WorldWideScience

Sample records for identify minimum polymer

  1. Minimum free-energy paths for the self-organization of polymer brushes.

    Science.gov (United States)

    Gleria, Ignacio; Mocskos, Esteban; Tagliazucchi, Mario

    2017-03-22

    A methodology to calculate minimum free-energy paths based on the combination of a molecular theory and the improved string method is introduced and applied to study the self-organization of polymer brushes under poor solvent conditions. Polymer brushes in a poor solvent cannot undergo macroscopic phase separation due to the physical constraint imposed by the grafting points; therefore, they microphase separate forming aggregates. Under some conditions, the theory predicts that the homogeneous brush and the aggregates can exist as two different minima of the free energy. The theoretical methodology introduced in this work allows us to predict the minimum free-energy path connecting these two minima as well as the morphology of the system along the path. It is shown that the transition between the homogeneous brush and the aggregates may involve a free-energy barrier or be barrierless depending on the relative stability of the two morphologies and the chain length and grafting density of the polymer. In the case where a free-energy barrier exists, one of the morphologies is a metastable structure and, therefore, the properties of the brush as the quality of the solvent is cycled are expected to display hysteresis. The theory is also applied to study the adhesion/deadhesion transition between two opposing surfaces modified by identical polymer brushes and it is shown that this process may also require surpassing a free-energy barrier.

  2. Medium Effects on Minimum Inhibitory Concentrations of Nylon-3 Polymers against E. coli

    Science.gov (United States)

    Choi, Heejun; Chakraborty, Saswata; Liu, Runhui; Gellman, Samuel H.; Weisshaar, James C.

    2014-01-01

    Minimum inhibitory concentrations (MICs) against E. coli were measured for three nylon-3 polymers using Luria-Bertani broth (LB), brain-heart infusion broth (BHI), and a chemically defined complete medium (EZRDM). The polymers differ in the ratio of hydrophobic to cationic subunits. The cationic homopolymer is inert against E. coli in BHI and LB, but becomes highly potent in EZRDM. A mixed hydrophobic/cationic polymer with a hydrophobic t-butylbenzoyl group at its N-terminus is effective in BHI, but becomes more effective in EZRDM. Supplementation of EZRDM with the tryptic digest of casein (often found in LB) recapitulates the LB and BHI behavior. Additional evidence suggests that polyanionic peptides present in LB and BHI may form electrostatic complexes with cationic polymers, decreasing activity by diminishing binding to the anionic lipopolysaccharide layer of E. coli. In contrast, two natural antimicrobial peptides show no medium effects. Thus, the use of a chemically defined medium helps to reveal factors that influence antimicrobial potency of cationic polymers and functional differences between these polymers and evolved antimicrobial peptides. PMID:25153714

  3. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Simple Organics and Biomonomers Identified in HCN Polymers: An Overview

    Directory of Open Access Journals (Sweden)

    Susana Osuna-Esteban

    2013-07-01

    Full Text Available Hydrogen cyanide (HCN is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system.

  5. Identifying the primitive path mesh in entangled polymer liquids

    International Nuclear Information System (INIS)

    Sukumaran, Sathish K.; Kremer, Kurt; Grest, Gary Stephen; Everaers, Ralf

    2004-01-01

    Similar to entangled ropes, polymer chains cannot slide through each other. These topological constraints, the so-called entanglements, dominate the viscoelastic behavior of high-molecular-weight polymeric liquids. Tube models of polymer dynamics and rheology are based on the idea that entanglements confine a chain to small fluctuations around a primitive path which follows the coarse-grained chain contour. To establish the microscopic foundation for these highly successful phenomenological models, we have recently introduced a method for identifying the primitive path mesh that characterizes the microscopic topological state of computer-generated conformations of long-chain polymer melts and solutions. Here we give a more detailed account of the algorithm and discuss several key aspects of the analysis that are pertinent for its successful use in analyzing the topology of the polymer configurations. We also present a slight modification of the algorithm that preserves the previously neglected self-entanglements and allows us to distinguish between local self-knots and entanglements between distant sections of the same chain. Our results indicate that the latter make a negligible contribution to the tube and that the contour length between local self-knots, N 1k is significantly larger than the entanglement length N e

  6. Hazardous industrial gases identified using a novel polymer/MWNT composite resistance sensor array

    International Nuclear Information System (INIS)

    Yuana, C.L.; Chang, C.P.; Song, Y.

    2011-01-01

    Highlights: → In this work, a silicon wafer microelectrode substrate for a resistance sensor was fabricated using the semiconductor manufacturing process. → This work developed polymer-functionalized MWNT sensor plat forms for the detection of vapors from chemical agents at different temperatures. → Applied PCA to determine the performance of as-fabricated films for exposure to three chemical agents. - Abstract: Hazardous industrial chemical gases pose a significant threat to the environment and human life. Therefore, there is an urgent need to develop a reliable sensor for identifying these hazardous gases. In this work, a silicon wafer microelectrode substrate for a resistance sensor was fabricated using the semiconductor manufacturing process. Conductive carbon nanotubes were then mixed with six different polymers with different chemical adsorption properties to produce a composite thin film for the fabrication of a chemical sensor array. This array was then utilized to identify three hazardous gases at different temperatures. Experimental results for six polymers for chemical gases, such as tetrahydrofuran (THF), chloroform (CHCl 3 ) and methanol (MeOH) at different temperatures, indicate that the variation in sensitivity resistance increased when the sensing temperature increased. The poly(ethylene adipate)/MWNT sensing film had high sensitivity, excellent selectivity, and good reproducibility in detecting all chemical agent vapors. Additionally, this study utilized a bar chart and statistical methods in principal component analysis to identify gases with the polymer/MWNT sensor.

  7. Solution of the problem of the identified minimum for the tri-variate ...

    Indian Academy of Sciences (India)

    tified minimum is considered below has zero means, and distinct variances. The solution ... and a non-singular covariance matrix , where ij = ρij σi σj for i ...... (i) through (iv) above, we can use (4.29) to identify a2. 21. , a2. 31. , a2. 12. , a2. 32 uniquely. Now we consider (4.28). In this case, there are two possibilities: (A2. 1, B2.

  8. 21 CFR 172.770 - Ethylene oxide polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  9. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms

    Science.gov (United States)

    Jung, Melissa R.; Horgen, F. David; Orski, Sara V.; Rodriguez, Viviana; Beers, Kathryn L.; Balazs, George H.; Jones, T. Todd; Work, Thierry M.; Brignac, Kayla C.; Royer, Sarah-Jeanne; Hyrenbach, David K.; Jensen, Brenda A.; Lynch, Jennifer M.

    2018-01-01

    Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1–6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon.

  10. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    McGugan, M.; Soerensen, Bent F.; Oestergaard, R.; Bech, T.

    2006-12-15

    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material is presented. The contribution of the acoustic emission monitoring technique in defining different failure modes identified during the testing is discussed. The development of in-situ structural monitoring and control systems is considered. (au)

  11. Se of polymers to control clay swelling

    Energy Technology Data Exchange (ETDEWEB)

    Slobod, R L; Beiswanger, J P.G.

    1968-01-01

    The injection of water to displace oil is one of the main methods used to increase oil recovery. High injection rates are generally desired, and in some cases the flood will not be economic unless high rates are maintained. The presence of clays which swell in the presence of water offers a complication to the problem of maintaining adequate injectivity. In the course of this study it was observed that certain polymers, when present in dilute concentrations in the water, had the ability to reduce the response of these clays to fresh water. Two polymers, one an anionic and the other nonionic, were found to be very effective in controlling the clays present in Berea cores. Successful control of clay swelling was obtained by use of solutions containing as little as 1.0 ppM of polymer, but at this low concentration appreciable volumes of treating solution were required. These results suggest that some minimum amount of polymer must be adsorbed to prevent clay swelling. In Berea sandstone this minimum amount appeared to be of the order of 0.03 mg per cc of pore space. A series of tests made using 10.0 ppM polymer showed that the polymer could be made through the porous system in which 0.066 per mg of polymer was adsorbed per cc of pore space.

  12. A comparison of approaches for finding minimum identifying codes on graphs

    Science.gov (United States)

    Horan, Victoria; Adachi, Steve; Bak, Stanley

    2016-05-01

    In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using MATLAB, an adiabatic quantum optimization approach using a D-Wave quantum annealing processor, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers. Each of these methods requires the problem to be formulated in a unique manner. In this paper, we address the challenges of computing solutions to this NP-hard problem with respect to each of these methods.

  13. Preparing for the data revolution: identifying minimum health information competencies among the health workforce.

    Science.gov (United States)

    Whittaker, Maxine; Hodge, Nicola; Mares, Renata E; Rodney, Anna

    2015-04-01

    Health information is required for a variety of purposes at all levels of a health system, and a workforce skilled in collecting, analysing, presenting, and disseminating such information is essential to fulfil these demands. While it is established that low- and middle-income countries (LMICs) are facing shortages in human resources for health (HRH), there has been little systematic attention focussed on non-clinical competencies. In response, we developed a framework that defines the minimum health information competencies required by health workers at various levels of a health system. Using the Delphi method, we consulted with leading global health information system (HIS) experts. An initial list of competencies and draft framework were developed based on results of a systematic literature review. During the second half of 2012, we sampled 38 experts with broad-based HIS knowledge and extensive development experience. Two rounds of consultation were carried out with the same group to establish validity of the framework and gain feedback on the draft competencies. Responses from consultations were analysed using Qualtrics® software and content analysis. In round one, 17 experts agreed to participate in the consultation and 11 (65%) completed the survey. In the second round, 11 experts agreed to participate and eight (73%) completed the survey. Overall, respondents agreed that there is a need for all health workers to have basic HIS competencies and that the concept of a minimum HIS competency framework is valid. Consensus was reached around the inclusion of 68 competencies across four levels of a health system. This consultation is one of the first to identify the HIS competencies required among general health workers, as opposed to specialist HIS roles. It is also one of the first attempts to develop a framework on minimum HIS competencies needed in LMICs, highlighting the skills needed at each level of the system, and identifying potential gaps in current

  14. Improving Adsorption Deinking by Identifying the Optimum Balance between Polymer Beads and Deinking Chemistry

    Directory of Open Access Journals (Sweden)

    Krithika Ravi

    2016-01-01

    Full Text Available Ink removal from recovered paper is a very important process in paper and board recycling. The current deinking processes have made obvious contributions to the use of raw materials for the paper and board industries. In contrast to the flotation deinking process, in which small air bubbles are used to remove ink from the pulp, the novel and more energy-efficient method of adsorption deinking technique depends on the attachment and adsorption of ink particles on small polymer beads. The energy savings of adsorption deinking results from the fact that the process is efficient at greater stock consistencies, thus providing water conservation and savings. The present study was carried out to improve the adsorption deinking method by identifying the optimum balance between the deinking chemistry and the polymer beads. Different types of deinking solutions and polymer beads were used for this study with newsprints and mixture of newsprints and magazines. It was found that EGA 3000 solution and polyethylene terephthalate beads worked well with newspaper pulp.

  15. Integrating the nursing management minimum data set into the logical observation identifier names and codes system.

    Science.gov (United States)

    Subramanian, Amarnath; Westra, Bonnie; Matney, Susan; Wilson, Patricia S; Delaney, Connie W; Huff, Stan; Huff, Stanley M; Huber, Diane

    2008-11-06

    This poster describes the process used to integrate the Nursing Management Minimum Data Set (NMMDS), an instrument to measure the nursing context of care, into the Logical Observation Identifier Names and Codes (LOINC) system to facilitate contextualization of quality measures. Integration of the first three of 18 elements resulted in 48 new codes including five panels. The LOINC Clinical Committee has approved the presented mapping for their next release.

  16. Characteristics of porous polymer composite columns prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao; Asami, Kazuhiro; Suzuki, Shuichi

    1989-01-01

    Porous polymer composite columns having porous structure were prepared by radiation cast-polymerization of hydrophilic monomers at low temperature and their characteristics were studied. The porosity of the polymer increased with decreasing monomer concentration. The elution time of water in the polymer column increased with increasing monomer concentration and with decreasing irradiation temperature. The elution time was dependent on the degree of hydration of the polymer. The polymer with a degree of hydration of 0.2 to 0.4 gave the minimum elution time. The elution time decreased with the addition of porous inorganic substances. (author)

  17. Optimal temperature profiles for minimum residual stress in the cure process of polymer composites

    CSIR Research Space (South Africa)

    Gopal, AK

    2000-01-01

    Full Text Available include the minimum residual stresses, minimum cure cycle lime and full degree of cure. The development of residual stresses during the cure cycle is one of the most important problems as they affect the strength and the mechanical properties of the final...

  18. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  19. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  20. Bounds for the minimum step number of knots confined to slabs in the simple cubic lattice

    International Nuclear Information System (INIS)

    Ishihara, K; Shimokawa, K; Scharein, R; Arsuaga, J; Vazquez, M; Diao, Y

    2012-01-01

    Volume confinement is a key determinant of the topology and geometry of a polymer. However, the direct relationship between the two is not fully understood. For instance, recent experimental studies have constructed P4 cosmids, i.e. P4 bacteriophages whose genome sequence and length have been artificially engineered and have shown that upon extraction their DNA knot distribution differs from that of wild-type bacteriophage P4. In particular, it was observed that the complexity of the knots decreases sharply with the length of the packed genome. This problem is the motivation of this paper. Here, a polymer is modeled as a self-avoiding polygon on the simple cubic lattice and the confining condition is such that the polygon is bounded between two parallel planes (i.e. bounded within a slab). We estimate the minimum length required for such a polygon to realize a knot type. Our numerical simulations show that in order to realize a prime knot (with up to ten crossings) in a 1-slab (i.e. a slab of height 1), one needs a polygon of length strictly longer than the minimum length needed to realize the same knot when there is no confining condition. In the case of the trefoil knot, we can in fact establish this result analytically by proving that the minimum length required to tie a trefoil in the 1-slab is 26, which is greater than 24, the known minimum length required to tie a trefoil without a confinement condition. Additionally, we find that in the 1-slab not all geometrical realizations of a given knot type are equivalent under BFACF moves. This suggests that in certain confined volumes, knowing the topology of a polymer is not enough to describe all its states. (paper)

  1. Subgap absorption in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.

  2. Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Woon; Yun, Sung Chul [Keimyung University, Daegu (Korea, Republic of)

    2015-07-15

    In this study, experimental and computer simulation results are compared and analyzed. Three-dimensional (3D) fabricated matrices from an MJM 3D printer were joined with poly-acetate thermoplastic polymers using a diode laser. A power range of 5-7 W was used to irradiate the boundary of two polymers. The heated polymers flowed into the matrices of the 3D fabricated structure, and reliable mechanical joining was achieved. Computer simulation showed the temperature distribution in the polymers, and flow direction was estimated based on the flux and temperature information. It was found that the more than the minimum energy threshold was required to effectively join the polymers and that two scans at low-speed were more effective than four scans at high speed.

  3. Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers

    International Nuclear Information System (INIS)

    Choi, Hae Woon; Yun, Sung Chul

    2015-01-01

    In this study, experimental and computer simulation results are compared and analyzed. Three-dimensional (3D) fabricated matrices from an MJM 3D printer were joined with poly-acetate thermoplastic polymers using a diode laser. A power range of 5-7 W was used to irradiate the boundary of two polymers. The heated polymers flowed into the matrices of the 3D fabricated structure, and reliable mechanical joining was achieved. Computer simulation showed the temperature distribution in the polymers, and flow direction was estimated based on the flux and temperature information. It was found that the more than the minimum energy threshold was required to effectively join the polymers and that two scans at low-speed were more effective than four scans at high speed

  4. Boiling characteristics of dilute polymer solutions and implications for the suppression of vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K.H.; Kim, M.H. [Univ. of Science and Technology, Pohang (Korea, Republic of)

    1995-09-01

    Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boiling temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.

  5. Development of polymer concrete radioactive waste management containers

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.; Lee, M. S.; Ahn, D. H.; Won, H. J.; Kang, H. S.; Lee, H. S.; Lim, S.P.; Kim, Y. E.; Lee, B. O.; Lee, K. P.; Min, B. Y.; Lee, J.K.; Jang, W. S.; Sim, W. B.; Lee, J. C.; Park, M. J.; Choi, Y. J.; Shin, H. E.; Park, H. Y.; Kim, C. Y

    1999-11-01

    A high-integrity radioactive waste container has been developed to immobilize the spent resin wastes from nuclear power plants, protect possible future, inadvertent intruders from damaging radiation. The polymer concrete container is designed to ensure safe and reliable disposal of the radioactive waste for a minimum period of 300 years. A built-in vent system for each container will permit the release of gas. An experimental evaluation of the mechanical, chemical, and biological tests of the container was carried out. The tests showed that the polymer concrete container is adequate for safe disposal of the radioactive wastes. (author)

  6. Polymers for hydrogen infrastructure and vehicle fuel systems :

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  7. Minimum airflow reset of single-duct VAV terminal boxes

    Science.gov (United States)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  8. Effect of sodium aromatic sulfonate group in anionic polymer dispersant on the viscosity of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Toshio Kakui; Hidehiro Kamiya [Lion Corporation, Tokyo (Japan). Chemicals Research Laboratories, Chemicals Division

    2004-06-01

    This paper focused on the effect of sodium aromatic sulfonate in anionic polymer dispersants on the viscosity of coal-water mixtures (CWMs) with a Tatung coal powder. To determine the optimum molecular structure of a polymer dispersant for the minimum viscosity of a CWM, various anionic co-polymers with different hydrophilic and hydrophobic groups or different molecular weights were prepared, using various types of monomers. Anionic co-polymers with sodium aromatic sulfonate, such as sodium styrene-sulfonate and sodium naphthalene-sulfonate, reduced the viscosity of dense CWMs. In particular, a co-polymer of sodium styrene-sulfonate and sodium acrylate with a molar ratio of 70:30 and a molecular weight of {approximately} 10 000 gave the minimum viscosity of a 70 wt % CWM. To obtain a low viscosity for a CWM, a large electrostatic repulsive force with an absolute value of the zeta potential of the coal particles of {gt} 70 mV and {gt} 6.5 mg/g of adsorbed polymer on the coal surface were needed. The mixture of sodium polystyrene-sulfonate and sodium polyacrylate with a weight ratio of 50:50 also gave a low viscosity of 70 wt % CWM. On the basis of the results, the adsorption behavior of polymer dispersants on the coal surface is examined by measuring the wettability of coal powder pellets. 27 refs., 8 figs., 3 tabs.

  9. 40 CFR 721.8090 - Polyurethane polymer.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  10. Theoretical model based on the memory effect for the strange photoisomerization kinetics of diarylethene derivatives dispersed on polymer films

    International Nuclear Information System (INIS)

    Seki, Kazuhiko; Tachiya, M.

    2007-01-01

    In the present paper the authors present a theoretical model to explain the kinetics involving the induction period observed by Irie et al. [Nature (London) 420, 759 (2002)] for photoisomerization of diarylethene derivatives dispersed on polymer films at a single molecular level. In the model we assume that both ground state and excited state free energy landscapes which result from the interaction between the photochromic molecule and the surrounding polymer are rugged and have several local minima along the pathway to the critical point at which isomerization actually occurs. We assume that after one photoexcitation a fraction of the photochromic molecule moves to a new local minimum and stays there, although the other fraction returns to the original local minimum. The former effect is referred to as the memory effect. After repeated photoexcitations the photochromic molecule moves gradually from one local minimum to another in the pathway to the isomerization point. It finally reaches the isomerization point, where isomerization occurs. Their model successfully reproduces the kinetics of photoisomerization of diarylethene derivatives dispersed on polymer films observed experimentally

  11. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  12. Characterization of Hydrophobic Interactions of Polymers with Water and Phospholipid Membranes Using Molecular Dynamics Simulations

    Science.gov (United States)

    Drenscko, Mihaela

    Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of

  13. The effects of gamma-irradiation on additives in food-contact polymers

    Science.gov (United States)

    Smith, Christine

    A range of antioxidants (BHT, Irganox 1010, 1076, 1330 and Irgafos 168) were incorporated into polymers (polyethylene, polypropylene, polystyrene and polyvinyl chloride) and subjected to increasing doses of gamma-irradiation (1,5,10,20,25,35 and 50 kGy) from a cobalt-60 source.The amount of extractable antioxidant from the stabilised polymers was determined chromatographically and a gradual diminution in the total extractable levels of each antioxidant was observed as irradiation progressed, the extent depending on the nature of both the antioxidant and the polymer 2,6-Di-t-butyl-1,4-benzoquinone was shown to be an extractable degradation product, arising from the effects of gamma-irradiation on the phenolic antioxidants. The extractable degradation product arising from the phosphite antioxidant, Irgafos 168, was identified as tris(2,4-di-t-butylphenyl)phosphate. It was demonstrated using 14C-labelled Irganox 1076 that degradation products formed during gamma-irradiation are becoming covalently bound to the polymer, as a result of radical coupling processes. There is a pronounced increase in the extent of covalent binding from 0.4% before irradiation to a minimum of 12.4% after an exposure to 50 kGy. Evidence has also been presented of covalent binding of the degradation product of Irgafos 168 to the polypropylene matrix, via polymeric radicals formed during irradiation. Finally, the effects of gamma-irradiation on the extent of migration of antioxidants from polyolefins into food simulants was studied. It was found that irradiation leads to a decrease in the extent to which hindered phenolic antioxidants migrate from polyolefins into fatty media, consistent with the reduction in extractable antioxidant levels and the increase in the extent of antioxidant-polymer binding.

  14. Radiation cross-linking of PTC conductive polymers

    International Nuclear Information System (INIS)

    Doljack, F.A.; Jacobs, S.M.; Taylor, J.M.; McTavish, M.S.

    1982-01-01

    An electrical device comprising a PTC conductive polymer is irradiated so that it is very highly cross-linked. A dosage of at least 50 Mrads, preferably at least 80 Mrads, especially at least 120 Mrads is used except that where the device includes planar electrodes which are present during irradiation the minimum dose is 120 Mrads. In this way, for example, it is possible to make a circuit protection device which will continue to provide effective protection even after repeated exposure to a voltage of 200 volts. A PTC protection device may be produced by moulding carbon loaded polymer round three electrodes the centre one of which is then removed to leave an aperture between the other two electrodes. (author)

  15. Interaction of energetic particles with polymer surfaces: surface morphology development and sputtered polymer-fragment ion analysis

    International Nuclear Information System (INIS)

    Michael, R.S.

    1987-01-01

    The core of this thesis is based on a series of papers that have been published or will soon be published in which the various processes taking place in the energetic particle-polymer surface interaction scene is investigated. Results presented show different developments on polymer surfaces when compared to the vast experimental data on energetic particle-metal surface interactions. The surface morphology development depends on the physical characteristics of the polymer. Sputtering yields of fluoropolymers were several orders higher than the sputtering yields of aliphatic and aromatic polymers. Depending on the chemical nature of the polymer, the surface morphology development was dependent upon the extent of radiation-damage accumulation. Fast Atom Bombardment Mass Spectrometry at low and high resolution was applied to the characterization of sputtered polymer fragment ions. Fragment ions and their intensities were used to identify polymer samples, observe radiation damage accumulation and probe polymer-polymer interface of a polymer-polymer sandwich structure. A model was proposed which attempts to explain the nature of processes involved in the energetic particle-polymer surface interaction region

  16. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  17. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes.

    Science.gov (United States)

    Von Bargen, Christopher D; MacDermaid, Christopher M; Lee, One-Sun; Deria, Pravas; Therien, Michael J; Saven, Jeffery G

    2013-10-24

    The highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent. In simulations of the PPES/SWNT system in an aqueous environment, PPES spontaneously takes on a helical conformation. A potential of mean force, ΔA(ξ), is calculated as a function of ξ, the component of the end-to-end vector of the polymer chain projected on the SWNT axis; ξ is a monotonic function of the polymer's helical pitch. ΔA(ξ) provides a means to quantify the relative free energies of helical conformations of the polymer when wrapped about the SWNT. The aqueous system possesses a global minimum in ΔA(ξ) at the experimentally observed value of the helical pitch. The presence of this minimum is associated with preferred side chain conformations, where the side chains adopt conformations that provide van der Waals contact between the tubes and the aliphatic components of the side chains, while exposing the anionic sulfonates for aqueous solvation. The simulations provide a free energy estimate of a 0.2 kcal/mol/monomer preference for the helical over the linear conformation of the PPES/SWNT system in an aqueous environment.

  18. Physico-chemistry characterization of sulfonated polyacrylamide polymers for use in polymer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Masoud

    2010-07-01

    Hydrolyzed polyacrylamide polymer (HPAM) as a feasible and effective viscosifier has been fully studied and used for polymer flooding processes in several oil field, e.g. Daqing oil field. It has been shown that Hydrolyzed polyacrylamide polymers (HPAM) may be a good choice for high temperature condition with no oxygen and no divalent ions presence. At high temperature and high salinity conditions, polymer may precipitates and loss their viscosyfing properties. Also adsorption and retention of polymer in porous medium may change rheological properties of polymers. Thus, the viscosyfing property of polymers is influenced by several important parameters, e.g. salinity, hardness, temperature, adsorption, retention, polymer structure, and etc. By replacing some of carboxylate group of HPAM with another monomer, e.g. sodium salt of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), effect of high salinity/hardness and temperature seems to be reduced specially for the samples with higher percentage of AMPS co-monomer. The ultimate aim of this work is to develop an understanding of the sulfonated polyacrylamide copolymers with a range of different sulfonation and molecular weight at high salinity and high temperature conditions. Most of the work in this thesis deals with viscosity and adsorption/retention measurements of the sulfonated copolymers and HPAM. The factors which may affect the viscosity of the polymers and have been identified in this work as most likely influencing also adsorption and retention of the polymers are shear rate, polymer concentration, sulfonation degree, molecular weight, NaCl concentration, divalent ion concentration, and temperature. (Author)

  19. The Minimum Wage, Restaurant Prices, and Labor Market Structure

    Science.gov (United States)

    Aaronson, Daniel; French, Eric; MacDonald, James

    2008-01-01

    Using store-level and aggregated Consumer Price Index data, we show that restaurant prices rise in response to minimum wage increases under several sources of identifying variation. We introduce a general model of employment determination that implies minimum wage hikes cause prices to rise in competitive labor markets but potentially fall in…

  20. Capillary evaporation in colloid-polymer mixtures selectively confined to a planar slit

    International Nuclear Information System (INIS)

    Schmidt, Matthias; Fortini, Andrea; Dijkstra, Marjolein

    2004-01-01

    Using density functional theory and Monte Carlo simulations we investigate the Asakura-Oosawa-Vrij mixture of hard sphere colloids and non-adsorbing ideal polymers under selective confinement of the colloids to a planar slab geometry. This is a model for confinement of colloid-polymer mixtures by either two parallel walls with a semi-permeable polymer coating or through the use of laser tweezers. We find that such a pore favours the colloidal gas over the colloidal liquid phase and induces capillary evaporation. A treatment based on the Kelvin equation gives a good account of the location of the capillary binodal for large slit widths. The colloid density profile is found to exhibit a minimum (maximum) at contact with the wall for large (small) slit widths

  1. Experimental investigation of the factors influencing the polymer-polymer bond strength during two component injection moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2007-01-01

    Two component injection moulding is a commercially important manufacturing process and a key technology for Moulded Interconnect Devices (MIDs). Many fascinating applications of two component or multi component polymer parts are restricted due to the weak interfacial adhesion of the polymers...... effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength after moulding are also investigated. The material selections and environmental conditions were chosen based on the suitability of MID production, but the results and discussion presented....... A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi component polymer processing. This paper investigates the effects of the process and material parameters on the bond strength of two component polymer parts and identifies the factors which can...

  2. Experimental investigation of the factors influencing the polymer-polymer bond strength during two-component injection moulding

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Bondo, Martin

    2010-01-01

    Two-component injection moulding is a commercially important manufacturing process and a key technology for combining different material properties in a single plastic product. It is also one of most industrially adaptive process chain for manufacturing so-called moulded interconnect devices (MIDs......). Many fascinating applications of two-component or multi-component polymer parts are restricted due to the weak interfacial adhesion of the polymers. A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi-component polymer processing. This paper...... investigates the effects of the process conditions and geometrical factors on the bond strength of two-component polymer parts and identifies the factors which can effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength are also investigated...

  3. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  4. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects the measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.

  5. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate polymer...

  6. State cigarette minimum price laws - United States, 2009.

    Science.gov (United States)

    2010-04-09

    Cigarette price increases reduce the demand for cigarettes and thereby reduce smoking prevalence, cigarette consumption, and youth initiation of smoking. Excise tax increases are the most effective government intervention to increase the price of cigarettes, but cigarette manufacturers use trade discounts, coupons, and other promotions to counteract the effects of these tax increases and appeal to price-sensitive smokers. State cigarette minimum price laws, initiated by states in the 1940s and 1950s to protect tobacco retailers from predatory business practices, typically require a minimum percentage markup to be added to the wholesale and/or retail price. If a statute prohibits trade discounts from the minimum price calculation, these laws have the potential to counteract discounting by cigarette manufacturers. To assess the status of cigarette minimum price laws in the United States, CDC surveyed state statutes and identified those states with minimum price laws in effect as of December 31, 2009. This report summarizes the results of that survey, which determined that 25 states had minimum price laws for cigarettes (median wholesale markup: 4.00%; median retail markup: 8.00%), and seven of those states also expressly prohibited the use of trade discounts in the minimum retail price calculation. Minimum price laws can help prevent trade discounting from eroding the positive effects of state excise tax increases and higher cigarette prices on public health.

  7. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as identified in this section may be safely used as an article or...

  8. System and method employing a minimum distance and a load feature database to identify electric load types of different electric loads

    Science.gov (United States)

    Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A

    2014-12-23

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.

  9. Porous polymer coatings on metal microneedles for enhanced drug delivery

    Science.gov (United States)

    Ullah, Asad; Kim, Chul Min; Kim, Gyu Man

    2018-04-01

    We present a simple method to coat microneedles (MNs) uniformly with a porous polymer (PLGA) that can deliver drugs at high rates. Stainless steel (SS) MNs of high mechanical strength were coated with a thin porous polymer layer to enhance their delivery rates. Additionally, to improve the interfacial adhesion between the polymer and MNs, the MN surface was modified by plasma treatment followed by dip coating with polyethyleneimine, a polymer with repeating amine units. The average failure load (the minimum force sufficient for detaching the polymer layer from the surface of SS) recorded for the modified surface coating was 25 N, whereas it was 2.2 N for the non-modified surface. Calcein dye was successfully delivered into porcine skin to a depth of 750 µm by the porous polymer-coated MNs, demonstrating that the developed MNs can pierce skin easily without deformation of MNs; additional skin penetration tests confirmed this finding. For visual comparison, rhodamine B dye was delivered using porous-coated and non-coated MNs in gelatin gel which showed that delivery with porous-coated MNs penetrate deeper when compared with non-coated MNs. Finally, lidocaine and rhodamine B dye were delivered in phosphate-buffered saline (PBS) medium by porous polymer-coated and non-coated MNs. For rhodamine B, drug delivery with the porous-coated MNs was five times higher than that with the non-coated MNs, whereas 25 times more lidocaine was delivered by the porous-coated MNs compared with the non-coated MNs.

  10. Transition state theory approach to polymer escape from a one dimensional potential well.

    Science.gov (United States)

    Mökkönen, Harri; Ikonen, Timo; Ala-Nissila, Tapio; Jónsson, Hannes

    2015-06-14

    The rate of escape of an ideal bead-spring polymer in a symmetric double-well potential is calculated using transition state theory (TST) and the results compared with direct dynamical simulations. The minimum energy path of the transitions becomes flat and the dynamics diffusive for long polymers making the Kramers-Langer estimate poor. However, TST with dynamical corrections based on short time trajectories started at the transition state gives rate constant estimates that agree within a factor of two with the molecular dynamics simulations over a wide range of bead coupling constants and polymer lengths. The computational effort required by the TST approach does not depend on the escape rate and is much smaller than that required by molecular dynamics simulations.

  11. Radiation chemistry of biologically compatible polymers

    International Nuclear Information System (INIS)

    Hill, D.J. T.; Pomery, P.J.; Saadat, G.; Whittaker, A.K.

    1996-01-01

    Full text: Poly (2-hydroxy ethyl methacrylate) [PHEMA] and poly (2-ethoxy ethyl methacrylate) [PEEMA] are of biomedical and industrial interest due to their biocompatibility with living tissue. In this paper the effect of high energy radiation on these polymers is reported. PHEMA and PEEMA have similar molecular structures to poly (methyl methacrylate)[PMMA], and the γ irradiation of this polymer is well understood. Hence the radiation chemistry of PMMA is used as model system for the the analysis of the radiation chemistry of these polymers. The mechanism of the radiation induced chemistry of the polymers has been investigated using a range of techniques including electron spin resonance spectroscopy (ESR) to establish free radical pathways, GC to identify small molecule volatile products, NMR to identify small molecule radiation products and Gel Permeation Chromatography (GPC) to determine molecular weight changes. Whilst much of the major part of the radiation chemistry can be attributed to similar reactions which can be observed in PMMA, there are a number of new radicals which are present as a result of the influence of the side chain interactions which reduces the mobility of the polymer chain

  12. Application of dimensional regularization to single chain polymer static properties: Conformational space renormalization of polymers. III

    International Nuclear Information System (INIS)

    Oono, Y.; Ohta, T.; Freed, K.F.

