cerevisiae) induced by heavy ion irradiation

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Zhang Hong

    2006-01-01

    A screen of respiration deficiency mutants of Saccharomyces Cerevisiae induced by 5.19 MeV/u 22 Ne 5- ion irradiation is studied. Some respiration deficiency mutants, which are white colony phenotype in the selective culture of TTC medium, are obtained. The mutants are effectively identified by means of a new and simplified restriction analysis method. (authors)

  18. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  19. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal.

    Science.gov (United States)

    Kaurilind, Eve; Brosché, Mikael

    2017-01-01

    Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.

  20. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    Science.gov (United States)

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  1. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-01-01

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs

  2. [Mutant alleles associated to chloroquine and sulfadoxine-pyrimethanime resistance in Plasmodium falciparum of the Ecuador-Peru and Ecuador-Colombia borders].

    Science.gov (United States)

    Arróspide, Nancy; Hijar-Guerra, Gisely; de Mora, Doménica; Diaz-Cortéz, César Eduardo; Veloz-Perez, Raúl; Gutierrez, Sonia; Cabezas-Sánchez, César

    2014-04-01

    The frequency of mutations in pfCRT and DHFR/DHPS genes of Plasmodium falciparum associated with resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated in 83 strains from the districts of Esmeralda and Machala, located on the borders of Ecuador-Peru and Ecuador-Colombia in 2002. Polymerase chain reaction (PCR), conventional and its variants, was used. Mutations in the pfCRT gene were found in more than 90% of the samples from Esmeralda and Machala. For the DHFR gene, 90% of the strains were mutant samples from Esmeralda, 3 were double mutations and 1 was a triple mutation. In Machala, 25% were simple mutant forms and 75% mixed mutant forms (wild forms/mutant). In conclusion, resistance to chloroquine has been fixed in strains carrying K76T pfCRT mutation, whereas genetic imprinting for resistance to pyrimethamine is evolving, particularly in the district of Esmeralda.

  3. Analysis of Lysophospholipid Content in Low Phytate Rice Mutants.

    Science.gov (United States)

    Tong, Chuan; Chen, Yaling; Tan, Yuanyuan; Liu, Lei; Waters, Daniel L E; Rose, Terry J; Shu, Qingyao; Bao, Jinsong

    2017-07-05

    As a fundamental component of nucleic acids, phospholipids, and adenosine triphosphate, phosphorus (P) is critical to all life forms, however, the molecular mechanism of P translocation and distribution in rice grains are still not understood. Here, with the use of five different low phytic acid (lpa) rice mutants, the redistribution in the main P-containing compounds in rice grain, phytic acid (PA), lysophospholipid (LPL), and inorganic P (Pi), was investigated. The lpa mutants showed a significant decrease in PA and phytate-phosphorus (PA-P) concentration with a concomitant increase in Pi concentration. Moreover, defects in the OsST and OsMIK genes result in a great reduction of specific LPL components and LPL-phosphorus (LPL-P) contents in rice grain. In contrast, defective OsMRP5 and Os2-PGK genes led to a significant increase in individual LPL components. The effect of the Os2-PGK gene on the LPL accumulation was validated using breeding lines derived from a cross between KBNT-lpa (Os2-PGK mutation) and Jiahe218. This study demonstrates that these rice lpa mutants lead to the redistribution of Pi in endosperm and modify LPL biosynthesis. Increase LPLs in the endosperm in the lpa mutants may have practical applications in rice breeding to produce "healthier" rice.

  4. Preliminary Study of the Characteristics of Several Glossy Cabbage (Brassica oleracea var. capitata L. Mutants

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-09-01

    Full Text Available To determine the characteristics and potential practical applications of glossy cabbage (Brassica oleracea var. capitata L. mutants, five different glossy mutants were studied. The amount of epicuticular wax covering the mutant leaves was only approximately 30% that of the wild-type (WT leaves. The wax crystals of WT plants were columnar and linear, while they were granular and rod-shaped in the mutants. Additionally, in WT cabbage, the primary wax components were alkanes, alcohols, fatty acids, ketones, and aldehydes. There was a significant decrease in the abundance of alkanes and ketones in the wax of the mutants. The glossy-green trait of the mutants may be the result of an inhibited alkane-forming pathway. Higher rates of chlorophyll leaching and water loss demonstrate that the mutant leaves were more permeable and sensitive to drought stress than the WT leaves. Growth curve results indicated that the growth rate of mutant-1 and mutant-3 was slower than that of the corresponding WT cabbage, resulting in shorter plants. However, the growth rate of mutant-2 was not influenced by the lack of coating wax. An investigation of the agronomic traits and heterosis of the glossy cabbage mutants indicated that all five mutants had glossy-green leaves, which was a favorable characteristic. The F1 plants derived from crosses involving mutant-2 exhibited obvious heterosis, suggesting the observed glossy-green trait is controlled by a dominant gene. Therefore, mutant-2 may be useful as a source of genetic material for future cabbage breeding experiments.

  5. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    Science.gov (United States)

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10 5 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  6. Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase.

    Science.gov (United States)

    Dahl, Joseph M; Wang, Hongyun; Lázaro, José M; Salas, Margarita; Lieberman, Kate R

    2014-03-07

    The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn(2+) rather than Mg(2+). The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture.

  7. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe Reitan; Asp, Torben; Mansfield, Shawn

    2009-01-01

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases...... for LAC15 T-DNA mutant seeds and an approximate 24 hour delay in germination was observed for these seeds. An approximate 20% reduction in glucose, galactose, and xylose was observed in primary stem cell walls of the LAC2 T-DNA mutants while similar relative increases in xylose were observed for LAC8...

  9. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 2. Comparison of Various Mutants

    International Nuclear Information System (INIS)

    Balchiuniene, L.

    1995-01-01

    Spontaneous and gamma-induced mutability was compared in two groups of genetically unstable barley ear structure mutants - tweaky spike (tw) and branched ear (be). Instability in different loci causes different levels of spontaneous and gamma-induced mutability. A high spontaneous level of chlorophyll mutations is peculiar to be-ust mutants. It is suggested that the high level of induced chlorophyll mutations in allelic tw mutants is a result of better surviving of chlorophyll mutation carriers in the genotypical-physiological environment created by mutant tw alleles. (author). 6 refs., 2 tabs

  10. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    Science.gov (United States)

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.

    Science.gov (United States)

    Scherer, G F E; Pietrzyk, P

    2014-01-01

    Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Promising rice mutants

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1988-01-01

    Two induced mutants namely, Mut NS 1 (tall) and Mut NS 5 (semi-dwarf) derived from rice variety Nizersail were evaluated for various agronomic characters at four locations in Bangladesh. Both the mutants matured about three weeks earlier and yielded significantly higher than the parent variety Nizersail. (author). 3 tabs., 9 refs

  13. Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth

    DEFF Research Database (Denmark)

    Lombardo, Fabien; Heckmann, Anne Birgitte Lau; Miwa, Hiroki

    2006-01-01

    During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make...... infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early...... symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itd1, itd3, and itd4 mutations...

  14. New early-ripening wheat mutant lines from the varieties Norman and Avalon

    International Nuclear Information System (INIS)

    Djelepov, K.

    1988-01-01

    The English wheat varieties Norman and Avalon are high-productive, resistant to lodging and to diseases but late-ripening in Bulgaria. They are 10-15 days later than the variety Sadovo 1 and therefore suffer often from dry and hot weather, causing premature ripening and shrivelled seed. Dry seeds from the two varieties were irradiated with 10 and 15 kR 60 Co gamma rays. In M 2 , several earlier ripening forms were selected and they were studied also in M 3 in 1987. In the Table, four early ripening mutant lines and the respective initial varieties are compared. They vary significantly in plant height and grain size. The mutant lines of Norman produce smaller grain but all mutants show a higher hectoliter weight. The mutant lines head and mature 4 to 10 days earlier than the respective initial varieties. Some of them are as productive as the standard and other cultivated varieties. We shall continue testing their productivity and possibilities for their use in the breeding

  15. Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport.

    Science.gov (United States)

    Godon, C; Krapp, A; Leydecker, M T; Daniel-Vedele, F; Caboche, M

    1996-02-25

    This work reports the isolation and preliminary characterization of Nicotiana plumbaginifolia mutants resistant to methylammonium. Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up by Nicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.

  16. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    Science.gov (United States)

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells.

    Science.gov (United States)

    Langlands, Alistair J; Carroll, Thomas D; Chen, Yu; Näthke, Inke

    2018-02-15

    More than 90% of colorectal cancers carry mutations in Apc that drive tumourigenesis. A 'just-right' signalling model proposes that Apc mutations stimulate optimal, but not excessive Wnt signalling, resulting in a growth advantage of Apc mutant over wild-type cells. Reversal of this growth advantage constitutes a potential therapeutic approach. We utilised intestinal organoids to compare the growth of Apc mutant and wild-type cells. Organoids derived from Apc Min/+ mice recapitulate stages of intestinal polyposis in culture. They eventually form spherical cysts that reflect the competitive growth advantage of cells that have undergone loss of heterozygosity (LOH). We discovered that this emergence of cysts was inhibited by Chiron99021 and Valproic acid, which potentiates Wnt signalling. Chiron99021 and Valproic acid restrict the growth advantage of Apc mutant cells while stimulating that of wild-type cells, suggesting that excessive Wnt signalling reduces the relative fitness of Apc mutant cells. As a proof of concept, we demonstrated that Chiron99021-treated Apc mutant organoids were rendered susceptible to TSA-induced apoptosis, while wild-type cells were protected.

  18. Gamma ray induced mutants in Coleus

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, K; Jos, J S [Central Tuber Crops Research Institute, Trivandrum, Kerala (India)

    1988-07-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M{sub 1}V{sub 1} generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m{sup 2} area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing.

  19. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M 1 V 1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m 2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  20. Mutants of Agrobacterium tumefaciens with elevated vir gene expression

    International Nuclear Information System (INIS)

    Pazour, G.J.; Ta, C.N.; Das, A.

    1991-01-01

    Expression of Agrobacterium tumefaciens virulence (vir) genes requires virA, virG, and a plant-derived inducing compound such as acetosyringone. To identify the critical functional domains of virA and virG, a mutational approach was used. Agrobacterium A136 harboring plasmid pGP159, which contains virA, virG, and a reporter virB:lacZ gene fusion, was mutagenized with UV light or nitrosoguanidine. Survivors that formed blue colonies on a plate containing 5-bromo-4-chloro-3-indolyl beta-D-galactoside were isolated and analyzed. Quantification of beta-galactosidase activity in liquid assays identified nine mutant strains. By plasmid reconstruction and other procedures, all mutations mapped to the virA locus. These mutations caused an 11- to 560-fold increase in the vegetative level of virB:lacZ reporter gene expression. DNA sequence analysis showed that the mutations are located in four regions of VirA: transmembrane domain one, the active site, a glycine-rich region with homology to ATP-binding sites, and a region at the C terminus that has homology to the N terminus of VirG

  1. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins

    Science.gov (United States)

    Nadeau, Scott; An, Wei; Palermo, Nick; Feng, Dan; Ahmad, Gulzar; Dong, Lin; Borgstahl, Gloria E. O.; Natarajan, Amarnath; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2013-01-01

    Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers. PMID:23997989

  2. Induction and isolation of DNA transformation mutants in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hegerich, P.A.; Bruschi, C.V.

    1987-01-01

    The objective of this research was to induce and isolate mutants of the yeast Saccharomyces cerevisiae which have become transformable by purified plasmid DNA. Non-transformable yeast cells were mutagenized by ultraviolet light using a 65% lethal dose (480 ergs/mm 2 ). After a period of overnight liquid holding recovery, the irradiated cells were subjected to DNA transformation using our CaCl 2 protocol with the multi-marker shuttle plasmid pBB carrying the LEU 2 leucine gene. Following transformation the colonies that grew on selective leucineless medium were identified and subjected to further genetic analysis. From a total of 1 x 10 9 cells the authors have isolated 7 colonies deriving from putative mutants that have acquired the capability to uptake plasmid DNA. The transformants were cured from the plasmid by its mitotic loss on non-selective medium, then re-transformed to verify their genetic competence to give rise to a number of transformants comparable to transformable strains. We have identified and isolated one mutant, coded trs-1, which is able to reproduce a frequency of transformation comparable with the tranformable control. They, therefore, conclude that this mutant is specific for plasmid DNA transformation and that the mutation is mitotically stable

  3. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    International Nuclear Information System (INIS)

    Yuliasti; Sudarsono

    2011-01-01

    The main limited factors of soybean plants expansion in acid soil are Aluminium (Al) toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl 3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl 3 under in vitro and in vivo condition. Addition of 15 part per million (ppm) AlCl 3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl 3 concentrations (15 ppm) under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100 gr = 81 ppm Al +3 . (author)

  4. Isolation and partial characterization of a mutant of Bacillus thuringiensis producing melanin Isolamento e caracterização parcial de um mutante de Bacillus thuringiensis produtor de melanina

    Directory of Open Access Journals (Sweden)

    Gislayne T. Vilas-Bôas

    2005-09-01

    Full Text Available A mutant (407-P of Bacillus thuringiensis subsp. thuringiensis strain 407 producing a melanin was obtained after treatment with the mutagenic agent ethyl-methane-sulfonate. Several microbiological and biochemical properties of the two strains were analyzed and the results were similar. The mutant 407-P was also incorporated into non-sterilized soil samples, recovered, easily identified, and quantified, what enables its use in ecology of B. thuringiensis.Um mutante (407-P da linhagem Bacillus thuringiensis subsp. thuringiensis 407 produtor de melanina foi obtido após tratamento com o agente mutagênico etil-metano-sulfonato. Diversas propriedades microbiológicas e bioquímicas das duas linhagens foram analisadas e os resultados foram similares. O mutante 407-P foi incorporado em amostras de solo não esterilizado, recuperado, facilmente identificado e quantificado, possibilitando seu uso em estudos de ecologia de B. thuringiensis.

  5. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    Science.gov (United States)

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  6. Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.).

    Science.gov (United States)

    Kim, Backki; Woo, Sunmin; Kim, Mi-Jung; Kwon, Soon-Wook; Lee, Joohyun; Sung, Sang Hyun; Koh, Hee-Jong

    2018-02-15

    Flavonoids are naturally occurring phenolic compounds with potential health-promoting activities. Although anthocyanins and phenolic acids in coloured rice have been investigated, few studies have focused on flavonoids. Herein, we analysed flavonoids in a yellow grain rice mutant using UHPLC-DAD-ESI-Q-TOF-MS, and identified 19 flavonoids by comparing retention times and accurate mass measurements. Among them, six flavonoids, isoorientin, isoorientin 2″-O-glucoside, vitexin 2″-O-glucoside, isovitexin, isoscoparin 2″-O-glucoside and isoscoparin, were isolated and fully identified from the yellow grain rice mutant, and the levels were significantly higher than wild-type, with isoorientin particularly abundant in mutant embryo. Significant differences in total phenolic compounds and antioxidant activity were observed in mutant rice by DPPH, FRAP and TEAC assays. The results suggest that the representative six flavonoids may play an important role in colouration and antioxidant activity of embryo and endosperm tissue. The findings provide insight into flavonoid biosynthesis and the possibility of improving functionality in rice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene

    NARCIS (Netherlands)

    Soppe, W.J.J.; Jacobsen, S.E.; Alonso-Blanco, C.; Jackson, J.P.; Kakutani, T.; Koornneef, M.; Peeters, A.J.M.

    2000-01-01

    The transition to flowering in Arabidopsis thaliana is delayed in fwa mutant plants. FWA was identified by loss-of-function mutations in normally flowering revertants of the fwa mutant, and it encodes a homeodomain-containing transcription factor. The DNA sequence of wild-type and fwa mutant alleles

  8. Identification of diphtheria toxin R domain mutants with enhanced inhibitory activity against HB-EGF.

    Science.gov (United States)

    Suzuki, Keisuke; Mizushima, Hiroto; Abe, Hiroyuki; Iwamoto, Ryo; Nakamura, Haruki; Mekada, Eisuke

    2015-05-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a ligand of EGF receptor, is involved in the growth and malignant progression of cancers. Cross-reacting material 197, CRM197, a non-toxic mutant of diphtheria toxin (DT), specifically binds to the EGF-like domain of HB-EGF and inhibits its mitogenic activity, thus CRM197 is currently under evaluation in clinical trials for cancer therapy. To develop more potent DT mutants than CRM197, we screened various mutant proteins of R domain of DT, the binding site for HB-EGF. A variety of R-domain mutant proteins fused with maltose-binding protein were produced and their inhibitory activity was evaluated in vitro. We found four R domain mutants that showed much higher inhibitory activity against HB-EGF than wild-type (WT) R domain. These R domain mutants suppressed HB-EGF-dependent cell proliferation more effectively than WT R domain. Surface plasmon resonance revealed their higher affinity to HB-EGF than WT R domain. CRM197(R460H) carrying the newly identified mutation showed increased cell proliferation inhibitory activity and affinity to HB-EGF. These results suggest that CRM197(R460H) or other recombinant proteins carrying newly identified mutation(s) in the R domain are potential therapeutics targeting HB-EGF. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  9. Selection of high hectolitre weight mutants of winter wheat

    International Nuclear Information System (INIS)

    Crowley, C.; Jones, P.

    1989-01-01

    Grain quality in wheat includes hectolitre weight (HLW) besides protein content and thousand-grain weight (TGW). The British winter wheat variety ''Guardian'' has a very high yield potential. Although the long grain of ''Guardian'' results in a desirable high TGW the HLW is too low. To select mutants exhibiting increased HLW the character was first analyzed to identify traits that could more easily be screened for using M 2 seeds. In comparison of 6 wheat cultivars, correlation analyses with HLW resulted in coefficients of -0.86 (grain length, L:P 2 seeds for shorter, less prolate grains. Mutagenesis was carried out using EMS sulphonate (1.8 or 3.6%), sodium azide (2 or 20 mM) or X-rays (7.5 or 20 kR). 69 M 2 grains with altered shape were selected. Examination of the M 3 progeny confirmed 6 grain-shape mutants, most of them resulting from EMS treatment (Table). Two of the mutants showed TGW values significantly below the parental variety, but three mutants exhibited HLW and TGW values significantly greater than those of the parental variety. Microplot yield trails on selected M 3 lines are in progress. The influence of physical grain characteristics on HLW offers prospects for mechanical fractionation of large M 2 populations. The application of gravity separators (fractionation on the basis of grain density) and sieves (fractionation on the basis of grain length) in screening mutants possessing improved grain quality is being investigated

  10. The Swedish mutant barley collection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  11. The Swedish mutant barley collection

    International Nuclear Information System (INIS)

    1989-01-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  12. Mutants of alfalfa mosaic virus

    International Nuclear Information System (INIS)

    Roosien, J.

    1983-01-01

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  13. Mutant genes in pea breeding

    International Nuclear Information System (INIS)

    Swiecicki, W.K.

    1990-01-01

    Full text: Mutations of genes Dpo (dehiscing pods) and A (anthocyanin synthesis) played a role in pea domestication. A number of other genes were important in cultivar development for 3 types of usage (dry seeds, green vegetable types, fodder), e.g. fn, fna, le, p, v, fas and af. New genes (induced and spontaneous), are important for present ideotypes and are registered by the Pisum Genetics Association (PGA). Comparison of a pea variety ideotype with the variation available in gene banks shows that breeders need 'new' features. In mutation induction experiments, genotype, mutagen and method of treatment (e.g. combined or fractionated doses) are varied for broadening the mutation spectrum and selecting more genes of agronomic value. New genes are genetically analysed. In Poland, some mutant varieties with the gene afila were registered, controlling lodging by a shorter stem and a higher number of internodes. Really non-lodging pea varieties could strongly increase seed yield. But the probability of detecting a major gene for lodging resistance is low. Therefore, mutant genes with smaller influence on plant architecture are sought, to combine their effect by crossing. Promising seem to be the genes rogue, reductus and arthritic as well as a number of mutant genes not yet genetically identified. The gene det for terminal inflorescence - similarly to Vicia faba - changes plant development. Utilisation of assimilates and ripening should be better. Improvement of harvest index should give higher seed yield. A number of genes controlling disease resistance are well known (eg. Fw, Fnw, En, mo and sbm). Important in mass screening of resistance are closely linked gene markers. Pea gene banks collect respective lines, but mutants induced in highly productive cultivars would be better. Inducing gene markers sometimes seems to be easier than transfer by crossing. Mutation induction in pea breeding is probably more important because a high number of monogenic features are

  14. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  15. The D173G mutation in ADAMTS-13 causes a severe form of congenital thrombotic thrombocytopenic purpura

    KAUST Repository

    Lancellotti, S.

    2015-08-13

    Congenital thrombotic thrombocytopenic purpura (TTP) is a rare form of thrombotic microangiopathy, inherited with autosomal recessive mode as a dysfunction or severe deficiency of ADAMTS-13 (A Disintegrin And Metalloprotease with ThromboSpondin 1 repeats Nr. 13), caused by mutations in the ADAMTS-13 gene. About 100 mutations of the ADAMTS-13 gene were identified so far, although only a few characterised by in vitro expression studies. A new Asp to Gly homozygous mutation at position 173 of ADAMTS-13 sequence was identified in a family of Romanian origin, with some members affected by clinical signs of TTP. In two male sons, this mutation caused a severe (< 3 %) deficiency of ADAMTS-13 activity and antigen level, associated with periodic thrombocytopenia, haemolytic anaemia and mild mental confusion. Both parents, who are cousins, showed the same mutation in heterozygous form. Expression studies of the mutant ADAMTS-13, performed in HEK293 cells, showed a severe decrease of the enzyme’s activity and secretion, although the protease was detected inside the cells. Molecular dynamics found that in the D173G mutant the interface area between the metalloprotease domain and the disintegrin-like domain significantly decreases during the simulations, while the proline-rich 20 residues linker region (LR, 285–304) between them undergoes extensive conformational changes. Inter-domain contacts are also significantly less conserved in the mutant compared to the wild-type. Both a decrease of the inter-domain contacts along with a substantial conformational rearrangement of LR interfere with the proper maturation and folding of the mutant ADAMTS-13, thus impairing its secretion.

  16. The D173G mutation in ADAMTS-13 causes a severe form of congenital thrombotic thrombocytopenic purpura

    KAUST Repository

    Lancellotti, S.; Peyvandi, F.; Pagliari, M.; Cairo, A.; Abdel-Azeim, Safwat; Chermak, Edrisse; Lazzareschi, I.; Mastrangelo, S.; Cavallo, Luigi; Oliva, R.; De Cristofaro, R.

    2015-01-01

    Congenital thrombotic thrombocytopenic purpura (TTP) is a rare form of thrombotic microangiopathy, inherited with autosomal recessive mode as a dysfunction or severe deficiency of ADAMTS-13 (A Disintegrin And Metalloprotease with ThromboSpondin 1 repeats Nr. 13), caused by mutations in the ADAMTS-13 gene. About 100 mutations of the ADAMTS-13 gene were identified so far, although only a few characterised by in vitro expression studies. A new Asp to Gly homozygous mutation at position 173 of ADAMTS-13 sequence was identified in a family of Romanian origin, with some members affected by clinical signs of TTP. In two male sons, this mutation caused a severe (< 3 %) deficiency of ADAMTS-13 activity and antigen level, associated with periodic thrombocytopenia, haemolytic anaemia and mild mental confusion. Both parents, who are cousins, showed the same mutation in heterozygous form. Expression studies of the mutant ADAMTS-13, performed in HEK293 cells, showed a severe decrease of the enzyme’s activity and secretion, although the protease was detected inside the cells. Molecular dynamics found that in the D173G mutant the interface area between the metalloprotease domain and the disintegrin-like domain significantly decreases during the simulations, while the proline-rich 20 residues linker region (LR, 285–304) between them undergoes extensive conformational changes. Inter-domain contacts are also significantly less conserved in the mutant compared to the wild-type. Both a decrease of the inter-domain contacts along with a substantial conformational rearrangement of LR interfere with the proper maturation and folding of the mutant ADAMTS-13, thus impairing its secretion.

  17. Deep Sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant

    Directory of Open Access Journals (Sweden)

    Takanoi eHirano

    2012-06-01

    Full Text Available Porphyromonas gingivalis is a major etiological agent and chronic and aggressive forms of periodontal disease. The organism is an assacharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve noncoding RNAs were identified, including 11 small RNAs and one cobalamine riboswitch. Fifty seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen.

  18. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  19. Disturbed secretion of mutant adiponectin associated with the metabolic syndrome.

    Science.gov (United States)

    Kishida, Ken; Nagaretani, Hiroyuki; Kondo, Hidehiko; Kobayashi, Hideki; Tanaka, Sachiyo; Maeda, Norikazu; Nagasawa, Azumi; Hibuse, Toshiyuki; Ohashi, Koji; Kumada, Masahiro; Nishizawa, Hitoshi; Okamoto, Yoshihisa; Ouchi, Noriyuki; Maeda, Kazuhisa; Kihara, Shinji; Funahashi, Tohru; Matsuzawa, Yuji

    2003-06-20

    Adiponectin, an adipocyte-derived protein, consists of collagen-like fibrous and complement C1q-like globular domains, and circulates in human plasma in a multimeric form. The protein exhibits anti-diabetic and anti-atherogenic activities. However, adiponectin plasma concentrations are low in obese subjects, and hypoadiponectinemia is associated with the metabolic syndrome, which is a cluster of insulin resistance, type 2 diabetes mellitus, hypertension, and dyslipidemia. We have recently reported a missense mutation in the adiponectin gene, in which isoleucine at position 164 in the globular domain is substituted with threonine (I164T). Subjects with this mutation showed markedly low level of plasma adiponectin and clinical features of the metabolic syndrome. Here, we examined the molecular characteristics of the mutant protein associated with a genetic cause of hypoadiponectinemia. The current study revealed (1) the mutant protein showed an oligomerization state similar to the wild-type as determined by gel filtration chromatography and, (2) the mutant protein exhibited normal insulin-sensitizing activity, but (3) pulse-chase study showed abnormal secretion of the mutant protein from adipose tissues. Our results suggest that I164T mutation is associated with hypoadiponectinemia through disturbed secretion into plasma, which may contribute to the development of the metabolic syndrome.

  20. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates.

    Science.gov (United States)

    Yoshida, Hiromi; Yoshihara, Akihide; Ishii, Tomohiko; Izumori, Ken; Kamitori, Shigehiro

    2016-12-01

    Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.

  1. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  2. Trimeric form of intracellular ATP synthase subunit β of Aggregatibacter actinomycetemcomitans binds human interleukin-1β.

    Directory of Open Access Journals (Sweden)

    Annamari Paino

    Full Text Available Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation.

  3. Comparative analysis of the protein compositions between wild type and body color mutant of helicoverpa armigera adult

    International Nuclear Information System (INIS)

    He Lihua; Chen Jin'e; Liu Yan; Wang Yongqiang; Liu Peigang; Meng Zhiqi

    2012-01-01

    To gain an in-depth understanding of the fineness and regulation mechanism of body color mutant of Helicoverpa armigera Hbner, the protein composition differences between adult of dominant mutant, recessive mutant and wild type were studied using the SDS-PAGE combined with MALDI-TOF-TOF/MS and bioinformatics analysis. The results indicated that the protein composition of the dominant mutant and wild type had little difference. However, there were obvious differences between the recessive mutant and wild-type. Three specific stripe were chosen for mass spectrometry and bioinformatics analysis, and two types of proteins related to energy metabolism and cytoskeleton were identified. These findings suggested that the two types of proteins may be associated with occurrence and regulation of body color mutant traits of H. armigera. (authors)

  4. From one body mutant to one cell mutant. A progress of radiation breeding in crops

    International Nuclear Information System (INIS)

    Nagatomi, Shigeki

    1996-01-01

    An effective method was established to obtain non-chimeral mutants with wide spectrum of flower colors, regenerated from floral organs on which mutated sectors were come out on chronic irradiated plants. By this way, six mutant varieties of flower colors have been selected from one pink flower of chrysanthemum, and cultivated for cut-flower production. By the same method, 3 mutant varieties with small and spray type flowers were selected in Eustoma. Mutant varieties such as a rust disease resistant in sugarcane, 6 dwarfs in Cytisus and pure-white mushroom in velvet shank have been selected successively for short period. (J.P.N.)

  5. Evaluation of some garlic (Allium Sativum L.) mutants resistant to white rot disease by RAPD analysis

    International Nuclear Information System (INIS)

    Nabulsi, I.; Al-Safadi, B.; Mir ali, N.; Arabi, M.I.E.

    2002-01-01

    Random amplified polymorphic DNA (RAPD) analysis was used to evaluate genetic diversity among eight garlic mutants resistant to white rot disease (Sclerotium cepivorum) and two controls. Twelve of 13 synthetic random primers were found to identify polymorphism in amplification products. Mutants characterised with moderate resistance to white rot were closely related to the control using cluster and correlation analyses. On the other hand, highly resistant mutants were quite distant from the control with low correlation coefficients. The banding patterns produced by primer OPB-15 (GGAAGGGTGTT) with highly resistant mutants may be used as genetic markers for early selection of resistant plants. (author)

  6. Kinetic and structural evidences on human prolidase pathological mutants suggest strategies for enzyme functional rescue.

    Directory of Open Access Journals (Sweden)

    Roberta Besio

    Full Text Available Prolidase is the only human enzyme responsible for the digestion of iminodipeptides containing proline or hydroxyproline at their C-terminal end, being a key player in extracellular matrix remodeling. Prolidase deficiency (PD is an intractable loss of function disease, characterized by mutations in the prolidase gene. The exact causes of activity impairment in mutant prolidase are still unknown. We generated three recombinant prolidase forms, hRecProl-231delY, hRecProl-E412K and hRecProl-G448R, reproducing three mutations identified in homozygous PD patients. The enzymes showed very low catalytic efficiency, thermal instability and changes in protein conformation. No variation of Mn(II cofactor affinity was detected for hRecProl-E412K; a compromised ability to bind the cofactor was found in hRecProl-231delY and Mn(II was totally absent in hRecProl-G448R. Furthermore, local structure perturbations for all three mutants were predicted by in silico analysis. Our biochemical investigation of the three causative alleles identified in perturbed folding/instability, and in consequent partial prolidase degradation, the main reasons for enzyme inactivity. Based on the above considerations we were able to rescue part of the prolidase activity in patients' fibroblasts through the induction of Heath Shock Proteins expression, hinting at new promising avenues for PD treatment.

  7. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  8. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    Science.gov (United States)

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA Misfolding Found to Cause Cancer in IDH-mutant Gliomas

    Science.gov (United States)

    Researchers studying IDH-mutant brain tumors have identified a previously unknown genetic mechanism that may contribute to cancer. A change in how DNA is arranged, or packaged, in the cell nucleus may inappropriately activate a gene associated with brain cancer.

  10. Engineering a pH responsive pore forming protein.

    Science.gov (United States)

    Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor

    2017-02-08

    Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.

  11. Engineering a pH responsive pore forming protein

    Science.gov (United States)

    Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor

    2017-02-01

    Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.

  12. Structural basis for the changed substrate specificity of Drosophila melanogaster deoxyribonucleoside kinase mutant N64D

    DEFF Research Database (Denmark)

    Welin, M.; Skovgaard, T.; Knecht, Wolfgang

    2005-01-01

    The Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) double mutant N45D/N64D was identified during a previous directed evolution study. This mutant enzyme had a decreased activity towards the natural substrates and decreased feedback inhibition with dTTP, whereas the activity with 3...

  13. Induction of Mutants in Durum Wheat

    International Nuclear Information System (INIS)

    AL-Ubaidi, M.; Ibrahim, I.; AL-Hadithi, A.

    2002-01-01

    This investigation presents a breeding program for induction and development of a new genotype of durum wheat, resistant to lodging with high yield, by irradiation durum wheat hybrids (F2) with gamma rays 100 Gy, during 1990-1997 cultivation seasons. This program involves: induction of variability, selection evaluation of the mutants at three locations: Twaitha (Baghdad) Latifya ( Babylon) and Swari (Kutt). All mutants showed resistance to lodging and there was a significant reduction in plant height. Mutant SIXIZ-22 surpassed other mutants and its origin in lodging resistance and plant height (83.5,82.8 and 89.4 cm) in the three locations at generation M5 and M6, respectively. Also, there were significant differences between mutant and their origin in the number of spikes/M 2 and grain yild during the two successive generation. On the other hand, mutant IZxCO-105 surpassed other mutants in the number of spikes/M 2 (231.8,242.3 and 292) and grain yield (4336,3376 and 5232 kg/ha) in all testing location, respectively . (authors) 14 refs., 4 tabs

  14. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA.

