WorldWideScience

Sample records for identify local earthquakes

  1. Earthquake precursory events around epicenters and local active faults

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S. B.; Haydari Azad, F.

    2013-05-01

    shakes, mapping foreshocks and aftershocks, and following changes in the above-mentioned precursors prior to past earthquake instances all over the globe. Our analyses also encompass the geographical location and extents of local and regional faults which are considered as important factors during earthquakes. The co-analysis of direct and indirect observation for precursory events is considered as a promising method for possible future successful earthquake predictions. With proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will be able to identify anomalies due to seismic activity in the earth's crust.

  2. Isolating social influences on vulnerability to earthquake shaking: identifying cost-effective mitigation strategies.

    Science.gov (United States)

    Bhloscaidh, Mairead Nic; McCloskey, John; Pelling, Mark; Naylor, Mark

    2013-04-01

    strong shaking, also identifies both anomalously resilient and anomalously vulnerable countries. We argue that this approach has the potential to direct sociological investigations to expose the underlying causes of the observed non-economic differentiation of vulnerability. At one level, closer study of the earthquakes represented by these data points might expose local or national interventions which are increasing resilience of communities to strong shaking in the absence of major national investment. Ultimately it may contribute to the development of a quantitative evaluation of risk management effectiveness at the national level that can be used better to target and track risk management investments.

  3. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  4. Dynamic triggering of low magnitude earthquakes in the Middle American Subduction Zone

    Science.gov (United States)

    Escudero, C. R.; Velasco, A. A.

    2010-12-01

    We analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. We use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw >7) earthquakes, we first identify local earthquakes that occurred before and after the mainshocks. We then group the local earthquakes within a cluster radius between 75 to 200 km. We obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as local cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Due to lateral variations of the dip along the subducted oceanic plate, we divide the Mexican subduction zone in four segments. We then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes. We identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. We find no depend of seismicity changes due to focal mainshock mechanism.

  5. Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves

    Science.gov (United States)

    Chen, W.; Ni, S.; Wang, Z.

    2011-12-01

    In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.

  6. Identified EM Earthquake Precursors

    Science.gov (United States)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  7. LOCAL SITE CONDITIONS INFLUENCING EARTHQUAKE INTENSITIES AND SECONDARY COLLATERAL IMPACTS IN THE SEA OF MARMARA REGION - Application of Standardized Remote Sensing and GIS-Methods in Detecting Potentially Vulnerable Areas to Earthquakes, Tsunamis and Other Hazards.

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2011-01-01

    Full Text Available The destructive earthquake that struck near the Gulf of Izmit along the North Anatolian fault in Northwest Turkey on August 17, 1999, not only generated a local tsunami that was destructive at Golcuk and other coastal cities in the eastern portion of the enclosed Sea of Marmara, but was also responsible for extensive damage from collateral hazards such as subsidence, landslides, ground liquefaction, soil amplifications, compaction and underwater slumping of unconsolidated sediments. This disaster brought attention in the need to identify in this highly populated region, local conditions that enhance earthquake intensities, tsunami run-up and other collateral disaster impacts. The focus of the present study is to illustrate briefly how standardized remote sensing techniques and GIS-methods can help detect areas that are potentially vulnerable, so that disaster mitigation strategies can be implemented more effectively. Apparently, local site conditions exacerbate earthquake intensities and collateral disaster destruction in the Marmara Sea region. However, using remote sensing data, the causal factors can be determined systematically. With proper evaluation of satellite imageries and digital topographic data, specific geomorphologic/topographic settings that enhance disaster impacts can be identified. With a systematic GIS approach - based on Digital Elevation Model (DEM data - geomorphometric parameters that influence the local site conditions can be determined. Digital elevation data, such as SRTM (Shuttle Radar Topography Mission, with 90m spatial resolution and ASTER-data with 30m resolution, interpolated up to 15 m is readily available. Areas with the steepest slopes can be identified from slope gradient maps. Areas with highest curvatures susceptible to landslides can be identified from curvature maps. Coastal areas below the 10 m elevation susceptible to tsunami inundation can be clearly delineated. Height level maps can also help locate

  8. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Puspito, Nanang T; Yudistira, Tedi [Global Geophysical Reserach Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, JlGanesa 10, Bandung, 40132 (Indonesia); Kusnandar, Ridwan; Sakti, Artadi Pria [Meteorological, Climatological, and Geophysical Agency (MCGA) of Indonesian, Jakarta (Indonesia)

    2015-04-24

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method. For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.

  9. Predicting Posttraumatic Stress Symptom Prevalence and Local Distribution after an Earthquake with Scarce Data.

    Science.gov (United States)

    Dussaillant, Francisca; Apablaza, Mauricio

    2017-08-01

    After a major earthquake, the assignment of scarce mental health emergency personnel to different geographic areas is crucial to the effective management of the crisis. The scarce information that is available in the aftermath of a disaster may be valuable in helping predict where are the populations that are in most need. The objectives of this study were to derive algorithms to predict posttraumatic stress (PTS) symptom prevalence and local distribution after an earthquake and to test whether there are algorithms that require few input data and are still reasonably predictive. A rich database of PTS symptoms, informed after Chile's 2010 earthquake and tsunami, was used. Several model specifications for the mean and centiles of the distribution of PTS symptoms, together with posttraumatic stress disorder (PTSD) prevalence, were estimated via linear and quantile regressions. The models varied in the set of covariates included. Adjusted R2 for the most liberal specifications (in terms of numbers of covariates included) ranged from 0.62 to 0.74, depending on the outcome. When only including peak ground acceleration (PGA), poverty rate, and household damage in linear and quadratic form, predictive capacity was still good (adjusted R2 from 0.59 to 0.67 were obtained). Information about local poverty, household damage, and PGA can be used as an aid to predict PTS symptom prevalence and local distribution after an earthquake. This can be of help to improve the assignment of mental health personnel to the affected localities. Dussaillant F , Apablaza M . Predicting posttraumatic stress symptom prevalence and local distribution after an earthquake with scarce data. Prehosp Disaster Med. 2017;32(4):357-367.

  10. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    Science.gov (United States)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for induced earthquakes in the central US.

  11. A local earthquake coda magnitude and its relation to duration, moment M sub O, and local Richter magnitude M sub L

    Science.gov (United States)

    Suteau, A. M.; Whitcomb, J. H.

    1977-01-01

    A relationship was found between the seismic moment, M sub O, of shallow local earthquakes and the total duration of the signal, t, in seconds, measured from the earthquakes origin time, assuming that the end of the coda is composed of backscattering surface waves due to lateral heterogenity in the shallow crust following Aki. Using the linear relationship between the logarithm of M sub O and the local Richter magnitude M sub L, a relationship between M sub L and t, was found. This relationship was used to calculate a coda magnitude M sub C which was compared to M sub L for Southern California earthquakes which occurred during the period from 1972 to 1975.

  12. A simulation of Earthquake Loss Estimation in Southeastern Korea using HAZUS and the local site classification Map

    Science.gov (United States)

    Kang, S.; Kim, K.

    2013-12-01

    Regionally varying seismic hazards can be estimated using an earthquake loss estimation system (e.g. HAZUS-MH). The estimations for actual earthquakes help federal and local authorities develop rapid, effective recovery measures. Estimates for scenario earthquakes help in designing a comprehensive earthquake hazard mitigation plan. Local site characteristics influence the ground motion. Although direct measurements are desirable to construct a site-amplification map, such data are expensive and time consuming to collect. Thus we derived a site classification map of the southern Korean Peninsula using geologic and geomorphologic data, which are readily available for the entire southern Korean Peninsula. Class B sites (mainly rock) are predominant in the area, although localized areas of softer soils are found along major rivers and seashores. The site classification map is compared with independent site classification studies to confirm our site classification map effectively represents the local behavior of site amplification during an earthquake. We then estimated the losses due to a magnitude 6.7 scenario earthquake in Gyeongju, southeastern Korea, with and without the site classification map. Significant differences in loss estimates were observed. The loss without the site classification map decreased without variation with increasing epicentral distance, while the loss with the site classification map varied from region to region, due to both the epicentral distance and local site effects. The major cause of the large loss expected in Gyeongju is the short epicentral distance. Pohang Nam-Gu is located farther from the earthquake source region. Nonetheless, the loss estimates in the remote city are as large as those in Gyeongju and are attributed to the site effect of soft soil found widely in the area.

  13. Moment Magnitude ( M W) and Local Magnitude ( M L) Relationship for Earthquakes in Northeast India

    Science.gov (United States)

    Baruah, Santanu; Baruah, Saurabh; Bora, P. K.; Duarah, R.; Kalita, Aditya; Biswas, Rajib; Gogoi, N.; Kayal, J. R.

    2012-11-01

    An attempt has been made to examine an empirical relationship between moment magnitude ( M W) and local magnitude ( M L) for the earthquakes in the northeast Indian region. Some 364 earthquakes that were recorded during 1950-2009 are used in this study. Focal mechanism solutions of these earthquakes include 189 Harvard-CMT solutions ( M W ≥ 4.0) for the period 1976-2009, 61 published solutions and 114 solutions obtained for the local earthquakes (2.0 ≤ M L ≤ 5.0) recorded by a 27-station permanent broadband network during 2001-2009 in the region. The M W- M L relationships in seven selected zones of the region are determined by linear regression analysis. A significant variation in the M W- M L relationship and its zone specific dependence are reported here. It is found that M W is equivalent to M L with an average uncertainty of about 0.13 magnitude units. A single relationship is, however, not adequate to scale the entire northeast Indian region because of heterogeneous geologic and geotectonic environments where earthquakes occur due to collisions, subduction and complex intra-plate tectonics.

  14. Local magnitude, duration magnitude and seismic moment of Dahshour 1992 earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Dessokey, M.M.; Abdelwahed, M.F. [National research Institute of Astronomy and Geophysics, Cairo (Egypt). Dept. of Seismology; Hussein, H.M.; Abdelrahman, El. M. [Cairo Univ., Cairo (Egypt). Dept. of Geophysics

    2000-02-01

    Local magnitude M{sub L} have been calculated for 56 earthquakes of the Dahshour 1992 sequence using simulated records of the KEG broadband station and estimated calibration function of the area. The measurements, derived by the simulated Wood Anderson seismograms, are analysed and discussed.

  15. Two-dimensional joint inversion of Magnetotelluric and local earthquake data: Discussion on the contribution to the solution of deep subsurface structures

    Science.gov (United States)

    Demirci, İsmail; Dikmen, Ünal; Candansayar, M. Emin

    2018-02-01

    Joint inversion of data sets collected by using several geophysical exploration methods has gained importance and associated algorithms have been developed. To explore the deep subsurface structures, Magnetotelluric and local earthquake tomography algorithms are generally used individually. Due to the usage of natural resources in both methods, it is not possible to increase data quality and resolution of model parameters. For this reason, the solution of the deep structures with the individual usage of the methods cannot be fully attained. In this paper, we firstly focused on the effects of both Magnetotelluric and local earthquake data sets on the solution of deep structures and discussed the results on the basis of the resolving power of the methods. The presence of deep-focus seismic sources increase the resolution of deep structures. Moreover, conductivity distribution of relatively shallow structures can be solved with high resolution by using MT algorithm. Therefore, we developed a new joint inversion algorithm based on the cross gradient function in order to jointly invert Magnetotelluric and local earthquake data sets. In the study, we added a new regularization parameter into the second term of the parameter correction vector of Gallardo and Meju (2003). The new regularization parameter is enhancing the stability of the algorithm and controls the contribution of the cross gradient term in the solution. The results show that even in cases where resistivity and velocity boundaries are different, both methods influence each other positively. In addition, the region of common structural boundaries of the models are clearly mapped compared with original models. Furthermore, deep structures are identified satisfactorily even with using the minimum number of seismic sources. In this paper, in order to understand the future studies, we discussed joint inversion of Magnetotelluric and local earthquake data sets only in two-dimensional space. In the light of these

  16. Conversion of Local and Surface-Wave Magnitudes to Moment Magnitude for Earthquakes in the Chinese Mainland

    Science.gov (United States)

    Li, X.; Gao, M.

    2017-12-01

    The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18

  17. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    Science.gov (United States)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  18. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island

    Science.gov (United States)

    Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry

    2009-02-01

    We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.

  19. Local magnitude, duration magnitude and seismic moment of Dahshour 1992 earthquakes

    OpenAIRE

    M. F. Abdelwahed; E. M. Abdelrahman; H. M. Hussein; M. M. Dessokey

    2000-01-01

    Local magnitudes ML have been calculated for 56 earthquakes of the Dahshour 1992 sequence using simulated records of the KEG broadband station and the estimated calibration function of the Dahshour area. These were compared with their corresponding values of duration magnitudes obtained from the analog short period seismograms of the HLW station. The local magnitudes M L and the duration magnitudes M D for this region imply a linear relation as follows: M L = 1.2988 (± 0.04) M D – 0.9032 (± 0...

  20. Analysis of the local lithospheric magnetic activity before and after Panzhihua Mw = 6.0 earthquake (30 August 2008, China

    Directory of Open Access Journals (Sweden)

    Q. Li

    2011-12-01

    Full Text Available Lithospheric ultra low frequency (ULF magnetic activity is recently considered as a very promising candidate for application to short-time earthquake forecasting. However the intensity of the ULF lithospheric magnetic field is very weak and often masked by much stronger ionospheric and magnetospheric signals. The study of pre-earthquake magnetic activity before the occurrence of a strong earthquake is a very hard problem which consists of the identification and localization of the weak signal sources in earthquake hazardous areas of the Earth's crust. For the separation and localization of such sources, we used a new polarization ellipse technique (Dudkin et al., 2010 to process data acquired from fluxgate magnetometers installed in the Sichuan province, China. Sichuan is the region of the strongest seismic activity on the territory of China. During the last century, about 40 earthquakes with magnitude M ≥ 6.5 happened here in close proximity to heavy populated zones. The Panzhihua earthquake Mw = 6.0 happened in the southern part of Sichuan province on 30 August 2008 at 8:30:52 UT. The earthquake hypocentre was located at 10 km depth. During the period 30–31 August – the beginning of September 2008, many clustered aftershocks with magnitudes of up to 5.6 occurred near the earthquake epicentre. The data from three fluxgate magnetometers (belonged to China magnetometer network and placed near to the clustered earthquakes at a distance of 10–55 km from main shock epicenter have been processed. The separation between the magnetometers was in the range of 40–65 km. The analysis of a local lithospheric magnetic activity during the period of January–December 2008 and a possible source structure have been presented in this paper.

  1. Recovering from the ShakeOut earthquake

    Science.gov (United States)

    Wein, Anne; Johnson, Laurie; Bernknopf, Richard

    2011-01-01

    Recovery from an earthquake like the M7.8 ShakeOut Scenario will be a major endeavor taking many years to complete. Hundreds of Southern California municipalities will be affected; most lack recovery plans or previous disaster experience. To support recovery planning this paper 1) extends the regional ShakeOut Scenario analysis into the recovery period using a recovery model, 2) localizes analyses to identify longer-term impacts and issues in two communities, and 3) considers the regional context of local recovery.Key community insights about preparing for post-disaster recovery include the need to: geographically diversify city procurement; set earthquake mitigation priorities for critical infrastructure (e.g., airport), plan to replace mobile homes with earthquake safety measures, consider post-earthquake redevelopment opportunities ahead of time, and develop post-disaster recovery management and governance structures. This work also showed that communities with minor damages are still sensitive to regional infrastructure damages and their potential long-term impacts on community recovery. This highlights the importance of community and infrastructure resilience strategies as well.

  2. The source parameters of 2013 Mw6.6 Lushan earthquake constrained with the restored local clipped seismic waveforms

    Science.gov (United States)

    Hao, J.; Zhang, J. H.; Yao, Z. X.

    2017-12-01

    We developed a method to restore the clipped seismic waveforms near epicenter using projection onto convex sets method (Zhang et al, 2016). This method was applied to rescue the local clipped waveforms of 2013 Mw 6.6 Lushan earthquake. We restored 88 out of 93 clipped waveforms of 38 broadband seismic stations of China Earthquake Networks (CEN). The epicenter distance of the nearest station to the epicenter that we can faithfully restore is only about 32 km. In order to investigate if the source parameters of earthquake could be determined exactly with the restored data, restored waveforms are utilized to get the mechanism of Lushan earthquake. We apply the generalized reflection-transmission coefficient matrix method to calculate the synthetic seismic records and simulated annealing method in inversion (Yao and Harkrider, 1983; Hao et al., 2012). We select 5 stations of CEN with the epicenter distance about 200km whose records aren't clipped and three-component velocity records are used. The result shows the strike, dip and rake angles of Lushan earthquake are 200o, 51o and 87o respectively, hereinafter "standard result". Then the clipped and restored seismic waveforms are applied respectively. The strike, dip and rake angles of clipped seismic waveforms are 184o, 53o and 72o respectively. The largest misfit of angle is 16o. In contrast, the strike, dip and rake angles of restored seismic waveforms are 198o, 51o and 87o respectively. It is very close to the "standard result". We also study the rupture history of Lushan earthquake constrained with the restored local broadband and teleseismic waves based on finite fault method (Hao et al., 2013). The result consists with that constrained with the strong motion and teleseismic waves (Hao et al., 2013), especially the location of the patch with larger slip. In real-time seismology, determining the source parameters as soon as possible is important. This method will help us to determine the mechanism of earthquake

  3. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  4. Numerical simulations (2D) on the influence of pre-existing local structures and seismic source characteristics in earthquake-volcano interactions

    Science.gov (United States)

    Farías, Cristian; Galván, Boris; Miller, Stephen A.

    2017-09-01

    Earthquake triggering of hydrothermal and volcanic systems is ubiquitous, but the underlying processes driving these systems are not well-understood. We numerically investigate the influence of seismic wave interaction with volcanic systems simulated as a trapped, high-pressure fluid reservoir connected to a fluid-filled fault system in a 2-D poroelastic medium. Different orientations and earthquake magnitudes are studied to quantify dynamic and static stress, and pore pressure changes induced by a seismic event. Results show that although the response of the system is mainly dominated by characteristics of the radiated seismic waves, local structures can also play an important role on the system dynamics. The fluid reservoir affects the seismic wave front, distorts the static overpressure pattern induced by the earthquake, and concentrates the kinetic energy of the incoming wave on its boundaries. The static volumetric stress pattern inside the fault system is also affected by the local structures. Our results show that local faults play an important role in earthquake-volcanic systems dynamics by concentrating kinetic energy inside and acting as wave-guides that have a breakwater-like behavior. This generates sudden changes in pore pressure, volumetric expansion, and stress gradients. Local structures also influence the regional Coulomb yield function. Our results show that local structures affect the dynamics of volcanic and hydrothermal systems, and should be taken into account when investigating triggering of these systems from nearby or distant earthquakes.

  5. A detailed analysis of some local earthquakes at Somma-Vesuvius

    Directory of Open Access Journals (Sweden)

    C. Troise

    1999-06-01

    Full Text Available In this paper, we analyze local earthquakes which occurred at Somma-Vesuvius during two episodes of intense seismic swarms, in 1989 and 1995 respectively. For the selected earthquakes we have computed accurate hypocentral locations, focal mechanisms and spectral parameters. We have also studied the ground acceleration produced by the largest events of the sequences (ML 3.0, at various digital stations installed in the area during the periods of higher seismic activity. The main result is that seismicity during the two swarm episodes presents similar features in both locations and focal mechanisms. Strong site dependent effects are evidenced in the seismic radiation and strong amplifications in the frequency band 10-15 Hz are evident at stations located on the younger Vesuvius structure, with respect to one located on the ancient Somma structure. Furthermore, seismic stations show peak accelerations for the same events of more than one order of magnitude apart.

  6. A proposal on restart rule of nuclear power plants with piping having local wall thinning subjected to an earthquake. Former part. Aiming at further application

    International Nuclear Information System (INIS)

    Urabe, Yoshio

    2011-01-01

    Restart rule of nuclear power plants (NPPs) with piping having local wall thinning subjected to an earthquake was proposed taking account of local wall thinning, seismic effects and restart of NPPs with applicability of 'Guidelines for NPP Response to an Earthquake (EPRI NP-6695)' in Japan. Japan Earthquake Damage Intensity Scale (JEDIS) and Earthquake Ground Motion Level (EGML) were introduced. JEDIS was classified into four scales obtained from damage level of components and structures of NPPs subjected to an earthquake, while EGML was divided into four levels by safe shutdown earthquake ground motion (So), elastic design earthquake ground motion (Sd) and design earthquake ground motion (Ss). Combination of JEDIS and EGML formulated 4 x 4 matrix and determined detailed conditions of restart of NPPs. As a response to an earthquake, operator walk inspections and evaluation of earthquake ground motion were conducted to know the level of JEDIS. JEDIS level requested respective allowable conditions of restart of NPP, which were scale level dependent and consisted of weighted combination of damage inspection (operator walk inspections, focused inspections/tests and expanded inspections), integrity evaluation and repair/replacement. If JEDIS were assigned greater than 3 with expanded inspections, inspection of piping with local wall thinning, its integrity evaluation and repair/replacement if necessary were requested. Inspection and evaluation of piping with local wall thinning was performed based on JSME or ASME codes. Detailed work flow charts were presented. Carbon steel piping and elbow was chosen for evaluation. (T. Tanaka)

  7. A comparison of earthquake backprojection imaging methods for dense local arrays

    Science.gov (United States)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Michaelides, M.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Brown, L. D.; Quiros, D. A.

    2018-03-01

    Backprojection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. While backprojection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed and simplified to overcome imaging challenges. Real data issues include aliased station spacing, inadequate array aperture, inaccurate velocity model, low signal-to-noise ratio, large noise bursts and varying waveform polarity. We compare the performance of backprojection with four previously used data pre-processing methods: raw waveform, envelope, short-term averaging/long-term averaging and kurtosis. Our primary goal is to detect and locate events smaller than noise by stacking prior to detection to improve the signal-to-noise ratio. The objective is to identify an optimized strategy for automated imaging that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the source images, preserves magnitude, and considers computational cost. Imaging method performance is assessed using a real aftershock data set recorded by the dense AIDA array following the 2011 Virginia earthquake. Our comparisons show that raw-waveform backprojection provides the best spatial resolution, preserves magnitude and boosts signal to detect events smaller than noise, but is most sensitive to velocity error, polarity error and noise bursts. On the other hand, the other methods avoid polarity error and reduce sensitivity to velocity error, but sacrifice spatial resolution and cannot effectively reduce noise by stacking. Of these, only kurtosis is insensitive to large noise bursts while being as efficient as the raw-waveform method to lower the detection threshold; however, it does not preserve the magnitude information. For automatic detection and location of events in a large data set, we

  8. Why local people did not present a problem in the 2016 Kumamoto earthquake, Japan though people accused in the 2009 L'Aquila earthquake?

    Science.gov (United States)

    Sugimoto, M.

    2016-12-01

    Risk communication is a big issues among seismologists after the 2009 L'Aquila earthquake all over the world. A lot of people remember 7 researchers as "L'Aquila 7" were accused in Italy. Seismologists said it is impossible to predict an earthquake by science technology today and join more outreach activities. "In a subsequent inquiry of the handling of the disaster, seven members of the Italian National Commission for the Forecast and Prevention of Major Risks were accused of giving "inexact, incomplete and contradictory" information about the danger of the tremors prior to the main quake. On 22 October 2012, six scientists and one ex-government official were convicted of multiple manslaughter for downplaying the likelihood of a major earthquake six days before it took place. They were each sentenced to six years' imprisonment (Wikipedia)". Finally 6 scientists are not guilty. The 2016 Kumamoto earthquake hit Kyushu, Japan in April. They are very similar seismological situations between the 2016 Kumamoto earthquake and the 2009 L'Aquila earthquake. The foreshock was Mj6.5 and Mw6.2 in 14 April 2016. The main shock was Mj7.3 and Mw7.0. Japan Metrological Agency (JMA) misleaded foreshock as mainshock before main shock occured. 41 people died by the main shock in Japan. However local people did not accused scientists in Japan. It has been less big earhquakes around 100 years in Kumamoto. Poeple was not so matured that they treated earthquake information in Kyushu, Japan. How are there differences between Japan and Italy? We learn about outreach activities for sciencits from this case.

  9. Localized surface disruptions observed by InSAR during strong earthquakes in Java and Hawai'i

    Science.gov (United States)

    Poland, M.

    2010-01-01

    Interferometric Synthetic Aperture Radar data spanning strong earthquakes on the islands of Java and Hawai‘i in 2006 reveal patches of subsidence and incoherence indicative of localized ground failure. Interferograms spanning the 26 May 2006 Java earthquake suggest an area of about 7.5 km2 of subsidence (~2 cm) and incoherence south of the city of Yogyakarta that correlates with significant damage to housing, high modeled peak ground accelerations, and poorly consolidated geologic deposits. The subsidence and incoherence is inferred to be a result of intense shaking and/or damage. At least five subsidence patches on the west side of the Island of Hawai‘i, ranging 0.3–2.2 km2 in area and 3–8 cm in magnitude, occurred as a result of a pair of strong earthquakes on 15 October 2006. Although no felt reports or seismic data are available from the areas in Hawai‘i, the Java example suggests that the subsidence patches indicate areas of amplified earthquake shaking. Surprisingly, all subsidence areas in Hawai‘i were limited to recent, and supposedly stable, lava flows and may reflect geological conditions not detectable at the surface. In addition, two ‘a‘ā lava flows in Hawai‘i were partially incoherent in interferograms spanning the earthquakes, indicating surface disruption as a result of the earthquake shaking. Coearthquake incoherence of rubbly deposits, like ‘a‘ā flows, should be explored as a potential indicator of earthquake intensity and past strong seismic activity.

  10. Impact of 2015 earthquakes on a local hospital in Nepal: A prospective hospital-based study.

    Science.gov (United States)

    Giri, Samita; Risnes, Kari; Uleberg, Oddvar; Rogne, Tormod; Shrestha, Sanu Krishna; Nygaard, Øystein Petter; Koju, Rajendra; Solligård, Erik

    2018-01-01

    Natural disasters pose a great challenge to the health systems and individual health facilities. In low-resource settings, disaster preparedness systems are often limited and not been well described. Two devastating earthquakes hit Nepal within a 17-days period in 2015. This study aims to describe the burden and distribution of emergency cases to a local hospital. This is a prospective observational study of patients presenting to a local hospital for a period of 21 days following the earthquake on April 25, 2015. Demographic and clinical information was prospectively registered for all patients in the systematic emergency registry. Systematic telephone interviews were conducted in a random sample of the patients 90 days after admission to the hospital. A total of 2,003 emergency patients were registered during the period. The average daily number of emergency patients during the first five days was almost five times higher (n = 150) than the pre-incident daily average (n = 35). The majority of injuries were fractures (58%), 348 (56%) in the lower extremities. A total of 345 surgical procedures were performed and the hospital treated 111 patients with severe injuries related to the earthquake (compartment syndrome, crush injury, and internal injury). Among those with follow-up interviews, over 90% reported that they had been severely affected by the earthquakes; complete house damage, living in temporary shelter, or loss of close family member. The hospital experienced a very high caseload during the first days, and the majority of patients needed orthopaedic services. The proportion of severely injured and in-hospital deaths were relatively low, probably indicating that the most severely injured did not reach the hospital in time. The experiences underline the need for robust and easily available local health services that can respond to disasters.

  11. 1/f and the Earthquake Problem: Scaling constraints that facilitate operational earthquake forecasting

    Science.gov (United States)

    yoder, M. R.; Rundle, J. B.; Turcotte, D. L.

    2012-12-01

    The difficulty of forecasting earthquakes can fundamentally be attributed to the self-similar, or "1/f", nature of seismic sequences. Specifically, the rate of occurrence of earthquakes is inversely proportional to their magnitude m, or more accurately to their scalar moment M. With respect to this "1/f problem," it can be argued that catalog selection (or equivalently, determining catalog constraints) constitutes the most significant challenge to seismicity based earthquake forecasting. Here, we address and introduce a potential solution to this most daunting problem. Specifically, we introduce a framework to constrain, or partition, an earthquake catalog (a study region) in order to resolve local seismicity. In particular, we combine Gutenberg-Richter (GR), rupture length, and Omori scaling with various empirical measurements to relate the size (spatial and temporal extents) of a study area (or bins within a study area) to the local earthquake magnitude potential - the magnitude of earthquake the region is expected to experience. From this, we introduce a new type of time dependent hazard map for which the tuning parameter space is nearly fully constrained. In a similar fashion, by combining various scaling relations and also by incorporating finite extents (rupture length, area, and duration) as constraints, we develop a method to estimate the Omori (temporal) and spatial aftershock decay parameters as a function of the parent earthquake's magnitude m. From this formulation, we develop an ETAS type model that overcomes many point-source limitations of contemporary ETAS. These models demonstrate promise with respect to earthquake forecasting applications. Moreover, the methods employed suggest a general framework whereby earthquake and other complex-system, 1/f type, problems can be constrained from scaling relations and finite extents.; Record-breaking hazard map of southern California, 2012-08-06. "Warm" colors indicate local acceleration (elevated hazard

  12. Local amplification of seismic waves from the Denali earthquake and damaging seiches in Lake Union, Seattle, Washington

    Science.gov (United States)

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.

    2004-01-01

    The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.

  13. Localization in the brittle field: the role of frictional properties and implications for earthquake slip

    Science.gov (United States)

    Tullis, T.