    1981-01-01

    A dimensional regularization approach to the renormalization group treatment of polymer excluded volume is formulated in chain conformation space where monomers are specified by their spatial positions and their positions along the chain and the polymers may be taken to be monodisperse. The method utilizes basic scale invariance considerations. First, it is recognized that long wavelength macroscopic descriptions must be well defined in the limit that the minimum atomic or molecular scale L is set to zero. Secondly, the microscopic theory is independent of the conveniently chosen macroscopic scale of length k. The freedom of choice of k is exploited along with the assumed renormalizability of the theory to provide the renormalization group equations which directly imply the universal scaling laws for macroscopic properties. The renormalizability of the model implies the existence of the general relations between the basic macroparameters, such as chain length, excluded volume, etc., and their microscopic counterparts in the microscopic model for the system. These macro--micro relations are defined through the condition that macroscopic quantities be well defined for polymer chains for any spatial dimensionality. The method is illustrated by calculating the end vector distribution function for all values of end vectors R. The evaluation of this distribution function currently requires the use of expansions in e = 4-d. In this case our distribution reduces to known limits for R→0 or infinity. Subsequent papers will present calculations of the polymer coherent scattering function, the monomer spatial distribution function, and concentration dependent properties

  13. Modeling polymer-induced interactions between two grafted surfaces: comparison between interfacial statistical associating fluid theory and self-consistent field theory.

    Science.gov (United States)

    Jain, Shekhar; Ginzburg, Valeriy V; Jog, Prasanna; Weinhold, Jeffrey; Srivastava, Rakesh; Chapman, Walter G

    2009-07-28

    The interaction between two polymer grafted surfaces is important in many applications, such as nanocomposites, colloid stabilization, and polymer alloys. In our previous work [Jain et al., J. Chem. Phys. 128, 154910 (2008)], we showed that interfacial statistical associating fluid density theory (iSAFT) successfully calculates the structure of grafted polymer chains in the absence/presence of a free polymer. In the current work, we have applied this density functional theory to calculate the force of interaction between two such grafted monolayers in implicit good solvent conditions. In particular, we have considered the case where the segment sizes of the free (sigma(f)) and grafted (sigma(g)) polymers are different. The interactions between the two monolayers in the absence of the free polymer are always repulsive. However, in the presence of the free polymer, the force either can be purely repulsive or can have an attractive minimum depending upon the relative chain lengths of the free (N(f)) and grafted polymers (N(g)). The attractive minimum is observed only when the ratio alpha = N(f)/N(g) is greater than a critical value. We find that these critical values of alpha satisfy the following scaling relation: rho(g) square root(N(g)) beta(3) proportional to alpha(-lambda), where beta = sigma(f)/sigma(g) and lambda is the scaling exponent. For beta = 1 or the same segment sizes of the free and grafted polymers, this scaling relation is in agreement with those from previous theoretical studies using self-consistent field theory (SCFT). Detailed comparisons between iSAFT and SCFT are made for the structures of the monolayers and their forces of interaction. These comparisons lead to interesting implications for the modeling of nanocomposite thermodynamics.

  14. Pay equity, minimum wage and equality at work

    OpenAIRE

    Rubery, Jill

    2003-01-01

    Reviews the underlying causes of pay discrimination embedded within the organization of the labour market and structures of pay and reward. Discusses the need to focus on pay equity as part of a general strategy of promoting equity and decent work and examines the case for using minimum wage policies in comparison to more targeted equal pay policies to reduce gender pay equity. Identifies potential obstacles to or support for such policies and describes experiences of the use of minimum wages...

  15. Electrical conductivity of polyaniline doped PVC–PMMA polymer ...

    Indian Academy of Sciences (India)

    which has now become one of the hot topics of research. (Radhakrishnan 2001). ... and sensitive methods for studying the polymer structure. (Ferraro and Walkar ... acceptor mixed polymers doped with polyaniline, was measured to identify ...

  16. Humidity insensitive step-index polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2015-01-01

    We have fabricated and characterised a humidity insensitive step index(SI) polymer optical fibre(POF) Bragg grating sensors. The fibre was made based on the injection molding technique, which is an efficient method for fast, flexible and cost effective preparation of the fibre preform. The fabric...... poly-methyl-methacrylate (PMMA) based SIPOFs. The fibre has a minimum loss of similar to 6dB/m at 770nm....

  17. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single......-cost alternatives to ITO suitable for use in PSCs. These alternatives belong to four material groups: polymers; metal and polymer composites; metal nanowires and ultra-thin metal films; and carbon nanotubes and graphene. We further present the progress of employing these alternatives in PSCs and identify future...

  18. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    Science.gov (United States)

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with

  19. A study on the life extension of polymer materials under radiation environment

    International Nuclear Information System (INIS)

    Park, K. J; Park, S. W.; Jung, K. S.; Cho, S. H.; Seo, H. S.

    2001-12-01

    The object of this project is to improve the stability and the economics by reducing the radiation-induced oxidation as a factor of degradation of polymer materials used under the radiation environment. In order to attain the objective of this study and to check the effect of diamond-like carbon(DLC) coating on the anti-oxidation reaction, polymer specimens such as ABS, Acryl, Polycarbonate, Polyethylene, Polypropylene, PVC coating DLC thin layer were exposed to high-level gamma radiation, and their irradiation effects were investigated. A plasma-enhanced chemical vapor deposition method was adopted in fabricating a DLC thin film on the polymer specimens, which were irradiated with the non-DLC film deposited specimens under the gamma radiation emitted from Co-60 source from 1x10 5 to 1x10 8 rads exposure. According to the characterization of irradiated specimens from the elapsed time of minimum 4 hours to a maximum of 105 days after the irradiation, the DLC deposition on the polymer surface was revealed to contribute to the improvement on the resistance of the radiation-induced oxidation in this study

  20. Effect of culture medium on polymer production and temperature on recovery of polymer produced from newly identified Rhyzopus oryzae ST29

    Directory of Open Access Journals (Sweden)

    Tipparat Hongpattarakere

    2008-04-01

    Full Text Available Thermotolerant fungal isolate ST29 was identified by observing on cell morphology and molecular technique based on internal transcribed spacer (ITS gene to be Rhizopus oryzae. Among four culture media tested, the strain exhibited the highest growth in yeast malt extract (YM medium (4.87 g/l, followed by Sabouraud dextrose broth (SDB (4.25 g/l, potato dextrose broth (PDB (4.10 g/l and palm oil mill effluent (POME (3.29 g/l, respectively, after 4 days cultivation at 45oC. However, the strain was found to produce polymer only in POME medium at 45oC, but not in the three synthetic media tested. Effect of temperature on separation of the biopolymer produced by this fungal strain was studied by incubating the culture broth in water bath with temperatures in the range of room temperature to 70oC. The biopolymer was recovered by filtration, centrifugation, and precipitation by adding 4 volumes of 95% ethanol, then freeze-drying. These temperatures therefore had no influence on the biopolymer yields (5.58-5.78 g/l or on biomass yields (2.90-3.29 g/l.

  1. Sensitivity of chemically and electrochemically etched CR 39 polymers to the neutrons of AmBe source

    International Nuclear Information System (INIS)

    Turek, K.; Spurny, F.; Dajko, G.; Somogyi, G.

    1981-01-01

    Seven samples of polymers by different manufacturers were used in a study of the sensitivity of CR 39 polymers to Am-Be neutrons. In the polymer, proton tracks for a relatively broad energy range can also be recorded. The following characteristics were studied: the sample background for different etching methods, the dependence of sensitivity on the etched thickness and on neutron fluence, the effect of type and thickness of external proton emitters, and the effect of the choice of electric parameters on the resulting sensitivity in electrochemical etching. Good results were obtained when chemical and electrochemical etching was used in combination. It was found that with electrochemical etching, sensitivity decreases for neutron fluence exceeding 10 8 cm -2 . The sensitivity of the studied CR 39 polymer samples only little differed. When the most sensitive polymer was used, the minimum dose equivalent in the human body for Am-Be neutrons which could be determined using combination etching was 0.4 mSv (ie., 40 mrems). (B.S.)

  2. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject to...

  3. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-09

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  4. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  5. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...

  6. Investigation of Drug–Polymer Compatibility Using Chemometric-Assisted UV-Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Amir Ibrahim Mohamed

    2017-01-01

    Full Text Available A simple chemometric-assisted UV-spectrophotometric method was used to study the compatibility of clindamycin hydrochloride (HC1 with two commonly used natural controlled-release polymers, alginate (Ag and chitosan (Ch. Standard mixtures containing 1:1, 1:2, and 1:0.5 w/w drug–polymer ratios were prepared and UV scanned. A calibration model was developed with partial least square (PLS regression analysis for each polymer separately. Then, test mixtures containing 1:1 w/w drug–polymer ratios with different sets of drug concentrations were prepared. These were UV scanned initially and after three and seven days of storage at 25 °C. Using the calibration model, the drug recovery percent was estimated and a decrease in concentration of 10% or more from initial concentration was considered to indicate instability. PLS models with PC3 (for Ag and PC2 (for Ch showed a good correlation between actual and found values with root mean square error of cross validation (RMSECV of 0.00284 and 0.01228, and calibration coefficient (R2 values of 0.996 and 0.942, respectively. The average drug recovery percent after three and seven days was 98.1 ± 2.9 and 95.4 ± 4.0 (for Ag, and 97.3 ± 2.1 and 91.4 ± 3.8 (for Ch, which suggests more drug compatibility with an Ag than a Ch polymer. Conventional techniques including DSC, XRD, FTIR, and in vitro minimum inhibitory concentration (MIC for (1:1 drug–polymer mixtures were also performed to confirm clindamycin compatibility with Ag and Ch polymers.

  7. The minimum coronary artery diameter in which coronary spasm can be identified by synchrotron radiation coronary angiography

    International Nuclear Information System (INIS)

    Matsushita, Shonosuke; Hyodo, Kazuyuki; Imazuru, Tomohiro; Tokunaga, Chiho; Sato, Fujio; Enomoto, Yoshiharu; Hiramatsu, Yuji; Sakakibara, Yuzuru

    2008-01-01

    Background: Coronary vasospasm is defined as a temporary, intense narrowing of the coronary conduit artery. It brings about ischemic chest pain and becomes one of the causes of myocardial infarction. Coronary spasms are divided into two categories. One is the coronary spasm of the conduit artery and the other is the coronary microvascular spasm. Although coronary spasms are diagnosed with the images of coronary angiography, microvascular spasms cannot be diagnosed because of the limitations of conventional angiographic systems. However, synchrotron radiation coronary angiography (SRCA) can identify coronary arteries down to 100 μm in diameter in the beating heart and 50 μm in arrested heart. Aim: The purpose of this study was to confirm whether microvascular spasms could be identified or not using SRCA, and then down that size identification was possible. Methods: The Langendorff perfusion system with isolated rat hearts was employed. Krebs-Henseleit solution (KH solution) was used as a perfusate. 10 mM of 4-aminopyridine (4-AP: a voltage-gated potassium channel blocker; spasm inducer) was added to the KH solution and maintained for 5 min. SRCA was performed at pre-, during and 10 min after cessation of the KH solution with 4-AP. Coronary spasms were defined as a temporal 75% reduction of coronary arterial diameter. Results and conclusion: Multiple sizes of coronary arteries showed coronary spasms. The minimum stenosed coronary artery size was 100 μm. Since coronary microvascular spasms are seen in the arterioles (50-400 μm), coronary microvascular spasms may be diagnosed with the use of synchrotron radiation coronary angiography

  8. Polymers in nuclear environment - long term behaviour

    International Nuclear Information System (INIS)

    Audouin, Laurent; Colin, Xavier; Fayolle, Bruno; Richaud, Emmanuel

    2012-01-01

    This bibliographical note presents a book which addresses original theoretical tools which are required for the prediction of polymer life time in a nuclear environment, and notably the kinetic modelling of low dose rate radiation-induced oxidation and the consequences of irradiation on thermo-mechanical properties. The authors discuss the anaerobic radiochemical ageing, the general aspects of radio-oxidation, the radio-thermo-oxidation, and the effects of radiochemical ageing on mechanical properties of industrial polymers. They identify research fields for the radiochemical ageing of polymers

  9. Do minimum wages improve early life health? Evidence from developing countries.

    Science.gov (United States)

    Majid, Muhammad Farhan; Mendoza Rodríguez, José M; Harper, Sam; Frank, John; Nandi, Arijit

    2016-06-01

    The impact of legislated minimum wages on the early-life health of children living in low and middle-income countries has not been examined. For our analyses, we used data from the Demographic and Household Surveys (DHS) from 57 countries conducted between 1999 and 2013. Our analyses focus on height-for-age z scores (HAZ) for children under 5 years of age who were surveyed as part of the DHS. To identify the causal effect of minimum wages, we utilized plausibly exogenous variation in the legislated minimum wages during each child's year of birth, the identifying assumption being that mothers do not time their births around changes in the minimum wage. As a sensitivity exercise, we also made within family comparisons (mother fixed effect models). Our final analysis on 49 countries reveal that a 1% increase in minimum wages was associated with 0.1% (95% CI = -0.2, 0) decrease in HAZ scores. Adverse effects of an increase in the minimum wage were observed among girls and for children of fathers who were less than 35 years old, mothers aged 20-29, parents who were married, parents who were less educated, and parents involved in manual work. We also explored heterogeneity by region and GDP per capita at baseline (1999). Adverse effects were concentrated in lower-income countries and were most pronounced in South Asia. By contrast, increases in the minimum wage improved children's HAZ in Latin America, and among children of parents working in a skilled sector. Our findings are inconsistent with the hypothesis that increases in the minimum wage unconditionally improve child health in lower-income countries, and highlight heterogeneity in the impact of minimum wages around the globe. Future work should involve country and occupation specific studies which can explore not only different outcomes such as infant mortality rates, but also explore the role of parental investments in shaping these effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Control of polymer network topology in semi-batch systems

    Science.gov (United States)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  11. The Minimum Core for Numeracy Audit and Test

    CERN Document Server

    Patmore, Mark

    2008-01-01

    This book supports trainee teachers in the Lifelong Learning Sector in the assessment of their numeracy knowledge. A self-audit section is included to help trainees understand their level of competence and confidence in numeracy and will help them identify any gaps in their knowledge and skills. This is followed by exercises and activities to support and enhance learning. The book covers all the content of the LLUK standards for the minimum core for numeracy. Coverage and assessment of the minimum core have to be embedded in all Certificate and Diploma courses leading to QTLS and ATLS status.

  12. Study of Hydrophobic and Ionizable Hydrophilic Copolymers at Polymer/Solid and Polymer/Liquid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perahia, Dvora

    2011-11-01

    Joint experimental-computational efforts were set to characterize the interfacial effects on the structure and dynamics of polymers consisting of highly rigid hydrophilic-ionizable and hydrophobic sub-units within one polymeric chain casted into thin films of several molecular dimensions. Focusing on the ultra thin film region we separate out the interfacial effects from bulk characteristics. Specifically, the study sought to: identify the parameters that control the formation of a stable polymer-solid interface. The study consists of two components, experimental investigations and computational efforts. The experimental component was designed to derive empirical trends that can be used to correlate the set of coupled polymer molecular parameters with the interfacial characteristics of these polymers, and their response to presence of solvents. The computational study was designed to provide molecular insight into the ensemble averages provided by the experimental efforts on multiple length scales from molecular dimensions, to the nanometer lengths to a macroscopic understanding of solvent interactions with structured polymers. With the ultimate goal of correlating molecular parameters to structure, dynamics and properties of ionic polymers, the first stage of the research began with the study of two systems, one which allowed tailoring the flexibility of the backbone without the presence of ionic groups, but with a potential to sulfonate groups at a later stage, and a polymer whose backbone is rigid and the density of the ionic group can be varied. The combined experimental and computational studies significantly extended the understanding of polymers at interfaces from model systems to polydispersed copolymers with blocks of varying nature and complexity. This new insight directly affects the design of polymers for sustainable energy applications from batteries and fuel cells to solar energy.

  13. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  14. Micro-Holograms in a Methyl Red-Doped Polymer-Dispersed Liquid Crystal (E48:PVP

    Directory of Open Access Journals (Sweden)

    N. P. Hermosa II

    2003-06-01

    Full Text Available Feasibility of a holographic point-by-point storage in a methyl red-doped Polymer-Dispersed LiquidCrystal (PDLC is determined. Micro-holograms (gratings are recorded next to each other. Smallestgrating diameter obtained is 69.9 mm, with minimum grating distance of 80 mm. Recording of adjacentgrating reduces the diffraction efficiency of existing grating by 17% (average.

  15. Advanced Functional Polymers for Increasing the Stability of Organic Photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Helgesen, Martin; Carlé, Jon Eggert

    2013-01-01

    The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important nanostruct......The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important...... nanostructure. Chemical units can be introduced that impart an increased stability. Similarly, the morphological degradation of the optimal nanostructure can be reduced. Active polymers and blends with acceptor material are used to create nanoparticle links with controlled size. Most of these advanced polymers...

  16. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings

    Directory of Open Access Journals (Sweden)

    S. Vignesh

    2017-04-01

    Full Text Available Flow based Erosion – corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosion–corrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosion–corrosion problems. High velocity oxy-fuel (HVOF spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology (RSM was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.

  17. ``Smart'' Surfaces of Polymer Brushes

    Science.gov (United States)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  18. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  19. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries

    Science.gov (United States)

    Sayyed, M. I.; AlZaatreh, M. Y.; Matori, K. A.; Sidek, H. A. A.; Zaid, M. H. M.

    2018-06-01

    In the present study, the exposure buildup factors (EBF) have been investigated using geometric progression (G-P) fitting method for different types of smart polymers (DMSO, PDMS, PES, PMA, PVDC, and PVDF) in the energy range of 0.015-15 MeV. From the calculations, the values of the EBF were depended on the incident photon energy, penetration depth as well as chemical composition of the polymers. In the intermediate energy region, the EBF values were reached at maximum point while in low and high energy regions, the EBF values were decreased at minimum point. The obtained results of the selected polymers have been compared in terms of EBF with Al2O3 and other common polymers such as PAN, Teflon and SR. The shielding effectiveness of the selected polymers is found to be comparable to the common polymers. The results of this work should be useful in radiation shielding applications such as in industry, medical and nuclear engineering.

  20. Do Minimum Wages Fight Poverty?

    OpenAIRE

    David Neumark; William Wascher

    1997-01-01

    The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...

  1. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  2. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A.

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has

  3. Molecular dynamics modeling of polymer flammability

    International Nuclear Information System (INIS)

    Nyden, M.R.; Brown, J.E.; Lomakin, S.M.

    1992-01-01

    Molecular dynamic simulations were used to identify factors which promote char formation during the thermal degradation of polymers. Computer movies based on these simulations, indicate that cross-linked model polymers tend to undergo further cross-linking when burned, eventually forming a high molecular weight, thermally stable char. This paper reports that the prediction was confirmed by char yield measurements made on γ and e - -irradiated polyethylene and chemically cross-linked poly(methyl methacrylate)

  4. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  5. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  6. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  7. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability.

    Science.gov (United States)

    Solanki, Nayan G; Tahsin, Md; Shah, Ankita V; Serajuddin, Abu T M

    2018-01-01

    The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon ® VA64, Kollicoat ® IR, Affinsiol ™ 15 cP, and HPMCAS either individually or as binary blends (Kollidon ® VA64 + Affinisol ™ 15 cP, 1:1; Kollidon ® VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.8, and formulations demonstrating rapid dissolution rates were then analyzed for drug-polymer, polymer-polymer and drug-polymer-polymer miscibility by film casting. Polymer-polymer (1:1) and drug-polymer-polymer (1:5:5 and 2:5:5) mixtures were found to be miscible. Tablets with 100% and 60% infill were printed using MakerBot printer at 210°C, and dissolution tests of tablets were conducted at pH 2 and 6.8. Extruded filaments of Kollidon ® VA64-Affinisol ™ 15 cP mixtures were flexible and had optimum mechanical strength for 3D printing. Tablets containing 10% drug with 60% and 100% infill showed complete drug release at pH 2 in 45 and 120 min, respectively. Relatively high dissolution rates were also observed at pH 6.8. The 1:1-mixture of Kollidon ® VA64 and Affinisol ™ 15 cP was thus identified as a suitable polymer system for 3D printing and rapid drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. A polymer driveshaft for use in orbital and rotational atherectomy

    Science.gov (United States)

    Grothe, Preston Lee

    Driveshafts used in atherectomy medical devices are often comprised of coiled or braided metal wires. These constructions are designed to tolerate delivery through tortuous vessels and can endure high speed rotation used during activation of the atherectomy treatment. This research investigated polymer driveshaft designs, which were comprised of polymer inner and outer layers, and coiled or braided stainless steel wires. The polymer driveshaft materials included polyimide, nylon 12, and polytetrafluoroethylene (PTFE). Mechanical testing of polymer driveshafts was conducted to determine material response in bending, tension, compression, and torsion. The polymer driveshaft test results were then compared with current coiled metal wire driveshaft constructions. The investigation identified polymer driveshaft options that could feasibly work in an atherectomy application.

  9. New Solid Polymer Electrolytes for Improved Lithium Batteries

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  10. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  11. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  12. Chemical Markup, XML and the World-Wide Web. 8. Polymer Markup Language.

    Science.gov (United States)

    Adams, Nico; Winter, Jerry; Murray-Rust, Peter; Rzepa, Henry S

    2008-11-01

    Polymers are among the most important classes of materials but are only inadequately supported by modern informatics. The paper discusses the reasons why polymer informatics is considerably more challenging than small molecule informatics and develops a vision for the computer-aided design of polymers, based on modern semantic web technologies. The paper then discusses the development of Polymer Markup Language (PML). PML is an extensible language, designed to support the (structural) representation of polymers and polymer-related information. PML closely interoperates with Chemical Markup Language (CML) and overcomes a number of the previously identified challenges.

  13. Positron beam analysis of polymer/metal interfaces under stress

    NARCIS (Netherlands)

    Escobar Galindo, R.; van Veen, A.; Garcia, A.A.; Schut, H.; de Hosson, J.T.M.; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    The polymers Epoxy and Poly(Methyl MethAcrylate) spin coated on Interstitial Free (IF) steel were subjected to external stresses and studied using the Delft Variable Energy Positron (VEP) beam facility. The polymer/metal interface was identified using an S-W map. After tensile experiments vacancy

  14. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  15. Precise control of polymer coated nanopores by nanoparticle additives: Insights from computational modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari Nasrabad, Afshin; Coalson, Rob D. [Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Jasnow, David [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Zilman, Anton [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2016-08-14

    Polymer-nanoparticle composites are a promising new class of materials for creation of controllable nano-patterned surfaces and nanopores. We use coarse-grained molecular dynamics simulations augmented with analytical theory to study the structural transitions of surface grafted polymer layers (brushes) induced by infiltration of nanoparticles that are attracted to the polymers in the layer. We systematically compare two different polymer brush geometries: one where the polymer chains are grafted to a planar surface and the other where the chains are grafted to the inside of a cylindrical nanochannel. We perform a comprehensive study of the effects of the material parameters such as the polymer chain length, chain grafting density, nanoparticle size, strength of attraction between nanoparticles and polymer monomers, and, in the case of the cylindrically grafted brush, the radius of the cylinder. We find a very general behavioral motif for all geometries and parameter values: the height of the polymer brush is non-monotonic in the nanoparticle concentration in solution. As the nanoparticle concentration increases, the brush height first decreases and after passing through a minimum value begins to increase, resulting in the swelling of the nanoparticle infused brush. These morphological features may be useful for devising tunable “smart” nano-devices whose effective dimensions can be reversibly and precisely adjusted by changing the nanoparticle concentration in solution. The results of approximate Self-Consistent Field Theory (SCFT) calculations, applicable in the regime of strong brush stretching, are compared to the simulation results. The SCFT calculations are found to be qualitatively, even semi-quantitatively, accurate when applied within their intended regime of validity, and provide a useful and efficient tool for modeling such materials.

  16. Polymer Crowding in Confined Polymer-Nanoparticle Mixtures

    Science.gov (United States)

    Davis, Wyatt J.; Denton, Alan R.

    Crowding can influence the conformations and thus functionality of macromolecules in quasi-two-dimensional environments, such as DNA or proteins confined to a cell membrane. We explore such crowding within a model of polymers as penetrable ellipses, whose shapes are governed by the statistics of a 2D random walk. The principal radii of the polymers fluctuate according to probability distributions of the eigenvalues of the gyration tensor. Within this coarse-grained model, we perform Monte Carlo simulations of mixtures of polymers and hard nanodisks, including trial changes in polymer conformation (shape and orientation). Penetration of polymers by nanodisks is incorporated with a free energy cost predicted by polymer field theory. Over ranges of size ratio and nanodisk density, we analyze the influence of crowding on polymer shape by computing eigenvalue distributions, mean radius of gyration, and mean asphericity of the polymer. We compare results with predictions of free-volume theory and with corresponding results in three dimensions. Our approach may help to interpret recent (and motivate future) experimental studies of biopolymers interacting with cell membranes, with relevance for drug delivery and gene therapy. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  17. Identifying the Minimum Model Features to Replicate Historic Morphodynamics of a Juvenile Delta

    Science.gov (United States)

    Czapiga, M. J.; Parker, G.

    2017-12-01

    We introduce a quasi-2D morphodynamic delta model that improves on past models that require many simplifying assumptions, e.g. a single channel representative of a channel network, fixed channel width, and spatially uniform deposition. Our model is useful for studying long-term progradation rates of any generic micro-tidal delta system with specification of: characteristic grain size, input water and sediment discharges and basin morphology. In particular, we relax the assumption of a single, implicit channel sweeping across the delta topset in favor of an implicit channel network. This network, coupled with recent research on channel-forming Shields number, quantitative assessments of the lateral depositional length of sand (corresponding loosely to levees) and length between bifurcations create a spatial web of deposition within the receiving basin. The depositional web includes spatial boundaries for areas infilling with sands carried as bed material load, as well as those filling via passive deposition of washload mud. Our main goal is to identify the minimum features necessary to accurately model the morphodynamics of channel number, width, depth, and overall delta progradation rate in a juvenile delta. We use the Wax Lake Delta in Louisiana as a test site due to its rapid growth in the last 40 years. Field data including topset/island bathymetry, channel bathymetry, topset/island width, channel width, number of channels, and radial topset length are compiled from US Army Corps of Engineers data for 1989, 1998, and 2006. Additional data is extracted from a DEM from 2015. These data are used as benchmarks for the hindcast model runs. The morphology of Wax Lake Delta is also strongly affected by a pre-delta substrate that acts as a lower "bedrock" boundary. Therefore, we also include closures for a bedrock-alluvial transition and an excess shear rate-law incision model to estimate bedrock incision. The model's framework is generic, but inclusion of individual

  18. A 34 ampere-hour nickel-cadmium minimum trickle charge testing

    Science.gov (United States)

    Timmerman, P. J.

    1985-01-01

    The current rates used for trickle charging batteries are critical in maintaining a full charge and in preventing an overcharge condition. The importance of the trickle charge rate comes from the design, maintenance and operational requirements of an electrical power system. The results of minimum trickle charge testing performed on six 34 ampere-hour, nickel-cadmium cells manufactured by General Electric are described. The purpose of the testing was to identify the minimum trickle charge rates at temperatures of 15 C and 30 C.

  19. Role of the polymer phase in the mechanics of nacre-like composites

    Science.gov (United States)

    Niebel, Tobias P.; Bouville, Florian; Kokkinis, Dimitri; Studart, André R.

    2016-11-01

    Although strength and toughness are often mutually exclusive properties in man-made structural materials, nature is full of examples of composite materials that combine these properties in a remarkable way through sophisticated multiscale architectures. Understanding the contributions of the different constituents to the energy dissipating toughening mechanisms active in these natural materials is crucial for the development of strong artificial composites with a high resistance to fracture. Here, we systematically study the influence of the polymer properties on the mechanics of nacre-like composites containing an intermediate fraction of mineral phase (57 vol%). To this end, we infiltrate ceramic scaffolds prepared by magnetically assisted slip casting (MASC) with monomers that are subsequently cured to yield three drastically different polymers: (i) poly(lauryl methacrylate) (PLMA), a soft and weak elastomer; (ii) poly(methyl methacrylate) (PMMA), a strong, stiff and brittle thermoplastic; and (iii) polyether urethane diacrylate-co-poly(2-hydroxyethyl methacrylate) (PUA-PHEMA), a tough polymer of intermediate strength and stiffness. By combining our experimental data with finite element modeling, we find that stiffer polymers can increase the strength of the composite by reducing stress concentrations in the inorganic scaffold. Moreover, infiltrating the scaffolds with tough polymers leads to composites with high crack initiation toughness KIC. An organic phase with a minimum strength and toughness is also required to fully activate the mechanisms programmed within the ceramic structure for a rising R-curve behavior. Our results indicate that a high modulus of toughness is a key parameter for the selection of polymers leading to strong and tough bioinspired nacre-like composites.

  20. Computer-aided polymer design using group contribution plus property models

    DEFF Research Database (Denmark)

    Satyanarayana, Kavitha Chelakara; Abildskov, Jens; Gani, Rafiqul

    2009-01-01

    . Polymer repeat unit property prediction models are required to calculate the properties of the generated repeat units. A systematic framework incorporating recently developed group contribution plus (GC(+)) models and an extended CAMD technique to include design of polymer repeat units is highlighted...... in this paper. The advantage of a GC(+) model in CAMD applications is that a very large number of polymer structures can be considered even though some of the group parameters may not be available. A number of case studies involving different polymer design problems have been solved through the developed......The preliminary step for polymer product design is to identify the basic repeat unit structure of the polymer that matches the target properties. Computer-aided molecular design (CAMD) approaches can be applied for generating the polymer repeat unit structures that match the required constraints...

  1. Rising above the Minimum Wage.

    Science.gov (United States)

    Even, William; Macpherson, David

    An in-depth analysis was made of how quickly most people move up the wage scale from minimum wage, what factors influence their progress, and how minimum wage increases affect wage growth above the minimum. Very few workers remain at the minimum wage over the long run, according to this study of data drawn from the 1977-78 May Current Population…

  2. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars

    International Nuclear Information System (INIS)

    Afridi, M.U.K.; Ohama, Y.; Demura, K.; Iqbal, M.Z.

    2003-01-01

    This paper evaluates and compares the coalescence of polymer particles (continuous polymer films formation) in powdered polymer-modified mortars (PPMMs) and aqueous polymer-modified mortars (APMMs). Polymer-modified mortars (PMMs) using various redispersible polymer powders (powdered cement modifiers) and polymer dispersions (aqueous cement modifiers) were prepared by varying the polymer-cement ratio (P/C) and were tested for the characterization of polymer films using a scanning electron microscope (SEM) after curing for 28 days. It is concluded from the test results that mortar constituents of unmodified mortar (UMM) are loosely joined with each other due to the absence of polymer films, thus having a structure with comparatively lower mechanical and durability characteristics. By contrast, mortar constituents in PPMMs and APMMs are compactly joined with each other due to the presence of interweaving polymer films, thereby forming a monolithic structure with improved mechanical and durability characteristics. However, the results make obvious the poor coalescence of polymer particles or development of inferior quality polymers films in PPMMs as compared to that observed in APMMs. Moreover, PPMMs show less uniform distribution of polymer films as compared to that in APMMs. Different powdered cement modifiers have different film-forming capabilities. However, such difference is hardly recognized in aqueous cement modifiers. The polymer films in PPMMs and APMMs may acquire different structures. They may appear as mesh-like, thread-like, rugged, dense or fibrous with fine or rough surfaces. Development of coherent polymer films is not well pronounced at a P/C of 5% in PPMMs, whereas sometimes coherent polymer films are observed at a P/C of 5% in APMMs. At a P/C of 10% or more, fully developed, coherent polymer films are observed in both PPMMs and APMMs

  3. Optical bistability and limiting in polymer dispersed liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yshino, K.; Tagawa, A.; Sadohara, Y.; Ozaki, M. (Osaka University, Osaka (Japan). Faculty of Engineering); Munezawa, T. (Ajinomoto Co. Inc., Tokyo (Japan)); Nomura, Y. (Takiron Co. Ltd., Osaka (Japan))

    1991-04-15

    The linear electro-optical effect of polymer dispersed liquid crystal (PDLC) and the nonlinear optical response of electrically feedbacked PDLC were studied. Electro-optical limiting and bistability were observed in PDLCs with negative and positive feedback, respectively. In the PDLC film with positive feedback gain, an optical hysteresis loop shifted toward a high intensity region with decreasing magnitude of the feedback gain. The switching between high and low transmission states in an optical bistable region was realized by controlling incident light, and the on-off switching by superimposing light pulse on incident light for an extremely short period (several hundreds {mu}s). As the light pulse was strong, the minimum pulse width required for switching was as short as 500 {mu}s or less. The on-off switching was also realized by shutting out the incident light for a period equivalent to the pulse width. Slower response times of the PDLC film required longer minimum pulse widths. 12 refs., 11 figs.

  4. Cementation of nuclear graphite using geo-polymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H.J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2012-01-01

    Geo-polymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geo-polymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geo-polymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geo-polymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated about how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfill the specifications at best. As result geo-polymers have been identified as a promising matrix for graphite containing nuclear wastes. With geo-polymers both favorable properties in the cementation process and a high long time structural stability of the products can be achieved. (authors)

  5. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  6. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of substituted phenol... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.7220 Polymer of substituted phenol... subject to reporting. (1) The chemical substance identified generically as polymer of substituted phenol...

  8. Hierarchical Fiber Structures Made by Electrospinning Polymers

    Science.gov (United States)

    Reneker, Darrell H.