    Science.gov (United States)

    Zhao, Carolyn Y; Grinkevich, Vera V; Nikulenkov, Fedor; Bao, Wenjie; Selivanova, Galina

    2010-05-01

    Expression of mutant p53 correlates with poor prognosis in many tumors, therefore strategies aimed at reactivation of mutant p53 are likely to provide important benefits for treatment of tumors that are resistant to chemotherapy and radiotherapy. We have previously identified and characterized a small molecule RITA which binds p53 and induces a conformational change which prevents the binding of p53 to several inhibitors, including its own destructor MDM2. In this way, RITA rescues the tumor suppression function of wild type p53. Here, we demonstrate that RITA suppressed the growth and induced apoptosis in human tumor cell lines of a diverse origin carrying mutant p53 proteins. RITA restored transcriptional transactivation and transrepression function of several hot spot p53 mutants. The ability of RITA to rescue the activity of different p53 mutants suggests its generic mechanism of action. Thus, RITA is a promising lead for the development of anti-cancer drugs that reactivate the tumor suppressor function of p53 in cancer cells irrespective whether they express mutant or wild type p53.

  15. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    Directory of Open Access Journals (Sweden)

    Andrey A Filippov

    Full Text Available BACKGROUND: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. CONCLUSIONS/SIGNIFICANCE: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  16. Molecular mechanisms associated with leukemic transformation of MPL-mutant myeloproliferative neoplasms

    DEFF Research Database (Denmark)

    Beer, Philip A; Ortmann, Christina A; Stegelmann, Frank

    2010-01-01

    Somatic activating mutations in MPL, the thrombopoietin receptor, occur in the myeloproliferative neoplasms, although virtually nothing is known about their role in evolution to acute myeloid leukemia. In this study, the MPL T487A mutation, identified in de novo acute myeloid leukemia......, was not detected in 172 patients with a myeloproliferative neoplasm. In patients with a prior MPL W515L-mutant myeloproliferative neoplasm, leukemic transformation was accompanied by MPL-mutant leukemic blasts, was seen in the absence of prior cytoreductive therapy and often involved loss of wild-type MPL...

  17. RAF Suppression Synergizes with MEK Inhibition in KRAS Mutant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Simona Lamba

    2014-09-01

    Full Text Available KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition. An unbiased kinome short hairpin RNA (shRNA-based screen confirmed this synthetic lethal interaction in colorectal as well as in lung cancer cells bearing KRAS mutations. Compounds targeting RAF kinases can reverse resistance to the MEK inhibitor selumetinib. MEK inhibition induces RAS activation and BRAF-RAF1 dimerization and sustains MEK-ERK signaling, which is responsible for intrinsic resistance to selumetinib. Prolonged dual blockade of RAF and MEK leads to persistent ERK suppression and efficiently induces apoptosis. Our data underlie the relevance of developing combinatorial regimens of drugs targeting the RAF-MEK pathway in KRAS mutant tumors.

  18. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    Science.gov (United States)

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  19. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  20. Incomplete excision repair process after UV-irradiation in MUT-mutants of Proteus mirabillis

    International Nuclear Information System (INIS)

    Stoerl, K.

    1977-01-01

    MUT-mutants of P. mirabilis seem to be able to perform the incision step in the course of excision repair. In contrast to the corresponding wildtype strains with MUT-mutants the number of single-strand breaks formed after UV-irradiation is independent of the UV-dose up to about 720 erg/mm 2 . Incubation in minimal medium over a longer time does not result in completion of excision repair; about 3-6 single-strand breaks in the DNA of these mutants remain open. Likewise, the low molecular weight of the newly synthesized daughter DNA confirms an incompletely proceeding or delayed repair process. As a possible reason for the mutator phenotype an alteration of the DNA-polymerase playing a role in excision and resynthesis steps of excision repair is discussed. (author)

  1. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    International Nuclear Information System (INIS)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.; Wehnert, Manfred; Huebner, Stefan

    2009-01-01

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  2. Induction of mutagenized tomato populations for investigation on agronomic traits and mutant phenotyping

    Directory of Open Access Journals (Sweden)

    Rafiul Amin Laskar

    2018-01-01

    Full Text Available Global demand for tomato production increased tremendously due to its diverse utility in raw, cooked and processed form of food. This necessitates the continued supply of highly nutritious and better yielding improved cultivars to the producers, considering the rapid changing agro-climatic condition. In this study, induced mutant tomato populations of widely recommended tomato genotype Arka Vikas (Sel-22 were generated using chemical mutagen ethyl methane sulfonate (EMS, hydrazine hydrates (HZ and their combined treatments. In the in vitro study, a gradual reduction in germination percentage and seedling height occurred with the increasing concentrations of mutagens. Combination of EMS and HZ caused maximum biological inhibition followed by EMS and HZ treatments alone in M1 generation. The rate of survival and fertility in M1 plants of tomato was found highly affected due to mutagenic treatment, in which sensitivity toward combined treatment was found highest followed by EMS and HZ. Inspection on induced phenotypic variations in individual plants of M2 population resulted in identification and isolation of wide range of mutants with altered phenotypes. Highest mutation frequency was resulted by combined mutagens followed by the EMS and HZ treatment. Agronomic trait analyses showed intra and inter treatment variations in three quantitative traits (Plant height, fertile branch per plant and fruits per plant of M2 mutagenized population. Assessment on rate of mutant recovery in M2 population showed highest mutant recovery is possible with combination treatments and then 0.02% HZ followed by 0.02% EMS. In the present study, phenotyping of the mutants revealed that vegetative organs (‘plant size’, ‘plant habit’ and ‘leaf morphology’ was the most sensitive category (69.33% to which most of the mutant belongs, followed by ‘fruit color and size’ (20.27% and ‘germination’ (9.79%. Comparative investigation on number of mutants and

  3. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome

    Directory of Open Access Journals (Sweden)

    Stefanie M. Percival

    2015-08-01

    Full Text Available Mutations in ESCO2, one of two establishment of cohesion factors necessary for proper sister chromatid cohesion (SCC, cause a spectrum of developmental defects in the autosomal-recessive disorder Roberts syndrome (RBS, warranting in vivo analysis of the consequence of cohesion dysfunction. Through a genetic screen in zebrafish targeting embryonic-lethal mutants that have increased genomic instability, we have identified an esco2 mutant zebrafish. Utilizing the natural transparency of zebrafish embryos, we have developed a novel technique to observe chromosome dynamics within a single cell during mitosis in a live vertebrate embryo. Within esco2 mutant embryos, we observed premature chromatid separation, a unique chromosome scattering, prolonged mitotic delay, and genomic instability in the form of anaphase bridges and micronuclei formation. Cytogenetic studies indicated complete chromatid separation and high levels of aneuploidy within mutant embryos. Amongst aneuploid spreads, we predominantly observed decreases in chromosome number, suggesting that either cells with micronuclei or micronuclei themselves are eliminated. We also demonstrated that the genomic instability leads to p53-dependent neural tube apoptosis. Surprisingly, although many cells required Esco2 to establish cohesion, 10-20% of cells had only weakened cohesion in the absence of Esco2, suggesting that compensatory cohesion mechanisms exist in these cells that undergo a normal mitotic division. These studies provide a unique in vivo vertebrate view of the mitotic defects and consequences of cohesion establishment loss, and they provide a compensation-based model to explain the RBS phenotypes.

  4. Spatial constraints govern competition of mutant clones in human epidermis.

    Science.gov (United States)

    Lynch, M D; Lynch, C N S; Craythorne, E; Liakath-Ali, K; Mallipeddi, R; Barker, J N; Watt, F M

    2017-10-24

    Deep sequencing can detect somatic DNA mutations in tissues permitting inference of clonal relationships. This has been applied to human epidermis, where sun exposure leads to the accumulation of mutations and an increased risk of skin cancer. However, previous studies have yielded conflicting conclusions about the relative importance of positive selection and neutral drift in clonal evolution. Here, we sequenced larger areas of skin than previously, focusing on cancer-prone skin spanning five decades of life. The mutant clones identified were too large to be accounted for solely by neutral drift. Rather, using mathematical modelling and computational lattice-based simulations, we show that observed clone size distributions can be explained by a combination of neutral drift and stochastic nucleation of mutations at the boundary of expanding mutant clones that have a competitive advantage. These findings demonstrate that spatial context and cell competition cooperate to determine the fate of a mutant stem cell.

  5. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  6. Inducement and identification of an endosperm mutant in maize

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... Drummond EP, Ausubel FM (2000). Three unique mutants of. Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J. 24(2): 205-218. Dinges JR, Colleoni C, Myers AM, James MG (2001). Molecular structure of three mutations at the maize sugary1 locus and their.

  7. Identification of a mutant α1 Na/K-ATPase that pumps but is defective in signal transduction.

    Science.gov (United States)

    Lai, Fangfang; Madan, Namrata; Ye, Qiqi; Duan, Qiming; Li, Zhichuan; Wang, Shaomeng; Si, Shuyi; Xie, Zijian

    2013-05-10

    It has not been possible to study the pumping and signaling functions of Na/K-ATPase independently in live cells. Both cell-free and cell-based assays indicate that the A420P mutation abolishes the Src regulatory function of Na/K-ATPase. A420P mutant has normal pumping but not signaling function. Identification of Src regulation-null mutants is crucial for addressing physiological role of Na/K-ATPase. The α1 Na/K-ATPase possesses both pumping and signaling functions. However, it has not been possible to study these functions independently in live cells. We have identified a 20-amino acid peptide (Ser-415 to Gln-434) (NaKtide) from the nucleotide binding domain of α1 Na/K-ATPase that binds and inhibits Src in vitro. The N terminus of NaKtide adapts a helical structure. In vitro kinase assays showed that replacement of residues that contain a bulky side chain in the helical structure of NaKtide by alanine abolished the inhibitory effect of the peptide on Src. Similarly, disruption of helical structure by proline replacement, either single or in combination, reduced the inhibitory potency of NaKtide on Src. To identify mutant α1 that retains normal pumping function but is defective in Src regulation, we transfected Na/K-ATPase α1 knockdown PY-17 cells with expression vectors of wild type or mutant α1 carrying Ala to Pro mutations in the region of NaKtide helical structure and generated several stable cell lines. We found that expression of either A416P or A420P or A425P mutant fully restored the α1 content and consequently the pumping capacity of cells. However, in contrast to A416P, either A420P or A425P mutant was incapable of interacting and regulating cellular Src. Consequently, expression of these two mutants caused significant inhibition of ouabain-activated signal transduction and cell growth. Thus we have identified α1 mutant that has normal pumping function but is defective in signal transduction.

  8. Ascertainment of the effect of differential growth rates of mutants on observed mutant frequencies in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Knaap, A.G.A.C.; Simons, J.W.I.M.

    1983-01-01

    As it is not known to what extent differential growth rates of induced mutants lead to over- and under-representation of mutants in treated populations and thereby affect the determination of mutant frequencies, the mutation induction in X-irradiated L5178Y mouse lymphoma cells was determined via two methods. The first method involves the standard protocol which may suffer from the effect of differential growth rates, while the second method is based upon the fluctuation test in which the differential growth rates can be actually measured. It appeared that the standard protocol led to a mutant frequency that was similar to the mutant frequency determined in the fluctuation test. Therefore, the standard protocol appears to lead to only a minor under-estimation if any. Substantial heterogeneity in growth rates of induced mutants was observed, but the mutants with a selective advantage appear largely to compensate for the mutants that are lost because of selective disadvantage. It was calculated that the chance for isolating the same mutant twice from a treated population had been increased 2.2-fold because of the observed differential growth rates. (orig./AJ)

  9. Traits and meiosis in mutant of impatiens balsamina induced by space treatment

    International Nuclear Information System (INIS)

    Tang Zesheng; Yang Jun; Zhao Yan; Yuan Haiyun

    2004-01-01

    A mutant of Impatiens balsamina was obtained after space induction, and its traits and meiosis were investigated. Characters such as color and form of the mutant expressed great variation. Observation of meiosis showed that most of pollen mother cells were normal in meiosis phase I, except the disproportion of chromosomal segregation, lagging chromosome and dispersal chromosome in anaphase I. Most pollen mother cells developed into microspores tetrad after meiosis, but paraspores also appeared. The number of chromosome in microspore varied from 1 to 21, even more than 30. The shape and size of the microspores fluctuated apparently, and the size of the microspores was in positive correlation to chromosome number. When staining with iodic solution, most of the pollens showed sterility, which was in consistence with the low setting percentage of the mutant plant. It was thought that space induction caused the variation of size, fertility and the abnormal meiosis

  10. Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori

    Science.gov (United States)

    Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun

    2015-07-01

    The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.

  11. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems.

    Science.gov (United States)

    Strain, Elisabeth M A; Thomson, Russell J; Micheli, Fiorenza; Mancuso, Francesco P; Airoldi, Laura

    2014-11-01

    Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta-analysis, using data from 118 studies to test the hypothesis that ongoing global declines in the dominant habitat along temperate rocky coastlines, forests of canopy-forming algae and/or their replacement by mat-forming algae are driven by the nonadditive interactions between local anthropogenic stressors that can be addressed through management actions (fishing, heavy metal pollution, nutrient enrichment and high sediment loads) and other stressors (presence of competitors or grazers, removal of canopy algae, limiting or excessive light, low or high salinity, increasing temperature, high wave exposure and high UV or CO2 ), not as easily amenable to management actions. In general, the cumulative effects of local anthropogenic and other stressors had negative effects on the growth and survival of canopy-forming algae. Conversely, the growth or survival of mat-forming algae was either unaffected or significantly enhanced by the same pairs of stressors. Contrary to our predictions, the majority of interactions between stressors were additive. There were however synergistic interactions between nutrient enrichment and heavy metals, the presence of competitors, low light and increasing temperature, leading to amplified negative effects on canopy-forming algae. There were also synergistic interactions between nutrient enrichment and increasing CO2 and temperature leading to amplified positive effects on mat-forming algae. Our review of the current literature shows that management of nutrient levels, rather than fishing, heavy metal pollution or high sediment loads, would provide the greatest opportunity for preventing the shift from canopy to mat-forming algae, particularly in enclosed bays or estuaries because of the

  12. Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism.

    Science.gov (United States)

    Butler, Jeffrey A; Ventura, Natascia; Johnson, Thomas E; Rea, Shane L

    2010-12-01

    The Caenorhabditis elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain (ETC) functionality, yet, surprisingly, they are long lived. We have previously proposed that Mit mutants supplement their energy needs by exploiting alternate energy production pathways normally used by wild-type animals only when exposed to hypoxic conditions. We have also proposed that longevity in the Mit mutants arises as a property of their new metabolic state. If longevity does arise as a function of metabolic state, we would expect to find a common metabolic signature among these animals. To test these predictions, we established a novel approach monitoring the C. elegans exometabolism as a surrogate marker for internal metabolic events. Using HPLC-ultraviolet-based metabolomics and multivariate analyses, we show that long-lived clk-1(qm30) and isp-1(qm150) Mit mutants have a common metabolic profile that is distinct from that of aerobically cultured wild-type animals and, unexpectedly, wild-type animals cultured under severe oxygen deprivation. Moreover, we show that 2 short-lived mitochondrial ETC mutants, mev-1(kn1) and ucr-2.3(pk732), also share a common metabolic signature that is unique. We show that removal of soluble fumarate reductase unexpectedly increases health span in several genetically defined Mit mutants, identifying at least 1 alternate energy production pathway, malate dismutation, that is operative in these animals. Our study suggests long-lived, genetically specified Mit mutants employ a novel metabolism and that life span may well arise as a function of metabolic state.

  13. TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource.

    Science.gov (United States)

    Shikata, Masahito; Hoshikawa, Ken; Ariizumi, Tohru; Fukuda, Naoya; Yamazaki, Yukiko; Ezura, Hiroshi

    2016-01-01

    TOMATOMA (http://tomatoma.nbrp.jp/) is a tomato mutant database providing visible phenotypic data of tomato mutant lines generated by ethylmethane sulfonate (EMS) treatment or γ-ray irradiation in the genetic background of Micro-Tom, a small and rapidly growing variety. To increase mutation efficiency further, mutagenized M3 seeds were subjected to a second round of EMS treatment; M3M1 populations were generated. These plants were self-pollinated, and 4,952 lines of M3M2 mutagenized seeds were generated. We checked for visible phenotypes in the M3M2 plants, and 618 mutant lines with 1,194 phenotypic categories were identified. In addition to the phenotypic information, we investigated Brix values and carotenoid contents in the fruits of individual mutants. Of 466 samples from 171 mutant lines, Brix values and carotenoid contents were between 3.2% and 11.6% and 6.9 and 37.3 µg g(-1) FW, respectively. This metabolite information concerning the mutant fruits would be useful in breeding programs as well as for the elucidation of metabolic regulation. Researchers are able to browse and search this phenotypic and metabolite information and order seeds of individual mutants via TOMATOMA. Our new Micro-Tom double-mutagenized populations and the metabolic information could provide a valuable genetic toolkit to accelerate tomato research and potential breeding programs. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Probiotic features of Lactobacillus plantarum mutant strains.

    Science.gov (United States)

    Bove, Pasquale; Gallone, Anna; Russo, Pasquale; Capozzi, Vittorio; Albenzio, Marzia; Spano, Giuseppe; Fiocco, Daniela

    2012-10-01

    In this study, the probiotic potential of Lactobacillus plantarum wild-type and derivative mutant strains was investigated. Bacterial survival was evaluated in an in vitro system, simulating the transit along the human oro-gastro-intestinal tract. Interaction with human gut epithelial cells was studied by assessing bacterial adhesive ability to Caco-2 cells and induction of genes involved in innate immunity. L. plantarum strains were resistant to the combined stress at the various steps of the simulated gastrointestinal tract. Major decreases in the viability of L. plantarum cells were observed mainly under drastic acidic conditions (pH ≤ 2.0) of the gastric compartment. Abiotic stresses associated to small intestine poorly affected bacterial viability. All the bacterial strains significantly adhered to Caco-2 cells, with the ΔctsR mutant strain exhibiting the highest adhesion. Induction of immune-related genes resulted higher upon incubation with heat-inactivated bacteria rather than with live ones. For specific genes, a differential transcriptional pattern was observed upon stimulation with different L. plantarum strains, evidencing a possible role of the knocked out bacterial genes in the modulation of host cell response. In particular, cells from Δhsp18.55 and ΔftsH mutants strongly triggered immune defence genes. Our study highlights the relevance of microbial genetic background in host-probiotic interaction and might contribute to identify candidate bacterial genes and molecules involved in probiosis.

  15. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes.

    Science.gov (United States)

    Lochlainn, Seosamh Ó; Amoah, Stephen; Graham, Neil S; Alamer, Khalid; Rios, Juan J; Kurup, Smita; Stoute, Andrew; Hammond, John P; Østergaard, Lars; King, Graham J; White, Phillip J; Broadley, Martin R

    2011-12-08

    Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  16. High Resolution Melt (HRM analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    Directory of Open Access Journals (Sweden)

    Lochlainn Seosamh Ó

    2011-12-01

    Full Text Available Abstract Background Targeted Induced Loci Lesions IN Genomes (TILLING is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs and insertion/deletions (IN/DELs enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  17. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  18. Novel Escherichia coli umuD′ Mutants: Structure-Function Insights into SOS Mutagenesis

    Science.gov (United States)

    McLenigan, Mary; Peat, Thomas S.; Frank, Ekaterina G.; McDonald, John P.; Gonzalez, Martín; Levine, Arthur S.; Hendrickson, Wayne A.; Woodgate, Roger

    1998-01-01

    Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′. PMID:9721309

  19. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  20. Dwarf mutant of rice variety Seratus Malam

    International Nuclear Information System (INIS)

    Mugiono, P. S.; Soemanggono, A.M.R.

    1989-01-01

    Full text: Seeds of 'Seratus Malam', a local tall upland variety with long panicles and high yield potential were irradiated with 10-50 krad gamma rays in 1983. From 50,000 M 2 plants, 130 semidwarf mutants and 1 dwarf mutant were selected. The dwarf mutant M-362 was obtained from the 10 krad treatment. The mutant shows about 50% reduction in plant height, but also in number of productive tillers. Thus the yield per plant is also significantly less. However, the mutant gene is not allelic to DGWG and therefore may be useful in cross breeding. (author)

  1. Preferência de Bemisia tabaci biótipo B em linhagens mutantes de algodoeiro Bemisia tabaci biotype B preference in mutant cotton lines

    Directory of Open Access Journals (Sweden)

    Francisco das Chagas Vidal Neto

    2008-02-01

    Full Text Available Os efeitos de caracteres mutantes morfológicos do algodoeiro (Gossypium hirsutum L. r. latifolium Hutch.: folha okra, bráctea frego e planta vermelha, em relação à resistência à mosca-branca (Bemisia tabaci biótipo B Hemiptera: Aleyrodidae, foram avaliados em experimentos com ou sem chance de escolha. Os experimentos foram conduzidos em casa-de-vegetação, no delineamento de blocos ao acaso, em fatorial 23 + 1, com quatro repetições. O mutante com a característica planta vermelha foi menos atrativo e menos preferido para oviposição, em relação à planta verde, em ambos os ensaios, com ou sem escolha. Não houve preferência quanto à forma da folha e ao tipo de bráctea.The effects of cotton lines (Gossypium hirsutum L. r. latifolium Hutch. with mutants morphologic characteristics: okra leaf, frego bract and red plant in relation to host plant resistance to whitefly (Bemisia tabaci bioyipe B Hemiptera: Aleyrodidae, were evaluated in choice or no choice assays. The assays were carried out in the greenhouse conditions, according to a completely randomized block design, in a 23 + 1 in a factorial arrangement with four replications. The mutant with red plant characteristic was less attractive and less preferred for oviposition than the normal green plant does, in both, whit or without choice tests. It did not have preference in relation to the form of the leaf and bract type.

  2. Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a diverged form of LL-diaminopimelate aminotransferase.

    Science.gov (United States)

    Hudson, André O; Gilvarg, Charles; Leustek, Thomas

    2008-05-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an LL-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of L-2,3,4,5-tetrahydrodipicolinate to LL-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze LL-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae.

  3. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors

    Science.gov (United States)

    Rahme, Laurence G.; Tan, Man-Wah; Le, Long; Wong, Sandy M.; Tompkins, Ronald G.; Calderwood, Stephen B.; Ausubel, Frederick M.

    1997-01-01

    We used plants as an in vivo pathogenesis model for the identification of virulence factors of the human opportunistic pathogen Pseudomonas aeruginosa. Nine of nine TnphoA mutant derivatives of P. aeruginosa strain UCBPP-PA14 that were identified in a plant leaf assay for less pathogenic mutants also exhibited significantly reduced pathogenicity in a burned mouse pathogenicity model, suggesting that P. aeruginosa utilizes common strategies to infect both hosts. Seven of these nine mutants contain TnphoA insertions in previously unknown genes. These results demonstrate that an alternative nonvertebrate host of a human bacterial pathogen can be used in an in vivo high throughput screen to identify novel bacterial virulence factors involved in mammalian pathogenesis. PMID:9371831

  4. Characterization of a Thermo-Inducible Chlorophyll-Deficient Mutant in Barley

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2017-11-01

    Full Text Available Leaf color is an important trait for not only controlling crop yield but also monitoring plant status under temperature stress. In this study, a thermo-inducible chlorophyll-deficient mutant, named V-V-Y, was identified from a gamma-radiated population of the barley variety Vlamingh. The leaves of the mutant were green under normal growing temperature but turned yellowish under high temperature in the glasshouse experiment. The ratio of chlorophyll a and chlorophyll b in the mutant declined much faster in the first 7–9 days under heat treatment. The leaves of V-V-Y turned yellowish but took longer to senesce under heat stress in the field experiment. Genetic analysis indicated that a single nuclear gene controlled the mutant trait. The mutant gene (vvy was mapped to the long arm of chromosome 4H between SNP markers 1_0269 and 1_1531 with a genetic distance of 2.2 cM and a physical interval of 9.85 Mb. A QTL for grain yield was mapped to the same interval and explained 10.4% of the yield variation with a LOD score of 4. This QTL is coincident with the vvy gene interval that is responsible for the thermo-inducible chlorophyll-deficient trait. Fine mapping, based on the barley reference genome sequence, further narrowed the vvy gene to a physical interval of 0.428 Mb with 11 annotated genes. This is the first report of fine mapping a thermo-inducible chlorophyll-deficient gene in barley.

  5. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Science.gov (United States)

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often become resistant by developing compensatory mutations in EGFR or other growth-promoting pathways. To better understand how mutant EGFR initiates and maintains tumor growth in the hopes of identifying novel targets for drug development, Udayan Guha, M.D., Ph.D., of CCR’s Thoracic and Gastrointestinal Oncology Branch, and his colleagues examined the landscape of proteins phosphorylated in EGFR wild type and mutant cells. One protein hyper-phosphorylated in mutant EGFR cells was Mig6, a putative tumor suppressor.

  6. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Directory of Open Access Journals (Sweden)

    Xingsheng Hou

    Full Text Available FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7 and a flcA deletion mutant (Sp7-flcAΔ revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot. The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase, nitrogen metabolism (Glutamine synthetase and nitric oxide synthase, stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit and morphological transformation (transducer coupling protein. The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  7. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Science.gov (United States)

    Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  8. Proteostasis and ageing: insights from long-lived mutant mice.

    Science.gov (United States)

    Sands, William A; Page, Melissa M; Selman, Colin

    2017-10-15

    The global increase in life expectancy is creating significant medical, social and economic challenges to current and future generations. Consequently, there is a need to identify the fundamental mechanisms underlying the ageing process. This knowledge should help develop realistic interventions capable of combatting age-related disease, and thus improving late-life health and vitality. While several mechanisms have been proposed as conserved lifespan determinants, the loss of proteostasis - where proteostasis is defined here as the maintenance of the proteome - appears highly relevant to both ageing and disease. Several studies have shown that multiple proteostatic mechanisms, including the endoplasmic reticulum (ER)-induced unfolded protein response (UPR), the ubiquitin-proteasome system (UPS) and autophagy, appear indispensable for longevity in many long-lived invertebrate mutants. Similarly, interspecific comparisons suggest that proteostasis may be an important lifespan determinant in vertebrates. Over the last 20 years a number of long-lived mouse mutants have been described, many of which carry single-gene mutations within the growth-hormone, insulin/IGF-1 or mTOR signalling pathways. However, we still do not know how these mutations act mechanistically to increase lifespan and healthspan, and accordingly whether mechanistic commonality occurs between different mutants. Recent evidence supports the premise that the successful maintenance of the proteome during ageing may be linked to the increased lifespan and healthspan of long-lived mouse mutants. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  9. Identification of a mutant locus that bypasses the BsgA protease requirement for social development in Myxococcus xanthus.

    Science.gov (United States)

    Cusick, John K; Hager, Elizabeth; Gill, Ronald E

    2015-01-01

    The BsgA protease is required for the earliest morphological changes observed in Myxococcus xanthus development. We hypothesize that the BsgA protease is required to cleave an inhibitor of the developmental program, and isolation of genetic bypass suppressors of a bsgA mutant was used to identify signaling components controlling development downstream of the BsgA protease. Strain M955 was created by transposon mutagenesis of a bsgA mutant followed by screening for strains that could develop despite the absence of the BsgA protease. Strain M955 was able to aggregate, form fruiting bodies, and partially restored the production of viable spores in comparison to the parental bsgA mutant. The bsgA Tn5Ω955 strain partially restored developmental expression to a subset of genes normally induced during development, and expressed one developmentally induced fusion at higher amounts during vegetative growth in comparison to wild-type cells. The transposon in strain M955 was localized to a Ribonuclease D homolog that appears to exist in an operon with a downstream aminopeptidase-encoding gene. The identification of a third distinct bypass suppressor of the BsgA protease suggests that the BsgA protease may regulate a potentially complex pathway during the initiation of the M. xanthus developmental program. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Identifying the principal coefficient of parabolic equations with non-divergent form

    International Nuclear Information System (INIS)

    Jiang, L S; Bian, B J

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well

  11. Identifying the principal coefficient of parabolic equations with non-divergent form

    Science.gov (United States)

    Jiang, L. S.; Bian, B. J.

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well.

  12. Novel mutations in β-tubulin gene in Trichoderma harzianum mutants resistant to methyl benzimidazol-2-yl carbamate.

    Science.gov (United States)

    Li, M; Zhang, H Y; Liang, B

    2013-01-01

    Twelve-low resistant (LR) mutants of Trichoderma harzianum with the capability of grow fast at 0.8 μg/mL methyl benzimidazol-2-yl carbamate (MBC) were obtained using UV mutagenesis. MR and HR mutants which could grow fast at 10 and 100 μg/mL MBC, respectively, were isolated by step-up selection protocols in which UV-treated mutants were induced and mycelial sector screening was made in plates with growth medium. Subsequently, β-tubulin genes of 14 mutants were cloned to describe-the molecular lesion likely to be responsible-for MBC resistance. Comparison of the β-tubulin sequences of the mutant and sensitive strains of T. harzianum revealed 2 new MBC-binding sites differed from those in other plant pathogens. A single mutation at-amino acid 168, having Phe (TTC) instead of Ser (TCC)', was demonstrated for the HR mutant; a double mutation in amino acid 13 resulting in the substitution of Gly (GGC) by Val (GTG) was observed in β-tubulin gene of MR mutant. On the other hand, no substitutions were identified in the β-tubulin gene and its 5'-flanking regions in 12 LR mutants of T. harzianum.

  13. Evaluation of Mungbean Mutant Lines to Drought Stress and Their Genetic Relationships Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2015-12-01

    Full Text Available Development of mungbean cultivarstolerant to drought stress through mutation breeding approach would enable us to anticipate the crop yield-reducing effects of climate changes. The objective of this research was to evaluate the yield performance of mungbean mutant lines that showed tolerance to drought stress, and to analyze their genetic diversity and relationship among mutant lines using SSR markers. The study was conducted during the dry season of 2012 in the Muneng experimental farm, Probolinggo, East Java. The experiment was laid out in a randomized block design with four replications. Five mutant lines and two parental lines as control were tested for evaluation of yield and drought tolerance under twoenvironments of two irrigation systems as treatment. The two environmental conditions consisted of optimal irrigation (at least three times: at planting, flowering and during pod filling and suboptimal irrigation (two times at planting and flowering. To evaluate genetic variation among selected mutant lines and their discrimination from parental lines in molecular level, a cluster analysis was performed using Unweighted Pair Group Method with Arithmetic Mean (UPGMA in the NTSYS software. The results showed that three mutant lines, including PsJ30, PsJ31, PsJ32 produced the highest grain yields of 1.17, 1.01, and 1.04 ton/ha, respectively, compared to the other mutant lines and the parents Gelatik (0.85 ton/ha and Perkutut (0.87 ton/ha as control check. Of those mutant lines, PSJ31 was the most tolerant to drought with sensitivity index value of 0.47. The PSJ31 has now been officially released as a new variety ( 2013, named as Muri which was identified to have high yield and tolerant to drought. Based on 23 SSR markers used for clustering analysis of those 3 selected mutant lines,9SSR markers (MBSS R033; satt137; MBSSR008; MBSSR203; MBSSR013; MBSSR021; MBSSR016; MBSSR136; and DMBSSR013 were successfully identified the three mungbean mutant

  14. High linolenic acid mutant in soybean induced by X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Y. [Saga Univ. (Japan); Hossain, A. B.M.M.; Yanagita, T.; Kusaba, S.

    1989-12-15

    Soybean [Glycine max (L.) Merr. cv. Bay] seeds were irradiated with X-rays (25kR) and the M{sub 2} progeny was screened for changes in the fatty acid composition of seed oil. X-ray irradiation remarkably increased the variability of the fatty acid composition in the oil of the Bay cultivar. A mutant in which linolenic acid accounted for 18.4 per cent of the total oil cornpared with 9.4 per cent in the Bay cultivar was identified among 2006 M{sub 2} plants. The M{sub 3} generation of the mutant also showed a linolenic acid content approximately two times higher than that of the original variety.