    2003-04-01

    Rotary shear friction experiments on layers of simulated gouge and on bare surfaces of rock that generate gouge, with displacements up to several meters, show that in some situations slip becomes localized. The two constitutive parameters that control whether slip localizes are the displacement and the velocity dependence of the shear strength. When slip-weakening and velocity-weakening both occur, slip localizes, since the overall resistance is reduced and less energy is dissipated. Similarly, when slip- and velocity-strengthening both occur, slip delocalizes, again because less energy is dissipated. If the variation of shear resistance with slip and velocity are of opposite sign, then the magnitude of the slip and rate dependencies and the amount and rate of slip determine whether localization or delocalization occur. In most laboratory experiments, the displacement dependence of the strength is minimal and the velocity dependence controls the tendency for localization. However, some experiments illustrate the situation in which the displacement dependence dominates. Regardless of their underlying causes, slip- and velocity-weakening result in unstable slip in compliant systems. Consequently unstable slip and localization are linked through these constitutive properties. This connection between unstable slip, displacement/velocity-weakening, and localization suggests that slip on faults that occurs primarily via earthquakes will be localized. However, localization is more complicated on natural faults because laboratory faults are geometrically simpler than natural ones. Laboratory faults are smooth at long wavelengths, whereas natural faults have approximately a self-similar surface roughness, the amplitude of irregularities being proportional to their wavelength. Thus, slip on a localized surface in a laboratory fault can continue indefinitely, whereas slip on natural faults is likely to require fracture of new wall rock as sufficient slip brings higher

  14. Local and regional minimum 1D models for earthquake location and data quality assessment in complex tectonic regions: application to Switzerland

    International Nuclear Information System (INIS)

    Husen, S.; Clinton, J. F.; Kissling, E.

    2011-01-01

    One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)

  15. Local and regional minimum 1D models for earthquake location and data quality assessment in complex tectonic regions: application to Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Husen, S.; Clinton, J. F. [Swiss Seismological Service, ETH Zuerich, Zuerich (Switzerland); Kissling, E. [Institute of Geophysics, ETH Zuerich, Zuerich (Switzerland)

    2011-10-15

    One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)

  16. Responses of a tall building in Los Angeles, California as inferred from local and distant earthquakes

    Science.gov (United States)

    Çelebi, Mehmet; Hasan Ulusoy,; Nori Nakata,

    2016-01-01

    Increasing inventory of tall buildings in the United States and elsewhere may be subjected to motions generated by near and far seismic sources that cause long-period effects. Multiple sets of records that exhibited such effects were retrieved from tall buildings in Tokyo and Osaka ~ 350 km and 770 km from the epicenter of the 2011 Tohoku earthquake. In California, very few tall buildings have been instrumented. An instrumented 52-story building in downtown Los Angeles recorded seven local and distant earthquakes. Spectral and system identification methods exhibit significant low frequencies of interest (~0.17 Hz, 0.56 Hz and 1.05 Hz). These frequencies compare well with those computed by transfer functions; however, small variations are observed between the significant low frequencies for each of the seven earthquakes. The torsional and translational frequencies are very close and are coupled. Beating effect is observed in at least two of the seven earthquake data.

  17. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    International Nuclear Information System (INIS)

    Supardiyono; Santosa, Bagus Jaya

    2012-01-01

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299° were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  18. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    Energy Technology Data Exchange (ETDEWEB)

    Supardiyono; Santosa, Bagus Jaya [Physics Department, Faculty of Mathematics and Natural Sciences, State University of Surabaya, Surabaya (Indonesia) and Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia); Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia)

    2012-06-20

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.

  19. Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America

    Science.gov (United States)

    Escudero Ayala, Christian Rene

    at 1.5, 3, 5, 7.5, 10.5, and 13.5 Hz. Coda Q present a great correlation with tectonic and geology setting, as well as the crustal thickness. I analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. I use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw ¿ 7) earthquakes, I first identify local earthquakes that occurred before and after the mainshocks. I then group the local earthquakes within a cluster radius between 75 to 200 km. I obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Based on the lateral variations of the dip along the subducted oceanic plate, I divide the Mexican subduction zone into four segments. I then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes passage of surface waves. I identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. I find no dependence of seismicity changes on mainshock focal mechanism.

  20. Rupture directivity and local site effects: the M7.3 Honduras earthquake of May 23, 2009

    Science.gov (United States)

    Shulman, D.; Mooney, W. D.

    2009-12-01

    On May 28, 2009, at 2:24 AM local time, a M 7.3 earthquake struck off the coast of Honduras on the Motagua-Swan Fault System (MSFS), part of the boundary between the North America and Caribbean plates. This plate boundary has an average slip rate of 20 mm/year. This left-lateral earthquake had an average slip of 1.5 m on a 100-km-long near-vertical fault plane (Hayes and Ji, 2009). The hypocenter depth is estimated at 10 km. The main shock caused 130 structures, including homes and office buildings, to collapse or suffer significant damage in northern Honduras. Seven deaths were reported. Due to a lack of recordings in the area, the available documentation of the local effects of this earthquake are the USGS "Did you feel it?" responses and the data collected during our field seismic intensity investigation. We conducted a field investigation in Honduras between May 30 and June 6, 2009, focused on areas with local reports of damage, including the cities of La Ceiba, El Progresso, San Pedro Sula, Puerto Cortes in northern Honduras and the island of Roatan in the Caribbean Sea. The damage ascertained at these five sites shows that the severity of damage did not decrease with distance from the epicenter as predicted by standard attenuation relations. Instead, a concentration of damage was observed in El Progresso, approximately 75 km directly south from the SW end of the rupture and 160 km from the epicenter. The island of Roatan, just 30 km from the epicenter, was graded as VI on the Modified Mercalli Intensity scale while, El Progresso was graded as VIII (one unit higher than “Did you feel it?”). These intensity anomalies can be explained by two factors: (1) SW-directed rupture propagation and proximity to a localized 3.0m slip pulse (asperity) that occurred near the SW end of the fault (Hayes and Ji, 2009) that focused energy toward the city of El Progress on the mainland and; (2) local site effects, particularly the Precambrian schists and gneisses on the

  1. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin

    2015-02-03

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  2. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin; Dutta, Rishabh; Jonsson, Sigurjon

    2015-01-01

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  3. Evaluation of Earthquake-Induced Effects on Neighbouring Faults and Volcanoes: Application to the 2016 Pedernales Earthquake

    Science.gov (United States)

    Bejar, M.; Alvarez Gomez, J. A.; Staller, A.; Luna, M. P.; Perez Lopez, R.; Monserrat, O.; Chunga, K.; Herrera, G.; Jordá, L.; Lima, A.; Martínez-Díaz, J. J.

    2017-12-01

    It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the short-term behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with a useful tool to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Space geodesy is now routinely used following an earthquake to image the displacement of the ground and estimate the rupture geometry and the distribution of slip. Using the obtained source model, it is possible to evaluate the remaining moment deficit and to infer the stress changes on nearby faults and volcanoes produced by the earthquake, which can be used to identify which faults and volcanoes are brought closer to failure or activation. Although these procedures are commonly used today, the transference of these results to the authorities managing the post-disaster situation is not straightforward and thus its usefulness is reduced in practice. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after an earthquake. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 SAR and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip. Then we use this model to evaluate the moment deficit on the subduction interface and changes of stress on the surrounding faults and volcanoes. The results are compared with the seismic and volcanic events that have occurred after the earthquake. We discuss potential and limits of the methodology and the lessons learnt from discussion with local authorities.

  4. Local magnitude, duration magnitude and seismic moment of Dahshour 1992 earthquakes

    Directory of Open Access Journals (Sweden)

    M. F. Abdelwahed

    2000-06-01

    Full Text Available Local magnitudes ML have been calculated for 56 earthquakes of the Dahshour 1992 sequence using simulated records of the KEG broadband station and the estimated calibration function of the Dahshour area. These were compared with their corresponding values of duration magnitudes obtained from the analog short period seismograms of the HLW station. The local magnitudes M L and the duration magnitudes M D for this region imply a linear relation as follows: M L = 1.2988 (± 0.04 M D – 0.9032 (± 0.14. Seismic moment has also been estimated for these events using simple measurements from the time domain records. These measurements based on the simulated Wood Anderson seismograms are used for the local magnitude (ML estimation. The derived relationship between seismic moment (M 0 and magnitude (M L is: log (M 0 = 0.954 (± 0.019 M L + 17.258 (± 0.075.

  5. Earthquake location in island arcs

    Science.gov (United States)

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  6. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    Science.gov (United States)

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  7. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  8. Case Study of Local Damage Indicators for a 2-Bay, 6-Storey RC-Frame subject to Earthquakes

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    1997-01-01

    A simulation study of a 2-bay, 6storey model test RC-frame(scale 1:5) subject to earthquakes is considered in this paper. Based on measured (simulated) storey accelerations and ground surface accelerations several indices for the storey damage, including interstorey drift, flexural damage ratios......, normalized cumulative dissipated energy, Park and Ang's indicator, a low-cycle fatigue damage index and a recently proposed local softening damage index estimated from time-varying eigenfrequencies are used to evaluate the damage state of the structure after the earthquake. Storey displacements are obtained...

  9. Case Study of Local Damage Indicators for a 2-Bay, 6-Storey RC-Frame subject to Earthquakes

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    A simulation study of a 2-bay, 6storey model test RC-frame(scale 1:5) subject to earthquakes is considered in this paper. Based on measured (simulated) storey accelerations and ground surface accelerations several indices for the storey damage, including interstorey drift, flexural damage ratios......, normalized cumulative dissipated energy, Park and Ang's indicator, a low-cycle fatigue damage index and a recently proposed local softening damage index estimated from time-varying eigenfrequencies are used to evaluate the damage state of the structure after the earthquake. Storey displacements are obtained...

  10. Scenario-based earthquake hazard and risk assessment for Baku (Azerbaijan

    Directory of Open Access Journals (Sweden)

    G. Babayev

    2010-12-01

    Full Text Available A rapid growth of population, intensive civil and industrial building, land and water instabilities (e.g. landslides, significant underground water level fluctuations, and the lack of public awareness regarding seismic hazard contribute to the increase of vulnerability of Baku (the capital city of the Republic of Azerbaijan to earthquakes. In this study, we assess an earthquake risk in the city determined as a convolution of seismic hazard (in terms of the surface peak ground acceleration, PGA, vulnerability (due to building construction fragility, population features, the gross domestic product per capita, and landslide's occurrence, and exposure of infrastructure and critical facilities. The earthquake risk assessment provides useful information to identify the factors influencing the risk. A deterministic seismic hazard for Baku is analysed for four earthquake scenarios: near, far, local, and extreme events. The seismic hazard models demonstrate the level of ground shaking in the city: PGA high values are predicted in the southern coastal and north-eastern parts of the city and in some parts of the downtown. The PGA attains its maximal values for the local and extreme earthquake scenarios. We show that the quality of buildings and the probability of their damage, the distribution of urban population, exposure, and the pattern of peak ground acceleration contribute to the seismic risk, meanwhile the vulnerability factors play a more prominent role for all earthquake scenarios. Our results can allow elaborating strategic countermeasure plans for the earthquake risk mitigation in the Baku city.

  11. Investigation on relationship between epicentral distance and growth curve of initial P-wave propagating in local heterogeneous media for earthquake early warning system

    Science.gov (United States)

    Okamoto, Kyosuke; Tsuno, Seiji

    2015-10-01

    In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. It has been empirically pointed out that the growth rate becomes smaller as epicentral distance becomes far regardless of the magnitude of earthquakes. So, the epicentral distance can be estimated from the growth rate using this empirical relationship. However, the growth rates calculated from different earthquakes at the same epicentral distance mark considerably different values from each other. Sometimes the growth rates of earthquakes having the same epicentral distance vary by 104 times. Qualitatively, it has been considered that the gap in the growth rates is due to differences in the local heterogeneities that the P-waves propagate through. In this study, we demonstrate theoretically how local heterogeneities in the subsurface disturb the relationship between the growth rate and the epicentral distance. Firstly, we calculate seismic scattered waves in a heterogeneous medium. First-ordered PP, PS, SP, and SS scatterings are considered. The correlation distance of the heterogeneities and fractional fluctuation of elastic parameters control the heterogeneous conditions for the calculation. From the synthesized waves, the growth rate of the initial P-wave is obtained. As a result, we find that a parameter (in this study, correlation distance) controlling heterogeneities plays a key role in the magnitude of the fluctuation of the growth rate. Then, we calculate the regional correlation distances in Japan that can account for the fluctuation of the growth rate of real earthquakes from 1997 to 2011 observed by K-NET and KiK-net. As a result, the spatial distribution of the correlation distance shows locality. So, it is revealed that the growth rates fluctuate according to the locality. When this local fluctuation is taken into account, the accuracy of the estimation of epicentral distances from initial P

  12. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    Science.gov (United States)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  13. Remotely Triggered Earthquakes Recorded by EarthScope's Transportable Array and Regional Seismic Networks: A Case Study Of Four Large Earthquakes

    Science.gov (United States)

    Velasco, A. A.; Cerda, I.; Linville, L.; Kilb, D. L.; Pankow, K. L.

    2013-05-01

    Changes in field stress required to trigger earthquakes have been classified in two basic ways: static and dynamic triggering. Static triggering occurs when an earthquake that releases accumulated strain along a fault stress loads a nearby fault. Dynamic triggering occurs when an earthquake is induced by the passing of seismic waves from a large mainshock located at least two or more fault lengths from the epicenter of the main shock. We investigate details of dynamic triggering using data collected from EarthScope's USArray and regional seismic networks located in the United States. Triggered events are identified using an optimized automated detector based on the ratio of short term to long term average (Antelope software). Following the automated processing, the flagged waveforms are individually analyzed, in both the time and frequency domains, to determine if the increased detection rates correspond to local earthquakes (i.e., potentially remotely triggered aftershocks). Here, we show results using this automated schema applied to data from four large, but characteristically different, earthquakes -- Chile (Mw 8.8 2010), Tokoku-Oki (Mw 9.0 2011), Baja California (Mw 7.2 2010) and Wells Nevada (Mw 6.0 2008). For each of our four mainshocks, the number of detections within the 10 hour time windows span a large range (1 to over 200) and statistically >20% of the waveforms show evidence of anomalous signals following the mainshock. The results will help provide for a better understanding of the physical mechanisms involved in dynamic earthquake triggering and will help identify zones in the continental U.S. that may be more susceptible to dynamic earthquake triggering.

  14. Localizing Submarine Earthquakes by Listening to the Water Reverberations

    Science.gov (United States)

    Castillo, J.; Zhan, Z.; Wu, W.

    2017-12-01

    Mid-Ocean Ridge (MOR) earthquakes generally occur far from any land based station and are of moderate magnitude, making it complicated to detect and in most cases, locate accurately. This limits our understanding of how MOR normal and transform faults move and the manner in which they slip. Different from continental events, seismic records from earthquakes occurring beneath the ocean floor show complex reverberations caused by P-wave energy trapped in the water column that are highly dependent of the source location and the efficiency to which energy propagated to the near-source surface. These later arrivals are commonly considered to be only a nuisance as they might sometimes interfere with the primary arrivals. However, in this study, we take advantage of the wavefield's high sensitivity to small changes in the seafloor topography and the present-day availability of worldwide multi-beam bathymetry to relocate submarine earthquakes by modeling these water column reverberations in teleseismic signals. Using a three-dimensional hybrid method for modeling body wave arrivals, we demonstrate that an accurate hypocentral location of a submarine earthquake (<5 km) can be achieved if the structural complexities near the source region are appropriately accounted for. This presents a novel way of studying earthquake source properties and will serve as a means to explore the influence of physical fault structure on the seismic behavior of transform faults.

  15. Earthquakes and economic growth

    OpenAIRE

    Fisker, Peter Simonsen

    2012-01-01

    This study explores the economic consequences of earthquakes. In particular, it is investigated how exposure to earthquakes affects economic growth both across and within countries. The key result of the empirical analysis is that while there are no observable effects at the country level, earthquake exposure significantly decreases 5-year economic growth at the local level. Areas at lower stages of economic development suffer harder in terms of economic growth than richer areas. In addition,...

  16. High Resolution Vp and Vp/Vs Local Earthquake Tomography of the Val d'Agri Region (Southern Apennines, Italy).

    Science.gov (United States)

    Improta, L.; Bagh, S.; De Gori, P.; Pastori, M.; Piccinini, D.; Valoroso, L.; Anselmi, M.; Buttinelli, M.; Chiarabba, C.

    2015-12-01

    The Val d'Agri (VA) Quaternary basin in the southern Apennines extensional belt hosts the largest oilfield in onshore Europe and normal-fault systems with high (up to M7) seismogenic potential. Frequent small-magnitude swarms related to both active crustal extension and anthropogenic activity have occurred in the region. Causal factors for induced seismicity are a water impoundment with severe seasonal oscillations and a high-rate wastewater injection well. We analyzed around 1200 earthquakes (MLENI petroleum company. We used local earthquake tomography to investigate static and transient features of the crustal velocity structure and to accurately locate earthquakes. Vp and Vp/Vs models are parameterized by a 3x3x2 km spacing and well resolved down to about 12 km depth. The complex Vp model illuminates broad antiformal structures corresponding to wide ramp-anticlines involving Mesozoic carbonates of the Apulia hydrocarbon reservoir, and NW-SE trending low Vp regions related to thrust-sheet-top clastic basins. The VA basin corresponds to shallow low-Vp region. Focal mechanisms show normal faulting kinematics with minor strike slip solutions in agreement with the local extensional regime. Earthquake locations and focal solutions depict shallow (< 5 km depth) E-dipping extensional structures beneath the artificial lake located in the southern sector of the basin, and along the western margin of the VA. A few swarms define relatively deep transfer structures accommodating the differential extension between main normal faults. The spatio-temporal distribution of around 220 events correlates with wastewater disposal activity, illuminating a NE-dipping fault between 2-5 km depth in the carbonate reservoir. The fault measures 5 km along dip and corresponds to a pre-existing thrust fault favorably oriented with respect to the local extensional field.

  17. People's perspectives and expectations on preparedness against earthquakes: Tehran case study.

    Science.gov (United States)

    Jahangiri, Katayoun; Izadkhah, Yasamin Ostovar; Montazeri, Ali; Hosseinip, Mahmood

    2010-06-01

    Public education is one of the most important elements of earthquake preparedness. The present study identifies methods and appropriate strategies for public awareness and education on preparedness for earthquakes based on people's opinions in the city of Tehran. This was a cross-sectional study and a door-to-door survey of residents from 22 municipal districts in Tehran, the capital city of Iran. It involved a total of 1 211 individuals aged 15 and above. People were asked about different methods of public information and education, as well as the type of information needed for earthquake preparedness. "Enforcing the building contractors' compliance with the construction codes and regulations" was ranked as the first priority by 33.4% of the respondents. Over 70% of the participants (71.7%) regarded TV as the most appropriate means of media communication to prepare people for an earthquake. This was followed by "radio" which was selected by 51.6% of respondents. Slightly over 95% of the respondents believed that there would soon be an earthquake in the country, and 80% reported that they obtained this information from "the general public". Seventy percent of the study population felt that news of an earthquake should be communicated through the media. However, over fifty (58%) of the participants believed that governmental officials and agencies are best qualified to disseminate information about the risk of an imminent earthquake. Just over half (50.8%) of the respondents argued that the authorities do not usually provide enough information to people about earthquakes and the probability of their occurrence. Besides seismologists, respondents thought astronauts (32%), fortunetellers (32.3%), religious figures (34%), meteorologists (23%), and paleontologists (2%) can correctly predict the occurrence of an earthquake. Furthermore, 88.6% listed aid centers, mosques, newspapers and TV as the most important sources of information during the aftermath of an earthquake

  18. Upper crustal stress and seismotectonics of the Garhwal Himalaya using small-to-moderate earthquakes: Implications to the local structures and free fluids

    Science.gov (United States)

    Prasath, R. Arun; Paul, Ajay; Singh, Sandeep

    2017-03-01

    The work presents new focal-mechanism data of small-to-moderate (3.0 ⩾ ML ⩽ 5.0) upper crustal earthquakes for the Garhwal Himalaya from a local seismic network installed in July 2007. Majority of the epicenters of these earthquakes are located close to the Main Central Thrust (MCT) zone. We retrieved Moment Tensor (MT) solutions of 26 earthquakes by waveform inversion. The MT results and 11 small-to-moderate earthquakes from the published records are used for stress inversions. The MT solutions reveal dominatingly thrust mechanisms with few strike slip earthquakes near Chamoli. The seismic cross sections illustrate that, these earthquakes are located around the Mid-Crustal-Ramp (MCR) in the detachment. The optimally oriented faults from stress inversions suggest that, the seismogenic fault in this region is similar to a fault plane having dip angle between 12 and 25 degrees, which is compatible with the dip angle of the MCR (∼16°) in this region. P-axes and the maximum horizontal compressive stress are NE-SW oriented; the direction of the relative motion of Indian plate with respect to the Eurasian plate. The Friction Coefficient estimated from stress inversions show that the Chamoli region having low friction in comparison to the overall values. The free fluids trapped beneath the detachment are penetrating into the local faults, hence, decreasing the frictional strength and altering the prevailing stress conditions of the surroundings. The present study reveals that the MCR structure is seismogenically active and producing the small-moderate earthquakes in the region, while the MCT is probably dormant at present.

  19. Estimation of earthquake source parameters in the Kachchh seismic ...

    Indian Academy of Sciences (India)

    SEISAN software has been used to locate the identified local earthquakes, which were recorded at least three or more stations of the Kachchh seismological network. Three component spectra of S-wave are being inverted by using the Levenberg–Marquardt non-linear inversion technique, wherein the inversion scheme is ...

  20. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  1. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  2. The 1448 earthquake in Catalonia. Some effects and local reactions

    Directory of Open Access Journals (Sweden)

    R. Salicrù i Lluch

    1995-06-01

    Full Text Available The May 1448 earthquake. the last destructive one that took place in Catalonia in the Middle Ages, was known chiefly from several chronistic and narrative medieval sources. To these sources I add new previously unknown data proceeding Eroin documentary archival sources in Barcelona, and other data that up to now have been wrongly considered as a consequence of the weak quake recorded in September 1450. They allow us to locate the epicentre in the Vall&s Oriental, around Llinars, to deny the existence of two almost simultaneous earthquakes, and to extend the range of the earthquake damage. to pinpoint them better and to suppose that the effects of the 1448 earthquake were more important than we had previously thought. All this information leads to several reflections on compulsory critical analysis of historical seismic documentary sources in order for them to be useful to historical seismicity. Finally. by the opposition of the three lands of documentary sources that refer to the damage caused by the earthquake in the township of Mataro. I show how natural catastrophes could be manipulated, and the skill of a society in exploiting them to deal with an adverse situation.

  3. Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina

    Science.gov (United States)

    Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.

    2008-07-01

    In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.

  4. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  5. Characterization of the Virginia earthquake effects and source parameters from website traffic analysis

    Science.gov (United States)

    Bossu, R.; Lefebvre, S.; Mazet-Roux, G.; Roussel, F.

    2012-12-01

    This paper presents an after the fact study of the Virginia earthquake of 2011 August 23 using only the traffic observed on the EMSC website within minutes of its occurrence. Although the EMSC real time information services remain poorly identified in the US, a traffic surge was observed immediately after the earthquake's occurrence. Such surges, known as flashcrowd and commonly observed on our website after felt events within the Euro-Med region are caused by eyewitnesses looking for information about the shaking they have just felt. EMSC developed an approach named flashsourcing to map the felt area, and in some circumstances, the regions affected by severe damage or network disruption. The felt area is mapped simply by locating the Internet Protocol (IP) addresses of the visitors to the website during these surges while the existence of network disruption is detected by the instantaneous loss at the time of earthquake's occurrence of existing Internet sessions originating from the impacted area. For the Virginia earthquake, which was felt at large distances, the effects of the waves propagation are clearly observed. We show that the visits to our website are triggered by the P waves arrival: the first visitors from a given locality reach our website 90s after their location was shaken by the P waves. From a processing point of view, eyewitnesses can then be considered as ground motion detectors. By doing so, the epicentral location is determined through a simple dedicated location algorithm within 2 min of the earthquake's occurrence and 30 km accuracy. The magnitude can be estimated in similar time frame by using existing empirical relationships between the surface of the felt area and the magnitude. Concerning the effects of the earthquake, we check whether one can discriminate localities affected by strong shaking from web traffic analysis. This is actually the case. Localities affected by strong level of shaking exhibit higher ratio of visitors to the number

  6. The potential of imaging subsurface heterogeneities by local, natural earthquakes

    NARCIS (Netherlands)

    Nishitsuji, Y.; Doi, I.; Draganov, D.S.

    2014-01-01

    We have developed a new imaging technique of subsurface heterogeneities that uses Sp-waves from natural earthquakes. This technique can be used as a first screening tool in frontier exploration areas before conventional active exploration. Analyzing Sp-waves from 28 earthquakes (Mj 2.0 to 4.2)

  7. Auto Correlation Analysis of Coda Waves from Local Earthquakes for Detecting Temporal Changes in Shallow Subsurface Structures: the 2011 Tohoku-Oki, Japan Earthquake

    Science.gov (United States)

    Nakahara, Hisashi

    2015-02-01

    For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can

  8. Earthquakes Sources Parameter Estimation of 20080917 and 20081114 Near Semangko Fault, Sumatra Using Three Components of Local Waveform Recorded by IA Network Station

    Directory of Open Access Journals (Sweden)

    Madlazim

    2012-04-01

    Full Text Available The 17/09/2008 22:04:80 UTC and 14/11/2008 00:27:31.70 earthquakes near Semangko fault were analyzed to identify the fault planes. The two events were relocated to assess physical insight against the hypocenter uncertainty. The datas used to determine source parameters of both earthquakes were three components of local waveform recorded by Geofon broadband IA network stations, (MDSI, LWLI, BLSI and RBSI for the event of 17/09/2008 and (MDSI, LWLI, BLSI and KSI for the event of 14/11/2008. Distance from the epicenter to all station was less than 5°. Moment tensor solution of two events was simultaneously analyzed by determination of the centroid position. Simultaneous analysis covered hypocenter position, centroid position and nodal planes of two events indicated Semangko fault planes. Considering that the Semangko fault zone is a high seismicity area, the identification of the seismic fault is important for the seismic hazard investigation in the region.

  9. Precisely locating the Klamath Falls, Oregon, earthquakes

    Science.gov (United States)

    Qamar, A.; Meagher, K.L.

    1993-01-01

    The Klamath Falls earthquakes on September 20, 1993, were the largest earthquakes centered in Oregon in more than 50 yrs. Only the magnitude 5.75 Milton-Freewater earthquake in 1936, which was centered near the Oregon-Washington border and felt in an area of about 190,000 sq km, compares in size with the recent Klamath Falls earthquakes. Although the 1993 earthquakes surprised many local residents, geologists have long recognized that strong earthquakes may occur along potentially active faults that pass through the Klamath Falls area. These faults are geologically related to similar faults in Oregon, Idaho, and Nevada that occasionally spawn strong earthquakes

  10. The October 1992 Parkfield, California, earthquake prediction

    Science.gov (United States)

    Langbein, J.

    1992-01-01

    A magnitude 4.7 earthquake occurred near Parkfield, California, on October 20, 992, at 05:28 UTC (October 19 at 10:28 p.m. local or Pacific Daylight Time).This moderate shock, interpreted as the potential foreshock of a damaging earthquake on the San Andreas fault, triggered long-standing federal, state and local government plans to issue a public warning of an imminent magnitude 6 earthquake near Parkfield. Although the predicted earthquake did not take place, sophisticated suites of instruments deployed as part of the Parkfield Earthquake Prediction Experiment recorded valuable data associated with an unusual series of events. this article describes the geological aspects of these events, which occurred near Parkfield in October 1992. The accompnaying article, an edited version of a press conference b Richard Andrews, the Director of the California Office of Emergency Service (OES), describes governmental response to the prediction.   

  11. Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India

    Science.gov (United States)

    Bora, Dipok K.

    2016-06-01

    In this study, we aim to improve the scaling between the moment magnitude ( M W), local magnitude ( M L), and the duration magnitude ( M D) for 162 earthquakes in Shillong-Mikir plateau and its adjoining region of northeast India by extending the M W estimates to lower magnitude earthquakes using spectral analysis of P-waves from vertical component seismograms. The M W- M L and M W- M D relationships are determined by linear regression analysis. It is found that, M W values can be considered consistent with M L and M D, within 0.1 and 0.2 magnitude units respectively, in 90 % of the cases. The scaling relationships investigated comply well with similar relationships in other regions in the world and in other seismogenic areas in the northeast India region.