    2009-03-01

    A filter for water purification that is very thin, with small interstices and high surface area per unit mass, can be made with nanofibers. The mechanical strength of a very thin sheet of nanofibers is not great enough to withstand the pressure drop of the fluid flowing through. If the sheet of nanofibers is made thicker, the strength will increase, but the flow will be reduced to an impractical level. An optimized filter can be made with nanometer scale structures supported on micron scale structures, which are in turn supported on millimeter scale structures. This leads to a durable hierarchical structure to optimize the filtration efficiency with a minimum amount of material. Buckling coils,ootnotetextTao Han, Darrell H Reneker, Alexander L. Yarin, Polymer, Volume 48, issue 20 (September 21, 2007), p. 6064-6076. electrical bending coilsootnotetextDarrell H. Reneker and Alexander L. Yarin, Polymer, Volume 49, Issue 10 (2008) Pages 2387-2425, DOI:10.1016/j.polymer.2008.02.002. Feature Article. and pendulum coilsootnotetextT. Han, D.H. Reneker, A.L. Yarin, Polymer, Volume 49, (2008) Pages 2160-2169, doi:10.1016/jpolymer.2008.01.0487878. spanning dimensions from a few microns to a few centimeters can be collected from a single jet by controlling the position and motion of a collector. Attractive routes to the design and construction of hierarchical structures for filtration are based on nanofibers supported on small coils that are in turn supported on larger coils, which are supported on even larger overlapping coils. ``Such top-down'' hierarchical structures are easy to make by electrospinning. In one example, a thin hierarchical structure was made, with a high surface area and small interstices, having an open area of over 50%, with the thinnest fibers supported at least every 15 microns.

  9. Performance Modification of Asphalt Binders using Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    H. I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%. The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers.

  10. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wei Kang; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2014-09-21

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  11. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    International Nuclear Information System (INIS)

    Lim, Wei Kang; Denton, Alan R.

    2014-01-01

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments

  12. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    Science.gov (United States)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  13. A preliminary assessment of the effects of radiation on polymer properties

    International Nuclear Information System (INIS)

    Dickson, L.W.

    1988-01-01

    The literature on the effects of radiation on the properties of various polymers and composites has been briefly reviewed for the purpose of identifying polymeric materials that could be irradiated to improve their performance. Radiation treatment of polymers may lead to cross-linking or chain scission reactions, depending on the chemical nature of the polymer. Cross-linking generally leads to an improvement in the mechanical properties of the polymer. Chain scission leads to deterioration in mechanical properties. The properties of irradiated polymers also depend on the degree of polymer crystallinity and the irradiation conditions, including dose rate and the presence of oxygen, cross-linking agents and other additives. A 30% increase in the tensile strength of many polymers may be obtained by radiation cross-linking under appropriate conditions. 40 refs

  14. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Keywords. Polymer dynamics; reptation; domain dynamics biomolecules. Abstract. Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the ...

  15. Employment effects of minimum wages

    OpenAIRE

    Neumark, David

    2014-01-01

    The potential benefits of higher minimum wages come from the higher wages for affected workers, some of whom are in low-income families. The potential downside is that a higher minimum wage may discourage employers from using the low-wage, low-skill workers that minimum wages are intended to help. Research findings are not unanimous, but evidence from many countries suggests that minimum wages reduce the jobs available to low-skill workers.

  16. Effect of polymer additives on transition in pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Castro, W; Squire, W

    1967-09-01

    Small amounts of long-chain, water-soluble polymers have a marked effect on turbulent flow resulting in appreciable reduction of turbulent friction. The maximum reduction in pipe flow resistance is obtained at such low concentrations that the density and viscosity are not altered appreciably. The minimum friction curve varies as Re-2/3 and appears to be the same for all effective additives tested. The transition process is affected by these additives. Quantitative results are presented showing a reduction in the intensity of the turbulent flashes and the fraction of the time the flow is turbulent at a given Reynolds number. (13 refs.)

  17. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polymer modifiers in semirigid and rigid vinyl...: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of this...

  18. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  19. COMMUNICATION: Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field

    Science.gov (United States)

    Pizzolato, N.; Fiasconaro, A.; Persano Adorno, D.; Spagnolo, B.

    2010-09-01

    The translocation of molecules across cellular membranes or through synthetic nanopores is strongly affected by thermal fluctuations. In this work we study how the dynamics of a polymer in a noisy environment changes when the translocation process is driven by an oscillating electric field. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecular dynamics, by taking into account the harmonic interactions between adjacent monomers and the excluded-volume effect by introducing a Lennard-Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion. Thermal fluctuations are taken into account by introducing a Gaussian uncorrelated noise. The mean first translocation time of the polymer centre of inertia shows a minimum as a function of the frequency of the oscillating forcing field. This finding represents the first evidence of the resonant activation behaviour in the dynamics of polymer translocation.

  20. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower for ox...

  1. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  2. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  3. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives

    Directory of Open Access Journals (Sweden)

    2011-01-01

    Full Text Available Morphology, grating formation dynamics and electro-optical performance of transflective multiplexing with holographic polymer dispersed liquid crystal (HPDLC were investigated in the presence of silica nanoparticles (Aerosil R812 (RS and modified Aerosil 200 (MS and silicon monomer (vinyltrimethoxy silane (VTMS by using three coherent laser beams. The addition of Si additive significantly augmented the diffraction efficiencies of transmission and reflection gratings due to the enhanced phase separation with large LC channels. The film was driven only with Si additives which are enriched at the polymer-LC interfaces. As the additive content increased, driving voltage decreased to a minimum of 30 V at 2.0 wt% VTMS. It was found that the interface modification and large droplet size are crucial to operate the film. Among the three types of Si additive, VTMS showed the highest electro-optical performance due to its low viscosity and high reactivity.

  5. Minimum Wages and Poverty

    OpenAIRE

    Fields, Gary S.; Kanbur, Ravi

    2005-01-01

    Textbook analysis tells us that in a competitive labor market, the introduction of a minimum wage above the competitive equilibrium wage will cause unemployment. This paper makes two contributions to the basic theory of the minimum wage. First, we analyze the effects of a higher minimum wage in terms of poverty rather than in terms of unemployment. Second, we extend the standard textbook model to allow for incomesharing between the employed and the unemployed. We find that there are situation...

  6. Revisiting the role of durable polymers in cardiovascular devices.

    Science.gov (United States)

    Mori, Hiroyoshi; Otsuka, Fumiyuki; Gupta, Anuj; Jinnouchi, Hiroyuki; Torii, Sho; Harari, Emanuel; Virmani, Renu; Finn, Aloke V

    2017-11-01

    Polymers are an essential component of drug-eluting stents (DES) used to control drug release but remain the most controversial component of DES technology. There are two types of polymers employed in DES: durable polymer based DES (DP-DES) and biodegradable polymer DES (BP-DES). First-generation DES were exclusively composed of DP and demonstrated increased rates of late stent failure due in part to poor polymer biocompatibility. Newer generations DES use more biocompatible durable polymers or biodegradable polymers. Areas covered: We will cover issues identified with 1st-generation DP-DES, areas of success and failure in 2nd-generation DP-DES and examine the promise and shortcomings of BP-DES. Briefly, fluorinated polymers used in 2nd-generation DP-DES have excellent anti-thrombogenicity and better biocompatibility than 1st-generation DES polymers. However, these devices lead to persistent drug exposure to the endothelium which impairs endothelial function and predisposes towards neoatherosclerosis. Meanwhile, BP-DES has shortened the duration of drug exposure which might be beneficial for endothelial functional recovery leading to less neoatherosclerosis. However, it remains uncertain whether the long-term biocompatibility of bare metal surfaces is better than that of polymer-coated metals. Expert commentary: Each technology has distinct advantages, which can be optimized depending upon the particular characteristics of the patient being treated.

  7. Experimental Polymer Mechanochemistry and its Interpretational Frameworks.

    Science.gov (United States)

    Akbulatov, Sergey; Boulatov, Roman

    2017-06-02

    Polymer mechanochemistry is an emerging field at the interface of chemistry, materials science, physics and engineering. It aims at understanding and exploiting unique reactivities of polymer chains confined to highly non-equilibrium stretched geometries by interactions with their surroundings. Macromolecular chains or their segments become stretched in bulk polymers under mechanical loads or when polymer solutions are sonicated or flow rapidly through abrupt contractions. An increasing amount of empirical data suggests that mechanochemical phenomena are widespread wherever polymers are used. In the past decade, empirical mechanochemistry has progressed enormously, from studying fragmentations of commodity polymers by simple backbone homolysis to demonstrations of self-strengthening and stress-reporting materials and mechanochemical cascades using purposefully designed monomers. This progress has not yet been matched by the development of conceptual frameworks within which to rationalize, systematize and generalize empirical mechanochemical observations. As a result, mechanistic and/or quantitative understanding of mechanochemical phenomena remains, with few exceptions, tentative. In this review we aim at systematizing reported macroscopic manifestations of polymer mechanochemistry, and critically assessing the interpretational framework that underlies their molecular rationalizations from a physical chemist's perspective. We propose a hierarchy of mechanochemical phenomena which may guide the development of multiscale models of mechanochemical reactivity to match the breadth and utility of the Eyring equation of chemical kinetics. We discuss the limitations of the approaches to quantifying and validating mechanochemical reactivity, with particular focus on sonicated polymer solutions, in order to identify outstanding questions that need to be solved for polymer mechanochemistry to become a rigorous, quantitative field. We conclude by proposing 7 problems whose

  8. 75 FR 6151 - Minimum Capital

    Science.gov (United States)

    2010-02-08

    ... capital and reserve requirements to be issued by order or regulation with respect to a product or activity... minimum capital requirements. Section 1362(a) establishes a minimum capital level for the Enterprises... entities required under this section.\\6\\ \\3\\ The Bank Act's current minimum capital requirements apply to...

  9. A Pareto-Improving Minimum Wage

    OpenAIRE

    Eliav Danziger; Leif Danziger

    2014-01-01

    This paper shows that a graduated minimum wage, in contrast to a constant minimum wage, can provide a strict Pareto improvement over what can be achieved with an optimal income tax. The reason is that a graduated minimum wage requires high-productivity workers to work more to earn the same income as low-productivity workers, which makes it more difficult for the former to mimic the latter. In effect, a graduated minimum wage allows the low-productivity workers to benefit from second-degree pr...

  10. The Minimum Core for Language and Literacy Audit and Test

    CERN Document Server

    Machin, Lynn

    2007-01-01

    This book supports trainee teachers in the Lifelong Learning Sector in the assessment of their literacy knowledge. A self-audit section is included to help trainees understand their level of competence and confidence in literacy and will help them identify any gaps in their knowledge and skills. This is followed by exercises and activities to support and enhance learning. The book covers all the content of the LLUK standards for the minimum core for literacy. Coverage and assessment of the minimum core have to be embedded in all Certificate and Diploma courses leading to QTLS and ATLS status.

  11. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  12. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  13. Polymers – A New Open Access Scientific Journal on Polymer Science

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2009-12-01

    Full Text Available Polymers is a new interdisciplinary, Open Access scientific journal on polymer science, published by Molecular Diversity Preservation International (MDPI. This journal welcomes manuscript submissions on polymer chemistry, macromolecular chemistry, polymer physics, polymer characterization and all related topics. Both synthetic polymers and natural polymers, including biopolymers, are considered. Manuscripts will be thoroughly peer-reviewed in a timely fashion, and papers will be published, if accepted, within 6 to 8 weeks after submission. [...

  14. Thickness effects of electret and polymer for energy harvesting: Case of CYTOP- CTLM and polyurethane

    Science.gov (United States)

    Belhora, Fouad; Guyomar, Daniel; Mazroui, M'Hammed; Hajjaji, Abdelowahed; Boughaleb, Yahia

    2015-02-01

    The authors aimed to investigate the electrostrictive polymers for energy harvesting. These particular materials have demonstrated a great ability to convert mechanical energy into electrical energy and vice versa. This energy conversion has been exploited in an extensive range of applications, including sensors and actuators. On the other hand, the reason for using electrets in the present work was to produce the static electric field required to capture energy through electrostrictive polymers and hence to avoid the problem of high voltage power. For a good μ-generators performance the electromechanical parameters have to be optimized. Experimental results show the possibility of improving harvesting energy without power supply, by using hybridization of electrets and electrostrictive materials, which is very promising for future applications. Moreover, in order to obtain a maximum of harvested power one should choose a minimum of the thickness of the electrets and a maximum of thickness of polymer. The measured results are analyzed and compared with the theoretical model and they are consistent. These results shed light on the hybridization of electrostrictive polymer with electrets, and are useful for improving the harvesting energy.

  15. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  16. Minimum critical mass systems

    International Nuclear Information System (INIS)

    Dam, H. van; Leege, P.F.A. de

    1987-01-01

    An analysis is presented of thermal systems with minimum critical mass, based on the use of materials with optimum neutron moderating and reflecting properties. The optimum fissile material distributions in the systems are obtained by calculations with standard computer codes, extended with a routine for flat fuel importance search. It is shown that in the minimum critical mass configuration a considerable part of the fuel is positioned in the reflector region. For 239 Pu a minimum critical mass of 87 g is found, which is the lowest value reported hitherto. (author)

  17. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  18. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2006-01-01

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which...... simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers of the polymer substrate. Several combinations of conducting polymers and substrates have been tested...... absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties...

  19. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  20. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  1. Polymers in the gut compress the colonic mucus hydrogel.

    Science.gov (United States)

    Datta, Sujit S; Preska Steinberg, Asher; Ismagilov, Rustem F

    2016-06-28

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host-microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer-mucus interactions can be described using a thermodynamic model based on Flory-Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice-whose microbiota degrade gut polymers-did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.

  2. White polymer light-emitting diode based on polymer blending

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Kwon, Soon Kab; Kim, Jun Young; Park, Tae Jin; Song, Dae Ho; Kwon, Jang Hyuk; Choo, Dong Jun; Jang, Jin; Jin, Jae Kyu; You, Hong

    2006-01-01

    A series of white polymer light emitting devices have been fabricated by using a polymer blending system of polyfluorene-based blue and MEH-PPV red polymers. A device structure of ITO/PEDOT:PSS/polymer/LiF/Al was employed. The white polymer device exhibited a current efficiency of 4.33 cd/A (4,816 cd/m 2 , Q.E. = 1.9 %) and a maximum luminance of 21,430 cd/m 2 at 9.2 V. The CIE coordinates were (0.35, 0.37) at 5 V and (0.29, 0.30) at 9 V.

  3. Phase transitions in polymer monolayers

    NARCIS (Netherlands)

    Deschênes, Louise; Lyklema, J.; Danis, Claude; Saint-Germain, François

    2015-01-01

    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature.

  4. 5 CFR 551.301 - Minimum wage.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Minimum wage. 551.301 Section 551.301... FAIR LABOR STANDARDS ACT Minimum Wage Provisions Basic Provision § 551.301 Minimum wage. (a)(1) Except... employees wages at rates not less than the minimum wage specified in section 6(a)(1) of the Act for all...

  5. Efficient tunable luminescence of SiGe alloy sheet polymers

    International Nuclear Information System (INIS)

    Vogg, G.; Meyer, A. J.-P.; Miesner, C.; Brandt, M. S.; Stutzmann, M.

    2001-01-01

    Crystalline SiGe alloy sheet polymers were topotactically prepared from epitaxially grown calcium germanosilicide Ca(Si 1-x Ge x ) 2 precursor films in the whole composition range. These polygermanosilynes are found to be a well-defined mixture of the known siloxene and polygermyne sheet polymers with the OH groups exclusively bonded to silicon. The optical properties determined by photoluminescence and optical reflection measurements identify the mixed SiGe sheet polymers as direct semiconductors with efficient luminescence tunable in the energy range between 2.4 and 1.3 eV. [copyright] 2001 American Institute of Physics

  6. Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density

    Science.gov (United States)

    Qin, Lijun; Yan, Ning; Hao, Haixia; An, Ting; Zhao, Fengqi; Feng, Hao

    2018-04-01

    Because of its high volumetric heat of oxidation, Zr powder is a promising high energy fuel/additive for rocket propellants. However, the application of Zr powder is restricted by its ultra-high electrostatic discharge sensitivity, which poses great hazards for handling, transportation and utilization of this material. By performing molecular layer deposition of polyimide using 1,2,4,5-benzenetetracarboxylic anhydride and ethylenediamine as the precursors, Zr particles can be uniformly encapsulated by thin layers of the polymer. The thicknesses of the encapsulation layers can be precisely controlled by adjusting the number of deposition cycle. High temperature annealing converts the polymer layer into a carbon coating. Results of thermal analyses reveal that the polymer or carbon coatings have little negative effect on the energy release process of the Zr powder. By varying the thickness of the polyimide or carbon coating, electrostatic discharge sensitivity of the Zr powder can be tuned in a wide range and its uncontrolled ignition hazard can be virtually eliminated. This research demonstrates the great potential of molecular layer deposition in effectively modifying the surface properties of highly reactive metal based energetic materials with minimum sacrifices of their energy densities.

  7. Investigating accidents involving aircraft manufactured from polymer composite materials

    OpenAIRE

    Dunn, Leigh

    2013-01-01

    This thesis looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. ...

  8. Photomobile polymer materials towards eight driven plastic motors

    International Nuclear Information System (INIS)

    Tomi Ikeda

    2007-01-01

    We present the first report of working photomechanical devices, and simple plastic motors, driven only by light. The size scale of the energy transduction systems here is mm for demonstration, but is not principle material-limited, so numerous applications on the nano-scale are possible where efficient power supply to mechanical systems is battery-free and non-contact. The photomobile polymers function with a minimum of moving parts which minimizes the friction and surface contact difficulties on the small scale, and one can further envisage applications as direct solar-to-mechanical energy conversion and storage systems, and use in devices requiring through-space power transmission such as microfluidic device control, bio-interfaces, or other remote power supply. (Author)

  9. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  10. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  11. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol diglycidyl...

  12. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  13. Business, market and intellectual property analysis of polymer solar cells

    DEFF Research Database (Denmark)

    Damgaard Nielsen, Torben; Cruickshank, C.; Foged, S.

    2010-01-01

    and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found......The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent...... and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance...

  14. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    Sen, Murat; Hayrabolulu, Hande

    2010-01-01

    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  15. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  16. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach - A Raman micro-spectroscopy study.

    Science.gov (United States)

    Ghosal, Sutapa; Chen, Michael; Wagner, Jeff; Wang, Zhong-Min; Wall, Stephen

    2018-02-01

    Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance

  17. Resident and Facility Factors Associated With the Incidence of Urinary Tract Infections Identified in the Nursing Home Minimum Data Set.

    Science.gov (United States)

    Castle, Nicholas; Engberg, John B; Wagner, Laura M; Handler, Steven

    2017-02-01

    This research examined resident and facility-specific factors associated with a diagnosis of a urinary tract infection (UTI) in the nursing home setting. Minimum Data Set and Online Survey, Certification and Reporting system data were used to identify all nursing home residents in the United States on April 1, 2006, who did not have a UTI ( n = 1,138,418). Residents were followed until they contracted a UTI (9.5%), died (8.3%), left the nursing home (33.2%), or the year ended (49.0%). A Cox proportional hazards model was estimated, controlling for resident and facility characteristics and for the state of residence. The presence of an indwelling catheter was the primary predictor of whether a resident contracted a UTI (adjusted incidence ratio = 3.35, p factors such as percentage of Medicaid residents, for-profit, and chain status was less significant. Estimates regarding staffing levels indicate that increased contact hours with more highly educated nursing staff are associated with less catheter use. Several facility-specific risk factors are of significance. Of significance, UTIs may be reduced by modifying factors such as staffing levels.

  18. Puncture Self-Healing Polymers for Aerospace Applications

    Science.gov (United States)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  19. Characterisation of irradiation effect on geo-polymers

    International Nuclear Information System (INIS)

    Chupin, Frederic

    2015-01-01

    This study aims to improve knowledge about the radiation effect on geo-polymer behavior in terms of dihydrogen release and general strength in order to consider them as an alternative to usual nuclear waste cementitious coating matrices. Using various characterization techniques (nitrogen adsorption, low temperature DSC, FTIR and 1 H NMR spectroscopy) and by means of simulation irradiations (gamma, heavy ions), it has been shown that all the water present in the geo-polymer could be radiolyzed and that there was a confinement effect on the water radiolysis under low LET irradiation, probably due to efficient energy transfers from the solid matrix to the interstitial solution. Three dihydrogen production rates have been identified with the absorbed dose, depending on the concentration of dissolved dioxygen and the dihydrogen accumulation in the geo-polymer matrix. The good mechanical strength of the geo-polymer has been shown up to 9 MGy under gamma irradiation and is due to its high stability under irradiation. This could be explained by the fast recombination of the defects observed by EPR spectroscopy. However, phase crystallization was revealed during irradiation with heavy ions, which may induce some weakening of the geo-polymer network under alpha irradiation. The overall results helped to understand the phenomenology in a waste package under storage conditions. (author) [fr

  20. Dihydroxybenzene/benzoquinone-containing polymers: organic redox polymers

    Energy Technology Data Exchange (ETDEWEB)

    Moulay, S. [Universite de Blida, Lab. de Chimie-Physique Macromoleculaire, Institut de Chimie Industrielle (Algeria)

    2000-08-01

    Polymers containing hydroquinone, catechol or their corresponding benzoquinones are a special class of redox polymers. Three pathways of their syntheses are possible: condensation polymerization of suitable monomers, addition polymerization of vinyl monomers containing redox moiety, and chemical attachment of redox unit onto pre-made polymeric matrix. A range of functionalized matrices have been employed such as polyethers, polyesters, polycarbonates, polyurethanes, polyamides and others. Protection of their phenolic functionality has conducted to chemically interesting redox polymer precursors. The presence of a redox moiety coupled with the extant functionalization of the polymer matrix makes the materials very valuable, of wide properties and consequently of vast applicability. For instance, in the oil field, some polymers such as carboxy-methyl-cellulose (CMC) are often applied as to bring about a viscosity improvement and therefore to facilitate the oil drilling. In this regard, Patel evaluated sulfo-alkylated polymeric catechol, namely sulfo-methylated and sulfo-ethylated resins. Indeed, polymeric catechol chemically modified as such exhibited a marked ability to control the viscosity, the gel strength, as well as the filtrate loss of aqueous oil drilling fluids.

  1. Minimum income protection in the Netherlands

    NARCIS (Netherlands)

    van Peijpe, T.

    2009-01-01

    This article offers an overview of the Dutch legal system of minimum income protection through collective bargaining, social security, and statutory minimum wages. In addition to collective agreements, the Dutch statutory minimum wage offers income protection to a small number of workers. Its

  2. Chemical modification and blending of polymers in an extruder reactor

    International Nuclear Information System (INIS)

    Prut, Eduard V; Zelenetskii, Alexandr N

    2001-01-01

    Chemical modification and blending of polymers in an extruder reactor are discussed. Relationships between the parameters affecting the reaction kinetics, viz., mixing time, duration of a chemical reaction and the residence time of the system in the extruder reactor, and the structure of the materials produced are analysed. The mechanisms of (i) grafting of low-molecular-mass compounds onto polymers; (ii) reactions between terminal groups of different polymers and (iii) transesterification and interchange reactions are considered. The factors affecting the mechanism of dynamic vulcanisation and the properties of thermoplastic elastomers are identified. Solid-phase reactions of polysaccharides in an extruder are discussed. The priority aspects of studies on the chemical modification and blending of polymers are noted. The bibliography includes 90 references.

  3. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  4. Method for bonding a thermoplastic polymer to a thermosetting polymer component

    NARCIS (Netherlands)

    Van Tooren, M.J.L.

    2012-01-01

    The invention relates to a method for bonding a thermoplastic polymer to a thermosetting polymer component, the thermoplastic polymer having a melting temperature that exceeds the curing temperature of the thermosetting polymer. The method comprises the steps of providing a cured thermosetting

  5. Investigating potential physicochemical errors in polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sedaghat, Mahbod; Lepage, Martin; Bujold, Rachel

    2011-01-01

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  6. Investigating potential physicochemical errors in polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Sedaghat, Mahbod; Lepage, Martin [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); Bujold, Rachel, E-mail: martin.lepage@usherbrooke.ca [Service de radio-oncologie, Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC (Canada)

    2011-09-21

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  7. Electroactive polymers for healthcare and biomedical applications

    Science.gov (United States)

    Bauer, Siegfried

    2017-04-01

    Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.

  8. Results of an OECD/NEA comparison of minimum critical values

    International Nuclear Information System (INIS)

    Weber, Wolf; Mennerdahl, Dennis

    2003-01-01

    An OECD/NEA expert group has compiled international data on existing minimum critical values for UO 2 -, PuO 2 -, UNH- and PuNH-systems to identify any significant discrepancies in the data and to propose explanations. The paper examines the spread of the compiled data and the influence of the time of generation of the data on the spread. It turns out, that the remarkable spread reduces by omitting values older than five years. Considering only data generated in the last three years, the spread further reduces. The number of cases with a large spread in the reported minimum critical values falls from 28 to four cases, and the smallest and largest data values converge. (author)

  9. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  10. Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy

    Institute of Scientific and Technical Information of China (English)

    Chao Ji; Jing Wang; Liulin Cao; Qibing Jin

    2014-01-01

    Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.

  11. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  12. Three-dimensional patterning in polymer optical waveguides using focused ion beam milling

    Science.gov (United States)

    Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher

    2016-07-01

    Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.

  13. Design for minimum energy in interstellar communication

    Science.gov (United States)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  14. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    polymerized in a controlled manner with carrier monomers of historically proven biocompatible polymers. The carrier polymers, the loading of ribavirin as well as the size of the polymer were varied systematically with the aid of an automated synthesis platform. These polymers were tested in a cellular assay...... of reversible-addition-fragmentation chain transfer polymerization, which not only controls the size of polymer, but also allows the introduction of a terminal amine on the polymer which can be used for further conjugation. This has allowed for not only fluorescent labeling of the polymer, but also protein...... is mediated through specific transporters, it is thought that the accumulation can be alleviated through the attachment of ribavirin to a macromolecule. To this end, ribavirin was enzymatically modified into a monomer compatible with controlled polymerization techniques. The ribavirin monomers were...

  15. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F. F.

    2013-04-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case

  16. Shear Strength of Stabilized Kaolin Soil Using Liquid Polymer

    Science.gov (United States)

    Azhar, A. T. S.; Fazlina, M. I. S.; Nizam, Z. M.; Fairus, Y. M.; Hakimi, M. N. A.; Riduan, Y.; Faizal, P.

    2017-08-01

    The purpose of this research is to investigate the suitability of polymer in soil stabilization by examining its strength to withstand compressive strength. Throughout this research study, manufactured polymer was used as a chemical liquid soil stabilizer. The liquid polymer was diluted using a proposed dilution factor of 1 : 3 (1 part polymer: 3 parts distilled water) to preserve the workability of the polymer in kaolin mixture. A mold with a diameter of 50 mm and a height of 100 mm was prepared. Kaolin soil was mixed with different percentages of polymer from 10%, 15%, 20%, 25%, 30% and 35% of the mass of the kaolin clay sample. Kaolin mixtures were tested after a curing period of 3 days, 7 days, 14 days and 28 days respectively. The physical properties were determined by conducting a moisture content test and Atterberg limit test which comprise of liquid limit, plastic limit and shrinkage limit. Meanwhile, the mechanical properties of the soil shear strength were identified through an unconfined compressive strength (UCS) test. Stabilized kaolin soil showed the highest compressive strength value when it was mixed with 35% of polymer compared to other percentages that marked an increment in strength which are 45.72% (3 days), 67.57% (7 days), 81.73% (14 days) and 77.84% (28 days). Hence, the most effective percentage of liquid polymer which should be used to increase the strength of kaolin soil is 35%.

  17. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  18. Minimum thickness blanket-shield for fusion reactors

    International Nuclear Information System (INIS)

    Karni, Y.; Greenspan, E.

    1989-01-01

    A lower bound on the minimum thickness fusion reactor blankets can be designed to have, if they are to breed 1.267 tritons per fusion neutron, is identified by performing a systematic nucleonic optimization of over a dozen different blanket concepts which use either Be, Li 17 Pb 83 , W or Zr for neutron multiplication. It is found that Be offers minimum thickness blankets; that the blanket and shield (B/S) thickness of Li 17 Pb 83 based blankets which are supplemented by Li 2 O and/or TiH 2 are comparable to the thickness of Be based B/S; that of the Be based blankets, the aqueous self-cooled one offers one of the most compact B/S; and that a number of blanket concepts might enable the design of B/S which is approximately 12 cm and 39 cm thinner than the B/S thickness of, respectively, conventional self-cooled Li 17 Pb 83 and Li blankets. Aqueous self-cooled tungsten blankets could be useful for experimental fusion devices provided they are designed to be heterogeneous. (orig.)

  19. Investigating accidents involving aircraft manufactured from polymer composite materials

    Science.gov (United States)

    Dunn, Leigh

    This study looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. As the use of composite materials in aircraft construction increases, the understanding of how macroscopic failure characteristics of composite materials may aid the field investigator is becoming of increasing importance.. The first phase of this research project was to explore how investigation practitioners conduct wreckage examinations. Four accident investigation case studies were examined. The analysis of the case studies provided a framework of the wreckage examination process. Subsequently, a literature survey was conducted to establish the current level of knowledge on the visual and macroscopic interpretation of polymer composite failures. Relevant literature was identified and a compendium of visual and macroscopic characteristics was created. Two full-scale polymer composite wing structures were loaded statically, in an upward bending direction, until each wing structure fractured and separated. The wing structures were subsequently examined for the existence of failure characteristics. The examination revealed that whilst characteristics were present, the fragmentation of the structure destroyed valuable evidence. A hypothetical accident scenario utilising the fractured wing structures was developed, which UK government accident investigators subsequently investigated. This provided refinement to the investigative framework and suggested further guidance on the interpretation of polymer composite failures by accident investigators..

  20. Understanding the Minimum Wage: Issues and Answers.

    Science.gov (United States)

    Employment Policies Inst. Foundation, Washington, DC.

    This booklet, which is designed to clarify facts regarding the minimum wage's impact on marketplace economics, contains a total of 31 questions and answers pertaining to the following topics: relationship between minimum wages and poverty; impacts of changes in the minimum wage on welfare reform; and possible effects of changes in the minimum wage…

  1. Youth minimum wages and youth employment

    NARCIS (Netherlands)

    Marimpi, Maria; Koning, Pierre

    2018-01-01

    This paper performs a cross-country level analysis on the impact of the level of specific youth minimum wages on the labor market performance of young individuals. We use information on the use and level of youth minimum wages, as compared to the level of adult minimum wages as well as to the median

  2. Further investigations of the properties of polymer modified cements

    International Nuclear Information System (INIS)

    Johnson, D.I.

    1988-05-01

    This report concludes the work done on behalf of the Department of the Environment on polymer modified cement composites. Topics covered include: the influence of cure schedule on flexural properties, observation of the onset and cracking during flexural testing, measurement of water permeability and caesium diffusion rates, and the use of Back Scattered Electron Imaging to identify the polymer phase. The properties of epoxide resin modified cements in the previous report were disappointing. Air entrainment of the mixing stage was a likely cause of the poor performance of these products and procedures to overcome this problem were devised. The range of polymer additives investigated was broadened by the inclusion of modified acrylic latexes and a polymensable acrylate resin additive. Properties for OPC and 9 BFS: 1 OPC cements are compared and the modification of properties achieved by polymer additions to both cement systems is discussed. (author)

  3. Bistable collective behavior of polymers tethered in a nanopore

    Science.gov (United States)

    Osmanovic, Dino; Bailey, Joe; Harker, Anthony H.; Fassati, Ariberto; Hoogenboom, Bart W.; Ford, Ian J.

    2012-06-01

    Polymer-coated pores play a crucial role in nucleo-cytoplasmic transport and in a number of biomimetic and nanotechnological applications. Here we present Monte Carlo and Density Functional Theory approaches to identify different collective phases of end-grafted polymers in a nanopore and to study their relative stability as a function of intermolecular interactions. Over a range of system parameters that is relevant for nuclear pore complexes, we observe two distinct phases: one with the bulk of the polymers condensed at the wall of the pore, and the other with the polymers condensed along its central axis. The relative stability of these two phases depends on the interpolymer interactions. The existence the two phases suggests a mechanism in which marginal changes in these interactions, possibly induced by nuclear transport receptors, cause the pore to transform between open and closed configurations, which will influence transport through the pore.

  4. Discretization of space and time: determining the values of minimum length and minimum time

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the minimum length and the minimum time interval. These values are found to be exactly coincident with the Planck's length and the Planck's time but for the presence of h instead of ħ .

  5. Minimum wage development in the Russian Federation

    OpenAIRE

    Bolsheva, Anna

    2012-01-01

    The aim of this paper is to analyze the effectiveness of the minimum wage policy at the national level in Russia and its impact on living standards in the country. The analysis showed that the national minimum wage in Russia does not serve its original purpose of protecting the lowest wage earners and has no substantial effect on poverty reduction. The national subsistence minimum is too low and cannot be considered an adequate criterion for the setting of the minimum wage. The minimum wage d...

  6. Topology of polymer chains under nanoscale confinement.

    Science.gov (United States)

    Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza

    2017-08-24

    Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross

  7. Radiation chemical treatment of cement mortar - polymer composites

    International Nuclear Information System (INIS)

    Younes, M.M.