  15. High linolenic acid mutant in soybean induced by X-ray irradiation

    International Nuclear Information System (INIS)

    Takagi, Y.; Hossain, A.B.M.M.; Yanagita, T.; Kusaba, S.

    1989-01-01

    Soybean [Glycine max (L.) Merr. cv. Bay] seeds were irradiated with X-rays (25kR) and the M 2 progeny was screened for changes in the fatty acid composition of seed oil. X-ray irradiation remarkably increased the variability of the fatty acid composition in the oil of the Bay cultivar. A mutant in which linolenic acid accounted for 18.4 per cent of the total oil cornpared with 9.4 per cent in the Bay cultivar was identified among 2006 M 2 plants. The M 3 generation of the mutant also showed a linolenic acid content approximately two times higher than that of the original variety

  16. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  17. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction.

    Science.gov (United States)

    Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C

    2002-05-01

    Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.

  18. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.

    Science.gov (United States)

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C

    2017-06-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.

  19. Water-deficit tolerant classification in mutant lines of indica rice

    Directory of Open Access Journals (Sweden)

    Suriyan Cha-um

    2012-04-01

    Full Text Available Water shortage is a major abiotic stress for crop production worldwide, limiting the productivity of crop species, especially in dry-land agricultural areas. This investigation aimed to classify the water-deficit tolerance in mutant rice (Oryza sativa L. spp. indica genotypes during the reproductive stage. Proline content in the flag leaf of mutant lines increased when plants were subjected to water deficit. Relative water content (RWC in the flag leaf of different mutant lines dropped in relation to water deficit stress. A decrease RWC was positively related to chlorophyll a degradation. Chlorophyll a , chlorophyll b , total chlorophyll , total carotenoids , maximum quantum yield of PSII , stomatal conductance , transpiration rate and water use efficiency in mutant lines grown under water deficit conditions declined in comparison to the well-watered, leading to a reduction in net-photosynthetic rate. In addition, when exposed to water deficit, panicle traits, including panicle length and fertile grains were dropped. The biochemical and physiological data were subjected to classify the water deficit tolerance. NSG19 (positive control and DD14 were identified as water deficit tolerant, and AA11, AA12, AA16, BB13, BB16, CC12, CC15, EE12, FF15, FF17, G11 and IR20 (negative control as water deficit sensitive, using Ward's method.

  20. Characterization and protective property of Brucella abortus cydC and looP mutants.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Barate, Abhijit Kashinath; Kim, Suk; Hahn, Tae-Wook

    2014-11-01

    Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Genomic data reveal Toxoplasma gondii differentiation mutants are also impaired with respect to switching into a novel extracellular tachyzoite state.

    Directory of Open Access Journals (Sweden)

    Pamela J Lescault

    2010-12-01

    Full Text Available Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which expression patterns could not be accounted for using the three parasite states--genes that may play a mechanistic role in switching from the tachyzoite to bradyzoite stage.

  2. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation

    Directory of Open Access Journals (Sweden)

    Fresno Manuel

    2011-07-01

    Full Text Available Abstract Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II, to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus, infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.

  3. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A. (Novartis)

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  4. Semi-dwarf mutants for rice improvement

    International Nuclear Information System (INIS)

    Othman, Ramli; Osman, Mohammad; Ibrahim, Rusli

    1990-01-01

    Full text: MARDI and the National University of Malaysia embarked on a programme to induce resistance against blast in rice in 1978. MARDI also obtained semi dwarf mutants of cvs 'Mahsuri', 'Muda', 'Pongsu seribu' and 'Jarum Mas', which are under evaluation. The popular local rice variety 'Manik' was subjected to gamma irradiation (15-40 krad) and 101 promising semidwarf mutants have been obtained following selection in M 2 -M 6 . 29 of them show grain yields of 6.0-7.3 t/ha, compared with 5.7t for 'Manik'. Other valuable mutants were found showing long grain, less shattering, earlier maturity, and glutinous endosperm. One mutant, resistant to brown plant hopper yields 6.3t/ha. (author)

  5. Phenotypic characterization and inheritance of two foliar mutants in pea (Pisum Sativum L.): 'Reduced leaf size' and 'Orange leaf'

    International Nuclear Information System (INIS)

    Naidenova, N.; Vassilevska-Ivanova, R.; Tcekova, Z.

    2003-01-01

    Two foliar pea (Pisum sativum L.) mutants characterized by reduced leaf size (2/978) and orange leaf (2/1409 M) were established. Both mutants were described morphologically and their productivity potential , pollen viability and inheritance of the mutant traits were evaluated. The mutant 2/978 was identified after irradiation of dry seeds from cv Borek with 15 Gy fast neutrons and was related to the leaf mutation 'rogue'. Reciprocal crosses between mutant 2/978 and cv Borel were executed, and F 1 and F 2 generations were analyzed. The altered leaf trait was presented in all F 1 plants suggesting a dominant character. F 2 segregation data indicated that the trait was controlled by a single dominant gene. The mutant 2/1409M originated from the mutant 2/978 after irradiation with 50 Gy γ-rays. The main mutant's phenotypic characteristic was the orange-yellow coloration of leaves and plants. After of series of crosses it was established that induced chlorophyll mutation is monogenic, recessive and both mutant traits are independently inherited. Two mutants could be used as appropriate plant material for genetic and biological investigations

  6. A new Arabidopsis mutant induced by ion beams affects flavonoid synthesis with spotted pigmentation in testa

    International Nuclear Information System (INIS)

    Tanaka, A.; Tano, S.; Chantes, T.; Yokota, Y.; Shikazono, N.; Watanabe, H.

    1997-01-01

    A new stable mutant of Arabidopsis thaliana with a spotted pigment in the seed coat, named anthocyanin spotted testa (ast), was induced by carbon ion irradiation. The spotted pigmentation of ast mutant was observed in immature seeds from 1-2 days after flowering (DAF), at the integument of the ovule, and spread as the seed coat formed. Anthocyanin accumulation was about 6 times higher in ast mutant than in the wild-type at 6 DAF of the immature seeds, but was almost the same in mature dry seeds. A higher anthocyanin accumulation was not observed in the seedlings, leaves or floral buds of ast mutant compared with the wild-type, which suggests that a high accumulation of anthocyanins is specific to the seed coat of the immature ast seeds. Reciprocal crosses between ast mutant and the wild-type indicated that ast is a single recessive gene mutation and segregates as a delayed inheritance. The results of crossing with tt7 and ttg mutants also confirmed that the AST gene is probably a regulatory locus that controls flavonoid biosynthesis. A mapping analysis revealed that the gene is located on chromosome I and is closely linked to the SSLP DNA marker nga280 with a distance of 3.2 cM. AST has been registered as a new mutant of Arabidopsis

  7. Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in Saccharomyces cerevisiae▿

    Science.gov (United States)

    Sullivan, David P.; Georgiev, Alexander; Menon, Anant K.

    2009-01-01

    Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that intracellular accumulation of exogenously supplied [3H]cholesterol in the form of [3H]cholesteryl ester requires an intact PM-ER sterol transport pathway. Upc2-1 cells were mutagenized using a transposon library, incubated with [3H]cholesterol, and subjected to tritium suicide selection to isolate mutants with a decreased ability to accumulate [3H]cholesterol. Many of the mutants had defects in the expression and trafficking of Aus1 and Pdr11, PM-localized ABC transporters that are required for sterol uptake. Through characterization of one of the mutants, a new role was uncovered for the transcription factor Mot3 in controlling expression of Aus1 and Pdr11. A number of mutants had transposon insertions in the uncharacterized Ydr051c gene, which we now refer to as DET1 (decreased ergosterol transport). These mutants expressed Aus1 and Pdr11 normally but were severely defective in the ability to accumulate exogenously supplied cholesterol. The transport of newly synthesized sterols from the ER to the PM was also defective in det1Δ cells. These data indicate that the cytoplasmic protein encoded by DET1 is involved in intracellular sterol transport. PMID:19060182

  8. Prion propagation in cells expressing PrP glycosylation mutants.

    Science.gov (United States)

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  9. Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans.

    Science.gov (United States)

    Katoh, Toshihiko; Katayama, Takane; Tomabechi, Yusuke; Nishikawa, Yoshihide; Kumada, Jyunichi; Matsuzaki, Yuji; Yamamoto, Kenji

    2016-10-28

    Endo-β-N-acetylglucosaminidase M (Endo-M), an endoglycosidase from the fungus Mucor hiemalis, is a useful tool for chemoenzymatic synthesis of glycoconjugates, including glycoprotein-based therapeutics having a precisely defined glycoform, by virtue of its transglycosylation activity. Although Endo-M has been known to act on various N-glycans, it does not act on core-fucosylated N-glycans, which exist widely in mammalian glycoproteins, thus limiting its application. Therefore, we performed site-directed mutagenesis on Endo-M to isolate mutant enzymes that are able to act on mammalian-type core-α1,6-fucosylated glycans. Among the Endo-M mutant enzymes generated, those in which the tryptophan at position 251 was substituted with alanine or asparagine showed altered substrate specificities. Such mutant enzymes exhibited increased hydrolysis of a synthetic α1,6-fucosylated trimannosyl core structure, whereas their activity on the afucosylated form decreased. In addition, among the Trp-251 mutants, the W251N mutant was most efficient in hydrolyzing the core-fucosylated substrate. W251N mutants could act on the immunoglobulin G-derived core-fucosylated glycopeptides and human lactoferrin glycoproteins. This mutant was also capable of transferring the sialyl glycan from an activated substrate intermediate (sialyl glyco-oxazoline) onto an α1,6-fucosyl-N-acetylglucosaminyl biotin. Furthermore, the W251N mutant gained a glycosynthase-like activity when a N175Q substitution was introduced and it caused accumulation of the transglycosylation products. These findings not only give insights into the substrate recognition mechanism of glycoside hydrolase family 85 enzymes but also widen their scope of application in preparing homogeneous glycoforms of core-fucosylated glycoproteins for the production of potent glycoprotein-based therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Evaluation of tall rice mutant

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1989-01-01

    One tall mutant (Mut NS1) of rice variety Nizersail was put to multilocation on-farm trial. It showed improvement over the parent in respect of by earlier maturity and higher grain yield at all locations and thus it appears as an improved mutant of Nizersail. (author). 6 refs

  11. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease

    Science.gov (United States)

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D.; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; Fernández, José M. García; Sánchez-Alcázar, José A.

    2015-01-01

    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD. PMID:26045184

  12. Cox4i2, Ifit2, and Prdm11 Mutant Mice

    DEFF Research Database (Denmark)

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as imm...

  13. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    Science.gov (United States)

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of

  14. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells

    Directory of Open Access Journals (Sweden)

    Andrew Parker

    2015-12-01

    Full Text Available Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182 in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss.

  15. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  16. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  17. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    Science.gov (United States)

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  18. Evaluation of Some Chemical Characteristics of barley Mutants induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Abdeldaiem, M.H.; Ali, H.G.M.

    2011-01-01

    This study aims to evaluate the antioxidant activity of acetonic extract from some barley mutations (P1, P2 and P3 varieties) induced by gamma irradiation as compared with local barley variety (Hordeum vulgare L.) as control. Barley samples were obtained from Plant Breeding Unit, Plant Research Department, Nuclear Research Centre, Atomic Energy Authority, Egypt. The measurements of the antioxidant activity using a radical scavenging capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ?-carotene bleaching assay were assessed in the barley acetonic extract. Furthermore, amino acids composition of barley mutant samples was determined. The results indicated that the acetonic extract of barley varieties under investigation possess marked antioxidant and anti radical capacities. The data showed that the acetonic extract of barley mutant P1 possessed the higher antioxidant activity as compared with the antioxidant activities of acetonic extract from control and other barley mutant samples. Meanwhile, the flour of barley mutations under investigation contained trace elements of iron, copper and manganese. GC and mass analyses were used to identify the active compound of extract of control and mutant barley samples. The results illustrated that the main components of the control sample of barely extract was pentane, 3 methyl (47.73%) while gamma irradiation caused noticeable change in the relative percentage of some components of acetonic extract from barley mutant samples. Moreover, the results presented that changes were disappeared, and some compounds of the acetonic extract from mutant barley samples were appeared. Furthermore, the results exhibited that barley flour supplemented with wheat flour at 30% level produced acceptable cookies. Accordingly, the phenolic constituents of barley acetonic extract induced by gamma irradiation, especially samples of P1 mutant, may have a future role as ingredients in the development of functional foods.

  19. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  20. PCR-based karyotyping of Anopheles gambiae inversion 2Rj identifies the BAMAKO chromosomal form

    Directory of Open Access Journals (Sweden)

    Conway David J

    2007-10-01

    Full Text Available Abstract Background The malaria vector Anopheles gambiae is polymorphic for chromosomal inversions on the right arm of chromosome 2 that segregate nonrandomly between assortatively mating populations in West Africa. One such inversion, 2Rj, is associated with the BAMAKO chromosomal form endemic to southern Mali and northern Guinea Conakry near the Niger River. Although it exploits a unique ecology and both molecular and chromosomal data suggest reduced gene flow between BAMAKO and other A. gambiae populations, no molecular markers exist to identify this form. Methods To facilitate study of the BAMAKO form, a PCR assay for molecular karyotyping of 2Rj was developed based on sequences at the breakpoint junctions. The assay was extensively validated using more than 700 field specimens whose karyotypes were determined in parallel by cytogenetic and molecular methods. As inversion 2Rj also occurs in SAVANNA populations outside the geographic range of BAMAKO, samples were tested from Senegal, Cameroon and western Guinea Conakry as well as from Mali. Results In southern Mali, where 2Rj polymorphism in SAVANNA populations was very low and most of the 2Rj homozygotes were found in BAMAKO karyotypes, the molecular and cytogenetic methods were almost perfectly congruent. Elsewhere agreement between the methods was much poorer, as the molecular assay frequently misclassified 2Rj heterozygotes as 2R+j standard homozygotes. Conclusion Molecular karyotyping of 2Rj is robust and accurate on 2R+j standard and 2Rj inverted homozygotes. Therefore, the proposed approach overcomes the lack of a rapid tool for identifying the BAMAKO form across developmental stages and sexes, and opens new perspectives for the study of BAMAKO ecology and behaviour. On the other hand, the method should not be applied for molecular karyotyping of j-carriers within the SAVANNA chromosomal form.

  1. Studies on reduced height mutants in rice

    International Nuclear Information System (INIS)

    Narahari, P.; Bhagwat, S.G.

    1984-01-01

    Two cross-bred derivatives of the mutant TR5xTR17 and TR21 continued to show promise and were advanced to wider scale testing. TR5 was found to carry a semi-dwarfing gene different from that in IR8. New semi-dwarf mutants were screened from M 2 through M 4 from two separate radiation experiments. The gibberellin response of seedlings of mutant and tester strains was evaluated and crosses of tester stocks and mutant semi-dwarfs were made for genetic analyses. (author)

  2. Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant

    International Nuclear Information System (INIS)

    Goto, N.; Kumagai, T.; Koornneef, M.

    1991-01-01

    Flowering response and plant form of photomorphogenic mutants (hy1, hy2, hy3, hy4 and hy5) of Arabidopsis thaliana (L.), a long-day plant, were examined in long and short days. There were only slight differences among genotypes including Landsberg wild type with respect to the flowering time under long days. The effect of 1 h light-(night)-breaks of far-red, red, blue and white light given in the middle of the dark period of plants grown under short days, was studied. Effects of far-red light applied at the end or the beginning of the main photoperiod on flowering and plant form were also examined. The light-breaks with all the above mentioned light qualities promoted floral initiation of all the genotypes including the wild type in terms of both the flowering time and the number of rosette leaves. In general, far-red light was most effective. It is possible to classify the hy-mutants into 3 groups by their responses to light-breaks under short day conditions: (a) Mutants hy2 and hy3, which have a reduced number of rosette leaves, and flower early. Red light is as effective as far-red light. The wavelength of light-breaks is relatively unimportant for flowering response. (b) Mutants hy4, hy5 and Landsberg wild type, which have a greater number of rosette leaves, and flower relatively late. The effectiveness of light-breaks is in the following order, far-red, blue, and red light, which is in reverse order to the transformation of phytochrome to the P fr form. (c) Mutant hy1, which behaves anomalously with respect to relations between flowering time and number of rosette leaves; late flowering with reduced number of rosette leaves. Red, blue and far-red light are effective, but white light is ineffective for reducing the number of rosette leaves. When far-red light was given in the middle of the night or at the end of the main photoperiod, it markedly reduced the number of rosette leaves compared to those grown under short days for all the genotypes, while when

  3. Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose

    DEFF Research Database (Denmark)

    Hong, Kuk-Ki; Nielsen, Jens

    2013-01-01

    the molecular mechanisms. In this study, adaptively evolved yeast mutants with improved galactose utilization ability showed impaired glucose utilization. The molecular genetic basis of this trade-off was investigated using a systems biology approach. Transcriptional and metabolic changes resulting from...... the improvement of galactose utilization were found maintained during growth on glucose. Moreover, glucose repression related genes showed conserved expression patterns during growth on both sugars. Mutations in the RAS2 gene that were identified as beneficial for galactose utilization in evolved mutants...

  4. Dwarf mutant of Papaver somniferum with high morphine content

    International Nuclear Information System (INIS)

    Chauhan, S.P.; Patra, N.K.; Srivastava, H.K.

    1987-01-01

    Opium poppy, Papaver somniferum L. is an important medicinal plant known for its morphine, codeine, and thebaine alkaloids. This Institute had earlier released two latex opium yielding poppy varieties, Shyama and Shweta, which are now cultivated by the farmers under the supervision of the Narcotic Department of the Government of India. However, both these varieties became susceptible to downy mildew (Peronospora arborescens). Lodging due to heavy capsule weight is another problem affecting latex yield. With these problems in mind, we undertook mutation breeding on the above mentioned two varieties employing gamma rays (5 kR, 15 kR, 20 kR) and EMS (0.2%, 0.4%, 0.6%) and combined mutagens (5 kR + 0.2% EMS, 5 kR + 0.4% EMS and 5 kR + 0.6% EMS). M 1 from the treated seeds (405 plants) was raised in winter 1984-85. M 2 generation of 13,500 plants (i.e. 270 M 1 progenies x 50 plants) was raised in winter 1985/86. A dwarf mutant with high morphine content was identified in M 2 from the variety Shweta treated with 5 kR + 0.4% EMS. The mutant differs by its dwarf stature, compact leaf arrangements, multilocular capsules, increased capsule number, and small capsule size. The mutant is under testing for its superior morphine production. It may be used as dwarf gene source in hybridization for improving lodging resistance. This mutant is a novel type, which was not available in our germplasm collection

  5. Characterization of two second-site mutations preventing wild type protein aggregation caused by a dominant negative PMA1 mutant.

    Directory of Open Access Journals (Sweden)

    Pilar Eraso

    Full Text Available The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.

  6. Hepatitis B surface gene 145 mutant as a minor population in hepatitis B virus carriers

    Directory of Open Access Journals (Sweden)

    Komatsu Haruki

    2012-01-01

    children and adults. HBV carriers might have the a determinant mutants as a minor form.

  7. Biochemical and Phylogenetic Characterization of a Novel Diaminopimelate Biosynthesis Pathway in Prokaryotes Identifies a Diverged Form of ll-Diaminopimelate Aminotransferase▿ †

    Science.gov (United States)

    Hudson, André O.; Gilvarg, Charles; Leustek, Thomas

    2008-01-01

    A variant of the diaminopimelate (DAP)-lysine biosynthesis pathway uses an ll-DAP aminotransferase (DapL, EC 2.6.1.83) to catalyze the direct conversion of l-2,3,4,5-tetrahydrodipicolinate to ll-DAP. Comparative genomic analysis and experimental verification of DapL candidates revealed the existence of two diverged forms of DapL (DapL1 and DapL2). DapL orthologs were identified in eubacteria and archaea. In some species the corresponding dapL gene was found to lie in genomic contiguity with other dap genes, suggestive of a polycistronic structure. The DapL candidate enzymes were found to cluster into two classes sharing approximately 30% amino acid identity. The function of selected enzymes from each class was studied. Both classes were able to functionally complement Escherichia coli dapD and dapE mutants and to catalyze ll-DAP transamination, providing functional evidence for a role in DAP/lysine biosynthesis. In all cases the occurrence of dapL in a species correlated with the absence of genes for dapD and dapE representing the acyl DAP pathway variants, and only in a few cases was dapL coincident with ddh encoding meso-DAP dehydrogenase. The results indicate that the DapL pathway is restricted to specific lineages of eubacteria including the Cyanobacteria, Desulfuromonadales, Firmicutes, Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal groups, the Methanobacteriaceae and Archaeoglobaceae. PMID:18310350

  8. Facile mutant identification via a single parental backcross method and application of whole genome sequencing based mapping pipelines

    Directory of Open Access Journals (Sweden)

    Robert Silas Allen

    2013-09-01

    Full Text Available Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognise in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP residing in HASTY, a previously characterised gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.

  9. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia

    Science.gov (United States)

    Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.

    2018-01-01

    Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1

  10. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants.

    Science.gov (United States)

    Chen, Longzheng; Li, Wei; Katin-Grazzini, Lorenzo; Ding, Jing; Gu, Xianbin; Li, Yanjun; Gu, Tingting; Wang, Ren; Lin, Xinchun; Deng, Ziniu; McAvoy, Richard J; Gmitter, Frederick G; Deng, Zhanao; Zhao, Yunde; Li, Yi

    2018-01-01

    Developing CRISPR/Cas9-mediated non-transgenic mutants in asexually propagated perennial crop plants is challenging but highly desirable. Here, we report a highly useful method using an Agrobacterium -mediated transient CRISPR/Cas9 gene expression system to create non-transgenic mutant plants without the need for sexual segregation. We have also developed a rapid, cost-effective, and high-throughput mutant screening protocol based on Illumina sequencing followed by high-resolution melting (HRM) analysis. Using tetraploid tobacco as a model species and the phytoene desaturase ( PDS ) gene as a target, we successfully created and expediently identified mutant plants, which were verified as tetra-allelic mutants. We produced pds mutant shoots at a rate of 47.5% from tobacco leaf explants, without the use of antibiotic selection. Among these pds plants, 17.2% were confirmed to be non-transgenic, for an overall non-transgenic mutation rate of 8.2%. Our method is reliable and effective in creating non-transgenic mutant plants without the need to segregate out transgenes through sexual reproduction. This method should be applicable to many economically important, heterozygous, perennial crop species that are more difficult to regenerate.

  11. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    Science.gov (United States)

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Molecular analysis of waxy mutants in rice

    International Nuclear Information System (INIS)

    Yatou, O.; Amano, E.

    1990-01-01

    Full text: The 'waxy' gene is a structural gene coding a glycosyl transferase which synthesises amylose in the endosperm tissue. 'Non-waxy' rice cultivars have an active gene and their amylose content is 18-25% depending upon gene performance and modifier genes. In 'waxy' rice, no amylose is found because the enzyme is absent. In mutants induced by gamma rays, neutrons, EI or EMS, amylose content ranged from 0 to 20%, i.e. there are intermediate phenotypes as well. Some of them had the same amount of the enzyme as a 'non-waxy' cultivar, even fully 'waxy' mutants showed a certain amount of the enzyme. This suggests that in mutants there may be no structural change in the enzyme gene but the enzyme produced might be less active. By molecular analysis of the mutants' genes it was found that only two mutants induced by thermal neutrons show structural alterations, the changes in other mutants are either too small to be detected by Southern analysis or are outside the structural gene in question. (author)

  13. Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-W. [Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Chan, Shirley K.W. [Atmospheric, Marine and Coastal Environment Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Chow, King L. [Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China) and Atmospheric, Marine and Coastal Environment Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)]. E-mail: bokchow@ust.hk

    2005-09-30

    Previous studies have demonstrated that wild type Caenorhabditis elegans displays high sensitivity to heavy metals in a lethality test at a level comparable to that of other bioindicator organisms. Taking advantage of the genetics of this model organism, we have tested a number of mutant strains for enhanced sensitivity in heavy metal induced lethality and stress response. These mutants are defective in genes controlling dauer formation, longevity or response to reactive oxygen species (ROS). Among the tested mutants, a double mutant daf-16 unc-75 strain was identified to have superior sensitivity. It has a 6-, 3- and 2-fold increase in sensitivity to cadmium, copper and zinc, respectively, as compared with that of wild type animals. When a fluorescent reporter transgene was coupled with this double mutant for stress detection, a 10-fold enhancement of sensitivity to cadmium over the wild type strain was observed. These transgenic animals, superior to most of the model organisms currently used in bioassays for environmental pollutants, offer a fast and economic approach to reveal the bioavailability of toxic substance in field samples. This study also demonstrates that combination of genetic mutations and transgenesis is a viable approach to identify sensitive indicator animals for environmental monitoring.

  14. Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain

    International Nuclear Information System (INIS)

    Chu, K.-W.; Chan, Shirley K.W.; Chow, King L.

    2005-01-01

    Previous studies have demonstrated that wild type Caenorhabditis elegans displays high sensitivity to heavy metals in a lethality test at a level comparable to that of other bioindicator organisms. Taking advantage of the genetics of this model organism, we have tested a number of mutant strains for enhanced sensitivity in heavy metal induced lethality and stress response. These mutants are defective in genes controlling dauer formation, longevity or response to reactive oxygen species (ROS). Among the tested mutants, a double mutant daf-16 unc-75 strain was identified to have superior sensitivity. It has a 6-, 3- and 2-fold increase in sensitivity to cadmium, copper and zinc, respectively, as compared with that of wild type animals. When a fluorescent reporter transgene was coupled with this double mutant for stress detection, a 10-fold enhancement of sensitivity to cadmium over the wild type strain was observed. These transgenic animals, superior to most of the model organisms currently used in bioassays for environmental pollutants, offer a fast and economic approach to reveal the bioavailability of toxic substance in field samples. This study also demonstrates that combination of genetic mutations and transgenesis is a viable approach to identify sensitive indicator animals for environmental monitoring

  15. Random T-DNA mutagenesis identifies a Cu-Zn-superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum

    Science.gov (United States)

    Agrobacterium-mediated transformation (AMT) was used to identify potential virulence factors in Sclerotinia sclerotiorum. Screening AMT transformants identified two mutants showing significantly reduced virulence. The mutants showed similar growth rate, colony morphology, and sclerotial and oxalate ...

  16. X-rays sensitive mammalian cell mutant

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1982-01-01

    A phenomenon that in x-ray-sensitive mammalian-cell mutants, cellular death due to x-ray radiation was not increased by caffeine, but on the contrary, the dead cells were resuscitated by it was discussed. The survival rate of mutant cells increased by caffein in a low concentration. This suggested that caffeine may have induced some mechanism to produce x-ray resistant mutant cells. Postirradiation treatment with caffeine increased considerably the survival rate of the mutant cells, and this suggested the existence of latent caffeine-sensitive potentially lethal damage repair system. This system, after a few hours, is thought to be substituted by caffeine-resistant repair system which is induced by caffeine, and this may be further substituted by x-ray-resistant repair system. The repair system was also induced by adenine. (Ueda, J.)

  17. Four Closely Related HIV-1 CRF01_AE/CRF07_BC Recombinant Forms Identified in East China.

    Science.gov (United States)

    Li, Fan; Li, Yuxueyun; Feng, Yi; Hu, Jing; Ruan, Yuhua; Xing, Hui; Shao, Yiming

    2017-07-01

    Five near full-length genomes of novel second-generation HIV-1 recombinant virus (JS150021, JS150029, JS150129, JS150132, and AH150183) were identified from five HIV-positive people in Jiangsu and Anhui province, east China. Phylogenic analyses showed that these five sequences are all composed of two well-established circulating recombinant forms (CRFs) CRF07_BC and CRF01_AE, grouped into four new discovered recombinant forms, which show several very similar but not identical recombinant breakpoints. The four recombinant forms are also identified to be a sort of family or related viruses, seems to be the results of different recombination events. The emergence of a serious new closely related CRF07_BC/CRF01_AE recombinant strain indicates the increasing complexity of sexual transmission of the HIV-1 epidemic in China.

  18. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Directory of Open Access Journals (Sweden)

    Carlos Bueno

    Full Text Available Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the

  19. Radiation induced mutants in cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Nayar, G.G.; Rajendran, P.G.

    1987-01-01

    Full text: Stem cuttings and true seeds of three promising cultivars of cassava were exposed respectively to 1 to 5 kR and 10 to 50 kR acute gamma rays from a 60 Co source. Treatments of stem cuttings beyond 5 kR and seeds beyond 50 kR were lethal. One mutant each in the cultivars M4, H-165 and H-2304 was obtained from the stem irradiated populations. Another mutant was found in the seed irradiated progeny of H-2304. The mutant of M4 is characterised by light green (chlorina) leaves. The mutant of H-165 shows significantly shorter petiole (22,5 against 35.2 cm) and narrow leaf lobes, while the H-2304 mutant shows speckled leaves, branching and early flowering. The mutant found in the seed irradiated progeny of H-2304 is having yellow tuber flesh indicating the presence of carotene. The mutants may be useful in studies related to basic information as well as in practical breeding. The chlorina mutant in M4 showed slow growth and high HCN content in leaves. Late branching may be a useful trait in the traditionally non-branching clones of cassava to maintain the desirable leaf area index during high leaf fall period. Early flowering could be useful in a recombinant breeding programme. The tuber yield of the short petiole mutant in H-165 increased by 20% - 25% through closer planting. The narrow leaf lobes of this mutant permit better light penetration to lower leaves. (author)

  20. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    International Nuclear Information System (INIS)

    Distefano, M.D.; Au, K.G.; Walsh, C.T.

    1989-01-01

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys 135 Cys 140 , catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys 135 (Ala 135 Cys 140 ), Cys 14 (Cys 135 Ala 140 ), or both (Ala 135 Ala 140 ). Additionally, they have made double mutants that lack Cys 135 (Ala 135 Cys 139 Cys 140 ) or Cys 140 (Cys 135 Cys 139 Ala 140 ) but introduce a new Cys in place of Gly 139 with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH 2 redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala 135 Cys 139 Cys 14 mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala 135 Cys 140 protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys 135 and Cys 140 thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate

  1. Structural and Functional Recovery of Sensory Cilia in C. elegans IFT Mutants upon Aging.

    Directory of Open Access Journals (Sweden)

    Astrid Cornils

    2016-12-01

    Full Text Available The majority of cilia are formed and maintained by the highly conserved process of intraflagellar transport (IFT. Mutations in IFT genes lead to ciliary structural defects and systemic disorders termed ciliopathies. Here we show that the severely truncated sensory cilia of hypomorphic IFT mutants in C. elegans transiently elongate during a discrete period of adult aging leading to markedly improved sensory behaviors. Age-dependent restoration of cilia morphology occurs in structurally diverse cilia types and requires IFT. We demonstrate that while DAF-16/FOXO is dispensable, the age-dependent suppression of cilia phenotypes in IFT mutants requires cell-autonomous functions of the HSF1 heat shock factor and the Hsp90 chaperone. Our results describe an unexpected role of early aging and protein quality control mechanisms in suppressing ciliary phenotypes of IFT mutants, and suggest possible strategies for targeting subsets of ciliopathies.

  2. Evaluation of dwarf mutant of cowpea (Vigna Unguiculata L. Walp.) developed through gamma irradiation for nitrogen fixation characters

    International Nuclear Information System (INIS)

    Anjana, G.; Thimmaiah, S.K.

    2002-01-01

    A dwarf mutant developed through gamma-irradiation and mutation breeding of its parent cowpea variety, namely KBC-1 has been characterized for nitrogen-fixation characters such as root nodule acetylene reduction activity (ARA) and legthemoglobin content at different days after sowing (DAS). Significant variations in these characters were noticed among the varieties and for interactions between the varieties and DAS. The ARA was nearly one-and-a half fold higher in the mutant at both 30 (12.69 μmoles)C 2 H 4 formed/h/g fr.wt. of nodules) and 50 DAS (6.74 μmoles) over its parent (9.20 and 4.46 μmoles at 30 and 50 DAS, respectively). Further, the ARA in the mutant decreased linearly with an increase in the DAS. The leghemoglobin (Lb) content was also higher in the mutant over the parent at all the DAS. However, it decreased linearly with an increase in the DAS in both the mutant and the parent. The highest leghemoglobin content was noticed at 30 DAS in both mutant (2.1 mg/g fr. wt. of nodules) and the parent (1.45 mg/g). Thus, the dwarf cowpea mutant was found to be associated with higher nitrogen-fixing ability which could be exploited in future breeding programmes. (author)

  3. Erythrocyte pyruvate kinase deficiency in the Ohio Amish: origin and characterization of the mutant enzyme.

    OpenAIRE

    Muir, W A; Beutler, E; Wasson, C

    1984-01-01

    We have identified eight individuals in an Amish population in Geauga County, Ohio, who have a congenital hemolytic anemia and red cell pyruvate kinase (PK) deficiency. The mutant enzyme is a low Km phosphoenolpyruvate (PEP) variant associated with a slower (77.5% of normal) electrophoretic mobility in starch gel. Because of the high consanguinity in this population, we assume the affected individuals are homozygous for the mutant gene. Genealogical records allow us to trace all eight cases b...