  12. POST Earthquake Debris Management — AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  13. Investigating Earthquake-induced Landslides­a Historical Review

    Science.gov (United States)

    Keefer, D. K.; Geological Survey, Us; Park, Menlo; Usa, Ca

    Although earthquake-induced landslides have been described in documents for more than 3700 years, accounts from earthquakes before the late eighteenth century are incomplete concerning landslide numbers and vague concerning landslide character- istics. They are thus typically misleading concerning the true abundance of landslides and range of landslide characteristics. Beginning with studies of the 1783 Calabria, Italy earthquake, more complete and precise data concerning the occurrence of land- slides in earthquakes have become available. The historical development of knowl- edge concerning landslides triggered by earthquakes can be divided into several peri- ods. The first period, from 1783 until the first application of aerial photography, was characterized by ground-based studies of earthquake effects, typically carried out by formal scientific commissions. These formal studies typically identified a large, but not necessarily comprehensive, sampling of localities where landslides had occurred. In some, but not all cases, landslide characteristics were also described in enough de- tail that the general range of landslide characteristics could begin to be determined. More recently, some nineteenth to mid-twentieth century earthquakes have been stud- ied using retrospective analyses, in which the landslide occurrences associated with the event are inferred years to decades later, using contemporary accounts, mapping from aerial photographs, statistical studies, and (or) geotechnical analyses. The first use of aerial photographs to map earthquake effects immediately after the event prob- ably occurred in 1948. Since that time, the use of aerial photography has greatly facil- itated the compilation of post-earthquake landslide inventories, although because of the limitations of aerial photography, ground-based field studies continue to be cru- cial in preparing accurate and comprehensive landslide maps. Beginning with a small California earthquake in 1957

  14. Earthquake Swarm in Armutlu Peninsula, Eastern Marmara Region, Turkey

    Science.gov (United States)

    Yavuz, Evrim; Çaka, Deniz; Tunç, Berna; Serkan Irmak, T.; Woith, Heiko; Cesca, Simone; Lühr, Birger-Gottfried; Barış, Şerif

    2015-04-01

    The most active fault system of Turkey is North Anatolian Fault Zone and caused two large earthquakes in 1999. These two earthquakes affected the eastern Marmara region destructively. Unbroken part of the North Anatolian Fault Zone crosses north of Armutlu Peninsula on east-west direction. This branch has been also located quite close to Istanbul known as a megacity with its high population, economic and social aspects. A new cluster of microseismic activity occurred in the direct vicinity southeastern of the Yalova Termal area. Activity started on August 2, 2014 with a series of micro events, and then on August 3, 2014 a local magnitude is 4.1 event occurred, more than 1000 in the followed until August 31, 2014. Thus we call this tentatively a swarm-like activity. Therefore, investigation of the micro-earthquake activity of the Armutlu Peninsula has become important to understand the relationship between the occurrence of micro-earthquakes and the tectonic structure of the region. For these reasons, Armutlu Network (ARNET), installed end of 2005 and equipped with currently 27 active seismic stations operating by Kocaeli University Earth and Space Sciences Research Center (ESSRC) and Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), is a very dense network tool able to record even micro-earthquakes in this region. In the 30 days period of August 02 to 31, 2014 Kandilli Observatory and Earthquake Research Institute (KOERI) announced 120 local earthquakes ranging magnitudes between 0.7 and 4.1, but ARNET provided more than 1000 earthquakes for analyzes at the same time period. In this study, earthquakes of the swarm area and vicinity regions determined by ARNET were investigated. The focal mechanism of the August 03, 2014 22:22:42 (GMT) earthquake with local magnitude (Ml) 4.0 is obtained by the moment tensor solution. According to the solution, it discriminates a normal faulting with dextral component. The obtained focal mechanism solution is

  15. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  16. Foreshocks and aftershocks locations of the 2014 Pisagua, N. Chile earthquake: history of a megathrust earthquake nucleation

    Science.gov (United States)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Tavera, Hernando; Ryder, Isabelle; Ruiz, Sergio; Thomas, Reece; De Angelis, Silvio; Bondoux, Francis

    2015-04-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap: a region of the South American subduction zone lying between Arica city and the Mejillones Peninsula. It is believed that this part of the subduction zone has not experienced a large earthquake since 1877. Thanks to the identification of this seismic gap, the north of Chile was well instrumented before the Pisagua earthquake, including the Integrated Plate boundary Observatory Chile (IPOC) network and the Chilean local network installed by the Centro Sismologico Nacional (CSN). These instruments were able to record the full foreshock and aftershock sequences, allowing a unique opportunity to study the nucleation process of large megathrust earthquakes. To improve azimuthal coverage of the Pisagua seismic sequence, after the earthquake, in collaboration with the Instituto Geofisico del Peru (IGP) we installed a temporary seismic network in south of Peru. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and they were operative from 1st May 2014. We also installed three stations on the slopes of the Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake. In this work we analysed the continuous seismic data recorded by CSN and IPOC networks from 1 March to 30 June to obtain the catalogue of the sequence, including foreshocks and aftershocks. Using an automatic algorithm based in STA/LTA we obtained the picks for P and S waves. Association in time and space defined the events and computed an initial location using Hypo71 and the 1D local velocity model. More than 11,000 events were identified with this method for the whole period, but we selected the best resolved events that include more than 7 observed arrivals with at least 2 S picks of them, to relocate these events using NonLinLoc software. For the main events of the sequence we carefully estimate event locations and we obtained

  17. Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods

    Directory of Open Access Journals (Sweden)

    B. Theilen-Willige

    2010-06-01

    Full Text Available The potential contribution of remote sensing and GIS techniques to earthquake hazard analysis was investigated in SW-Haiti in order to improve the systematic, standardized inventory of those areas that are more susceptible to earthquake ground motions or to earthquake related secondary effects such as landslides, liquefaction, soil amplifications, compaction or even tsunami-waves. Geophysical, topographical, geological data and satellite images were collected, processed, and integrated into a spatial database using Geoinformation Systems (GIS and image processing techniques. The GIS integrated evaluation of satellite imageries, of digital topographic data and of various open-source geodata can contribute to the acquisition of those specific tectonic, geomorphologic/topographic settings influencing local site conditions in Haiti and, thus, to a first data base stock. Using the weighted overlay techniques in GIS susceptibility maps were produced indicating areas where causal factors influencing surface-near earthquake shock occur aggregated and interfering each other and, thus, rise the susceptibility to soil amplification. This approach was used as well to create landslide and flooding susceptibility maps.

  18. Dynamic Earthquake Triggering on Seismogenic Faults in Oklahoma

    Science.gov (United States)

    Qin, Y.; Chen, X.; Peng, Z.; Aiken, C.

    2016-12-01

    Regions with high pore pressure are generally more susceptible to dynamic triggering from transient stress change caused by surface wave of distant earthquakes. The stress threshold from triggering studies can help understand the stress state of seismogenic faults. The recent dramatic seismicity increase in central US provides a rich database for assessing dynamic triggering phenomena. We begin our study by conducting a systematic analysis of dynamic triggering for the continental U.S using ANSS catalog (with magnitude of completeness Mc=3) from 49 global mainshocks (Ms>6.5, depth1kPa). We calculate β value for each 1° by 1° bins in 30 days before and 10 days after the mainshock. To identify regions that experience triggering from a distant mainshock, we generate a stacked map using β≥2 - which represents significant seismicity rate increase. As expected, the geothermal and volcanic fields in California show clear response to distant earthquakes. We also note areas in Oklahoma and north Texas show enhanced triggering, where wastewater-injection induced seismicity are occurring. Next we focus on Oklahoma and use a local catalog from Oklahoma Geological Survey with lower completeness threshold Mc to calculate the beta map in 0.2° by 0.2° bins for each selected mainshock to obtain finer spatial resolutions of the triggering behavior. For those grids with β larger than 2.0, we use waveforms from nearby stations to search for triggered events. The April 2015 M7.8 Nepal earthquake causes a statistically significant increase of local seismicity (β=3.5) in the Woodward area (west Oklahoma) during an on-going earthquake sequence. By visually examining the surface wave from the nearest station, we identify 3 larger local events, and 10 additional smaller events with weaker but discernable amplitude. Preliminary analysis shows that the triggering is related to Rayleigh wave, which would cause dilatational or shear stress changes along the strike direction of

  19. Along-strike Variations in the Himalayas Illuminated by the Aftershock Sequence of the 2015 Mw 7.8 Gorkha Earthquake Using the NAMASTE Local Seismic Network

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2016-12-01

    As a result of the 2015 Mw 7.8 Gorkha earthquake, more than 8,000 people were killed from a combination of infrastructure failure and triggered landslides. This earthquake produced 4 m of peak co-seismic slip as the fault ruptured 130 km east under densely populated cities, such as Kathmandu. To understand earthquake dynamics in this part of the Himalayas and help mitigate similar future calamities by the next destructive event, it is imperative to study earthquake activities in detail and improve our understanding of the source and structural complexities. In response to the Gorkha event, multiple institutions developed and deployed a 10-month long dense seismic network called NAMASTE. It blanketed a 27,650 km2 area, mainly covering the rupture area of the Gorkha earthquake, in order to capture the dynamic sequence of aftershock behavior. The network consisted of a mix of 45 broadband, short-period, and strong motion sensors, with an average spacing of 20 km. From the first 6 months of data, starting approximately 1.5 after the mainshock, we develop a robust catalog containing over 3,000 precise earthquake locations, and local magnitudes that range between 0.3 and 4.9. The catalog has a magnitude of completeness of 1.5, and an overall low b-value of 0.78. Using the HypoDD algorithm, we relocate earthquake hypocenters with high precision, and thus illustrate the fault geometry down to depths of 25 km where we infer the location of the gently-dipping Main Frontal Thrust (MFT). Above the MFT, the aftershocks illuminate complex structure produced by relatively steeply dipping faults. Interestingly, we observe sharp along-strike change in the seismicity pattern. The eastern part of the aftershock area is significantly more active than the western part. The change in seismicity may reflect structural and/or frictional lateral heterogeneity in this part of the Himalayan fault system. Such along-strike variations play an important role in rupture complexities and

  20. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  1. Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings

    Science.gov (United States)

    Improta, Luigi; di Giulio, Giuseppe; Rovelli, Antonio

    The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1-2 to 7-10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.

  2. P-Wave Velocity Tomography from Local Earthquakes in Western Mexico

    Science.gov (United States)

    Ochoa-Chávez, Juan A.; Escudero, Christian R.; Núñez-Cornú, Francisco J.; Bandy, William L.

    2016-10-01

    In western Mexico, the subduction of the Rivera and Cocos plates beneath the North America plate has deformed and fragmented the overriding plate, forming several structural rifts and crustal blocks. To obtain a reliable subsurface image of the continental crust and uppermost mantle in this complex area, we used P-wave arrivals of local earthquakes along with the Fast Marching Method tomography technique. We followed an inversion scheme consisting of (1) the use of a high-quality earthquake catalog and corrected phase picks, (2) the selection of earthquakes using a maximum location error threshold, (3) the estimation of an improved 1-D reference velocity model, and (4) the use of checkerboard testing to determine the optimum configuration of the velocity nodes and inversion parameters. Surprisingly, the tomography results show a very simple δVp distribution that can be described as being controlled by geologic structures formed during two stages of the separation of the Rivera and Cocos plates. The earlier period represents the initial stages of the separation of the Rivera and Cocos plates beneath western Mexico; the later period represents the more advanced stage of rifting where the Rivera and Cocos plates had separated sufficiently to allow melt to accumulate below the Colima Volcanic complex. During the earlier period (14 or 10-1.6 Ma), NE-SW-oriented structures/lineaments (such as the Southern Colima Rift) were formed as the two plates separated. During the second period (1.6 Ma to the present), the deformation is attributed to magma, generated within and above the tear zone between the Rivera and Cocos plates, rising beneath the region of the Colima Volcanic Complex. The rising magma fractured the overlying crust, forming a classic triple-rift junction geometry. This triple-rift system is confined to the mid- to lower crust perhaps indicating that this rifting process is still in an early stage. This fracturing, along with fluid circulation and associated

  3. Modified-Fibonacci-Dual-Lucas method for earthquake prediction

    Science.gov (United States)

    Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.

    2015-06-01

    The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using

  4. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  5. Earthquakes of Garhwal Himalaya region of NW Himalaya, India: A study of relocated earthquakes and their seismogenic source and stress

    Science.gov (United States)

    R, A. P.; Paul, A.; Singh, S.

    2017-12-01

    Since the continent-continent collision 55 Ma, the Himalaya has accommodated 2000 km of convergence along its arc. The strain energy is being accumulated at a rate of 37-44 mm/yr and releases at time as earthquakes. The Garhwal Himalaya is located at the western side of a Seismic Gap, where a great earthquake is overdue atleast since 200 years. This seismic gap (Central Seismic Gap: CSG) with 52% probability for a future great earthquake is located between the rupture zones of two significant/great earthquakes, viz. the 1905 Kangra earthquake of M 7.8 and the 1934 Bihar-Nepal earthquake of M 8.0; and the most recent one, the 2015 Gorkha earthquake of M 7.8 is in the eastern side of this seismic gap (CSG). The Garhwal Himalaya is one of the ideal locations of the Himalaya where all the major Himalayan structures and the Himalayan Seimsicity Belt (HSB) can ably be described and studied. In the present study, we are presenting the spatio-temporal analysis of the relocated local micro-moderate earthquakes, recorded by a seismicity monitoring network, which is operational since, 2007. The earthquake locations are relocated using the HypoDD (double difference hypocenter method for earthquake relocations) program. The dataset from July, 2007- September, 2015 have been used in this study to estimate their spatio-temporal relationships, moment tensor (MT) solutions for the earthquakes of M>3.0, stress tensors and their interactions. We have also used the composite focal mechanism solutions for small earthquakes. The majority of the MT solutions show thrust type mechanism and located near the mid-crustal-ramp (MCR) structure of the detachment surface at 8-15 km depth beneath the outer lesser Himalaya and higher Himalaya regions. The prevailing stress has been identified to be compressional towards NNE-SSW, which is the direction of relative plate motion between the India and Eurasia continental plates. The low friction coefficient estimated along with the stress inversions

  6. Auto correlation analysis of coda waves from local earthquakes for detecting temporal changes in shallow subsurface structures - The 2011 Tohoku-Oki, Japan, earthquake -

    Science.gov (United States)

    Nakahara, H.

    2013-12-01

    For monitoring temporal changes in subsurface structures, I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Because the use of coda waves requires earthquakes, time resolution for monitoring decreases. But at regions with high seismicity, it may be possible to monitor subsurface structures in sufficient time resolutions. Studying the 2011 Tohoku-Oki (Mw 9.0), Japan, earthquake for which velocity changes have been already reported by previous studies, I try to validate the method. KiK-net stations in northern Honshu are used in the analysis. For each moderate earthquake, normalized auto correlation functions of surface records are stacked with respect to time windows in S-wave coda. Aligning the stacked normalized auto correlation functions with time, I search for changes in arrival times of phases. The phases at lag times of less than 1s are studied because changes at shallow depths are focused. Based on the stretching method, temporal variations in the arrival times are measured at the stations. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. Amounts of the phase delays are in the order of 10% on average with the maximum of about 50% at some stations. For validation, the deconvolution analysis using surface and subsurface records at the same stations are conducted. The results show that the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percents, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable to detect larger changes. In spite of these disadvantages, this analysis is

  7. The 2015 Nepal earthquake disaster: lessons learned one year on.

    Science.gov (United States)

    Hall, M L; Lee, A C K; Cartwright, C; Marahatta, S; Karki, J; Simkhada, P

    2017-04-01

    The 2015 earthquake in Nepal killed over 8000 people, injured more than 21,000 and displaced a further 2 million. One year later, a national workshop was organized with various Nepali stakeholders involved in the response to the earthquake. The workshop provided participants an opportunity to reflect on their experiences and sought to learn lessons from the disaster. One hundred and thirty-five participants took part and most had been directly involved in the earthquake response. They included representatives from the Ministry of Health, local and national government, the armed forces, non-governmental organizations, health practitioners, academics, and community representatives. Participants were divided into seven focus groups based around the following topics: water, sanitation and hygiene, hospital services, health and nutrition, education, shelter, policy and community. Facilitated group discussions were conducted in Nepalese and the key emerging themes are presented. Participants described a range of issues encountered, some specific to their area of expertize but also more general issues. These included logistics and supply chain challenges, leadership and coordination difficulties, impacts of the media as well as cultural beliefs on population behaviour post-disaster. Lessons identified included the need for community involvement at all stages of disaster response and preparedness, as well as the development of local leadership capabilities and community resilience. A 'disconnect' between disaster management policy and responses was observed, which may result in ineffective, poorly planned disaster response. Finding time and opportunity to reflect on and identify lessons from disaster response can be difficult but are fundamental to improving future disaster preparedness. The Nepal Earthquake National Workshop offered participants the space to do this. It garnered an overwhelming sense of wanting to do things better, of the need for a Nepal-centric approach

  8. Resilience of aging populations after devastating earthquake event and its determinants - A case study of the Chi-Chi earthquake in Taiwan

    Science.gov (United States)

    Hung, Chih-Hsuan; Hung, Hung-Chih

    2016-04-01

    1.Background Major portions of urban areas in Asia are highly exposed and vulnerable to devastating earthquakes. Many studies identify ways to reduce earthquake risk by concentrating more on building resilience for the particularly vulnerable populations. By 2020, as the United Nations' warning, many Asian countries would become 'super-aged societies', such as Taiwan. However, local authorities rarely use resilience approach to frame earthquake disaster risk management and land use strategies. The empirically-based research about the resilience of aging populations has also received relatively little attention. Thus, a challenge arisen for decision-makers is how to enhance resilience of aging populations within the context of risk reduction. This study aims to improve the understanding of the resilience of aging populations and its changes over time in the aftermath of a destructive earthquake at the local level. A novel methodology is proposed to assess the resilience of aging populations and to characterize their changes of spatial distribution patterns, as well as to examine their determinants. 2.Methods and data An indicator-based assessment framework is constructed with the goal of identifying composite indicators (including before, during and after a disaster) that could serve as proxies for attributes of the resilience of aging populations. Using the recovery process of the Chi-Chi earthquake struck central Taiwan in 1999 as a case study, we applied a method combined a geographical information system (GIS)-based spatial statistics technique and cluster analysis to test the extent of which the resilience of aging populations is spatially autocorrelated throughout the central Taiwan, and to explain why clustering of resilient areas occurs in specific locations. Furthermore, to scrutinize the affecting factors of resilience, we develop an aging population resilience model (APRM) based on existing resilience theory. Using the APRM, we applied a multivariate

  9. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  10. The 1976 Tangshan earthquake

    Science.gov (United States)

    Fang, Wang

    1979-01-01

    The Tangshan earthquake of 1976 was one of the largest earthquakes in recent years. It occurred on July 28 at 3:42 a.m, Beijing (Peking) local time, and had magnitude 7.8, focal depth of 15 kilometers, and an epicentral intensity of XI on the New Chinese Seismic Intensity Scale; it caused serious damage and loss of life in this densely populated industrial city. Now, with the help of people from all over China, the city of Tangshan is being rebuild. 

  11. Scenarios for local seismic effects of Tulcea (Romania) crustal earthquakes, preliminary approach for the seismic microzoning of Tulcea city

    Science.gov (United States)

    Florin Bǎlan, Å.žTefan; Apostol, Bogdan; Chitea, F.; Anghelache, Mirela Adriana; Cioflan, Carmen O.; Serban, A.

    2010-05-01

    The discussed area, Tulcea, is delimitated by the Scythian Platform in the North and Moessian Platform in the South, not far from the Black Sea coast. Natural disasters in the city could occur due to Vrancea intermediate-depth (subcrustal) earthquakes and crustal earthquakes caused by active faults. In the last 30 years three important seismic events affected the region of interest with the following recorded magnitudes: MW = 5.1 (13.11.1981) followed in the same day by 6 aftershocks (at depth 0-9 km) with MW = 2.9-3.3; MW = 5 (27.04.1986) and MW = 4.9 (3.10.2004) followed by two aftershocks. Information about the seismic zone of Tulcea is from three seismic catalogues made by Florinescu (1958), Constantinescu and Mârza (1980) and ROMPLUS (2008), but for urban planning of Tulcea city is very important to be better understood the effect of active faults (Măcin-Cerna, Tulcea-Isaccea, Peceneaga-Camena etc) located in the Pre-Dobrogean Depression (our interest area) in the two parts of the city. Regarding the effects of Vrancea subcrustal earthquakes, as the Tulcea city is situated relatively at a large distance from the epicenters, there is necessary to improve the actual method of microzonation based on Medvedev's method. In order to discuss the local seismic site effects we have considered two scenarios, which take into account the characteristics of the seismogenic area. The first one considers the city exposed to a seismic event with magnitude Mw = 5.1 from Sf. Gheorghe fault and the second one considers the city exposed to an earthquake from the EV zone (superficial). The earthquake epicentres are located in very active seismic areas. The absolute response spectra at the bedrock and at surface will be calculated and the characteristic transfer functions, as well. Nonlinear effects induced by significant deformations need a certain method - linear equivalent - for a multistratified zone, as we considered for the Tulcea superficial area. Therefore, important

  12. Smartphone-Based Earthquake and Tsunami Early Warning in Chile

    Science.gov (United States)

    Brooks, B. A.; Baez, J. C.; Ericksen, T.; Barrientos, S. E.; Minson, S. E.; Duncan, C.; Guillemot, C.; Smith, D.; Boese, M.; Cochran, E. S.; Murray, J. R.; Langbein, J. O.; Glennie, C. L.; Dueitt, J.; Parra, H.

    2016-12-01

    Many locations around the world face high seismic hazard, but do not have the resources required to establish traditional earthquake and tsunami warning systems (E/TEW) that utilize scientific grade seismological sensors. MEMs accelerometers and GPS chips embedded in, or added inexpensively to, smartphones are sensitive enough to provide robust E/TEW if they are deployed in sufficient numbers. We report on a pilot project in Chile, one of the most productive earthquake regions world-wide. There, magnitude 7.5+ earthquakes occurring roughly every 1.5 years and larger tsunamigenic events pose significant local and trans-Pacific hazard. The smartphone-based network described here is being deployed in parallel to the build-out of a scientific-grade network for E/TEW. Our sensor package comprises a smartphone with internal MEMS and an external GPS chipset that provides satellite-based augmented positioning and phase-smoothing. Each station is independent of local infrastructure, they are solar-powered and rely on cellular SIM cards for communications. An Android app performs initial onboard processing and transmits both accelerometer and GPS data to a server employing the FinDer-BEFORES algorithm to detect earthquakes, producing an acceleration-based line source model for smaller magnitude earthquakes or a joint seismic-geodetic finite-fault distributed slip model for sufficiently large magnitude earthquakes. Either source model provides accurate ground shaking forecasts, while distributed slip models for larger offshore earthquakes can be used to infer seafloor deformation for local tsunami warning. The network will comprise 50 stations by Sept. 2016 and 100 stations by Dec. 2016. Since Nov. 2015, batch processing has detected, located, and estimated the magnitude for Mw>5 earthquakes. Operational since June, 2016, we have successfully detected two earthquakes > M5 (M5.5, M5.1) that occurred within 100km of our network while producing zero false alarms.

  13. The Campi Flegrei Blind Test: Evaluating the Imaging Capability of Local Earthquake Tomography in a Volcanic Area

    Directory of Open Access Journals (Sweden)

    E. Priolo

    2012-01-01

    Full Text Available During the 1982–1984 bradyseismic crises in the Campi Flegrei area (Italy, the University of Wisconsin deployed a network of seismological stations to record local earthquakes. In order to analyse the potential of the recorded data in terms of tomographic imaging, a blind test was recently set up and carried out in the framework of a research project. A model representing a hypothetical 3D structure of the area containing the Campi Flegrei caldera was also set up, and a synthetic dataset of time arrivals was in turn computed. The synthetic dataset consists of several thousand P- and S-time arrivals, computed at about fourteen stations. The tomographic inversion was performed by four independent teams using different methods. The teams had no knowledge of either the input velocity model or the earthquake hypocenters used to create the synthetic dataset. The results obtained by the different groups were compared and analysed in light of the true model. This work provides a thorough analysis of the earthquake tomography potential of the dataset recording the seismic activity at Campi Flegrei in the 1982–1984 period. It shows that all the tested earthquake tomography methods provide reliable low-resolution images of the background velocity field of the Campi Flegrei area, but with some differences. However, none of them succeeds in detecting the hypothetical structure details (i.e. with a size smaller than about 1.5–2 km, such as a magmatic chamber 4 km deep and especially the smaller, isolated bodies, which represent possible magmatic chimneys and intrusions.

  14. The potential of continuous, local atomic clock measurements for earthquake prediction and volcanology

    Directory of Open Access Journals (Sweden)

    Bondarescu Mihai

    2015-01-01

    Full Text Available Modern optical atomic clocks along with the optical fiber technology currently being developed can measure the geoid, which is the equipotential surface that extends the mean sea level on continents, to a precision that competes with existing technology. In this proceeding, we point out that atomic clocks have the potential to not only map the sea level surface on continents, but also look at variations of the geoid as a function of time with unprecedented timing resolution. The local time series of the geoid has a plethora of applications. These include potential improvement in the predictions of earthquakes and volcanoes, and closer monitoring of ground uplift in areas where hydraulic fracturing is performed.

  15. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  16. Midbroken Reinforced Concrete Shear Frames Due to Earthquakes

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Cakmak, A. S.; Nielsen, Søren R. K.

    A non-linear hysteretic model for the response and local damage analyses of reinforced concrete shear frames subject to earthquake excitation is proposed, and, the model is applied to analyse midbroken reinforced concrete (RC) structures due to earthquake loads. Each storey of the shear frame...

  17. Ground deformation effects from the M6 earthquakes (2014-2015) on Cephalonia-Ithaca Islands (Western Greece) deduced by GPS observations

    Science.gov (United States)

    Sakkas, Vassilis; Lagios, Evangelos

    2017-03-01

    The implications of the earthquakes that took place in the central Ionian Islands in 2014 (Cephalonia, M w6.1, M w5.9) and 2015 (Lefkas, M w6.4) are described based on repeat measurements of the local GPS networks in Cephalonia and Ithaca, and the available continuous GPS stations in the broader area. The Lefkas earthquake occurred on a branch of the Cephalonia Transform Fault, affecting Cephalonia with SE displacements gradually decreasing from north ( 100 mm) to south ( 10 mm). This earthquake revealed a near N-S dislocation boundary separating Paliki Peninsula in western Cephalonia from the rest of the island, as well as another NW-SE trending fault that separates kinematically the northern and southern parts of Paliki. Strain field calculations during the interseismic period (2014-2015) indicate compression between Ithaca and Cephalonia, while extension appears during the following co-seismic period (2015-2016) including the 2015 Lefkas earthquake. Additional tectonically active zones with differential kinematic characteristics were also identified locally.

  18. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    Science.gov (United States)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  19. Seismogeodesy for rapid earthquake and tsunami characterization

    Science.gov (United States)

    Bock, Y.

    2016-12-01

    Rapid estimation of earthquake magnitude and fault mechanism is critical for earthquake and tsunami warning systems. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. These methods are well developed for ocean basin-wide warnings but are not timely enough to protect vulnerable populations and infrastructure from the effects of local tsunamis, where waves may arrive within 15-30 minutes of earthquake onset time. Direct measurements of displacements by GPS networks at subduction zones allow for rapid magnitude and slip estimation in the near-source region, that are not affected by instrumental limitations and magnitude saturation experienced by local seismic networks. However, GPS displacements by themselves are too noisy for strict earthquake early warning (P-wave detection). Optimally combining high-rate GPS and seismic data (in particular, accelerometers that do not clip), referred to as seismogeodesy, provides a broadband instrument that does not clip in the near field, is impervious to magnitude saturation, and provides accurate real-time static and dynamic displacements and velocities in real time. Here we describe a NASA-funded effort to integrate GPS and seismogeodetic observations as part of NOAA's Tsunami Warning Centers in Alaska and Hawaii. It consists of a series of plug-in modules that allow for a hierarchy of rapid seismogeodetic products, including automatic P-wave picking, hypocenter estimation, S-wave prediction, magnitude scaling relationships based on P-wave amplitude (Pd) and peak ground displacement (PGD), finite-source CMT solutions and fault slip models as input for tsunami warnings and models. For the NOAA/NASA project, the modules are being integrated into an existing USGS Earthworm environment, currently limited to traditional seismic data. We are focused on a network of

  20. Global risk of big earthquakes has not recently increased.

    Science.gov (United States)

    Shearer, Peter M; Stark, Philip B

    2012-01-17

    The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences--if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past.

  1. Understanding dynamic friction through spontaneously evolving laboratory earthquakes.

    Science.gov (United States)

    Rubino, V; Rosakis, A J; Lapusta, N

    2017-06-29

    Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source.

  2. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    Science.gov (United States)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  3. Seismicity map tools for earthquake studies

    Science.gov (United States)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  4. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  5. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  6. Source mechanism inversion and ground motion modeling of induced earthquakes in Kuwait - A Bayesian approach

    Science.gov (United States)

    Gu, C.; Toksoz, M. N.; Marzouk, Y.; Al-Enezi, A.; Al-Jeri, F.; Buyukozturk, O.

    2016-12-01

    The increasing seismic activity in the regions of oil/gas fields due to fluid injection/extraction and hydraulic fracturing has drawn new attention in both academia and industry. Source mechanism and triggering stress of these induced earthquakes are of great importance for understanding the physics of the seismic processes in reservoirs, and predicting ground motion in the vicinity of oil/gas fields. The induced seismicity data in our study are from Kuwait National Seismic Network (KNSN). Historically, Kuwait has low local seismicity; however, in recent years the KNSN has monitored more and more local earthquakes. Since 1997, the KNSN has recorded more than 1000 earthquakes (Mw Institutions for Seismology (IRIS) and KNSN, and widely felt by people in Kuwait. These earthquakes happen repeatedly in the same locations close to the oil/gas fields in Kuwait (see the uploaded image). The earthquakes are generally small (Mw stress of these earthquakes was calculated based on the source mechanisms results. In addition, we modeled the ground motion in Kuwait due to these local earthquakes. Our results show that most likely these local earthquakes occurred on pre-existing faults and were triggered by oil field activities. These events are generally smaller than Mw 5; however, these events, occurring in the reservoirs, are very shallow with focal depths less than about 4 km. As a result, in Kuwait, where oil fields are close to populated areas, these induced earthquakes could produce ground accelerations high enough to cause damage to local structures without using seismic design criteria.

  7. Localization of b-values and maximum earthquakes; B chi to saidai jishin no chiikisei

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, H

    1996-05-01

    There is a thought that hourly and spacial blanks in earthquake activity contribute to earthquake occurrence probability. Based on an idea that if so, this tendency may appear also in statistical parameters of earthquake, earthquake activities in every ten years were investigated in the relation between locational distribution of inclined b values of a line relating to the number of earthquake and the magnitude, and the center focus of earthquakes which are M{ge}7.0. The field surveyed is the Japanese Islands and the peripheral ocean, and the area inside the circle with a radius of 100km with a lattice-like point divided in 1{degree} in every direction of latitude and longitude as center was made a unit region. The depth is divided by above 60km or below 60km. As a result, the following were found out: as to epicenters of earthquakes with M{ge}7.0 during the survey period of 100 years, many are in a range of b(b value){le}0.75, and sometimes they may be in a range of b{ge}0.75 in the area from the ocean near Izu peninsula to the ocean off the west Hokkaido; the position of epicenters in a range of b{le}0.75 seems not to come close to the center of contour which indicates the maximum b value. 7 refs., 2 figs.