    1994-01-01

    The development of the hardened cement pastes,mortars and concretes which contain polymers has progressed rapidly in years. Developmental work has identified a number of applications where the high strength and excellent durability of the composite materials will provide definite advantages over conventional mortars and concretes. The first investigations of polymer - impregnated concrete tried mainly to increase the quantity of absorbed and polymerised monomer because this gave a greater decrease in the original of concrete and a subsequent improvement in physico - mechanical properties. However, the production costs which is due mainly to the organic polymer, becomes the most important item. In this respect recent research showed the possibility of obtaining with a very compact concrete, of relative low porosity, a compound material with high performances after impregnation 26 tabs.,28 figs.,109 refs

  8. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  9. Minimum emittance of three-bend achromats

    International Nuclear Information System (INIS)

    Li Xiaoyu; Xu Gang

    2012-01-01

    The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)

  10. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield

    Science.gov (United States)

    Chen, Rong; Qi, Mei; Zhang, Guohui; Yi, Chenggao

    2018-02-01

    The application of polymer flooding technology in oilfields can result in polymer content increased in produced water. This increasing made produced water quality become poor. The efficiency of produced water processing decreased significantly. Processed water quality seriously exceeded criterion’s stipulation. The presence of the polymer in produced water is the main reason for more difficulties in processing of produced water, therefore the polymer degradation technology is a key coefficient in produced water processing for polymer flooding oilfields. We evaluated several physical and chemical polymer degradation methods with the solution of separated water from polymer flooding oilfields and hydrolyzed polyacrylamide. The experiment results can provide a basis for produced water processing technologies application in polymer flooding oilfields.

  11. gamma. -relaxation process in crystallizable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mindiyarov, Kh G; Zelenev, Yu V; Bartenev, G M [Birskij Gosudarstvennyj Pedagogicheskij Inst. (USSR)

    1975-07-01

    In the present paper, with the aid of radiothermoluminescence technique ..gamma..-relaxation processes are investigated, which are conditioned by molecular mobility and are associated with defects in the crystalline structure of polymers PEh, PP, and elastomers PIB, NK, SKD, SKI exposed to ..gamma..-rays of Co/sup 60/ at a dose rate of 1 Mrad. The shape of the thermoluminescence curve, i.e. the luminescence intensity in the ..cap alpha.. - ..gamma..-maxima, their relationship, position with respect to temperature are strongly dependent on the degree of crystallinity, on the thermal and mechanical prehistory. In highly crystalline samples of PEh and PP ..cap alpha..-maximum may be absent. Dependence has been studied of the luminescence intensity in the ..cap alpha..- and ..gamma..-maxima (Isub(..cap alpha..)/Isub(..gamma..)) on the crystallization temperature; the curve passes through the minimum when the crystallization rate is maximum. The relationship Isub(..gamma..)re of crystallinity degree.

  12. ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Lavareda, G.; Fortunato, E.; Alves, H.; Goncalves, A.; Varela, J.; Nascimento, R.; Amaral, A.

    2005-01-01

    Indium tin oxide (ITO) films were deposited by radio frequency (rf)-plasma enhanced reactive thermal evaporation (rf-PERTE) at room temperature on intrinsic ZnO/polymer substrates to enhance their electrical and structural properties. The polymer substrate used is polyethylene terephthalate (PET). The thickness of the ZnO films varied in the range 50-150 nm. The average thickness of the ITO films is of about 170 nm. Results show that ITO deposited on bare PET substrates exhibit: an average visible transmittance of about 85% and an electrical resistivity of 5.6 x 10 -2 Ω cm. ITO on ZnO/PET substrates show the optical quality practically preserved and the resistivity decreased to a minimum value of 1.9x10 -3 Ω cm for ZnO layers 125 nm thick. The electrical properties of ITO on ZnO/PET are largely improved by the increase in carrier mobility

  13. 30 CFR 57.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail...

  14. 30 CFR 56.19021 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0-0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  15. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

    Science.gov (United States)

    Tsang, Sai-Wing; Chen, Song; So, Franky

    2013-05-07

    Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Approaches for Making High Performance Polymer Materials from Commodity Polymers

    Institute of Scientific and Technical Information of China (English)

    Xu Xi

    2004-01-01

    A brief surrey of ongoing research work done for improving and enhancing the properties of commodity polymers by the author and author's colleagues is given in this paper. A series of high performance polymers and polymer nanomaterials were successfully prepared through irradiation and stress-induced reactions of polymers and hydrogen bonding. The methods proposed are viable, easy in operation, clean and efficient.1. The effect of irradiation source (UV light, electron beam, γ -ray and microwave), irradiation dose, irradiation time and atmosphere etc. on molecular structure of polyolefine during irradiation was studied. The basic rules of dominating oxidation, degradation and cross-linking reactions were mastered. Under the controlled conditions, cross-linking reactions are prevented, some oxygen containing groups are introduced on the molecular chain of polyolefine to facilitate the interface compatibility of their blends. A series of high performance polymer materials: u-HDPE/PA6,u-HDPE/CaCO3, u-iPP/STC, γ-HDPE/STC, γ-LLDPE/ATH, e-HDPE, e-LLDPE and m-HDPEfilled system were prepared (u- ultraviolet light irradiated, γ- γ-ray irradiated, e- electron beam irradiated, m- microwave irradiated)2. The effect of ultrasonic irradiation, jet and pan-milling on structure and changes in properties of polymers were studied. Imposition of critical stress on polymer chain can cause the scission of bonds to form macroradicals. The macroradicals formed in this way may recombine or react with monomer or other radicals to form linear, branched or cross-linked polymers or copolymers. About 20 kinds of block/graft copolymers have been synthesized from polymer-polymer or polymer-monomer through ultrasonic irradiation.Through jet-milling, the molecular weight of PVC is decreased somewhat, the intensity of its crystalline absorption bonds becomes indistinct. The processability, the yield strength, strength at break and elongation at break of PVC get increased quite a lot after

  17. An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents.

    Science.gov (United States)

    Khansary, Milad Asgarpour; Mellat, Mostafa; Saadat, Seyed Hassan; Fasihi-Ramandi, Mahdi; Kamali, Mehdi; Taheri, Ramezan Ali

    2017-02-01

    To analyze polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, here an in-through investigation on the suitability and compatibility of various polymers has been carried out. For this work, estradiol, estrone, testosterone, progesterone, estriol, mestranol, and ethinylestradiol were considered. A total number of 452 polymers were analyzed and initially screened using Hansen solubility parameters. The identified good pairs of hormones and polymers then were examined to obtain the equilibrium capacity of hormones removal from water effluents using a modified Flory-Huggins model. A distribution coefficient was defined as the ratio of hormones in water effluent phase and polymer phase. For removal of mestranol, estradiol and ethinylestradiol, no compatible polymer was identified based on initial screening of collected database. Three compatible polymers were identified for estriol. For progesterone, a wide variety of polymers was identified as good matching of polar, dispersion and hydrogen forces contributions can be observed for these pairs. For estrone, only two polymers can be proposed due to the mismatch observed between polar, dispersion and hydrogen forces contributions of other polymers and this hormone. The phase calculations showed that not all the identified good pairs could be used for practical separation applications. The domain of applicability of each good pair was investigated and potential polymers for practical micropollutants removal together with their removal capacity were represented in terms of phase envelops. The theoretical approach follows fundamental chemical thermodynamic equations and then can be simply applied for any system of interest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Physical Properties of Polymers (Ultrastructure Processing of Polymers)

    Science.gov (United States)

    1982-09-30

    vinyl benzene Network-Diluent Systems". 17. J . Appl. Polym. Sci. 28, 219-224 (1983) (with R. Vukovic and W.J. MacKnight) "Compatibility of Some...Temperature of Polymer Networks by Dil uents". 23. J . Appl. Polym. Sci. 28, 1379-1389 (1983) (with R. Vukovic , V. Kuresevic, N. Segudovic, and W.J...AFOSR 80-0101 IV. DATES: 1 January 1980 - 30 September 1982 V. SENIOR RESEARCH PERSONNEL*: Dr. C. Crosby Dr. G. ten Brinke Dr. T. Ellis Dr. R. Vukovic

  19. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Lithner, Delilah, E-mail: delilah.lithner@gmail.com; Larsson, Ake; Dave, Goeran

    2011-08-15

    Plastics constitute a large material group with a global annual production that has doubled in 15 years (245 million tonnes in 2008). Plastics are present everywhere in society and the environment, especially the marine environment, where large amounts of plastic waste accumulate. The knowledge of human and environmental hazards and risks from chemicals associated with the diversity of plastic products is very limited. Most chemicals used for producing plastic polymers are derived from non-renewable crude oil, and several are hazardous. These may be released during the production, use and disposal of the plastic product. In this study the environmental and health hazards of chemicals used in 55 thermoplastic and thermosetting polymers were identified and compiled. A hazard ranking model was developed for the hazard classes and categories in the EU classification and labelling (CLP) regulation which is based on the UN Globally Harmonized System. The polymers were ranked based on monomer hazard classifications, and initial assessments were made. The polymers that ranked as most hazardous are made of monomers classified as mutagenic and/or carcinogenic (category 1A or 1B). These belong to the polymer families of polyurethanes, polyacrylonitriles, polyvinyl chloride, epoxy resins, and styrenic copolymers. All have a large global annual production (1-37 million tonnes). A considerable number of polymers (31 out of 55) are made of monomers that belong to the two worst of the ranking model's five hazard levels, i.e. levels IV-V. The polymers that are made of level IV monomers and have a large global annual production (1-5 million tonnes) are phenol formaldehyde resins, unsaturated polyesters, polycarbonate, polymethyl methacrylate, and urea-formaldehyde resins. This study has identified hazardous substances used in polymer production for which the risks should be evaluated for decisions on the need for risk reduction measures, substitution, or even phase out

  20. Effects of Temperature on Polymer/Carbon Chemical Sensors

    Science.gov (United States)

    Manfireda, Allison; Lara, Liana; Homer, Margie; Yen, Shiao-Pin; Kisor, Adam; Ryan, Margaret; Zhou, Hanying; Shevade, Abhijit; James, Lim; Manatt, Kenneth

    2009-01-01

    Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.

  1. Annealed Scaling for a Charged Polymer

    International Nuclear Information System (INIS)

    Caravenna, F.; Hollander, F. den; Pétrélis, N.; Poisat, J.

    2016-01-01

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems

  2. Annealed Scaling for a Charged Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Caravenna, F., E-mail: francesco.caravenna@unimib.it [Università degli Studi di Milano-Bicocca, Dipartimento di Matematica e Applicazioni (Italy); Hollander, F. den, E-mail: denholla@math.leidenuniv.nl [Leiden University, Mathematical Institute (Netherlands); Pétrélis, N., E-mail: nicolas.petrelis@univ-nantes.fr [Université de Nantes, Laboratoire de Mathématiques Jean Leray UMR 6629 (France); Poisat, J., E-mail: poisat@ceremade.dauphine.fr [Université Paris-Dauphine, PSL Research University, CEREMADE, UMR 7534 (France)

    2016-03-15

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems

  3. [New polymer-drug systems based on natural and synthetic polymers].

    Science.gov (United States)

    Racoviţă, Stefania; Vasiliu, Silvia; Foia, Liliana

    2010-01-01

    The great versatility of polymers makes them very useful in the biomedical and pharmaceutical fields. The combination of natural and synthetic polymers leads to new materials with tailored functional properties. The aim of this work consists in the preparation of new drug delivery system based on chitosan (natural polymer) and polybetaines (synthetic polymers), by a simple process, well known in the literature as complex coacervation methods. Also, the adsorption and release studies of two antibiotics as well as the preservation of their bactericidal capacities were performed.

  4. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    OpenAIRE

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versati...

  5. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer.

    Science.gov (United States)

    Wu, Qian; Zhang, Qian; Zhao, Li; Li, Shi-Neng; Wu, Lian-Bin; Jiang, Jian-Xiong; Tang, Long-Cheng

    2017-08-15

    In this study, a novel strategy was developed to fabricate highly flame retardant polymer foam composite materials coated by synthesized silicone resin (SiR) polymer via a facile dip-coating processing. Applying the SiR polymer coating, the mechanical property and thermal stability of SiR-coated polymer foam (PSiR) composites are greatly enhanced without significantly altering their structure and morphology. The minimum oxygen concentration to support the combustion of foam materials is greatly increased, i.e. from LOI 14.6% for pure foam to LOI 26-29% for the PSiR composites studied. Especially, adjusting pendant group to SiOSi group ratio (R/Si ratio) of SiRs produces highly flame retardant PSiR composites with low smoke toxicity. Cone calorimetry results demonstrate that 44-68% reduction in the peak heat release rate for the PSiR composites containing different R/Si ratios over pure foam is achieved by the presence of appropriate SiR coating. Digital and SEM images of post-burn chars indicate that the SiR polymer coating can be transformed into silica self-extinguishing porous layer as effective inorganic barrier effect, thus preserving the polymer foam structure from fire. Our results show that the SiR dip-coating technique is a promising strategy for producing flame retardant polymer foam composite materials with improved mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  7. 30 CFR 77.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ... feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes...

  8. Mechanisms of polymer degradation using an oxygen plasma generator

    Science.gov (United States)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  9. Polymer containing functional end groups is base for new polymers

    Science.gov (United States)

    Hirshfield, S. M.

    1971-01-01

    Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.

  10. Suspensions of polymer-grafted nanoparticles with added polymers-Structure and effective pair-interactions.

    Science.gov (United States)

    Chandran, Sivasurender; Saw, Shibu; Kandar, A K; Dasgupta, C; Sprung, M; Basu, J K

    2015-08-28

    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP:PS size ratios, ξ = 0.14 and 2.76 (where, ξ = Mg/Mm, Mg and Mm being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with ξ = 0.14 could be modeled reasonably well, while the structure of blends with ξ = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with ξ = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with ξ = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to

  11. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    Science.gov (United States)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  12. Localization of a polymer in random media: Relation to the localization of a quantum particle

    International Nuclear Information System (INIS)

    Shiferaw, Yohannes; Goldschmidt, Yadin Y.

    2001-01-01

    In this paper we consider in detail the connection between the problem of a polymer in a random medium and that of a quantum particle in a random potential. We are interested in a system of finite volume where the polymer is known to be localized inside a low minimum of the potential. We show how the end-to-end distance of a polymer that is free to move can be obtained from the density of states of the quantum particle using extreme value statistics. We give a physical interpretation to the recently discovered one-step replica-symmetry-breaking solution for the polymer [Phys. Rev. E 61, 1729 (2000)] in terms of the statistics of localized tail states. Numerical solutions of the variational equations for chains of different length are performed and compared with quenched averages computed directly by using the eigenfunctions and eigenenergies of the Schro''dinger equation for a particle in a one-dimensional random potential. The quantities investigated are the radius of gyration of a free Gaussian chain, its mean square distance from the origin and the end-to-end distance of a tethered chain. The probability distribution for the position of the chain is also investigated. The glassiness of the system is explained and is estimated from the variance of the measured quantities

  13. A Phosphate Minimum in the Oxygen Minimum Zone (OMZ) off Peru

    Science.gov (United States)

    Paulmier, A.; Giraud, M.; Sudre, J.; Jonca, J.; Leon, V.; Moron, O.; Dewitte, B.; Lavik, G.; Grasse, P.; Frank, M.; Stramma, L.; Garcon, V.

    2016-02-01

    The Oxygen Minimum Zone (OMZ) off Peru is known to be associated with the advection of Equatorial SubSurface Waters (ESSW), rich in nutrients and poor in oxygen, through the Peru-Chile UnderCurrent (PCUC), but this circulation remains to be refined within the OMZ. During the Pelágico cruise in November-December 2010, measurements of phosphate revealed the presence of a phosphate minimum (Pmin) in various hydrographic stations, which could not be explained so far and could be associated with a specific water mass. This Pmin, localized at a relatively constant layer ( 20minimum with a mean vertical phosphate decrease of 0.6 µM but highly variable between 0.1 and 2.2 µM. In average, these Pmin are associated with a predominant mixing of SubTropical Under- and Surface Waters (STUW and STSW: 20 and 40%, respectively) within ESSW ( 25%), complemented evenly by overlying (ESW, TSW: 8%) and underlying waters (AAIW, SPDW: 7%). The hypotheses and mechanisms leading to the Pmin formation in the OMZ are further explored and discussed, considering the physical regional contribution associated with various circulation pathways ventilating the OMZ and the local biogeochemical contribution including the potential diazotrophic activity.

  14. The Recent Developments in Biobased Polymers toward General and Engineering Applications : Polymers that Are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed

    NARCIS (Netherlands)

    Nakajima, Hajime; Dijkstra, Peter; Loos, Katja

    2017-01-01

    The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering

  15. Thermosetting Phthalocyanine Polymers

    Science.gov (United States)

    Fohlen, G.; Parker, J.; Achar, B.

    1985-01-01

    Group of phthalocyanine polymers resist thermal degradation. Polymers expected semiconducting. Principal applications probably in molded or laminated parts that have to withstand high temperatures. Polymers made from either of two classes of monomer: Bisphthalonitriles with imide linkages or Bisphthalonitriles with ester-imide linkages.

  16. Computational analysis of particle reinforced viscoelastic polymer nanocomposites - statistical study of representative volume element

    Science.gov (United States)

    Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine

    2018-05-01

    The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.

  17. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/polymer semi-constrained...

  18. Printing polymer optical waveguides on conditioned transparent flexible foils by using the aerosol jet technology

    Science.gov (United States)

    Reitberger, Thomas; Hoffmann, Gerd-Albert; Wolfer, Tim; Overmeyer, Ludger; Franke, Joerg

    2016-09-01

    The optical data transfer is considered as the future of signal transfer due to its various advantages compared to conventional copper-based technologies. The Aerosol Jet Printing (AJP) technology offers the opportunity to print materials with high viscosities, such as liquid transparent polymer adhesives (epoxy resins), on almost any possible substrate material and even in third dimension. This paper introduces a new flexible and comparatively cost-effective way of generating polymer optical waveguides through AJP. Furthermore, the conditioning of the substrate material and the printing process of planar waveguides are presented. In the first step, two lines with hydrophobic behavior are applied on foil material (PMMA, PVC, PI) by using a flexographic printing machine. These silicone based patterns containing functional polymer form barriers for the core material due to their low surface energy after curing. In the second step, the core material (liquid polymer, varnish) is printed between the barrier lines. Because of the hydrophobic behavior of the lines, the contact angle between the substrate surface and the liquid core material is increased which yields to higher aspect ratio. The distance between the barrier lines is at least 100 μm, which defines the width of the waveguide. The minimum height of the core shall be 50 μm. After UV-curing of the core polymer, the cladding material is printed on the top. This is also applied by using the AJP technology. Various tests were performed to achieve the optimal surface properties for adequate adhesion and machine process parameters.

  19. Terminology of Polymers Containing Ionizable or Ionic Groups and of Polymers Containing Ions, VII.3

    Directory of Open Access Journals (Sweden)

    Jarm, V.

    2009-10-01

    Full Text Available The class of ionic polymers has widespread application in many areas of everyday life, in industrial production, and in the processes of living matter. The properties of ionic polymers depend on the polymer structure, and the nature, content, and location of the ionic groups. To clear differences among various ionic polymers, the IUPAC recommendations present 34 definitionsfor the ionomer, polyacid, polybase, polyampholytic polymer, ion-exchange polymer, polybetaine, polyelectrolyte, intrinsically conducting polymer, solid polymer electrolyte, etc

  20. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-07

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g., sensing, energy conversion) of these materials influences other properties. One challenge is to understand the effects of nanoparticles on the viscosity of nanoscale thick polymer films. A new mechanism that contributes to an enhancement of the viscosity of nanoscale thick polymer/nanoparticle films is identified. We show that while the viscosities of neat homopolymer poly(2-vinylpyridine) (P2VP) films as thin as 50 nm remained the same as the bulk, polymer/nanoparticle films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were comparable to the bulk values. These results - NP proximities and suppression of their dynamics - suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for nanoscale applications.

  1. Electrical properties of a new sulfur-containing polymer for optoelectronic application

    Science.gov (United States)

    ElAkemi, ElMehdi; Jaballah, Nejmeddine; Ouada, Hafedh Ben; Majdoub, Mustapha

    2015-06-01

    An original polythiophene derivative was characterized to develop the optoelectronic properties of sulfur-containing π-conjugated polymer. The optical properties of the polymer were investigated by UV-visible absorption spectroscopy and atomic force microscopy. Investigations of the electrical characteristics of polymer diodes are reported. We present current-voltage characteristics and impedance spectroscopy measurements performed on partially sulfur-containing thin films in sandwich structure ITO/sulfur-containing polymer/Al. The conduction mechanisms in these layers are identified to be a space-charge-limited current. The AC electrical transport of the sulfur-containing polymer is studied as a function of frequency (100 Hz-10 MHz) and temperature in impedance spectroscopy analyses. We interpreted Cole-Cole plots in terms of the equivalent circuit model as a single parallel resistance and a capacitance network in series with a relatively small resistance. The evolution of the electrical parameters deduced from fitting of the experimental data is discussed.

  2. Exploring novel silicon-containing polymers---From preceramic polymers to conducting polymers with nonlinear optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yi.

    1991-10-07

    Several new types of silicon-containing preceramic polymers, i.e., poly(diorganosilacetylene) and poly(diorganosilvinylene) have been synthesized with molecular weights from 10,000 to 120,000. These polymers could be thermally converted to SiC with a moderate to high char yields. Ready solubility and good processability made these types of polymers attractive in their applications to ceramics. The thermal polymerization of diethynyldiphenyl-silane, which was reported in 1968 to afford poly(diphenylsilyldiacetylene) via dehydrogenation, was reinvestigated. Spectroscopic studies showed that the polymer had a structure of polyacetylene type not diacetylene. Diphenyldiethynylgermane and a series of diorganodiethynylsilances were synthesized. These could be polymerized in the presence of MoCl{sub 5} or WCl{sub 6} to afford a soluble, violet material with Mw as high as 108,000. 100 refs., 56 figs., 16 tabs.

  3. 21 CFR 888.3410 - Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...

  4. Tritium containing polymers having a polymer backbone substantially void of tritium

    Science.gov (United States)

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  5. Fundamental radiation effect on polymers energy transfer from radiation to polymer

    International Nuclear Information System (INIS)

    Seguchi, T.

    2007-01-01

    Polymer modification as cross-link, chain scission, and graft-polymerization by radiation is initiated by the quantum energy transferred from radiation to polymers. The active species for chemical reactions are produced through ionization or activation of polymer molecules for any radiation source. The energy transfer occurs mainly by ionic interaction between radiation and polymer molecule, and the contribution from the collision interaction is miner. The radiation of electromagnetic wave as X-ray or γ-ray generates the energetic electron which induces ionic interaction with polymer molecule. The energy loss profile along the penetration to polymer material is much different among the radiation sources of EB, γ-ray, and ion beams in the macroscopic mechanism. In this article, the behavior of single event, that is, the event induced by one electron, γ-ray, ion, and neutron is described by the macroscopic mechanism and by the microscopic mechanism. (authors)

  6. Quantification of interaction and topological parameters of polyisoprene star polymers under good solvent conditions

    KAUST Repository

    Rai, Durgesh K.

    2016-05-05

    Mass fractal scaling, reflected in the mass fractal dimension df, is independently impacted by topology, reflected in the connectivity dimension c, and by tortuosity, reflected in the minimum dimension dmin. The mass fractal dimension is related to these other dimensions by df=cdmin. Branched fractal structures have a higher mass fractal dimension compared to linear structures due to a higher c, and extended structures have a lower dimension compared to convoluted self-avoiding and Gaussian walks due to a lower dmin. It is found, in this work, that macromolecules in thermodynamic equilibrium display a fixed mass fractal dimension df under good solvent conditions, regardless of chain topology. These equilibrium structures accommodate changes in chain topology such as branching c by a decrease in chain tortuosity dmin. Symmetric star polymers are used to understand the structure of complex macromolecular topologies. A recently published hybrid Unified scattering function accounts for interarm correlations in symmetric star polymers along with polymer-solvent interaction for chains of arbitrary scaling dimension. Dilute solutions of linear, three-arm and six-arm polyisoprene stars are studied under good solvent conditions in deuterated p-xylene. Reduced chain tortuosity can be viewed as steric straightening of the arms. Steric effects for star topologies are quantified, and it is found that steric straightening of arms is more significant for lower-molecular-weight arms. The observation of constant df is explained through a modification of Flory-Krigbaum theory for branched polymers.

  7. Development of a pH-responsive imprinted polymer for diclofenac and study of its binding properties in organic and aqueous media.

    Science.gov (United States)

    Mohajeri, Seyed Ahmad; Malaekeh-Nikouei, Bizhan; Sadegh, Hasan

    2012-05-01

    Three different molecularly imprinted polymers (MIPs) for drug delivery of diclofenac in gastrointestinal tract were synthesized employing bulk polymerization method and their binding and release properties were studied in different pH values. Methacrylic acid (MAA), methacrylamide (MAAM) and 4-vinyl pyridine (4VP) were tested as functional monomers and ethylene glycole dimethacrylate (EDMA) was used as a cross-linker monomer in polymeric feed. Binding properties and imprinting factor (IF) of MIPs were studied in comparison with their non-imprinted ones (Blank) in organic and aqueous media. Diclofenac release in aqueous solvents at pH values of 1.5, 6.0 and 8.0, simulating gastrointestinal fluids, were also studied. The results indicated the specific binding of diclofenac to imprinted polymers. Duo to the stronger non-specific bounds in aqueous solutions, IF values decreased in water compared to acetonitrile as an organic medium. Our results proved that all polymers represented pH-responsive diclofenac delivery at above conditions. The data showed that imprinted polymer, prepared by MAA had superior properties, in comparison with other polymers, for minimum release (14%) of drug in gastric acid and maximum release (90%) in basic condition. The results indicated that diclofenac imprinted polymer could be used as a pH-responsive matrix in preparation of a new drug delivery system for diclofenac.

  8. Advanced polymers in medicine

    CERN Document Server

    Puoci, Francesco

    2014-01-01

    The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.

  9. Minimum Map of Social Institutional Network: a multidimensional strategy for research in Nursing

    Directory of Open Access Journals (Sweden)

    Diene Monique Carlos

    2016-06-01

    Full Text Available Objective To analyze the use of methodological strategies in qualitative research - Minimum Maps of Social Institutional Network, as proposed to understand the phenomena in the multidimensional perspective. Method Methodological theoretical essay in which we aimed to reflect on the use of innovative methodological strategies in nursing research, supported in Complex Paradigm fundamentals. Results The minimum map of Social Institutional External Network aims to identify institutional linkages and gaps for the intervention work of the surveyed institutions. The use of these maps provided important advances in know-how qualitative research in Health and Nursing. Conclusions In this perspective, the use of minimum Social Intitutional Network maps can be stimulated and enhanced to meet the current demands of the contemporary world, particularly for its flexibility in adapting to various research subjects; breadth and depth of discussion; and possibilities with health services.

  10. Minimum radwaste system to support commercial operation-what equipment can be deferred

    International Nuclear Information System (INIS)

    Marshall, R.W.; Tafazzoli, M.M.

    1984-01-01

    Because of cash flow problems being experienced by utilities as nuclear power stations approach completion, areas of the plant for which the completion of the construction effort could be deferred past commercial operation should be reviewed. The radwaste treatment systems are prime candidates for such a deferral because of the availability, either temporary or permanent, of alternative treatment methods for the waste streams expected to be produced. In order to identify the radwaste equipment, components and associated hardware in the radwaste building which could be deferred past commercial operation, a study was performed by Impell Corporation to evaluate the existing radwaste treatment system and determine the minimum system necessary to support commercial operation of a typical BWR. The study identified the minimum-installed radwaste treatment system which, in combination with portable temporary equipment, would accommodate the waste types and quantities likely to be produced in the first few years of operation. In addition, the minimum-installed system had to be licensable and excessive radiation exposures should not be incurred during the construction of the deferred portions of the system after commercial operation. From this study, it was concluded that a significant quantity of radwaste processing equipment and the associated piping, valves and instrumentation could be deferred. The estimated savings, in construction manhours (excluding field distributables) alone, was over 102,000 M-H

  11. The impact of the UK National Minimum Wage on mental health

    Directory of Open Access Journals (Sweden)

    Christoph Kronenberg

    2017-12-01

    Full Text Available Despite an emerging literature, there is still sparse and mixed evidence on the wider societal benefits of Minimum Wage policies, including their effects on mental health. Furthermore, causal evidence on the relationship between earnings and mental health is limited. We focus on low-wage earners, who are at higher risk of psychological distress, and exploit the quasi-experiment provided by the introduction of the UK National Minimum Wage (NMW to identify the causal impact of wage increases on mental health. We employ difference-in-differences models and find that the introduction of the UK NMW had no effect on mental health. Our estimates do not appear to support earlier findings which indicate that minimum wages affect mental health of low-wage earners. A series of robustness checks accounting for measurement error, as well as treatment and control group composition, confirm our main results. Overall, our findings suggest that policies aimed at improving the mental health of low-wage earners should either consider the non-wage characteristics of employment or potentially larger wage increases.

  12. The impact of the UK National Minimum Wage on mental health.

    Science.gov (United States)

    Kronenberg, Christoph; Jacobs, Rowena; Zucchelli, Eugenio

    2017-12-01

    Despite an emerging literature, there is still sparse and mixed evidence on the wider societal benefits of Minimum Wage policies, including their effects on mental health. Furthermore, causal evidence on the relationship between earnings and mental health is limited. We focus on low-wage earners, who are at higher risk of psychological distress, and exploit the quasi-experiment provided by the introduction of the UK National Minimum Wage (NMW) to identify the causal impact of wage increases on mental health. We employ difference-in-differences models and find that the introduction of the UK NMW had no effect on mental health. Our estimates do not appear to support earlier findings which indicate that minimum wages affect mental health of low-wage earners. A series of robustness checks accounting for measurement error, as well as treatment and control group composition, confirm our main results. Overall, our findings suggest that policies aimed at improving the mental health of low-wage earners should either consider the non-wage characteristics of employment or potentially larger wage increases.

  13. Nonvolatile Solid-State Charged-Polymer Gating of Topological Insulators into the Topological Insulating Regime

    Science.gov (United States)

    Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.

    2018-04-01

    We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.

  14. The Need for Higher Minimum Staffing Standards in U.S. Nursing Homes

    Science.gov (United States)

    Harrington, Charlene; Schnelle, John F.; McGregor, Margaret; Simmons, Sandra F.

    2016-01-01

    Many U.S. nursing homes have serious quality problems, in part, because of inadequate levels of nurse staffing. This commentary focuses on two issues. First, there is a need for higher minimum nurse staffing standards for U.S. nursing homes based on multiple research studies showing a positive relationship between nursing home quality and staffing and the benefits of implementing higher minimum staffing standards. Studies have identified the minimum staffing levels necessary to provide care consistent with the federal regulations, but many U.S. facilities have dangerously low staffing. Second, the barriers to staffing reform are discussed. These include economic concerns about costs and a focus on financial incentives. The enforcement of existing staffing standards has been weak, and strong nursing home industry political opposition has limited efforts to establish higher standards. Researchers should study the ways to improve staffing standards and new payment, regulatory, and political strategies to improve nursing home staffing and quality. PMID:27103819

  15. 12 CFR 564.4 - Minimum appraisal standards.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Minimum appraisal standards. 564.4 Section 564.4 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY APPRAISALS § 564.4 Minimum appraisal standards. For federally related transactions, all appraisals shall, at a minimum: (a...

  16. The minimum wage in the Czech enterprises

    OpenAIRE

    Eva Lajtkepová

    2010-01-01

    Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007). ...

  17. Nature's Mechanisms for Tough, Self-healing Polymers and Polymer Adhesives

    Science.gov (United States)

    Hansma, Paul

    2007-03-01

    Spider silk^2 and the natural polymer adhesives in abalone shells^3 and bone^4,5 can give us insights into nature's mechanisms for tough, self-healing polymers and polymer adhesives. The natural polymer adhesives in biomaterials have been optimized by evolution. An optimized polymer adhesive has five characteristics. 1) It holds together the strong elements of the composite. 2) It yields just before the strong elements would otherwise break. 3) It dissipates large amounts of energy as it yields. 4) It self heals after it yields. 5) It takes just a few percent by weight. Both natural polymer adhesives and silk rely on sacrificial bonds and hidden length for toughness and self-healing.^6 A relatively large energy, of order 100eV, is required to stretch a polymer molecule after a weak bond, a sacrificial bond, breaks and liberates hidden length, which was previously hidden, typically in a loop or folded domain, from whatever was stretching the polymer. The bond is called sacrificial if it breaks at forces well below the forces that could otherwise break the polymer backbone, typically greater than 1nN. In many biological cases, the breaking of sacrificial bonds has been found to be reversible, thereby also providing a ``self-healing'' property to the material.^2-4 Individual polymer adhesive molecules based on sacrificial bonds and hidden length can supply forces of order 300pN over distances of 100s of nanometers. Model calculations show that a few percent by weight of adhesives based on these principles could be optimized adhesives for high performance composite materials including nanotube and graphene sheet composites. ^2N. Becker, E. Oroudjev, S. Mutz et al., Nature Materials 2 (4), 278 (2003). ^3B. L. Smith, T. E. Schaffer, M. Viani et al., Nature 399 (6738), 761 (1999). ^4J. B. Thompson, J. H. Kindt, B. Drake et al., Nature 414 (6865), 773 (2001). ^5G. E. Fantner, T. Hassenkam, J. H. Kindt et al., Nature Materials 4, 612 (2005). ^6G. E. Fantner, E. Oroudjev, G

  18. Minimum Wages and Regional Disparity: An analysis on the evolution of price-adjusted minimum wages and their effects on firm profitability (Japanese)

    OpenAIRE

    MORIKAWA Masayuki

    2013-01-01

    This paper, using prefecture level panel data, empirically analyzes 1) the recent evolution of price-adjusted regional minimum wages and 2) the effects of minimum wages on firm profitability. As a result of rapid increases in minimum wages in the metropolitan areas since 2007, the regional disparity of nominal minimum wages has been widening. However, the disparity of price-adjusted minimum wages has been shrinking. According to the analysis of the effects of minimum wages on profitability us...