  4. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models

    Directory of Open Access Journals (Sweden)

    Sara eAmorim-Vaz

    2015-05-01

    Full Text Available The aim of the present study was to identify C. albicans transcription factors (TF involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens quantified in kidneys. Mutants of unannotated genes which generated a kidney fungal burden significantly different from that of wild-type were selected and individually examined in G. mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25 % of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects, a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching fungal burden phenotypes were observed in 50 % of the cases, highlighting the bias due to host effects. In contrast, 33.4 % concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the pool effect. After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adaptation.

  5. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  6. A METABOLIC SIGNATURE FOR LONG-LIFE IN THE C. ELEGANS MIT MUTANTS

    Science.gov (United States)

    Butler, Jeffrey A.; Mishur, Robert J.; Bhaskaran, Shylesh; Rea, Shane L.

    2012-01-01

    SUMMARY Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial-derived α-ketoacids and α-hydroxyacids that are produced by long-lived Mit mutants but not by other long-lived mutants or by short-lived mitochondrial mutants. We show that accumulation of these compounds is dependent upon concerted inhibition of three α-ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer’s disease. When the expression of DLD in wild type animals was reduced using RNA interference we observed an unprecedented effect on lifespan - as RNAi dosage was increased lifespan was significantly shortened but, at higher doses, it was significantly lengthened, suggesting DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype. PMID:23173729

  7. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    Science.gov (United States)

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  8. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    International Nuclear Information System (INIS)

    Cuthill, S.; Poellinger, L.

    1988-01-01

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant [ 3 H]dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin

  9. Prevalence of precore-defective mutant of hepatitis B virus in HBV carriers.

    Science.gov (United States)

    Niitsuma, H; Ishii, M; Saito, Y; Miura, M; Kobayashi, K; Ohori, H; Toyota, T

    1995-08-01

    Two hundred and seventy-three serum specimens from hepatitis B virus (HBV) carriers were examined for the presence of a characteristic one point mutation at nucleotide (nt) 1896 from the EcoRI site of the HBV genome in the precore region (the preC mutant) using restriction fragment length polymorphism (RFLP) analysis. This assay approach could detect preC mutants or wild-type sequences when either form constituted more than 10% of the total sample. Overall, 65.5% (76/116) of HBeAg-positive carriers had only the preC wild-type. All HBeAg-positive asymptomatic carriers (n = 14) had only the preC wild-type. In patients with chronic hepatitis B and in anti-HBe-positive asymptomatic carriers, increased prevalence of the preC mutant was associated with the development of anti-HBe antibodies and normalization of the serum alanine aminotransferase concentration. Furthermore, 27 (29.0%) of 93 HBeAg-negative carriers had unexpectedly preC wild-type sequences only. Direct sequencing of the HBV precore region of HBV specimens from 24 patients revealed no mutation at nt 1896, supporting the specificity of the RFLP analysis. These results suggest that RFLP analysis was accurate for the detection of the preC mutation and that the absence of serum HBeAg cannot be explained solely by the dominance of the preC mutant.

  10. Officially released mutant varieties in China

    International Nuclear Information System (INIS)

    Liu, L.; Van Zanten, L.; Shu, Q.Y.; Maluszynski, M.

    2004-01-01

    The use of mutation techniques for crop improvement in China has a long and well-established tradition of more than 50 years. As the result of intensive research in many institutes dealing with application of nuclear technologies more than 620 cultivars of 44 crop species have been released. Numerous mutant varieties have been grown on a large scale bringing significant economic impact, sustaining crop production and greatly contributing to increase of food production also in stress prone areas of the country. However, there is still missing information not only on the number of mutant varieties released in particular crop species but also on mutagens applied, selection approaches and on the use of mutants in cross breeding. Numerous Chinese scientists collected and systematized this information. Results of their work were often published in local scientific journals in the Chinese language and as such were unavailable to breeders from other countries. Having this in mind, we requested Dr. Liu Luxiang, the Director of the Department of Plant Mutation Breeding and Genetics, Institute for Application of Atomic Energy, Chinese Academy of Agricultural Sciences in Beijing to help us in finding as much information as possible on mutant varieties officially released in China. The data has been collected in close collaboration with his colleagues from various institutions all over the country and then evaluated, edited and prepared for publication by our team responsible for the FAO/IAEA Database of Officially Released Mutant Varieties. We would like to thank all Chinese colleagues who contributed to this list of Chinese mutant varieties. We hope that this publication will stimulate plant breeders in China to collect more information on released mutant varieties and especially on the use of mutated genes in cross breeding. (author)

  11. Shallow Boomerang-shaped Influenza Hemagglutinin G13A Mutant Structure Promotes Leaky Membrane Fusion*

    Science.gov (United States)

    Lai, Alex L.; Tamm, Lukas K.

    2010-01-01

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788

  12. Temperature sensitive riboflavin mutants of Penicillium vermiculatum Dangeard

    International Nuclear Information System (INIS)

    Mitra, J.; Chaudhari, K.L.

    1974-01-01

    Two temperature sensitive UV induced riboflavin mutants rib 1 and rib 6 have been physiologically and genetically characterized. The two mutants behave differently with regard to their temperature sensitivity. The rib 1 mutant exhibits a leaky growth in minimal medium between 15 0 C and 30 0 C but grows well when the medium is supplemented with riboflavin. At 35 0 C the growth response of the mutant is at its max. and at 40 0 C and below 15 0 C it ceases to grow. The rib 6 mutant which is red brown in colour shows wild type character at temp. below 25 0 C in minimal medium but requires riboflavin at 30 0 C and above. Heterokaryotic analysis revealed the nonallelic nature of the two temperature mutants. Genetic tests of allelic relationship between riboflavin markers by crossing were also done. (author)

  13. Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo.

    Science.gov (United States)

    Anikaev, A Y; Korepanov, A P; Korobeinikova, A V; Kljashtorny, V G; Piendl, W; Nikonov, S V; Garber, M B; Gongadze, G M

    2014-08-01

    5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.

  14. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, N; Nagai, K; Tamura, G

    1976-01-01

    A thermosensitive uracil requiring mutant of Bacillus subtilis Marburg 168 thy trp/sub 2/ ts42 was examined as to the colony forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in the modified Woese's (MW) medium. However, the cells retained viability when sodium succinate or potassium chloride was added to the medium at that temperature although uracil deficiency was unchanged. A little but significant incorporation of adenine-8-/sup 14/C into RNA still continued even after the incorporation of N-acetyl-/sup 3/H-D-glucosamine into acid insoluble fraction of the cells terminated in the MW medium at 48/sup 0/C. Both incorporations as well as increase of absorbance were slowed down in the presence of sodium succinate at 48/sup 0/C. This mutant, ts-42, was more sensitive to deoxycholate (DOC) than the parent strain. The restoration of colony forming ability after the temperature shift back to 37/sup 0/C was suppressed by the addition of DOC to the medium. However, the cell became resistant to DOC when uracil was added to the medium prior to the temperature shift.

  15. High yielding mutants of blackgram variety 'PH-25'

    International Nuclear Information System (INIS)

    Misra, R.C.; Mohapatra, B.D.; Panda, B.S.

    2001-01-01

    Seeds of blackgram (Vigna mungo L.) variety 'PH-5' were treated with chemical mutagens ethyl methanesulfonate (EMS), nitrosoguanidine (NG), maleic hydrazide (MH) and sodium azide (NaN 3 ), each at 3 different concentrations. Thirty six mutant lines developed from mutagenic treatments along with parent varieties were tested in M 4 generation. The mutants showed wide variation in most of the traits and multivariante D 2 analysis showed genetic divergence among themselves. Twenty of the thirty mutants showed genetic divergence from parent. Ten selected high yielding mutants were tested in M 5 . Yield and other productive traits of five high yielding mutants in M 4 and M 5 are presented

  16. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 1. Chlorophyll Mutations in Allelic tw Mutants and Their Revertants

    International Nuclear Information System (INIS)

    Vaitkuniene, V.

    1995-01-01

    Genotypical environment is an essential factor determining the mutability of mutants of the same type. Decreased chlorophyll mutant frequency was a common characteristic of all tested tw type (tw, tw 1 , tw 2 ) mutants induced in barley c. 'Auksiniai II'. The mutability of all the tested revertants was close to that of the initial c. 'Auksiniai II'. (author). 9 refs., 2 tabs

  17. A large-scale mutant panel in wheat developed using heavy-ion beam mutagenesis and its application to genetic research

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Koji, E-mail: murai@fpu.ac.jp [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Nishiura, Aiko [Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195 (Japan); Kazama, Yusuke [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko [RIKEN, Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); RIKEN, Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-11-01

    Mutation analysis is a powerful tool for studying gene function. Heavy-ion beam mutagenesis is a comparatively new approach to inducing mutations in plants and is particularly efficient because of its high linear energy transfer (LET). High LET radiation induces a higher rate of DNA double-strand breaks than other mutagenic methods. Over the last 12 years, we have constructed a large-scale mutant panel in diploid einkorn wheat (Triticum monococcum) using heavy-ion beam mutagenesis. Einkorn wheat seeds were exposed to a heavy-ion beam and then sown in the field. Selfed seeds from each spike of M{sub 1} plants were used to generate M{sub 2} lines. Every year, we obtained approximately 1000 M{sub 2} lines and eventually developed a mutant panel with 10,000 M{sub 2} lines in total. This mutant panel is being systematically screened for mutations affecting reproductive growth, and especially for flowering-time mutants. To date, we have identified several flowering-time mutants of great interest: non-flowering mutants (mvp: maintained vegetative phase), late-flowering mutants, and early-flowering mutants. These novel mutations will be of value for investigations of the genetic mechanism of flowering in wheat.

  18. Selection and genetic relationship of salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Young; Kim, Dong Sub; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Myung Chul [National Academy of Agriculture and Science, Suwon (Korea, Republic of); Yun, Song Joong [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-12-15

    Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCI: second, selection under in vitro condition with 171 mM NaCI: and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCI treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

  19. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    Science.gov (United States)

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant

  20. The stability of induced compact mutant clones of Bramley's Seedling apple

    International Nuclear Information System (INIS)

    Lacey, C.N.D.

    1982-01-01

    Twelve selected, compact, clones of Bramley's Seedling induced by gamma radiation treatment were checked for stability. Representative trees were used as vegetative parents for large scale multiplication, and further buds were treated with gamma radiation to disrupt the structure of their meristems. The results indicate that seven of the clones are as stable as the original cultivar, and therefore probably homohistont, containing only cells with compact mutant genotype. The other five clones proved to be unstable and gave rise to a large proportion of apparently normal trees. It is hypothesized that in these clones the L 1 (epidermis) consists of normal unchanged tissue, while the bulk of the plant tissue layers are of mutant cells, i.e. that they are periclinal chimaeras with the genotypes of the different cell layers coded for different growth forms. (orig.)

  1. Productive mutants of niger

    International Nuclear Information System (INIS)

    Misra, R.C.

    2001-01-01

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  2. Prion Propagation in Cells Expressing PrP Glycosylation Mutants

    Science.gov (United States)

    Salamat, Muhammad K.; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-01-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrPC) to a disease-related isoform (PrPSc). PrPC carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrPC glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrPSc and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrPSc, while PrPC with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrPC, were able to form infectious PrPSc. Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  3. Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Prakash, S.

    1977-01-01

    We have isolated mutants sensitive to methyl methanesulfonate (MMS) in Saccharomyces cerevisiae. Alleles of rad1, rad4, rad6, rad52, rad55 and rad57 were found among these mms mutants. Twenty-nine of the mms mutants which complement the existing radiation-sensitive (rad and rev) mutants belong to 22 new complementation groups. Mutants from five complementation groups are sensitive only to MMS. Mutants of 11 complementation groups are sensitive to uv or x rays in addition to MMS, mutants of six complementation groups are sensitive to all three agents. The cross-sensitivities of these mms mutants to uv and x rays are discussed in terms of their possible involvement in DNA repair. Sporulation is reduced or absent in homozygous diploids of mms mutants from nine complementation groups

  4. Efficient Identification of Causal Mutations through Sequencing of Bulked F2 from Two Allelic Bloomless Mutants of Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Yinping Jiao

    2018-01-01

    Full Text Available Sorghum (Sorghum bicolor Moench, L. plant accumulates copious layers of epi-cuticular wax (EW on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghum's drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1 and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.

  5. Isoenzymes performance of some rice varieties and their mutants

    International Nuclear Information System (INIS)

    Winarno, Ermin; Suliwarno, Ambyah; Ismachin, M.

    1992-01-01

    Isoenzymes performance of some rice varieties and their mutants. Genetics studies on alcohol dehydrogenase, malic enzyme, peroxidase, acid phosphase, and aminopeptidase isoenzymes were carried out on several groups of rice varieties and their mutant lines. The first groups consisted of Atomita I, Pelita I/1, A227/5, Mudgo, TN-1, and IR-26. The second group was Cisadane variety and its five mutants, namely OBS 18, OBS 208, OBS 297, OBS 306, and OBS 330. The third group was mutants line 627-10-3 and its mutants, namely 1063, 1066, 1067, 1076, and 1090. Isoenzymes extracts of the rice leaves were fractionated using polyacrylamide gel disc electrophoresis. The pattern of acid phosphate isoenzyme shows the specific character of rice mutants susceptible to brown plant hopper biotype 1. The gene(s) controlling malic enzyme in Cisadane's mutants is (are) estimated more resistant toward gamma irradiation than gene(s) responsible for controlling the other enzymes. Generally, the isoenzymes zymograms show that gene(s) controlling the mutants enzyme have undergone mutation. This case is shown by the changes of Rm value, as well as the amount and intensity of mutants bands. (authors). 7 refs., 7 figs

  6. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos

    Directory of Open Access Journals (Sweden)

    Daniel Concepcion

    2017-07-01

    Full Text Available Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6-expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos.

  7. Mutants of Escherichia coli K-12 with enhanced resistance to ionizing radiation. 4. Peculiarities of recombination in Gamsup(r) mutants

    International Nuclear Information System (INIS)

    Bresler, S.E.; Kalinin, V.L.; Laneeva, N.I.

    1984-01-01

    Radioresistant mutant Gam sup(r) 444 differs from a wild type and from Gam sup(r) 445 mutant in decreased frequency of long episome heritage ORF 1 (pur E + -tsx + -proC + -lac + ) and F 14 (ilv + -argE + ), containing hot points of RecRecF - depending recombination and in increased frequency of chromosome mobilization and integrative suppression of temperature sensitive dna A46 mutation by sexual factor F. In this respect Gam sup(r) 444 mutant resembles rec BC sbs B mutant with RecF - recombination type

  8. A cataract-causing connexin 50 mutant is mislocalized to the ER due to loss of the fourth transmembrane domain and cytoplasmic domain.

    Science.gov (United States)

    Somaraju Chalasani, Madhavi Latha; Muppirala, Madhavi; G Ponnam, Surya Prakash; Kannabiran, Chitra; Swarup, Ghanshyam

    2013-01-01

    Mutations in the eye lens gap junction protein connexin 50 cause cataract. Earlier we identified a frameshift mutant of connexin 50 (c.670insA; p.Thr203AsnfsX47) in a family with autosomal recessive cataract. The mutant protein is smaller and contains 46 aberrant amino acids at the C-terminus after amino acid 202. Here, we have analysed this frameshift mutant and observed that it localized to the endoplasmic reticulum (ER) but not in the plasma membrane. Moreover, overexpression of the mutant resulted in disintegration of the ER-Golgi intermediate compartment (ERGIC), reduction in the level of ERGIC-53 protein and breakdown of the Golgi in many cells. Overexpression of the frameshift mutant partially inhibited the transport of wild type connexin 50 to the plasma membrane. A deletion mutant lacking the aberrant sequence showed predominant localization in the ER and inhibited anterograde protein transport suggesting, therefore, that the aberrant sequence is not responsible for improper localization of the frameshift mutant. Further deletion analysis showed that the fourth transmembrane domain and a membrane proximal region (231-294 amino acids) of the cytoplasmic domain are needed for transport from the ER and localization to the plasma membrane. Our results show that a frameshift mutant of connexin 50 mislocalizes to the ER and causes disintegration of the ERGIC and Golgi. We have also identified a sequence of connexin 50 crucial for transport from the ER and localization to the plasma membrane.

  9. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.

    Science.gov (United States)

    Brokaw, C J; Luck, D J

    1985-01-01

    Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.

  10. Ligand and proton exchange dynamics in recombinant human myoglobin mutants.

    Science.gov (United States)

    Lambright, D G; Balasubramanian, S; Boxer, S G

    1989-05-05

    Site-specific mutants of human myoglobin have been prepared in which lysine 45 is replaced by arginine (K45R) and aspartate 60 by glutamate (D60E), in order to examine the influence of these residues and their interaction on the dynamics of the protein. These proteins were studied by a variety of methods, including one and two-dimensional proton nuclear magnetic resonance spectroscopy, exchange kinetics for the distal and proximal histidine NH protons as a function of pH in the met cyano forms, flash photolysis of the CO forms, and ligand replacement kinetics. The electronic absorption and proton nuclear magnetic resonance spectra of the CO forms of these proteins are virtually identical, indicating that the structure of the heme pocket is unaltered by these mutations. There are, however, substantial changes in the dynamics of both CO binding and proton exchange for the mutant K45R, whereas the mutant D60E exhibits behavior indistinguishable from the reference human myoglobin. K45R has a faster CO bimolecular recombination rate and slower CO off-rate relative to the reference. The kinetics for CO binding are independent of pH (6.5 to 10) as well as ionic strength (0 to 1 M-NaCl). The exchange rate for the distal histidine NH is substantially lower for K45R than the reference, whereas the proximal histidine NH exchange rate is unaltered. The exchange behavior of the human proteins is similar to that reported for a comparison of the exchange rates for myoglobins having lysine at position 45 with sperm whale myoglobin, which has arginine at this position. This indicates that the differences in exchange rates reflects largely the Lys----Arg substitution. The lack of a simple correlation for the CO kinetics with this substitution means that these are sensitive to other factors as well. Specific kinetic models, whereby substitution of arginine for lysine at position 45 can affect ligand binding dynamics, are outlined. These experiments demonstrate that a relatively

  11. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer

    OpenAIRE

    Ying Swan Ho; Lian Yee Yip; Nurhidayah Basri; Vivian Su Hui Chong; Chin Chye Teo; Eddy Tan; Kah Ling Lim; Gek San Tan; Xulei Yang; Si Yong Yeo; Mariko Si Yue Koh; Anantham Devanand; Angela Takano; Eng Huat Tan; Daniel Shao Weng Tan

    2016-01-01

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spect...

  12. Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects.

    Directory of Open Access Journals (Sweden)

    Chris Jopling

    2007-12-01

    Full Text Available Shp2 is a cytoplasmic protein-tyrosine phosphatase that is essential for normal development. Activating and inactivating mutations have been identified in humans to cause the related Noonan and LEOPARD syndromes, respectively. The cell biological cause of these syndromes remains to be determined. We have used the zebrafish to assess the role of Shp2 in early development. Here, we report that morpholino-mediated knockdown of Shp2 in zebrafish resulted in defects during gastrulation. Cell tracing experiments demonstrated that Shp2 knockdown induced defects in convergence and extension cell movements. In situ hybridization using a panel of markers indicated that cell fate was not affected by Shp2 knock down. The Shp2 knockdown-induced defects were rescued by active Fyn and Yes and by active RhoA. We generated mutants of Shp2 with mutations that were identified in human patients with Noonan or LEOPARD Syndrome and established that Noonan Shp2 was activated and LEOPARD Shp2 lacked catalytic protein-tyrosine phosphatase activity. Expression of Noonan or LEOPARD mutant Shp2 in zebrafish embryos induced convergence and extension cell movement defects without affecting cell fate. Moreover, these embryos displayed craniofacial and cardiac defects, reminiscent of human symptoms. Noonan and LEOPARD mutant Shp2s were not additive nor synergistic, consistent with the mutant Shp2s having activating and inactivating roles in the same signaling pathway. Our results demonstrate that Shp2 is required for normal convergence and extension cell movements during gastrulation and that Src family kinases and RhoA were downstream of Shp2. Expression of Noonan or LEOPARD Shp2 phenocopied the craniofacial and cardiac defects of human patients. The finding that defective Shp2 signaling induced cell movement defects as early as gastrulation may have implications for the monitoring and diagnosis of Noonan and LEOPARD syndrome.

  13. [Expression in E.coli and bioactivity assay of Micrococcus luteus resuscitation promoting factor domain and its mutants].

    Science.gov (United States)

    Yue, Chen-Li; Shi, Jie-Ran; Shi, Chang-Hong; Zhang, Hai; Zhao, Lei; Zhang, Ting-Fen; Zhao, Yong; Xi, Li

    2008-10-01

    To express Micrococcus luteus resuscitation promoting factor (Rpf) domain and its mutants in prokaryotic cells, and to investigate their bioactivity. The gene of Rpf domain and its mutants (E54K, E54A) were amplified by polymerase chain reaction (PCR) from the genome of Micrococcus luteus and cloned into pMD18-T vector. After sequenced, the Rpf domain and its mutant gene were subcloned into expression vector PGEX-4T-1, and transfected into E. coli DH5alpha. The expressed product was purified by affinity chromatography using GST Fusion Protein Purification bead. The aim proteins were identified by SDS-PAGE analysis and by Western blot with monoclonal antibodies against Rpf domain (mAb). The bioactivity of the proteins was analyzed by stimulating the resuscitation of Mycobacterium smegmatis. The sequences of the PCR products were identical to those of the Rpf domain and its mutant gene in GenBank. The relative molecular mass identified by SDS-PAGE analysis was consistent with that had been reported, which was also confirmed by Western blot analysis that there were specific bindings at 32 000 with Rpf domain mAb. The purified GST-Rpf domain could stimulate resuscitation of Mycobacterium smegmatis. Replacements E54A and especially E54K resulted in inhibition of Rpf resuscitation activity. Rpf domain and two kinds of its mutant protein were obtained, and its effects on the resuscitation of dormant Mycobacterium smegmatis were clarified.

  14. Multilocation trial of potential selected mutant lines of groundnut (arachis hypogaea) at 3 location in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Rusli Ibrahim; Khairuddin Abdul Rahim; Shuhaimi Shamsuddin

    2002-01-01

    Two fixed mutant lines of groundnut derived from cultivar Matjan were selected for their yield potential at M 1 0 generation. Multilocation trial of these mutants (MJ40/42 and MJ20/165-5) was carried out to evaluate genotype stability at different climate and soil types in Peninsular Malaysia. The mutant lines were planted and compared with their parent (Matjan) and control variety (MKT1). The identified locations were in Taiping (Perak), Machang (Kelantan), and Air Hitam (Johor). The soils at the locations were of the Serdang, Bungor and Rengam series, respectively. The trial was carried out simultaneously in the same year at each location. Mutant MJ20/165-5 showed stable performance at all location compared to other genotypes tested. Its yield was higher than the parent in Kelantan and Johor trial and showed similar performance in Perak. This mutant also showed better yield performance than the control varieties in the Kelantan trial. Meanwhile, mutant line MJ40/42 gave better yield in Kelantan and Johor but did not perform well in Perak as compared to its parent and control varieties. (Author)

  15. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks

    Science.gov (United States)

    Schär, Primo; Herrmann, Gernot; Daly, Graham; Lindahl, Tomas

    1997-01-01

    Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4. Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of the LIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitize cdc9 or rad52 mutant cells. In contrast, lig4 mutant cells have a 1000-fold reduced capacity for correct recircularization of linearized plasmids by illegitimate end-joining after transformation. Moreover, homozygous lig4 mutant diploids sporulate less efficiently than isogenic wild-type cells, and show retarded progression through meiotic prophase I. Spore viability is normal, but lig4 mutants appear to produce a higher proportion of tetrads with only three viable spores. The mutant phenotypes are consistent with functions of LIG4 in an illegitimate DNA end-joining pathway and ensuring efficient meiosis. PMID:9271115

  16. Serrated leaf mutant in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Malik, I.A.; Ghulam, Sarwar; Yousaf, Ali; Saleem, M.

    1988-01-01

    Dry dormant seeds of mungbean (Vigna radiata (L) Wilczek) were treated with gamma rays (15, 30 and 60 kR). The serrated leaf mutation was noticed in M 2 of cultivar Pak 32 treated with 60 kR. Cf 14 plants, 3 showed the altered leaf structure and the others were normal. The feature of this mutant was the deep serration of leaflet margins. The mutant had large thick leaflets with prominent venation. The mutant bred true in the M 3 and successive generation. Details of the morphological characteristics of the mutant are presented. The mutant exhibited slower growth particularly during the early stages of development, flowered later and attained shorter height. There was an increase in the number of pods, in seed weight and in seed protein content, but number of seed per pod was considerably reduced. The seed coat colour showed a change from green to yellowish green. In the mutant's flowers the stamina were placed much below the stigma level and the stigma sometimes protruded the corolla. Outcrossing of 4% recorded in some of the mutant lines revealed a reduced cleistogamy. The low number of seeds per pod in the mutant could be due to reduced pollen fertility. The mutant behaved as monogenic recessive. The symbols SL/sl are proposed for this allelic pair. The mutant may have use as a green manure crop because of its large foliage and for the breeders as a genetic marker

  17. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein.

    Directory of Open Access Journals (Sweden)

    Victoria A Lawson

    Full Text Available BACKGROUND: The accumulation of protease resistant conformers of the prion protein (PrP(res is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. METHODOLOGY/PRINCIPAL FINDING: In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrP(res formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS from the PrP(C substrate was found to specifically prevent PrP(res formation seeded by mouse derived PrP(Sc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrP(res formation, while having no effect on PrP(res formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. CONCLUSIONS/SIGNIFICANCE: Cofactor requirements for PrP(res formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.

  18. Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy.

    Science.gov (United States)

    Sha, Zhiqiang; Sha, Longze; Li, Wenting; Dou, Wanchen; Shen, Yan; Wu, Liwen; Xu, Qi

    2015-03-30

    Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

    Science.gov (United States)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-07-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.

  20. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

    International Nuclear Information System (INIS)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N.; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-01-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UVTolerantRice319), was isolated from a mutagenized population derived from 2500 M 1 seeds (of the UVB-resistant cultivar ‘Sasanishiki’) that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined

  1. Bacterio-opsin mutants of Halobacterium halobium

    Science.gov (United States)

    Betlach, Mary; Pfeifer, Felicitas; Friedman, James; Boyer, Herbert W.

    1983-01-01

    The bacterio-opsin (bop) gene of Halobacterium halobium R1 has been cloned with about 40 kilobases of flanking genomic sequence. The 40-kilobase segment is derived from the (G+C)-rich fraction of the chromosome and is not homologous to the major (pHH1) or minor endogenous covalently closed circular DNA species of H. halobium. A 5.1-kilobase Pst I fragment containing the bop gene was subcloned in pBR322 and a partial restriction map was determined. Defined restriction fragments of this clone were used as probes to analyze the defects associated with the bop gene in 12 bacterio-opsin mutants. Eleven out of 12 of the mutants examined had inserts ranging from 350 to 3,000 base pairs either in the bop gene or up to 1,400 base pairs upstream. The positions of the inserts were localized to four regions in the 5.1-kilobase genomic fragment: within the gene (one mutant), in a region that overlaps the 5′ end of the gene (seven mutants), and in two different upstream regions (three mutants). Two revertants of the mutant with the most distal insert had an additional insert in the same region. The polar effects of these inserts are discussed in terms of inactivation of a regulatory gene or disruption of part of a coordinately expressed operon. Given the defined nature of the bop mRNA—i.e., it has a 5′ leader sequence of three ribonucleotides—these observations indicate that the bop mRNA might be processed from a large mRNA transcript. Images PMID:16593291

  2. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants

    Science.gov (United States)

    Guan, Zhuo; Buhl, Lauren K.; Quinn, William G.; Littleton, J. Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  3. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    Science.gov (United States)

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  4. A novel mouse Fgfr2 mutant, hobbyhorse (hob, exhibits complete XY gonadal sex reversal.

    Directory of Open Access Journals (Sweden)

    Pam Siggers

    Full Text Available The secreted molecule fibroblast growth factor 9 (FGF9 plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob, which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6 genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.

  5. Selection of mutants resistant to black spot disease by chronic irradiation of gamma-rays in Japanese pear 'Osanijisseiki'

    International Nuclear Information System (INIS)

    Masuda, Tetsuo; Yoshioka, Toji; Kotobuki, Kazuo; Sanada, Tetsuro; Inoue, Kosuke; Murata, Kenji; Kitagawa, Kenichi; Tabira, Hiroki; Yoshida, Akira

    1997-01-01

    'Osanijisseiki', a self-compatible, spontaneous bud sport of the Japanese pear 'Nijisseiki' is an excellent cultivar with a smooth skin. However, this cultivar is susceptible to Japanese pear black spot disease caused by Alternaria alternata Japanese pear pathotype. To obtain resistant mutants from 'Osanijisseiki', nursery plants of 'Osanijisseiki' have been irradiated chronically with gamma-rays in the Gamma Field of the Institute of Radiation Breeding, NAR, MAFF, since 1986. Screening tests using AK toxin, a host-specific toxin produced by A. alternata Japanese pear pathotype, were performed form 1988 to 1993. Four branches of young trees planted at a distance of 40 m from the 60 Co source were selected as being resistant mutants in 1991 (IRB 502-13T and IRB 502-14T) and 1993 (IRB 502-17T and IRB 502-18T). Sensitivity of the four resistant mutants to AK-toxin and susceptibility to the pathogen were compared with other of susceptible and resistant cultivars. The results showed that these four mutants possessed intermediate resistance. Furthermore, a mutant, IRB 502-13T, had the same characteristics as the original 'Osanijisseiki', except for the difference in toxin sensitivity. The characteristics of the other mutants, IRB 502 14-T, IRB 502-17T, and IRB 502-18T, care being examined. (author)

  6. High throughput screening for small molecule therapy for Gaucher disease using patient tissue as the source of mutant glucocerebrosidase.

    Directory of Open Access Journals (Sweden)

    Ehud Goldin

    Full Text Available Gaucher disease (GD, the most common lysosomal storage disorder, results from the inherited deficiency of the lysosomal enzyme glucocerebrosidase (GCase. Previously, wildtype GCase was used for high throughput screening (HTS of large collections of compounds to identify small molecule chaperones that could be developed as new therapies for GD. However, the compounds identified from HTS usually showed reduced potency later in confirmatory cell-based assays. An alternate strategy is to perform HTS on mutant enzyme to identify different lead compounds, including those enhancing mutant enzyme activities. We developed a new screening assay using enzyme extract prepared from the spleen of a patient with Gaucher disease with genotype N370S/N370S. In tissue extracts, GCase is in a more native physiological environment, and is present with the native activator saposin C and other potential cofactors. Using this assay, we screened a library of 250,000 compounds and identified novel modulators of mutant GCase including 14 new lead inhibitors and 30 lead activators. The activities of some of the primary hits were confirmed in subsequent cell-based assays using patient-derived fibroblasts. These results suggest that primary screening assays using enzyme extracted from tissues is an alternative approach to identify high quality, physiologically relevant lead compounds for drug development.