  8. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  9. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    International Nuclear Information System (INIS)

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-01-01

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile

  10. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Jenna, E-mail: jmmartin@ucdavis.edu; Ustin, Susan; Sandoval-Solis, Samuel; O' Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile.

  11. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  12. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  13. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    Science.gov (United States)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  14. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  15. Three-dimensional crustal structure for the Mendocino Triple Junction region from local earthquake travel times

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, D.; Zandt, G. [Lawrence Livermore National Lab., CA (United States)

    1994-12-10

    The large-scale, three-dimensional geometry of the Mendocino Triple Junction at Cape Mendocino, California, was investigated by inverting nearly 19,000 P wave arrival times from over 1400 local earthquakes to estimate the three-dimensional velocity structure and hypocentral parameters. A velocity grid 175 km (N-S) by 125 km (E-W) centered near Garberville, California, was constructed with 25 km horizontal and 5 km vertical node spacing. The model was well resolved near Cape Mendocino, where the earthquakes and stations are concentrated. At about 40.6{degrees}N latitude a high-velocity gradient between 6.5 and 7.5 km/s dips gently to the south and east from about 15 km depth near the coast. Relocated hypocenters concentrate below this high gradient which the authors interpret as the oceanic crust of the subducted Gorda Plate. Therefore the depth to the top of the Gorda Plate near Cape Mendocino is interpreted to be {approximately} 15 km. The Gorda Plate appears intact and dipping {approximately}8{degrees} eastward due to subduction and flexing downward 6{degrees}-12{degrees} to the south. Both hypocenters and velocity structure suggest that the southern edge of the plate intersects the coastline at 40.3{degrees}N latitude and maintains a linear trend 15{degrees} south of east to at least 123{degrees}W longitude. The top of a large low-velocity region at 20-30 km depth extends about 50 km N-S and 75 km E-W (roughly between Garberville and Covelo) and is located above and south of the southern edge of the Gorda Plate. The authors interpret this low velocity area to be locally thickened crust (8-10 km) due to either local compressional forces associated with north-south compression caused by the northward impingement of the rigid Pacific Plate or by underthrusting of the base of the accretionary subduction complex at the southern terminous of the Cascadia Subduction Zone. 66 refs., 11 figs., 3 tabs.

  16. Use of Fault Displacement Vector to Identify Future Zones of Seismicity: An Example from the Earthquakes of Nepal Himalayas.

    Science.gov (United States)

    Naim, F.; Mukherjee, M. K.

    2017-12-01

    Earthquakes occur due to fault slip in the subsurface. They can occur either as interplate or intraplate earthquakes. The region of study is the Nepal Himalayas that defines the boundary of Indian-Eurasian plate and houses the focus of the most devastating earthquakes. The aim of the study was to analyze all the earthquakes that occurred in the Nepal Himalayas upto May 12, 2015 earthquake in order to mark the regions still under stress and vulnerable for future earthquakes. Three different fault systems in the Nepal Himalayas define the tectonic set up of the area. They are: (1) Main Frontal Thrust(MFT), (2) Main Central Thrust(MCT) and (3) Main Boundary Thrust(MBT) that extend from NW to SE. Most of the earthquakes were observed to occur between the MBT and MCT. Since the thrust faults are dipping towards NE, the focus of most of the earthquakes lies on the MBT. The methodology includes estimating the dip of the fault by considering the depths of different earthquake events and their corresponding distance from the MBT. In order to carry out stress analysis on the fault, the beach ball diagrams associated with the different earthquakes were plotted on a map. Earthquakes in the NW and central region of the fault zone were associated with reverse fault slip while that on the South-Eastern part were associated with a strike slip component. The direction of net slip on the fault associated with the different earthquakes was known and from this a 3D slip diagram of the fault was constructed. The regions vulnerable for future earthquakes in the Nepal Himalaya were demarcated on the 3D slip diagram of the fault. Such zones were marked owing to the fact that the slips due to earthquakes cause the adjoining areas to come under immense stress and this stress is directly proportional to the amount of slip occuring on the fault. These vulnerable zones were in turn projected on the map to show their position and are predicted to contain the epicenter of the future earthquakes.

  17. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  18. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997

    Science.gov (United States)

    Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V. I.; Healy, J.H.

    1999-01-01

    Algorithms M8 and MSc (i.e., the Mendocino Scenario) were used in a real-time intermediate-term research prediction of the strongest earthquakes in the Circum-Pacific seismic belt. Predictions are made by M8 first. Then, the areas of alarm are reduced by MSc at the cost that some earthquakes are missed in the second approximation of prediction. In 1992-1997, five earthquakes of magnitude 8 and above occurred in the test area: all of them were predicted by M8 and MSc identified correctly the locations of four of them. The space-time volume of the alarms is 36% and 18%, correspondingly, when estimated with a normalized product measure of empirical distribution of epicenters and uniform time. The statistical significance of the achieved results is beyond 99% both for M8 and MSc. For magnitude 7.5 + , 10 out of 19 earthquakes were predicted by M8 in 40% and five were predicted by M8-MSc in 13% of the total volume considered. This implies a significance level of 81% for M8 and 92% for M8-MSc. The lower significance levels might result from a global change in seismic regime in 1993-1996, when the rate of the largest events has doubled and all of them become exclusively normal or reversed faults. The predictions are fully reproducible; the algorithms M8 and MSc in complete formal definitions were published before we started our experiment [Keilis-Borok, V.I., Kossobokov, V.G., 1990. Premonitory activation of seismic flow: Algorithm M8, Phys. Earth and Planet. Inter. 61, 73-83; Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 1990. Localization of intermediate-term earthquake prediction, J. Geophys. Res., 95, 19763-19772; Healy, J.H., Kossobokov, V.G., Dewey, J.W., 1992. A test to evaluate the earthquake prediction algorithm, M8. U.S. Geol. Surv. OFR 92-401]. M8 is available from the IASPEI Software Library [Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (Eds.), 1997. Algorithms for Earthquake Statistics and Prediction, Vol. 6. IASPEI Software Library]. ?? 1999 Elsevier

  19. The Alaska earthquake, March 27, 1964: lessons and conclusions

    Science.gov (United States)

    Eckel, Edwin B.

    1970-01-01

    One of the greatest earthquakes of all time struck south-central Alaska on March 27, 1964. Strong motion lasted longer than for most recorded earthquakes, and more land surface was dislocated, vertically and horizontally, than by any known previous temblor. Never before were so many effects on earth processes and on the works of man available for study by scientists and engineers over so great an area. The seismic vibrations, which directly or indirectly caused most of the damage, were but surface manifestations of a great geologic event-the dislocation of a huge segment of the crust along a deeply buried fault whose nature and even exact location are still subjects for speculation. Not only was the land surface tilted by the great tectonic event beneath it, with resultant seismic sea waves that traversed the entire Pacific, but an enormous mass of land and sea floor moved several tens of feet horizontally toward the Gulf of Alaska. Downslope mass movements of rock, earth, and snow were initiated. Subaqueous slides along lake shores and seacoasts, near-horizontal movements of mobilized soil (“landspreading”), and giant translatory slides in sensitive clay did the most damage and provided the most new knowledge as to the origin, mechanics, and possible means of control or avoidance of such movements. The slopes of most of the deltas that slid in 1964, and that produced destructive local waves, are still as steep or steeper than they were before the earthquake and hence would be unstable or metastable in the event of another great earthquake. Rockslide avalanches provided new evidence that such masses may travel on cushions of compressed air, but a widely held theory that glaciers surge after an earthquake has not been substantiated. Innumerable ground fissures, many of them marked by copious emissions of water, caused much damage in towns and along transportation routes. Vibration also consolidated loose granular materials. In some coastal areas, local

  20. The 1985 México earthquake The 1985 México earthquake

    Directory of Open Access Journals (Sweden)

    Moreno Murillo Juan Manuel

    1995-10-01

    Full Text Available

    This paper includes a bibliographic review with the description of the various aspects about the (Ms = 8.1 Michoacan, Mexico earthquake, which comprised of three events. The main shock of the September 19, 1985 earthquake occurred on Thursday at 7h. 17m. 46.6s. local time in Mexico City, and had (Ms = 8.1. The focus of the event was a depth of approximately 18 km. A second shock occurred on Friday evening 21 September at 7h. 38m. p.m. local time. The last aftershock occurred on 30 April of 1986 (Ms = 7.0. A prior event occurred to the September 1985 earthquake, occurred on 28 May, 1985 (mb = 5.2 and is described too. This event, was a terrible natural disaster for that country, at least 9,500 people were killed, about 30,000 were injured, more that 100,000 were left homeless and severe damage occurred in many parts of Mexico City and several states of central Mexico. According to some sources, It is estimated that the earthquake seriously affected an area of approximately 825,000 square kilometers. This paper describes a summary of the global tectonic setting, genesis and location of the epicenter, an interpretation of the source mechanism and a analyses at these results from some stations that recorded this earthquake and at the same time, a comparison between the two largest earthquake of 1985. Moreover, this paper describes the principal damage resulting and a description of effects from tsunami produced from earthquake. The 1985 Mexico earthquake occurred as a result of slipping in the subduction process between the Cocos and American plates. This was a shallow interplate thrust type event which occurred in the intersection of the Orozco fracture with the Middle American trench.

  1. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  2. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1997-01-01

    the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  3. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  4. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  5. Earthquakes Threaten Many American Schools

    Science.gov (United States)

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  6. DETECTION OF LOCAL SITE CONDITIONS INFLUENCING EARTHQUAKE SHOCK AND SECONDARY EFFECTS IN THE VALPARAISO AREA IN CENTRAL-CHILE USING REMOTE SENSING AND GIS METHODS

    Directory of Open Access Journals (Sweden)

    Barbara Theilen-Willige

    2011-01-01

    Full Text Available The potential contribution of remote sensing and GIS techniques to earthquake hazard analysis was investigated in Valparaiso in Chile in order to improve the systematic, standardized inventory of those areas that are more susceptible to earthquake ground motions or to earthquake related secondary effects such as landslides, liquefaction, soil amplifications, compaction or even tsunami-waves. Geophysical, topographical, geological data and satellite images were collected, processed, and integrated into a spatial database using Geoinformation Systems (GIS and image processing techniques. The GIS integrated evaluation of satellite imageries, of digital topographic data and of various open-source geodata can contribute to the acquisition of those specific tectonic, geomorphologic/ topographic settings influencing local site conditions in Valparaiso, Chile. Using the weighted overlay techniques in GIS, susceptibility maps were produced indicating areas, where causal factors influencing near- surface earthquake shock occur aggregated. Causal factors (such as unconsolidated sedimentary layers within a basin’s topography, higher groundwater tables, etc. summarizing and interfering each other, rise the susceptibility of soil amplification and of earthquake related secondary effects. This approach was used as well to create a tsunami flooding susceptibility map. LANDSAT Thermal Band 6-imageries were analysed to get information of surface water currents in this area.

  7. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    Science.gov (United States)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the

  8. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    Science.gov (United States)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  9. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  10. THE MAY 23TH 2007 GULF OF MEXICO EARTHQUAKE

    Science.gov (United States)

    Yamamoto, J.; Jimenez, Z.

    2009-12-01

    On the 23th of May 2007 at 14:09 local time (19:09 UT) an insolated earthquake of local magnitude 5.2 occurred offshore northern Veracruz in the Gulf of Mexico. The seismic focus was located using local and regional data at 20.11° N, 97.38° W and 7.8 km depth at 175 km distance from Tuxpan a city of 134,394 inhabitants. The earthquake was widely felt along the costal states of southern Tamaulipas and Veracruz in which several schools and public buildings were evacuated. Neither Laguna Verde nuclear plant, located approximately 245 km from the epicenter, nor PEMEX petroleum company reported damage. First-motion data indicates that the rupture occurred as strike slip faulting along two possible planes, one oriented roughly north-south and the other east-west. In the present paper a global analysis of the earthquake is made to elucidate its origin and possible correlation with known geotectonic features of the region.

  11. The mechanism of earthquake

    Science.gov (United States)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    earthquakes and deep-focus earthquakes are the energy release caused by the slip or flow of rocks following a jamming-unjamming transition. (4) The energetics and impending precursors of earthquake: The energy of earthquake is the kinetic energy released from the jamming-unjamming transition. Calculation shows that the kinetic energy of seismic rock sliding is comparable with the total work demanded for rocks’ shear failure and overcoming of frictional resistance. There will be no heat flow paradox. Meanwhile, some valuable seismic precursors are likely to be identified by observing the accumulation of additional tectonic forces, local geological changes, as well as the effect of rock state changes, etc.

  12. Combining multiple earthquake models in real time for earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Wu, Stephen; Beck, James L; Heaton, Thomas H.

    2017-01-01

    The ultimate goal of earthquake early warning (EEW) is to provide local shaking information to users before the strong shaking from an earthquake reaches their location. This is accomplished by operating one or more real‐time analyses that attempt to predict shaking intensity, often by estimating the earthquake’s location and magnitude and then predicting the ground motion from that point source. Other EEW algorithms use finite rupture models or may directly estimate ground motion without first solving for an earthquake source. EEW performance could be improved if the information from these diverse and independent prediction models could be combined into one unified, ground‐motion prediction. In this article, we set the forecast shaking at each location as the common ground to combine all these predictions and introduce a Bayesian approach to creating better ground‐motion predictions. We also describe how this methodology could be used to build a new generation of EEW systems that provide optimal decisions customized for each user based on the user’s individual false‐alarm tolerance and the time necessary for that user to react.

  13. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  14. Toward a comprehensive areal model of earthquake-induced landslides

    Science.gov (United States)

    Miles, S.B.; Keefer, D.K.

    2009-01-01

    This paper provides a review of regional-scale modeling of earthquake-induced landslide hazard with respect to the needs for disaster risk reduction and sustainable development. Based on this review, it sets out important research themes and suggests computing with words (CW), a methodology that includes fuzzy logic systems, as a fruitful modeling methodology for addressing many of these research themes. A range of research, reviewed here, has been conducted applying CW to various aspects of earthquake-induced landslide hazard zonation, but none facilitate comprehensive modeling of all types of earthquake-induced landslides. A new comprehensive areal model of earthquake-induced landslides (CAMEL) is introduced here that was developed using fuzzy logic systems. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL is highly modifiable and adaptable; new knowledge can be easily added, while existing knowledge can be changed to better match local knowledge and conditions. As such, CAMEL should not be viewed as a complete alternative to other earthquake-induced landslide models. CAMEL provides an open framework for incorporating other models, such as Newmark's displacement method, together with previously incompatible empirical and local knowledge. ?? 2009 ASCE.

  15. VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography

    Science.gov (United States)

    Waite, G.P.; Moran, S.C.

    2009-01-01

    We present a new P-wave velocity model for Mount St. Helens using local earthquake data recorded by the Pacific Northwest Seismograph Stations and Cascades Volcano Observatory since the 18 May 1980 eruption. These data were augmented with records from a dense array of 19 temporary stations deployed during the second half of 2005. Because the distribution of earthquakes in the study area is concentrated beneath the volcano and within two nearly linear trends, we used a graded inversion scheme to compute a coarse-grid model that focused on the regional structure, followed by a fine-grid inversion to improve spatial resolution directly beneath the volcanic edifice. The coarse-grid model results are largely consistent with earlier geophysical studies of the area; we find high-velocity anomalies NW and NE of the edifice that correspond with igneous intrusions and a prominent low-velocity zone NNW of the edifice that corresponds with the linear zone of high seismicity known as the St. Helens Seismic Zone. This low-velocity zone may continue past Mount St. Helens to the south at depths below 5??km. Directly beneath the edifice, the fine-grid model images a low-velocity zone between about 2 and 3.5??km below sea level that may correspond to a shallow magma storage zone. And although the model resolution is poor below about 6??km, we found low velocities that correspond with the aseismic zone between about 5.5 and 8??km that has previously been modeled as the location of a large magma storage volume. ?? 2009 Elsevier B.V.

  16. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  17. Retrospective stress-forecasting of earthquakes

    Science.gov (United States)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  18. An algorithm of local earthquake detection from digital records

    Directory of Open Access Journals (Sweden)

    A. PROZOROV

    1978-06-01

    Full Text Available The problem of automatical detection of earthquake signals in seismograms
    and definition of first arrivals of p and s waves is considered.
    The algorithm is based on the analysis of t(A function which represents
    the time of first appearence of a number of going one after another
    swings of amplitudes greather than A in seismic signals. It allows to explore
    such common features of seismograms of earthquakes as sudden
    first p-arrivals of amplitude greater than general amplitude of noise and
    after the definite interval of time before s-arrival the amplitude of which
    overcomes the amplitude of p-arrival. The method was applied to
    3-channel recods of Friuli aftershocks, ¿'-arrivals were defined correctly
    in all cases; p-arrivals were defined in most cases using strict criteria of
    detection. Any false signals were not detected. All p-arrivals were defined
    using soft criteria of detection but less reliability and two false events
    were obtained.

  19. Earthquake evaluation of a substation network

    International Nuclear Information System (INIS)

    Matsuda, E.N.; Savage, W.U.; Williams, K.K.; Laguens, G.C.

    1991-01-01

    The impact of the occurrence of a large, damaging earthquake on a regional electric power system is a function of the geographical distribution of strong shaking, the vulnerability of various types of electric equipment located within the affected region, and operational resources available to maintain or restore electric system functionality. Experience from numerous worldwide earthquake occurrences has shown that seismic damage to high-voltage substation equipment is typically the reason for post-earthquake loss of electric service. In this paper, the authors develop and apply a methodology to analyze earthquake impacts on Pacific Gas and Electric Company's (PG and E's) high-voltage electric substation network in central and northern California. The authors' objectives are to identify and prioritize ways to reduce the potential impact of future earthquakes on our electric system, refine PG and E's earthquake preparedness and response plans to be more realistic, and optimize seismic criteria for future equipment purchases for the electric system

  20. Measures for groundwater security during and after the Hanshin-Awaji earthquake (1995) and the Great East Japan earthquake (2011), Japan

    Science.gov (United States)

    Tanaka, Tadashi

    2016-03-01

    Many big earthquakes have occurred in the tectonic regions of the world, especially in Japan. Earthquakes often cause damage to crucial life services such as water, gas and electricity supply systems and even the sewage system in urban and rural areas. The most severe problem for people affected by earthquakes is access to water for their drinking/cooking and toilet flushing. Securing safe water for daily life in an earthquake emergency requires the establishment of countermeasures, especially in a mega city like Tokyo. This paper described some examples of groundwater use in earthquake emergencies, with reference to reports, books and newspapers published in Japan. The consensus is that groundwater, as a source of water, plays a major role in earthquake emergencies, especially where the accessibility of wells coincides with the emergency need. It is also important to introduce a registration system for citizen-owned and company wells that can form the basis of a cooperative during a disaster; such a registration system was implemented by many Japanese local governments after the Hanshin-Awaji Earthquake in 1995 and the Great East Japan Earthquake in 2011, and is one of the most effective countermeasures for groundwater use in an earthquake emergency. Emphasis is also placed the importance of establishing of a continuous monitoring system of groundwater conditions for both quantity and quality during non-emergency periods.

  1. Earthquake Facts

    Science.gov (United States)

    ... North Dakota, and Wisconsin. The core of the earth was the first internal structural element to be identified. In 1906 R.D. Oldham discovered it from his studies of earthquake records. The inner core is solid, and the outer core is liquid and so does not transmit ...

  2. The 2015 Gorkha earthquake investigated from radar satellites: Slip and stress modeling along the MHT

    Directory of Open Access Journals (Sweden)

    Faqi eDiao

    2015-10-01

    Full Text Available The active collision at the Himalayas combines crustal shortening and thickening, associated with the development of hazardous seismogenic faults. The 2015 Kathmandu earthquake largely affected Kathmandu city and partially ruptured a previously identified seismic gap. With a magnitude of Mw 7.8 as determined by the GEOFON seismic network, the 25 April 2015 earthquake displays uplift of the Kathmandu basin constrained by interferometrically processed ALOS-2, RADARSAT-2 and Sentinel-1 satellite radar data. An area of about 7,000 km² in the basin showed ground uplift locally exceeding 2 m, and a similarly large area (approx. 9000 km2 showed subsidence in the north, both of which could be simulated with a fault that is localized beneath the Kathmandu basin at a shallow depth of 5-15 km. Coulomb stress calculations reveal that the same fault adjacent to the Kathmandu basin experienced stress increase, similar as at sub-parallel faults of the thin skinned nappes, exactly at the location where the largest aftershock occurred (Mw 7.3 on 12. May, 2015. Therefore this study provides insights into the shortening and uplift tectonics of the Himalayas and shows the stress redistribution associated with the earthquake.

  3. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  4. The plan to coordinate NEHRP post-earthquake investigations

    Science.gov (United States)

    Holzer, Thomas L.; Borcherdt, Roger D.; Comartin, Craig D.; Hanson, Robert D.; Scawthorn, Charles R.; Tierney, Kathleen; Youd, T. Leslie

    2003-01-01

    This is the plan to coordinate domestic and foreign post-earthquake investigations supported by the National Earthquake Hazards Reduction Program (NEHRP). The plan addresses coordination of both the NEHRP agencies—Federal Emergency Management Agency (FEMA), National Institute of Standards and Technology (NIST), National Science Foundation (NSF), and U. S. Geological Survey (USGS)—and their partners. The plan is a framework for both coordinating what is going to be done and identifying responsibilities for post-earthquake investigations. It does not specify what will be done. Coordination is addressed in various time frames ranging from hours to years after an earthquake. The plan includes measures for (1) gaining rapid and general agreement on high-priority research opportunities, and (2) conducting the data gathering and fi eld studies in a coordinated manner. It deals with identifi cation, collection, processing, documentation, archiving, and dissemination of the results of post-earthquake work in a timely manner and easily accessible format.

  5. Crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, Kwang-Hee; Park, Jung-Ho; Park, Yongcheol; Hao, Tian-Yao; Kim, Han-Joon

    2017-05-01

    The 3-D subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a 3-D velocity model of the upper crust beneath the southern Korean Peninsula using 19 935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  6. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin

    2017-12-21

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  7. Crustal seismic anisotropy beneath Shillong plateau - Assam valley in North East India: Shear-wave splitting analysis using local earthquakes

    Science.gov (United States)

    Sharma, Antara; Baruah, Santanu; Piccinini, Davide; Saikia, Sowrav; Phukan, Manoj K.; Chetia, Monisha; Kayal, J. R.

    2017-10-01

    We present crustal anisotropy estimates constrained by shear wave splitting (SWS) analysis using local earthquakes in the Shillong plateau and Assam valley area, North East India (NE India) region. Splitting parameters are determined using an automated cross-correlation (CC) method. We located 330 earthquakes recorded by 17 broadband seismic stations during 2001-2014 in the study area. Out of these 330 events, seismograms of 163 events are selected for the SWS analysis. Relatively small average delay times (0.039-0.084 s) indicate existence of moderate crack density in the crust below the study area. It is found that fast polarization directions vary from station to station depending on the regional stress system as well as geological conditions. The spatial pattern of crustal anisotropy in the area is controlled mostly by tectonic movement of the Indian plate towards NE. Presence of several E-W and N-S trending active faults in the area also play an important role on the observed pattern of crustal anisotropy.

  8. Electrical streaming potential precursors to catastrophic earthquakes in China

    Directory of Open Access Journals (Sweden)

    F. Qian

    1997-06-01

    Full Text Available The majority of anomalies in self-potential at 7 stations within 160 km from the epicentre showed a similar pattern of rapid onset and slow decay during and before the M 7.8 Tangshan earthquake of 1976. Considering that some of these anomalies associated with episodical spouting from boreholes or the increase in pore pressure in wells, observed anomalies are streaming potential generated by local events of sudden movements and diffusion process of high-pressure fluid in parallel faults. These transient events triggered by tidal forces exhibited a periodic nature and the statistical phenomenon to migrate towards the epicentre about one month before the earthquake. As a result of events, the pore pressure reached its final equilibrium state and was higher than that in the initial state in a large enough section of the fault region. Consequently, local effective shear strength of the material in the fault zone decreased and finally the catastrophic earthquake was induced. Similar phenomena also occurred one month before the M 7.3 Haichen earthquake of 1975. Therefore, a short term earthquake prediction can be made by electrical measurements, which are the kind of geophysical measurements most closely related to pore fluid behaviors of the deep crust.

  9. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  10. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    Science.gov (United States)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km

  11. Network similarity and statistical analysis of earthquake seismic data

    OpenAIRE

    Deyasi, Krishanu; Chakraborty, Abhijit; Banerjee, Anirban

    2016-01-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We cal...

  12. An application of earthquake prediction algorithm M8 in eastern ...

    Indian Academy of Sciences (India)

    2Institute of Earthquake Prediction Theory and Mathematical Geophysics, ... located about 70 km from a preceding M7.3 earthquake that occurred in ... local extremes of the seismic density distribution, and in the third approach, CI centers were distributed ...... Bird P 2003 An updated digital model of plate boundaries;.

  13. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    Science.gov (United States)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  14. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  15. Studying local earthquakes in the area Baltic-Bothnia Megashear using the data of the POLENET/LAPNET temporary array

    Science.gov (United States)

    Usoltseva, Olga; Kozlovskaya, Elena

    2016-07-01

    Earthquakes in areas within continental plates are still not completely understood, and progress on understanding intraplate seismicity is slow due to a short history of instrumental seismology and sparse regional seismic networks in seismically non-active areas. However, knowledge about position and depth of seismogenic structures in such areas is necessary in order to estimate seismic hazard for such critical facilities such as nuclear power plants and nuclear waste deposits. In the present paper we address the problem of seismicity in the intraplate area of northern Fennoscandia using the information on local events recorded by the POLENET/LAPNET (Polar Earth Observing Network) temporary seismic array during the International Polar Year 2007-2009. We relocate the seismic events using the program HYPOELLIPS (a computer program for determining local earthquake hypocentral parameters) and grid search method. We use the first arrivals of P waves of local events in order to calculate a 3-D tomographic P wave velocity model of the uppermost crust (down to 20 km) for a selected region inside the study area and show that the velocity heterogeneities in the upper crust correlate well with known tectonic units. We compare the position of the velocity heterogeneities with the seismogenic structures delineated by epicentres of relocated events and demonstrate that these structures generally do not correlate with the crustal units formed as a result of crustal evolution in the Archaean and Palaeoproterozoic. On the contrary, they correlate well with the postglacial faults located in the area of the Baltic-Bothnia Megashear (BBMS). Hypocentres of local events have depths down to 30 km. We also obtain the focal mechanism of a selected event with good data quality. The focal mechanism is of oblique type with strike-slip prevailing. Our results demonstrate that the Baltic-Bothnia Megashear is an important large-scale, reactivated tectonic structure that has to be taken into

  16. Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013

    Science.gov (United States)

    Panzera, Francesco; Mignan, Arnaud; Vogfjörð, Kristin S.

    2017-07-01

    In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5-1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.

  17. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  18. The role of post-earthquake structural safety in pre-earthquake retrof in decision: guidelines and applications

    International Nuclear Information System (INIS)

    Bazzurro, P.; Telleen, K.; Maffei, J.; Yin, J.; Cornell, C.A.

    2009-01-01

    Critical structures such as hospitals, police stations, local administrative office buildings, and critical lifeline facilities, are expected to be operational immediately after earthquakes. Any rational decision about whether these structures are strong enough to meet this goal or whether pre-empitive retrofitting is needed cannot be made without an explicit consideration of post-earthquake safety and functionality with respect to aftershocks. Advanced Seismic Assessment Guidelines offer improvement over previous methods for seismic evaluation of buildings where post-earthquake safety and usability is a concern. This new method allows engineers to evaluate the like hood that a structure may have restricted access or no access after an earthquake. The building performance is measured in terms of the post-earthquake occupancy classifications Green Tag, Yellow Tag, and Red Tag, defining these performance levels quantitatively, based on the structure's remaining capacity to withstand aftershocks. These color-coded placards that constitute an established practice in US could be replaced by the standard results of inspections (A to E) performed by the Italian Dept. of Civil Protection after an event. The article also shows some applications of these Guidelines to buildings of the largest utility company in California, Pacific Gas and Electric Company (PGE). [it

  19. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  20. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    Science.gov (United States)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    The 2004 Sumatra-Andaman Mw9.3 and the 2011 Tohoku (Japan) Mw9.0 earthquakes and tsunamis were huge geological events with major societal consequences. Both were along subduction boundaries and ruptured portions of these boundaries that had been deemed incapable of such events. Submarine strike-slip earthquakes, such as the 2010 Mw7.0 in Haiti, are smaller but may be closer to population centers and can be similarly catastrophic. Both classes of earthquakes remobilize sediment and leave distinct signatures in the geologic record by a wide range of processes that depends on both environment and earthquake characteristics. Understanding them has the potential of greatly expanding the record of past earthquakes, which is critical for geohazard analysis. Recent events offer precious ground truth about the earthquakes and short-lived radioisotopes offer invaluable tools to identify sediments they remobilized. In the 2011 Mw9 Japan earthquake they document the spatial extent of remobilized sediment from water depths of 626m in the forearc slope to trench depths of 8000m. Subbottom profiles, multibeam bathymetry and 40 piston cores collected by the R/V Natsushima and R/V Sonne expeditions to the Japan Trench document multiple turbidites and high-density flows. Core tops enriched in xs210Pb,137Cs and 134Cs reveal sediment deposited by the 2011 Tohoku earthquake and tsunami. The thickest deposits (2m) were documented on a mid-slope terrace and trench (4000-8000m). Sediment was deposited on some terraces (600-3000m), but shed from the steep forearc slope (3000-4000m). The 2010 Haiti mainshock ruptured along the southern flank of Canal du Sud and triggered multiple nearshore sediment failures, generated turbidity currents and stirred fine sediment into suspension throughout this basin. A tsunami was modeled to stem from both sediment failures and tectonics. Remobilized sediment was tracked with short-lived radioisotopes from the nearshore, slope, in fault basins including the

  1. Earthquake-triggered landslides along the Hyblean-Malta Escarpment (off Augusta, eastern Sicily, Italy) - assessment of the related tsunamigenic potential

    Science.gov (United States)

    Ausilia Paparo, Maria; Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano

    2017-02-01

    Eastern Sicily is affected by earthquakes and tsunamis of local and remote origin, which is known through numerous historical chronicles. Recent studies have put emphasis on the role of submarine landslides as the direct cause of the main local tsunamis, envisaging that earthquakes (in 1693 and 1908) did produce a tsunami, but also that they triggered mass failures that were able to generate an even larger tsunami. The debate is still open, and though no general consensus has been found among scientists so far, this research had the merit to attract attention on possible generation of tsunamis by landslides off Sicily. In this paper we investigate the tsunami potential of mass failures along one sector of the Hyblean-Malta Escarpment (HME). facing Augusta. The HME is the main offshore geological structure of the region running almost parallel to the coast, off eastern Sicily. Here, bottom morphology and slope steepness favour soil failures. In our work we study slope stability under seismic load along a number of HME transects by using the Minimun Lithostatic Deviation (MLD) method, which is based on the limit-equilibrium theory. The main goal is to identify sectors of the HME that could be unstable under the effect of realistic earthquakes. We estimate the possible landslide volume and use it as input for numerical codes to simulate the landslide motion and the consequent tsunami. This is an important step for the assessment of the tsunami hazard in eastern Sicily and for local tsunami mitigation policies. It is also important in view of tsunami warning system since it can help to identify the minimum earthquake magnitude capable of triggering destructive tsunamis induced by landslides, and therefore to set up appropriate knowledge-based criteria to launch alert to the population.