  19. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  20. Performance limitations of polymer electrolytes based on ethylene oxide polymers

    International Nuclear Information System (INIS)

    Buriez, Olivier; Han, Yong Bong; Hou, Jun; Kerr, John B.; Qiao, Jun; Sloop, Steven E.; Tian, Minmin; Wang, Shanger

    1999-01-01

    Studies of polymer electrolyte solutions for lithium-polymer batteries are described. Two different salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoromethanesulfonate (LiTf), were dissolved in a variety of polymers. The structures were all based upon the ethylene oxide unit for lithium ion solvation and both linear and comb-branch polymer architectures have been examined. Conductivity, salt diffusion coefficient and transference number measurements demonstrate the superior transport properties of the LiTFSI salt over LiTf. Data obtained on all of these polymers combined with LiTFSI salts suggest that there is a limit to the conductivity achievable at room temperature, at least for hosts containing ethylene oxide units. The apparent conductivity limit is 5 x 10-5 S/cm at 25 C. Providing that the polymer chain segment containing the ethylene oxide units is at least 5-6 units long there appears to be little influence of the polymer framework to which the solvating groups are attached. To provide adequate separator function, the mechanical properties may be disconnected from the transport properties by selection of an appropriate architecture combined with an adequately long ethylene oxide chain. For both bulk and interfacial transport of the lithium ions, conductivity data alone is insufficient to understand the processes that occur. Lithium ion transference numbers and salt diffusion coefficients also play a major role in the observed behavior and the transport properties of these polymer electrolyte solutions appear to be quite inadequate for ambient temperature performance. At present, this restricts the use of such systems to high temperature applications. Several suggestions are given to overcome these obstacles

  1. Characterization of molecularly imprinted polymers using a new polar solvent titration method.

    Science.gov (United States)

    Song, Di; Zhang, Yagang; Geer, Michael F; Shimizu, Ken D

    2014-07-01

    A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non-imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non-imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.

  2. 41 CFR 50-201.1101 - Minimum wages.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Minimum wages. 50-201... Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 201-GENERAL REGULATIONS § 50-201.1101 Minimum wages. Determinations of prevailing minimum wages or changes therein will be published in the Federal Register by the...

  3. BEAM applications to polymer materials

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1994-01-01

    Recently papers about beam applications to polymers have been increasing rapidly both in the fundamental and applied fields. Fairly large number of papers have been published in the fundamental aspects of radiation effects of beam applications to polymers such as pulse radiolysis and high density electronic excitation effects. A number of papers have been published in the more applied aspects of beam applications to polymers such as radiation processing and curing. The present paper describes recent beam applications to polymers. 1. Radiation Effects on Polymers; Radiation effects on polymers have been studied for more than 40 years. Most of work on radiation effects on polymers has been carried out by using high energy photon (gamma-ray) and electron beams, since polymers are sensitive to any kinds of ionizing radiation. Even non-ionizing radiation such as ultraviolet and visible light excites electronic excited states of polymers and then photo-chemical reactions of polymers are induced from the electronic excited states. Studies on radiation effects of other ionizing radiation on polymers have not been so popular for a long time. Recently application of new radiation such as ion beams to polymers have been worthy of remark in fields of advanced science and technology, since new radiation beams induce different radiation effects from those induced by high energy gamma-rays and electrons. 2. Beam Applications of Polymers; Recent progress in beam applications to polymers such as radiation processing and curing, x-ray and electron beam microlithography, and applications of new beams such as ion beams to polymers has been reviewed. (author)

  4. Variable diameter CO2 laser ring-cutting system adapted to a zoom microscope for applications on polymer tapes.

    Science.gov (United States)

    Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert

    2016-11-20

    This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.

  5. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle

    1998-01-01

    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  6. Polymers for Combating Biocorrosion

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-03-01

    Full Text Available Biocorrosion has been considered as big trouble in many industries and marine environments due to causing of great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anticorrosion and antimicrobial properties have been widely accepted as a novel and effective approach to prevent biocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbial corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: (i traditional polymers incorporated with biocides, (ii antibacterial polymers containing quaternary ammonium compounds, and (iii conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting antibacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization, and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  7. Minimum Wage Laws and the Distribution of Employment.

    Science.gov (United States)

    Lang, Kevin

    The desirability of raising the minimum wage long revolved around just one question: the effect of higher minimum wages on the overall level of employment. An even more critical effect of the minimum wage rests on the composition of employment--who gets the minimum wage job. An examination of employment in eating and drinking establishments…

  8. 29 CFR 505.3 - Prevailing minimum compensation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Prevailing minimum compensation. 505.3 Section 505.3 Labor... HUMANITIES § 505.3 Prevailing minimum compensation. (a)(1) In the absence of an alternative determination...)(2) of this section, the prevailing minimum compensation required to be paid under the Act to the...

  9. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  10. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  11. On γ-relaxation process in crystallizable polymers

    International Nuclear Information System (INIS)

    Mindiyarov, Kh.G.; Zelenev, Yu.V.; Bartenev, G.M.

    1975-01-01

    In the present paper, with the aid of radiothermoluminescence technique γ-relaxation processes are investigated, which are conditioned by molecular mobility and are associated with defects in the crystalline structure of polymers PEh, PP, and elastomers PIB, NK, SKD, SKI exposed to γ-rays of Co 60 at a dose rate of 1 Mrad. The shape of the thermoluminescence curve, i.e. the luminescence intensity in the α - γ-maxima, their relationship, position with respect to temperature are strongly dependent on the degree of crystallinity, on the thermal and mechanical prehistory. In highly crystalline samples of PEh and PP α-maximum may be absent. Dependence has been studied of the luminescence intensity in the α- and γ-maxima (Isub(α)/Isub(γ)) on the crystallization temperature; the curve passes through the minimum when the crystallization rate is maximum. The relationship Isub(γ)re of crystallinity degree

  12. Clickable antifouling polymer brushes for polymer pen lithography

    Czech Academy of Sciences Publication Activity Database

    Bog, U.; de los Santos Pereira, Andres; Mueller, S. L.; Havenridge, S.; Parrillo, Viviana; Bruns, M.; Holmes, A. E.; Rodriguez-Emmenegger, C.; Fuchs, H.; Hirtz, M.

    2017-01-01

    Roč. 9, č. 13 (2017), s. 12109-12117 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GJ15-09368Y Institutional support: RVO:61389013 Keywords : antifouling * biofunctional interfaces * polymer brushes Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.504, year: 2016

  13. Photorefractive polymers

    NARCIS (Netherlands)

    Bolink, Hendrik Jan; Hadziioannou, G

    1997-01-01

    This thesis describes the synthesis and properties of photorefractive polymers. Photorefractive polymers are materials in which the refractive index can be varied by the interaction with light. Unlike in numerous other photosensitive materials, in photorefractive materials this occurs via

  14. Role of polymer matrix on photo-sensitivity of CdSe polymer nanocomposites

    Science.gov (United States)

    Kaur, Ramneek; Tripathi, S. K.

    2018-04-01

    This paper reports the effect of three different polymer matrices (PVP, PMMA and PVK) and Ag doping on the photo-sensitivity of CdSe polymer nanocomposites. The results reveal that the photoconductivity is high for linear chain polymer nanocomposites as compared to aromatic ones with decreasing trend as: CdSe-PMMA > CdSe-PVP > CdSe-PVK. The large substituents or branches along the polymer backbone hinder the stacking sequences in CdSe-PVK nanocomposites resulting in lowest photoconductivity. On contrary, CdSe-PVK nanocomposite exhibit highest photosensitivity. The reason behind it is the low value of dark conductivity in CdSe-PVK nanocomposite and photoconductive PVK matrix. With Ag doping, no considerable effect on the value of photosensitivity has been observed. The obtained results indicate that the photo-conducting properties of these polymer nanocomposites can be tuned by using different polymer matrices.

  15. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  16. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  17. Development of polymers for large scale roll-to-roll processing of polymer solar cells

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert

    Development of polymers for large scale roll-to-roll processing of polymer solar cells Conjugated polymers potential to both absorb light and transport current as well as the perspective of low cost and large scale production has made these kinds of material attractive in solar cell research....... The research field of polymer solar cells (PSCs) is rapidly progressing along three lines: Improvement of efficiency and stability together with the introduction of large scale production methods. All three lines are explored in this work. The thesis describes low band gap polymers and why these are needed....... Polymer of this type display broader absorption resulting in better overlap with the solar spectrum and potentially higher current density. Synthesis, characterization and device performance of three series of polymers illustrating how the absorption spectrum of polymers can be manipulated synthetically...

  18. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  19. Business, market and intellectual property analysis of polymer solar cells

    International Nuclear Information System (INIS)

    Nielsen, Torben D.; Krebs, Frederik C.; Cruickshank, Craig; Foged, Soeren; Thorsen, Jesper

    2010-01-01

    The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found that the polymer solar cell technology is very poorly protected in Europe with the central patents being valid in only France, Germany, the Netherlands and the United Kingdom. Several countries with a large potential for PV such as Portugal and Greece are completely open and have apparently no relevant patents. This is viewed as a great advantage for the possible commercialization of polymer solar cells in a European setting as the competition for the market will be based on the manufacturing performance rather than domination by a few patent stakeholders. (author)

  20. Do Some Workers Have Minimum Wage Careers?

    Science.gov (United States)

    Carrington, William J.; Fallick, Bruce C.

    2001-01-01

    Most workers who begin their careers in minimum-wage jobs eventually gain more experience and move on to higher paying jobs. However, more than 8% of workers spend at least half of their first 10 working years in minimum wage jobs. Those more likely to have minimum wage careers are less educated, minorities, women with young children, and those…

  1. Does the Minimum Wage Affect Welfare Caseloads?

    Science.gov (United States)

    Page, Marianne E.; Spetz, Joanne; Millar, Jane

    2005-01-01

    Although minimum wages are advocated as a policy that will help the poor, few studies have examined their effect on poor families. This paper uses variation in minimum wages across states and over time to estimate the impact of minimum wage legislation on welfare caseloads. We find that the elasticity of the welfare caseload with respect to the…

  2. 29 CFR 4.159 - General minimum wage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true General minimum wage. 4.159 Section 4.159 Labor Office of... General minimum wage. The Act, in section 2(b)(1), provides generally that no contractor or subcontractor... a contract less than the minimum wage specified under section 6(a)(1) of the Fair Labor Standards...

  3. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  4. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  5. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  6. Production of micron-sized polymer particles for additive manufacturing by melt emulsification

    Energy Technology Data Exchange (ETDEWEB)

    Fanselow, Stephanie; Schmidt, Jochen; Wirth, Karl-Ernst; Peukert, Wolfgang, E-mail: Wolfgang.Peukert@fau.de [Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen (Germany)

    2016-03-09

    Melt emulsification is an advanced top-down approach that permits to produce spherical particles and thus widens the availability of polymer feed materials for additive manufacturing. In the process the polymer is molten in a continuous phase and droplet breakup is realized in a rotor-stator-device. The stabilization of the newly formed surfaces is quite challenging. Therefore, a new method to identify an appropriate emulsifier by measuring the interfacial tension between the polymer and continuous phase using a high pressure / high temperature cell is presented. The obtained powders are characterized by scanning electron microscopy (SEM) and by a Zimmermann tensile strength tester to determine the powder flowability. The processability of the polymer powders for additive manufacturing is investigated and demonstrated by building single layers by laser beam melting.

  7. Polymer optical fiber sensors in human life safety

    Science.gov (United States)

    Marques, C. A. F.; Webb, D. J.; Andre, P.

    2017-07-01

    The current state of research into polymer optical fiber (POF) sensors linked to safety in human life is summarized in this paper. This topic is directly related with new solutions for civil aircraft, structural health monitoring, healthcare and biomedicine fields. In the last years, the properties of polymers have been explored to identify situations offering potential advantages over conventional silica fiber sensing technology, replacing, in some cases, problematic electronic technology used in these mentioned fields, where there are some issues to overcome. POFs could preferably replace their silica counterparts, with improved performance and biocompatibility. Finally, new developments are reported which use the unique properties of POF.

  8. Site-selective metallization of polymeric substrates by the hyperbranched polymer templates

    International Nuclear Information System (INIS)

    Li, Peiyuan; Yang, Fang; Li, Xiangcheng; He, Chunling; Su, Wei; Chen, Jinhao; Huo, Lini; Chen, Rui; Lu, Chensheng; Liang, Lifang

    2013-01-01

    We demonstrate a simple, cost-effective and universal technique for the fabrication of copper circuit pattern on flexible polymeric substrate. This method relies on a ternary polyethylenimine-poly(acrylic acid)-substrate film incorporating palladium catalysts, which are used as adhesive interlayers for the copper metallization of flexible polymeric substrates. We demonstrated the fabrication of patterned copper films on a variety of flexible polymers with minimum feature sizes of 200 μm. And the resulting copper circuit showed strong adhesion with underlying flexible polymeric substrates. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM and SEM. The direct patterning of metallic circuit on flexible polymeric substrate indicates great potential for the use in electronics industry.

  9. Site-selective metallization of polymeric substrates by the hyperbranched polymer templates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peiyuan, E-mail: lipearpear@163.com [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Yang, Fang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Li, Xiangcheng [School of Computer, Electronics and Information, Guangxi University, Nanning 530001 (China); He, Chunling [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Su, Wei, E-mail: suwmail@163.com [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Chen, Jinhao [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Huo, Lini; Chen, Rui; Lu, Chensheng [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Liang, Lifang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China)

    2013-09-01

    We demonstrate a simple, cost-effective and universal technique for the fabrication of copper circuit pattern on flexible polymeric substrate. This method relies on a ternary polyethylenimine-poly(acrylic acid)-substrate film incorporating palladium catalysts, which are used as adhesive interlayers for the copper metallization of flexible polymeric substrates. We demonstrated the fabrication of patterned copper films on a variety of flexible polymers with minimum feature sizes of 200 μm. And the resulting copper circuit showed strong adhesion with underlying flexible polymeric substrates. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM and SEM. The direct patterning of metallic circuit on flexible polymeric substrate indicates great potential for the use in electronics industry.

  10. Mechanical transduction via a single soft polymer

    Science.gov (United States)

    Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong

    2018-04-01

    Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.

  11. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  12. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  13. Assessing the impacts of Saskatchewan's minimum alcohol pricing regulations on alcohol-related crime.

    Science.gov (United States)

    Stockwell, Tim; Zhao, Jinhui; Sherk, Adam; Callaghan, Russell C; Macdonald, Scott; Gatley, Jodi

    2017-07-01

    Saskatchewan's introduction in April 2010 of minimum prices graded by alcohol strength led to an average minimum price increase of 9.1% per Canadian standard drink (=13.45 g ethanol). This increase was shown to be associated with reduced consumption and switching to lower alcohol content beverages. Police also informally reported marked reductions in night-time alcohol-related crime. This study aims to assess the impacts of changes to Saskatchewan's minimum alcohol-pricing regulations between 2008 and 2012 on selected crime events often related to alcohol use. Data were obtained from Canada's Uniform Crime Reporting Survey. Auto-regressive integrated moving average time series models were used to test immediate and lagged associations between minimum price increases and rates of night-time and police identified alcohol-related crimes. Controls were included for simultaneous crime rates in the neighbouring province of Alberta, economic variables, linear trend, seasonality and autoregressive and/or moving-average effects. The introduction of increased minimum-alcohol prices was associated with an abrupt decrease in night-time alcohol-related traffic offences for men (-8.0%, P prices may contribute to reductions in alcohol-related traffic-related and violent crimes perpetrated by men. Observed lagged effects for violent incidents may be due to a delay in bars passing on increased prices to their customers, perhaps because of inventory stockpiling. [Stockwell T, Zhao J, Sherk A, Callaghan RC, Macdonald S, Gatley J. Assessing the impacts of Saskatchewan's minimum alcohol pricing regulations on alcohol-related crime. Drug Alcohol Rev 2017;36:492-501]. © 2016 Australasian Professional Society on Alcohol and other Drugs.

  14. Polymer reaction engineering, an integrated approach

    NARCIS (Netherlands)

    Meyer, T.; Keurentjes, J.T.F.; Meyer, T.; Keurentjes, J.T.F.

    2005-01-01

    Summary This chapter contains sections titled: Polymer Materials A Short History of Polymer Reaction Engineering The Position of Polymer Reaction Engineering Toward Integrated Polymer Reaction Engineering The Disciplines in Polymer Reaction Engineering The Future: Product-inspired Polymer Reaction

  15. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.

    Science.gov (United States)

    Budkov, Yu A; Kolesnikov, A L; Kiselev, M G

    2015-11-28

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.

  16. Graphene Oxide Monolayer as a Compatibilizer at the Polymer-Polymer Interface for Stabilizing Polymer Bilayer Films against Dewetting.

    Science.gov (United States)

    Kim, Tae-Ho; Kim, Hyeri; Choi, Ki-In; Yoo, Jeseung; Seo, Young-Soo; Lee, Jeong-Soo; Koo, Jaseung

    2016-12-06

    We investigate the effect of adding graphene oxide (GO) sheets at the polymer-polymer interface on the dewetting dynamics and compatibility of immiscible polymer bilayer films. GO monolayers are deposited at the poly(methyl methacrylate) (PMMA)-polystyrene (PS) interface by the Langmuir-Schaefer technique. GO monolayers are found to significantly inhibit the dewetting behavior of both PMMA films (on PS substrates) and PS films (on PMMA substrates). This can be interpreted in terms of an interfacial interaction between the GO sheets and these polymers, which is evidenced by the reduced contact angle of the dewet droplets. The favorable interaction of GO with both PS and PMMA facilitates compatibilization of the immiscible polymer bilayer films, thereby stabilizing their bilayer films against dewetting. This compatibilization effect is verified by neutron reflectivity measurements, which reveal that the addition of GO monolayers broadens the interface between PS and the deuterated PMMA films by 2.2 times over that of the bilayer in the absence of GO.

  17. New Minimum Wage Research: A Symposium.

    Science.gov (United States)

    Ehrenberg, Ronald G.; And Others

    1992-01-01

    Includes "Introduction" (Ehrenberg); "Effect of the Minimum Wage [MW] on the Fast-Food Industry" (Katz, Krueger); "Using Regional Variation in Wages to Measure Effects of the Federal MW" (Card); "Do MWs Reduce Employment?" (Card); "Employment Effects of Minimum and Subminimum Wages" (Neumark,…

  18. Synthesis and functions of well-defined polymer-drug conjugates as efficient nanocarriers for intravesical chemotherapy of bladder cancer(a).

    Science.gov (United States)

    Yu, Qingsong; Zhang, Jiajing; Zhang, Guan; Gan, Zhihua

    2015-04-01

    Novel poly(ethylene glycol) and poly(N-(2-hydroxypropyl)methacrylamide) block copolymer (PEG-b-PHPMA) with well-defined composition was synthesized by RAFT polymerization. Folate and doxorubicin (DOX) were quantitatively introduced into the copolymer. The influences of folate content and pH value on folate receptor (FR) mediated cell endocytosis and pH-responsive DOX release were studied. It has been demonstrated that minimum folate content is needed for the enrichment of hydrophobic folate on the hydrophilic part of polymer conjugates. The cytotoxicity of targetable polymer drug conjugates was much higher than that of non-targetable ones and free DOX. It could be concluded that the folate plays a significant role in targeting and internalization of the conjugates against bladder cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe

    2016-01-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning......-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients...

  20. Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Livi, Francesco; Hagemann, Ole

    2015-01-01

    The results presented demonstrate how the screening of 104 light-absorbing low band gap polymers for suitability in roll coated polymer solar cells can be accomplished through rational synthesis according to a matrix where 8 donor and 13 acceptor units are organized in rows and columns. Synthesis...... silver comb back electrode structure. The matrix organization enables fast identification of active layer materials according to a weighted merit factor that includes more than simply the power conversion efficiency and is used as a method to identify the lead candidates. Based on several characteristics...

  1. Short wave infrared hyperspectral imaging for recovered post-consumer single and mixed polymers characterization

    Science.gov (United States)

    Bonifazi, Giuseppe; Palmieri, Roberta; Serranti, Silvia

    2015-03-01

    Postconsumer plastics from packing and packaging represent about the 60% of the total plastic wastes (i.e. 23 million of tons) produced in Europe. The EU Directive (2014/12/EC) fixes as target that the 60%, by weight, of packaging waste has to be recovered, or thermally valorized. When recovered, the same directive established that packaging waste has to be recycled in a percentage ranging between 55% (minimum) and 60% (maximum). The non-respect of these rules can produce that large quantities of end-of-life plastic products, specifically those utilized for packaging, are disposed-off, with a strong environmental impact. The application of recycling strategies, finalized to polymer recovery, can represent an opportunity to reduce: i) not renewable raw materials (i.e. oil) utilization, ii) carbon dioxide emissions and iii) amount of plastic waste disposed-off. Aim of this work was to perform a full characterization of different end-of-life polymers based products, constituted not only by single polymers but also of mixtures, in order to realize their identification for quality control and/or certification assessment. The study was specifically addressed to characterize the different recovered products as resulting from a recycling plant where classical processing flow-sheets, based on milling, classification and separation, are applied. To reach this goal, an innovative sensing technique, based on the utilization of a HyperSpectral[b] I[/b]maging (HSI) device working in the SWIR region (1000-2500 nm), was investigated. Following this strategy, single polymers and/or mixed polymers recovered were correctly recognized. The main advantage of the proposed approach is linked to the possibility to perform "on-line" analyses, that is directly on the different material flow streams, as resulting from processing, without any physical sampling and classical laboratory "off-line" determination.

  2. Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1-50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the

  3. The minimum test battery to screen for binocular vision anomalies: report 3 of the BAND study.

    Science.gov (United States)

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; Swaminathan, Meenakshi; George, Ronnie; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2018-03-01

    This study aims to report the minimum test battery needed to screen non-strabismic binocular vision anomalies (NSBVAs) in a community set-up. When large numbers are to be screened we aim to identify the most useful test battery when there is no opportunity for a more comprehensive and time-consuming clinical examination. The prevalence estimates and normative data for binocular vision parameters were estimated from the Binocular Vision Anomalies and Normative Data (BAND) study, following which cut-off estimates and receiver operating characteristic curves to identify the minimum test battery have been plotted. In the receiver operating characteristic phase of the study, children between nine and 17 years of age were screened in two schools in the rural arm using the minimum test battery, and the prevalence estimates with the minimum test battery were found. Receiver operating characteristic analyses revealed that near point of convergence with penlight and red filter (> 7.5 cm), monocular accommodative facility ( 1.25 prism dioptres) were significant factors with cut-off values for best sensitivity and specificity. This minimum test battery was applied to a cohort of 305 children. The mean (standard deviation) age of the subjects was 12.7 (two) years with 121 males and 184 females. Using the minimum battery of tests obtained through the receiver operating characteristic analyses, the prevalence of NSBVAs was found to be 26 per cent. Near point of convergence with penlight and red filter > 10 cm was found to have the highest sensitivity (80 per cent) and specificity (73 per cent) for the diagnosis of convergence insufficiency. For the diagnosis of accommodative infacility, monocular accommodative facility with a cut-off of less than seven cycles per minute was the best predictor for screening (92 per cent sensitivity and 90 per cent specificity). The minimum test battery of near point of convergence with penlight and red filter, difference between distance and near

  4. Teaching the Minimum Wage in Econ 101 in Light of the New Economics of the Minimum Wage.

    Science.gov (United States)

    Krueger, Alan B.

    2001-01-01

    Argues that the recent controversy over the effect of the minimum wage on employment offers an opportunity for teaching introductory economics. Examines eight textbooks to determine topic coverage but finds little consensus. Describes how minimum wage effects should be taught. (RLH)

  5. Natural Phenol Polymers: Recent Advances in Food and Health Applications.

    Science.gov (United States)

    Panzella, Lucia; Napolitano, Alessandra

    2017-04-14

    Natural phenol polymers are widely represented in nature and include a variety of classes including tannins and lignins as the most prominent. Largely consumed foods are rich sources of phenol polymers, notably black foods traditionally used in East Asia, but other non-edible, easily accessible sources, e.g., seaweeds and wood, have been considered with increasing interest together with waste materials from agro-based industries, primarily grape pomace and other byproducts of fruit and coffee processing. Not in all cases were the main structural components of these materials identified because of their highly heterogeneous nature. The great beneficial effects of natural phenol-based polymers on human health and their potential in improving the quality of food were largely explored, and this review critically addresses the most interesting and innovative reports in the field of nutrition and biomedicine that have appeared in the last five years. Several in vivo human and animal trials supported the proposed use of these materials as food supplements and for amelioration of the health and production of livestock. Biocompatible and stable functional polymers prepared by peroxidase-catalyzed polymerization of natural phenols, as well as natural phenol polymers were exploited as conventional and green plastic additives in smart packaging and food-spoilage prevention applications. The potential of natural phenol polymers in regenerative biomedicine as additives of biomaterials to promote growth and differentiation of osteoblasts is also discussed.

  6. 30 CFR 75.1431 - Minimum rope strength.

    Science.gov (United States)

    2010-07-01

    ..., including rotation resistant). For rope lengths less than 3,000 feet: Minimum Value=Static Load×(7.0−0.001L) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet...

  7. Minimum data set to measure rehabilitation needs and health outcome after major trauma: application of an international framework.

    Science.gov (United States)

    Hoffman, Karen P; Playford, Diane E; Grill, Eva; Soberg, Helene L; Brohi, Karim

    2016-06-01

    Measurement of long term health outcome after trauma remains non-standardized and ambiguous which limits national and international comparison of burden of injuries. The World Health Organization (WHO) has recommended the application of the International Classification of Function, Disability and Health (ICF) to measure rehabilitation and health outcome worldwide. No previous poly-trauma studies have applied the ICF comprehensively to evaluate outcome after injury. To apply the ICF categorization in patients with traumatic injuries to identify a minimum data set of important rehabilitation and health outcomes to enable national and international comparison of outcome data. A mixed methods design of patient interviews and an on-line survey. An ethnically diverse urban major trauma center in London. Adult patients with major traumatic injuries (poly-trauma) and international health care professionals (HCPs) working in acute and post-acute major trauma settings. Mixed methods investigated patients and health care professionals (HCPs) perspectives of important rehabilitation and health outcomes. Qualitative patient data and quantitative HCP data were linked to ICF categories. Combined data were refined to identify a minimum data set of important rehabilitation and health outcome categories. Transcribed patient interview data (N.=32) were linked to 234 (64%) second level ICF categories. Two hundred and fourteen HCPs identified 121 from a possible 140 second level ICF categories (86%) as relevant and important. Patients and HCPs strongly agreed on ICF body structures and body functions categories which include temperament, energy and drive, memory, emotions, pain and repair function of the skin. Conversely, patients prioritised domestic tasks, recreation and work compared to HCP priorities of self-care and mobility. Twenty six environmental factors were identified. Patient and HCP data were refined to recommend a 109 possible ICF categories for a minimum data set. The

  8. Electrohydrodynamics in nanochannels coated by mixed polymer brushes: effects of electric field strength and solvent quality

    Science.gov (United States)

    Cao, Qianqian; Tian, Xiu; You, Hao

    2018-04-01

    We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.

  9. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  10. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  11. Conjugated Polymers and Oligomers: Structural and Soft Matter Aspects

    DEFF Research Database (Denmark)

    This book identifies modern topics and current trends of structural and soft matter aspects of conjugated polymers and oligomers. Each chapter recognizes an active research line where structural perspective dominates research and therefore the book covers fundamental aspects of persistent...

  12. Enhancement of Polymer Cytocompatibility by Nanostructuring of Polymer Surface

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Kasálková-Slepičková, N.; Bačáková, Lucie; Kolská, Z.; Švorčík, V.

    2012-01-01

    Roč. 2012, č. 2012 (2012), ID527403 ISSN 1687-4110 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : polymer cytocompatibility * polymer surface * nanotechnology Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.547, year: 2012

  13. Natural polymers: an overview

    CSIR Research Space (South Africa)

    John, MJ

    2012-08-01

    Full Text Available The scarcity of natural polymers during the world war years led to the development of synthetic polymers like nylon, acrylic, neoprene, styrene-butadiene rubber (SBR) and polyethylene. The increasing popularity of synthetic polymers is partly due...

  14. Microgel polymer composite fibres

    OpenAIRE

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  15. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  16. Minimum Description Length Block Finder, a Method to Identify Haplotype Blocks and to Compare the Strength of Block Boundaries

    OpenAIRE

    Mannila, H.; Koivisto, M.; Perola, M.; Varilo, T.; Hennah, W.; Ekelund, J.; Lukk, M.; Peltonen, L.; Ukkonen, E.

    2003-01-01

    We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the ...

  17. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions

    Science.gov (United States)

    Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao

    2018-06-05

    A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.

  18. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  19. Mechanical Properties of a Library of Low-Band-Gap Polymers

    DEFF Research Database (Denmark)

    Roth, Bérenger; Savagatrup, Suchol; de los Santos, Nathaniel V.

    2016-01-01

    The mechanical properties of low-band-gap polymers are important for the long-term survivability of roll to-roll processed organic electronic devices. Such devices, e.g., solar cells, displays, and thin-film transistors, must survive the rigors of roll-to-roll coating and also thermal...... of low-band-gap polymers to better understand the connection between molecular structures and mechanical properties in order to design conjugated polymers that permit mechanical robustness and even extreme deformability. While one of the principal conclusions of these experiments is that the structure...... of an isolated molecule only partially determines the mechanical properties another important codeterminant is the packing structure some general trends can be identified. (1) Fused rings tend to increase the modulus and decrease the ductility. (2) Branched side chains have the opposite effect. Despite...

  20. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    Science.gov (United States)

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  1. Confining multiple polymers between sticky walls: a directed walk model of two polymers

    International Nuclear Information System (INIS)

    Wong, Thomas; Rechnitzer, Andrew; Owczarek, Aleksander L

    2014-01-01

    We study a model of two polymers confined to a slit with sticky walls. More precisely, we find and analyse the exact solution of two directed friendly walks in such a geometry on the square lattice. We compare the infinite slit limit, in which the length of the polymer (thermodynamic limit) is taken to infinity before the width of the slit is considered to become large, to the opposite situation where the order of the limits are swapped, known as the half-plane limit when one polymer is modelled. In contrast with the single polymer system we find that the half-plane and infinite slit limits coincide. We understand this result in part due to the tethering of polymers on both walls of the slit. We also analyse the entropic force exerted by the polymers on the walls of the slit. Again the results differ significantly from single polymer models. In a single polymer system both attractive and repulsive regimes were seen, whereas in our two walk model only repulsive forces are observed. We do, however, see that the range of the repulsive force is dependent on the parameter values. This variation can be explained by the adsorption of the walks on opposite walls of the slit. (paper)

  2. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  3. Plasticisation and complexation of certain polymers in supercritical CO2

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2004-09-01

    Full Text Available A polymer system (polyvinylpyrrolidone + polyvinyl acetate-co-crotonic acid) was successfully identified for use as encapsulation material for sensitive actives using supercritical CO2 as plasticisation medium, having the following properties: 1...

  4. 30 CFR 281.30 - Minimum royalty.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Minimum royalty. 281.30 Section 281.30 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.30 Minimum royalty...

  5. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  6. Biomolecule-functionalized polymer brushes.

    Science.gov (United States)

    Jiang, Hui; Xu, Fu-Jian

    2013-04-21

    Functional polymer brushes have been utilized extensively for the immobilization of biomolecules, which is of crucial importance for the development of biosensors and biotechnology. Recent progress in polymerization methods, in particular surface-initiated atom transfer radical polymerization (ATRP), has provided a unique means for the design and synthesis of new biomolecule-functionalized polymer brushes. This current review summarizes such recent research activities. The different preparation strategies for biomolecule immobilization through polymer brush spacers are described in detail. The functional groups of the polymer brushes used for biomolecule immobilization include epoxide, carboxylic acid, hydroxyl, aldehyde, and amine groups. The recent research activities indicate that functional polymer brushes become versatile and powerful spacers for immobilization of various biomolecules to maximize their functionalities. This review also demonstrates that surface-initiated ATRP is used more frequently than other polymerization methods in the designs of new biomolecule-functionalized polymer brushes.

  7. Characterization of additive manufacturing processes for polymer micro parts productions using direct light processing (DLP) method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Pedersen, David Bue; Tosello, Guido

    The process capability of additive manufacturing (AM) for direct production of miniaturized polymer components with micro features is analyzed in this work. The consideration of the minimum printable feature size and obtainable tolerances of AM process is a critical step to establish a process...... chains for the production of parts with micro scale features. A specifically designed direct light processing (DLP) AM machine suitable for precision printing has been used. A test part is designed having features with different sizes and aspect ratios in order to evaluate the DLP AM machine capability...

  8. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  9. Simulation and optimization of a polymer directional coupler electro-optic switch with push pull electrodes

    Science.gov (United States)

    Zheng, Chuan-Tao; Ma, Chun-Sheng; Yan, Xin; Wang, Xian-Yin; Zhang, Da-Ming

    2008-07-01

    Structural model and design technique are proposed for a polymer directional coupler electro-optic switch with rib waveguides and push-pull electrodes, of which the electric field distribution is analyzed by the conformal transforming method and image method. In order to get the minimum mode loss and the minimum switching voltage, the parameters of the waveguide and electrode are optimized, such as the core with, core thickness, buffer layer between the core and the electrode, coupling gap between the waveguides, electrode thickness, electrode width and electrode gap. Switching Characteristics are analyzed, which include the output power, insertion loss, and crosstalk. To realize normal switching function, the fabrication error, spectrum shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082 μm, push-pull switching voltage is 2.14 V, insertion loss is less than 1.17 dB, and crosstalk is less than -30 dB for the designed device.