  7. A metabolic signature for long life in the Caenorhabditis elegans Mit mutants.

    Science.gov (United States)

    Butler, Jeffrey A; Mishur, Robert J; Bhaskaran, Shylesh; Rea, Shane L

    2013-02-01

    Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial-derived α-ketoacids and α-hydroxyacids that are produced by long-lived Mit mutants but not by other long-lived mutants or by short-lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α-ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild-type animals was reduced using RNA interference we observed an unprecedented effect on lifespan - as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype. © 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  8. Tyrosyl-DNA Phosphodiesterase I Catalytic Mutants Reveal an Alternative Nucleophile That Can Catalyze Substrate Cleavage*

    Science.gov (United States)

    Comeaux, Evan Q.; Cuya, Selma M.; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C.; Mobley, James A.; Bjornsti, Mary-Ann; van Waardenburg, Robert C. A. M.

    2015-01-01

    Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3′-DNA adducts, such as the 3′-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (Hisnuc) that attacks DNA adducts to form a covalent 3′-phosphohistidyl intermediate and a general acid/base His (Hisgab), which resolves the Tdp1-DNA linkage. A Hisnuc to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of Hisgab to Arg. However, here we report that expression of the yeast HisnucAla (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 Hisgab mutants, including H432N and the SCAN1-related H432R. Moreover, the HisnucAla mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the HisnucPhe mutant was catalytically inactive and suppressed Hisgab mutant-induced toxicity. These data suggest that the activity of another nucleophile when Hisnuc is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to Hisnuc, can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate. PMID:25609251

  9. The application of shortened upper leaf mutant in barley breeding

    International Nuclear Information System (INIS)

    Jin Hua

    2004-01-01

    The shortened upper leaf mutant was induced from Fuji Nigo by γ-ray irradiation. Fuji Nigo, the mutant, cross-cut F 1 , F 2 and back-cross F 1 , F 2 were used to analyze mutant heredity by comparative study. The yield, chlorophyll content, light intensity, dry matter of mutant were investigated. The results showed that (1) the mutant character was controlled by a couple of nuclear genes which were partial dominance; (2) the transmittance of the mutant colony was better than that of Fuji Nigo and bottom dry matter was much more than that of Fuji Nigo; (3) under the condition of high fertilizer and high plant population , the yield of mutant was higher than that of Fuji Nigo; (4) the content of chlorophyll a in the mutant was higher than that in Fuji Nigo

  10. Genetical, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plants

    International Nuclear Information System (INIS)

    Kukimura, H.; Ikeda, F.; Fujita, H.; Maeta, T.; Nakajima, K.; Katagiri, K.; Nakahira, K.; Somegou, M.

    1975-01-01

    The study was aimed at elucidating the biological aspects of artificially induced mutations in perennial tree crops and at promoting the utilization of such mutations in a practical breeding programme. A number of mutants obtained particularly in Cryptomeria and mulberry (Morus spp.) by means of gamma radiation were examined for their practical usefulness. Doses from 7.5 to 15.0 kR were used. In mulbery, some mutant strains showed increased shoot growth, and one mutant strain showed a remarkable increase also in rooting ability. Entire leaf mutants were investigated for their breeding behaviour. None of the mutant strains showed acquired disease resistance. Changes in the number of isozyme bands and different staining intensity was observed in all the mutant strains compared to the original strains

  11. Use of gamma-rays mutagenesis in obtaining chickpea (Cicer arietinum L.) forms resistant to unfavorable environmental factors

    International Nuclear Information System (INIS)

    Cliciuc, D.

    2013-01-01

    Following experimental use of γ irradiation on chickpea, mutant forms with a series of morpho-physiological treats were obtained. During the study period, these mutants have been subjected to several stress factors like disease, drought, storm wind in which they presented a different resistance. Some of these mutants showed an increased sensitivity in certain environmental conditions and others have presented an increased resistance.

  12. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages.

    Directory of Open Access Journals (Sweden)

    Matthew Dale Woolard

    2013-02-01

    Full Text Available Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS induces macrophages to synthesize prostaglandin E2 (PGE2. Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the cellular pathways (neither host nor bacterial that result in up-regulation of the PGE2 biosynthetic pathway in F. tularensis infected macrophages. We took a genetic approach to begin to understand the molecular mechanisms of bacterial induction of PGE2 synthesis from infected macrophages. To identify F. tularensis genes necessary for the induction of PGE2 in primary macrophages, we infected cells with individual mutants from the closely related strain Francisella tularensis subspecies novicida U112 (U112 two allele mutant library. Twenty genes were identified that when disrupted resulted in U112 mutant strains unable to induce the synthesis of PGE2 by infected macrophages. Fourteen of the genes identified are located within the Francisella pathogenicity island (FPI. Genes in the FPI are required for F. tularensis to escape from the phagosome and replicate in the cytosol, which might account for the failure of U112 with transposon insertions within the FPI to induce PGE2. This implies that U112 mutant strains that do not grow intracellularly would also not induce PGE2. We found that U112 clpB::Tn grows within macrophages yet fails to induce PGE2, while U112 pdpA::Tn does not grow yet does induce PGE2. We also found that U112 iglC::Tn neither grows nor induces PGE2. These findings indicate that there is dissociation between intracellular growth and the ability of F. tularensis to induce PGE2 synthesis. These mutants provide a critical entrée into the pathways used

  13. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  14. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    International Nuclear Information System (INIS)

    Miyazaki, Nobuyoshi; Nagai, Kazuo; Tamura, Gakuzo

    1976-01-01

    A thermosensitive mutant ts 42, of Bacillus subtilis Marburg 168 thy trp2 which requires uracil, was examined as to the colony-forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in modified woese's medium. However, the cells retained the viability when sodium succinate or potassium chloride was added to the medium at that temperature, although uranil deficiency was unchanged. A little but significant incorporation of adenine-8- 14 C into RNA still continued even after the incorporation of N-acetyl- 3 H-D-glucosamine into the acid-insoluble fraction of the cells terminated in the modified Woese's medium at 48 0 C. Both incorporations as well as the increase of absorbance were slowed down in the presence of sodium succinate at 48 0 C. This mutant, ts42, was more sensitive to deoxycholate than the parent wild strain. The resoration of the colony-forming ability after the temperature shifted back from 48 0 to 37 0 C was suppressed by the addition of deoxycholate to the medium. However, the cells became resistant to deoxycholate when uracil had been added to the medium prior to the temperature shift. (Kobatake, H.)

  15. Dictyostelium discoideum: mutants in the biosynthesis of the lipid-linked precursor of N-linked oligosaccharides

    International Nuclear Information System (INIS)

    Freeze, H.; Willies, L.; Hamilton, S.

    1986-01-01

    The lysosomal enzymes of Dictyostelium discoideum share highly immunogenic oligosaccharides which contain multiple Man-6-SO 4 residues. Two mutant strains which lack the shared antigenic determinant were analyzed in an attempt to identify the primary defect in each. [ 3 H]Man labelled N-linked oligosaccharides of secreted glycoproteins were released by Endo/PNGaseF digestion and analyzed. Both of the mutant strains produced smaller, less sulfated oligosaccharides compared to the wild-type, yet both still contained considerable amounts of Man-6-SO 4 . The size of the precursor lipid-linked oligosaccharide from the wild-type is consistent with a Glc 3 Man 9 GlcNAc 2 structure, while those from both of the mutants have an oligosaccharide the size of Man 5 GlcNAc 2 . The authors conclude that both of the mutants are defective in the biosynthesis of the precursor oligosaccharide. Both oligosaccharides from the mutants contain a tri-mannosyl core and are not glucosylated. Two of the five Man residues are released by a 1,2 specific α mannosidase. Based on the size and mannosidase digestions the authors conclude that 4/5 of the Man residues on the α1,6 branch of the β-linked Man residues are missing. Thus, these residues must be required to define the shared antigenic determinant

  16. Semi-dwarf mutants in triticale and wheat breeding

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1984-01-01

    The triticale lines Beagle and DR-IRA have been subjected to ionizing irradiation and chemical mutagenesis in order to produce semi-dwarf mutants. Beagle is 100 cm tall and DR-IRA 80 cm under average field conditions. A bulk then pedigree method is currently represented by 158 single plots of M 6 (or in some cases M 7 ) mutants that are from 5 to 35 cm shorter than the control variety. The shortest mutants are 65 cm in height. Forty of these mutants are also earlier flowering than the control varieties. Replicated yield testing will be conducted on confirmed mutants in 1983. Response to gibberellic acid of these mutants will also be determined. The Cornerstone male-sterility mutant (ms1c) on chromosome arm 4Aα has been combined with the GA-insensitive/reduced height gene Gai/Rht1 which is also on chromosome arm 4Aα. The ms1c mutant has also been combined with Gai/Rht2 on chromosome 4D and with both Gai/Rht1 and Gai/Rht2. The combination ms1c and Gai/Rht1 has been chosen as the basis of a composite cross. Thirteen varieties were tested with GA 3 and seven (Warigal, Aroona, Oxley, Banks, Avocet, Matipo and Toquifen) which contain Gai/Rht1 were crossed with ms1c Gai/Rht1 and entered into an interpollinating F 2 . The entire composite is homozygous for this semi-dwarf allele and selection will be practiced for increased height on a GA-insensitive background. (author)

  17. Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.

    Science.gov (United States)

    Zirak, P; Penzkofer, A; Moldt, J; Pokorny, R; Batschauer, A; Essen, L-O

    2009-11-09

    The E149A mutant of the cryDASH member cryptochrome 3 (cry3) from Arabidopsis thaliana was characterized in vitro by optical absorption and emission spectroscopic studies. The mutant protein non-covalently binds the chromophore flavin adenine dinucleotide (FAD). In contrast to the wild-type protein it does not bind N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF). Thus, the photo-dynamics caused by FAD is accessible without the intervening coupling with MTHF. In dark adapted cry3-E149A, FAD is present in the oxidized form (FAD(ox)), semiquinone form (FADH(.)), and anionic hydroquinone form (FAD(red)H(-)). Blue-light photo-excitation of previously unexposed cry3-E149A transfers FAD(ox) to the anionic semiquinone form (FAD()(-)) with a quantum efficiency of about 2% and a back recovery time of about 10s (photocycle I). Prolonged photo-excitation leads to an irreversible protein re-conformation with structure modification of the U-shaped FAD and enabling proton transfer. Thus, a change in the photocycle dynamics occurs with photo-conversion of FAD(ox) to FADH(.), FADH(.) to FAD(red)H(-), and thermal back equilibration in the dark (photocycle II). The photocycle dynamics of cry3-E149A is compared with the photocycle behaviour of wild-type cry3 and other photo-sensory cryptochromes.

  18. Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application.

    Directory of Open Access Journals (Sweden)

    Xue Xia

    Full Text Available Fibroblast growth factor-1 (FGF-1 is an angiogenic factor with therapeutic potential for the treatment of ischemic disease. FGF-1 has low intrinsic thermostability and is characteristically formulated with heparin as a stabilizing agent. Heparin, however, adds a number of undesirable properties that negatively impact safety and cost. Mutations that increase the thermostability of FGF-1 may obviate the need for heparin in formulation and may prove to be useful "2nd-generation" forms for therapeutic use. We report a pharmacokinetic (PK study in rabbits of human FGF-1 in the presence and absence of heparin, as well as three mutant forms having differential effects upon thermostability, buried reactive thiols, and heparin affinity. The results support the hypothesis that heparan sulfate proteoglycan (HSPG in the vasculature of liver, kidney and spleen serves as the principle peripheral compartment in the distribution kinetics. The addition of heparin to FGF-1 is shown to increase endocrine-like properties of distribution. Mutant forms of FGF-1 that enhance thermostability or eliminate buried reactive thiols demonstrate a shorter distribution half-life, a longer elimination half-life, and a longer mean residence time (MRT in comparison to wild-type FGF-1. The results show how such mutations can produce useful 2nd-generation forms with tailored PK profiles for specific therapeutic application.

  19. Genetic analysis of the induced mutants of rice resistant to bacterial leaf blight

    International Nuclear Information System (INIS)

    Nakai, H.

    1990-01-01

    Full text: Seeds of the rice cultivar 'Harebare', which is susceptible to bacterial leaf blight (BLB), were treated with thermal neutrons, gamma-rays, ethyleneimine and ethylmethane-sulfonate. In the M2, plants with better resistance to BLB were identified through inoculation at the seedling and the flag leaf stages with an isolate (T7174) of the Japanese differential race I. Several mutant lines resistant to BLB were selected through tests of the M 3 or M 4 lines derived from selected resistant M 2 plants. The frequency of resistant mutants was significantly higher after the thermal neutron treatment than after treatments with other mutagens. Two mutants, which originated from the neutron treatment, showing a highly quantitative resistance to multiple BLB races were analysed for gene(s) for resistance. The resistance of one of them (M41) to the Japanese races I, II, III, IV, and V was found to be conditioned by a single recessive gene. Three other recessive genes for resistance are known, but their reaction to differential races is different. Therefore, this gene was thought to be new and was tentatively designated as xa-nm(t). The resistance of another mutant (M57) was found to be polygenically inherited. (author)

  20. Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase.

    Science.gov (United States)

    Sigurdardóttir, Anna Gudný; Arnórsdóttir, Jóhanna; Thorbjarnardóttir, Sigrídur H; Eggertsson, Gudmundur; Suhre, Karsten; Kristjánsson, Magnús M

    2009-03-01

    Structural comparisons of VPR, a subtilisin-like serine proteinase from a psychrotrophic Vibrio species and a thermophilic homologue, aqualysin I, have led us to hypothesize about the roles of different residues in the temperature adaptation of the enzymes. Some of these hypotheses are now being examined by analysis of mutants of the enzymes. The selected substitutions are believed to increase the stability of the cold adapted enzyme based on structural analysis of the thermostable structure. We report here on mutants, which were designed to incorporate an ion pair into the structure of VPR. The residues Asp17 and Arg259 are assumed to form an ion pair in aqualysin I. The cold adapted VPR contains Asn (Asn15) and Lys (Lys257) at corresponding sites in its structure. In VPR, Asn 15 is located on a surface loop with its side group pointing towards the side chain of Lys257. By substituting Asn15 by Asp (N15D) it was considered feasible that a salt bridge would form between the oppositely charged groups. To mimic further the putative salt bridge from the thermophile enzyme the corresponding double mutant (N15D/K257R) was also produced. The N15D mutation increased the thermal stability of VPR by approximately 3 degrees C, both in T(50%) and T(m). Addition of the K257R mutation did not however, increase the stability of the double mutant any further. Despite this stabilization of the VPR mutants the catalytic activity (k(cat)) against the substrate Suc-AAPF-NH-Np was increased in the mutants. Molecular dynamics simulations on wild type and the two mutant proteins suggested that indeed a salt bridge was formed in both cases. Furthermore, a truncated form of the N15D mutant (N15DDeltaC) was produced, lacking a 15 residue long C-terminal extended sequence not present in the thermophilic enzyme. In wild type VPR this supposedly moveable, negatively charged arm on the protein molecule might interfere with the new salt bridge introduced as a result of the N15D mutation

  1. Analysis of the albino-locus region of the mouse. II. Mosaic mutants

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    Among 119 mutations involving the c locus that were recovered in the course of mouse specific-locus experiments with external radiations, 16 were found in mosaic, or fractional, mutants. The number of additional c-locus fractionals that could have occurred in these experiments and, for a variety of reasons, might not have been clearly identified, probably does not exceed the present number. There was no evidence for radiation induction of the fractionals, and even those occurring in the irradiated groups may thus be assumed to be of spontaneous origin. Since only two mutations in the control groups were found in whole-body mutants, it appears that the bulk of spontaneous c-locus mutations are fractionals. None of the mutations recovered in fractional mutants was homozygous lethal; 25% were viable intermediate alleles, and the remainder were albino-like mutants, all viable except for one subvital and one not tested. Genetic tests of the fractionals indicated no major selection against the new mutations, either gametically or in the progeny. For the group of fractionals as a whole, about one-half of the germinal tissue carried the mutation, indicating that the fractionals came from an overall blastomere population that was one-half mutant. Such a population could result from mutation in one strand of the gamete DNA, in a daughter chromosome derived from pronuclear DNA synthesis of the zygote, or in one of the first two blastomeres prior to replication. Since the mouse embryo does not stem from all of the cleavage products of the zygote, the frequency of fractionals observeed underestimates the frequency of mutational events that result in two types of blastomeres

  2. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

    Directory of Open Access Journals (Sweden)

    Adrian W R Serohijos

    2008-02-01

    Full Text Available The absence of a functional ATP Binding Cassette (ABC protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR from apical membranes of epithelial cells is responsible for cystic fibrosis (CF. Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1. Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of

  3. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Directory of Open Access Journals (Sweden)

    Mark P DeAndrade

    Full Text Available Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS, a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  4. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Science.gov (United States)

    DeAndrade, Mark P; Zhang, Li; Doroodchi, Atbin; Yokoi, Fumiaki; Cheetham, Chad C; Chen, Huan-Xin; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2012-01-01

    Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  5. Spectrum of induced floral mutants in Petunia

    International Nuclear Information System (INIS)

    Padmaja, V.; Sudhakar, P.

    1987-01-01

    A total of six floral mutants of garden Petunia isolated from the populations raised from the seed treatment with γ-rays, 2, 4-D and sodium azide are described. Five of the mutants viz. stellata, Campyloflora, Rubriflora mixed, Grandiflora and Albiflora mixed originated as segregants in M 2 generation while the chimeral floral phenotype was expressed in M 1 generation itself. Breeding behaviour of these horticulturally interesting altered floral phenotypes were studied in subsequent generations and appropriate conclusions were drawn regarding mode of inheritance of the mutant traits. 15 refs., 4 figures, 1 table. (author)

  6. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  7. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  8. A genome-scale RNA-interference screen identifies RRAS signaling as a pathologic feature of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    John P Miller

    Full Text Available A genome-scale RNAi screen was performed in a mammalian cell-based assay to identify modifiers of mutant huntingtin toxicity. Ontology analysis of suppressor data identified processes previously implicated in Huntington's disease, including proteolysis, glutamate excitotoxicity, and mitochondrial dysfunction. In addition to established mechanisms, the screen identified multiple components of the RRAS signaling pathway as loss-of-function suppressors of mutant huntingtin toxicity in human and mouse cell models. Loss-of-function in orthologous RRAS pathway members also suppressed motor dysfunction in a Drosophila model of Huntington's disease. Abnormal activation of RRAS and a down-stream effector, RAF1, was observed in cellular models and a mouse model of Huntington's disease. We also observe co-localization of RRAS and mutant huntingtin in cells and in mouse striatum, suggesting that activation of R-Ras may occur through protein interaction. These data indicate that mutant huntingtin exerts a pathogenic effect on this pathway that can be corrected at multiple intervention points including RRAS, FNTA/B, PIN1, and PLK1. Consistent with these results, chemical inhibition of farnesyltransferase can also suppress mutant huntingtin toxicity. These data suggest that pharmacological inhibition of RRAS signaling may confer therapeutic benefit in Huntington's disease.

  9. Functional characterization of recombinant snake venom rhodocytin: rhodocytin mutant blocks CLEC-2/podoplanin-dependent platelet aggregation and lung metastasis.

    Science.gov (United States)

    Sasaki, T; Shirai, T; Tsukiji, N; Otake, S; Tamura, S; Ichikawa, J; Osada, M; Satoh, K; Ozaki, Y; Suzuki-Inoue, K

    2018-02-28

    Essentials We generated recombinant rhodocytin that could aggregate platelets via CLEC-2. Recombinant wild-type rhodocytin formed heterooctamer with four α- and β-subunits. Asp 4 in α-subunit of rhodocytin was required for binding to CLEC-2. Inhibitory mutant of rhodocytin blocked podoplanin-dependent hematogenous metastasis. Background Rhodocytin, a disulfide-linked heterodimeric C-type lectin from Calloselasma rhodostoma consisting of α-subunits and β-subunits, induces platelet aggregation through C-type lectin-like receptor 2 (CLEC-2). CLEC-2 is a physiological binding partner of podoplanin (PDPN), which is expressed on some tumor cell types, and is involved in tumor cell-induced platelet aggregation and tumor metastasis. Thus, modified rhodocytin may be a possible source of anti-CLEC-2 drugs for both antiplatelet and antimetastasis therapy. However, its molecular function has not been well characterized, because of the lack of recombinant rhodocytin that induces platelet aggregation. Objective To produce recombinant rhodocytin, in order to verify its function with mutagenesis, and to develop an anti-CLEC-2 drug based on the findings. Methods We used Chinese hamster ovary cells to express recombinant rhodocytin (wild-type [WT] and mutant), which was analyzed for induction/inhibition of platelet aggregation with light transmission aggregometry, the formation of multimers with blue native PAGE, and binding to CLEC-2 with flow cytometry. Finally, we investigated whether mutant rhodocytin could suppress PDPN-induced metastasis in an experimental lung metastasis mouse model. Results Functional WT] rhodocytin (αWTβWT) was obtained by coexpression of both subunits. Asp4 in α-subunits of rhodocytin was required for CLEC-2 binding. αWTβWT formed a heterooctamer similarly to native rhodocytin. Moreover, an inhibitory mutant of rhodocytin (αWTβK53A/R56A), forming a heterotetramer, bound to CLEC-2 without inducing platelet aggregation, and blocked CLEC-2-PDPN

  10. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    International Nuclear Information System (INIS)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-01-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [ 14 C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31 P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM

  11. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-04-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.

  12. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  13. YaxAB, a Yersinia enterocolitica Pore-Forming Toxin Regulated by RovA

    Science.gov (United States)

    Wagner, Nikki J.; Lin, Carolina P.; Borst, Luke B.

    2013-01-01

    The transcriptional regulator RovA positively regulates transcription of the Yersinia enterocolitica virulence gene inv. Invasin, encoded by inv, is important for establishment of Y. enterocolitica infection. However, a rovA mutant is more attenuated for virulence than an inv mutant, implying that RovA regulates additional virulence genes. When the Y. enterocolitica RovA regulon was defined by microarray analysis, YE1984 and YE1985 were among the genes identified as being upregulated by RovA. Since these genes are homologous to Xenorhabdus nematophila cytotoxin genes xaxA and xaxB, we named them yaxA and yaxB, respectively. In this work, we demonstrate the effects of YaxAB on the course of infection in the murine model. While a yaxAB mutant (ΔyaxAB) is capable of colonizing mice at the same level as the wild type, it slightly delays the course of infection and results in differing pathology in the spleen. Further, we found that yaxAB encode a probable cytotoxin capable of lysing mammalian cells, that both YaxA and YaxB are required for cytotoxic activity, and that the two proteins associate. YaxAB-mediated cell death occurs via osmotic lysis through the formation of distinct membrane pores. In silico tertiary structural analysis identified predicted structural homology between YaxA and proteins in pore-forming toxin complexes from Bacillus cereus (HBL-B) and Escherichia coli (HlyE). Thus, it appears that YaxAB function as virulence factors by inducing cell lysis through the formation of pores in the host cell membrane. This characterization of YaxAB supports the hypothesis that RovA regulates expression of multiple virulence factors in Y. enterocolitica. PMID:24002058

  14. Promising semi-dwarf mutant in wheat variety K68

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D [Banaras Hindu Univ. (India). Dept. of Genetics and Plant Breeding

    1977-04-01

    A semi-dwarf mutant (HUW-SDf 1) was induced from common wheat Var. K68 through the exposure of /sup 60/Co ..gamma..-rays at 15 kR. This mutant along with other induced mutants and control was assessed for yield components, yield and grain quality (M/sub 4/ generation); internode length reduction pattern and the yielding ability at three levels of nitrogen (M/sub 5/ generation). The mutant was significantly shorter in height and almost equal in tillers per plant and grains per spike to K68. However, it showed marked reduction in spike length and spikelets per spike. On the other hand, it possessed significantly higher (50.04 g) 1000-grain weight against control (41.15 g). The mutant gave 56.0% higher yield than the control. Grain quality studies indicated that the mutant possessed significantly higher (14.15%) total protein than K68. It was equally as good as K68 in lysine content. Pelshenke value (62.5 min) of the mutant indicated medium hard nature of gluten as compared to hard nature (198.0) of the control. The mutant showed 24.0% reduction in total culm length compared to K68. Reduction occurred due to maximum and almost equal reduction in 5th and 4th internodes (ca 34.0%) followed by 3rd, 2nd and 1st. The mutant showed similar yield and yield response to increasing nitrogen levels (80 to 160 kg per ha.) as for current commercial semi-dwarf varieties.

  15. Spectrum of mutant characters utilized in developing improved cultivars

    International Nuclear Information System (INIS)

    Donini, B.; Kawai, T.; Micke, A.

    1984-01-01

    Although about 500 cultivars are known to have been developed by using induced mutations, the range of mutant traits seems to be rather narrow. Mutant traits have mostly been used that can be detected visually on an individual plant basis. However, in the background of such mutants other valuable mutations have been found in later generations. In cross-breeding with mutants valuable characteristics occurred, which could not be predicted from the phenotypes of the parents. It is concluded that improved attributes in the released mutant varieties do not comprise the entire genetic variation that could derive from mutagenesis. Current selection techniques are inadequate to exploit the full potential of mutagenesis for plant breeding. (author)

  16. Poliovirus Mutants Resistant to Neutralization with Soluble Cell Receptors

    Science.gov (United States)

    Kaplan, Gerardo; Peters, David; Racaniello, Vincent R.

    1990-12-01

    Poliovirus mutants resistant to neutralization with soluble cellular receptor were isolated. Replication of soluble receptor-resistant (srr) mutants was blocked by a monoclonal antibody directed against the HeLa cell receptor for poliovirus, indicating that the mutants use this receptor to enter cells. The srr mutants showed reduced binding to HeLa cells and cell membranes. However, the reduced binding phenotype did not have a major impact on viral replication, as judged by plaque size and one-step growth curves. These results suggest that the use of soluble receptors as antiviral agents could lead to the selection of neutralization-resistant mutants that are able to bind cell surface receptors, replicate, and cause disease.

  17. Circulation of Pneumocystis dihydropteroate synthase mutants in France.

    Science.gov (United States)

    Le Gal, Solène; Damiani, Céline; Perrot, Maëla; Rouillé, Amélie; Virmaux, Michèle; Quinio, Dorothée; Moalic, Elodie; Saliou, Philippe; Berthou, Christian; Le Meur, Yann; Totet, Anne; Nevez, Gilles

    2012-10-01

    Data on the prevalence of Pneumocystis jirovecii (P. jirovecii) dihydropteroate synthase (DHPS) mutants in France are still limited. In this study, mutant prevalence in the Brest region (western France) was determined. Archival pulmonary specimens from 85 patients infected with P. jirovecii and admitted to our institution (University Hospital, Brest) from October 2007 to February 2010 were retrospectively typed at the DHPS locus using a polymerase chain reaction-restriction fragment length polymorphism assay. Type identification was successful in 66 of 85 patients. Sixty-four patients were infected with a wild type, whereas mutants were found in 2 patients (2/66, 3%). Medical chart analysis revealed that these 2 patients usually lived in Paris. Another patient usually lived on the French Riviera, whereas 63 patients were from the city of Brest. Thus, the corrected prevalence of mutants in patients who effectively lived in our geographic area was 0% (0/63). Taking into account that i) Paris is characterized by a high prevalence of mutants from 18.5% to 40%, ii) infection diagnoses were performed in the 2 Parisians during their vacation Paris to Brest through infected vacationers. The study shows that the usual city of patient residence, rather than the city of infection diagnosis, is a predictor of mutants and that P. jirovecii infections involving mutants do not represent a public health issue in western France. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Limits of transforming competence of SV40 nuclear and cytoplasmic large T mutants with altered Rb binding sequences.

    Science.gov (United States)

    Tedesco, D; Fischer-Fantuzzi, L; Vesco, C

    1993-03-01

    Multiple amino acid substitutions were introduced into the SV40 large T region that harbors the retinoblastoma protein (Rb) binding site and the nuclear transport signal, changing either one or both of these determinants. Mutant activities were examined in a set of assays allowing different levels of transforming potential to be distinguished; phenotypic changes in established and pre-crisis rat embryo fibroblasts (REFs) were detected under isogenic cell conditions, and comparisons made with other established rodent cells. The limit of the transforming ability of mutants with important substitutions in the Rb binding site fell between two transformation levels of the same established rat cells. Such cells could be induced to form dense foci but not agar colonies (their parental pre-crises REFs, as expected, were untransformed either way). Nonetheless, agar colony induction was possible in other cell lines, such as mouse NIH3T3 and (for one of the mutants) rat F2408. All these mutants efficiently immortalized pre-crisis REFs. The transforming ability of cytoplasmic mutants appeared to depend on the integrity of the Rb-binding sequence to approximately the same extent as that of the wild-type large T, although evidence of in vivo Rb-cytoplasmic large T complexes was not found. The presence or absence of small t was critical when the transforming task of mutants was near the limit of their abilities.

  19. Reanalysis of parabiosis of obesity mutants in the age of leptin.

    Science.gov (United States)

    Zeng, Wenwen; Lu, Yi-Hsueh; Lee, Jonah; Friedman, Jeffrey M

    2015-07-21

    In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not posttranslationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin(-/-) double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure.

  20. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    OpenAIRE

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, r...

  1. Mutant number distribution in an exponentially growing population

    Science.gov (United States)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.

  2. Characteristics of mutant lines of sweet potato flour

    International Nuclear Information System (INIS)

    Aryanti

    2012-01-01

    Research on mutation induction of sweet potato Sari variety has been conducted. Flour mutant lines were obtained from selection of M1V5 tubers irradiated by gamma rays at the dose of 10 Gy. Flour was made by peeling of tubers, then dried, blended and sieved. The quality test of flour have been done by measuring degree of whiteness, proximate, amylose contents, water content, soluble water, swelling power, and flour characteristics. The result of this work showed that flour of C6.26.13 mutant line had higher protein content than the parent plant with concentration of 3.62 % and its amylose content was also higher than the other mutant lines. The soluble water value of mutant lines were significant different compared to the parent plant from 1.82 to 2.25 % and swelling power from 4.28 to 5.55 %. The flour granule of the mutant line was different compared to the parent plant. (author)

  3. Impaired Integrin-mediated Adhesion and Signaling in Fibroblasts Expressing a Dominant-negative Mutant PTP1B

    Science.gov (United States)

    Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack

    1998-01-01

    To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103

  4. A dominant-negative mutant inhibits multiple prion variants through a common mechanism.

    Directory of Open Access Journals (Sweden)

    Fen Pei

    2017-10-01

    Full Text Available Prions adopt alternative, self-replicating protein conformations and thereby determine novel phenotypes that are often irreversible. Nevertheless, dominant-negative prion mutants can revert phenotypes associated with some conformations. These observations suggest that, while intervention is possible, distinct inhibitors must be developed to overcome the conformational plasticity of prions. To understand the basis of this specificity, we determined the impact of the G58D mutant of the Sup35 prion on three of its conformational variants, which form amyloids in S. cerevisiae. G58D had been previously proposed to have unique effects on these variants, but our studies suggest a common mechanism. All variants, including those reported to be resistant, are inhibited by G58D but at distinct doses. G58D lowers the kinetic stability of the associated amyloid, enhancing its fragmentation by molecular chaperones, promoting Sup35 resolubilization, and leading to amyloid clearance particularly in daughter cells. Reducing the availability or activity of the chaperone Hsp104, even transiently, reverses curing. Thus, the specificity of inhibition is determined by the sensitivity of variants to the mutant dosage rather than mode of action, challenging the view that a unique inhibitor must be developed to combat each variant.

  5. X-ray-induced mutants resistant to 8-azaguanine

    International Nuclear Information System (INIS)

    Carver, J.H.; Dewey, W.C.; Hopwood, L.E.

    1976-01-01

    Asynchronous Chinese hamster ovary cells were irradiated and colony survival in Alpha MEM medium with dialyzed serum was determined with or without 15 μg/ml 8-Azaguanine (AG). Data indicated that a reproducible assay for the system was dependent upon controlling cell density at least two days prior to induction as well as throughout the expression period. Generally, spontaneous and radiation-induced mutant frequencies decreased when cell densities exceeded a critical density of 3-6 x 10 4 cells/cm 2 . Infrequently, the critical density was exceeded by a factor of two with no observed decrease, possibly correlated with a longer cell doubling time. Drug depletion artifacts can occur because of drug degradation, or because wild-type cells utilize the drug or produce conditions which reduce uptake of the drug. Thus, as the effective drug concentration is lowered, the observed mutant frequency increases because a spectrum of mutants resistant to only low concentrations can now survive. In fact, refeeding with AG at intervals during the incubation period lowered spontaneous and radiation-induced frequencies approx. 5-fold. Therefore, to standardize conditions, cells were trypsinized at the end of the expression time and replated at a constant cell number for mutant selection by AG. Over two generations of growth during the expression period were required for optimal manifestation of induced mutants, and when densities were kept below 4 x 10 4 cells/cm 2 at all times, observed mutant frequencies did not change significantly over a period between 80 and 140 h post-induction (over 4 generations for irradiated cells and over 6 generations for controls). Previous reports of observed mutant frequencies decreasing beyond three generations may be due to cell interaction prior to mutant selection

  6. Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis.