  2. Predictors of psychological resilience amongst medical students following major earthquakes.

    Science.gov (United States)

    Carter, Frances; Bell, Caroline; Ali, Anthony; McKenzie, Janice; Boden, Joseph M; Wilkinson, Timothy; Bell, Caroline

    2016-05-06

    To identify predictors of self-reported psychological resilience amongst medical students following major earthquakes in Canterbury in 2010 and 2011. Two hundred and fifty-three medical students from the Christchurch campus, University of Otago, were invited to participate in an electronic survey seven months following the most severe earthquake. Students completed the Connor-Davidson Resilience Scale, the Depression, Anxiety and Stress Scale, the Post-traumatic Disorder Checklist, the Work and Adjustment Scale, and the Eysenck Personality Questionnaire. Likert scales and other questions were also used to assess a range of variables including demographic and historical variables (eg, self-rated resilience prior to the earthquakes), plus the impacts of the earthquakes. The response rate was 78%. Univariate analyses identified multiple variables that were significantly associated with higher resilience. Multiple linear regression analyses produced a fitted model that was able to explain 35% of the variance in resilience scores. The best predictors of higher resilience were: retrospectively-rated personality prior to the earthquakes (higher extroversion and lower neuroticism); higher self-rated resilience prior to the earthquakes; not being exposed to the most severe earthquake; and less psychological distress following the earthquakes. Psychological resilience amongst medical students following major earthquakes was able to be predicted to a moderate extent.

  3. Assessment of earthquake effects - contribution from online communication

    Science.gov (United States)

    D'Amico, Sebastiano; Agius, Matthew; Galea, Pauline

    2014-05-01

    The rapid increase of social media and online newspapers in the last years have given the opportunity to make a national investigation on macroseismic effects on the Maltese Islands based on felt earthquake reports. A magnitude 4.1 earthquake struck close to Malta on Sunday 24th April 2011 at 13:02 GMT. The earthquake was preceded and followed by a series of smaller magnitude quakes throughout the day, most of which were felt by the locals on the island. The continuous news media coverage during the day and the extensive sharing of the news item on social media resulted in a strong public response to fill in the 'Did you feel it?' online form on the website of the Seismic Monitoring and Research Unit (SMRU) at the University of Malta (http://seismic.research.um.edu.mt/). The results yield interesting information about the demographics of the island, and the different felt experiences possibly relating to geological settings and diverse structural and age-classified buildings. Based on this case study, the SMRU is in the process of developing a mobile phone application dedicated to share earthquake information to the local community. The application will automatically prompt users to fill in a simplified 'Did you feel it?' report to potentially felt earthquakes. Automatic location using Global Positioning Systems can be incorporated to provide a 'real time' intensity map that can be used by the Civil Protection Department.

  4. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  5. Statistical short-term earthquake prediction.

    Science.gov (United States)

    Kagan, Y Y; Knopoff, L

    1987-06-19

    A statistical procedure, derived from a theoretical model of fracture growth, is used to identify a foreshock sequence while it is in progress. As a predictor, the procedure reduces the average uncertainty in the rate of occurrence for a future strong earthquake by a factor of more than 1000 when compared with the Poisson rate of occurrence. About one-third of all main shocks with local magnitude greater than or equal to 4.0 in central California can be predicted in this way, starting from a 7-year database that has a lower magnitude cut off of 1.5. The time scale of such predictions is of the order of a few hours to a few days for foreshocks in the magnitude range from 2.0 to 5.0.

  6. Geologic Inheritance and Earthquake Rupture Processes: The 1905 M ≥ 8 Tsetserleg-Bulnay Strike-Slip Earthquake Sequence, Mongolia

    Science.gov (United States)

    Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu

    2018-02-01

    In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.

  7. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  8. Earthquakes trigger the loss of groundwater biodiversity

    Science.gov (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; di Cioccio, Alessia; di Lorenzo, Tiziana; Petitta, Marco; di Carlo, Piero

    2014-09-01

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and ``ecosystem engineers'', we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  9. The USGS plan for short-term prediction of the anticipated Parkfield earthquake

    Science.gov (United States)

    Bakun, W.H.

    1988-01-01

    Aside from the goal of better understanding the Parkfield earthquake cycle, it is the intention of the U.S Geological Survey to attempt to issue a warning shortly before the anticipated earthquake. Although short-term earthquake warnings are not yet generally feasible, the wealth of information available for the previous significant Parkfield earthquakes suggests that if the next earthquake follows the pattern of "characteristic" Parkfield shocks, such a warning might be possible. Focusing on earthquake precursors reported for the previous  "characteristic" shocks, particulary the 1934 and 1966 events, the USGS developed a plan* in late 1985 on which to base earthquake warnings for Parkfield and has assisted State, county, and local officials in the Parkfield area to prepare a coordinated, reasonable response to a warning, should one be issued. 

  10. A Sex Disparity Among Earthquake Victims.

    Science.gov (United States)

    Ardagh, Michael; Standring, Sarah; Deely, Joanne M; Johnston, David; Robinson, Viki; Gulliver, Pauline; Richardson, Sandra; Dierckx, Alieke; Than, Martin

    2016-02-01

    Understanding who is most vulnerable during an earthquake will help health care responders prepare for future disasters. We analyzed the demography of casualties from the Christchurch earthquake in New Zealand. The demography of the total deceased, injured, and hospitalized casualties of the Christchurch earthquake was compared with that of the greater Christchurch population, the Christchurch central business district working population, and patients who presented to the single acute emergency department on the same month and day over the prior 10 years. Sex data were compared to scene of injury, context of injury, clinical characteristics of injury, and injury severity scores. Significantly more females than males were injured or killed in the entire population of casualties (P20% were injured at commercial or service localities (444/2032 males [22%]; 1105/4627 females [24%]). Adults aged between 20 and 69 years (1639/2032 males [81%]; 3717/4627 females [80%]) were most frequently injured. Where people were and what they were doing at the time of the earthquake influenced their risk of injury.

  11. The effect of earthquake on architecture geometry with non-parallel system irregularity configuration

    Science.gov (United States)

    Teddy, Livian; Hardiman, Gagoek; Nuroji; Tudjono, Sri

    2017-12-01

    Indonesia is an area prone to earthquake that may cause casualties and damage to buildings. The fatalities or the injured are not largely caused by the earthquake, but by building collapse. The collapse of the building is resulted from the building behaviour against the earthquake, and it depends on many factors, such as architectural design, geometry configuration of structural elements in horizontal and vertical plans, earthquake zone, geographical location (distance to earthquake center), soil type, material quality, and construction quality. One of the geometry configurations that may lead to the collapse of the building is irregular configuration of non-parallel system. In accordance with FEMA-451B, irregular configuration in non-parallel system is defined to have existed if the vertical lateral force-retaining elements are neither parallel nor symmetric with main orthogonal axes of the earthquake-retaining axis system. Such configuration may lead to torque, diagonal translation and local damage to buildings. It does not mean that non-parallel irregular configuration should not be formed on architectural design; however the designer must know the consequence of earthquake behaviour against buildings with irregular configuration of non-parallel system. The present research has the objective to identify earthquake behaviour in architectural geometry with irregular configuration of non-parallel system. The present research was quantitative with simulation experimental method. It consisted of 5 models, where architectural data and model structure data were inputted and analyzed using the software SAP2000 in order to find out its performance, and ETAB2015 to determine the eccentricity occurred. The output of the software analysis was tabulated, graphed, compared and analyzed with relevant theories. For areas of strong earthquake zones, avoid designing buildings which wholly form irregular configuration of non-parallel system. If it is inevitable to design a

  12. Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees

    Science.gov (United States)

    Theunissen, T.; Chevrot, S.; Sylvander, M.; Monteiller, V.; Calvet, M.; Villaseñor, A.; Benahmed, S.; Pauchet, H.; Grimaud, F.

    2018-03-01

    Local seismic networks are usually designed so that earthquakes are located inside them (primary azimuthal gap 180° and distance to the first station higher than 15 km). Errors on velocity models and accuracy of absolute earthquake locations are assessed based on a reference data set made of active seismic, quarry blasts and passive temporary experiments. Solutions and uncertainties are estimated using the probabilistic approach of the NonLinLoc (NLLoc) software based on Equal Differential Time. Some updates have been added to NLLoc to better focus on the final solution (outlier exclusion, multiscale grid search, S-phases weighting). Errors in the probabilistic approach are defined to take into account errors on velocity models and on arrival times. The seismicity in the final 3-D catalogue is located with a horizontal uncertainty of about 2.0 ± 1.9 km and a vertical uncertainty of about 3.0 ± 2.0 km.

  13. Spotter's Guide for Identifying and Reporting Severe Local Storms.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This guide is designed to assist personnel working in the National Weather Service's Severe Local Storm Spotter Networks in identifying and reporting severe local storms. Provided are pictures of cloud types for severe storms including tornadoes, hail, thunder, lightning, heavy rains, and waterspouts. Instructions for key indications to watch for…

  14. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  15. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  16. Thermal Radiation Anomalies Associated with Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Kafatos, Menas C.; Taylor, Patrick

    2017-01-01

    Recent developments of remote sensing methods for Earth satellite data analysis contribute to our understanding of earthquake related thermal anomalies. It was realized that the thermal heat fluxes over areas of earthquake preparation is a result of air ionization by radon (and other gases) and consequent water vapor condensation on newly formed ions. Latent heat (LH) is released as a result of this process and leads to the formation of local thermal radiation anomalies (TRA) known as OLR (outgoing Longwave radiation, Ouzounov et al, 2007). We compare the LH energy, obtained by integrating surface latent heat flux (SLHF) over the area and time with released energies associated with these events. Extended studies of the TRA using the data from the most recent major earthquakes allowed establishing the main morphological features. It was also established that the TRA are the part of more complex chain of the short-term pre-earthquake generation, which is explained within the framework of a lithosphere-atmosphere coupling processes.

  17. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    Science.gov (United States)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    Strong shaking by earthquake causes massif landsliding with severe effects on infrastructure and human lives. The distribution of landslides and other hazards are depending on the combination of earthquake and local characteristics which influence the dynamic response of hillslopes. The Himalayas are one of the most active mountain belts with several kilometers of relief and is very prone to catastrophic mass failure. Strong and shallow earthquakes are very common and cause wide spread collapse of hillslopes, increasing the background landslide rate by several magnitude. The Himalaya is facing many small and large earthquakes in the past i.e. earthquakes i.e. Bihar-Nepal earthquake 1934 (Ms 8.2); Large Kangra earthquake of 1905 (Ms 7.8); Gorkha earthquake 2015 (Mw 7.8). The Mw 7.9 Gorkha earthquake has occurred on and around the main Himalayan Thrust with a hypocentral depth of 15 km (GEER 2015) followed by Mw 7.3 aftershock in Kodari causing 8700+ deaths and leaving hundreds of thousands of homeless. Most of the 3000 aftershocks located by National Seismological Center (NSC) within the first 45 days following the Gorkha Earthquake are concentrated in a narrow 40 km-wide band at midcrustal to shallow depth along the strike of the southern slope of the high Himalaya (Adhikari et al. 2015) and the ground shaking was substantially lower in the short-period range than would be expected for and earthquake of this magnitude (Moss et al. 2015). The effect of this earthquake is very unique in affected areas by showing topographic effect, liquefaction and land subsidence. More than 5000 landslides were triggered by this earthquake (Earthquake without Frontiers, 2015). Most of the landslides are shallow and occurred in weathered bedrock and appear to have mobilized primarily as raveling failures, rock slides and rock falls. Majority of landslides are limited to a zone which runs east-west, approximately parallel the lesser and higher Himalaya. There are numerous cracks in

  18. One-dimensional velocity model of the Middle Kura Depresion from local earthquakes data of Azerbaijan

    Science.gov (United States)

    Yetirmishli, G. C.; Kazimova, S. E.; Kazimov, I. E.

    2011-09-01

    We present the method for determining the velocity model of the Earth's crust and the parameters of earthquakes in the Middle Kura Depression from the data of network telemetry in Azerbaijan. Application of this method allowed us to recalculate the main parameters of the hypocenters of the earthquake, to compute the corrections to the arrival times of P and S waves at the observation station, and to significantly improve the accuracy in determining the coordinates of the earthquakes. The model was constructed using the VELEST program, which calculates one-dimensional minimal velocity models from the travel times of seismic waves.

  19. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  20. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  1. Pain after earthquake

    Directory of Open Access Journals (Sweden)

    Angeletti Chiara

    2012-06-01

    Full Text Available Abstract Introduction On 6 April 2009, at 03:32 local time, an Mw 6.3 earthquake hit the Abruzzi region of central Italy causing widespread damage in the City of L Aquila and its nearby villages. The earthquake caused 308 casualties and over 1,500 injuries, displaced more than 25,000 people and induced significant damage to more than 10,000 buildings in the L'Aquila region. Objectives This observational retrospective study evaluated the prevalence and drug treatment of pain in the five weeks following the L'Aquila earthquake (April 6, 2009. Methods 958 triage documents were analysed for patients pain severity, pain type, and treatment efficacy. Results A third of pain patients reported pain with a prevalence of 34.6%. More than half of pain patients reported severe pain (58.8%. Analgesic agents were limited to available drugs: anti-inflammatory agents, paracetamol, and weak opioids. Reduction in verbal numerical pain scores within the first 24 hours after treatment was achieved with the medications at hand. Pain prevalence and characterization exhibited a biphasic pattern with acute pain syndromes owing to trauma occurring in the first 15 days after the earthquake; traumatic pain then decreased and re-surged at around week five, owing to rebuilding efforts. In the second through fourth week, reports of pain occurred mainly owing to relapses of chronic conditions. Conclusions This study indicates that pain is prevalent during natural disasters, may exhibit a discernible pattern over the weeks following the event, and current drug treatments in this region may be adequate for emergency situations.

  2. Correlating precursory declines in groundwater radon with earthquake magnitude.

    Science.gov (United States)

    Kuo, T

    2014-01-01

    Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low-porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw ): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible. © 2013, National Ground Water Association.

  3. Time series modelling of the Kobe-Osaka earthquake recordings

    Directory of Open Access Journals (Sweden)

    N. Singh

    2002-01-01

    generated by an earthquake. With a view of comparing these two types of waveforms, Singh (1992 developed a technique for identifying a model in time domain. Fortunately this technique has been found useful in modelling the recordings of the killer earthquake occurred in the Kobe-Osaka region of Japan at 5.46 am on 17 January, 1995. The aim of the present study is to show how well the method for identifying a model (developed by Singh (1992 can be used for describing the vibrations of the above mentioned earthquake recorded at Charters Towers in Queensland, Australia.

  4. Local earthquake tomography of the Erzincan Basin and the surrounding area in Turkey

    Directory of Open Access Journals (Sweden)

    H. Gökalp

    2007-06-01

    Full Text Available In this study, selected travel time data from the aftershock series of the Erzincan earthquake (March, 1992, Ms=6.8 were inverted simultaneously for both hypocenter locations and 3D Vp and Vs structure. The general features of the 3D velocity structure of the upper crust of Erzincan Basin and the surrounding area, one of the most tectonically and seismically active regions in Turkey were investigated. The data used for this purpose were 2215 P-wave and 547 S-wave arrival times from 350 local earthquakes recorded by temporary 15 short-period seismograph stations. Thurber’s simultaneous inversion method (1983 was applied to the arrival time data to obtain a 3D velocity structure, and hypocentral locations. Both 3D heterogeneous P and S wave velocity variations down to 12 km depth were obtained. The acquired tomographic images show that the 3D velocity structure beneath the region is heterogeneous in that low velocity appears throughout the basin and at the southeastern flank, and high velocities occur at south and east of the basin. The low velocities can be related to small and large scale fractures, thus causing rocks to weaken over a long period of the active tectonic faulting process. The ophiolitic rock units mostly occurring around the basin area are the possible reason for the high velocities. The validity of 3D inversion results was tested by performing detailed resolution analysis. The test results confirm the velocity anomalies obtained from inversion. Despite the small number of inverted S-wave arrivals, the obtained 3D S velocity model has similar anomalies with lower resolution than the 3D P-wave velocity model. Better hypocenter locations were calculated using the 3D heterogeneous model obtained from tomographic inversion.

  5. GEM - The Global Earthquake Model

    Science.gov (United States)

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  6. Structures of Xishan village landslide in Li County, Sichuan, China, inferred from high-frequency receiver functions of local earthquakes

    Science.gov (United States)

    Wei, Z.; Chu, R.

    2017-12-01

    Teleseismic receiver function methods are widely used to study the deep structural information beneath the seismic station. However, teleseismic waveforms are difficult to extract the high-frequency receiver function, which are insufficient to constrain the shallow structure because of the inelastic attenuation effect of the earth. In this study, using the local earthquake waveforms collected from 3 broadband stations deployed on the Xishan village landslide in Li County in Sichuan Province, we used the high-frequency receiver function method to study the shallow structure beneath the landslide. We developed the Vp-k (Vp/Vs) staking method of receiver functions, and combined with the H-k stacking and waveform inversion methods of receiver functions to invert the landslide's thickness, S-wave velocity and average Vp/Vs ratio beneath these stations, and compared the thickness with the borehole results. Our results show small-scale lateral variety of velocity structure, a 78-143m/s lower S-wave velocity in the bottom layer and 2.4-3.1 Vp/Vs ratio in the landslide. The observed high Vp/Vs ratio and low S-wave velocity in the bottom layer of the landslide are consistent with low electrical resistivity and water-rich in the bottom layer, suggesting a weak shear strength and potential danger zone in landslide h1. Our study suggest that the local earthquake receiver function can obtain the shallow velocity structural information and supply some seismic constrains for the landslide catastrophe mitigation.

  7. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    Science.gov (United States)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    very low rupture velocity. The low rupture velocity can mean slow-faulting, which brings to slow release of accumulated seismic energy. The slow release energy does principally little to moderate damages. Additionally wave form of the earthquake shows low frequency content of P-waves (the maximum P-wave is at 1.19 Hz) and the specific P- wave displacement spectral is characterise with not expressed spectrum plateau and corner frequency. These and other signs suggest us to the conclusion, that the 2012 Mw5.6 earthquake can be considered as types of slow earthquake, like a low frequency quake. The study is based on data from Bulgarian seismological network (NOTSSI), the local network (LSN) deployed around Kozloduy NPP and System of Accelerographs for Seismic Monitoring of Equipment and Structures (SASMES) installed in the Kozloduy NPP. NOTSSI jointly with LSN and SASMES provide reliable information for multiple studies on seismicity in regional scale.

  8. USGS GNSS Applications to Earthquake Disaster Response and Hazard Mitigation

    Science.gov (United States)

    Hudnut, K. W.; Murray, J. R.; Minson, S. E.

    2015-12-01

    Rapid characterization of earthquake rupture is important during a disaster because it establishes which fault ruptured and the extent and amount of fault slip. These key parameters, in turn, can augment in situ seismic sensors for identifying disruption to lifelines as well as localized damage along the fault break. Differential GNSS station positioning, along with imagery differencing, are important methods for augmenting seismic sensors. During response to recent earthquakes (1989 Loma Prieta, 1992 Landers, 1994 Northridge, 1999 Hector Mine, 2010 El Mayor - Cucapah, 2012 Brawley Swarm and 2014 South Napa earthquakes), GNSS co-seismic and post-seismic observations proved to be essential for rapid earthquake source characterization. Often, we find that GNSS results indicate key aspects of the earthquake source that would not have been known in the absence of GNSS data. Seismic, geologic, and imagery data alone, without GNSS, would miss important details of the earthquake source. That is, GNSS results provide important additional insight into the earthquake source properties, which in turn help understand the relationship between shaking and damage patterns. GNSS also adds to understanding of the distribution of slip along strike and with depth on a fault, which can help determine possible lifeline damage due to fault offset, as well as the vertical deformation and tilt that are vitally important for gravitationally driven water systems. The GNSS processing work flow that took more than one week 25 years ago now takes less than one second. Formerly, portable receivers needed to be set up at a site, operated for many hours, then data retrieved, processed and modeled by a series of manual steps. The establishment of continuously telemetered, continuously operating high-rate GNSS stations and the robust automation of all aspects of data retrieval and processing, has led to sub-second overall system latency. Within the past few years, the final challenges of

  9. Napa earthquake: An earthquake in a highly connected world

    Science.gov (United States)

    Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.

    2014-12-01

    The Napa earthquake recently occurred close to Silicon Valley. This makes it a good candidate to study what social networks, wearable objects and website traffic analysis (flashsourcing) can tell us about the way eyewitnesses react to ground shaking. In the first part, we compare the ratio of people publishing tweets and with the ratio of people visiting EMSC (European Mediterranean Seismological Centre) real time information website in the first minutes following the earthquake occurrence to the results published by Jawbone, which show that the proportion of people waking up depends (naturally) on the epicentral distance. The key question to evaluate is whether the proportions of inhabitants tweeting or visiting the EMSC website are similar to the proportion of people waking up as shown by the Jawbone data. If so, this supports the premise that all methods provide a reliable image of the relative ratio of people waking up. The second part of the study focuses on the reaction time for both Twitter and EMSC website access. We show, similarly to what was demonstrated for the Mineral, Virginia, earthquake (Bossu et al., 2014), that hit times on the EMSC website follow the propagation of the P waves and that 2 minutes of website traffic is sufficient to determine the epicentral location of an earthquake on the other side of the Atlantic. We also compare with the publication time of messages on Twitter. Finally, we check whether the number of tweets and the number of visitors relative to the number of inhabitants is correlated to the local level of shaking. Together these results will tell us whether the reaction of eyewitnesses to ground shaking as observed through Twitter and the EMSC website analysis is tool specific (i.e. specific to Twitter or EMSC website) or whether they do reflect people's actual reactions.

  10. Updated earthquake catalogue for seismic hazard analysis in Pakistan

    Science.gov (United States)

    Khan, Sarfraz; Waseem, Muhammad; Khan, Muhammad Asif; Ahmed, Waqas

    2018-03-01

    A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40-83° N and 20-40° E) includes 36,563 earthquake events, which are reported as 4.0-8.3 moment magnitude (M W) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude M W. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.

  11. A Comparison of Geodetic and Geologic Rates Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle Behaviors?

    Science.gov (United States)

    Dolan, James F.; Meade, Brendan J.

    2017-12-01

    Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.

  12. Crustal and upper mantle velocity structure of Southern Iberia, the sea of Alboran, and the Gibraltar arc determined by local earthquake tomography

    Directory of Open Access Journals (Sweden)

    M. J. Blanco

    1997-06-01

    Full Text Available A "local earthquake tomography" of a large area encompassing the South of Iberia, the sea of Alboran, the Gibraltar arc, and Northern Morrocco, has been performed using first arrival times recorded at various Spanish and Morroccan seismic networks. A total of 52 stations and 639 earthquakes provided over 6300 first P arrivals and 4400 S arrivals. Three features of interest appear in the results: i a continuous low velocity structure which correlates with the Betics, the Gibraltar arc and the Rif; ii a high velocity feature which persists to a depth of approximately 30 km, positioned near the coast of Malaga on the northern margin of the Alboran sea; iii a low velocity feature, extending to a minimum depth of approximately 40 km, which coincides with the Granada basin and a strong negative Bouguer gravity anomaly.

  13. Demonstration of pb-PSHA with Ras-Elhekma earthquake, Egypt

    Directory of Open Access Journals (Sweden)

    Elsayed Fergany

    2017-06-01

    Full Text Available The main goal of this work is to: (1 argue for the importance of a physically-based probabilistic seismic hazard analysis (pb-PSHA methodology and show examples to support the argument from recent events, (2 demonstrate the methodology with the ground motion simulations of May 28, 1998, Mw = 5.5 Ras-Elhekma earthquake, north Egypt. The boundaries for the possible rupture parameters that may have been identified prior to the 1998 Ras-Elhekma earthquake were estimated. A range of simulated ground-motions for the Ras-Elhekma earthquake was “predicted” for frequency 0.5–25 Hz at three sites, where the large earthquake was recorded, with average epicentral distances of 220 km. The best rupture model of the 1998 Ras-Elhekma earthquake was identified by calculated the goodness of fit between observed and synthesized records at sites FYM, HAG, and KOT. We used the best rupture scenario of the 1998 earthquake to synthesize the ground motions at interested sites where the main shock was not recorded. Based on the good fit of simulated and observed seismograms, we concluded that this methodology can provide realistic ground motion of an earthquake and highly recommended for engineering purposes in advance or foregoing large earthquakes at non record sites. We propose that there is a need for this methodology for good-representing the true hazard with reducing uncertainties.

  14. AN ANALYSIS OF THE POLICY TO PROVIDE THE TRAFFIC INFORMATION IN THE CASE OF EARTHQUAKES AN EXAMPLE ON THE NOTO PENINSULA EARTHQUAKE, ISHIKAWA PREFECTURE

    Science.gov (United States)

    Takahashi, Masanori; Takayama, Jun-Ichi; Nakayama, Shoichiro

    Noto Peninsula earthquake occurred in Ishikawa Pref., in March, 2007, and the Noto Yuryo, and many arterial roads were damaged. This led to the conosiderable confusion of the road traffic in Noto Peninsula area and gave the influence on all kinds of social/economic activities. Therefore, an method of providing the traffic information for drivers is important in the case of disasters such as earthquakes. We carried out a questionnaire survey for local inhabitants and investigated the road use situation at the time of the Noto Peninsula earthquake and the information acquisition situation about it. We also analyzed whether or not the method of providing the traffic information was appropriate. In addition, we examined the best traffic information in the case of earthquakes.

  15. Preliminary quantitative assessment of earthquake casualties and damages

    DEFF Research Database (Denmark)

    Badal, J.; Vázquez-Prada, M.; González, Á.

    2005-01-01

    Prognostic estimations of the expected number of killed or injured people and about the approximate cost associated with the damages caused by earthquakes are made following a suitable methodology of wide-ranging application. For the preliminary assessment of human life losses due to the occurrence...... of a relatively strong earthquake we use a quantitative model consisting of a correlation between the number of casualties and the earthquake magnitude as a function of population density. The macroseismic intensity field is determined in accordance with an updated anelastic attenuation law, and the number...... the local social wealth as a function of the gross domestic product of the country. This last step is performed on the basis of the relationship of the macroseismic intensity to the earthquake economic loss in percentage of the wealth. Such an approach to the human casualty and damage levels is carried out...

  16. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  17. Towards an Earthquake and Tsunami Early Warning in the Caribbean

    Science.gov (United States)

    Huerfano Moreno, V. A.; Vanacore, E. A.

    2017-12-01

    The Caribbean region (CR) has a documented history of large damaging earthquakes and tsunamis that have affected coastal areas, including the events of Jamaica in 1692, Virgin Islands in 1867, Puerto Rico in 1918, the Dominican Republic in 1946 and Haiti in 2010. There is clear evidence that tsunamis have been triggered by large earthquakes that deformed the ocean floor around the Caribbean Plate boundary. The CR is monitored jointly by national/regional/local seismic, geodetic and sea level networks. All monitoring institutions are participating in the UNESCO ICG/Caribe EWS, the purpose of this initiative is to minimize loss of life and destruction of property, and to mitigate against catastrophic economic impacts via promoting local research, real time (RT) earthquake, geodetic and sea level data sharing and improving warning capabilities and enhancing education and outreach strategies. Currently more than, 100 broad-band seismic, 65 sea levels and 50 GPS high rate stations are available in real or near real-time. These real-time streams are used by Local/Regional or Worldwide detection and warning institutions to provide earthquake source parameters in a timely manner. Currently, any Caribbean event detected to have a magnitude greater than 4.5 is evaluated, and sea level is measured, by the TWC for tsumanigenic potential. The regional cooperation is motivated both by research interests as well as geodetic, seismic and tsunami hazard monitoring and warning. It will allow the imaging of the tectonic structure of the Caribbean region to a high resolution which will consequently permit further understanding of the seismic source properties for moderate and large events and the application of this knowledge to procedures of civil protection. To reach its goals, the virtual network has been designed following the highest technical standards: BB sensors, 24 bits A/D converters with 140 dB dynamic range, real-time telemetry. Here we will discuss the state of the PR

  18. Earthquake engineering and structural dynamics studies at Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Dubey, P.N.; Vaity, K.N.; Kukreja, Mukhesh; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.