  10. Characterization of Polymer Surfaces by the Use of Different Wetting Theories Regarding Acid-Base Properties

    Directory of Open Access Journals (Sweden)

    Eduard Kraus

    2017-01-01

    Full Text Available The existing wetting methods for the determination of acid-base properties on solid surfaces are discussed. Striving for a better understanding of the adhesive polymer interactions in adhesively joined polymers, the methods of Berger and van Oss-Chaudhury-Good were found as the most suitable methods for the investigation of wetting on solid polymer surfaces. Methods of nonlinear systems by Della Volpe and Siboni were adapted and evaluated on plastic surfaces. In the context of these investigations various data of the surface free energy as well as its components have been identified for a number of polymer surfaces by application of spatial equation solutions.

  11. Radiation synthesis of polymer polyol

    International Nuclear Information System (INIS)

    Guo Jianmei; Zeng Xinmiao; Zhou Chengfei; Cao Wei; Zhai Tong; Wu Dezhen

    2010-01-01

    The polymer polyol was synthesized by γ irradiation. The properties of polymer polyol synthesized with different radiation dose were studied. The experiment result showed the radiation dose hadn't significant influence on the hydroxyl value of polymer polyol. The sample with different solid content had different hydroxyl value. When the radiation dose is between 1 to 12 kGy, the viscosity and hydroxyl value of polymer polyol were increased with the increment of radiation dose. When radiation dose is between 1 to 12 kGy, with the increment of radiation dose, viscosity of polymer polyol was rapidly increased, and the content solid of sample has few change. When radiation dose is higher than 20 kGy, the viscosity and hydroxyl value of polymer polyol have gradually increase with the increment of radiation dose. The size of polymer particles is 0.1-0.6 μm. The value of 150 mesh filter was 100%. The polymer polyol may be used as PU foam and elastomer. (authors)

  12. Developing a minimum dataset for nursing team leader handover in the intensive care unit: A focus group study.

    Science.gov (United States)

    Spooner, Amy J; Aitken, Leanne M; Corley, Amanda; Chaboyer, Wendy

    2018-01-01

    Despite increasing demand for structured processes to guide clinical handover, nursing handover tools are limited in the intensive care unit. The study aim was to identify key items to include in a minimum dataset for intensive care nursing team leader shift-to-shift handover. This focus group study was conducted in a 21-bed medical/surgical intensive care unit in Australia. Senior registered nurses involved in team leader handovers were recruited. Focus groups were conducted using a nominal group technique to generate and prioritise minimum dataset items. Nurses were presented with content from previous team leader handovers and asked to select which content items to include in a minimum dataset. Participant responses were summarised as frequencies and percentages. Seventeen senior nurses participated in three focus groups. Participants agreed that ISBAR (Identify-Situation-Background-Assessment-Recommendations) was a useful tool to guide clinical handover. Items recommended to be included in the minimum dataset (≥65% agreement) included Identify (name, age, days in intensive care), Situation (diagnosis, surgical procedure), Background (significant event(s), management of significant event(s)) and Recommendations (patient plan for next shift, tasks to follow up for next shift). Overall, 30 of the 67 (45%) items in the Assessment category were considered important to include in the minimum dataset and focused on relevant observations and treatment within each body system. Other non-ISBAR items considered important to include related to the ICU (admissions to ICU, staffing/skill mix, theatre cases) and patients (infectious status, site of infection, end of life plan). Items were further categorised into those to include in all handovers and those to discuss only when relevant to the patient. The findings suggest a minimum dataset for intensive care nursing team leader shift-to-shift handover should contain items within ISBAR along with unit and patient specific

  13. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  14. A systematic method for identifying vital areas at complex nuclear facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin; Hockert, John

    2005-05-01

    Identifying the areas to be protected is an important part of the development of measures for physical protection against sabotage at complex nuclear facilities. In June 1999, the International Atomic Energy Agency published INFCIRC/225/Rev.4, 'The Physical Protection of Nuclear Material and Nuclear Facilities.' This guidance recommends that 'Safety specialists, in close cooperation with physical protection specialists, should evaluate the consequences of malevolent acts, considered in the context of the State's design basis threat, to identify nuclear material, or the minimum complement of equipment, systems or devices to be protected against sabotage.' This report presents a structured, transparent approach for identifying the areas that contain this minimum complement of equipment, systems, and devices to be protected against sabotage that is applicable to complex nuclear facilities. The method builds upon safety analyses to develop sabotage fault trees that reflect sabotage scenarios that could cause unacceptable radiological consequences. The sabotage actions represented in the fault trees are linked to the areas from which they can be accomplished. The fault tree is then transformed (by negation) into its dual, the protection location tree, which reflects the sabotage actions that must be prevented in order to prevent unacceptable radiological consequences. The minimum path sets of this fault tree dual yield, through the area linkage, sets of areas, each of which contains nuclear material, or a minimum complement of equipment, systems or devices that, if protected, will prevent sabotage. This method also provides guidance for the selection of the minimum path set that permits optimization of the trade-offs among physical protection effectiveness, safety impact, cost and operational impact.

  15. Polymer Nanocomposites with Prescribed Morphology: Going Beyond Nanoparticle-Filled Polymers (Preprint)

    National Research Council Canada - National Science Library

    Vaia, Richard A; Maguire, John F

    2006-01-01

    Polymer nanocomposites (PNCs), i.e., nanoparticles (spheres, rods, and plates) dispersed in a polymer matrix, have garnered substantial academic and industrial interest since their inception, ca. 1990...

  16. 9 CFR 147.51 - Authorized laboratory minimum requirements.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Authorized laboratory minimum requirements. 147.51 Section 147.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Authorized Laboratories and Approved Tests § 147.51 Authorized laboratory minimum requirements. These minimum...

  17. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    Science.gov (United States)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  18. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Molecular Design of Antifouling Polymer Brushes Using Sequence-Specific Peptoids.

    Science.gov (United States)

    Lau, King Hang Aaron; Sileika, Tadas S; Park, Sung Hyun; Sousa, Ana Maria Leal; Burch, Patrick; Szleifer, Igal; Messersmith, Phillip B

    2015-01-07

    Material systems that can be used to flexibly and precisely define the chemical nature and molecular arrangement of a surface would be invaluable for the control of complex biointerfacial interactions. For example, progress in antifouling polymer biointerfaces that prevent non-specific protein adsorption and cell attachment, which can significantly improve the performance of an array of biomedical and industrial applications, is hampered by a lack of chemical models to identify the molecular features conferring their properties. Poly(N-substituted glycine) "peptoids" are peptidomimetic polymers that can be conveniently synthesized with specific monomer sequences and chain lengths, and are presented as a versatile platform for investigating the molecular design of antifouling polymer brushes. Zwitterionic antifouling polymer brushes have captured significant recent attention, and a targeted library of zwitterionic peptoid brushes with a different charge densities, hydration, separations between charged groups, chain lengths, and grafted chain densities, is quantitatively evaluated for their antifouling properties through a range of protein adsorption and cell attachment assays. Specific zwitterionic brush designs were found to give rise to distinct but subtle differences in properties. The results also point to the dominant roles of the grafted chain density and chain length in determining the performance of antifouling polymer brushes.

  20. A New Ultra Fast Conduction Mechanism in Insulating Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Xu

    2011-01-01

    Full Text Available A brand new phenomenon, namely, electrical conduction via soliton-like ultra fast space charge pulses, recently identified in unfilled cross-linked polyethylene, is shown for the first time to occur in insulating polymer nanocomposites and its characteristics correlated with the electromechanical properties of nanostructured materials. These charge pulses are observed to cross the insulation under low electrical field in epoxy-based nanocomposites containing nanosilica particles with relative weights of 1%, 5%, 10%, and 20% at speeds orders of magnitude higher than those expected for carriers in insulating polymers. The characteristics of mobility, magnitude and repetition rate for both positive and negative charge pulses are studied in relation to nanofiller concentration. The results show that the ultra fast charge pulses (packets are affected significantly by the concentration of nanoparticles. An explanation is presented in terms of a new conduction mechanism where the mechanical properties of the polymer and movement of polymer chains play an important role in the injection and transport of charge in the form of pulses. Here, the charge transport is not controlled by traps. Instead, it is driven by the contribution of polarization and the resultant electromechanical compression, which is substantially affected by the introduction of nanoparticles into the base polymer.

  1. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  2. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces.

    Science.gov (United States)

    Wei, Qiangbing; Yu, Bo; Wang, Xiaolong; Zhou, Feng

    2014-06-01

    Stratified polymer brushes are fabricated using microcontact printing (μCP) of initiator integrated polydopamine (PDOPBr) on polymer brush surfaces and the following surface initiated atom transfer radical polymerization (SI-ATRP). It is found that the surface energy, chemically active groups, and the antifouling ability of the polymer brushes affect transfer efficiency and adhesive stability of the polydopamine film. The stickiness of the PDOPBr pattern on polymer brush surfaces is stable enough to perform continuous μCP and SI-ATRP to prepare stratified polymer brushes with a 3D topography, which have broad applications in cell and protein patterning, biosensors, and hybrid surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multi-scale entropic depletion phenomena in polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debapriya [Department of Materials Science, University of Illinois, Urbana, Illinois 61801 (United States); Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu [Department of Materials Science, University of Illinois, Urbana, Illinois 61801 (United States); Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2015-06-07

    We apply numerical polymer integral equation theory to study the entropic depletion problem for hard spheres dissolved in flexible chain polymer melts and concentrated solutions over an exceptionally wide range of polymer radius of gyration to particle diameter ratios (R{sub g}/D), particle-monomer diameter ratios (D/d), and chain lengths (N) including the monomer and oligomer regimes. Calculations are performed based on a calibration of the effective melt packing fraction that reproduces the isobaric dimensionless isothermal compressibility of real polymer liquids. Three regimes of the polymer-mediated interparticle potential of mean force (PMF) are identified and analyzed in depth. (i) The magnitude of the contact attraction that dominates thermodynamic stability scales linearly with D/d and exhibits a monotonic and nonperturbative logarithmic increase with N ultimately saturating in the long chain limit. (ii) A close to contact repulsive barrier emerges that grows linearly with D/d and can attain values far in excess of thermal energy for experimentally relevant particle sizes and chain lengths. This raises the possibility of kinetic stabilization of particles in nanocomposites. The barrier grows initially logarithmically with N, attains a maximum when 2R{sub g} ∼ D/2, and then decreases towards its asymptotic long chain limit as 2R{sub g} ≫ D. (iii) A long range (of order R{sub g}) repulsive, exponentially decaying component of the depletion potential emerges when polymer coils are smaller than, or of order, the nanoparticle diameter. Its amplitude is effectively constant for 2R{sub g} ≤ D. As the polymer becomes larger than the particle, the amplitude of this feature decreases extremely rapidly and becomes negligible. A weak long range and N-dependent component of the monomer-particle pair correlation function is found which is suggested to be the origin of the long range repulsive PMF. Implications of our results for thermodynamics and miscibility are

  5. New developments in thermally stable polymers

    Science.gov (United States)

    Hergenrother, Paul M.

    1991-01-01

    Advances in high-temperature polymers since 1985 are discussed with the emphasis on the chemistry. High-temperature polymers refer to materials that exhibit glass-transition temperatures greater than 200 C and have the chemical structure expected to provide high thermooxidative stability. Specific polymers or series of polymers were selected to show how the chemical structure influences certain properties. Poly(arylene ethers) and polyimides are the two principal families of polymers discussed. Recent work on poly(arylene ethers) has concentrated on incorporating heterocyclic units within the polymer backbone. Recent polyimide work has centered on the synthesis of new polymers from novel monomers, several containing the trifluoromethyl group strategically located on the molecule. Various members in each of these polymer families display a unique combination of properties, heretofore unattainable. Other families of polymers are also briefly discussed with a polymer from an AB maleimidobenzocyclobutene exhibiting an especially attractive combination of properties.

  6. Polymer Solar Cells – Non Toxic Processing and Stable Polymer Photovoltaic Materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (~1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient...... and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding...... synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells...

  7. Sedimentation across the central California oxygen minimum zone: an alternative coastal upwelling sequence.

    Science.gov (United States)

    Vercoutere, T.L.; Mullins, H.T.; McDougall, K.; Thompson, J.B.

    1987-01-01

    Distribution, abundance, and diversity of terrigenous, authigenous, and biogenous material provide evidence of the effect of bottom currents and oxygen minimum zone (OMZ) on continental slope sedimentation offshore central California. Three major OMZ facies are identified, along the upper and lower edges of OMZ and one at its core.-from Authors

  8. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  9. Theory of polymer blends

    International Nuclear Information System (INIS)

    Curro, J.G.; Schweizer, K.S.

    1989-01-01

    We have recently developed a new theoretical approach to the study of polymer liquids. The theory is based on the ''reference interaction site model'' (RISM theory) of Chandler and Andersen, which has been successful in describing the structure of small molecule liquids. We have recently extended our polymer RISM theory to the case of polymer blends. In the present investigation we have applied this theory to two special binary blends: (1) the athermal mixture where we isolate structural effects, and (2) the isotopic mixture in which structurally identical polymer chains interact with dissimilar attractive interactions. By studying these two special cases we are able to obtain insights into the molecular factors which control the miscibility in polymer mixtures. 18 refs., 2 figs

  10. Structure-Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors.

    Science.gov (United States)

    Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho

    2017-11-22

    We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

  11. Shape memory polymers from benzoxazine-modified epoxy

    International Nuclear Information System (INIS)

    Rimdusit, Sarawut; Lohwerathama, Montha; Dueramae, Isala; Hemvichian, Kasinee; Kasemsiri, Pornnapa

    2013-01-01

    Novel shape memory polymers (SMPs) were prepared from benzoxazine-modified epoxy resin. Specimens consisting of aromatic epoxy (E), aliphatic epoxy (N), Jeffamine D230 (D) and BA-a benzoxazine monomer (B) were evaluated. The mole ratio of D/B was used as a mixed curing agent for an epoxy system with a fixed E/N. The effects of BA-a content on the thermal, mechanical and shape memory properties of epoxy-based shape memory polymers (SMPs) were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), flexural test and shape recovery test. The results revealed that the obtained SMPs exhibited a higher flexural strength and flexural modulus than those of the unmodified epoxy-based SMP at room temperature and at 20 ° C above glass transition temperature (T g ). The presence of 1 mol BA-a as a curing agent provided the specimen with the highest T g , i.e. about 72 ° C higher than that of epoxy-based SMP cured by Jeffamine D230. All SMP samples needed only a few minutes to fully recover to their original shape. The samples exhibited high shape fixity (98–99%) and shape recovery ratio (90–100%). In addition, the recovery stress values increased with increasing BA-a mole ratio from 20 to 38 kPa, when BA-a up to 1 mol ratio was added. All of the SMP samples exhibited only minimum change in their flexural strength at the end of a 100 recovery cycles test. (paper)

  12. Minimum Price Guarantees In a Consumer Search Model

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten); A. Parakhonyak (Alexei)

    2009-01-01

    textabstractThis paper is the first to examine the effect of minimum price guarantees in a sequential search model. Minimum price guarantees are not advertised and only known to consumers when they come to the shop. We show that in such an environment, minimum price guarantees increase the value of

  13. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate ... TG/DTA studies showed the thermal stability of the polymer electrolytes. .... are observed while comparing pure XRD spectra with .... batteries as its operating temperature is normally in the .... chain ion movements and the conductivity of the polymer.

  14. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  15. 40 CFR 721.6900 - Polymer of bisphenol A di-glyc-i-dal ether, substituted al-kenes, and but-a-diene.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of bisphenol A di-glyc-i-dal... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6900 Polymer of bisphenol A di-glyc-i... subject to reporting. (1) The chemical substances identified generically as polymer of bisphenol A...

  16. Vacuum ultraviolet photochemistry of polymers

    International Nuclear Information System (INIS)

    Skurat, Vladimir

    2003-01-01

    The interaction of vacuum UV radiation (wavelength range from 1 to 200 nm) with polymers is interesting for fundamental and applied sciences. This interest is stimulated by various reasons: - Wide applications of polymeric materials in semiconductor technology, where they are used as photoresist materials in combination with VUV light sources (lasers, excimer lamps, synchrotron radiation and others). - Polymers are widely used as spacecraft materials in the last 20 years. On near-Earth orbits, the polymeric materials of spacecraft surfaces are destroyed by solar radiation. - VUV radiation is one of the components of gas discharge plasmas, which are used for treatment of polymer, with the aim of modifying their surface properties. The main features of interaction of VUV radiation with polymers are discussed. The spectra of intrinsic absorption of saturated polymers (polyethylene, polypropylene, polytetrafluoroethylene and others) are situated mainly in the VUV region. The photochemistry of polymers in the VUV region is very different from their photochemistry at wavelengths longer than 200 nm, where the absorption spectra belong to impurities and polymer defects. The polymer photochemistry in the VUV region is wavelength-dependent. At wavelengths longer than about 140 nm, the main role is played by transformations of primary-formed singlet excited molecules. At shorter wavelengths the role of photoionization increases progressively and the main features of VUV photolysis become similar to the picture of radiolysis, with significant contributions of charge pairs and triplet excited molecules. Very important features of VUV light absorption in polymers are high absorption coefficients. Because of this, the surface layers absorb large doses of energy. This leads to very profound transformation of material on the polymer surface. In particular for polymers which are considered destroyed by radiation (for example, perfluoropolymers), this leads to VUV-induced erosion

  17. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koffas, Telly Stelianos [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to

  18. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.

    Science.gov (United States)

    Zhu, Ming; Huang, Xingyi; Yang, Ke; Zhai, Xing; Zhang, Jun; He, Jinliang; Jiang, Pingkai

    2014-11-26

    The interfacial region plays a critical role in determining the electrical properties and energy storage density of dielectric polymer nanocomposites. However, we still know a little about the effects of electrical properties of the interfacial regions on the electrical properties and energy storage of dielectric polymer nanocomposites. In this work, three types of core-shell structured polymer@BaTiO3 nanoparticles with polymer shells having different electrical properties were used as fillers to prepare ferroelectric polymer nanocomposites. All the polymer@BaTiO3 nanoparticles were prepared by surface-initiated reversible-addition-fragmentation chain transfer (RAFT) polymerization, and the polymer shells were controlled to have the same thickness. The morphology, crystal structure, frequency-dependent dielectric properties, breakdown strength, leakage currents, energy storage capability, and energy storage efficiency of the polymer nanocomposites were investigated. On the other hand, the pure polymers having the same molecular structure as the shells of polymer@BaTiO3 nanoparticles were also prepared by RAFT polymerization, and their electrical properties were provided. Our results show that, to achieve nanocomposites with high discharged energy density, the core-shell nanoparticle filler should simultaneously have high dielectric constant and low electrical conductivity. On the other hand, the breakdown strength of the polymer@BaTiO3-based nanocomposites is highly affected by the electrical properties of the polymer shells. It is believed that the electrical conductivity of the polymer shells should be as low as possible to achieve nanocomposites with high breakdown strength.

  19. Characterisation of polymers, 1

    CERN Document Server

    Crompton, Roy

    2008-01-01

    This essential guide to Polymer Characterisation is a complete compendium of methodologies that have evolved for the determination of the chemical composition of polymers. This 478-page book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. Volume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different m

  20. Wage inequality, minimum wage effects and spillovers

    OpenAIRE

    Stewart, Mark B.

    2011-01-01

    This paper investigates possible spillover effects of the UK minimum wage. The halt in the growth in inequality in the lower half of the wage distribution (as measured by the 50:10 percentile ratio) since the mid-1990s, in contrast to the continued inequality growth in the upper half of the distribution, suggests the possibility of a minimum wage effect and spillover effects on wages above the minimum. This paper analyses individual wage changes, using both a difference-in-differences estimat...

  1. Fast formation of hydrophilic and reactive polymer micropatterns by photocatalytic lithography method

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Wang, Chih-Feng; Chen, Jem-Kun; Hsieh, Chih-Chiao; Chen, Po-An

    2013-01-01

    An approach is developed for the fast formation of a hydrophilic pattern on superhydrophobic substrates with good contrast due to the large wettability contrast between superhydrophobic and superhydrophilic areas. It can be used for forming a polymer pattern with reactive functional groups. TiO 2 nanoparticles were grafted with long alkyl chains and then coated on substrates to produce superhydrophobic films. Photocatalytic degradation of the grafted alkyl chains was effected with UV light irradiation and resulted in transition from superhydrophobicity to superhydrophilicity. After UV light irradiation through a mask for 30 s, dyes or polymers were adsorbed on the photoinduced superhydrophilic areas to make micropatterns. The photoinduced superhydrophilic switching properties can be tuned by changing the alkyl chain length. The ninhydrin assay was adapted to identify free amino groups of polymers on the patterned area. Polymer patterns with free amino groups can be achieved.

  2. Fast formation of hydrophilic and reactive polymer micropatterns by photocatalytic lithography method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chi-Jung, E-mail: changcj@fcu.edu.tw [Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 407, Taiwan (China); Wang, Chih-Feng [Department of Materials Science and Engineering, I-Shou University, 1, Syuecheng Road, Dashu District, Kaohsiung 840, Taiwan (China); Chen, Jem-Kun [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan (China); Hsieh, Chih-Chiao; Chen, Po-An [Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 407, Taiwan (China)

    2013-12-01

    An approach is developed for the fast formation of a hydrophilic pattern on superhydrophobic substrates with good contrast due to the large wettability contrast between superhydrophobic and superhydrophilic areas. It can be used for forming a polymer pattern with reactive functional groups. TiO{sub 2} nanoparticles were grafted with long alkyl chains and then coated on substrates to produce superhydrophobic films. Photocatalytic degradation of the grafted alkyl chains was effected with UV light irradiation and resulted in transition from superhydrophobicity to superhydrophilicity. After UV light irradiation through a mask for 30 s, dyes or polymers were adsorbed on the photoinduced superhydrophilic areas to make micropatterns. The photoinduced superhydrophilic switching properties can be tuned by changing the alkyl chain length. The ninhydrin assay was adapted to identify free amino groups of polymers on the patterned area. Polymer patterns with free amino groups can be achieved.

  3. High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole-isoindigo acceptor polymer

    NARCIS (Netherlands)

    Li, Z.; Xu, X.; Zhang, W.; Genene, Z.; Mammo, W.; Yartsev, A.; Andersson, M.R.; Janssen, R.A.J.; Wang, E.

    2017-01-01

    In this work, we synthesized and characterized two new n-type polymers PTDPP-PyDPP and PIID-PyDPP. The former polymer is composed of pyridine-flanked diketopyrrolopyrrole (PyDPP) and thiophene-flanked diketopyrrolopyrrole (TDPP). The latter polymer consists of PyDPP and isoindigo (IID). PIID-PyDPP

  4. The application of radiothermoluminescence method to the analysis of polymers and polymer composites

    International Nuclear Information System (INIS)

    Nikol'skii, V.G.

    1982-01-01

    The basic results concerning the examination of copolymers, cross-linked polymers and polyblends structure, obtained by means of radiothermoluminescence method, are reviewed. The main emphasis is on the glow curve shape analysis that allows: a) to determine quantitatively the random copolymer composition; b) to reveal the existence of blocks in macromolecules; c) to examine the grafted copolymer distribution in polymer matrix; d) to estimate the degree of cross-linking both for individual polymers and heterogeneous polyblends; e) to study the mutual solubility of polymers. (author)

  5. Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers.

    Science.gov (United States)

    Carlsson, Nils; Borde, Annika; Wölfel, Sebastian; Kerman, Björn; Larsson, Anette

    2011-04-01

    We investigated how the Bradford assay for measurements of protein released from a drug formulation may be affected by a concomitant release of a pharmaceutical polymer used to formulate the protein delivery device. The main result is that polymer-caused perturbations of the Coomassie dye absorbance at the Bradford monitoring wavelength (595nm) can be identified and corrected by recording absorption spectra in the region of 350-850mm. The pharmaceutical polymers Carbopol and chitosan illustrate two potential types of perturbations in the Bradford assay, whereas the third polymer, hydroxypropylmethylcellulose (HPMC), acts as a nonperturbing control. Carbopol increases the apparent absorbance at 595nm because the polymer aggregates at the low pH of the Bradford protocol, causing a turbidity contribution that can be corrected quantitatively at 595nm by measuring the sample absorbance at 850nm outside the dye absorption band. Chitosan is a cationic polymer under Bradford conditions and interacts directly with the anionic Coomassie dye and perturbs its absorption spectrum, including 595nm. In this case, the Bradford method remains useful if the polymer concentration is known but should be used with caution in release studies where the polymer concentration may vary and needs to be measured independently. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Statistical properties of curved polymer

    Indian Academy of Sciences (India)

    respective ground states decide the conformational statistics of the polymer. For semiflexible polymers, the relevant non-dimensional quantity is lp/L, where lp is the persistence length (which is proportional to the bending modulus k) and L is the contour length of the polymer. In the limit, lp/L ≪ 1, the polymer behaves as.

  7. Minimum Variance Portfolios in the Brazilian Equity Market

    Directory of Open Access Journals (Sweden)

    Alexandre Rubesam

    2013-03-01

    Full Text Available We investigate minimum variance portfolios in the Brazilian equity market using different methods to estimate the covariance matrix, from the simple model of using the sample covariance to multivariate GARCH models. We compare the performance of the minimum variance portfolios to those of the following benchmarks: (i the IBOVESPA equity index, (ii an equally-weighted portfolio, (iii the maximum Sharpe ratio portfolio and (iv the maximum growth portfolio. Our results show that the minimum variance portfolio has higher returns with lower risk compared to the benchmarks. We also consider long-short 130/30 minimum variance portfolios and obtain similar results. The minimum variance portfolio invests in relatively few stocks with low βs measured with respect to the IBOVESPA index, being easily replicable by individual and institutional investors alike.

  8. Thermo-cleavable solvents for printing conjugated polymers: Application in polymer solar cells

    DEFF Research Database (Denmark)

    Jørgensen, Mikkel; Hagemann, Ole; Alstrup, Jan

    2009-01-01

    large-scale production of polymer solar cells using screen printing. Screen-printed solar cells are still very inferior to state of the art P3HT/PCBM technology, but it is our view that it is necessary to explore these printing technologies if polymer solar cells are to ever become commercial products.......The synthesis and characterization of a number of so-called thermo-cleavable solvents are described with their application in all-air, all-solution and all-screen-printed polymer solar cells. These solvents were developed to meet some requirements for printing techniques such as long “open time...... (TGA) and high-temperature NMR established the onset temperature of decomposition, the rate of the reaction and the nature of the products. Printing experiments with inks based on these solvents together with conjugated polymers are exemplified for polymer solar cell devices to show how they enable...

  9. Development of Polymer Blends in order to Toughening of Polymers: A review

    Directory of Open Access Journals (Sweden)

    Carlos Bruno Barreto Luna

    2015-05-01

    Full Text Available Polymers are materials of large use in the various sectors of the world economy. The use of polymeric materials in daily life, instead of the classic materials has increased in recent decades. However, for certain structural applications polymers need to get tougher. One of the principal toughening techniques based on physical mixture of two or more components, forming the so-called polymer blends. The addition of rubber or not vulcanized in polymer compositions is reported in the literature as a means of generating mixtures of easy processing, and economically advantageous to increase the toughness of the thermoplastic matrix of interest. Moreover, it can be an alternative for the recycling of waste tires and footwear coming from industries, as well reduce harmful effects on the environment. Therefore, the present study aims to present a review of the definitions, benefits, thermodynamic fundamentals and toughening polymers.

  10. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of alkanepolyol and poly-alkyl... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked... substance identified generically as a polymer of alkane-polyol and polyalkylpolyisocyanatocarbomonocy- cle...

  11. Proton Conducting Polymer Membrane Comprised of 2-Acrylamido-2-Methylpropanesulfonic Acid

    National Research Council Canada - National Science Library

    Walker, Charles

    2002-01-01

    In order to identify a proton-conducting polymer membrane suitable for replacing Nafion 117 in direct methanol fuel cells, we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS...

  12. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  13. Minimum Covers of Fixed Cardinality in Weighted Graphs.

    Science.gov (United States)

    White, Lee J.

    Reported is the result of research on combinatorial and algorithmic techniques for information processing. A method is discussed for obtaining minimum covers of specified cardinality from a given weighted graph. By the indicated method, it is shown that the family of minimum covers of varying cardinality is related to the minimum spanning tree of…

  14. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    Science.gov (United States)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  15. Fluorocarbon polymer formation, characterization, and reduction in polycrystalline-silicon etching with CF4-added plasma

    International Nuclear Information System (INIS)

    Xu Songlin; Sun Zhiwen; Chen Arthur; Qian Xueyu; Podlesnik, Dragan

    2001-01-01

    Addition of CF 4 into HBr-based plasma for polycrystalline-silicon gate etching reduces the deposition of an etch byproduct, silicon oxide, onto the chamber wall but tends to generate organic polymer. In this work, a detailed study has been carried out to analyze the mechanism of polymerization and to characterize the polymer composition and quantity. The study has shown that the polymer formation is due to the F-radical depletion by H atoms dissociated from HBr. The composition of the polymer changes significantly with CF 4 concentration in the gas feed, and the polymer deposition rate depends on CF 4 % and other process conditions such as source power, bias power, and pressure. Surface temperature also affects the polymer deposition rate. Adding O 2 into the plasma can clean the organic polymer, but the O 2 amount has to be well controlled in order to prevent the formation of silicon oxide. Based on a series of tests to evaluate polymer deposition and oxide cleaning with O 2 addition, an optimized process regime in terms of O 2 -to-CF 4 ratio has been identified to simultaneously suppress the polymer and oxide deposition so that the etch process becomes self-cleaning

  16. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  17. Quantification of tension to explain bias dependence of driven polymer translocation dynamics

    Science.gov (United States)

    Suhonen, P. M.; Piili, J.; Linna, R. P.

    2017-12-01

    Motivated by identifying the origin of the bias dependence of tension propagation, we investigate methods for measuring tension propagation quantitatively in computer simulations of driven polymer translocation. Here, the motion of flexible polymer chains through a narrow pore is simulated using Langevin dynamics. We measure tension forces, bead velocities, bead distances, and bond angles along the polymer at all stages of translocation with unprecedented precision. Measurements are done at a standard temperature used in simulations and at zero temperature to pin down the effect of fluctuations. The measured quantities were found to give qualitatively similar characteristics, but the bias dependence could be determined only using tension force. We find that in the scaling relation τ ˜Nβfdα for translocation time τ , the polymer length N , and the bias force fd, the increase of the exponent β with bias is caused by center-of-mass diffusion of the polymer toward the pore on the cis side. We find that this diffusion also causes the exponent α to deviate from the ideal value -1 . The bias dependence of β was found to result from combination of diffusion and pore friction and so be relevant for polymers that are too short to be considered asymptotically long. The effect is relevant in experiments all of which are made using polymers whose lengths are far below the asymptotic limit. Thereby, our results also corroborate the theoretical prediction by Sakaue's theory [Polymers 8, 424 (2016), 10.3390/polym8120424] that there should not be bias dependence of β for asymptotically long polymers. By excluding fluctuations we also show that monomer crowding at the pore exit cannot have a measurable effect on translocation dynamics under realistic conditions.

  18. Who Benefits from a Minimum Wage Increase?

    OpenAIRE

    John W. Lopresti; Kevin J. Mumford

    2015-01-01

    This paper addresses the question of how a minimum wage increase affects the wages of low-wage workers. Most studies assume that there is a simple mechanical increase in the wage for workers earning a wage between the old and the new minimum wage, with some studies allowing for spillovers to workers with wages just above this range. Rather than assume that the wages of these workers would have remained constant, this paper estimates how a minimum wage increase impacts a low-wage worker's wage...

  19. Relation between exciplex formation and photovoltaic properties of PPV polymer-based blends

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chunhong; Neher, Dieter [Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany); Kietzke, Thomas [Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany); Institute of Materials Research and Engineering (IMRE), Research Link 3, 117602 Singapore (Singapore); Kumke, Michael [Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Golm (Germany); Hoerhold, Hans-Heinrich [Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Humboldtstr. 10, 07743 Jena (Germany)

    2007-03-06

    As a new record for pure polymer-blend solar cells, an energy conversion efficiency (ECE) of 1.7% was recently achieved for M3EH-PPV:CN-ether-PPV (Poly[oxa-1,4-phenylene-1,2-(1-cyano)-ethylene-2,5-dioctyloxy-1,4-phenylene-1,2- (2-cyano)-ethylene-1,4-phenylene]) based devices [T. Kietzke, H.-H. Hoerhold, D. Neher, Chem. Mater. 17 (2005) 6532]. Even though that photoluminescence experiments indicated that 95% of the photogenerated excitions were dissociated in the blend, the external quantum efficiency reached only 31%. Thus more than 2/3 of the dissociated excitons were lost for the energy conversion. In order to identify the processes which limit the photovoltaic efficiency of polymer-blend solar cells, studies on the steady state and time-resolved photoluminescence of the individual polymer and polymer blend were performed. In the polymer-blend layer, we observed a considerable long-wavelength emission due to exciplex formation. The exciplex emission can be reduced by thermal annealing. At the same time the IPCE of the blend-based device increased, indicating a more efficient generation of free-charge carriers. These findings lead to the conclusion that charge-carrier recombination via exciplex formation constitutes one of the loss channels which limits the efficiency of polymer solar cells. (author)

  20. How the type of input function affects the dynamic response of conducting polymer actuators

    Science.gov (United States)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-10-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.