    Science.gov (United States)

    Reshamwala, Shamlan M S; Noronha, Santosh B

    2011-10-01

    Cra is a pleiotropic regulatory protein that controls carbon and energy flux in enteric bacteria. Recent studies have shown that Cra also regulates other cell processes and influences biofilm formation. The purpose of the present study was to investigate the role of Cra in biofilm formation in Escherichia coli. Congo red-binding studies suggested that curli biosynthesis is impaired in cra mutants. Microarray analysis of wild-type and mutant E. coli cultivated in conditions promoting biofilm formation revealed that the curli biosynthesis genes, csgBAC and csgDEFG, are poorly expressed in the mutant, suggesting that transcription of genes required for curli production is regulated by Cra. Four putative Cra-binding sites were identified in the curli intergenic region, which were experimentally validated by performing electromobility shift assays. Site-directed mutagenesis of three Cra-binding sites in the promoter region of the csgDEFG operon suggests that Cra activates transcription of this operon upon binding to operator regions both downstream and upstream of the transcription start site. Based on the Cra-binding sites identified in this and other studies, the Cra consensus sequence is refined.

  7. A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA

    Science.gov (United States)

    Pislariu, Catalina I.; D. Murray, Jeremy; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; A. Benedito, Vagner; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E.; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Chen, Rujin; Udvardi, Michael K.

    2012-01-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging. PMID:22679222

  8. The research progress on plant mutant germplasm resources in China

    International Nuclear Information System (INIS)

    He Cexi; Ji Linzhen; Zhao Shirong

    1991-07-01

    Mutants induced by nuclear radiation or other mutagens are new artificial germplasm resources. Some mutants have been applied in plant breeding and great achievements have been reached. The status and progress on the collection, identification and utilization of mutants in China are introduced. A proposal for developing mutant germplasm resources with good agronomic characters is suggested

  9. Radiation studies in Cajanus cajan: meiotic behaviour in some M/sub 2/ mutants

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.S.N.; Akhaury, S.B. (Ranchi Univ. (India). Dept. of Botany)

    1982-01-01

    A qualitative study of the mutants produced in M/sub 2/ generation has been made. The mutants were classified as: (1) chlorophyll mutant, (2) morphological mutant, (3) pollen mutant, (4) semi-sterile and (5) sterile mutant. Cytological investigations of pollen mutants, sterile and semi-sterile mutants have revealed that these mutants generally arise at higher dose levels (20 Kr and 25 Kr).

  10. Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant

    Directory of Open Access Journals (Sweden)

    Edson Jiovany Ramírez-Nava

    2017-10-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD and G6PD Nefza (Leu323Pro, and the double mutant G6PD A− (Asn126Asp + Leu323Pro. The mutants showed lower residual activity (≤50% of WT G6PD and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.

  11. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Phanerochaete mutants with enhanced ligninolytic activity

    International Nuclear Information System (INIS)

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1994-01-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organo pollutants in soils and aqueous media. Most of the organic compounds are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, bio pulping, bio bleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated, or are hyper producers or super secretors of key enzymes under enriched conditions. Through UV-light and γ-ray mutagenesis, we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants, 76UV, produced 272 U of lignin peroxidases enzyme activity/L after 9 d under high nitrogen (although the parent strain does not produce this enzyme under these conditions). The mutant and the parent strains produced up to 54 and 62 U/L, respectively, of the enzyme activity under low nitrogen growth conditions during this period. In some experiments, the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 d

  13. Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates.

    Directory of Open Access Journals (Sweden)

    Matthew P Harris

    2008-10-01

    Full Text Available The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda and ectodysplasin receptor (edar genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100 that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution.

  14. Zebrafish eda and edar Mutants Reveal Conserved and Ancestral Roles of Ectodysplasin Signaling in Vertebrates

    Science.gov (United States)

    Harris, Matthew P.; Rohner, Nicolas; Schwarz, Heinz; Perathoner, Simon; Konstantinidis, Peter; Nüsslein-Volhard, Christiane

    2008-01-01

    The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda) and ectodysplasin receptor (edar) genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100) that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution. PMID:18833299

  15. Detection of genetic variability in Basmati and non-Basmati rice varieties and their radiation induced mutants through random amplified polymorphic DNA (RAPD)

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, S; Iqbal, N; Arif, M [Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad (Pakistan)

    1998-03-01

    Random Amplified Polymorphic DNA (RAPDs) markers were utilized to detect polymorphism between pure lines and commercially available Basmati rice varieties to assess variation which may be helpful in quality control and varietal identification (Basmati-370 and derived radiation induced mutants), differentiation of mutants and parents, and identification of RAPD markers co-segregating with important agronomic traits including plant height, days to flower and grain quality. Basmati varieties were distinguished from non-Basmati varieties with the help of five diagnostic markers which will be useful for detecting mixing of non-Basmati and Basmati rices, currently a serious marketing problem. Different Basmati cultivars were identified with the help of diagnostic RAPD markers which can be used in quality control as well as for ``fingerprinting`` of cultivars. Different radiation induced mutants were also successfully distinguished from the parents on the basis of variety specific and mutant specific markers which will be useful for varietal identification. In addition to this, other markers were also identified which can differentiate mutants from each other and are being, used for the fingerprinting of different mutants, particularly the dwarf mutants having similar appearance but different parentage. For identification of RAPD markers co-segregating with plant height and days to flower, 50 F{sub 2} plants and four F{sub 3} families were studied from a reciprocal cross made between Kashmir Basmati (tall and early) and Basmati-198 (dwarf and late). Segregating bands were observed within these populations, and indicating the possible use of RAPD markers for tagging gene(s) of agronomic importance in rice. (author). 38 refs, 6 figs, 3 tabs.

  16. Detection of genetic variability in Basmati and non-Basmati rice varieties and their radiation induced mutants through random amplified polymorphic DNA (RAPD)

    International Nuclear Information System (INIS)

    Farooq, S.; Iqbal, N.; Arif, M.

    1998-01-01

    Random Amplified Polymorphic DNA (RAPDs) markers were utilized to detect polymorphism between pure lines and commercially available Basmati rice varieties to assess variation which may be helpful in quality control and varietal identification (Basmati-370 and derived radiation induced mutants), differentiation of mutants and parents, and identification of RAPD markers co-segregating with important agronomic traits including plant height, days to flower and grain quality. Basmati varieties were distinguished from non-Basmati varieties with the help of five diagnostic markers which will be useful for detecting mixing of non-Basmati and Basmati rices, currently a serious marketing problem. Different Basmati cultivars were identified with the help of diagnostic RAPD markers which can be used in quality control as well as for ''fingerprinting'' of cultivars. Different radiation induced mutants were also successfully distinguished from the parents on the basis of variety specific and mutant specific markers which will be useful for varietal identification. In addition to this, other markers were also identified which can differentiate mutants from each other and are being, used for the fingerprinting of different mutants, particularly the dwarf mutants having similar appearance but different parentage. For identification of RAPD markers co-segregating with plant height and days to flower, 50 F 2 plants and four F 3 families were studied from a reciprocal cross made between Kashmir Basmati (tall and early) and Basmati-198 (dwarf and late). Segregating bands were observed within these populations, and indicating the possible use of RAPD markers for tagging gene(s) of agronomic importance in rice. (author)

  17. Isolation of New Gravitropic Mutants under Hypergravity Conditions.

    Science.gov (United States)

    Mori, Akiko; Toyota, Masatsugu; Shimada, Masayoshi; Mekata, Mika; Kurata, Tetsuya; Tasaka, Masao; Morita, Miyo T

    2016-01-01

    Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upward. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes). In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using next-generation sequencing (NGS) and single nucleotide polymorphism (SNP)-based markers. Using the endodermal-amyloplast less 1 ( eal1 ) mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g) restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene ( enhancer of eal1 ) mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis .

  18. Inactivation of carbenicillin by some radioresistant mutant strains

    International Nuclear Information System (INIS)

    Zahiera, T.S.; Mahmoud, M.I.; Bashandy, A.A.

    1990-01-01

    Sensitivity test of five bacterial species to carbenicillin was performed microbiologically. The bacterial species were previously isolated from high level radiation environment. All the studied species could either highly decrease the antibiotic activity or even inactivate it completely. Detailed study of the inactivation of carbenicillin by the radioresistant mutant strains B. Laterosporus, B. firmus and M. roseus was performed, in the present study. Using high performace liquid chromatography technique. The gram-positive m. roseus mutant strain seemed to be the most active mutant in degrading the antibiotic. The left over of the antibiotic attained a value of 9% of the original amount after 14 day incubation of the antibiotic with this mutant strain, while the value of the left over reached 36% and 32% after the same period of incubation with the mutants B. laterosporus and B. firmus respectively. In the case of bacillus species, the degradation of the antibiotic started at the same moment when it was added to the bacterial cultures. This fact may indicate that the inactivation of the studied antibiotic by these bacillus species was due to extracellular enzymes extracted rapidly in the surrounding medium. In the case of M. roseus the inactivation process started later. after the addition of the antibiotic to the mutant culture

  19. Agronomic performance of old soybean variety 'Altona' derived mutants

    International Nuclear Information System (INIS)

    Hodosne, K.G.; Heszky, L.E.

    2001-01-01

    An induced mutation program has been initiated at the Department of Genetics and Plant Breeding to develop early maturing cultivars with good yielding capacity. Some new mutants have been produced by irradiation of variety Altona with 60 Co gamma rays. Ten years of breeding resulted in two new mutant varieties named 'Noventa' and 'Gate 511'. The present study deals with agronomic performance of these mutants. Registered soybean varieties Altona and 'McCall' as well as Altona derived mutants (Gate 511 and Noventa) have been compared

  20. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    Science.gov (United States)

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  1. Effect of NaN3 on oxygen-dependent lethality of UV-A in Escherichia coli mutants lacking active oxygen-defence and DNA-repair systems

    International Nuclear Information System (INIS)

    Yamada, Kazumasa; Ono, Tetsuyoshi; Nishioka, Hajime

    1996-01-01

    Escherichia coli mutants which lack defence systems against such active oxygen forms as OxyR (ΔoxyR), superoxide dismutase (SOD) (sodA and sodB) and catalase (katE and katG) are sensitive to UV-A lethality under aerobic conditions, whereas OxyR- and SOD-mutants have resistance under anaerobic conditions and in the presence of sodium azide (NaN 3 ) during irradiation. UV-A induces lipid peroxidation in the ΔoxyR mutant, which is suppressed by NaN 3 . These results suggest that UV-A generates 1 O 2 or the hydroxyl radical to produce lipid peroxides intracellularly in the ΔoxyR mutant and that O 2 - stress may be generated in the sodAB mutant after 8 hr of exposure to UV-A. The sensitivities of such DNA repair-deficient mutants as recA ind- and uvrA to UV-A also were examined and compared. These mutants are sensitive to UV-A lethality under aerobic conditions but show only slight resistance under anaerobic conditions or in the presence of NaN 3 during irradiation. We conclude that NaN 3 protects these mutant cells from oxygen-dependent UV-A lethality. (author)

  2. The Impact of Collisions on the Ability to Detect Rare Mutant Alleles Using Barcode-Type Next-Generation Sequencing Techniques

    Directory of Open Access Journals (Sweden)

    Jenna VanLiere Canzoniero

    2017-07-01

    Full Text Available Barcoding techniques are used to reduce error from next-generation sequencing, with applications ranging from understanding tumor subclone populations to detecting circulating tumor DNA. Collisions occur when more than one sample molecule is tagged by the same unique identifier (UID and can result in failure to detect very-low-frequency mutations and error in estimating mutation frequency. Here, we created computer models of barcoding technique, with and without amplification bias introduced by the UID, and analyzed the effect of collisions for a range of mutant allele frequencies (1e−6 to 0.2, number of sample molecules (10 000 to 1e7, and number of UIDs (4 10 -4 14 . Inability to detect rare mutant alleles occurred in 0% to 100% of simulations, depending on collisions and number of mutant molecules. Collisions also introduced error in estimating mutant allele frequency resulting in underestimation of minor allele frequency. Incorporating an understanding of the effect of collisions into experimental design can allow for optimization of the number of sample molecules and number of UIDs to minimize the negative impact on rare mutant detection and mutant frequency estimation.

  3. Plasmodium yoelii: induction of attenuated mutants by irradiation

    International Nuclear Information System (INIS)

    Waki, S.; Yonome, I.; Suzuki, M.

    1986-01-01

    When erythrocytic forms of Plasmodium yoelii nigeriensis, which is invariably fatal in mice, were exposed to X rays, the dose to reduce surviving parasites to one millionth was 100 gray (10 Krad). A suspension of 5 X 10(6) per ml of parasitized erythrocyte was irradiated at 100 gray, and 0.2 ml aliquots were inoculated into 22 mice. Eleven mice showed patent parasitemia, and in these the growth curves were less steep than that found in nonirradiated parasites. The infections of 8 mice of the 11 were self-resolving, and the attenuated feature of the parasites maintained following a limited number of blood passages. The parasites were slowly growing even in nude mice and cause self-resolving infections in intact mice. BALB/c mice immunized with the attenuated parasites were protected against subsequent challenge infections with the original virulent erythrocytic and sporogonic forms. These findings indicate that attenuated mutants of malaria parasites can be readily induced by this method

  4. Biochemical characteristics of mutant lines of currant tomato

    International Nuclear Information System (INIS)

    Gorbatenko, I.Yu.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1988-01-01

    The currant tomato is used in breeding for fruit quality. It contains up to 50 mg% ascorbic acid, a large quantity of sugar and 8-10% of dry matter. The weight of the fruit, however, does not exceed 1.2-1.5 g. The plants have long, spreading and very branchy stems. Gamma ray induced mutants of currant tomato were used, as initial material in breeding for fruit quality in varieties suitable for mechanized harvesting. The research was carried out mainly at the Department of Vegetable Growing Ukrainian Scientific Research Institute of Irrigation Farming. The regional variety Lebyazhinskij (suitable for mechanized harvesting) was adopted as the standard. Its fruits contain: 5.6% dry matter, 2.7% sugars, 0.543% titrated acidity, 26.6 mg/100 g ascorbic acid, 0.425 mg% carotene and 0.35% cellulose. The biochemical characteristics of the tomato mutants are shown. In terms of fruit dry matter, all mutants surpassed the standard. The acidity and the ascorbic acid content varied considerably. Most noteworthy in terms of carotene were the lines GP-5, GP-9 and GP-12. An important factor in the production of tomato paste is the fruit cellulose content. The lowest cellulose content is found in mutant GP-3. As shown, all of the mutants were early ripening. The mutants surpassed the standard in simultaneous fruit ripening. Mutant lines GP-3, GP-6, GP-9 and GP-12 will be used in the breeding programme for improving fruit quality of varieties suitable for mechanized harvesting

  5. Generation of gamma irradiation and EMS-induced mutant lines of the H7996 tomato (Solanum lycopersicum L.)

    International Nuclear Information System (INIS)

    Canama, Alma O.; Galvez, Hayde F.; Tongson, Eden Jane U.; Quilloy, Reynaldo B.; Hautea, Desiree M.

    2010-01-01

    Tomato (L.) is one of the most important vegetable crops grown worldwide for the fresh vegetable market and food processing industry. With the completion of the genome-sequencing projects in various crops, the major challenge will be determine the gene function. One approach is to generate and to analyze mutant phenotypes. The paper reports the generation of gamma-irradiated and ethy methane sulfonate (EMS)-treated mutant populations, identification and phenotypic characterization of dominant and visible mutations in tomato mutant lines. Mutant populations of tomato H7996 were created using physical (cobalt 60 gamma ray) and chemical EMS mutagens. Generally, based on high-throughput phenotypic characterization, mutations were observed on the plant habit, size, morphology, leaf and flower color and morphology and fruit characteristics. Specifically, the most common dominant and visible mutations noted in the M 1 generation were monopodial, compact, short internodes, multi-branch plant type, light yellow and ghost leaf coloration, tiny and long pedicel leaf morphology and small or short plant size. In the M2 generation, homogeneous and segregating M 2 families were selected to constitute the core set of visible tomato mutants. Initial bacterial wilt resistance (BWR) gene knockouts were also identified. The mutant lines will be used as a rich source of genetic materials for breeding and functional genomics of tomato. (author)

  6. Genetic analyses of nonfluorescent root mutants induced by mutagenesis in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1987-01-01

    Nonfluorescent root mutants in soybean [Glycine max (L.) Merr.] are useful as markers in genetic studies and in tissue culture research. Our objective was to obtain mutagen-induced nonfluorescent root mutants and to conduct genetic studies with them. Thirteen nonfluorescent mutants were detected among 154016 seedlings derived from soybean lines treated with six mutagens. One of these mutants, derived from Williams treated with 20 kR gamma rays, did not correspond to any of the known (standard) nonfluorescent spontaneous mutants. This is the first mutagen-induced nonfluorescent root mutant in soybean. It was assigned Genetic Type Collection no. T285 and the gene symbol fr5 fr5. The fr5 allele was not located on trisomics A, B, or C and was not linked to five chlorophyll-deficient mutants (y9, y11, y12, y13, and y20-k2) or flower color mutant w1. The remaining nonfluorescent root mutants were at the same loci as known spontaneous mutants; i.e., four had the fr1 allele, five had the fr2 allele, and three had the fr4 allele

  7. Development of high yielding mutants in lentil

    International Nuclear Information System (INIS)

    Rajput, M.A.; Sarwar, G.; Siddiqui, K.A.

    2001-01-01

    Full text: Lentil (Lens culinaris Medik.) locally known as Masoor, is the second most important rabi pulse crop, after chickpea, in Pakistan. It is cultivated on an area of over 63,400 ha, which constitutes about 4.83% of the total area under pulses. The annual production of the crop is 28,200 tones with an average yield of 445 kg/ha. Yield at the national level is very low, about one-half of the world's yield, which is mainly due to non-availability of high yield potential genotypes. Keeping in view the importance of mutants in developing a large number of new varieties, an induced mutations programme was initiated at AEARC, Tandojam during 1987-88, to develop high yielding varieties in lentil. For this, seeds of two lentil varieties, 'Masoor-85' and 'ICARDA-8' had been irradiated with gamma-rays ranging from 100-600 Gy in NIAB, Faisalabad during 1990. Selections were made in M2 on the basis of earliness, plant height, branches/plant and 100 grain weight. After confirming these mutants in M3 they were promoted in station yield trials and studied continuously for three consecutive years (1993- 1995). Overall results revealed that these mutants have consistent improvement of earliness in flowering and maturity. Plant height also increased in all mutant lines except AEL 23/40/91 where reduction in this attribute was observed as compared to parent variety. Mutant lines AEL 49/20/91 and AEL 13/30/91 showed improvement in 100 grain weight. The improvement of some agronomic characters enhanced the yield of mutant lines in comparison to parent varieties (Masoor-85 and ICARDA-8). The diversity in yield over the respective parents was computed from 6.94 to 60.12%. From these encouraging results it is hoped that mutant lines like AEL 12/30/91 and AEL 49/20/91 may serve as potential lentil genotypes in future. (author)

  8. Methods of producing protoporphyrin IX and bacterial mutants therefor

    Science.gov (United States)

    Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming

    2016-03-01

    The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.

  9. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  10. Genetic studies with morphological mutants of Aspergillus niger

    International Nuclear Information System (INIS)

    Roy, Ponty; Das, Arati

    1979-01-01

    Three classes of coloured mutations, viz., fawn, yellow and green, occurred recurrently among the population following UV- and γ-radiation from Co 60 of a wild Aspergillus niger strain 350. Ten mutants were picked up and complementation tests were performed by growing them in pairwise combinations. In two cases, allelic mutants of the same colour were observed. All these mutants were again grown in pairwise crosses with a brown A. niger mutant of different lineage. A poor heterokaryotic growth was, however, observed in one combination which later produced a diploid heterozygous nucleus. It segregated spontaneously to develop a large variety of colonies ranging from haploidy to diploidy including aneuploids. These have been analysed genetically and the possible explanations have been given. (auth.)

  11. Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy.

    Directory of Open Access Journals (Sweden)

    Angela S Laird

    Full Text Available Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43 is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS and frontotemporal lobe dementia (FTLD. These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.

  12. UV-induced lethal sectoring and pure mutant clones in yeast.

    Science.gov (United States)

    Hannan, M A; Duck, P; Nasim, A

    1976-08-01

    The induction of lethal sectoring and pure mutant clones by ultraviolet light has been studied in a homogeneous G1 population of Saccharomyces cerevisiae grown in a normal growth medium. At the lowest UV dose of 250 ergs, which corresponds to a shoulder in the survival curve, all mutants appeared as pure clones. At higher doses the frequency of mosaic mutants progressively increased. These results indicate a relationship between the highest frequency of complete mutants and the maximum repair activity. In addition, the frequency of lethal sectoring at all doses tested was too low to account for the origin of pure mutant clones.

  13. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    Science.gov (United States)

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Endocochlear potential generation is associated with intercellular communication in the stria vascularis: structural analysis in the viable dominant spotting mouse mutant.

    Science.gov (United States)

    Carlisle, L; Steel, K; Forge, A

    1990-11-01

    Deafness in the viable dominant spotting mouse mutant is due to a primary defect of the stria vascularis which results in absence of the positive endocochlear potential in scala media. Endocochlear potentials were measured and the structure of stria vascularis of mutants with potentials close to zero was compared with that in normal littermate controls by use of morphometric methods. The stria vascularis was significantly thinner in mutants. Marginal cells were not significantly different from controls in terms of volume density or intramembrane particle density but the network density of tight junctions was significantly reduced in the mutants. A virtual absence of gap junctions between basal cells and marginal or intermediate cells was observed, but intramembrane particle density and junctional complexes between adjacent basal cells were not different from controls. The volume density of basal cells was significantly greater in mutants. Intermediate cells accounted for a significantly smaller volume density of the stria vascularis in mutants and had a lower density of intramembrane particles than controls. Melanocytes were not identified in the stria vascularis of mutants. These results suggest that communication between marginal, intermediate and basal cells might be important to the normal function of the stria vascularis.

  15. Pollen irradiation method to obtain mutants in cucumber

    International Nuclear Information System (INIS)

    Iida, S.; Amano, E.

    1988-01-01

    Seed irradiation for mutation induction in dioecious crops like cucumber is not very useful because chimerism of the mutated tissues makes the segregation of mutants in the M 2 generation nearly impossible. This problem does not exist with pollen irradiation. Cucumber (Cucumis sativus L. var. Nishikisuyo) was used for a model experiment. The petals of male and female flowers were closed by pinching with binding wire before flowering to prevent pollination by insects. On the flowering day, the male flowers were collected and irradiated with 1kR to 10 kR of acute gamma rays (137-Cs), then used to pollinate the female flowers. The M 1 seeds thus obtained are not chimeric but heterozygous for induced mutations. When planted, no mutant phenotype appeared. Selfing within a plant lead to segregation of mutants in the M 2 generation. Seedling examination revealed eight mutants. One mutant line, in which the shape of leaves changed from pentagonal to round heart shape, was found under field conditions. The optimal dose for pollen irradiation seems to be between 2 kR and 4kR

  16. Mutant number distribution in an exponentially growing population

    International Nuclear Information System (INIS)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491–511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process. (paper)

  17. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2012-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  18. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2011-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast. Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  19. Selection and agronomic evaluation of induced mutant lines of sesame

    International Nuclear Information System (INIS)

    Hoballah, A.A.

    2001-01-01

    Station yield trial: Three high yielding mutants (8, 48, and EFM92) with better and stable performance were developed in our breeding programme and submitted for registration to the Agricultural Research Center (ARC), Egyptian Ministry of Agriculture and Land Reclamation. Multi-location yield trials indicated that mutant line EFM92 ranked first in all locations; significant yield increases recorded for it ranged from 14.7 to 74.0% over the check variety. Moreover, it was 15-20 days earlier than the check and/or other mutants. Mutant lines 8 and 48 produced higher seed yields than the check at two different locations. These mutants can probably be grown and produce more yield than the check variety at the low yielding environments. Seed quality assay: During 1996 and 1997, 15 promising lines of sesame including mutants and hybrid populations as well as the local variety were evaluated for seed protein, oil content and fatty acid composition. The protein content varied from 20.6 to 26.7%; hybrid population EXM90 gave the highest value. About 85% of the total fatty acids in the oil are unsaturated (oleic and linoleic) and 15% saturated, mainly palmitic and stearic. Linoleic acid ranged from 41.8 to 47.9%. Mutant lines 6, 9, and EFM92, which gave high oil content (54-55.5%) together with high linoleic acid values (45.2-47.8%), are recommended for breeding for seed oil quality. Heterosis, combining ability and type of gene action in sesame: A half diallel set of crosses involving seven parents was used to study heterosis and combining ability in the F 1 generation as well as the nature of gene action controlling seed yield and its contributing traits in both F 1 and F 2 in order to identify the most efficient breeding methods leading to rapid genetic improvement. The expressions of heterosis varied with the crosses and characters investigated. The maximal significant positive useful heterosis was observed for branches/plant (52.9%) followed by seed yield/plant (38

  20. Isolation of new gravitropic mutants under hypergravity conditions

    Directory of Open Access Journals (Sweden)

    Akiko Mori

    2016-09-01

    Full Text Available Forward genetics is a powerful approach used to link genotypes and phenotypes, and mutant screening/analysis has provided deep insights into many aspects of plant physiology. Gravitropism is a tropistic response in plants, in which hypocotyls and stems sense the direction of gravity and grow upwards. Previous studies of gravitropic mutants have suggested that shoot endodermal cells in Arabidopsis stems and hypocotyls are capable of sensing gravity (i.e., statocytes. In the present study, we report a new screening system using hypergravity conditions to isolate enhancers of gravitropism mutants, and we also describe a rapid and efficient genome mapping method, using Next-Generation Sequencing (NGS and Single Nucleotide Polymorphism (SNP-based markers. Using the endodermal-amyloplast less 1 (eal1 mutant, which exhibits defective development of endodermal cells and gravitropism, we found that hypergravity (10 g restored the reduced gravity responsiveness in eal1 hypocotyls and could, therefore, be used to obtain mutants with further reduction in gravitropism in the eal1 background. Using the new screening system, we successfully isolated six ene (enhancer of eal1 mutants that exhibited little or no gravitropism under hypergravity conditions, and using NGS and map-based cloning with SNP markers, we narrowed down the potential causative genes, which revealed a new genetic network for shoot gravitropism in Arabidopsis.

  1. Categories and inheritance of resistance to Nilaparvata lugens (Hemiptera: Delphacidae) in mutants of indica rice 'IR64'.

    Science.gov (United States)

    Sangha, Jatinder Singh; Chen, Yolanda H; Palchamy, Kadirvel; Jahn, Gary C; Maheswaran, M; Adalla, Candida B; Leung, Hei

    2008-04-01

    Varietal mutants can be useful for developing durable resistance, understanding categories of resistance, and identifying candidate genes involved in defense responses. We used mutants of rice 'IR64' to isolate new sources of resistance to the planthopper Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). We compared two mutants that showed a gain and loss of resistance to N. lugens, to determine the categories of resistance to this pest. Under choice tests, female planthoppers avoided settling and laid fewer eggs on the resistant mutant 'D518' than on the susceptible mutant D1131, susceptible check 'TN1', and wild-type IR64, indicating that antixenosis was the resistance category. Similarly, under no-choice conditions, planthoppers laid 29% fewer eggs in D518 than in IR64, but they oviposited more in 'D1131' and TN1. Honeydew excretion was greater on D1131 seedlings but slightly lower on D518 than on IR64. Nymphal survival and adult female weight did not differ among rice cultivars. D518 showed higher tolerance of N. lugens infestations than IR64. Genetic analysis of the F1, F2, and F3 populations derived from D518 x IR64 revealed that resistance in D518 is dominant and controlled by a single gene. Despite the variation in resistance to N. lugens, both mutants and IR64 performed similarly in the field. The mutant D518 is a new source of durable resistance to N. lugens, mainly due to enhanced antixenosis to female hoppers for settling and oviposition.

  2. Characterization of new mutants in the early part of the yeast secretory pathway isolated by a [3H]mannose suicide selection

    International Nuclear Information System (INIS)

    Newman, A.P.; Ferro-Novick, S.

    1987-01-01

    We have adapted a [ 3 H]mannose suicide selection to identify mutations in additional genes which function in the early part of the yeast secretory pathway. Thus far this protocol has led to the identification of two new genes which are implicated in this process, as well as additional alleles of previously identified genes. The new mutants, bet1 and bet2, are temperature sensitive for growth and protein transport. Thin section analysis has revealed the accumulation of a network of endoplasmic reticulum (ER) at the restrictive temperature (37 0 C). Precursors of exported proteins that accumulate in the cell at 37 0 C are terminally core glycosylated. These observations suggest that the transport of precursors is blocked subsequent to translocation into the ER but before entry into the Golgi apparatus. The bet1 and bet2 mutants define two new complementation groups which have the same properties as previously identified ER-accumulating mutants. This and previous findings suggest that protein exit from the ER and entry into the Golgi apparatus is a complex process requiring at least 11 genes

  3. Field performance of thirty mutant lines of the rice (Oryza sativa L.) varieties ICTA-Virginia and Precoz-ICTA

    International Nuclear Information System (INIS)

    Montepeque, R.; Molina, L. G.; Lopez, J. J.; Pazos, W.; Ramirez, J.

    1993-01-01

    Fifteen mutant lines from the variety ICTA-Virginia and fifteen from the variety Precozicta were evaluated according to their agronomic characteristics under conditions of the Motagua river valley during 1992. The objective was to select genotypes showing resistance to disease caused by Pyricularia grisea. The analysis of variance did not show significative differences among ICTA-Virginia mutants. The highest yield was form MV-860, 8.17 TM/ha and the lowest 5.31 TM/ha for MV-411. Significant differences were found among mutant lines from Precozicta. The highest yields were 6.06, 5.80 and 5.52 TM/ha for MPI-1189, MPI-1664 and MPI-1346 respectively. Inoculation with Pyricularia was made spraying it over the crop. However, it was not possible the evaluation of the disease in the neck (neck blast) due to absence of the pathogen. 5 tabs.(Author)

  4. Defective FANCI binding by a fanconi anemia-related FANCD2 mutant.

    Directory of Open Access Journals (Sweden)

    Koichi Sato

    Full Text Available FANCD2 is a product of one of the genes associated with Fanconi anemia (FA, a rare recessive disease characterized by bone marrow failure, skeletal malformations, developmental defects, and cancer predisposition. FANCD2 forms a complex with FANCI (ID complex and is monoubiquitinated, which facilitates the downstream interstrand crosslink (ICL repair steps, such as ICL unhooking and nucleolytic end resection. In the present study, we focused on the chicken FANCD2 (cFANCD2 mutant harboring the Leu234 to Arg (L234R substitution. cFANCD2 L234R corresponds to the human FANCD2 L231R mutation identified in an FA patient. We found that cFANCD2 L234R did not complement the defective ICL repair in FANCD2-/- DT40 cells. Purified cFANCD2 L234R did not bind to chicken FANCI, and its monoubiquitination was significantly deficient, probably due to the abnormal ID complex formation. In addition, the histone chaperone activity of cFANCD2 L234R was also defective. These findings may explain some aspects of Fanconi anemia pathogenesis by a FANCD2 missense mutation.

  5. Microbial production of squalene by a nicotinic acid-resistant mutant derived from Fusarium sp. No.5-128B

    International Nuclear Information System (INIS)

    Ogawa, T.; Kojima, I.; Takeda, N.; Fukuda, H.