    2007-01-01

    Earthquake Engineering and structural Dynamics has gained the attention of many researchers throughout the world and extensive research work is performed. Linear behaviour of structures, systems and components (SSCs) subjected to earthquake/dynamic loading is clearly understood. However, nonlinear behaviour of SSCs subjected to earthquake/dynamic loading need to be understood clearly and design methods need to be validated experimentally. In view of this, three major areas in earthquake engineering and structural dynamics identified for research includes: design and development of passive devices to control the seismic/dynamic response of SSCs, nonlinear behaviour of piping systems subjected to earthquake loading and nonlinear behavior of RCC structures under seismic excitation or dynamic loading. BARC has performed extensive work and also being continued in the above-identified areas. The work performed is helping for clearer understanding of nonlinear behavior of SSCs as well as in developing new schemes, methodologies and devices to control the earthquake response of SSCs. (author)

  19. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    Science.gov (United States)

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-10-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  20. What caused a large number of fatalities in the Tohoku earthquake?

    Science.gov (United States)

    Ando, M.; Ishida, M.; Nishikawa, Y.; Mizuki, C.; Hayashi, Y.

    2012-04-01

    The Mw9.0 earthquake caused 20,000 deaths and missing persons in northeastern Japan. 115 years prior to this event, there were three historical tsunamis that struck the region, one of which is a "tsunami earthquake" resulted with a death toll of 22,000. Since then, numerous breakwaters were constructed along the entire northeastern coasts and tsunami evacuation drills were carried out and hazard maps were distributed to local residents on numerous communities. However, despite the constructions and preparedness efforts, the March 11 Tohoku earthquake caused numerous fatalities. The strong shaking lasted three minutes or longer, thus all residents recognized that this is the strongest and longest earthquake that they had been ever experienced in their lives. The tsunami inundated an enormous area at about 560km2 over 35 cities along the coast of northeast Japan. To find out the reasons behind the high number of fatalities due to the March 11 tsunami, we interviewed 150 tsunami survivors at public evacuation shelters in 7 cities mainly in Iwate prefecture in mid-April and early June 2011. Interviews were done for about 30min or longer focused on their evacuation behaviors and those that they had observed. On the basis of the interviews, we found that residents' decisions not to evacuate immediately were partly due to or influenced by earthquake science results. Below are some of the factors that affected residents' decisions. 1. Earthquake hazard assessments turned out to be incorrect. Expected earthquake magnitudes and resultant hazards in northeastern Japan assessed and publicized by the government were significantly smaller than the actual Tohoku earthquake. 2. Many residents did not receive accurate tsunami warnings. The first tsunami warning were too small compared with the actual tsunami heights. 3. The previous frequent warnings with overestimated tsunami height influenced the behavior of the residents. 4. Many local residents above 55 years old experienced

  1. Initiatives to Reduce Earthquake Risk of Developing Countries

    Science.gov (United States)

    Tucker, B. E.

    2008-12-01

    The seventeen-year-and-counting history of the Palo Alto-based nonprofit organization GeoHazards International (GHI) is the story of many initiatives within a larger initiative to increase the societal impact of geophysics and civil engineering. GHI's mission is to reduce death and suffering due to earthquakes and other natural hazards in the world's most vulnerable communities through preparedness, mitigation and advocacy. GHI works by raising awareness in these communities about their risk and about affordable methods to manage it, identifying and strengthening institutions in these communities to manage their risk, and advocating improvement in natural disaster management. Some of GHI's successful initiatives include: (1) creating an earthquake scenario for Quito, Ecuador that describes in lay terms the consequences for that city of a probable earthquake; (2) improving the curricula of Pakistani university courses about seismic retrofitting; (3) training employees of the Public Works Department of Delhi, India on assessing the seismic vulnerability of critical facilities such as a school, a hospital, a police headquarters, and city hall; (4) assessing the vulnerability of the Library of Tibetan Works and Archives in Dharamsala, India; (5) developing a seismic hazard reduction plan for a nonprofit organization in Kathmandu, Nepal that works to manage Nepal's seismic risk; and (6) assisting in the formulation of a resolution by the Council of the Organization for Economic Cooperation and Development (OECD) to promote school earthquake safety among OECD member countries. GHI's most important resource, in addition to its staff and Board of Trustees, is its members and volunteer advisors, who include some of the world's leading earth scientists, earthquake engineers, urban planners and architects, from the academic, public, private and nonprofit sectors. GHI is planning several exciting initiatives in the near future. One would oversee the design and construction of

  2. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977.

    Science.gov (United States)

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G

    1978-09-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown.

  3. Earthquakes, fluid pressures and rapid subduction zone metamorphism

    Science.gov (United States)

    Viete, D. R.

    2013-12-01

    High-pressure/low-temperature (HP/LT) metamorphism is commonly incomplete, meaning that large tracts of rock can remain metastable at blueschist- and eclogite-facies conditions for timescales up to millions of years [1]. When HP/LT metamorphism does take place, it can occur over extremely short durations (the role of fluids in providing heat for metamorphism [2] or catalyzing metamorphic reactions [1]. Earthquakes in subduction zone settings can occur to depths of 100s of km. Metamorphic dehydration and the associated development of elevated pore pressures in HP/LT metamorphic rocks has been identified as a cause of earthquake activity at such great depths [3-4]. The process of fracturing/faulting significantly increases rock permeability, causing channelized fluid flow and dissipation of pore pressures [3-4]. Thus, deep subduction zone earthquakes are thought to reflect an evolution in fluid pressure, involving: (1) an initial increase in pore pressure by heating-related dehydration of subduction zone rocks, and (2) rapid relief of pore pressures by faulting and channelized flow. Models for earthquakes at depth in subduction zones have focussed on the in situ effects of dehydration and then sudden escape of fluids from the rock mass following fracturing [3-4]. On the other hand, existing models for rapid and incomplete metamorphism in subduction zones have focussed only on the effects of heating and/or hydration with the arrival of external fluids [1-2]. Significant changes in pressure over very short timescales should result in rapid mineral growth and/or disequilibrium texture development in response to overstepping of mineral reaction boundaries. The repeated process of dehydration-pore pressure development-earthquake-pore pressure relief could conceivably produce a record of episodic HP/LT metamorphism driven by rapid pressure pulses. A new hypothesis is presented for the origins of HP/LT metamorphism: that HP/LT metamorphism is driven by effective pressure

  4. Monitoring of the future strong Vrancea events by using the CN formal earthquake prediction algorithm

    International Nuclear Information System (INIS)

    Moldoveanu, C.L.; Novikova, O.V.; Panza, G.F.; Radulian, M.

    2003-06-01

    The preparation process of the strong subcrustal events originating in Vrancea region, Romania, is monitored using an intermediate-term medium-range earthquake prediction method - the CN algorithm (Keilis-Borok and Rotwain, 1990). We present the results of the monitoring of the preparation of future strong earthquakes for the time interval from January 1, 1994 (1994.1.1), to January 1, 2003 (2003.1.1) using the updated catalogue of the Romanian local network. The database considered for the CN monitoring of the preparation of future strong earthquakes in Vrancea covers the period from 1966.3.1 to 2003.1.1 and the geographical rectangle 44.8 deg - 48.4 deg N, 25.0 deg - 28.0 deg E. The algorithm correctly identifies, by retrospective prediction, the TJPs for all the three strong earthquakes (Mo=6.4) that occurred in Vrancea during this period. The cumulated duration of the TIPs represents 26.5% of the total period of time considered (1966.3.1-2003.1.1). The monitoring of current seismicity using the algorithm CN has been carried out since 1994. No strong earthquakes occurred from 1994.1.1 to 2003.1.1 but the CN declared an extended false alarm from 1999.5.1 to 2000.11.1. No alarm has currently been declared in the region (on January 1, 2003), as can be seen from the TJPs diagram shown. (author)

  5. Haïti, en situation post-séisme : quelques effets de la catastrophe du 12 janvier 2010 sur la population locale Haïti, in post-earthquake mode: some effects of the earthquake of January 12 2010 on the local population

    Directory of Open Access Journals (Sweden)

    Evens Jabouin

    2012-01-01

    Full Text Available Le violent séisme qui a secoué Haïti et sa capitale le 12 janvier 2010 dernier a laissé des séquelles au sein de la population haïtienne déjà fragilisée par la violence, la pauvreté et aussi par des catastrophes naturelles répétées (ouragans, inondations, érosion, etc.. Ce séisme, aussi prévisible qu’il soit, est une catastrophe naturelle et humanitaire sans précédent dont les principales causes sont l’absence de constructions et d’infrastructures solides, bâties selon les normes parasismiques, l’occupation anarchique de l’espace urbain par les populations et les nombreuses irrégularités incontestées observées dans le domaine de l’urbanisme. En outre, ce séisme s’est produit à un moment où l’on commençait à observer dans le pays un élan de stabilisation sur le plan politique, un mouvement de croissance économique ainsi qu’un début d’amélioration des conditions de vie des populations. La catastrophe est venue freiner cette dynamique socioéconomique tout en amplifiant les problèmes existants et en engendrant d’autres difficultés et d’autres défis. Cet article analyse, à travers des témoignages de première main et un état des lieux, les différents impacts de cette catastrophe sur la population locale ainsi que les interrogations et les incertitudes diverses de cette population concernant son avenir.On January the twelfth 2010, Haiti and its capital have been devastated by a very strong earthquake that has provoked many aftereffects among the local population since that population had already been weakened before by street violence, poverty and by frequent natural disasters such as hurricanes, floods... That earthquake, even foreseeable, has given way to an important disaster whose causes are the absence of well built infrastructures and buildings, the anarchic use of urban spaces by the population, and multiple irregularities in town planning issues. Furthermore, that earthquake took

  6. Health behaviors of victims and related factors in Wenchuan earthquake resettlement sites.

    Science.gov (United States)

    Liu, Qiaolan; Zhou, Hongyu; Zhou, Huan; Yang, Yang; Yang, Xiaoyan; Yu, Lingyun; Qiu, Peiyuan; Ma, Xiao

    2011-03-01

    The purpose of this study was to describe the health behaviors of earthquake victims related to gastrointestinal and respiratory infectious diseases in the centralized transitional earthquake resettlement sites in Wenchuan, China; and to identify key factors related to health behaviors that may inform local infectious diseases prevention and control strategies. Data were collected using a questionnaire that included questions about socio-demographic characteristics and health beliefs and behaviors. In total, 1411 participants were included through a two-stage random sampling strategy. A bivariate multilevel model was used to explore the related factors. Approximately 67% of the participants wash their hands after going to lavatories every time, and 87% felt uncomfortable spitting on the ground. The more the participants perceived their susceptibility to and the severity of infectious diseases, the better their health-related behaviors (P resettlement sites (P resettlement sites. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Do I Really Sound Like That? Communicating Earthquake Science Following Significant Earthquakes at the NEIC

    Science.gov (United States)

    Hayes, G. P.; Earle, P. S.; Benz, H.; Wald, D. J.; Yeck, W. L.

    2017-12-01

    The U.S. Geological Survey's National Earthquake Information Center (NEIC) responds to about 160 magnitude 6.0 and larger earthquakes every year and is regularly inundated with information requests following earthquakes that cause significant impact. These requests often start within minutes after the shaking occurs and come from a wide user base including the general public, media, emergency managers, and government officials. Over the past several years, the NEIC's earthquake response has evolved its communications strategy to meet the changing needs of users and the evolving media landscape. The NEIC produces a cascade of products starting with basic hypocentral parameters and culminating with estimates of fatalities and economic loss. We speed the delivery of content by prepositioning and automatically generating products such as, aftershock plots, regional tectonic summaries, maps of historical seismicity, and event summary posters. Our goal is to have information immediately available so we can quickly address the response needs of a particular event or sequence. This information is distributed to hundreds of thousands of users through social media, email alerts, programmatic data feeds, and webpages. Many of our products are included in event summary posters that can be downloaded and printed for local display. After significant earthquakes, keeping up with direct inquiries and interview requests from TV, radio, and print reports is always challenging. The NEIC works with the USGS Office of Communications and the USGS Science Information Services to organize and respond to these requests. Written executive summaries reports are produced and distributed to USGS personnel and collaborators throughout the country. These reports are updated during the response to keep our message consistent and information up to date. This presentation will focus on communications during NEIC's rapid earthquake response but will also touch on the broader USGS traditional and

  8. A new model on the cause of Tangshan earthquakes in 1976

    Science.gov (United States)

    Wang, Jian

    2001-09-01

    In this paper the shortages of explanations on the cause of Tangshan earthquakes in 1976 are pointed out. Earthquake phenomena around Tangshan earthquakes are analyzed synthetically, it is noticed that the most prominent seismic phenomenon are seismic denseness of M L=4, but M L=3 and M L=2 is not active in the same temporal-spatial interval, which occurred from 1973 to 1975. We think that the phenomenon should correspond to relative integrity of the crust medium under higher regional stress. Assuming that the seismicity in circumjacent region could reflect the jostling extent of surrounding plates toward the Chinese mainland, it is inferred that there are multi-dynamical processes in North China region in 1970s, which supply the basic dynamical source to Tangshan earthquakes. A model of multi-dynamical processes and local weakening of the crust is proposed to explain the cause of Tangshan earthquakes. This model could unpuzzle many seismic phenomena related to Tangshan earthquakes.

  9. Characteristics of a Sensitive Well Showing Pre-Earthquake Water-Level Changes

    Science.gov (United States)

    King, Chi-Yu

    2018-04-01

    Water-level data recorded at a sensitive well next to a fault in central Japan between 1989 and 1998 showed many coseismic water-level drops and a large (60 cm) and long (6-month) pre-earthquake drop before a rare local earthquake of magnitude 5.8 on 17 March 1997, as well as 5 smaller pre-earthquake drops during a 7-year period prior to this earthquake. The pre-earthquake changes were previously attributed to leakage through the fault-gouge zone caused by small but broad-scaled crustal-stress increments. These increments now seem to be induced by some large slow-slip events. The coseismic changes are attributed to seismic shaking-induced fissures in the adjacent aquitards, in addition to leakage through the fault. The well's high-sensitivity is attributed to its tapping a highly permeable aquifer, which is connected to the fractured side of the fault, and its near-critical condition for leakage, especially during the 7 years before the magnitude 5.8 earthquake.

  10. Education for Earthquake Disaster Prevention in the Tokyo Metropolitan Area

    Science.gov (United States)

    Oki, S.; Tsuji, H.; Koketsu, K.; Yazaki, Y.

    2008-12-01

    Japan frequently suffers from all types of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. In the first half of this year, we already had three big earthquakes and heavy rainfall, which killed more than 30 people. This is not just for Japan but Asia is the most disaster-afflicted region in the world, accounting for about 90% of all those affected by disasters, and more than 50% of the total fatalities and economic losses. One of the most essential ways to reduce the damage of natural disasters is to educate the general public to let them understand what is going on during those desasters. This leads individual to make the sound decision on what to do to prevent or reduce the damage. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools, and ERI, the Earthquake Research Institute, is qualified to develop education for earthquake disaster prevention in the Tokyo metropolitan area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1703 Genroku earthquake (M 8.0) and the 1923 Kanto earthquake (M 7.9) which had 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global economic repercussion. To better understand earthquakes in this region, "Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area" has been conducted mainly by ERI. It is a 4-year

  11. AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia)

    Science.gov (United States)

    Hendriyana, Andri; Bauer, Klaus; Muksin, Umar; Weber, Michael

    2018-05-01

    We present a new workflow for the localization of seismic events which is based on a diffraction stacking approach. In order to address the effects from complex source radiation patterns, we suggest to compute diffraction stacking from a characteristic function (CF) instead of stacking the original waveform data. A new CF, which is called in the following mAIC (modified from Akaike Information Criterion) is proposed. We demonstrate that both P- and S-wave onsets can be detected accurately. To avoid cross-talk between P and S waves due to inaccurate velocity models, we separate the P and S waves from the mAIC function by making use of polarization attributes. Then, the final image function is represented by the largest eigenvalue as a result of the covariance analysis between P- and S-image functions. Results from synthetic experiments show that the proposed diffraction stacking provides reliable results. The workflow of the diffraction stacking method was finally applied to local earthquake data from Sumatra, Indonesia. Recordings from a temporary network of 42 stations deployed for nine months around the Tarutung pull-apart basin were analysed. The seismic event locations resulting from the diffraction stacking method align along a segment of the Sumatran Fault. A more complex distribution of seismicity is imaged within and around the Tarutung basin. Two lineaments striking N-S were found in the centre of the Tarutung basin which support independent results from structural geology.

  12. ‘Interrupted’ Landscapes: Post-Earthquake Reconstruction in between Urban Renewal and Social Identity of Local Communities

    Directory of Open Access Journals (Sweden)

    Matteo Clemente

    2017-11-01

    Full Text Available The present study deals with the topic of post-seismic reconstruction focusing on landscape and social issues. Sustainable reconstruction requires a connection between the physical context of a given territory and the immaterial (historical, cultural, productive values that constitute the place’s identity. In this perspective, those places that have been destroyed by severe earthquakes or other disasters could be labelled as “interrupted landscapes”, meaning a drastic break in the individual stories attaching the people to their own territory, as well as an abrupt alteration of the continuous process by which people attribute a sense to their own territory. The study discusses selected cases of post-earthquake reconstruction in Italy, providing an overview of different visions for development of the new towns, that oscillate between two contrasting approaches: the “new town” model, implying the construction of a new town off-site and the “in loco” model. Looking for the reasons for failures of the new town model reconstruction, the study also debates the social dimension of urban landscapes, reflecting upon the notion of ‘collective identity’ connecting place attachment to cultural heritage. These issues were finally considered when defining strategic guidelines for sustainable urban reconstruction promoting place identity and preserving the intimate characteristics of the affected landscapes. Governance actions were defined along with sustainability strategies based on the investigated case studies, outlining a series of best practices that may promote the permanent involvement of local communities.

  13. On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake

    Science.gov (United States)

    Thomas, Jeremy N.; Love, Jeffrey J.; Komjathy, Attila; Verkhoglyadova, Olga P.; Butala, Mark; Rivera, Nicholas

    2012-01-01

    Using Global Positioning System (GPS) data from sites near the 16 Oct. 1999 Hector Mine, California earthquake, Pulinets et al. (2007) identified anomalous changes in the ionospheric total electron content (TEC) starting one week prior to the earthquake. Pulinets (2007) suggested that precursory phenomena of this type could be useful for predicting earthquakes. On the other hand, and in a separate analysis, Afraimovich et al. (2004) concluded that TEC variations near the epicenter were controlled by solar and geomagnetic activity that were unrelated to the earthquake. In an investigation of these very different results, we examine TEC time series of long duration from GPS stations near and far from the epicenter of the Hector Mine earthquake, and long before and long after the earthquake. While we can reproduce the essential time series results of Pulinets et al., we find that the signal they identify as anomalous is not actually anomalous. Instead, it is just part of normal global-scale TEC variation. We conclude that the TEC anomaly reported by Pulinets et al. is unrelated to the Hector Mine earthquake.

  14. Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence

    Science.gov (United States)

    Kadinsky-Cade, K.; Reilinger, R.; Isacks, B.

    1985-01-01

    The 1977 Caucete (San Juan) earthquake considered in the present paper occurred near the Sierra Pie de Palo in the Sierras Pampeanas tectonic province of western Argentina. In the study reported, coseismic surface deformation is combined with seismic observations (main shock and aftershocks, both teleseismic and local data) to place constraints on the geometry and slip of the main fault responsible for the 1977 earthquake. The implications of the 1977 event for long-term crustal shortening and earthquake recurrence rates in this region are also discussed. It is concluded that the 1977 Caucete earthquake was accompanied by more than 1 m of vertical uplift.

  15. Is earthquake rate in south Iceland modified by seasonal loading?

    Science.gov (United States)

    Jonsson, S.; Aoki, Y.; Drouin, V.

    2017-12-01

    Several temporarily varying processes have the potential of modifying the rate of earthquakes in the south Iceland seismic zone, one of the two most active seismic zones in Iceland. These include solid earth tides, seasonal meteorological effects and influence from passing weather systems, and variations in snow and glacier loads. In this study we investigate the influence these processes may have on crustal stresses and stressing rates in the seismic zone and assess whether they appear to be influencing the earthquake rate. While historical earthquakes in the south Iceland have preferentially occurred in early summer, this tendency is less clear for small earthquakes. The local earthquake catalogue (going back to 1991, magnitude of completeness M6+ earthquakes, which occurred in June 2000 and May 2008. Standard Reasenberg earthquake declustering or more involved model independent stochastic declustering algorithms are not capable of fully eliminating the aftershocks from the catalogue. We therefore inspected the catalogue for the time period before 2000 and it shows limited seasonal tendency in earthquake occurrence. Our preliminary results show no clear correlation between earthquake rates and short-term stressing variations induced from solid earth tides or passing storms. Seasonal meteorological effects also appear to be too small to influence the earthquake activity. Snow and glacier load variations induce significant vertical motions in the area with peak loading occurring in Spring (April-May) and maximum unloading in Fall (Sept.-Oct.). Early summer occurrence of historical earthquakes therefore correlates with early unloading rather than with the peak unloading or unloading rate, which appears to indicate limited influence of this seasonal process on the earthquake activity.

  16. Damage Localization and Quantification of Earthquake Excited RC-Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R. K.; Kirkegaard, Poul Henning

    1998-01-01

    or three series of ground motions of increasing magnitude. After each of these runs the damage state of the frame was examined and each storey of the frame were classified into one of the following six classifications: undamaged, cracked, lightly damaged, damaged, severely damaged or collapse. During each...... of the ground motion events the storey accelerations were measured by accelerometers. After application of the last earthquake sequence to the structure the frames were cut into pieces and each of the beams and columns was statically tested and damage assessment was performed using the obtained stiffnesses...

  17. An Overview of Soil Models for Earthquake Response Analysis

    Directory of Open Access Journals (Sweden)

    Halida Yunita

    2015-01-01

    Full Text Available Earthquakes can damage thousands of buildings and infrastructure as well as cause the loss of thousands of lives. During an earthquake, the damage to buildings is mostly caused by the effect of local soil conditions. Depending on the soil type, the earthquake waves propagating from the epicenter to the ground surface will result in various behaviors of the soil. Several studies have been conducted to accurately obtain the soil response during an earthquake. The soil model used must be able to characterize the stress-strain behavior of the soil during the earthquake. This paper compares equivalent linear and nonlinear soil model responses. Analysis was performed on two soil types, Site Class D and Site Class E. An equivalent linear soil model leads to a constant value of shear modulus, while in a nonlinear soil model, the shear modulus changes constantly,depending on the stress level, and shows inelastic behavior. The results from a comparison of both soil models are displayed in the form of maximum acceleration profiles and stress-strain curves.

  18. Focal mechanisms and moment magnitudes of micro-earthquakes in central Brazil by waveform inversion with quality assessment and inference of the local stress field

    Science.gov (United States)

    Carvalho, Juraci; Barros, Lucas Vieira; Zahradník, Jiří

    2016-11-01

    This paper documents an investigation on the use of full waveform inversion to retrieve focal mechanisms of 11 micro-earthquakes (Mw 0.8 to 1.4). The events represent aftershocks of a 5.0 mb earthquake that occurred on October 8, 2010 close to the city of Mara Rosa in the state of Goiás, Brazil. The main contribution of the work lies in demonstrating the feasibility of waveform inversion of such weak events. The inversion was made possible thanks to recordings available at 8 temporary seismic stations in epicentral distances of less than 8 km, at which waveforms can be successfully modeled at relatively high frequencies (1.5-2.0 Hz). On average, the fault-plane solutions obtained are in agreement with a composite focal mechanism previously calculated from first-motion polarities. They also agree with the fault geometry inferred from precise relocation of the Mara Rosa aftershock sequence. The focal mechanisms provide an estimate of the local stress field. This paper serves as a pilot study for similar investigations in intraplate regions where the stress-field investigations are difficult due to rare earthquake occurrences, and where weak events must be studied with a detailed quality assessment.

  19. Upper-plate splay fault earthquakes along the Arakan subduction belt recorded by uplifted coral microatolls on northern Ramree Island, western Myanmar (Burma)

    Science.gov (United States)

    Shyu, J. Bruce H.; Wang, Chung-Che; Wang, Yu; Shen, Chuan-Chou; Chiang, Hong-Wei; Liu, Sze-Chieh; Min, Soe; Aung, Lin Thu; Than, Oo; Tun, Soe Thura

    2018-02-01

    Upper-plate structures that splay out from the megathrusts are common features along major convergent plate boundaries. However, their earthquake and tsunami hazard potentials have not yet received significant attention. In this study, we identified at least one earthquake event that may have been produced by an upper-plate splay fault offshore western Myanmar, based on U-Th ages of uplifted coral microatolls. This event is likely an earthquake that was documented historically in C.E. 1848, with an estimated magnitude between 6.8 and 7.2 based on regional structural characteristics. Such magnitude is consistent with the observed co-seismic uplift amount of ∼0.5 m. Although these events are smaller in magnitude than events produced by megathrusts, they may produce higher earthquake and tsunami hazards for local coastal communities due to their proximity. Our results also indicate that earthquake events with co-seismic uplift along the coast may not necessarily produce a flight of marine terraces. Therefore, using only records of uplifted marine terraces as megathrust earthquake proxies may overlook the importance of upper-plate splay fault ruptures, and underestimate the overall earthquake frequency for future seismic and tsunami hazards along major subduction zones of the world.

  20. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    Science.gov (United States)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  1. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Orhan, E-mail: orhan.polat@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey (Turkey)

    2016-04-18

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  2. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    International Nuclear Information System (INIS)

    Polat, Orhan; Özer, Çaglar

    2016-01-01

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  3. Long‐term creep rates on the Hayward Fault: evidence for controls on the size and frequency of large earthquakes

    Science.gov (United States)

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Bilham, Roger; Ponce, David A.; Boatwright, John; Caskey, S. John

    2012-01-01

    The Hayward fault (HF) in California exhibits large (Mw 6.5–7.1) earthquakes with short recurrence times (161±65 yr), probably kept short by a 26%–78% aseismic release rate (including postseismic). Its interseismic release rate varies locally over time, as we infer from many decades of surface creep data. Earliest estimates of creep rate, primarily from infrequent surveys of offset cultural features, revealed distinct spatial variation in rates along the fault, but no detectable temporal variation. Since the 1989 Mw 6.9 Loma Prieta earthquake (LPE), monitoring on 32 alinement arrays and 5 creepmeters has greatly improved the spatial and temporal resolution of creep rate. We now identify significant temporal variations, mostly associated with local and regional earthquakes. The largest rate change was a 6‐yr cessation of creep along a 5‐km length near the south end of the HF, attributed to a regional stress drop from the LPE, ending in 1996 with a 2‐cm creep event. North of there near Union City starting in 1991, rates apparently increased by 25% above pre‐LPE levels on a 16‐km‐long reach of the fault. Near Oakland in 2007 an Mw 4.2 earthquake initiated a 1–2 cm creep event extending 10–15 km along the fault. Using new better‐constrained long‐term creep rates, we updated earlier estimates of depth to locking along the HF. The locking depths outline a single, ∼50‐km‐long locked or retarded patch with the potential for an Mw∼6.8 event equaling the 1868 HF earthquake. We propose that this inferred patch regulates the size and frequency of large earthquakes on HF.

  4. Associating Factors With Public Preparedness Behavior Against Earthquake: A Review of Iranian Research Literature

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2018-01-01

    Full Text Available Local preparedness against earthquakes has been recently highlighted in research and policies on disaster management and risk reduction promotion in Iran. To advance the understanding of public preparedness and how it can be applied in diverse localities, further information is required about the predictors of people’s adoption of mitigation activities and earthquake preparedness. A synthesis of the available published research results on earthquake preparedness and the influencing factors in Iran are presented in this literature review. It emphasizes the complexity of both the concept of preparedness and the contextual factors that mediate its adoption. The predominant roles of public awareness, trusted information resources, social capital and community collaboration as predictors are discussed. 

  5. Iranian earthquakes, a uniform catalog with moment magnitudes

    Science.gov (United States)

    Karimiparidari, Sepideh; Zaré, Mehdi; Memarian, Hossein; Kijko, Andrzej

    2013-07-01

    A uniform earthquake catalog is an essential tool in any seismic hazard analysis. In this study, an earthquake catalog of Iran and adjacent areas was compiled, using international and national databanks. The following priorities were applied in selecting magnitude and earthquake location: (a) local catalogs were given higher priority for establishing the location of an earthquake and (b) global catalogs were preferred for determining earthquake magnitudes. Earthquakes that have occurred within the bounds between 23-42° N and 42-65° E, with a magnitude range of M W 3.5-7.9, from the third millennium BC until April 2010 were included. In an effort to avoid the "boundary effect," since the newly compiled catalog will be mainly used for seismic hazard assessment, the study area includes the areas adjacent to Iran. The standardization of the catalog in terms of magnitude was achieved by the conversion of all types of magnitude into moment magnitude, M W, by using the orthogonal regression technique. In the newly compiled catalog, all aftershocks were detected, based on the procedure described by Gardner and Knopoff (Bull Seismol Soc Am 64:1363-1367, 1974). The seismicity parameters were calculated for the six main tectonic seismic zones of Iran, i.e., the Zagros Mountain Range, the Alborz Mountain Range, Central Iran, Kope Dagh, Azerbaijan, and Makran.