  1. How the type of input function affects the dynamic response of conducting polymer actuators

    International Nuclear Information System (INIS)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-01-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators. (paper)

  2. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  3. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    Science.gov (United States)

    Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano

    2016-11-01

    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.

  4. Inorganic polymers and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  5. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  6. The minimum wage in the Czech enterprises

    Directory of Open Access Journals (Sweden)

    Eva Lajtkepová

    2010-01-01

    Full Text Available Although the statutory minimum wage is not a new category, in the Czech Republic we encounter the definition and regulation of a minimum wage for the first time in the 1990 amendment to Act No. 65/1965 Coll., the Labour Code. The specific amount of the minimum wage and the conditions of its operation were then subsequently determined by government regulation in February 1991. Since that time, the value of minimum wage has been adjusted fifteenth times (the last increase was in January 2007. The aim of this article is to present selected results of two researches of acceptance of the statutory minimum wage by Czech enterprises. The first research makes use of the data collected by questionnaire research in 83 small and medium-sized enterprises in the South Moravia Region in 2005, the second one the data of 116 enterprises in the entire Czech Republic (in 2007. The data have been processed by means of the standard methods of descriptive statistics and of the appropriate methods of the statistical analyses (Spearman correlation coefficient of sequential correlation, Kendall coefficient, χ2 - independence test, Kruskal-Wallis test, and others.

  7. Chain confinement, phase transitions, and lamellar structure in semicrystalline polymers, polymer blends and polymer nanocomposites

    Science.gov (United States)

    Chen, Huipeng

    Recent studies suggest that there are three phase fractions in semicrystalline polymers, the crystalline, the mobile amorphous and the rigid amorphous phases. Due to the distinct properties of the rigid amorphous fraction, RAF, it has been investigated for more than twenty years. In this thesis, a general method using quasi-isothermal temperature-modulated differential scaning calorimetry, DSC, is provided for the first time to obtain the temperature dependent RAF and the other two fractions, crystalline fraction and mobile amorphous fraction, MAF. For poly(ethylene terephthalate), PET, our results show RAF was vitrified during quasi-isothermal cooling after crystallization had been completed and became totally devitrified during quasi-isothermal heating before the start of melting. Several years after people initially discovered the existence of RAF, another issue arose relating to the physical location of RAF and mobile amorphous fraction, MAF, within a lamellar stack model. Two very different models to describe the location of RAF were proposed. In the Heterogeneous Stack Model, HET, RAF is located outside the lamellar stacks. In the Homogeneous Stack Model, HSM, RAF was located inside the lamellar stacks. To determine the lamellar structure of semicrystalline polymers comprising three phase, a general method is given in this thesis by using a combination of the DSC and small angle X-ray scattering, SAXS techniques. It has been applied to Nylon 6, isotactic polystyrene, iPS, and PET. It was found for all of these materials, the HSM model is correct to describe the lamellar structure. In addition to the determination of lamellar structures, this method can also provide the exact fraction of MAF inside and outside lamellar stacks for binary polymer blends. For binary polymer blends, MAF, normally is located partially inside and partially outside the lamellar stacks. However, the quantification of the MAF inside and outside the lamellar stacks has now been provided

  8. How unprecedented a solar minimum was it?

    Science.gov (United States)

    Russell, C T; Jian, L K; Luhmann, J G

    2013-05-01

    The end of the last solar cycle was at least 3 years late, and to date, the new solar cycle has seen mainly weaker activity since the onset of the rising phase toward the new solar maximum. The newspapers now even report when auroras are seen in Norway. This paper is an update of our review paper written during the deepest part of the last solar minimum [1]. We update the records of solar activity and its consequent effects on the interplanetary fields and solar wind density. The arrival of solar minimum allows us to use two techniques that predict sunspot maximum from readings obtained at solar minimum. It is clear that the Sun is still behaving strangely compared to the last few solar minima even though we are well beyond the minimum phase of the cycle 23-24 transition.

  9. Piezoelectricity in polymers

    International Nuclear Information System (INIS)

    Kepler, R.G.; Anderson, R.A.

    1980-01-01

    Piezoelectricity and related properties of polymers are reviewed. After presenting a historical overview of the field, the mathematical basis of piezo- and pyroelectricity is summarized. We show how the experimentally measured quantities are related to the changes in polarization and point out the serious inequlity between direct and converse piezoelectric coefficients in polymers. Theoretical models of the various origins of piezo- and pyroelectricity, which include piezoelectricity due to inhomogeneous material properties and strains, are reviewed. Relaxational effects are also considered. Experimental techniques are examined and the results for different materials are presented. Because of the considerable work in recent years polyimylidene fluoride, this polymer receives the majority of the attention. The numerous applications of piezo-and pyroelectric polymers are mentioned. This article concludes with a discussion of the possible role of piezo- and pyroelectricity in biological system

  10. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Minimum-Cost Reachability for Priced Timed Automata

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Fehnker, Ansgar; Hune, Thomas Seidelin

    2001-01-01

    This paper introduces the model of linearly priced timed automata as an extension of timed automata, with prices on both transitions and locations. For this model we consider the minimum-cost reachability problem: i.e. given a linearly priced timed automaton and a target state, determine...... the minimum cost of executions from the initial state to the target state. This problem generalizes the minimum-time reachability problem for ordinary timed automata. We prove decidability of this problem by offering an algorithmic solution, which is based on a combination of branch-and-bound techniques...

  12. Stiff quantum polymers

    OpenAIRE

    Kleinert, H.

    2009-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  13. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  14. Chain propagator, mass, and universality in polymer solutions from Brownian relativity

    International Nuclear Information System (INIS)

    Mezzasalma, Stefano A.

    2005-01-01

    A Lagrangian theory for single chains in polymer solutions is addressed via a recent Brownian relativity. By employing generalized diffusive coordinates, statements of covariance and diffusivity invariance result into free particle Lagrangians, where mass turns out to rise as a universal spacetime property. It descends from lowering diffusivity (or curving spacetime), so identifying a mechanism which conceptually resemble those ruling macromolecular scaling laws. An extended chain propagator recovers the Gaussian end-to-end distribution and, in the limits of time-like and space-like orbits, the dualism for diffusive paths and polymer random-walks

  15. Nanostructured polymer membranes for proton conduction

    Science.gov (United States)

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  16. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    Science.gov (United States)

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

  17. Conducting Polymers for Neutron Detection

    International Nuclear Information System (INIS)

    Clare Kimblin; Kirk Miller; Bob Vogel; Bill Quam; Harry McHugh; Glen Anthony; Steve Jones; Mike Grover

    2007-01-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  18. Stochastic variational approach to minimum uncertainty states

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, F.; Viola, L. [Dipartimento di Fisica, Padova Univ. (Italy)

    1995-05-21

    We introduce a new variational characterization of Gaussian diffusion processes as minimum uncertainty states. We then define a variational method constrained by kinematics of diffusions and Schroedinger dynamics to seek states of local minimum uncertainty for general non-harmonic potentials. (author)

  19. Effects of polymer-nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration.

    Science.gov (United States)

    Hor, Jyo Lyn; Wang, Haonan; Fakhraai, Zahra; Lee, Daeyeon

    2018-03-28

    We explore the effect of confinement and polymer-nanoparticle interactions on the viscosity of unentangled polymers undergoing capillary rise infiltration (CaRI) in dense packings of nanoparticles. In CaRI, a polymer is thermally induced to wick into the dense packings of nanoparticles, leading to the formation of polymer-infiltrated nanoparticle films, a new class of thin film nanocomposites with extremely high concentrations of nanoparticles. To understand the effect of this extreme nanoconfinement, as well as polymer-nanoparticle interactions on the polymer viscosity in CaRI films, we use two polymers that are known to have very different interactions with SiO2 nanoparticles. Using in situ spectroscopic ellipsometry, we monitor the polymer infiltration process, from which we infer the polymer viscosity based on the Lucas-Washburn model. Our results suggest that physical confinement increases the viscosity by approximately two orders of magnitude. Furthermore, confinement also increases the glass transition temperature of both polymers. Thus, under extreme nanoconfinement, the physical confinement has a more significant impact than the polymer-nanoparticle interactions on the viscosity of unentangled polymers, measured through infiltration dynamics, as well as the glass transition temperature. These findings will provide fundamental frameworks for designing processes to enable the fabrication of CaRI nanocomposite films with a wide range of nanoparticles and polymers.

  20. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  1. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  2. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    Science.gov (United States)

    Smith, G. B.; Deller, C. A.; Swift, P. D.; Gentle, A.; Garrett, P. D.; Fisher, W. K.

    2002-04-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior.

  3. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    International Nuclear Information System (INIS)

    Smith, G.B.; Deller, C.A.; Swift, P.D.; Gentle, A.; Garrett, P.D.; Fisher, W.K.

    2002-01-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior

  4. The Use of Chemical Modification of Polymer Waste for Obtaining Polymer Flocculants

    Institute of Scientific and Technical Information of China (English)

    W.W.Sulkowski; K.Nowak; A.Sulkowska; A.Wolin; ska; S.Malanka; W.M.Baldur; D.Pentak

    2007-01-01

    1 Results Chemical modification of polymer plastic wastes to useful products can be one of the way of effective waste plastics management (chemical recycling). Chemical modification of polymers and polymer plastic wastes can yield products with suitable physical and chemical properties. In consequence they can be used as polyelectrolytes[1]. The variety of pollutants, universality of various water and sewage treatment technologies, introduction of new water quality improved technologies have caused a gr...

  5. Minimum entropy production principle

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel

    2013-01-01

    Roč. 8, č. 7 (2013), s. 9664-9677 ISSN 1941-6016 Institutional support: RVO:68378271 Keywords : MINEP Subject RIV: BE - Theoretical Physics http://www.scholarpedia.org/article/Minimum_entropy_production_principle

  6. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  7. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  8. Hierarchical assembly of branched supramolecular polymers from (cyclic Peptide)-polymer conjugates.

    Science.gov (United States)

    Koh, Ming Liang; Jolliffe, Katrina A; Perrier, Sébastien

    2014-11-10

    We report the synthesis and assembly of (N-methylated cyclic peptide)-polymer conjugates for which the cyclic peptide is attached to either the α- or both α- and ω- end groups of a polymer. A combination of chromatographic, spectroscopic, and scattering techniques reveals that the assembly of the conjugates follows a two-level hierarchy, initially driven by H-bond formation between two N-methylated cyclic peptides, followed by unspecific, noncovalent aggregation of this peptide into small domains that behave as branching points and lead to the formation of branched supramolecular polymers.

  9. Polymers for energy storage and conversion

    CERN Document Server

    Mittal, Vikas

    2013-01-01

    One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for

  10. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    Science.gov (United States)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  11. Classical ultraviolet photoelectron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Salaneck, W.R.

    2009-01-01

    Although X-ray photoelectron spectroscopy of polymers was well established by Clark and coworkers in the 1970s, ultraviolet photoelectron spectroscopy of polymer films, was developed later. Previous to the 1970s, the first attempts to use ultraviolet light on polymer films took the form of appearance potential (valence band edge) measurements. Only some years later could the full valence band region of thin polymer films, including insulating polymers, semiconducting polymers and electrically conducting polymers. The development of what might be termed 'classical ultraviolet photoelectron spectroscopy' of polymer films may be loosely based upon a variety of issues, including adapting thin polymer film technology to ultra high vacuum studies, the widespread use of helium resonance lamps for studies of solid surfaces, the combined advent of practical and sufficient theoretical-computational methods. The advent of, and the use of, easily available synchrotron radiation for multi-photon spectroscopies, nominally in the area of the near UV, is not included in the term 'classical'. At the same time, electrically conducting polymers were discovered, leading to applications of the corresponding semiconducting polymers, which added technologically driven emphasis to this development of ultraviolet photoelectron spectroscopy for polymer materials. This paper traces a limited number of highlights in the evolution of ultraviolet photoelectron spectroscopy of polymers, from the 1970s through to 2008. Also, since this issue is dedicated to Prof. Kazuhiko Seki, who has been a friend and competitor for over two decades, the author relies on some of Prof. Seki's earlier research, unpublished, on who-did-what-first. Prof. Seki's own contributions to the field, however, are discussed in other articles in this issue.

  12. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  13. STUDY OF SURFACE MODIFIED POLYMERS IN THE MODIFICATION OF NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    G. V. Popov

    2014-01-01

    Full Text Available The comparative study of change of surface tension of solutions of some commercial rubbers before and after thermal ageing technique du-Nui, analyzed the features of change of surface tension of solutions of various rubbers in the presence of a mixture of fullerenes. Calculations of the Gibbs energy and the analysis of the obtained data to predict the behavior of polymer systems when changes are made to mix of fullerenes in a wide concentration range. When comparing the results of changes in Gibbs energy and the surface tension in fluids rubbers shown that mentioned above in solutions of elastomers aged, than the control. This fact confirms the initial chapeau of physic-chemical interactions of molecules fullerenes by segments of the Kuna and end groups of the polymer chains, as it is known that when thermal-oxidative degradation of rubbers, respectively the number of segments of the Kuna and branched loose ends of macromolecules that are free to react with fullerenes in solution, free from spatial constraints. A comparative analysis of the interaction of rubbers with different chemical composition with double branches has shown that it is easier to just react and has minimum energy polibutadien interaction that has to do with lack of branching and no radicals in its structure and in the backbone chain. The maximum energy of interaction with Fullerenes have SBS rubber because it has large styrene blocks in the main polymer chain that causes the spatial constraints to direct contact with fullerene molecules, you can assume that the interaction is only low-molecular fraction of Fullerenes mixture, possessing the necessary dimensions. As a result of the study shows that the application of the method of separation ring (Du-Nui allows you to predict the properties of rubber with modified nanomaterial’s with minimal labor costs.

  14. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  15. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    Science.gov (United States)

    Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  16. Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Bundgaard, Eva; Carlé, Jon Eggert

    2011-01-01

    A comparative photochemical stability study of a wide range of π-conjugated polymers relevant to polymer solar cells is presented. The behavior of each material has been investigated under simulated sunlight (1 sun, 1000 W m−2, AM 1.5G) and ambient atmosphere. Degradation was monitored during age...... ageing combining UV-visible and infrared spectroscopies. From the comparison of the collected data, the influence of the polymer chemical structure on its stability has been discussed. General rules relative to the polymer structure–stability relationship are proposed....

  17. Organic polymer chemistry in the context of novel processes

    International Nuclear Information System (INIS)

    DeSimone, Joseph M.; North Carolina State University, Raleigh, NC; University of North Carolina, Chapel Hill, NC; Mecham, Sue J.; Farrell, Crista L.

    2016-01-01

    This paper was written to shed light on a series of what some have stated are not so obvious connections that link polymer synthesis in supercritical CO2 to cancer treatment and vaccines, nonflammable polymer electrolytes for lithium ion batteries, and 3D printing. In telling this story, we also attempt to show the value of versatility in applying one’s primary area of expertise to address pertinent questions in science and in society. In this Outlook, we attempted to identify key factors to enable a versatile and nimble research effort to take shape in an effort to influence diverse fields and have a tangible impact in the private sector through the translation of discoveries into the marketplace.

  18. Minimum emittance in TBA and MBA lattices

    Science.gov (United States)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  19. Minimum emittance in TBA and MBA lattices

    International Nuclear Information System (INIS)

    Xu Gang; Peng Yuemei

    2015-01-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 3 1/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design. (authors)

  20. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore.

    Science.gov (United States)

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-08-30

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu 2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu 2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu 2+ . The detection limits of the polymer and vinyl monomer towards Cu 2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer.

  1. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore

    Science.gov (United States)

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-01-01

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu2+. The detection limits of the polymer and vinyl monomer towards Cu2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer. PMID:28867764

  2. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Formation of microcracks is a critical problem in polymers and polymer composites during their service in structural applications. Development and coalescence of microcracks would bring about catastrophic failure of the materials and then reduce their lifetimes. Therefore, early sensing, diagnosis and repair of microcracks become necessary for removing the latent perils. In this context, the materials possessing self-healing function are ideal for long-term operation. Self-repairing polymers and polymer composites have attracted increasing research interests. Attempts have been made to develop solutions in this field. The present article reviews state-of-art of the achievements on the topic. According to the ways of healing, the smart materials are classified into two categories: (i intrinsic self-healing ones that are able to heal cracks by the polymers themselves, and (ii extrinsic in which healing agent has to be pre-embedded. The advances in this field show that selection and optimization of proper repair mechanisms are prerequisites for high healing efficiency. It is a challenging job to either invent new polymers with inherent crack repair capability or integrate existing materials with novel healing system.

  3. Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties

    Directory of Open Access Journals (Sweden)

    Luis Marcelo Lozano-Sánchez

    2018-04-01

    Full Text Available Sheets of polycaprolactone (PCL and ultra-high molecular weight polyethylene (UHMWPE were fabricated and shaped by the Single-Point Incremental Forming process (SPIF. The performance of these biocompatible polymers in SPIF was assessed through the variation of four main parameters: the diameter of the forming tool, the spindle speed, the feed rate, and the step size based on a Box–Behnken design of experiments of four variables and three levels. The design of experiments allowed us to identify the parameters that most affect the forming of PCL and UHMWPE. The study was completed by means of a deep characterization of the thermal and structural properties of both polymers. These properties were correlated to the performance of the polymers observed in SPIF, and it was found that the polymer chains are oriented as a consequence of the SPIF processing. Moreover, by X-ray diffraction it was proved that polymer chains behave differently on each surface of the fabricated parts, since the chains on the surface in contact with the forming tool are oriented horizontally, while on the opposite surface they are oriented in the vertical direction. The unit cell of UHMWPE is distorted, passing from an orthorhombic cell to a monoclinic due to the slippage between crystallites. This slippage between crystallites was observed in both PCL and UHMWPE, and was identified as an alpha star thermal transition located in the rubbery region between the glass transition and the melting point of each polymer.

  4. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira; Hayashi, Mayumi; Ito, Shotaro; Goseki, Raita; Higashihara, Tomoya; Hadjichristidis, Nikolaos

    2015-01-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic

  5. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    Science.gov (United States)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  6. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    Cervantes-MartInez, Alfredo; Maldonado, Amir

    2007-01-01

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  7. 41 CFR 50-202.2 - Minimum wage in all industries.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Minimum wage in all... Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 202-MINIMUM WAGE DETERMINATIONS Groups of Industries § 50-202.2 Minimum wage in all industries. In all industries, the minimum wage applicable to...

  8. Validating clustering of molecular dynamics simulations using polymer models

    Directory of Open Access Journals (Sweden)

    Phillips Joshua L

    2011-11-01

    Full Text Available Abstract Background Molecular dynamics (MD simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our

  9. Applicability of X-ray reflectometry to studies of polymer solar cell degradation

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Gevorgyan, Suren; Schleputz, C.M.

    2008-01-01

    Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough...... interfaces of the polymer solar cell constituent layers seriously obstruct the sensitivity of the technique, rendering it impossible to elucidate changes in the layer/interface structure at the sub-nanometer level. (c) 2008 Elsevier B.V. All rights reserved....

  10. High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.

  11. The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers.

    Science.gov (United States)

    Chen, Bo; Jerger, Katherine; Fréchet, Jean M J; Szoka, Francis C

    2009-12-16

    Water-soluble polymers for the delivery of chemotherapeutic drugs passively target solid tumors as a consequence of reduced renal clearance and the enhanced permeation and retention (EPR) effect. Elimination of the polymers in the kidney occurs due to filtration through biological nanopores with a hydrodynamic diameter comparable to the polymer. Therefore we have investigated chemical features that may broadly be grouped as "molecular architecture" such as: molecular weight, chain flexibility, number of chain ends and branching, to learn how they impact polymer elimination. In this report we describe the synthesis of four pairs of similar molecular weight cyclic and linear polyacrylic acid polymers grafted with polyethylene glycol (23, 32, 65, 114 kDa) with low polydispersities using ATRP and "click" chemistry. The polymers were radiolabeled with (125)I and their pharmacokinetics and tissue distribution after intravenous injection were determined in normal and C26 adenocarcinoma tumored BALB/c mice. Cyclic polymers above the renal threshold of 30 kDa had a significantly longer elimination time (between 10 and 33% longer) than did the comparable linear polymer (for the 66 kDa cyclic polymer, t(1/2,beta)=35+/-2 h) and a greater area under the serum concentration versus time curve. This resulted in a greater tumor accumulation of the cyclic polymer than the linear polymer counterpart. Thus water-soluble cyclic comb polymers join a growing list of polymer topologies that show greatly extended circulation times compared to their linear counterparts and provide alternative polymer architecture for use as drug carriers.

  12. Conducting polymer hydrogels

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2017-01-01

    Roč. 71, č. 2 (2017), s. 269-291 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aerogel * conducting polymers * conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  13. Reversible networks in supramolecular polymers

    NARCIS (Netherlands)

    Havermans - van Beek, D.J.M.

    2007-01-01

    Non–covalent interactions between low molecular weight polymers form the basis of supramolecular polymers. The material properties of such polymers are determined by the strength and lifetime of the non–covalent reversible interactions. Due to the reversibility of the interactions between the low

  14. Water Soluble Polymers for Pharmaceutical Applications

    OpenAIRE

    Veeran Gowda Kadajji; Guru V. Betageri

    2011-01-01

    Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1) synthetic and (2) natural. Drug polymer conjugates, block copolymers, hydrogel...

  15. A Thieno[2,3-b]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors

    KAUST Repository

    Chen, Hung-Yang

    2017-12-28

    A novel fused heterocycle-flanked diketopyrrolopyrrole (DPP) monomer, thieno[2,3-b]pyridine diketopyrrolopyrrole (TPDPP), was designed and synthesized. When copolymerized with 3,4-difluorothiophene using Stille coupling polymerization, the new polymer pTPDPP-TF possesses a highly planar conjugated polymer backbone due to the fused thieno[2,3-b]pyridine flanking unit that effectively alleviates the steric hindrance with both the central DPP core and the 3,4-difluorothiophene repeat unit. This new polymer exhibits a high electron affinity (EA) of −4.1 eV and was successfully utilized as an n-type polymer semiconductor for applications in organic field-effect transistors (OFETs) and all polymer solar cells. A promising n-type charge carrier mobility of 0.1 cm2 V–1 s–1 was obtained in bottom-contact, top-gate OFETs, and a power conversion efficiency (PCE) of 2.72% with a high open-circuit voltage (VOC) of 1.04 V was achieved for all polymer solar cells using PTB7-Th as the polymer donor.

  16. A Thieno[2,3-b]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors

    KAUST Repository

    Chen, Hung-Yang; Nikolka, Mark; Wadsworth, Andrew; Yue, Wan; Onwubiko, Ada; Xiao, Mingfei; White, Andrew J. P.; Baran, Derya; Sirringhaus, Henning; McCulloch, Iain

    2017-01-01

    A novel fused heterocycle-flanked diketopyrrolopyrrole (DPP) monomer, thieno[2,3-b]pyridine diketopyrrolopyrrole (TPDPP), was designed and synthesized. When copolymerized with 3,4-difluorothiophene using Stille coupling polymerization, the new polymer pTPDPP-TF possesses a highly planar conjugated polymer backbone due to the fused thieno[2,3-b]pyridine flanking unit that effectively alleviates the steric hindrance with both the central DPP core and the 3,4-difluorothiophene repeat unit. This new polymer exhibits a high electron affinity (EA) of −4.1 eV and was successfully utilized as an n-type polymer semiconductor for applications in organic field-effect transistors (OFETs) and all polymer solar cells. A promising n-type charge carrier mobility of 0.1 cm2 V–1 s–1 was obtained in bottom-contact, top-gate OFETs, and a power conversion efficiency (PCE) of 2.72% with a high open-circuit voltage (VOC) of 1.04 V was achieved for all polymer solar cells using PTB7-Th as the polymer donor.

  17. Claisen thermally rearranged (CTR) polymers

    Science.gov (United States)

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-01-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  18. 29 CFR 525.13 - Renewal of special minimum wage certificates.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Renewal of special minimum wage certificates. 525.13... minimum wage certificates. (a) Applications may be filed for renewal of special minimum wage certificates.... (c) Workers with disabilities may not continue to be paid special minimum wages after notice that an...

  19. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    Science.gov (United States)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  20. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation.

    Science.gov (United States)

    Saphier, Sigal; Karton, Yishai

    2010-02-01

    Novel azo polymers were prepared for colonic drug delivery with a release mechanism based on structural features of azo derivatives designed for rapid bacterial degradation leading to soluble polymers. Two Salicylazo derivatives were prepared and conjugated as side chains at different ratios to methacrylic acid-methyl methacrylate copolymers (Eudragits). The azo compounds were designed to have a hydrophilic and a hydrophobic part on opposite sides of the azo bond. Upon reduction of the azo bonds, the hydrophobic part is released, resulting in a more water soluble polymer. The solubility of the polymeric films was studied relative to Eudragit S known to dissolve toward the end of the small intestine. One of the two azo derivatives prepared gave rise to polymers, which showed reduced solubility relative to Eudragit S. These polymers were subjected to reduction tests in anaerobic rat cecal suspensions by following the release of the hydrophobic product. Reduction rate was found to be rapid, comparable to that of Sulfasalazine. Studies on the azopolymeric films in anaerobic rat cecal suspensions, showed that these polymers dissolve faster than in sterilized suspensions. Solid dosage forms may be coated with these polymers to provide an efficient delivery system to the colon with a rapid release mechanism. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  1. Self-healing of polymer modified concrete

    Directory of Open Access Journals (Sweden)

    Abd_Elmoaty M. Abd_Elmoaty

    2011-06-01

    Full Text Available Self healing phenomenon of concrete has been observed in traditional, fibrous, self compacting concrete. This phenomenon occurred mainly due to the presence of unhydrated cement particles in the presence of water. Mechanism of polymer in concrete depends on creating a layer and net of polymer around cement particles which enhances the properties of polymer modified concrete. This mechanism may affect the self healing of this type of concrete. This work aims to study the presence of the self healing phenomenon in polymer modified concrete and the related parameters. An experimental investigation on self healing of polymer modified concrete was undertaken. In this research work, effect of polymer type, polymer dose, cement content, cement type, w/cm ratio and age of damage were studied. The healing process extended up to 60 days. Ultrasonic pulse velocity measurements were used to evaluate the healing process. Results indicated that, the self healing phenomenon existed in polymer modified concrete as in traditional concrete. The increase of polymer dose increases the healing degree at the same healing time. This increase depends on polymer type. Also, the decrease of w/cm ratio reduces the self healing degree while the use of Type V Portland cement improves the self healing process compared with Type I Portland cement. Cement content has an insignificant effect on healing process for both concrete with and without polymer. In addition, the increase of damage age decreases the efficiency of self healing process.

  2. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening...

  3. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  4. Indaceno-Based Conjugated Polymers for Polymer Solar Cells.

    Science.gov (United States)

    Yin, Yuli; Zhang, Yong; Zhao, Liancheng

    2018-01-04

    Polymer solar cells have received considerable attention due to the advantages of low material cost, tunable band gaps, ultralight weight, and high flexible properties, and they have been a promising organic photovoltaic technology for alternative non-renewable fossil fuels for the past decade. Inspired by these merits, numerous state-of-the-art organic photovoltaic materials have been constructed. Among them, indaceno-based polymer materials have made an impact in obtaining an impressive power conversion efficiency of more than 11%, which shows the momentous potential of this class of materials for commercial applications. In this review, recent progress of indaceno-based organic polymer solar cells are reviewed, and the structure-property device performance correlations of the reported materials are highlighted. Then, common regularities of these successful cases are collected, and encouraging viewpoints on the further development of more exciting indaceno-based organic photovoltaic materials are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  6. Slippery self-lubricating polymer surfaces

    Science.gov (United States)

    Aizenberg, Joanna; Aizenberg, Michael; Cui, Jiaxi; Dunn, Stuart; Hatton, Benjamin; Howell, Caitlin; Kim, Philseok; Wong, Tak Sing; Yao, Xi

    2018-05-08

    The present disclosure describes a strategy to create self-healing, slippery self-lubricating polymers. Lubricating liquids with affinities to polymers can be utilized to get absorbed within the polymer and form a lubricant layer (of the lubricating liquid) on the polymer. The lubricant layer can repel a wide range of materials, including simple and complex fluids (water, hydrocarbons, crude oil and bodily fluids), restore liquid-repellency after physical damage, and resist ice, microorganisms and insects adhesion. Some exemplary applications where self-lubricating polymers will be useful include energy-efficient, friction-reduction fluid handling and transportation, medical devices, anti-icing, optical sensing, and as self-cleaning, and anti-fouling materials operating in extreme environments.

  7. Ion beam modification of polymers

    International Nuclear Information System (INIS)

    Sofield, C.J.; Sugden, S.; Ing, J.; Bridwell, L.B.; Wang, Y.Q.

    1993-01-01

    The implantation of polymers has received considerable attention in recent years, primarily to examine doping of conducting polymers and to increase the surface conductivity (by many orders of magnitude) of highly insulating polymers. The interest in these studies was partly motivated by possible applications to microelectronic device fabrication. More recently it has been observed that ion implantation can under some conditions lead to the formation of a hard (e.g. as hard as steel, ca. 3 MPa) and conducting surface layer. This paper will review the ion beam modification of polymers resulting from ion implantation with reference to fundamental ion-solid interactions. This leads us to examine whether or not implantation of polymers is a contradiction in terms. (Author)

  8. An Empirical Analysis of the Relationship between Minimum Wage ...

    African Journals Online (AJOL)

    An Empirical Analysis of the Relationship between Minimum Wage, Investment and Economic Growth in Ghana. ... In addition, the ratio of public investment to tax revenue must increase as minimum wage increases since such complementary changes are more likely to lead to economic growth. Keywords: minimum wage ...

  9. Polymer coating embolism from intravascular medical devices - a clinical literature review.

    Science.gov (United States)

    Chopra, Amitabh M; Mehta, Monik; Bismuth, Jean; Shapiro, Maksim; Fishbein, Michael C; Bridges, Alina G; Vinters, Harry V

    Over the past three decades, lubricious (hydrophobic and/or hydrophilic) polymer-coated devices have been increasingly adopted by interventional physicians and vascular surgeons to access and treat a wider range of clinical presentations. Recent clinical literature highlights the presence of polymer coating emboli within the anatomy - a result of coating separation from an intravascular device - and associates it with a range of adverse clinical sequelae. The 2015 U.S. Food and Drug Administration safety communication titled "Lubricious Coating Separation from Intravascular Medical Devices" acknowledges these concerns and concludes that it will work with stakeholders to develop nonclinical test methodologies, establish performance criteria, and identify gaps in current national and international device standards for coating integrity performance. Despite this communication and multiple case reports from interventional physicians, pathologists, dermatologists and other involved physician specialties, polymer coating embolism remains clinically underrecognized. This article consolidates the available literature on polymer coating embolism (1986-2016) and highlights the following relevant information for the physician: (a) the history and elusive nature of polymer coating embolism; (b) potential incidence rates of this phenomenon; (c) reported histologic findings and clinical effects of polymer emboli in the anatomy; (d) the importance of the collaborative clinician-pathologist partnership to report polymer embolism findings; and (e) the importance to study particulate release from intravascular devices so as to further understand and potentially evolve coated interventional technologies. Preliminary research on coatings highlights the potential of using iterations of coatings on medical devices that attain the desired therapeutic result and mitigate or eliminate particulates altogether. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. 12 CFR 3.6 - Minimum capital ratios.

    Science.gov (United States)

    2010-01-01

    ... should have well-diversified risks, including no undue interest rate risk exposure; excellent control... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Minimum capital ratios. 3.6 Section 3.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MINIMUM CAPITAL RATIOS; ISSUANCE...

  11. 12 CFR 615.5330 - Minimum surplus ratios.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Minimum surplus ratios. 615.5330 Section 615.5330 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM FUNDING AND FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Surplus and Collateral Requirements § 615.5330 Minimum...

  12. Phylogenetic Applications of the Minimum Contradiction Approach on Continuous Characters

    Directory of Open Access Journals (Sweden)

    Marc Thuillard

    2009-01-01

    Full Text Available We describe the conditions under which a set of continuous variables or characters can be described as an X-tree or a split network. A distance matrix corresponds exactly to a split network or a valued X-tree if, after ordering of the taxa, the variables values can be embedded into a function with at most a local maximum and a local minimum, and crossing any horizontal line at most twice. In real applications, the order of the taxa best satisfying the above conditions can be obtained using the Minimum Contradiction method. This approach is applied to 2 sets of continuous characters. The first set corresponds to craniofacial landmarks in Hominids. The contradiction matrix is used to identify possible tree structures and some alternatives when they exist. We explain how to discover the main structuring characters in a tree. The second set consists of a sample of 100 galaxies. In that second example one shows how to discretize the continuous variables describing physical properties of the galaxies without disrupting the underlying tree structure.

  13. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  14. Laser-evoked coloration in polymers

    International Nuclear Information System (INIS)

    Zheng, H.Y.; Rosseinsky, David; Lim, G.C.

    2005-01-01

    Laser-evoked coloration in polymers has long been a major aim of polymer technology for potential applications in product surface decoration, marking personalised images and logos. However, the coloration results reported so far were mostly attributed to laser-induced thermal-chemical reactions. The laser-irradiated areas are characterized with grooves due to material removal. Furthermore, only single color was laser-induced in any given polymer matrix. To induce multiple colors in a given polymer matrix with no apparent surface material removal is most desirable and challenging and may be achieved through laser-induced photo-chemical reactions. However, little public information is available at present. We report that two colors of red and green have been produced on an initially transparent CPV/PVA samples through UV laser-induced photo-chemical reactions. This is believed the first observation of laser-induced multiple-colors in the given polymer matrix. It is believed that the colorants underwent photo-effected electron transfer with suitable electron donors from the polymers to change from colorless bipyridilium Bipm 2+ to the colored Bipm + species. The discovery may lead to new approaches to the development of laser-evoked multiple coloration in polymers

  15. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-01-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  16. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  17. Planar-Processed Polymer Transistors.