    1994-01-01

    A nicotinic acid-resistant mutant, designated NA201, was obtained from Fusarium sp. no.5-128B by treatment with ultraviolet light. This mutant strain could grow in the presence of up to 500mM nicotinic acid in the culture medium, although the parent strain could not grow at concentrations of nicotinic acid above 200 mM. The Na201 strain exhibited morphological mutations, neither forming aerial hyphae nor secreting a red-brown pigment. However, it retained the resistance to kabicidin at 25 mg-l(-1) of the parent strain. The mutant NA201 cells contained high levels of squalene and low levels of ergosterol, about 53 times higher and five to six times lower, respectively, than those of the parent strain under standard culture conditions. The volumetric oxygen transfer coefficient (Kd) affected the level of squalene in the mutant cells. The Kd for the maximum production of squalene by the mutant was 24 mmol O2 l(-1)h(-1)atm(-1) and the level of squalene in the mutant cells was 26 mg (g cell)(-1) on a dry weight basis. The greatest accumulation of squalene by the Na201 strain, corresponding to 323 mg per liter of culture medium and 35 mg (g cell)(-1) on a dry weight basis, was achieved in a culture in which the Kd was changed from a high to a low value on the third day, with the simultaneous addition of 3% glucose (w/v)

  6. Rescue of mitochondrial function in parkin-mutant fibroblasts using drug loaded PMPC-PDPA polymersomes and tubular polymersomes.

    Science.gov (United States)

    Yealland, G; Battaglia, G; Bandmann, O; Mortiboys, H

    2016-09-06

    Mutations in parkin cause autosomal recessive Parkinsonism and mitochondrial defects. A recent drug screen identified a class of steroid-like hydrophobic compounds able to rescue mitochondrial function in parkin-mutant fibroblasts. Whilst these possess therapeutic potential, the size and high hydrophobicity of some may limit their ability to penetrate the blood-brain barrier from systemic circulation, something that could be improved by novel drug formulations. In the present study, the steroid-like compounds Ursolic Acid (UA) and Ursocholanic Acid (UCA) were successfully encapsulated within nanoscopic polymersomes formed by poly(2-(methacryloyloxy)ethyl phosphorylcholine)-poly(2-di-isopropylamino)ethyl methacrylate) (PMPC-PDPA) and separated into spherical and tubular morphologies to assess the effects of nanoparticle mediated delivery on drug efficacy. Following incubation with either morphology, parkin-mutant fibroblasts demonstrated time and concentration dependent increases in intracellular ATP levels, resembling those resulting from treatment with nascent UA and UCA formulated in 0.1% DMSO, as used in the original drug screen. Empty PMPC-PDPA polymersomes did not alter physiological measures related to mitochondrial function or induce cytotoxicity. In combination with other techniques such as ligand functionalisation, PMPC-PDPA nanoparticles of well-defined morphology may prove a promising platform for tailoring the pharmacokinetic profile and organ specific bio-distribution of highly hydrophobic compounds. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Biddle Kelly D

    2008-10-01

    Full Text Available Abstract Background The levels of soluble sugars, such as glucose and sucrose, help regulate many plant metabolic, physiological and developmental processes. Genetic screens are helping identify some of the loci involved in plant sugar response and reveal extensive cross-talk between sugar and phytohormone response pathways. Results A forward genetic screen was performed to identify mutants with increased resistance to the inhibitory effects of high levels of exogenous sugars on early Arabidopsis seedling development. The positional cloning and characterization of two of these sugar insensitive (sis mutants, both of which are also involved in abscisic acid (ABA biosynthesis or response, are reported. Plants carrying mutations in SIS7/NCED3/STO1 or SIS10/ABI3 are resistant to the inhibitory effects of high levels of exogenous Glc and Suc. Quantitative RT-PCR analyses indicate transcriptional upregulation of ABA biosynthesis genes by high concentrations of Glc in wild-type germinating seeds. Gene expression profiling revealed that a significant number of genes that are expressed at lower levels in germinating sis7-1/nced3-4/sto1-4 seeds than in wild-type seeds are implicated in auxin biosynthesis or transport, suggesting cross-talk between ABA and auxin response pathways. The degree of sugar insensitivity of different sis10/abi3 mutant seedlings shows a strong positive correlation with their level of ABA insensitivity during seed germination. Conclusion Mutations in the SIS7/NCED3/STO1 gene, which is primarily required for ABA biosynthesis under drought conditions, confer a sugar-insensitive phenotype, indicating that a constitutive role in ABA biosynthesis is not necessary to confer sugar insensitivity. Findings presented here clearly demonstrate that mutations in ABI3 can confer a sugar-insensitive phenotype and help explain previous, mixed reports on this topic by showing that ABA and sugar insensitivity exhibit a strong positive correlation in

  8. Identification of a probable pore-forming domain in the multimeric vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Baetz, Ulrike; Krügel, Undine; Martinoia, Enrico; De Angeli, Alexis

    2013-10-01

    Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.

  9. X-ray-sensitive mutants of Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Kemp, L.M.

    1983-01-01

    A standard technique of microbial genetics, which involves the transfer of cells from single colonies by means of sterile toothpicks, has been adapted to somatic cell genetics. Its use has been demonstrated in the isolation of X-ray-sensitive mutants of CHO cells. 9000 colonies have been tested and 6 appreciably X-ray-sensitive mutants were isolated. (D 10 values 5-10-fold of wild-type D 10 value.) A further 6 mutants were obtained which showed a slight level of sensitivity (D 10 values less than 2-fold of wild-type D 10 value). The 6 more sensitive mutants were also sensitive to bleomycin, a chemotherapeutic agent inducing X-ray-like damage. Cross-sensitivity to UV-irradiation and treatment with the alkylating agents, MMS, EMS and MNNG, was investigated for these mutants. Some sensitivity to these other agents was observed, but in all cases it was less severe than the level of sensitivity to X-irradiation. Each mutant showed a different overall response to the spectrum of agents examined and these appear to represent new mutant phenotypes derived from cultured mammalian cell lines. One mutant strain, xrs-7, was cross-sensitive to all the DNA-damaging agents, but was proficient in the repair of single-strand breaks. (Auth.)

  10. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant

    Directory of Open Access Journals (Sweden)

    Da-Long Guo

    2016-01-01

    Full Text Available An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT is larger than that of wild type (WT and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape.

  11. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  12. Primary study on lesion mimic mutants of rice (oryza sativa L.)

    International Nuclear Information System (INIS)

    Hao Zhongna; Zhang Hongzhi; Tao Rongixang

    2007-01-01

    Nineteen lesion mimic mutants (xsl1-19) of japonica rice Xiushui11 were obtained by γ-rays irradiation treatment. All mutants belonged to whole life lesion mimic. Lesion mimic of mutants didn't largen after tillering stage, leaves didn't wither, and no effect on the plants exsert spikes and seed. When the highest temperature in day exceeded 32 degree C in seedling stage, lesion mimic of all mutant expect xsl19 disappeared. Under 32 degree C, lesion mimic would appear gradually, and symptoms weren't inhibited by high temperature after 5 leaf stage. The plant heights of all lesion mimic mutants were 47.56-63.54 cm in the tillering stage, and that of CK was 83.75 cm; but the dwarf phenomenon of mutants only appeared before tillering stage, and didn't affect plant heights finally; the heading dates of mutants were the same to the CK, the ear length of all mutants were 9.43-15.19 cm, and that of CK was 16.41 cm; the total grain quantity per spike of all mutants were 88.17-165.33, and those of xsl19 and CK were 49.50 and 76.17. The results showed all lesion mimic mutants except xsl19 had short spikes and total grain quantity per spike increasing. All lesion mimic mutants were susceptible to Magnaporthe grisea, and they had no relationship with resistance. (authors)

  13. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  14. Grain product of 34 soya mutant lines;Rendimiento de grano de 34 lineas mutantes de soya

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Posgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A. [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R{sub 4}M{sub 18}) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co{sup 60} gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L{sub 25} and L{sub 32} produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  15. Variation in Yield and Physicochemical Quality Traits among Mutants of Japonica Rice Cultivar Wuyujing 3

    Directory of Open Access Journals (Sweden)

    Jose Daniel Abacar

    2016-01-01

    Full Text Available To select elite germplasms, 112 mutants derived from japonica rice cultivar Wuyujing 3 were evaluated. The yield components such as panicle number per square meter, grain number per panicle, and grain weight were measured. The quality traits such as percentage of chalky grains (PCG, brown rice yield (BRY, milled rice yield (MRY, degree of milling (DM, amylose content (AC, protein content (PC, and relationships among traits were inverstigated. Results showed that grain yield ranged from 2.15 to 12.49 t/hm2 with a mean of 6.4 t/hm2 and number of grains per square meter contributed for 94.64% in grain yield variation. For quality traits, all rice mutants had short size (grain length ≤ 5.5 mm and bold shape (grain length to width ratio = 1.10–2.00. Most of rice mutants (87.5% had PCG values below 20%. All mutants had MRY values above 50%, AC values below 20%, and PC values below 10%. Percentage of chalky grains was significantly negatively correlated with MRY and positively correlated with DM. BRY and MRY were significantly negatively correlated with DM. PC was significantly and positively correlated with MRY and negatively correlated with DM, while AC had no significant correlation with these quality traits. It was concluded that there were 25 rice mutants which fulfilled the major requirements of Jiangsu standard japonica rice such as low percentage of chalky grains, low amylose content, optimal protein content, and which could be used as elite germplasms. Thus the mutants identified may lead to significant progress in improvement of rice quality.

  16. Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery

    Directory of Open Access Journals (Sweden)

    Edith eCoronado

    2014-11-01

    Full Text Available The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested, which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.

  17. Optimization of mutant recovery from plants obtained from gamma-radiated seeds of winged bean (Psophocarpus tetragonolobus (L) DC)

    International Nuclear Information System (INIS)

    Klu, J. Y. P.; Harten, A. M. van

    2000-01-01

    Dry seeds of winged bean (Psophocarpus tetragonolobus (L.) DC) cvs UPS 122 and Kade 6/16 were treated with acute radiation doses of 150 Gy and 250 Gy at a dose rate of 737.32 Gy/hr from a Cobalt-60 gamma source for studies in optimisation of mutant selection in M 2 and M 3 populations. Mature dry pods were harvested at four different locations on each M 1 plant viz. 0.5, 1.0, 1.5 and 2.0 metres from the ground. M 2 seedlings were screened for different groups of chlorophyll deficiencies and their frequencies. Reduction in chlorophyll mutation frequency from the first formed seeds to the latest ones within the M 1 pods has been observed for both cultivars studied. The high degree of chimerism recorded in the M 2 seedlings present in the first-formed seeds in the M 1 pods provides a clear indication that these seeds constitute a zone from which seeds for the M 2 generation have to be harvested in order to give the highest probability for obtaining different types of mutants. On the other hand, significant differences in mutation frequency were not obtained in M 2 seedlings from pods harvested at the various positions on the M 1 plants. M 1 pods can be harvested at any height on the M 1 plants but is preferable to use the earliest mature ones to save time and labour. The zones identified on M 1 plants in this investigation coupled with the use of the 'spare' or 'remnant' seed selection method, should provide an improved method for mutation breeding in a viny legume like the winged bean. (au)

  18. Neurologic function during developmental and adult stages in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Strazielle, C; Lalonde, R

    2012-01-01

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex, hippocampus, and neocortex were compared to non-ataxic controls on the SHIRPA primary screening battery on postnatal days 8, 15, and 22, as well as in the adult period. Dab1(scm) mutants were distinguished from non-ataxic controls as early as postnatal day 8 based on body tremor, gait anomalies, and body weight. On postnatal day 15, motor coordination deficits were evident on horizontal bar and inclined or vertical grid tests in association with a weaker grip strength. Likewise, mutants were distinguished from controls on drop righting and hindpaw clasping tests. Further differences were detected on postnatal day 22 in the form of fewer visual placing, touch escape, trunk curl, freezing, and vocalization responses, as well as squares traversed in the open-field. Evaluation at the adult age demonstrated similar impairments, indicative of permanent motor alterations. Neuronal metabolic activity was estimated by cytochrome oxidase histochemistry on cerebellar sections. Cerebellar cortical layers and efferent deep nuclei of Dab1(scm) mice appeared hypometabolic relative to non-ataxic mice despite normal metabolism in both regular and ectopic Purkinje cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Knockin mouse with mutant Gα11 mimics human inherited hypocalcemia and is rescued by pharmacologic inhibitors

    DEFF Research Database (Denmark)

    Roszko, Kelly L; Bi, Ruiye; Gorvin, Caroline M

    2017-01-01

    in patients with autosomal-dominant hypocalcemia type 2 (ADH2), an inherited disorder of hypocalcemia, low parathyroid hormone (PTH), and hyperphosphatemia. We have generated knockin mice harboring the point mutation GNA11 c.C178T (p.Arg60Cys) identified in ADH2 patients. The mutant mice faithfully replicated...... human ADH2. They also exhibited low bone mineral density and increased skin pigmentation. Treatment with NPS 2143, a negative allosteric modulator of the calcium-sensing receptor (CASR), increased PTH and calcium concentrations in WT and mutant mice, suggesting that the gain-of-function effect of GNA11...

  20. Significance of Coronavirus Mutants in Feces and Diseased Tissues of Cats Suffering from Feline Infectious Peritonitis

    Directory of Open Access Journals (Sweden)

    Niels C. Pedersen

    2009-08-01

    Full Text Available The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.

  1. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis.

    Science.gov (United States)

    Pedersen, Niels C; Liu, Hongwei; Dodd, Kimberly A; Pesavento, Patricia A

    2009-09-01

    The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.

  2. The agronomic characters of a high protein rice mutant

    International Nuclear Information System (INIS)

    Harn, C.; Won, J.L.; Choi, K.T.

    1975-01-01

    Mutant lines (M 5 -M 9 ) of macro-phenotypic traits from several varieties were screened for the protein content. Mutant 398 (M 9 ) is one of the high protein mutants selected from Hokwang. Three years' tests revealed that it has a high protein line under any condition of cultivation. Except for early maturity and short culmness, other agronomic and yield characters were similar to the original variety. There was no difference between the mutant 398 and its mother variety in grain shape and weight, and also the size and protein content of the embryo. The high protein content of the mutant is attributable to the increase of protein in the endosperm. About 150 normal-looking or a few days-earlier-maturing selections were made from Jinheung variety in the M 3 and screened for protein. Promising lines in terms of the plant type, yield and protein were obtained. (author)

  3. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S.

    2008-03-01

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  4. Induction and characterization of Arabidopsis mutants by Ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S. [Gyeongbuk Institute for Bio Industry, Andong (Korea, Republic of)

    2008-03-15

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and {gamma}-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  5. Multivariate analysis for selecting apple mutants

    International Nuclear Information System (INIS)

    Faedi, W.; Bagnara, G.L.; Rosati, P.; Cecchini, M.

    1992-01-01

    The mutlivariate analysis of four year records on several vegetative and productive traits of twenty-one apple mutants (3 of 'Jonathan', 3 of 'Ozark Gold', 14 of 'Mollie's Delicious', 1 of 'Neipling's Early Stayman)' induced by gamma radiations showed that observation of some traits of one-year-old shoots is the most efficient way to reveal compact growing apple mutants. In particular, basal cross-section area, total length and leaf area resulted the most appropriate parameters, while internode length together with conopy height and width are less appropriate. The most interesting mutants we found are: one of 'Mollie's Delicious for the best balance among tree and fruit traits and for high skin color; one of 'Neipling's Early Stayman' with an earlier and more extensively red colored apple than the original clone. (author)

  6. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum Potencial de biocontrole de mutantes sal-tolerantes de Trichoderma harzianum contra Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Hassan Abdel-Latif A. Mohamed

    2006-06-01

    Full Text Available Exposing a wild-type culture of Trichoderma harzianum to gamma irradiation induced two stable salt-tolerant mutants (Th50M6 and Th50M11. Under saline conditions, both mutants greatly surpassed their wild type strain in growth rate, sporulation and biological proficiency against Fusarium oxysporum, the causal agent of tomato wilt disease. Tolerant T. harzianum mutants detained a capability to grow and convinced sporulation in growth media containing up to 69 mM NaCl. In comparison with their parent strain, characterization of both mutants confirmed that they have reinforced contents of proline and hydroxyproline, relatively higher sodium content compared to potassium, calcium or magnesium contents, higher level of total phenols. Electrophoretic analysis of total soluble proteins in the salt tolerance mutant Th50M6 showed different bands accumulated in response to 69 mM NaCl. Data also showed that mutants produce certain active metabolites, such as chitinases, cellulases, beta-galactosidases, as well as, some antibiotics i.e., trichodermin, gliotoxin and gliovirin. Trichoderma mutants significantly reduced wilt disease incidence and improved yield and mineral contents of tomato plants under both saline and non-saline soil conditions, as well as, under infested and natural conditions. T. harzianum mutants were also more efficient in dropping the F. oxysporum growth in rhizosphere compared to the wild type strain. Population density of both mutants in rhizosphere far exceeded that of T. harzianum wild type strain.A exposição de uma cepa selvagem de Trichoderma harzianum à irradiação gama induziu dois mutantes tolerantes a sal (Th50M6 e Th50M11. Em condições salinas, os dois mutantes foram muito superiores à cepa selvagem em relação à velocidade de multiplicação, esporulação e eficiência contra Fusarium oxysporum, o agente causador da doença wilt do tomate. Os mutantes tolerantes foram capazes de multiplicação e esporulação em

  7. Characterization of MMS-sensitive mutants of Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    DeLange, A.M.; Mishra, N.C.

    1982-01-01

    Several MMS-sensitive mutants of Neurospora crassa were compared with the wild-type strain for their relative sensitivities to UV, X-ray, and histidine. They were also compared for the frequency of spontaneous mutation at the loci which confer resistance to p-fluorophenylalanine. The mutants were also examined for possible defects in meiotic behavior in homozygous crosses and for any change in the inducible DNA salvage pathways. On the basis of these characterizations, the present MMS-sensitive mutants of Neurospora can be placed into three groups. On the basis of data presented, the MMS sensitivity of the first group mutants cannot be ascertained to arise from a defect in the DNA repair pathways; instead, it may stem from altered cell permeability or other pleotropic effects of the mus mutations. However, it can be suggested that the second and third group of mus mutants may indeed result from a defect in the DNA repair pathways controlled by the mus genes; this conclusion is based on their cross-sensitivity to a number of DNA-damaging agents such as MMS, UV and/or X-rays, high frequencies of spontaneous mutation and defects in meiotic behavior.

  8. Productive mutants in lemongrass induced by gamma rays

    International Nuclear Information System (INIS)

    Gopinathan Nair, V.

    1980-01-01

    Seeds of the lemongrass variety O.D. 19 were irradiated with gamma rays at a dose range of 5 to 30 krad. M 1 plants with one or a few tillers differing from the standard plants of O.D. 19 were selected, split into single slips and planted as clonal progenies. Mutants were isolated in M 1 V 1 and carried forward. Forty two M 1 V 2 mutant clones differing from O.D. 19 in morphological characters such as vigour, plant height, growth habit, pigmentation and number of tillers have been established. These were evaluated for tiller number, grass yield and oil content. Six clones gave higher grass yield, the highest being 556 gm per plant per cutting as against 360 gm in the standard. Five clones gave higher oil yield, the highest being 0.42% as against 0.23% in the standard. Isolation of viable mutants with high grass yield and essential oil content indicate the scope for evolving productive mutant varieties in this perennial aromatic grass. The eleven M 1 V 2 mutant clones are being critically evaluated by estimating oil yield per hectare per year. (author)

  9. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    Compared to the wild CC-124, these mutants are characterized by a decrease in chlorophyll a & b content and an increase in carotenoids. The lowest decrease in chlorophyll a was 3 to 4 folds, while the highest increase in carotenoids was 2 to 4 folds. The result of bio-test, using the resulting pigment mutant of C. reinhardtii ...

  10. Transcriptomic profiling-based mutant screen reveals three new transcription factors mediating menadione resistance in Neurospora crassa.

    Science.gov (United States)

    Zhu, Jufen; Yu, Xinxu; Xie, Baogui; Gu, Xiaokui; Zhang, Zhenying; Li, Shaojie

    2013-06-01

    To gain insight into the regulatory mechanisms of oxidative stress responses in filamentous fungi, the genome-wide transcriptional response of Neurospora crassa to menadione was analysed by digital gene expression (DGE) profiling, which identified 779 upregulated genes and 576 downregulated genes. Knockout mutants affecting 130 highly-upregulated genes were tested for menadione sensitivity, which revealed that loss of the transcription factor siderophore regulation (SRE) (a transcriptional repressor for siderophore biosynthesis), catatase-3, cytochrome c peroxidase or superoxide dismutase 1 copper chaperone causes hypersensitivity to menadione. Deletion of sre dramatically increased transcription of the siderophore biosynthesis gene ono and the siderophore iron transporter gene sit during menadione stress, suggesting that SRE is required for repression of iron uptake under oxidative stress conditions. Contrary to its phenotype, the sre deletion mutant showed higher transcriptional levels of genes encoding reactive oxygen species (ROS) scavengers than wild type during menadione stress, which implies that the mutant suffers a higher level of oxidative stress than wild type. Uncontrolled iron uptake in the sre mutant might exacerbate cellular oxidative stress. This is the first report of a negative regulator of iron assimilation participating in the fungal oxidative stress response. In addition to SRE, eight other transcription factor genes were also menadione-responsive but their single gene knockout mutants showed wild-type menadione sensitivity. Two of them, named as mit-2 (menadione induced transcription factor-2) and mit-4 (menadione induced transcription factor-4), were selected for double mutant analysis. The double mutant was hypersensitive to menadione. Similarly, the double mutation of mit-2 and sre also had additive effects on menadione sensitivity, suggesting multiple transcription factors mediate oxidative stress resistance in an additive manner

  11. Study on ionizing radiosensitivity of respiratory deficiency yeast mutants

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei

    2006-01-01

    The radiosensitivity of respiratory deficiency yeast mutants has been studied in this work. The mutants which were screened from the yeasts after ionizing irradiation were irradiated with 12 C 6+ at different doses. Because of the great change in its mitochondria and mitochondrial DNA, the respiratory deficiency yeast mutants show radio-sensitivity at dose less than 1 Gy and radioresistance at doses higher than 1 Gy. (authors)

  12. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis

    International Nuclear Information System (INIS)

    Shirley, B.W.; Kubasek, W.L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F.M.; Goodman, H.M.

    1995-01-01

    Eleven loci that play a role in the synthesis of flavonoids in Arabidopsis are described. Mutations at these loci, collectively named transparent testa (tt), disrupt the synthesis of brown pigments in the seed coat (testa). Several of these loci (tt3, tt4, tt5 and ttg) are also required for the accumulation of purple anthocyanins in leaves and stems and one locus (ttg) plays additional roles in trichome and root hair development. Specific functions were previously assigned to tt1-7 and ttg. Here, the results of additional genetic, biochemical and molecular analyses of these mutants are described. Genetic map positions were determined for tt8, tt9 and tt10. Thin-layer chromatography identified tissue- and locus-specific differences in the flavonols and anthocyanidins synthesized by mutant and wild-type plants. It was found that UV light reveals distinct differences in the floral tissues of tt3, tt4, tt5, tt6 and ttg, even though these tissues are indistinguishable under visible light. Evidence was also uncovered that tt8 and ttg specifically affect dihydroflavonol reductase gene expression. A summary of these and previously published results are incorporated into an overview of the genetics of flavonoid biosynthesis in Arabidopsis

  13. Human stefin B normal and patho-physiological role: molecular and cellular aspects of amyloid-type aggregation of certain EPM1 mutants.

    Directory of Open Access Journals (Sweden)

    Mira ePolajnar

    2012-08-01

    Full Text Available Epilepsies are characterised by abnormal electrophysiological activity of the brain. Among various types of inherited epilepsies different epilepsy syndromes, among them progressive myoclonus epilepsies with features of ataxia and neurodegeneration, are counted. The progressive myoclonus epilepsy of type 1 (EPM1, also known as Unverricht-Lundborg disease presents with features of cerebellar atrophy and increased oxidative stress. It has been found that EPM1 is caused by mutations in human cystatin B gene (human stefin B. We first describe the role of protein aggregation in other neurodegenerative conditions. Protein aggregates appear intraneurally but are also excreted, such as is the case with senile plaques of amyloid- β (Aβ that accumulate in the brain parenchyma and vessel walls. A common characteristic of such diseases is the change of the protein conformation towards β secondary structure that accounts for the strong tendency of such proteins to aggregate and form amyloid fibrils. Second, we describe the patho-physiology of EPM1 and the normal and aberrant roles of stefin B in a mouse model of the disease. Furthermore, we discuss how the increased protein aggregation observed with some of the mutants of human stefin B may relate to the neurodegeneration that occurs in rare EPM1 patients. Our hypothesis (Ceru et al., 2005 states that some of the EPM1 mutants of human stefin B may undergo aggregation in neural cells, thus gaining additional toxic function (apart from loss of normal function. Our in vitro experiments thus far have confirmed that 4 mutants undergo increased aggregation relative to the wild-type protein. It has been shown that the R68X mutant forms amyloid-fibrils very rapidly, even at neutral pH and forms perinuclear inclusions, whereas the G4R mutant exhibits a prolonged lag phase, during which the toxic prefibrillar aggregates accumulate and are scattered more diffusely over the cytoplasm. Initial experiments on the G50E

  14. Transcriptional regulation of male-sterility in 7B-1 male-sterile tomato mutant.

    Directory of Open Access Journals (Sweden)

    Vahid Omidvar

    Full Text Available The 7B-1 tomato (Solanum lycopersicum L. cv Rutgers is a male-sterile mutant with enhanced tolerance to abiotic stress, which makes it a potential candidate for hybrid seed breeding and stress engineering. To underline the molecular mechanism regulating the male-sterility in 7B-1, transcriptomic profiles of the 7B-1 male-sterile and wild type (WT anthers were studied using mRNA sequencing (RNA-Seq. In total, 768 differentially expressed genes (DEGs were identified, including 132 up-regulated and 636 down-regulated transcripts. Gene ontology (GO enrichment analysis of DEGs suggested a general impact of the 7B-1 mutation on metabolic processes, such as proteolysis and carbohydrate catabolic process. Sixteen candidates with key roles in regulation of anther development were subjected to further analysis using qRT-PCR and in situ hybridization. Cytological studies showed several defects associated with anther development in the 7B-1 mutant, including unsynchronized anther maturation, dysfunctional meiosis, arrested microspores, defect in callose degradation and abnormal tapetum development. TUNEL assay showed a defect in programmed cell death (PCD of tapetal cells in 7B-1 anthers. The present study provides insights into the transcriptome of the 7B-1 mutant. We identified several genes with altered expression level in 7B-1 (including beta-1,3 glucanase, GA2oxs, cystatin, cysteine protease, pectinesterase, TA29, and actin that could potentially regulate anther developmental processes, such as meiosis, tapetum development, and cell-wall formation/degradation.

  15. Bioactive compounds of fourth generation gamma-irradiated Typhoniumflagelliforme Lodd. mutants based on gas chromatography-mass spectrometry

    Science.gov (United States)

    Sianipar, N. F.; Purnamaningsih, R.; Rosaria

    2016-08-01

    Rodent tuber (Typhonium flagelliforme Lodd.) is an Indonesian anticancer medicinal plant. The natural genetic diversity of rodent tuber is low due to vegetative propagation. Plant's genetic diversity has to be increased for obtaining clones which contain a high amount of anticancer compounds. In vitro calli were irradiated with 6 Gy of gamma ray to produce in vitro mutant plantlets. Mutant plantlets were acclimated and propagated in a greenhouse. This research was aimed to identify the chemical compounds in the leaves and tubers ofthe fourth generation of rodent tuber's vegetative mutant clones (MV4) and control plantsby using GC- MS method. Leaves and tubers of MV4 each contained 2 and 5 anticancer compounds which quantities were higher compared to control plants. MV4 leaves contained 5 new anticancer compounds while its tubers contained 3 new anticancer compounds which were not found in control. The new anticancer compounds in leaves were hexadecanoic acid, stigmast-5-en-3-ol, ergost-5-en-3-ol, farnesol isomer a, and oleic acid while the new anticancer compounds in tubers were alpha tocopherol, ergost-5-en-3-ol, and beta-elemene. Rodent tuber mutant clones are very potential to be developed into anticancer drugs.

  16. Engineered disulfide bonds restore chaperone-like function of DJ-1 mutants linked to familial Parkinson's disease.

    Science.gov (United States)

    Logan, Todd; Clark, Lindsay; Ray, Soumya S

    2010-07-13

    Loss-of-function mutations such as L166P, A104T, and M26I in the DJ-1 gene (PARK7) have been linked to autosomal-recessive early onset Parkinson's disease (PD). Cellular and structural studies of the familial mutants suggest that these mutations may destabilize the dimeric structure. To look for common dynamical signatures among the DJ-1 mutants, short MD simulations of up to 1000 ps were conducted to identify the weakest region of the protein (residues 38-70). In an attempt to stabilize the protein, we mutated residue Val 51 to cysteine (V51C) to make a symmetry-related disulfide bridge with the preexisting Cys 53 on the opposite subunit. We found that the introduction of this disulfide linkage stabilized the mutants A104T and M26I against thermal denaturation, improved their ability to scavenge reactive oxygen species (ROS), and restored a chaperone-like function of blocking alpha-synuclein aggregation. The L166P mutant was far too unstable to be rescued by introduction of the V51C mutation. The results presented here point to the possible development of pharmacological chaperones, which may eventually lead to PD therapeutics.

  17. Fine Mapping of a Degenerated Abdominal Legs Mutant (Edl in Silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Honglei Wang

    Full Text Available In insects, abdominal appendages, also called prolegs, vary due to adaptive evolution. Mutations on prolegs within species provide insights to better understand the mechanisms underlying appendage development and diversity. In silkworm Bombyx mori, extra-crescents and degenerated abdominal legs (Edl mutant, belonging to the E pseudoallele group, is a spontaneous mutation that adds crescents and degenerates prolegs on the third abdominal segment (A3. This mutation may be a homeotic transformation of A3 to A2. In this study, the Edl locus was mapped within approximately a 211 Kb region that is 10 Kb upstream of Bmabdominal-A (Bmabd-A. RT-quantitative PCR (RT-qPCR and Western blot analysis of Bmabd-A expression showed a slight but significant decrease, while the expression of BmUltrabithorax (BmUbx was up-regulated in the Edl mutant compared to wildtype (Dazao. Moreover, we also found that BmDistal-less (BmDll, which regulated the development of distal proleg structures, was missing at the tips of the A3 prolegs in the Edl mutant compared to BmDll expression in normally developed prolegs in both the wildtype and mutant. Collectively, we identified approximately a 211 Kb region in the Edl locus that regulates BmUbx and Bmabd-A expression and found that changes in BmUbx and Bmabd-A expression may lead to the loss of distal proleg structures in B. mori.

  18. Changes in protein synthetic activity in early Drosophila embryos mutant for the segmentation gene Krueppel

    International Nuclear Information System (INIS)

    Bedian, V.; Summers, M.C.; Kauffman, S.A.

    1988-01-01

    We have identified early embryo proteins related to the segmentation gene Krueppel by [35S]methionine pulse labelling and two-dimensional gel electrophoresis. Protein synthesis differences shared by homozygous embryos of two Krueppel alleles when compared to heterozygous and wild-type embryos are reported. The study was extended to syncytial blastoderm stages by pulse labelling and gel analysis of single embryos, using Krueppel-specific proteins from gastrula stages as molecular markers for identifying homozygous Krueppel embryos. Localized expression of interesting proteins was examined in embryo fragments. The earliest differences detected at nuclear migration stages showed unregulated synthesis in mutant embryos of two proteins that have stage specific synthesis in normal embryos. At the cellular blastoderm stage one protein was not synthesized and two proteins showed apparent shifts in isoelectric point in mutant embryos. Differences observed in older embryos included additional proteins with shifted isoelectric points and a number of qualitative and quantitative changes in protein synthesis. Five of the proteins with altered rates of synthesis in mutant embryos showed localized synthesis in normal embryos. The early effects observed are consistent with the hypothesis that the Krueppel product can be a negative or positive regulator of expression of other loci, while blastoderm and gastrula stage shifts in isoelectric point indicate that a secondary effect of Krueppel function may involve post-translational modification of proteins

  19. Development of Database Software with Plant Mutant Resources

    International Nuclear Information System (INIS)

    Namgoong, Won; Lee, M. J.; Kim, J. D.; Ma, N. K.