  6. Generalized statistical mechanics approaches to earthquakes and tectonics

    Science.gov (United States)

    Papadakis, Giorgos; Michas, Georgios

    2016-01-01

    Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes. PMID:28119548

  7. Earthquake hazard zonation using peak ground acceleration (PGA) approach

    International Nuclear Information System (INIS)

    Irwansyah, E; Winarko, E; Rasjid, Z E; Bekti, R D

    2013-01-01

    The objective of this research is to develop seismic hazard area zones in the building infrastructure of the Banda Aceh City Indonesia using peak ground acceleration (PGA) measured using global and local attenuation function. PGA is calculated using attenuation function that describes the correlation between the local ground movement intensity the earthquake magnitude and the distance from the earthquake's epicentre. The data used comes from the earthquake damage catalogue available from the Indonesia meteorology, climatology and geophysics agency (BMKG) with range from year 1973 – 2011. The research methodology consists of six steps, which is developing the grid, calculation of the distance from the epicentre to the centroid of the grid, calculation of PGA values, developing the computer application, plotting the PGA values to the centroid grid, and developing the earthquake hazard zones using kriging algorithm. The conclusion of this research is that the global attenuation function that was developed by [20] can be applied to calculate the PGA values in the city of Banda Aceh. Banda Aceh city in micro scale can be divided into three hazard zones which is low hazard zone with PGA value of 0.8767 gals up to 0.8780 gals, medium hazard zone with PGA values of 0.8781 up to 0.8793 gals and high hazard zone with PGA values of 0.8794 up to 0.8806 gals.

  8. Early Results of Three-Year Monitoring of Red Wood Ants’ Behavioral Changes and Their Possible Correlation with Earthquake Events

    Science.gov (United States)

    Berberich, Gabriele; Berberich, Martin; Grumpe, Arne; Wöhler, Christian; Schreiber, Ulrich

    2013-01-01

    Simple Summary For three years (2009–2012), two red wood ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the video streams. Based on this automated approach, a statistical analysis of the ant behavior will be carried out. Abstract Short-term earthquake predictions with an advance warning of several hours or days are currently not possible due to both incomplete understanding of the complex tectonic processes and inadequate observations. Abnormal animal behaviors before earthquakes have been reported previously, but create problems in monitoring and reliability. The situation is different with red wood ants (RWA; Formica rufa-group (Hymenoptera: Formicidae)). They have stationary mounds on tectonically active, gas-bearing fault systems. These faults may be potential earthquake areas. For three years (2009–2012), two red wood ant mounds (Formica rufa-group), located at the seismically active Neuwied Basin (Eifel, Germany), have been monitored 24/7 by high-resolution cameras with both a color and an infrared sensor. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the more than 45,000 hours of video streams. Based on this automated approach, a statistical analysis of

  9. Earthquakes and nuclear waste: A lesson in media relations

    International Nuclear Information System (INIS)

    Patrick, S.M.

    1993-01-01

    The Little Skull Mountain earthquake on June 29, 1992 marked the beginning of a challenging period for the US DOE's Yucca Mountain Site Characterization Project's (YMP's) Public Affairs department. We needed to relay complicated and difficult to understand scientific principals in an easily understandable fashion to local and national media who were hungry for detailed information. Volumes of quickly accumulating data was swiftly sorted, interpreted, and placed in context with other data in order to be properly presented. The main difficulty in this situation was attempting to assure that the information presented led to an intellectual and not emotional analysis of the earthquake. This paper will discuss some of the processes undertaken to meet both the needs of local media as well as our own needs

  10. Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes

    Science.gov (United States)

    Cervone, G.; Kafatos, M.; Napoletani, D.; Singh, R. P.

    2004-05-01

    Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF) data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.

  11. Megathrust Earthquake Swarms Contemporaneous to Slow Slip and Non-Volcanic Tremor in Southern Mexico, Detected and Analyzed through a Template Matching Approach

    Science.gov (United States)

    Holtkamp, S.; Brudzinski, M. R.; Cabral-Cano, E.; Arciniega-Ceballos, A.

    2012-12-01

    An outstanding question in geophysics is the degree to which the newly discovered types of slow fault slip are related to their destructive cousin - the earthquake. Here, we utilize a local network along the Oaxacan segment of the Middle American subduction zone to investigate the potential relationship between slow slip, non-volcanic tremor (NVT), and earthquakes along the subduction megathrust. We have developed a multi-station "template matching" waveform cross correlation technique which is able to detect and locate events several orders of magnitude smaller than would be possible using more traditional techniques. Also, our template matching procedure is capable of consistently locate events which occur during periods of increased background activity (e.g., during productive NVT, loud cultural noise, or after larger earthquakes) because the multi-station detector is finely tuned to events with similar hypocentral location and focal mechanism. The local network in the Oaxaca region allows us to focus on documented megathrust earthquake swarms, which we focus on because slow slip is hypothesized to be the cause for earthquake swarms in some tectonic environments. We identify a productive earthquake swarm in July 2006 (~600 similar earthquakes detected), which occurred during a week-long episode of productive tremor and slow slip. Families of events in this sequence were also active during larger and longer slow slip events, which provides a potential link between slow slip in the transition zone and earthquakes at the downdip end of the seismogenic portion of the megathrust. Because template matching techniques only detect similar signals, detected waveforms can be stacked together to produce higher signal to noise ratios or cross correlated against each other to produce precise relative phase arrival times. We are using the refined signals to look for evidence of expansion or propagation of hypocenters during these earthquake swarms, which could be used as a

  12. Slow Earthquake Hunters: A New Citizen Science Project to Identify and Catalog Slow Slip Events in Geodetic Data

    Science.gov (United States)

    Bartlow, N. M.

    2017-12-01

    Slow Earthquake Hunters is a new citizen science project to detect, catalog, and monitor slow slip events. Slow slip events, also called "slow earthquakes", occur when faults slip too slowly to generate significant seismic radiation. They typically take between a few days and over a year to occur, and are most often found on subduction zone plate interfaces. While not dangerous in and of themselves, recent evidence suggests that monitoring slow slip events is important for earthquake hazards, as slow slip events have been known to trigger damaging "regular" earthquakes. Slow slip events, because they do not radiate seismically, are detected with a variety of methods, most commonly continuous geodetic Global Positioning System (GPS) stations. There is now a wealth of GPS data in some regions that experience slow slip events, but a reliable automated method to detect them in GPS data remains elusive. This project aims to recruit human users to view GPS time series data, with some post-processing to highlight slow slip signals, and flag slow slip events for further analysis by the scientific team. Slow Earthquake Hunters will begin with data from the Cascadia subduction zone, where geodetically detectable slow slip events with a duration of at least a few days recur at regular intervals. The project will then expand to other areas with slow slip events or other transient geodetic signals, including other subduction zones, and areas with strike-slip faults. This project has not yet rolled out to the public, and is in a beta testing phase. This presentation will show results from an initial pilot group of student participants at the University of Missouri, and solicit feedback for the future of Slow Earthquake Hunters.

  13. Identifying Local Hotspots of Pediatric Chronic Diseases Using Emergency Department Surveillance

    Science.gov (United States)

    Lee, David C.; Yi, Stella S.; Fong, Hiu-Fai; Athens, Jessica K.; Ravenell, Joseph E.; Sevick, Mary Ann; Wall, Stephen P.; Elbel, Brian

    2016-01-01

    Objective To use novel geographic methods and large-scale claims data to identify the local distribution of pediatric chronic diseases in New York City. Methods Using a 2009 all-payer emergency claims database, we identified the proportion of unique children aged 0 to 17 with diagnosis codes for specific medical and psychiatric conditions. As a proof of concept, we compared these prevalence estimates to traditional health surveys and registry data using the most geographically granular data available. In addition, we used home addresses to map local variation in pediatric disease burden. Results We identified 549,547 New York City children who visited an emergency department at least once in 2009. Though our sample included more publicly insured and uninsured children, we found moderate to strong correlations of prevalence estimates when compared to health surveys and registry data at pre-specified geographic levels. Strongest correlations were found for asthma and mental health conditions by county among younger children (0.88, p=0.05 and 0.99, pdisease prevalence with higher geographic resolution. More studies are needed to investigate limitations of these methods and assess reliability of local disease estimates. What’s New This study demonstrated how emergency department surveillance may improve estimates of pediatric disease prevalence with higher geographic resolution. We identified 29% of New York City children with a single year of data and identified local hotspots of pediatric chronic diseases. PMID:28385326

  14. The 2014 Greeley, Colorado Earthquakes: Science, Industry, Regulation, and Media

    Science.gov (United States)

    Yeck, W. L.; Sheehan, A. F.; Weingarten, M.; Nakai, J.; Ge, S.

    2014-12-01

    On June 1, 2014 (UTC) a magnitude 3.2 earthquake occurred east of the town of Greeley, Colorado. The earthquake was widely felt, with reports from Boulder and Golden, over 60 miles away from the epicenter. The location of the earthquake in a region long considered aseismic but now the locus of active oil and gas production prompted the question of whether this was a natural or induced earthquake. Several classic induced seismicity cases hail from Colorado, including the Rocky Mountain Arsenal earthquakes in the 1960s and the Paradox Valley earthquakes in western Colorado. In both cases the earthquakes were linked to wastewater injection. The Greeley earthquake epicenter was close to a Class II well that had been injecting waste fluid into the deepest sedimentary formation of the Denver Basin at rates as high as 350,000 barrels/month for less than a year. The closest seismometers to the June 1 event were more than 100 km away, necessitating deployment of a local seismic network for detailed study. IRIS provided six seismometers to the University of Colorado which were deployed starting within 3 days of the mainshock. Telemetry at one site allowed for real time monitoring of the ongoing seismic sequence. Local media interest was extremely high with speculation that the earthquake was linked to the oil and gas industry. The timetable of media demand for information provided some challenges given the time needed for data collection and analysis. We adopted a policy of open data and open communication with all interested parties, and made proactive attempts to provide information to industry and regulators. After 3 weeks of data collection and analysis, the proximity and timing of the mainshock and aftershocks to the C4A injection well, along with a sharp increase in seismicity culminating in an M 2.6 aftershock, led to a decision by the Colorado Oil and Gas Corporation Commission (COGCC) to recommend a temporary halt to injection at the C4A injection well. This was the

  15. Filling a gap: Public talks about earthquake preparation and the 'Big One'

    Science.gov (United States)

    Reinen, L. A.

    2013-12-01

    Residents of southern California are aware they live in a seismically active area and earthquake drills have trained us to Duck-Cover-Hold On. While many of my acquaintance are familiar with what to do during an earthquake, few have made preparations for living with the aftermath of a large earthquake. The ShakeOut Scenario (Jones et al., USGS Open File Report 2008-1150) describes the physical, social, and economic consequences of a plausible M7.8 earthquake on the southernmost San Andreas Fault. While not detailing an actual event, the ShakeOut Scenario illustrates how individual and community preparation may improve the potential after-affects of a major earthquake in the region. To address the gap between earthquake drills and preparation in my community, for the past several years I have been giving public talks to promote understanding of: the science behind the earthquake predictions; why individual, as well as community, preparation is important; and, ways in which individuals can prepare their home and work environments. The public presentations occur in an array of venues, including elementary school and college classes, a community forum linked with the annual ShakeOut Drill, and local businesses including the local microbrewery. While based on the same fundamental information, each presentation is modified for audience and setting. Assessment of the impact of these talks is primarily anecdotal and includes an increase in the number of venues requesting these talks, repeat invitations, and comments from audience members (sometimes months or years after a talk). I will present elements of these talks, the background information used, and examples of how they have affected change in the earthquake preparedness of audience members. Discussion and suggestions (particularly about effective means of conducting rigorous long-term assessment) are strongly encouraged.

  16. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  17. The changing health priorities of earthquake response and implications for preparedness: a scoping review.

    Science.gov (United States)

    Cartwright, C; Hall, M; Lee, A C K

    2017-09-01

    Earthquakes have substantial impacts on mortality in low- and middle-income countries (LMIC). The academic evidence base to support Disaster Risk Reduction activities in LMIC settings is, however, limited. We sought to address this gap by identifying the health and healthcare impacts of earthquakes in LMICs and to identify the implications of these findings for future earthquake preparedness. Scoping review. A scoping review was undertaken with systematic searches of indexed databases to identify relevant literature. Key study details, findings, recommendations or lessons learnt were extracted and analysed across individual earthquake events. Findings were categorised by time frame relative to earthquakes and linked to the disaster preparedness cycle, enabling a profile of health and healthcare impacts and implications for future preparedness to be established. Health services need to prepare for changing health priorities with a shift from initial treatment of earthquake-related injuries to more general health needs occurring within the first few weeks. Preparedness is required to address mental health and rehabilitation needs in the medium to longer term. Inequalities of the impact of earthquakes on health were noted in particular for women, children, the elderly, disabled and rural communities. The need to maintain access to essential services such as reproductive health and preventative health services were identified. Key preparedness actions include identification of appropriate leaders, planning and training of staff. Testing of plans was advocated within the literature with evidence that this is possible in LMIC settings. Whilst there are a range of health and healthcare impacts of earthquakes, common themes emerged in different settings and from different earthquake events. Preparedness of healthcare systems is essential and possible, in order to mitigate the adverse health impacts of earthquakes in LMIC settings. Preparedness is needed at the community

  18. Earthquake lights and rupture processes

    Directory of Open Access Journals (Sweden)

    T. V. Losseva

    2005-01-01

    Full Text Available A physical model of earthquake lights is proposed. It is suggested that the magnetic diffusion from the electric and magnetic fields source region is a dominant process, explaining rather high localization of the light flashes. A 3D numerical code allowing to take into account the arbitrary distribution of currents caused by ground motion, conductivity in the ground and at its surface, including the existence of sea water above the epicenter or (and near the ruptured segments of the fault have been developed. Simulations for the 1995 Kobe earthquake were conducted taking into account the existence of sea water with realistic geometry of shores. The results do not contradict the eyewitness reports and scarce measurements of the electric and magnetic fields at large distances from the epicenter.

  19. Investigating the Local Three-dimensional Velocity Structure of the 2008 Taoyuan Earthquake Sequence of Kaohsiung, Taiwan

    Science.gov (United States)

    Shih, M. H.; Huang, B. S.

    2016-12-01

    March 4, 2008, a moderate earthquake (ML 5.2) occurred in Taoyuan district of Kaohsiung County in the southern Taiwan. It was followed by numerous aftershocks in the following 48 hours, including three events with magnitude larger than 4. The Taoyuan earthquake sequence occurred during the TAIGER (Taiwan Integrated Geodynamic Research) project which is to image lithospheric structure of Taiwan orogeny. The high-resolution waveform data of this sequence were well-recorded by a large number of recording stations belong to several different permanent and TAIGER networks all around Taiwan. We had collected the waveform data and archived to a mega database. Then, we had identified 2,340 events from database in the preliminary locating process by using 1-D velocity model. In this study, we applied the double-difference tomography to investigate not only the fault geometry of the main shock but also the detailed 3-D velocity structure in this area. A total of 3,034 events were selected from preliminary locating result and CWBSN catalog in the vicinity. The resulting aftershocks are extended along the NE-SW direction and located on a 45° SE-dipping plane which agrees to one of the nodal planes of Global CMT solution (strike = 45°, dip = 40° and rake = 119°). We can identify a clear low-velocity area which is enclosed by events next to the main shock in the final 3D velocity model. We also recognized a 45°-dipping zone which is extended to the ground surface with low-velocity; meanwhile, velocity structure variation in study area correspond with major geologic units in Taiwan.

  20. Source analysis using regional empirical Green's functions: The 2008 Wells, Nevada, earthquake

    Science.gov (United States)

    Mendoza, C.; Hartzell, S.

    2009-01-01

    We invert three-component, regional broadband waveforms recorded for the 21 February 2008 Wells, Nevada, earthquake using a finite-fault methodology that prescribes subfault responses using eight MW∼4 aftershocks as empirical Green's functions (EGFs) distributed within a 20-km by 21.6-km fault area. The inversion identifies a seismic moment of 6.2 x 1024 dyne-cm (5.8 MW) with slip concentrated in a compact 6.5-km by 4-km region updip from the hypocenter. The peak slip within this localized area is 88 cm and the stress drop is 72 bars, which is higher than expected for Basin and Range normal faults in the western United States. The EGF approach yields excellent fits to the complex regional waveforms, accounting for strong variations in wave propagation and site effects. This suggests that the procedure is useful for studying moderate-size earthquakes with limited teleseismic or strong-motion data and for examining uncertainties in slip models obtained using theoretical Green's functions.

  1. The M6 1799 Vendée intraplate earthquake (France) : characterizing the active fault with a multidisciplinary approach.

    Science.gov (United States)

    Kaub, C.; Perrot, J.; Le Roy, P., Sr.; Authemayou, C.; Bollinger, L.; Hebert, H.; Geoffroy, L.

    2017-12-01

    The coastal Vendee (France) is located to the south of the intraplate Armorican area. This region is affected by a system of dominantly NW-SE trending shear zones and faults inherited from a long and poly-phased tectonic history since Variscan times. This area currently presents a moderate background seismic activity, but was affected by a significant historical earthquake (magnitude M 6) on the 1799 January 25th. This event generated particularly strong site effects in a Neogene basin located along a major onshore/offshore discontinuity bounding the basin, the Machecoul fault. The objective of this study is to identify and qualify active faults potentially responsible for such major seismic event in order to better constrain the seismic hazard of this area. We adopt for this purpose a multidisciplinary approach including an onshore seismological survey, high-resolution low-penetration offshore seismic data (CHIRP echo sounder, Sparker source and single channel streamer), high-resolution interferometric sonar bathymetry (GeoSwath), compilation of onshore drilling database (BSS, BRGM), and quantitative geomorphology In the meantime, the seismicity of the area was characterized by a network of 10 REFTEK stations, deployed since January 2016 around the Bay of Bourgneuf (MACHE network). About 50 local earthquakes, with coda magnitudes ranging from 0.5 to 3.1 and local magnitude ranging from 0.2 to 2.9 were identified so far. This new database complement a local earthquake catalog acquired since 2011 from previous regional networks. We surveyed the fault segments offshore, in the Bay of Bourgneuf, analyzing 700 km of high-resolution seismic profiles and 40 km² of high-resolution bathymetry acquired during the RETZ1 (2016) and RETZ2 (2017) campaigns, in addition to HR-bathymetry along the fault scarp. Those data are interpreted in conjunction with onshore wells to determine if (and since when) the Machecoul fault controlled tectonically the Neogene sedimentation.

  2. Feasibility study of short-term earthquake prediction using ionospheric anomalies immediately before large earthquakes

    Science.gov (United States)

    Heki, K.; He, L.

    2017-12-01

    We showed that positive and negative electron density anomalies emerge above the fault immediately before they rupture, 40/20/10 minutes before Mw9/8/7 earthquakes (Heki, 2011 GRL; Heki and Enomoto, 2013 JGR; He and Heki 2017 JGR). These signals are stronger for earthquake with larger Mw and under higher background vertical TEC (total electron conetent) (Heki and Enomoto, 2015 JGR). The epicenter, the positive and the negative anomalies align along the local geomagnetic field (He and Heki, 2016 GRL), suggesting electric fields within ionosphere are responsible for making the anomalies (Kuo et al., 2014 JGR; Kelley et al., 2017 JGR). Here we suppose the next Nankai Trough earthquake that may occur within a few tens of years in Southwest Japan, and will discuss if we can recognize its preseismic signatures in TEC by real-time observations with GNSS.During high geomagnetic activities, large-scale traveling ionospheric disturbances (LSTID) often propagate from auroral ovals toward mid-latitude regions, and leave similar signatures to preseismic anomalies. This is a main obstacle to use preseismic TEC changes for practical short-term earthquake prediction. In this presentation, we show that the same anomalies appeared 40 minutes before the mainshock above northern Australia, the geomagnetically conjugate point of the 2011 Tohoku-oki earthquake epicenter. This not only demonstrates that electric fields play a role in making the preseismic TEC anomalies, but also offers a possibility to discriminate preseismic anomalies from those caused by LSTID. By monitoring TEC in the conjugate areas in the two hemisphere, we can recognize anomalies with simultaneous onset as those caused by within-ionosphere electric fields (e.g. preseismic anomalies, night-time MSTID) and anomalies without simultaneous onset as gravity-wave origin disturbances (e.g. LSTID, daytime MSTID).

  3. Earthquake statistics, spatiotemporal distribution of foci and source mechanisms - a key to understanding of the West Bohemia/Vogtland earthquake swarms

    Science.gov (United States)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2016-04-01

    Earthquake swarms are sequences of numerous events closely clustered in space and time and do not have a single dominant mainshock. A few of the largest events in a swarm reach similar magnitudes and usually occur throughout the course of the earthquake sequence. These attributes differentiate earthquake swarms from ordinary mainshock-aftershock sequences. Earthquake swarms occur worldwide, in diverse geological units. The swarms typically accompany volcanic activity at margins of the tectonic plate but also occur in intracontinental areas where strain from tectonic-plate movement is small. The origin of earthquake swarms is still unclear. The swarms typically occur at the plate margins but also in intracontinental areas. West Bohemia-Vogtland represents one of the most active intraplate earthquake-swarm areas in Europe. It is characterised by a frequent reoccurrence of ML 2.8 swarm events are located in a few dense clusters which implies step by step rupturing of one or a few asperities during the individual swarms. The source mechanism patters (moment-tensor description, MT) of the individual swarms indicate several families of the mechanisms, which fit well geometry of respective fault segments. MTs of the most events signify pure shears except for the 1997-swarm events the MTs of which indicates a combine sources including both shear and tensile components. The origin of earthquake swarms is still unclear. Nevertheless, we infer that the individual earthquake swarms in West Bohemia-Vogtland are mixture of the mainshock-aftershock sequences which correspond to step by step rupturing of one or a few asperities. The swarms occur on short fault segments with heterogeneous stress and strength, which may be affected by pressurized crustal fluids reducing normal component of the tectonic stress and lower friction. This way critically loaded faults are brought to failure and the swarm activity is driven by the differential local stress.

  4. LASSCI2009.2: layered earthquake rupture forecast model for central Italy, submitted to the CSEP project

    Directory of Open Access Journals (Sweden)

    Francesco Visini

    2010-11-01

    Full Text Available The Collaboratory for the Study of Earthquake Predictability (CSEP selected Italy as a testing region for probabilistic earthquake forecast models in October, 2008. The model we have submitted for the two medium-term forecast periods of 5 and 10 years (from 2009 is a time-dependent, geologically based earthquake rupture forecast that is defined for central Italy only (11-15˚ E; 41-45˚ N. The model took into account three separate layers of seismogenic sources: background seismicity; seismotectonic provinces; and individual faults that can produce major earthquakes (seismogenic boxes. For CSEP testing purposes, the background seismicity layer covered a range of magnitudes from 5.0 to 5.3 and the seismicity rates were obtained by truncated Gutenberg-Richter relationships for cells centered on the CSEP grid. Then the seismotectonic provinces layer returned the expected rates of medium-to-large earthquakes following a traditional Cornell-type approach. Finally, for the seismogenic boxes layer, the rates were based on the geometry and kinematics of the faults that different earthquake recurrence models have been assigned to, ranging from pure Gutenberg-Richter behavior to characteristic events, with the intermediate behavior named as the hybrid model. The results for different magnitude ranges highlight the contribution of each of the three layers to the total computation. The expected rates for M >6.0 on April 1, 2009 (thus computed before the L'Aquila, 2009, MW= 6.3 earthquake are of particular interest. They showed local maxima in the two seismogenic-box sources of Paganica and Sulmona, one of which was activated by the L'Aquila earthquake of April 6, 2009. Earthquake rates as of August 1, 2009, (now under test also showed a maximum close to the Sulmona source for MW ~6.5; significant seismicity rates (10-4 to 10-3 in 5 years for destructive events (magnitude up to 7.0 were located in other individual sources identified as being capable of such

  5. Calibration of Crustal Historical Earthquakes from Intra-Carpathian Region of Romania

    Science.gov (United States)

    Oros, Eugen; Popa, Mihaela; Rogozea, Maria

    2017-12-01

    The main task of the presented study is to elaborate a set of relations of mutual conversion macroseismic intensity - magnitude, necessary for the calibration of the historical crustal earthquakes produced in the Intra - Carpathian region of Romania, as a prerequisite for homogenization of the parametric catalogue of Romanian earthquakes. To achieve the goal, we selected a set of earthquakes for which we have quality macroseismic data and the Mw moment magnitude obtained instrumentally. These seismic events were used to determine the relations between the Mw and the peak/epicentral intensity, the isoseist surface area for I=3, I=4 and I=5: Mw = f (Imax / Io), Mw = f (Imax / Io, h), Mw = f (A3, A4; A5). We investigated several variants of such relationships and combinations, taking into account that the macroseismic data necessary for the re-evaluation of historical earthquakes in the investigated region are available in several forms. Thus, a number of investigations provided various information resulted after revising initial historical data: 1) Intensity data point (IDP) assimilated or not with the epicentre intensity after analysis of the correlation level with recent seismicity data and / or active tectonics / seismotectonics, 2) Sets of intensities obtained in several localities (IDPs) with variable values having maxims that can be considered equal to epicentral intensity (Io), 3) Sets of intensities obtained in several localities (IDPs) but without obvious maximum values, assimilable with the epicentral intensity, 4) maps with isoseismals, 5) Information on the areas in which the investigated earthquake was felt or the area of perceptiveness (e.g. I = 3 EMS during the day and I = 4 EMS at night) or the surfaces corresponding to a certain degree of well-defined intensity. The obtained relationships were validated using a set of earthquakes with instrumental source parameters (localization, depth, Mw). These relationships lead to redundant results meaningful in

  6. Modelling the elements of country vulnerability to earthquake disasters.

    Science.gov (United States)

    Asef, M R

    2008-09-01

    Earthquakes have probably been the most deadly form of natural disaster in the past century. Diversity of earthquake specifications in terms of magnitude, intensity and frequency at the semicontinental scale has initiated various kinds of disasters at a regional scale. Additionally, diverse characteristics of countries in terms of population size, disaster preparedness, economic strength and building construction development often causes an earthquake of a certain characteristic to have different impacts on the affected region. This research focuses on the appropriate criteria for identifying the severity of major earthquake disasters based on some key observed symptoms. Accordingly, the article presents a methodology for identification and relative quantification of severity of earthquake disasters. This has led to an earthquake disaster vulnerability model at the country scale. Data analysis based on this model suggested a quantitative, comparative and meaningful interpretation of the vulnerability of concerned countries, and successfully explained which countries are more vulnerable to major disasters.

  7. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  8. Responses of a 58-story RC dual core shear wall and outrigger frame building inferred from two earthquakes

    Science.gov (United States)

    Çelebi, Mehmet

    2016-01-01

    Responses of a dual core shear-wall and outrigger-framed 58-story building recorded during the Mw6.0 Napa earthquake of 24 August 2014 and the Mw3.8 Berkeley earthquake of 20 October 2011 are used to identify its dynamic characteristics and behavior. Fundamental frequencies are 0.28 Hz (NS), 0.25 Hz (EW), and 0.43 Hz (torsional). Rigid body motions due to rocking are not significant. Average drift ratios are small. Outrigger frames do not affect average drift ratios or mode shapes. Local site effects do not affect the response; however, response associated with deeper structure may be substantial. A beating effect is observed from data of both earthquakes but beating periods are not consistent. Low critical damping ratios may have contributed to the beating effect. Torsion is relatively larger above outriggers as indicated by the time-histories of motions at the roof, possibly due to the discontinuity of the stiffer shear walls above level 47.

  9. "Storms of crustal stress" and AE earthquake precursors

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    2010-02-01

    Full Text Available Acoustic emission (AE displays violent paroxysms preceding strong earthquakes, observed within some large area (several hundred kilometres wide around the epicentre. We call them "storms of crustal stress" or, briefly "crustal storms". A few case histories are discussed, all dealing with the Italian peninsula, and with the different behaviour shown by the AE records in the Cephalonia island (Greece, which is characterized by a different tectonic setting.

    AE is an effective tool for diagnosing the state of some wide slab of the Earth's crust, and for monitoring its evolution, by means of AE of different frequencies. The same effect ought to be detected being time-delayed, when referring to progressively lower frequencies. This results to be an effective check for validating the physical interpretation.

    Unlike a seismic event, which involves a much limited focal volume and therefore affects a restricted area on the Earth's surface, a "crustal storm" typically involves some large slab of lithosphere and crust. In general, it cannot be easily reckoned to any specific seismic event. An earthquake responds to strictly local rheological features of the crust, which are eventually activated, and become crucial, on the occasion of a "crustal storm". A "crustal storm" lasts typically few years, eventually involving several destructive earthquakes that hit at different times, at different sites, within that given lithospheric slab.

    Concerning the case histories that are here discussed, the lithospheric slab is identified with the Italian peninsula. During 1996–1997 a "crustal storm" was on, maybe elapsing until 2002 (we lack information for the period 1998–2001. Then, a quiet period occurred from 2002 until 26 May 2008, when a new "crustal storm" started, and by the end of 2009 it is still on. During the 1996–1997 "storm" two strong earthquakes occurred (Potenza and

  10. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  11. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

    Science.gov (United States)

    Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

    2017-07-01

    Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

  12. Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes

    Directory of Open Access Journals (Sweden)

    G. Cervone

    2004-01-01

    Full Text Available Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.