    Science.gov (United States)

    Xu, Yong; Sun, Huabin; Shin, Eul-Yong; Lin, Yen-Fu; Li, Wenwu; Noh, Yong-Young

    2016-10-01

    Planar-processed polymer transistors are proposed where the effective charge injection and the split unipolar charge transport are all on the top surface of the polymer film, showing ideal device characteristics with unparalleled performance. This technique provides a great solution to the problem of fabrication limitations, the ambiguous operating principle, and the performance improvements in practical applications of conjugated-polymer transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively i...

  19. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  20. Inelastic neutron scattering from synthetic and biological polymers

    International Nuclear Information System (INIS)

    White, J.W.

    1976-01-01

    Neutron elastic and inelastic scattering measurements have provided many unique insights into structure, and by reviewing progress on synthetics, important differences likely to arise in biological systems are identified and a direction for studies of the latter is suggested. By neutron inelastic scattering it is possible to measure the frequency of thermally excited interatomic and intermolecular vibrations in crystals. With perfect organic and inorganic crystals the technique is now classical and has given great insight into the crystal forces responsible for the observed structures as well as the phase transitions they undergo. The study of polymer crystals immediately presents two problems of disorder: (1) Macroscopic disorder arises because the sample is a mixture of amorphous and crystalline fractions, and it may be acute enough to inhibit growth of a single crystal large enough for neutron studies. (2) Microscopic disorder in the packing of polymer chains in the ''crystalline'' regions is indicated by broadening of Bragg peaks. Both types of disorder problem arise in biological systems. The methods by which they were partially overcome to allow neutron measurements with synthetic polymers are described but first a classical example of the determination of interatomic forces by inelastic neutron scattering is given

  1. Laser micromachining of chemically altered polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, T.

    1998-08-01

    During the last decade laser processing of polymers has become an important field of applied and fundamental research. One of the most promising proposals, to use laser ablation as dry etching technique in photolithography, has not yet become an industrial application. Many disadvantages of laser ablation, compared to conventional photolithography, are the result of the use of standard polymers. These polymers are designed for totally different applications, but are compared to the highly specialized photoresist. A new approach to laser polymer ablation will be described; the development of polymers, specially designed for high resolution laser ablation. These polymers have photolabile groups in the polymer backbone, which decompose upon laser irradiation or standard polymers are modified for ablation at a specific irradiation wavelength. The absorption maximum can be tailored for specific laser emissino lines, e.g. 351, 308 and 248 nm lines of excimer lasers. The authors show that with this approach many problems associated with the application of laser ablation for photolithography can be solved. The mechanism of ablation for these photopolymers is photochemical, whereas for most of the standard polymers this mechanism is photothermal. The photochemical decomposition mechanism results in high resolution ablation with no thermal damage at the edges of the etched structures. In addition there are no redeposited ablation products or surface modifications of the polymer after ablation.

  2. 5 CFR 551.601 - Minimum age standards.

    Science.gov (United States)

    2010-01-01

    ... ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Child Labor § 551.601 Minimum age standards. (a) 16-year... subject to its child labor provisions, with certain exceptions not applicable here. (b) 18-year minimum... occupation found and declared by the Secretary of Labor to be particularly hazardous for the employment of...

  3. 12 CFR 932.8 - Minimum liquidity requirements.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Minimum liquidity requirements. 932.8 Section... CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL REQUIREMENTS § 932.8 Minimum liquidity requirements. In addition to meeting the deposit liquidity requirements contained in § 965.3 of this chapter, each Bank...

  4. Conductive polymer/superconductor bilayer structures

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, R.K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole-coated YBa 2 Cu 3 O 7-∂ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-∂ film, the oxidized (conductive) polymer depresses Tc by up to 50K. In a similar fashion, the oxidation state of the polymer is found to modulate reversibly the magnitude of J c , the superconducting critical current. Thus, a new type of molecular switch for controlling superconductivity is demonstrated. Electrochemical, resistance vs. temperature, conact resistance, atomic force microscopy and scanning electron microscopy measurements are utilized to explore the polymer/superconductor interactions

  5. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  6. Automated identification and tracking of polar-cap plasma patches at solar minimum

    Directory of Open Access Journals (Sweden)

    R. Burston

    2014-03-01

    Full Text Available A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS, inverts slant total electron content (TEC data from ground-based Global Navigation Satellite System (GNSS receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

  7. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    Science.gov (United States)

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  8. Polymer deformation and filling modes during microembossing

    Science.gov (United States)

    Rowland, Harry D.; King, William P.

    2004-12-01

    This work investigates the initial stages of polymer deformation during hot embossing micro-manufacturing at processing temperatures near the glass transition temperature (Tg) of polymer films having sufficient thickness such that polymer flow is not supply limited. Several stages of polymer flow can be observed by employing stamp geometries of various widths and varying imprint conditions of time and temperature to modulate polymer viscosity. Experiments investigate conditions affecting cavity filling phenomena, including apparent polymer viscosity. Stamps with periodic ridges of height and width 4 µm and periodicity 30, 50 and 100 µm emboss trenches into polymethyl methacrylate films at Tg - 10 °C time, temperature and load are correlated with replicated polymer shape, height and imprinted area. Polymer replicates are measured by atomic force microscopy and inspected by scanning electron microscopy. Cavity size and the temperature dependence of polymer viscosity significantly influence the nature of polymer deformation in hot embossing micro-manufacturing and must be accounted for in rational process design.

  9. [Hospitals failing minimum volumes in 2004: reasons and consequences].

    Science.gov (United States)

    Geraedts, M; Kühnen, C; Cruppé, W de; Blum, K; Ohmann, C

    2008-02-01

    In 2004 Germany introduced annual minimum volumes nationwide on five surgical procedures: kidney, liver, stem cell transplantation, complex oesophageal, and pancreatic interventions. Hospitals that fail to reach the minimum volumes are no longer allowed to perform the respective procedures unless they raise one of eight legally accepted exceptions. The goal of our study was to investigate how many hospitals fell short of the minimum volumes in 2004, whether and how this was justified, and whether hospitals that failed the requirements experienced any consequences. We analysed data on meeting the minimum volume requirements in 2004 that all German hospitals were obliged to publish as part of their biannual structured quality reports. We performed telephone interviews: a) with all hospitals not achieving the minimum volumes for complex oesophageal, and pancreatic interventions, and b) with the national umbrella organisations of all German sickness funds. In 2004, one quarter of all German acute care hospitals (N=485) performed 23,128 procedures where minimum volumes applied. 197 hospitals (41%) did not meet at least one of the minimum volumes. These hospitals performed N=715 procedures (3.1%) where the minimum volumes were not met. In 43% of these cases the hospitals raised legally accepted exceptions. In 33% of the cases the hospitals argued using reasons that were not legally acknowledged. 69% of those hospitals that failed to achieve the minimum volumes for complex oesophageal and pancreatic interventions did not experience any consequences from the sickness funds. However, one third of those hospitals reported that the sickness funds addressed the issue and partially announced consequences for the future. The sickness funds' umbrella organisations stated that there were only sparse activities related to the minimum volumes and that neither uniform registrations nor uniform proceedings in case of infringements of the standards had been agreed upon. In spite of the

  10. A Platform for Functional Conductive Polymers

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Lind, Johan Ulrik

    Conductive polymers have been studied extensively during recent years. In order to broaden the application field of conductive polymers different methods have been tested and recently an azide functional poly(3,4-ethylenedioxythiophene) (PEDOT-N3) was developed(1, 2). The azide functional...... conductive polymer can be postpolymerization functionalized to introduce a large number of functionalities through click chemistry(3). Through selection of reaction conditions it is possible control the depth of the reaction into the polymer film to the upper surface or the entire film(4). Thus a conductive...... polymer can be prepared with a subsurface layer of highly conductive polymer where only the upper surface has been grafted with functional groups to ensure selectivity of the surface layer for e.g. interaction with specific biospecies. The conductive polymer can be patterned using selective etching, which...

  11. The Distribution of the Sample Minimum-Variance Frontier

    OpenAIRE

    Raymond Kan; Daniel R. Smith

    2008-01-01

    In this paper, we present a finite sample analysis of the sample minimum-variance frontier under the assumption that the returns are independent and multivariate normally distributed. We show that the sample minimum-variance frontier is a highly biased estimator of the population frontier, and we propose an improved estimator of the population frontier. In addition, we provide the exact distribution of the out-of-sample mean and variance of sample minimum-variance portfolios. This allows us t...

  12. Nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...

  13. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...

  14. Polymer materials for fusion reactors

    International Nuclear Information System (INIS)

    Yamaoka, H.

    1993-01-01

    The radiation-resistant polymer materials have recently drawn much attention from the viewpoint of components for fusion reactors. These are mainly applied to electrical insulators, thermal insulators and structural supports of superconducting magnets in fusion reactors. The polymer materials used for these purposes are required to withstand the synergetic effects of high mechanical loads, cryogenic temperatures and intense nuclear radiation. The objective of this review is to summarize the anticipated performance of candidate materials including polymer composites for fusion magnets. The cryogenic properties and the radiation effects of polymer materials are separately reviewed, because there is only limited investigation on the above-mentioned synergetic effects. Additional information on advanced polymer materials for fusion reactors is also introduced with emphasis on recent developments. (orig.)

  15. The rational development of molecularly imprinted polymer-based sensors for protein detection.

    Science.gov (United States)

    Whitcombe, Michael J; Chianella, Iva; Larcombe, Lee; Piletsky, Sergey A; Noble, James; Porter, Robert; Horgan, Adrian

    2011-03-01

    The detection of specific proteins as biomarkers of disease, health status, environmental monitoring, food quality, control of fermenters and civil defence purposes means that biosensors for these targets will become increasingly more important. Among the technologies used for building specific recognition properties, molecularly imprinted polymers (MIPs) are attracting much attention. In this critical review we describe many methods used for imprinting recognition for protein targets in polymers and their incorporation with a number of transducer platforms with the aim of identifying the most promising approaches for the preparation of MIP-based protein sensors (277 references).

  16. Antimocrobial Polymer

    Science.gov (United States)

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  17. 24 CFR 891.145 - Owner deposit (Minimum Capital Investment).

    Science.gov (United States)

    2010-04-01

    ... General Program Requirements § 891.145 Owner deposit (Minimum Capital Investment). As a Minimum Capital... Investment shall be one-half of one percent (0.5%) of the HUD-approved capital advance, not to exceed $25,000. ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Owner deposit (Minimum Capital...

  18. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  19. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Manceau, Matthieu

    2010-01-01

    connected cells were prepared with a total module active area of 96 cm2. The devices were tested for operational stability under simulated sunlight (AM1.5G) and natural sunlight, and the photochemical stability of the polymer was examined using a combination of UV−vis and IR spectroscopy.......We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer...... around a 1:2 mixing ratio. Roll-to-roll coated polymer solar cell devices were prepared under ambient conditions employing solution processing in all steps including the metallic back electrode that was printed as a grid giving semitransparent solar cell devices. Solar cell modules comprising 16 serially...

  20. Supercritical transitiometry of polymers.

    Science.gov (United States)

    Randzio, S L; Grolier, J P

    1998-06-01

    Employing supercritical fluids (SCFs) during polymers processing allows the unusual properties of SCFs to be exploited for making polymer products that cannot be obtained by other means. A new supercritical transitiometer has been constructed to permit study of the interactions of SCFs with polymers during processing under well-defined conditions of temperature and pressure. The supercritical transitiometer allows pressure to be exerted by either a supercritical fluid or a neutral medium and enables simultaneous determination of four basic parameters of a transition, i.e., p, T, Δ(tr)H and Δ(tr)V. This permits determination of the SCF effect on modification of the polymer structure at a given pressure and temperature and defines conditions to allow reproducible preparation of new polymer structures. Study of a semicrystalline polyethylene by this method has defined conditions for preparation of new microfoamed phases with good mechanical properties. The low densities and microporous structures of the new materials may make them useful for applications in medicine, pharmacy, or the food industry, for example.

  1. A review of electron-capture and electron-transfer dissociation tandem mass spectrometry in polymer chemistry

    International Nuclear Information System (INIS)

    Hart-Smith, Gene

    2014-01-01

    Graphical abstract: -- Highlights: •ECD and ETD can produce unique and diagnostically useful polymer ion fragmentation data. •The operating principles of ECD and ETD are discussed in relation to other dissociation techniques. •Key characteristics of ECD and ETD spectra, as observed from biological analytes, are discussed. •ECD and ETD analyses are compared to CID analyses for different classes of synthetic polymer. -- Abstract: Mass spectrometry (MS)-based studies of synthetic polymers often characterise detected polymer components using mass data alone. However when mass-based characterisations are ambiguous, tandem MS (MS/MS) offers a means by which additional analytical information may be collected. This review provides a synopsis of two particularly promising methods of dissociating polymer ions during MS/MS: electron-capture and electron-transfer dissociation (ECD and ETD, respectively). The article opens with a summary of the basic characteristics and operating principles of ECD and ETD, and relates these techniques to other methods of dissociating gas-phase ions, such as collision-induced dissociation (CID). Insights into ECD- and ETD-based MS/MS, gained from studies into proteins and peptides, are then discussed in relation to polymer chemistry. Finally, ECD- and ETD-based studies into various classes of polymer are summarised; for each polymer class, ECD- and ETD-derived data are compared to CID-derived data. These discussions identify ECD and ETD as powerful means by which unique and diagnostically useful polymer ion fragmentation data may be generated, and techniques worthy of increased utilisation by the polymer chemistry community

  2. Minimum Wages and the Distribution of Family Incomes

    OpenAIRE

    Dube, Arindrajit

    2017-01-01

    Using the March Current Population Survey data from 1984 to 2013, I provide a comprehensive evaluation of how minimum wage policies influence the distribution of family incomes. I find robust evidence that higher minimum wages shift down the cumulative distribution of family incomes at the bottom, reducing the share of non-elderly individuals with incomes below 50, 75, 100, and 125 percent of the federal poverty threshold. The long run (3 or more years) minimum wage elasticity of the non-elde...

  3. 7 CFR 1610.5 - Minimum Bank loan.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Minimum Bank loan. 1610.5 Section 1610.5 Agriculture Regulations of the Department of Agriculture (Continued) RURAL TELEPHONE BANK, DEPARTMENT OF AGRICULTURE LOAN POLICIES § 1610.5 Minimum Bank loan. A Bank loan will not be made unless the applicant qualifies for a Bank...

  4. Minimum Wage Effects in the Longer Run

    Science.gov (United States)

    Neumark, David; Nizalova, Olena

    2007-01-01

    Exposure to minimum wages at young ages could lead to adverse longer-run effects via decreased labor market experience and tenure, and diminished education and training, while beneficial longer-run effects could arise if minimum wages increase skill acquisition. Evidence suggests that as individuals reach their late 20s, they earn less the longer…

  5. 29 CFR 783.43 - Computation of seaman's minimum wage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Computation of seaman's minimum wage. 783.43 Section 783.43...'s minimum wage. Section 6(b) requires, under paragraph (2) of the subsection, that an employee...'s minimum wage requirements by reason of the 1961 Amendments (see §§ 783.23 and 783.26). Although...

  6. 12 CFR 931.3 - Minimum investment in capital stock.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Minimum investment in capital stock. 931.3... CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL STOCK § 931.3 Minimum investment in capital stock. (a) A Bank shall require each member to maintain a minimum investment in the capital stock of the Bank, both...

  7. Small angle scattering and polymers

    International Nuclear Information System (INIS)

    Cotton, J.P.

    1996-01-01

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs

  8. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  9. UV-cured polymer optics

    Science.gov (United States)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.

  10. Polymer-Oxide Nanolayer/Al Composite Cathode for Efficient Polymer Light-Emitting Diodes

    National Research Council Canada - National Science Library

    Guo, Tzung-Fang; Wen, Ten-Chin

    2007-01-01

    ...). The author proposed to place a salt-free, polymer-oxide nanolayer at the interface between the light-emissive polymer layer with Al as the device cathode instead of using low work function metals, such as Ca or LiF/Al...

  11. Removal of Cu(II) in water by polymer enhanced ultrafiltration: Influence of polymer nature and pH.

    Science.gov (United States)

    Kochkodan, Olga D; Kochkodan, Viktor M; Sharma, Virender K

    2018-01-02

    This study presents an efficient removal of Cu(II) in water using the polymer enhanced ultrafiltration (PEUF) method. Polymer of different molecular weight (MW) (polyethyleneimine (PEI), sodium lignosulfonates (SLS) and dextrans) were investigated to evaluate efficiency in removal of Cu(II) in water by the PEUF method. The decomposition of Cu(II)-polymer complex was also evaluated in order to reuse polymers. Cu(II) complexation depends on the MW of chelating polymer and the pH of feed solution. It was found that the Cu(II) rejection increased with the polymer dosage with high removal of Cu(II) when using PEI and SLS at a 10:20 (mg/mg) ratio ([Cu(II)]:[polymer]). It was found that the maximum chelating capacity was 15 mg of Cu(II) per 20 mg of PEI. The Cu(II)-PEI complex could be decomposed by acid addition and the polymer could be efficiently reused with multiple complexation-decomplexation cycles. A conceptual flow chart of the integrated process of efficient removal of Cu(II) by PEUF method is suggested.

  12. Thermomechanical properties of polymer nanocomposites: Exploring a unified relationship with planar polymer films

    Science.gov (United States)

    Bansal, Amitabh

    The thermal and mechanical response of polymers, which provide limitations to their practical use, are greatly improved by the addition of a small fraction of an inorganic nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. This research explores the properties of polystyrene filed with silica nanoparticles and illustrates for the first time that the thermodynamic properties of "polymer nanocomposites" are quantitatively equivalent to the well-understood case of planar polymer films with a uniform thickness. These ideas are quantified by drawing a direct analogy between thin film thickness and an appropriate average ligament thickness measured using electron microscopy. The change in polymer glass transition temperatures with decreasing ligament thickness were found to be quantitatively equivalent to the corresponding thin film data. In combination with viscoelastic properties of the nanocomposites that are in quantitative agreement with data from thin films, these conclusions provide a facile means of understanding and predicting the thermomechanical properties and, potentially, the engineering properties of practically relevant polymer nanocomposites. Grafting of high molecular weight polystyrene onto the silica nanoparticles greatly improves the dispersion quality of nanofillers and also provides a means to tailor the thermo-mechanical properties in nanocomposites. It is concluded that the grafted polystyrene is akin to polymer brushes on flat surfaces. The mobility and stiffness of these grafted chains are expected to be low as compared to the free polymer. In this context a mechanism for the increase in glass transition is proposed: (1) the stiff grafted chains will tend to decrease mobility and thus increase glass transition, (2) the extent of interdigitation of the grafted polystyrene into the matrix will determine the extent to which the nanocomposite

  13. Minimum-Cost Reachability for Priced Timed Automata

    DEFF Research Database (Denmark)

    Behrmann, Gerd; Fehnker, Ansgar; Hune, Thomas Seidelin

    2001-01-01

    This paper introduces the model of linearly priced timed automata as an extension of timed automata, with prices on both transitions and locations. For this model we consider the minimum-cost reachability problem: i.e. given a linearly priced timed automaton and a target state, determine...... the minimum cost of executions from the initial state to the target state. This problem generalizes the minimum-time reachability problem for ordinary timed automata. We prove decidability of this problem by offering an algorithmic solution, which is based on a combination of branch-and-bound techniques...... and a new notion of priced regions. The latter allows symbolic representation and manipulation of reachable states together with the cost of reaching them....

  14. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28.

    Science.gov (United States)

    Radchenkova, Nadja; Boyadzhieva, Ivanka; Atanasova, Nikolina; Poli, Annarita; Finore, Ilaria; Di Donato, Paola; Nicolaus, Barbara; Panchev, Ivan; Kuncheva, Margarita; Kambourova, Margarita

    2018-04-03

    Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.

  15. Is the minimum enough? Affordability of a nutritious diet for minimum wage earners in Nova Scotia (2002-2012).

    Science.gov (United States)

    Newell, Felicia D; Williams, Patricia L; Watt, Cynthia G

    2014-05-09

    This paper aims to assess the affordability of a nutritious diet for households earning minimum wage in Nova Scotia (NS) from 2002 to 2012 using an economic simulation that includes food costing and secondary data. The cost of the National Nutritious Food Basket (NNFB) was assessed with a stratified, random sample of grocery stores in NS during six time periods: 2002, 2004/2005, 2007, 2008, 2010 and 2012. The NNFB's cost was factored into affordability scenarios for three different household types relying on minimum wage earnings: a household of four; a lone mother with three children; and a lone man. Essential monthly living expenses were deducted from monthly net incomes using methods that were standardized from 2002 to 2012 to determine whether adequate funds remained to purchase a basic nutritious diet across the six time periods. A 79% increase to the minimum wage in NS has resulted in a decrease in the potential deficit faced by each household scenario in the period examined. However, the household of four and the lone mother with three children would still face monthly deficits ($44.89 and $496.77, respectively, in 2012) if they were to purchase a nutritiously sufficient diet. As a social determinant of health, risk of food insecurity is a critical public health issue for low wage earners. While it is essential to increase the minimum wage in the short term, adequately addressing income adequacy in NS and elsewhere requires a shift in thinking from a focus on minimum wage towards more comprehensive policies ensuring an adequate livable income for everyone.

  16. Minimum BER Receiver Filters with Block Memory for Uplink DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Debbah Mérouane

    2008-01-01

    Full Text Available Abstract The problem of synchronous multiuser receiver design in the case of direct-sequence single-antenna code division multiple access (DS-CDMA uplink networks is studied over frequency selective fading channels. An exact expression for the bit error rate (BER is derived in the case of BPSK signaling. Moreover, an algorithm is proposed for finding the finite impulse response (FIR receiver filters with block memory such that the exact BER of the active users is minimized. Several properties of the minimum BER FIR filters with block memory are identified. The algorithm performance is found for scenarios with different channel qualities, spreading code lengths, receiver block memory size, near-far effects, and channel mismatch. For the BPSK constellation, the proposed FIR receiver structure with block memory has significant better BER with respect to and near-far resistance than the corresponding minimum mean square error (MMSE filters with block memory.

  17. Employment Effects of Minimum and Subminimum Wages. Recent Evidence.

    Science.gov (United States)

    Neumark, David

    Using a specially constructed panel data set on state minimum wage laws and labor market conditions, Neumark and Wascher (1992) presented evidence that countered the claim that minimum wages could be raised with no cost to employment. They concluded that estimates indicating that minimum wages reduced employment on the order of 1-2 percent for a…

  18. Minimum Wage Effects on Educational Enrollments in New Zealand

    Science.gov (United States)

    Pacheco, Gail A.; Cruickshank, Amy A.

    2007-01-01

    This paper empirically examines the impact of minimum wages on educational enrollments in New Zealand. A significant reform to the youth minimum wage since 2000 has resulted in some age groups undergoing a 91% rise in their real minimum wage over the last 10 years. Three panel least squares multivariate models are estimated from a national sample…

  19. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosum [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Lee, Jae Wook, E-mail: jlee@donga.ac.kr [Department of Chemistry, Dong-A University, Busan 604-714 (Korea, Republic of); Gal, Yeong-Soon [Polymer Chemistry Lab, College of General Education, Kyungil University, Hayang 712-701 (Korea, Republic of); Kim, Mi-Ra, E-mail: mrkim2@pusan.ac.kr [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jin, Sung Ho, E-mail: shjin@pusan.ac.kr [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-02-14

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I{sub 2}), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J{sub sc}, 10.75 mA cm{sup −2}) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm{sup −2} irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte.

  20. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Cho, Woosum; Lee, Jae Wook; Gal, Yeong-Soon; Kim, Mi-Ra; Jin, Sung Ho

    2014-01-01

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I 2 ), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J sc , 10.75 mA cm −2 ) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm −2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  1. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    Science.gov (United States)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  2. Polymers Erosion and Contamination Experiment Being Developed

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Barney-Barton, Elyse A.; Sechkar, Edward; Hunt, Patricia

    1999-01-01

    The Polymers Erosion and Contamination Experiment (PEACE) is currently being developed at the NASA Lewis Research Center by the Electro-Physics Branch in conjunction with students and faculty from Hathaway Brown School in Cleveland. The experiment is a Get Away Special Canister shuttle flight experiment sponsored by the American Chemical Society. The two goals of this experiment are (1) to measure ram atomic oxygen erosion rates of approximately 40 polymers that have potential use in space applications and (2) to validate a method for identifying sources of silicone contamination that occur in the shuttle bay. Equipment to be used in this flight experiment is shown in the schematic diagram. Spacecraft materials subjected to attack by atomic oxygen in the space environment experience significant degradation over the span of a typical mission. Therefore, learning the rates of atomic oxygen erosion of a wide variety of polymers would be of great benefit to future missions. PEACE will use two independent techniques to determine the atomic oxygen erosion rates of polymers. Large (1-in.-diameter) samples will be used for obtaining mass loss. Preflight and postflight dehydrated masses will be obtained, and the mass lost during flight will be determined. Small (0.5-in.-diameter) samples will be protected with isolated particles (such as NaCl crystals) and then exposed to the space environment. After flight, the protective particles will be removed (washed off) and atomic force microscopy (AFM) will be used to measure the erosion depth from protected mesas. Erosion depth measurements are more sensitive than traditional mass measurements and are very useful for materials with low erosion yields or with very low fluence missions.

  3. Voltage-assisted polymer wafer bonding

    International Nuclear Information System (INIS)

    Varsanik, J S; Bernstein, J J

    2012-01-01

    Polymer wafer bonding is a widely used process for fabrication of microfluidic devices. However, best practices for polymer bonds do not achieve sufficient bond strength for many applications. By applying a voltage to a polymer bond in a process called voltage-assisted bonding, bond strength is shown to improve dramatically for two polymers (Cytop™ and poly(methyl methacrylate)). Several experiments were performed to provide a starting point for further exploration of this technique. An optimal voltage range is experimentally observed with a reduction in bonding strength at higher voltages. Additionally, voltage-assisted bonding is shown to reduce void diameter due to bond defects. An electrostatic force model is proposed to explain the improved bond characteristics. This process can be used to improve bond strength for most polymers. (paper)

  4. Direct Photopatterning of Electrochromic Polymers

    DEFF Research Database (Denmark)

    Jensen, Jacob; Dyer, Aubrey L.; Shen, D. Eric

    2013-01-01

    Propylenedioxythiophene (ProDOT) polymers are synthesized using an oxidative polymerization route that results in methacrylate substituted poly(ProDOTs) having a Mn of 10–20 kDa wherein the methacrylate functionality constitutes from 6 to 60% of the total monomer units. Solutions of these polymers...... show excellent film forming abilities, with thin films prepared using both spray‐casting and spin‐coating. These polymers are demonstrated to crosslink upon UV irradiation at 350 nm, in the presence of an appropriate photoinitiator, to render the films insoluble to common organic solvents....... Electrochemical, spectroelectrochemical, and colorimetric analyses of the crosslinked polymer films are performed to establish that they retain the same electrochromic qualities as the parent polymers with no detriment to the observed properties. To demonstrate applicability for multi‐film processing...

  5. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Liping [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan); Yamamoto, Akiko, E-mail: yamamoto.akiko@nims.go.jp [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan)

    2012-06-15

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly ({epsilon}-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg{sup 2+} are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg{sup 2+} (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  6. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    International Nuclear Information System (INIS)

    Xu Liping; Yamamoto, Akiko

    2012-01-01

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly (ε-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg 2+ are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg 2+ (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  7. Zero forcing parameters and minimum rank problems

    NARCIS (Netherlands)

    Barioli, F.; Barrett, W.; Fallat, S.M.; Hall, H.T.; Hogben, L.; Shader, B.L.; Driessche, van den P.; Holst, van der H.

    2010-01-01

    The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero

  8. Minimum bias measurement at 13 TeV

    CERN Document Server

    Orlando, Nicola; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes and to simulate the environment at the LHC with many concurrent pp interactions (pile-up). We summarise the ATLAS minimum bias measurements with proton-proton collision at 13 TeV center-of-mass-energy at the Large Hadron Collider.

  9. A minimum spanning forest based classification method for dedicated breast CT images

    International Nuclear Information System (INIS)

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei

    2015-01-01

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting model used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging

  10. Know your facts on polymer floods

    Energy Technology Data Exchange (ETDEWEB)

    Mungan, N

    1967-06-01

    The influence of mobility ratio on the recovery of oil by waterflooding is reviewed in general. It is shown that, for mobility ratios more unfavorable than ten, additional oil recovery obtainable by polymer flooding may be too small to prove a profitable application. Polymers achieve the lower water mobilities by two mechanisms: (1) by reducing the permeability of the porous media through polymer trapping in the pores; and (2) by yielding a high solution viscosity, due to speudo-plastic nature of the polymer solutions. Adsorption, connate water saturation and reservoir heterogeneity are very important in the field use of polymers. Laboratory data is presented showing that for a given polymer solution oil recoveries are greatest where adsorption is reduced and when the porous medium is heterogeneous.

  11. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    Science.gov (United States)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; hide

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  12. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    Science.gov (United States)

    Stanzione, Joseph F., III

    -property relationships are identified and related to polymer performance. These findings have important implications for the optimization and design of polymer composites that are based on sustainable resources and processes, are petroleum-independent, and have reduced toxicity with beneficial environmental impacts. In addition, these findings provide the incentive for continued investment in using lignin as a respected materials' feedstock. Lastly, several lignin-related research opportunities of scientific and commercial interest are recommended.

  13. Polymer-Graphene Nanocomposite Materials for Electrochemical Biosensing.

    Science.gov (United States)

    Sobolewski, Peter; Piwowarczyk, Magdalena; Fray, Mirosława El

    2016-07-01

    Biosensing is an important and rapidly developing field, with numerous potential applications in health care, food processing, and environmental control. Polymer-graphene nanocomposites aim to leverage the unique, attractive properties of graphene by combining them with those of a polymer matrix. Molecular imprinted polymers, in particular, offer the promise of artificial biorecognition elements. A variety of polymers, including intrinsically conducting polymers (polyaniline, polypyrrole), bio-based polymers (chitosan, polycatechols), and polycationic polymers (poly(diallyldimethylammonium chloride), polyethyleneimine), have been utilized as matrices for graphene-based nanofillers, yielding sensitive biosensors for various biomolecules, such as proteins, nucleic acids, and small molecules. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Polymer Brushes: Synthesis, Characterization, Applications

    Science.gov (United States)

    Advincula, Rigoberto C.; Brittain, William J.; Caster, Kenneth C.; Rühe, Jürgen

    2004-09-01

    Materials scientists, polymer chemists, surface physicists and materials engineers will find this book a complete and detailed treatise on the field of polymer brushes, their synthesis, characterization and manifold applications. In a first section, the various synthetic pathways and different surface materials are introduced and explained, followed by a second section covering important aspects of characterization and analysis in both flat surfaces and particles. These specific surface initiated polymerization (SIP) systems such as linear polymers, homopolymers, block copolymers, and hyperbranched polymers are unique compared to previously reported systems by chemisorption or physisorption. They have found their way in both large-scale and miniature applications of polymer brushes, which is covered in the last section. Such 'hairy' surfaces offer fascinating opportunities for addressing numerous problems of both academic and, in particular, industrial interest: high-quality, functional or protective coatings, composite materials, surface engineered particles, metal-organic interfaces, biological applications, micro-patterning, colloids, nanoparticles, functional devices, and many more. It is the desire of the authors that this book will be of benefit to readers who want to "brush-up on polymers".

  15. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  16. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-01-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Z eff ), electron density (ρ e ), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μ en /ρ) and total stopping power (S/ρ) tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( en /ρ for all polymer gels were in close agreement ( tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  17. DYNAMICS OF POLYMERS AT INTERFACES; FINAL

    International Nuclear Information System (INIS)

    SMITH, G.S.; MAJEWSKI, J.

    1999-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses fundamental questions concerning the behavior of polymers at interfaces: (1) What processes control the formation of an adsorbed layer on a clean surface? (2) What processes control the displacement of preadsorbed polymers? (3) Can one accurately predict the structure of polymer layers? To answer these questions, using neutron reflectivity, we have studied adsorbed layers of the polymer poly(methyl methacrylate) (PMMA) onto a quartz substrate. The polymer density profiles were derived from the neutron reflectivity data. We have shown that dry films exhibit behavior predicted by mean-field theory in that the equilibrated layer thickness scales with the molecular weight of the polymer. Also, we find that the profiles of the polymers in solution qualitatively agree with those predicted by reflected random walk (RRW) theories, yet the profiles are not in quantitative agreement

  18. Interfaced conducting polymers

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchová, Miroslava; Nuzhnyy, Dmitry; Bovtun, Viktor; Savinov, Maxim; Petzelt, Jan; Prokeš, J.

    2017-01-01

    Roč. 224, February (2017), s. 109-115 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline * polypyrrole * poly(p-phenylenediamine) Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (FZU-D) OBOR OECD: Polymer science; Polymer science (FZU-D) Impact factor: 2.435, year: 2016

  19. An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2007-04-01

    This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.

  20. Study on dissolution behavior of polymer-bound and polymer-blended photo-acid generator (PAG) resists

    Science.gov (United States)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi

    2013-03-01

    The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.