    2007-03-01

    In this research, mutants induced by nuclear radiation are developed information computerised system. The status and progress on the collection, identification and utilization of mutants in Korea are introduced. And it was produced home page, manual, test record, construction of system

  20. Construindo Marcas Mutantes

    Directory of Open Access Journals (Sweden)

    Elizete De Azevedo Kreutz

    2012-09-01

    Full Text Available O presente artigo é o resultado de estudos realizados desde 2000 e busca instrumentalizar os proñssionals para a construção de Marcas Mutantes, que é   uma tendência contemporânea nas estratégias comunicacionais e de branding. Embora esta estratégia ainda não esteja consolidada, observamos que a mesma tem obtido um crescimento constante e tem sido adotadas pelas mais diferentes categorias de marcas e não apenas por aquelas direcionadas aos jovens, ao esporte, ao entretenimento, como era no principia. Com base na Hermenêutica de Profundidade de Thompson (1995, alicerçada nas pesquisas bibliográficas, de intemet, entrevistas e análise semiótica, desenhamos um método de construção de Marcas Mutantes dividido em sete fases. Como resultado, esperamos que este estudo possa auxiliar na compreensão dos processos envolvidos, ao mesmo tempo que provoque a discussão sobreo mesmo e, por consequência, o seu aprimoramento.

  1. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    Science.gov (United States)

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-06-01

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Emery-Dreifuss Muscular Dystrophy-Associated Mutant Forms of Lamin A Recruit the Stress Responsive Protein Ankrd2 into the Nucleus, Affecting the Cellular Response to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Silvia Angori

    2017-05-01

    Full Text Available Background: Ankrd2 is a stress responsive protein mainly expressed in muscle cells. Upon the application of oxidative stress, Ankrd2 translocates into the nucleus where it regulates the activity of genes involved in cellular response to stress. Emery-Dreifuss Muscular Dystrophy 2 (EDMD2 is a muscular disorder caused by mutations of the gene encoding lamin A, LMNA. As well as many phenotypic abnormalities, EDMD2 muscle cells also feature a permanent basal stress state, the underlying molecular mechanisms of which are currently unclear. Methods: Experiments were performed in EDMD2-lamin A overexpressing cell lines and EDMD2-affected human myotubes. Oxidative stress was produced by H2O2 treatment. Co-immunoprecipitation, cellular subfractionation and immunofluorescence analysis were used to validate the relation between Ankrd2 and forms of lamin A; cellular sensibility to stress was monitored by the analysis of Reactive Oxygen Species (ROS release and cell viability. Results: Our data demonstrate that oxidative stress induces the formation of a complex between Ankrd2 and lamin A. However, EDMD2-lamin A mutants were able to bind and mislocalize Ankrd2 in the nucleus even under basal conditions. Nonetheless, cells co-expressing Ankrd2 and EDMD2-lamin A mutants were more sensitive to oxidative stress than the Ankrd2-wild type lamin A counterpart. Conclusions: For the first time, we present evidence that in muscle fibers from patients affected by EDMD2, Ankrd2 has an unusual nuclear localization. By introducing a plausible mechanism ruling this accumulation, our data hint at a novel function of Ankrd2 in the pathogenesis of EDMD2-affected cells.

  3. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Science.gov (United States)

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  4. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Directory of Open Access Journals (Sweden)

    David Bednar

    2015-11-01

    Full Text Available There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  5. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    Science.gov (United States)

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  6. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity

    International Nuclear Information System (INIS)

    Upchurch, R.G.; Walker, D.C.; Rollins, J.A.; Ehrenshaft, M.; Daub, M.E.

    1991-01-01

    The authors have obtained spontaneous and UV-induced stable mutants, altered in the synthesis of cercosporin, of the fungal soybean pathogen Cercospora kikuchii. The mutants were isolated on the basis of colony color on minimal medium. The UV-induced mutants accumulated, at most, 2% of wild-type cercosporin levels on all media tested. In contrast, cercosporin accumulation by the spontaneous mutants was strongly medium regulated, occurring only on potato dextrose medium but at concentrations comparable to those produced by the wild-type strain. UV-induced mutants unable to synthesize cercosporin on any medium were unable to incite lesions when inoculated onto the soybean host. Cercosporin was reproducibly isolated from all inoculated leaves showing lesions. Although cercosporin involvement in disease has been indirectly suggested by many previous studies, this is the first report in which mutants blocked in cercosporin synthesis have been used to demonstrate that cercosporin is a crucial pathogenicity factor for this fungal genus

  7. Kharon1 null mutants of Leishmania mexicana are avirulent in mice and exhibit a cytokinesis defect within macrophages.

    Directory of Open Access Journals (Sweden)

    Khoa D Tran

    Full Text Available In a variety of eukaryotes, flagella play important roles both in motility and as sensory organelles that monitor the extracellular environment. In the parasitic protozoan Leishmania mexicana, one glucose transporter isoform, LmxGT1, is targeted selectively to the flagellar membrane where it appears to play a role in glucose sensing. Trafficking of LmxGT1 to the flagellar membrane is dependent upon interaction with the KHARON1 protein that is located at the base of the flagellar axoneme. Remarkably, while Δkharon1 null mutants are viable as insect stage promastigotes, they are unable to survive as amastigotes inside host macrophages. Although Δkharon1 promastigotes enter macrophages and transform into amastigotes, these intracellular parasites are unable to execute cytokinesis and form multinucleate cells before dying. Notably, extracellular axenic amastigotes of Δkharon1 mutants replicate and divide normally, indicating a defect in the mutants that is only exhibited in the intra-macrophage environment. Although the flagella of Δkharon1 amastigotes adhere to the phagolysomal membrane of host macrophages, the morphology of the mutant flagella is often distorted. Additionally, these null mutants are completely avirulent following injection into BALB/c mice, underscoring the critical role of the KHARON1 protein for viability of intracellular amastigotes and disease in the animal model of leishmaniasis.

  8. Unstable argininosuccinate lyase in variant forms of the urea cycle disorder argininosuccinic aciduria.

    Science.gov (United States)

    Hu, Liyan; Pandey, Amit V; Balmer, Cécile; Eggimann, Sandra; Rüfenacht, Véronique; Nuoffer, Jean-Marc; Häberle, Johannes

    2015-09-01

    Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3% of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16% of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30% of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

  9. Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans.

    Science.gov (United States)

    Senchuk, Megan M; Dues, Dylan J; Schaar, Claire E; Johnson, Benjamin K; Madaj, Zachary B; Bowman, Megan J; Winn, Mary E; Van Raamsdonk, Jeremy M

    2018-03-01

    Mild deficits in mitochondrial function have been shown to increase lifespan in multiple species including worms, flies and mice. Here, we study three C. elegans mitochondrial mutants (clk-1, isp-1 and nuo-6) to identify overlapping genetic pathways that contribute to their longevity. We find that genes regulated by the FOXO transcription factor DAF-16 are upregulated in all three strains, and that the transcriptional changes present in these worms overlap significantly with the long-lived insulin-IGF1 signaling pathway mutant daf-2. We show that DAF-16 and multiple DAF-16 interacting proteins (MATH-33, IMB-2, CST-1/2, BAR-1) are required for the full longevity of all three mitochondrial mutants. Our results suggest that the activation of DAF-16 in these mutants results from elevated levels of reactive oxygen species. Overall, this work reveals an overlapping genetic pathway required for longevity in three mitochondrial mutants, and, combined with previous work, demonstrates that DAF-16 is a downstream mediator of lifespan extension in multiple pathways of longevity.

  10. Identification and molecular characterization of the second Chlamydomonas gun4 mutant, gun4-II [v2; ref status: indexed, http://f1000r.es/1id

    Directory of Open Access Journals (Sweden)

    Phillip B Grovenstein

    2013-07-01

    Full Text Available The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study oxygenic photosynthesis. Chlorophyll (Chl and heme are major tetrapyrroles that play an essential role in photosynthesis and respiration. These tetrapyrroles are synthesized via a common branched pathway that involves mainly enzymes, encoded by nuclear genes. One of the enzymes in the pathway is Mg chelatase (MgChel. MgChel catalyzes insertion of Mg2+ into protoporphyrin IX (PPIX, proto to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto, the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4 protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m-2 s-1. It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m-2 s-1. PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.

  11. Molybdenum x-ray absorption studies of the mutant Kp nifV of nitrogenase MO-FE protein

    International Nuclear Information System (INIS)

    Eidsness, M.K.; Smith, B.E.; Flood, A.C.; Garner, C.D.; Cramer, S.P.

    1985-01-01

    The nifV mutant nitrogenase enzyme of Klebsiella pheumoniae exhibits altered substrate reducing activity. This nitrogenase mutant cannot fix N 2 in vivo but can reduce C 2 H 2 to C 2 H 4 . The nifV mutant enzyme differs further from the wild-type enzyme by CO inhibition of its H 2 evolution activity, up to 80%. The NifV - phenotype (NifV - Kp1) has been shown to be associated with the iron-molybdenum cofactor (FeMoco) in the Mo Fe protein which is generally accepted as the site for substrate reduction. An X-Ray absorption study of the Mo site in this mutant may reveal a difference in its FeMoco structure. The authors report here a comparison of Mo X-Ray absorption data from the nitrogenase enzymes of the wild-type and NifV - strains in three different forms: (1) as isolated, (2) dye-oxidized, and (3) fixing enzyme systems. Mo edge structure of NifV - Kp1 and wild-type enzymes are nearly identical. Small shifts to higher energies are observed in the oxidized and fixing states. Mo EXAFS of NifV - Kp1 and wild-type in the ''as isolated'' state appear indistinguishable. Curve fitting results best describe the molybdenum in FeMoco as bound by 4-5 S atoms at 2.36 A ,3 Fe atoms at 2.69 A, and 0-2 O(N) atoms at 2.19 A. The spectral similarity of these results concerning the nifV mutant FeMoco structure is discussed

  12. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    Science.gov (United States)

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  13. High-Protein Soybean Mutants by Using Irradiation Technique

    International Nuclear Information System (INIS)

    Yathaputanon, C.; Kumsueb, B.; Srisombun, S.

    2009-07-01

    Full text: Soybean variety improvement for high seed protein using induced mutation was initiated. Approximately 5,000 seeds of soybean variety Chiang Mai 60 were irradiated with gamma rays at the dose of 200 Grays at Kasetsart University. High-protein seed mutants in M2 to M4 generations were selected at Nakhon Ratchasima Field Crops Research Center during 2004-2008. The Pedigree method of selection was used. Kjeldahl method was used to analyze seed protein percentages. The M2 seeds protein content of the M2 generation was 45.2% while that of the original parent was 43.0%. M3s were seeded plant to row. In each row, the best four plants were selected for protein analysis. The average protein content of selected mutant lines was 3.9% while the check variety had average protein content of 42.4%. In the M4 generation, the result showed that the average protein contents of the selected mutant lines and the check variety were 42.8% and 42.0%, respectively. In the 2007-2008 trials, four promising mutants had and average protein content of 428%, while the check variety had and average protein content of 41.1%. The four mutants produced the mean grain yield of 2.20-2.42 t/Ha, which was 10.21% higher than that of Chiang Mai 60. The mutant lines produced both a high grain protein content and a high grain yield. They will be further tested their adaptability in the research centers and farmer fields

  14. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  15. Meiosis en mutantes desinápticos con restitución cromosómica en Rhoeo spathacea (Commelinaceae Meiosis in desynaptic-chromosomal restitution mutants in Rhoeo spathacea (Commelinaceae

    Directory of Open Access Journals (Sweden)

    Armando García-Velázquez

    2008-10-01

    -chromatids. But in anaphase I, there is high regular 6:6 disyuction and observed as "Rings or donuts". In which short arms are oriented to the center of those figures. From selfed a desynaptic- SDR (GAVA 1.1 mutant, a progeny of 123 individuals resulted: 90 diploid-ring forming, 1 acrotrisomic (2n=13 equally ring-forming reverts its "meiotic behavior", but 29 diplandrogynous tetraploids (2n=24 and 3 hypertetraploids (2n=25 resulted desynaptics. The cytological behaviour is due to the fact that Rhoeo Is a dikaryon: diploids-ring forming and the trisomic also and present subgenome A, but polyploids present subgenome B which includes a desynaptic gene in both sister chromatids as result of restitution at second division(2n.

  16. The genetics of green thorax, a new larval colour mutant, non-linked with ruby - eye locus in the malaria mosquito, Anopheles stephensi.

    Science.gov (United States)

    Sanil, D; Shetty, N J

    2009-06-01

    Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishment of naturally occurring mutants, establishment of the genetic basis for the same and use of such mutants in the genetic transformation studies and other genetic control programme(s). This paper describes the isolation and genetic studies of a larval colour mutant, green thorax (gt), and linkage studies involving another autosomal recessive mutant ruby- eye (ru) in An. stephensi. After the initial discovery, the mutant green thorax was crossed inter se and pure homozygous stock of the mutant was established. The stock of the mutant ruby- eye, which has been maintained as a pure stock in the laboratory. Crosses were made between the wild type and mutant, green thorax to determine the mode of inheritance of green thorax. For linkage studies, crosses were made between the mutant green thorax and another autosomal recessive mutant ruby-eye. The percentage cross-over was calculated for the genes linkage relationship for gt and gt ru. Results of crosses between mutant and wild type showed that the inheritance of green thorax (gt) in An. stephensi is monofactorial in nature. The gt allele is recessive to wild type and is autosomal. The linkage studies showed no linkage between ru and gt. The mutant gt represents an excellent marker for An. stephensi as it is expressed in late III instar stage of larvae and is prominent in IV instar and pupal stages with complete penetrance and high viability. The said mutant could be easily identified without the aid of a microscope. This mutant can be used extensively to

  17. Subunit-specific phenotypes of Salmonella typhimurium HU mutants.

    OpenAIRE

    Hillyard, D R; Edlund, M; Hughes, K T; Marsh, M; Higgins, N P

    1990-01-01

    Salmonella hupA and hupB mutants were studied to determine the reasons for the high degree of conservation in HU structure in bacteria. We found one HU-1-specific effect; the F'128 plasmid was 25-fold less stable in hupB compared with hupA or wild-type cells. F' plasmids were 120-fold more unstable in hupA hupB double mutants compared with wild-type cells, and the double mutant also had a significant alteration in plasmid DNA structure. pBR322 DNA isolated from hupA hupB strains was deficient...

  18. Mutation induction and evaluation of high yield rice mutants

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Sobri Husein; Rusli Ibrahim

    2006-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation has been used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. Rice is security food crop in Malaysia. Efforts were undertaken to enhance rice yield from 4.0 tones per hectare in 1995 to 5.5 tones per hectare in 2010. Proper management and good varieties are two factors that require for enhancing yield of rice. In this research, purified seeds of MR211 and MR219 were gamma irradiated at 100 to 400 Gray and sown for planting as M1 generation at MARDI experimental plot. The M2 population was sown in bulk with population size around 15,000 to 20,000 plants. Individual plant selection was carried out at maturity and each selected plant became a mutant line of M3 generation. Agronomic trial of M3 mutants lines were conducted in Mardi, Tanjung Karang, Selangor. About 115 of selected mutant lines were evaluated. Each row of those mutant lines were planted in two rows at planting distance of 25cm within and between rows. These mutant lines were visually observed and data were recorded in each of every mutant line. (Author)

  19. A novel, simple, high-throughput method for isolation of genome-wide transposon insertion mutants of Escherichia coli K-12.

    Science.gov (United States)

    Miki, Takeyoshi; Yamamoto, Yoshihiro; Matsuda, Hideo

    2008-01-01

    We developed a novel, simple, high-throughput method for isolation of genome-wide transposon insertion mutants of Escherichia coli K-12. The basic idea of the method is to randomly disrupt the genes on the DNA fragments cloned on the Kohara library by inserting a mini-transposon first, and then transfer the disrupted genes from the lambda vector to the E. coli chromosome by homologous recombination. Using this method, we constructed a set of 8402 Km(r) cis-diploid mutants harboring a mini-Tn10 insertion mutation and the corresponding wild-type gene on a chromosome, as well as a set of 6954 haploid mutants derived from the cis-diploid mutants. The major advantage of the strategy used is that the indispensable genes or sites for growth can be identified. Preliminary results suggest that 415 open reading frames are indispensable for growth in E. coli cells. A total of 6404 haploid mutants were deposited to Genetic Strains Research Center, National Institute of Genetics, Japan (Chapter 26) and are available for public distribution upon request (http://shigen.lab.nig.ac.jp/ecoli/strain/nbrp/resource.jsp).

  20. Biological changes in Barley mutants resistant to powdery mildew disease

    International Nuclear Information System (INIS)

    Amer, I. M.; Fahim, M. M.; Moustafa, N. A.

    2012-12-01

    physiological studies showed that all kinds of chlorophyll (a), (b) and (a + b) content in infected plant were decreased while, the carotenes pigment were increased. Infection generally reduced total sugars content of all resistant mutants. Infected resistant mutant showed more phenols content and peroxidase, polyphenoloxidase activities than healthy ones of the mutants. (Author)

  1. Synthesis, purification, and characterization of an Arg152 → Glu site-directed mutant of recombinant human blood clotting factor VII

    International Nuclear Information System (INIS)

    Wildgoose, P.; Kisiel, W.; Berkner, K.L.

    1990-01-01

    Coagulation factor VII circulates in blood as a single-chain zymogen of a serine protease and is converted to its activated two-chain form, factor VIIa, by cleavage of an internal peptide bond located at Arg 152 -Ile 153 . Previous studies using serine protease active-site inhibitors suggest that zymogen factor VII may possess sufficient proteolytic activity to initiate the extrinsic pathway of blood coagulation. In order to assess the putative intrinsic proteolytic activity of single-chain factor VII, the authors have constructed a site-specific mutant of recombinant human factor VII in which arginine-152 has been replaced with a glutamic acid residue. Mutant factor VII was purified in a single step from culture supernatants of baby hamster kidney cells transfected with a plasmid containing the sequence for Arg 152 → Glu factor VII using a calcium-dependent, murine anti-factor VII monoclonal antibody column. The clotting activity of mutant factor VII was completely inhibited following incubation with dansyl-Glu-Gly-Arg chloromethyl ketone, suggesting that the apparent clotting activity of mutant factor VII was due to a contaminating serine protease. Immunoblots of mutant factor VII with human factor IXa revealed no cleavage, whereas incubation of mutant factor VII with human factor Xa resulted in cleavage of mutant factor VII and the formation of a lower molecular weight degradation product migrating at M r ∼40 000. The results are consistent with the proposal that zymogen factor VII possesses no intrinsic proteolytic activity toward factor X or factor IX

  2. CACNA1H Mutations Are Associated With Different Forms of Primary Aldosteronism

    Directory of Open Access Journals (Sweden)

    Georgios Daniil

    2016-11-01

    Four different heterozygous germline CACNA1H variants were identified. A de novo Cav3.2 p.Met1549Ile variant was found in early onset PA and multiplex developmental disorder. Cav3.2 p.Ser196Leu and p.Pro2083Leu were found in two patients with FH, and p.Val1951Glu was identified in one patient with APA. Electrophysiological analysis of mutant Cav3.2 channels revealed significant changes in the Ca2+ current properties for all mutants, suggesting a gain of function phenotype. Transfections of mutant Cav3.2 in H295R-S2 cells led to increased aldosterone production and/or expression of genes coding for steroidogenic enzymes after K+ stimulation. Identification of CACNA1H mutations associated with early onset PA, FH, and APA suggests that CACNA1H might be a susceptibility gene predisposing to PA with different phenotypic presentations, opening new perspectives for genetic diagnosis and management of patients with PA.

  3. Phage Pl mutants with altered transducing abilities for Escherichia coli

    International Nuclear Information System (INIS)

    Wall, J.D.; Harriman, P.D.

    1974-01-01

    A search was made for mutants of the coliphage P1 with altered transducing frequencies. A method was developed for the rapid assay of transducing frequencies in single plaques using prophage lambda as the transduced bacterial marker. This procedure selects for mutants altered in their ability to package host DNA. Mutants with 5 to 10 times higher or 10 to 20 times lower frequencies than those of wild-type P1 were found. Not only are the markers used for the detection of the mutants affected, but all other markers are similarly affected (not always to the same extent). One of the high transducing frequency mutants is a suppressible amber, indicating that loss of a function increases P1's ability to package host DNA preferentially. (U.S.)

  4. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  5. Isolation and characterization of stable mutants of Streptomyces

    Indian Academy of Sciences (India)

    Daunorubicin and its derivative doxorubicin are antitumour anthracycline antibiotics produced by Streptomyces peucetius. In this study we report isolation of stable mutants of S. peucetius blocked in different steps of the daunorubicin biosynthesis pathway. Mutants were screened on the basis of colony colour since producer ...

  6. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    Science.gov (United States)

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments. PMID:14660416

  7. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant.

    Science.gov (United States)

    Van Dien, Stephen J; Marx, Christopher J; O'Brien, Brooke N; Lidstrom, Mary E

    2003-12-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.

  8. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Adriana Rodríguez-Marí

    2010-07-01

    Full Text Available The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53 mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination.

  9. Compact type mutants in apple and sour cherries

    International Nuclear Information System (INIS)

    Zagaja, S.W.; Przybyla, A.

    1976-01-01

    Induction of mutations in deciduous fruits is considered complementary to the conventional breeding methods. Several promissing mutants, particularly in apples, were described and some of them were introduced to commercial orchards. Studies described herein are aimed at developing compact type mutants in apple cultivars, apple rootstocks and in sour cherry cultivars. Data obtained so far confirm the results of the other authors, who developed compact type mutants in apples and sweet cherries. Physiological studies have shown that the leaves of spontaneous apple mutants of compact type are more efficient in photosynthesis than the leaves of respective standards. In spite of this, using branch ringing techniques, it was found that the leaves of compacts and those of standards do not differ in their productivity. There seem to be several advantages in employing tissue culture technique in mutation breeding. That is why a project was started to work out a method of growing apple shoots from adventitious buds developed on sections of roots. (author)

  10. early maturing mutants in Indica rice and their traits

    International Nuclear Information System (INIS)

    Chen Xiulan; He Zhentian; Han Yuepeng; Liu Xueyu; Yang Hefeng; Xu Chenwu; Gu Shiliang

    1998-01-01

    The correlation and genetic parameters of eleven agronomic characters of 50 early mature lines induced from late mature cultivar, IR 1529-68-3-2 were studied by morphological classification and correlation and regression analysis. The results showed that: 1. The early mutants could be divided into two ecotype: early mature type and medium mature type of mid-maturity rice. 2. The 1000-grain weight of early mutants negatively correlated with the length of growing period. 3. According to direct path coefficients, the relation with heading period of early mutants was in order of 1000-grain-weight>plant height>seed sterility. 4.The higher heritability in broad sense were found in plant height, 1000 grain weight and heading period of the early mutants

  11. P01.29 Mutant (R132H) IDH1-driven cellular transformation makes cells dependent on continued wild type IDH1 expression in a model of in vitro gliomagenesis

    Science.gov (United States)

    Johannessen, T.; Mukherjee, J.; Wood, M.; Viswanath, P.; Ohba, S.; Ronen, S.; Berkvig, R.; Pieper, R.

    2017-01-01

    Abstract Introduction: Missense R132H mutations in the active site of isocitrate dehydrogenase 1 (IDH1) biologically and diagnostically distinguish low-grade gliomas and secondary glioblastomas from primary glioblastomas. IDH1 mutations lead to the formation of the oncometabolite 2-hydroxyglutarate (2-HG) from the reduction of α-ketoglutarate (α-KG), which in turn facilitates tumorigenesis by modifying DNA and histone methylation as well blocking differentiation processes. We recently showed (Mol Cancer Res 14: 976–983, 2016) that although mutant IDH1 expression in hTERT-immortalized, p53/pRb-deficient astrocytes can drive cellular transformation and gliomagenesis, selective pharmacologic inhibition and elimination of 2-HG by the mutant IDH1 inhibitor AGI-5198 has little effect on the growth or clonagenicity of these transformed cells. To address the possible role of WT IDH1 in the growth of mutant IDH-driven tumor cells, we used a slightly different gliomagenesis model in which the transformation of TERT-deficient, p53/pRb-deficient astrocytes (pre-crisis cells) occurs only after prolonged expression of mutant IDH and passage through cellular crisis (post-crisis cells, Cancer Res 76:6680–6689, 2016). METHODS AND MATERIALS: Using this system we introduced AGI-5198, or siRNA targeting both WT and mutant forms of IDH1 into p53/pRb-deficient, mutant IDH1-expressing human astrocytes prior to or following their transformation, and compared the effects on cell growth and clonagenicity. Results: AGI-5198 exposure decreased levels of 2HG by greater than 90%, and as previously reported had no effect on the growth of either the pre-or post-crisis cell populations. A one-day exposure to a pan IDH1 siRNA resulted in a similar, prolonged (greater than 6 day), 80% inhibition of both WT and mutant IDH1 protein levels and 2HG in both cell groups. While the growth of the mutant IDH-expressing, non-transformed cells was similar to that of scramble siRNA controls, the growth

  12. A new method for the construction of a mutant library with a predictable occurrence rate using Poisson distribution.

    Science.gov (United States)

    Seong, Ki Moon; Park, Hweon; Kim, Seong Jung; Ha, Hyo Nam; Lee, Jae Yung; Kim, Joon

    2007-06-01

    A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.

  13. [Accumulation of the bvg- Bordetella pertussis a virulent mutants in the process of experimental whooping cough in mice].

    Science.gov (United States)

    Medkova, A Iu; Siniashina, L N; Rumiantseva, Iu P; Voronina, O L; Kunda, M S; Karataev, G I

    2013-01-01

    The duration of the persistence and dynamics of accumulation of insertion bvg- Bordetella pertussis mutants were studied in lungs of laboratory mice after intranasal and intravenous challenge by virulent bacteria of the causative agent of whooping cough. The capability of the virulent B. pertussis bacteria to long-term persistence in the body of mice was tested. Using the real-time PCR approximately hundred genome equivalents of the B. pertussis DNA were detected in lungs of mice in two months after infection regardless of the way of challenge. Using the bacterial test bacteria were identified during only four weeks after challenge. Bvg- B. pertussis avirulent mutants were accumulated for the infection time. The percentage of the avirulent bacteria in the B. pertussis population reached 50% in 7-9 weeks after challenge. The obtained results show that the laboratory mice can be used for study of the B. pertussis insertion mutant formation dynamics in vivo and confirm the hypothesis about insertional bvg- B. pertussis virulent mutants accumulation during development of pertussis infection in human.

  14. klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-Induced Vascular and Haematopoietic Phenotypes.

    Directory of Open Access Journals (Sweden)

    Peter Novodvorsky

    Full Text Available The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2 transduces blood flow into molecular signals responsible for a wide range of responses within the vasculature. KLF2 maintains a healthy, quiescent endothelial phenotype. Previous studies report a range of phenotypes following morpholino antisense oligonucleotide-induced klf2a knockdown in zebrafish. Targeted genome editing is an increasingly applied method for functional assessment of candidate genes. We therefore generated a stable klf2a mutant zebrafish and characterised its cardiovascular and haematopoietic development.Using Transcription Activator-Like Effector Nucleases (TALEN we generated a klf2a mutant (klf2ash317 with a 14bp deletion leading to a premature stop codon in exon 2. Western blotting confirmed loss of wild type Klf2a protein and the presence of a truncated protein in klf2ash317 mutants. Homozygous klf2ash317 mutants exhibit no defects in vascular patterning, survive to adulthood and are fertile, without displaying previously described morphant phenotypes such as high-output cardiac failure, reduced haematopoetic stem cell (HSC development or impaired formation of the 5th accessory aortic arch. Homozygous klf2ash317 mutation did not reduce angiogenesis in zebrafish with homozygous mutations in von Hippel Lindau (vhl, a form of angiogenesis that is dependent on blood flow. We examined expression of three klf family members in wildtype and klf2ash317 zebrafish. We detected vascular expression of klf2b (but not klf4a or biklf/klf4b/klf17 in wildtypes but found no differences in expression that might account for the lack of phenotype in klf2ash317 mutants. klf2b morpholino knockdown did not affect heart rate or impair formation of the 5th accessory aortic arch in either wildtypes or klf2ash317 mutants.The klf2ash317 mutation produces a truncated Klf2a protein but, unlike morpholino induced klf2a knockdown, does not affect cardiovascular development.

  15. Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant.

    Directory of Open Access Journals (Sweden)

    Anja Wartenberg

    2014-12-01

    Full Text Available Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Δ/efg1Δ mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Δ/efg1Δ strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.

  16. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    Chen LiMei; Carpita, N.C.; Reiter, W.D.; Wilson, R.H.; Jeffries, C.; McCann, M.C.

    1998-01-01

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  17. Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants.

    Science.gov (United States)

    Valdés-García, Gilberto; Millán-Pacheco, César; Pastor, Nina

    2017-08-01

    Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains. © 2017 Wiley Periodicals, Inc.

  18. Promising mutant variety of rice evolved through gamma irradiation

    International Nuclear Information System (INIS)

    Prasad, S.C.; Sinha, S.K.

    1980-01-01

    Rice occupies a major share in crop production in the Chotanagpur plateau of Bihar State. Uplands are roughly 40% in area where traditional low yielding rice, known as ''gora'' is cultivated as directly sown crop. Despite introduction of high yielding rice varieties, gora group of rices continue to prevail. It is therefore desired to increase the productivity level of the gora rice by mutation breeding. One such mutant known as ''gora mutant'' was obtained through gamma irradiation (10 kR) of variety Brown gora. The maturity of both parent and mutant remaining constant (ie. 100 days), there is some improvement in other characteristics like plant height, tillering capacity and kernel character. The parent being tall, shy in tillering and red bold kernel, the mutant has dwarfish characteristics, profuse tillering habit and white kernel with fine grains. The yielding capacity of mutant derivative is 30-40% higher than the parent Brown gora. This variety is in pre-release stage, and the farmers have taken great liking for it. (author)

  19. A preliminary yield trial of some soybean mutant lines

    International Nuclear Information System (INIS)

    Ratma, Rivaie

    1985-01-01

    A preliminary yield trial of some soybean mutant lines, derived from irradiated Orba variety with dose of 0.40 kGy, were carried out during the wet and dry season in 1979-1982 in Muara and Citayam, Bogor. The result obtained showed that yield potential of mutant lines no. M6/40/10 was higher than that of the control in dry season in 1979 as well as in the wet season of 1979/80 in Muara. Whereas, the yield potential of the mutant lines no. M6/40/8 and no. M6/40/14 were higher than that of the control only in the wet season. The yield potential of semi dwarf mutant lines no. M6/40/68 was highly significant compared to that of the control in dry season in Muara and the wet season in 1981/82 in Citayam. Whereas, the yield potential of the mutant lines no. M6/40/69 was higher yield compared to that of the control in dry season in 1981 in Muara. (author). 10 refs

  20. Purification, crystallization and preliminary X-ray diffraction analysis of disease-related mutants of p97

    International Nuclear Information System (INIS)

    Tang, Wai-Kwan; Li, Dongyang; Esser, Lothar; Xia, Di

    2009-01-01

    Mutations in the human AAA+ protein p97 cause a disease in humans called IBMPFD. How these mutations affect the structure and function of p97 is unknown. Here, the crystallization of three disease-related mutants of p97 in the presence of ATPγS are reported. The human type II AAA+ protein p97 participates in various cellular activities, presumably through its involvement in the ubiquitin–proteasome degradation pathway. Mutations in p97 have been implicated in patients with inclusion-body myopathy associated with Paget’s disease of the bone and frontotemporal dementia (IBMPFD). In this work, three mutant p97 N-D1 fragments, R86A, R95G and R155H, were crystallized in the presence of ATPγS with PEG 3350 as a main precipitant, yielding two different crystal forms. The R155H mutant crystal belonged to space group R3, with unit-cell parameters in the hexagonal setting of a = b = 134.2, c = 182.9 Å, and was merohedrally twinned, with an estimated twin fraction of 0.34. The crystals of the R86A and R95G mutants belonged to space group P1, with similar unit-cell parameters of a = 90.89, b = 102.6, c = 107.2 Å, α = 97.5, β = 90.6, γ = 91.5° and a = 92.76, b = 103.7, c = 107.7 Å, α = 97.7, β = 91.9, γ = 89.7°, respectively