  13. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    Science.gov (United States)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    Japan frequently suffers from many kinds of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. On average, we lose about 120 people a year due to natural hazards in this decade. Above all, earthquakes are noteworthy, since it may kill thousands of people in a moment like in Kobe in 1995. People know that we may have "a big one" some day as long as we live on this land and that what to do; retrofit houses, appliance heavy furniture to walls, add latches to kitchen cabinets, and prepare emergency packs. Yet most of them do not take the action, and result in the loss of many lives. It is only the victims that learn something from the earthquake, and it has never become the lore of the nations. One of the most essential ways to reduce the damage is to educate the general public to be able to make the sound decision on what to do at the moment when an earthquake hits. This will require the knowledge of the backgrounds of the on-going phenomenon. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools. This presentation is the report of a year and half courses that we had at the model elementary school in Tokyo Metropolitan Area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1923 Kanto earthquake (M 7.9) making 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global

  14. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan

    International Nuclear Information System (INIS)

    Walia, Vivek; Yang, Tsanyao Frank; Lin, Shih-Jung; Kumar, Arvind; Fu, Ching-Chou; Chiu, Jun-Ming; Chang, Hsaio-Hsien; Wen, Kuo-Liang; Chen, Cheng-Hong

    2013-01-01

    The present study is proposed to investigate temporal variations of soil–gas composition in the vicinity of different fault zones in Taiwan. To carry out the investigations, variations of soil–gases compositions were measured at continuous earthquake monitoring stations along Hsincheng and Hsinhua faults in Hsinchu and Tainan areas, respectively. Before selecting a monitoring site, the occurrence of deeper gas emanation was investigated by the soil–gas surveys and followed by continuous monitoring of some selected sites with respect to tectonic activity to check the sensitivity of the sites. Based on the results of long term geochemical monitoring at the established monitoring stations we can divide the studied area in two different tectonic zones. We proposed tectonic based model for earthquake forecasting in Taiwan and tested it for some big earthquakes occurred during observation period i.e. 2009–2010. Based on the anomalous signatures from particular monitoring stations we are in a state to identify the area for impending earthquakes of magnitude ≥5 and we have tested it for some earthquakes which rocked the country during that period. It can be concluded from above results that the stress/strain transmission for a particular earthquake is hindered by different tectonic settings of the region under study. - Highlights: ► Variations of soil–gases composition is studied at two different faults of Taiwan. ► Tectonic based model for earthquake forecasting in Taiwan was proposed and tested. ► Selection criteria to identify threshold earthquakes have been defined. ► Stress/strain transmission for earthquake may be hindered by tectonic settings

  15. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    Science.gov (United States)

    Satake, Kenji

    2015-10-28

    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  16. Comprehensive analysis of earthquake source spectra in southern California

    OpenAIRE

    Shearer, Peter M.; Prieto, Germán A.; Hauksson, Egill

    2006-01-01

    We compute and analyze P wave spectra from earthquakes in southern California between 1989 and 2001 using a method that isolates source-, receiver-, and path-dependent terms. We correct observed source spectra for attenuation using both fixed and spatially varying empirical Green's function methods. Estimated Brune-type stress drops for over 60,000 M_L = 1.5 to 3.1 earthquakes range from 0.2 to 20 MPa with no dependence on moment or local b value. Median computed stress drop increases with de...

  17. Dynamic strains for earthquake source characterization

    Science.gov (United States)

    Barbour, Andrew J.; Crowell, Brendan W

    2017-01-01

    Strainmeters measure elastodynamic deformation associated with earthquakes over a broad frequency band, with detection characteristics that complement traditional instrumentation, but they are commonly used to study slow transient deformation along active faults and at subduction zones, for example. Here, we analyze dynamic strains at Plate Boundary Observatory (PBO) borehole strainmeters (BSM) associated with 146 local and regional earthquakes from 2004–2014, with magnitudes from M 4.5 to 7.2. We find that peak values in seismic strain can be predicted from a general regression against distance and magnitude, with improvements in accuracy gained by accounting for biases associated with site–station effects and source–path effects, the latter exhibiting the strongest influence on the regression coefficients. To account for the influence of these biases in a general way, we include crustal‐type classifications from the CRUST1.0 global velocity model, which demonstrates that high‐frequency strain data from the PBO BSM network carry information on crustal structure and fault mechanics: earthquakes nucleating offshore on the Blanco fracture zone, for example, generate consistently lower dynamic strains than earthquakes around the Sierra Nevada microplate and in the Salton trough. Finally, we test our dynamic strain prediction equations on the 2011 M 9 Tohoku‐Oki earthquake, specifically continuous strain records derived from triangulation of 137 high‐rate Global Navigation Satellite System Earth Observation Network stations in Japan. Moment magnitudes inferred from these data and the strain model are in agreement when Global Positioning System subnetworks are unaffected by spatial aliasing.

  18. Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net

    Science.gov (United States)

    Takemura, Shunsuke; Saito, Tatsuhiko; Shiomi, Katsuhiko

    2017-03-01

    An M 6.8 ( Mw 6.5) deep-focus earthquake occurred beneath the Bonin Islands at 21:18 (JST) on June 23, 2015. Observed high-frequency (>1 Hz) seismograms across Japan, which contain several sets of P- and S-wave arrivals for the 10 min after the origin time, indicate that moderate-to-large earthquakes occurred sequentially around Japan. Snapshots of the seismic energy propagation illustrate that after one deep-focus earthquake occurred beneath the Sea of Japan, two deep-focus earthquakes occurred sequentially after the first ( Mw 6.5) event beneath the Bonin Islands in the next 4 min. The United States Geological Survey catalog includes three Bonin deep-focus earthquakes with similar hypocenter locations, but their estimated magnitudes are inconsistent with seismograms from across Japan. The maximum-amplitude patterns of the latter two earthquakes were similar to that of the first Bonin earthquake, which indicates similar locations and mechanisms. Furthermore, based on the ratios of the S-wave amplitudes to that of the first event, the magnitudes of the latter events are estimated as M 6.5 ± 0.02 and M 5.8 ± 0.02, respectively. Three magnitude-6-class earthquakes occurred sequentially within 4 min in the Pacific slab at 480 km depth, where complex heterogeneities exist within the slab.[Figure not available: see fulltext.

  19. The Kresna earthquake of 1904 in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Ambraseys, N. [Imperial College of Science, London (United Kingdom). Technology and Medicine, Dept. of Civil Engineering

    2001-02-01

    The Kresna earthquake in 1904 in Bulgaria is one of the largest shallow 20th century events on land in the Balkans. This event, which was preceded by a large foreshock, has hitherto been assigned a range of magnitudes up to M{sub s} = 7.8 but the reappraisal of instrumental data yields as much smaller value of M{sub s} = 7.2 and a re-assesment of the intensity distribution suggests 7.1. Thus both instrumental and macroseismic data appear consistent with a magnitude which is also compatible with the fault segmentation and local morphology of the region which cannot accommodate shallow events much larger than about 7.0. The relatively large size of the main shock suggests surface faulting but the available field evidence is insufficient to establish the dimensions, attitude and amount of dislocation, except perhaps in the vicinity of Krupnik. This down sizing of the Kresna earthquake has important consequences for tectonics and earthquake hazard estimates in the Balkans.

  20. The Kresna earthquake of 1904 in Bulgaria

    Directory of Open Access Journals (Sweden)

    N. N. Ambraseys

    2001-06-01

    Full Text Available The Kresna earthquake in 1904 in Bulgaria is one of the largest shallow 20th century events on land in the Balkans. This event, which was preceded by a large foreshock, has hitherto been assigned a range of magnitudes up to M S = 7.8 but the reappraisal of instrumental data yields a much smaller value of M S = 7.2 and a re-assement of the intensity distribution suggests 7.1. Thus both instrumental and macroseismic data appear consistent with a magnitude which is also compatible with the fault segmentation and local morphology of the region which cannot accommodate shallow events much larger than about 7.0. The relatively large size of the main shock suggests surface faulting but the available field evidence is insufficient to establish the dimensions, attitude andamount of dislocation, except perhaps in the vicinity of Krupnik. This downsizing of the Kresna earthquake has important consequences for tectonics and earthquake hazard estimates in the Balkans.

  1. Feasibility Study of Earthquake Early Warning in Hawai`i For the Mauna Kea Thirty Meter Telescope

    Science.gov (United States)

    Okubo, P.; Hotovec-Ellis, A. J.; Thelen, W. A.; Bodin, P.; Vidale, J. E.

    2014-12-01

    Earthquakes, including large damaging events, are as central to the geologic evolution of the Island of Hawai`i as its more famous volcanic eruptions and lava flows. Increasing and expanding development of facilities and infrastructure on the island continues to increase exposure and risk associated with strong ground shaking resulting from future large local earthquakes. Damaging earthquakes over the last fifty years have shaken the most heavily developed areas and critical infrastructure of the island to levels corresponding to at least Modified Mercalli Intensity VII. Hawai`i's most recent damaging earthquakes, the M6.7 Kiholo Bay and M6.0 Mahukona earthquakes, struck within seven minutes of one another off of the northwest coast of the island in October 2006. These earthquakes resulted in damage at all thirteen of the telescopes near the summit of Mauna Kea that led to gaps in telescope operations ranging from days up to four months. With the experiences of 2006 and Hawai`i's history of damaging earthquakes, we have begun a study to explore the feasibility of implementing earthquake early warning systems to provide advanced warnings to the Thirty Meter Telescope of imminent strong ground shaking from future local earthquakes. One of the major challenges for earthquake early warning in Hawai`i is the variety of earthquake sources, from shallow crustal faults to deeper mantle sources, including the basal decollement separating the volcanic pile from the ancient oceanic crust. Infrastructure on the Island of Hawai`i may only be tens of kilometers from these sources, allowing warning times of only 20 s or less. We assess the capability of the current seismic network to produce alerts for major historic earthquakes, and we will provide recommendations for upgrades to improve performance.

  2. Topographic changes and their driving factors after 2008 Wenchuan Earthquake

    Science.gov (United States)

    Li, C.; Wang, M.; Xie, J.; Liu, K.

    2017-12-01

    The Wenchuan Ms 8.0 Earthquake caused topographic change in the stricken areas because of the formation of numerous coseismic landslides. The emergence of new landslides and debris flows and movement of loose materials under the driving force of heavy rainfall could further shape the local topography. Dynamic topographic changes in mountainous areas stricken by major earthquakes have a strong linkage to the development and occurrence of secondary disasters. However, little attention has been paid to continuously monitoring mountain environment change after such earthquakes. A digital elevation model (DEM) is the main feature of the terrain surface, in our research, we extracted DEM in 2013 and 2015 of a typical mountainous area severely impacted by the 2008 Wenchuan earthquake from the ZY-3 stereo pair images with validation by field measurement. Combined with the elevation dataset in 2002 and 2010, we quantitatively assessed elevation changes in different years and qualitatively analyzed spatiotemporal variation of the terrain and mass movement across the study area. The results show that the earthquake stricken area experienced substantial elevation changes caused by seismic forces and subsequent rainfalls. Meanwhile, deposits after the earthquake are mainly accumulated on the river-channels and mountain ridges and deep gullies which increase the risk of other geo-hazards. And the heavy rainfalls after the earthquake have become the biggest driver of elevation reduction, which overwhelmed elevation increase during the major earthquake. Our study provided a better understanding of subsequent hazards and risks faced by residents and communities stricken by major earthquakes.

  3. NATURAL HAZARD ASSESSMENT OF SW MYANMAR - A CONTRIBUTION OF REMOTE SENSING AND GIS METHODS TO THE DETECTION OF AREAS VULNERABLE TO EARTHQUAKES AND TSUNAMI / CYCLONE FLOODING

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2009-01-01

    Full Text Available Myanmar, formerly Burma, is vulnerable to several natural hazards, such as earthquakes, cyclones, floods, tsunamis and landslides. The present study focuses on geomorphologic and geologic investigations of the south-western region of the country, based on satellite data (Shuttle Radar Topography Mission-SRTM, MODIS and LANDSAT. The main objective is to detect areas vulnerable to inundation by tsunami waves and cyclone surges. Since the region is also vulnerable to earthquake hazards, it is also important to identify seismotectonic patterns, the location of major active faults, and local site conditions that may enhance ground motions and earthquake intensities. As illustrated by this study, linear, topographic features related to subsurface tectonic features become clearly visible on SRTM-derived morphometric maps and on LANDSAT imagery. The GIS integrated evaluation of LANDSAT and SRTM data helps identify areas most susceptible to flooding and inundation by tsunamis and storm surges. Additionally, land elevation maps help identify sites greater than 10 m in elevation height, that would be suitable for the building of protective tsunami/cyclone shelters.

  4. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  5. Empirical relations between instrumental and seismic parameters of some strong earthquakes of Colombia

    International Nuclear Information System (INIS)

    Marin Arias, Juan Pablo; Salcedo Hurtado, Elkin de Jesus; Castillo Gonzalez, Hardany

    2008-01-01

    In order to establish the relationships between macroseismic and instrumental parameters, macroseismic field of 28 historical earthquakes that produced great effects in the Colombian territory were studied. The integration of the parameters was made by using the methodology of Kaussel and Ramirez (1992), for great Chilean earthquakes; Kanamori and Anderson (1975) and Coppersmith and Well (1994) for world-wide earthquakes. Once determined the macroseismic and instrumental parameters it was come to establish the model of the source of each earthquake, with which the data base of these parameters was completed. For each earthquake parameters related to the local and normal macroseismic epicenter were complemented, depth of the local and normal center, horizontal extension of both centers, vertical extension of the normal center, model of the source, area of rupture. The obtained empirical relations from linear equations, even show behaviors very similar to the found ones by other authors for other regions of the world and to world-wide level. The results of this work allow establishing that certain mutual non compatibility exists between the area of rupture and the length of rupture determined by the macroseismic methods, with parameters found with instrumental data like seismic moment, Ms magnitude and Mw magnitude.

  6. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  7. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault

    International Nuclear Information System (INIS)

    Delorey, Andrew A.; Elst, Nicholas J. van der; Johnson, Paul Allan

    2016-01-01

    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.

  8. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault

    Science.gov (United States)

    Delorey, Andrew; Van Der Elst, Nicholas; Johnson, Paul

    2017-01-01

    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.

  9. Thermal anomalies detection before strong earthquakes (M > 6.0 using interquartile, wavelet and Kalman filter methods

    Directory of Open Access Journals (Sweden)

    M. Akhoondzadeh

    2011-04-01

    Full Text Available Thermal anomaly is known as a significant precursor of strong earthquakes, therefore Land Surface Temperature (LST time series have been analyzed in this study to locate relevant anomalous variations prior to the Bam (26 December 2003, Zarand (22 February 2005 and Borujerd (31 March 2006 earthquakes. The duration of the three datasets which are comprised of MODIS LST images is 44, 28 and 46 days for the Bam, Zarand and Borujerd earthquakes, respectively. In order to exclude variations of LST from temperature seasonal effects, Air Temperature (AT data derived from the meteorological stations close to the earthquakes epicenters have been taken into account. The detection of thermal anomalies has been assessed using interquartile, wavelet transform and Kalman filter methods, each presenting its own independent property in anomaly detection. The interquartile method has been used to construct the higher and lower bounds in LST data to detect disturbed states outside the bounds which might be associated with impending earthquakes. The wavelet transform method has been used to locate local maxima within each time series of LST data for identifying earthquake anomalies by a predefined threshold. Also, the prediction property of the Kalman filter has been used in the detection process of prominent LST anomalies. The results concerning the methodology indicate that the interquartile method is capable of detecting the highest intensity anomaly values, the wavelet transform is sensitive to sudden changes, and the Kalman filter method significantly detects the highest unpredictable variations of LST. The three methods detected anomalous occurrences during 1 to 20 days prior to the earthquakes showing close agreement in results found between the different applied methods on LST data in the detection of pre-seismic anomalies. The proposed method for anomaly detection was also applied on regions irrelevant to earthquakes for which no anomaly was detected

  10. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  11. Instantaneous spectrum estimation of earthquake ground motions based on unscented Kalman filter method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Representing earthquake ground motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power ofARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.

  12. Is It Possible to Predict Strong Earthquakes?

    Science.gov (United States)

    Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.

    2015-07-01

    The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.

  13. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  14. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  15. Recognition of underground nuclear explosion and natural earthquake based on neural network

    International Nuclear Information System (INIS)

    Yang Hong; Jia Weimin

    2000-01-01

    Many features are extracted to improve the identified rate and reliability of underground nuclear explosion and natural earthquake. But how to synthesize these characters is the key of pattern recognition. Based on the improved Delta algorithm, features of underground nuclear explosion and natural earthquake are inputted into BP neural network, and friendship functions are constructed to identify the output values. The identified rate is up to 92.0%, which shows that: the way is feasible

  16. Earthquake-induced ground failures in Italy from a reviewed database

    Science.gov (United States)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2014-04-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  17. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  18. Romanian earthquakes analysis using BURAR seismic array

    International Nuclear Information System (INIS)

    Borleanu, Felix; Rogozea, Maria; Nica, Daniela; Popescu, Emilia; Popa, Mihaela; Radulian, Mircea

    2008-01-01

    Bucovina seismic array (BURAR) is a medium-aperture array, installed in 2002 in the northern part of Romania (47.61480 N latitude, 25.21680 E longitude, 1150 m altitude), as a result of the cooperation between Air Force Technical Applications Center, USA and National Institute for Earth Physics, Romania. The array consists of ten elements, located in boreholes and distributed over a 5 x 5 km 2 area; nine with short-period vertical sensors and one with a broadband three-component sensor. Since the new station has been operating the earthquake survey of Romania's territory has been significantly improved. Data recorded by BURAR during 01.01.2005 - 12.31.2005 time interval are first processed and analyzed, in order to establish the array detection capability of the local earthquakes, occurred in different Romanian seismic zones. Subsequently a spectral ratios technique was applied in order to determine the calibration relationships for magnitude, using only the information gathered by BURAR station. The spectral ratios are computed relatively to a reference event, considered as representative for each seismic zone. This method has the advantage to eliminate the path effects. The new calibration procedure is tested for the case of Vrancea intermediate-depth earthquakes and proved to be very efficient in constraining the size of these earthquakes. (authors)

  19. U.S. Geological Survey (USGS) Earthquake Web Applications

    Science.gov (United States)

    Fee, J.; Martinez, E.

    2015-12-01

    USGS Earthquake web applications provide access to earthquake information from USGS and other Advanced National Seismic System (ANSS) contributors. One of the primary goals of these applications is to provide a consistent experience for accessing both near-real time information as soon as it is available and historic information after it is thoroughly reviewed. Millions of people use these applications every month including people who feel an earthquake, emergency responders looking for the latest information about a recent event, and scientists researching historic earthquakes and their effects. Information from multiple catalogs and contributors is combined by the ANSS Comprehensive Catalog into one composite catalog, identifying the most preferred information from any source for each event. A web service and near-real time feeds provide access to all contributed data, and are used by a number of users and software packages. The Latest Earthquakes application displays summaries of many events, either near-real time feeds or custom searches, and the Event Page application shows detailed information for each event. Because all data is accessed through the web service, it can also be downloaded by users. The applications are maintained as open source projects on github, and use mobile-first and responsive-web-design approaches to work well on both mobile devices and desktop computers. http://earthquake.usgs.gov/earthquakes/map/

  20. Inversion of GPS-measured coseismic displacements for source parameters of Taiwan earthquake

    Science.gov (United States)

    Lin, J. T.; Chang, W. L.; Hung, H. K.; Yu, W. C.

    2016-12-01

    We performed a method of determining earthquake location, focal mechanism, and centroid moment tensor by coseismic surface displacements from daily and high-rate GPS measurements. Unlike commonly used dislocation model where fault geometry is calculated nonlinearly, our method makes a point source approach to evaluate these parameters in a solid and efficient way without a priori fault information and can thus provide constrains to subsequent finite source modeling of fault slip. In this study, we focus on the resolving ability of GPS data for moderate (Mw=6.0 7.0) earthquakes in Taiwan, and four earthquakes were investigated in detail: the March 27 2013 Nantou (Mw=6.0), the June 2 2013 Nantou (Mw=6.3) , the October 31 2013 Ruisui (Mw=6.3), and the March 31 2002 Hualien (ML=6.8) earthquakes. All these events were recorded by the Taiwan continuous GPS network with data sampling rates of 30-second and 1 Hz, where the Mw6.3 Ruisui earthquake was additionally recorded by another local GPS network with a sampling rate of 20 Hz. Our inverted focal mechanisms of all these earthquakes are consistent with the results of GCMT and USGS that evaluates source parameters by dynamic information from seismic waves. We also successfully resolved source parameters of the Mw6.3 Ruisui earthquake within only 10 seconds following the earthquake occurrence, demonstrating the potential of high-rate GPS data on earthquake early warning and real-time determination of earthquake source parameters.

  1. Using Smartphones to Detect Earthquakes

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2012-12-01

    We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.

  2. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  3. Hydrothermal response to a volcano-tectonic earthquake swarm, Lassen, California

    Science.gov (United States)

    Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.

    2015-01-01

    The increasing capability of seismic, geodetic, and hydrothermal observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of hydrothermal fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of hydrothermal fluids already present and equilibrated in a local hydrothermal aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.

  4. Uplift and Subsidence Associated with the Great Aceh-Andaman Earthquake of 2004

    Science.gov (United States)

    2006-01-01

    The magnitude 9.2 Indian Ocean earthquake of December 26, 2004, produced broad regions of uplift and subsidence. In order to define the lateral extent and the downdip limit of rupture, scientists from Caltech, Pasadena, Calif.; NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Scripps Institution of Oceanography, La Jolla, Calif.; the U.S. Geological Survey, Pasadena, Calif.; and the Research Center for Geotechnology, Indonesian Institute of Sciences, Bandung, Indonesia; first needed to define the pivot line separating those regions. Interpretation of satellite imagery and a tidal model were one of the key tools used to do this. These pre-Sumatra earthquake (a) and post-Sumatra earthquake (b) images of North Sentinel Island in the Indian Ocean, acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, show emergence of the coral reef surrounding the island following the earthquake. The tide was 30 plus or minus 14 centimeters lower in the pre-earthquake image (acquired November 21, 2000) than in the post-earthquake image (acquired February 20, 2005), requiring a minimum of 30 centimeters of uplift at this locality. Observations from an Indian Coast Guard helicopter on the northwest coast of the island suggest that the actual uplift is on the order of 1 to 2 meters at this site. In figures (c) and (d), pre-earthquake and post-earthquake ASTER images of a small island off the northwest coast of Rutland Island, 38 kilometers east of North Sentinel Island, show submergence of the coral reef surrounding the island. The tide was higher in the pre-earthquake image (acquired January 1, 2004) than in the post-earthquake image (acquired February 4, 2005), requiring subsidence at this locality. The pivot line must run between North Sentinel and Rutland islands. Note that the scale for the North Sentinel Island images differs from that for the Rutland Island images. The tidal model used for this study was

  5. Psychological impact of the Canterbury earthquakes on university staff.

    Science.gov (United States)

    Bell, Caroline; Carter, Frances; Boden, Joseph; Wilkinson, Tim; McKenzie, Jan; Ali, Anthony

    2016-02-19

    To assess the impact of the Canterbury earthquakes on the psychological functioning of university staff, to identify predictors of adverse psychological functioning and to survey how different aspects of work roles (academic, teaching, clinical, administrative) were affected. Eighteen months following the most severe earthquake, 119 staff from the University of Otago based in Christchurch completed a retrospective survey. This included demographic information, a measure of earthquake exposure, standardised and self-rated measures to identify psychological distress and measures of how people perceived different aspects of their work roles were impacted. A substantial minority of staff reported moderate-extreme difficulties on the Depression, Anxiety and Stress Scale (DASS) subscales 18 months following the most severe earthquake (Depression=9%; Anxiety=3%; Stress =13%). Predictors of distress were higher levels of exposure to earthquake-related stressors, neuroticism and prior mental health disorders. There was an association between impact and work roles that was hierarchical; academic and administrative roles were most affected, followed by teaching with the least impact on clinical roles. This study shows that psychological symptoms following a disaster are common, but in a retrospective survey most people report that these improve with time. A minority however, continue to report difficulties which persist even 18 months post disaster. It also gives insights into how different work roles were impacted and from this makes suggestions for how organisations can support staff over difficult times.

  6. Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence

    Science.gov (United States)

    Ratliff, J. L.; Porter, K.

    2014-12-01

    Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.

  7. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1983-03-01

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  8. The search for Infrared radiation prior to major earthquakes

    Science.gov (United States)

    Ouzounov, D.; Taylor, P.; Pulinets, S.

    2004-12-01

    This work describes our search for a relationship between tectonic stresses and electro-chemical and thermodynamic processes in the Earth and increases in mid-IR flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. Recent analysis of continuous ongoing long- wavelength Earth radiation (OLR) indicates significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and gas composition prior to the earthquake. The OLR anomaly covers large areas surrounding the main epicenter. We have use the NOAA IR data to differentiate between the global and seasonal variability and these transient local anomalies. Indeed, on the basis of a temporal and spatial distribution analysis, an anomaly pattern is found to occur several days prior some major earthquakes. The significance of these observations was explored using data sets of some recent worldwide events.

  9. Diurnal changes of earthquake activity and geomagnetic Sq-variations

    Directory of Open Access Journals (Sweden)

    G. Duma

    2003-01-01

    Full Text Available Statistic analyses demonstrate that the probability of earthquake occurrence in many earthquake regions strongly depends on the time of day, that is on Local Time (e.g. Conrad, 1909, 1932; Shimshoni, 1971; Duma, 1997; Duma and Vilardo, 1998. This also applies to strong earthquake activity. Moreover, recent observations reveal an involvement of the regular diurnal variations of the Earth’s magnetic field, commonly known as Sq-variations, in this geodynamic process of changing earthquake activity with the time of day (Duma, 1996, 1999. In the article it is attempted to quantify the forces which result from the interaction between the induced Sq-variation currents in the Earth’s lithosphere and the regional Earth’s magnetic field, in order to assess the influence on the tectonic stress field and on seismic activity. A reliable model is obtained, which indicates a high energy involved in this process. The effect of Sq-induction is compared with the results of the large scale electromagnetic experiment "Khibiny" (Velikhov, 1989, where a giant artificial current loop was activated in the Barents Sea.

  10. On the reliability of the geomagnetic quake as a short time earthquake's precursor for the Sofia region

    Directory of Open Access Journals (Sweden)

    S. Cht. Mavrodiev

    2004-01-01

    Full Text Available The local 'when' for earthquake prediction is based on the connection between geomagnetic 'quakes' and the next incoming minimum or maximum of tidal gravitational potential. The probability time window for the predicted earthquake is for the tidal minimum approximately ±1 day and for the maximum ±2 days. The preliminary statistic estimation on the basis of distribution of the time difference between occurred and predicted earthquakes for the period 2002-2003 for the Sofia region is given. The possibility for creating a local 'when, where' earthquake research and prediction NETWORK is based on the accurate monitoring of the electromagnetic field with special space and time scales under, on and over the Earth's surface. The periodically upgraded information from seismic hazard maps and other standard geodetic information, as well as other precursory information, is essential.

  11. Christchurch earthquakes: how did former refugees cope?

    Science.gov (United States)

    Osman, Mohamud; Hornblow, Andrew; Macleod, Sandy; Coope, Pat

    2012-06-29

    This study investigated how former refugees now living in Christchurch (Canterbury Province, New Zealand) communities coped after the 4 September 2010 and subsequent earthquakes. A systematic sample of one in three former refugees from five ethnic groupings (Afghanistan, Kurdistan, Ethiopia, Somalia and Bhutan) was selected from a list of 317 refugees provided by the Canterbury Refugee Council and invited to participate in the study. Seventy-two out of 105 potential participants completed a 26 item questionnaire regarding the impact of the quakes, their concerns and anxieties, coping strategies and social supports. The methodology was complicated by ongoing aftershocks, particularly that of 22 February 2011. Three-quarters of participants reported that they had coped well, spirituality and religious practice being an important support for many, despite less then 20% receiving support from mainstream agencies. Most participants (72%) had not experienced a traumatic event or natural disaster before. Older participants and married couples with children were more likely to worry about the earthquakes and their impact than single individuals. There was a significant difference in the level of anxiety between males and females. Those who completed the questionnaire after the 22 February 2011 quake were more worried overall than those interviewed before this. Overall, the former refugees reported they had coped well despite most of them not experiencing an earthquake before and few receiving support from statutory relief agencies. More engagement from local services is needed in order to build trust and cooperation between the refugee and local communities.

  12. Modeling of a historical earthquake in Erzincan, Turkey (Ms 7.8, in 1939) using regional seismological information obtained from a recent event

    Science.gov (United States)

    Karimzadeh, Shaghayegh; Askan, Aysegul

    2018-04-01

    Located within a basin structure, at the conjunction of North East Anatolian, North Anatolian and Ovacik Faults, Erzincan city center (Turkey) is one of the most hazardous regions in the world. Combination of the seismotectonic and geological settings of the region has resulted in series of significant seismic activities including the 1939 (Ms 7.8) as well as the 1992 (Mw = 6.6) earthquakes. The devastative 1939 earthquake occurred in the pre-instrumental era in the region with no available local seismograms. Thus, a limited number of studies exist on that earthquake. However, the 1992 event, despite the sparse local network at that time, has been studied extensively. This study aims to simulate the 1939 Erzincan earthquake using available regional seismic and geological parameters. Despite several uncertainties involved, such an effort to quantitatively model the 1939 earthquake is promising, given the historical reports of extensive damage and fatalities in the area. The results of this study are expressed in terms of anticipated acceleration time histories at certain locations, spatial distribution of selected ground motion parameters and felt intensity maps in the region. Simulated motions are first compared against empirical ground motion prediction equations derived with both local and global datasets. Next, anticipated intensity maps of the 1939 earthquake are obtained using local correlations between peak ground motion parameters and felt intensity values. Comparisons of the estimated intensity distributions with the corresponding observed intensities indicate a reasonable modeling of the 1939 earthquake.

  13. Aseismic blocks and destructive earthquakes in the Aegean

    Science.gov (United States)

    Stiros, Stathis

    2017-04-01

    Aseismic areas are not identified only in vast, geologically stable regions, but also within regions of active, intense, distributed deformation such as the Aegean. In the latter, "aseismic blocks" about 200m wide were recognized in the 1990's on the basis of the absence of instrumentally-derived earthquake foci, in contrast to surrounding areas. This pattern was supported by the available historical seismicity data, as well as by geologic evidence. Interestingly, GPS evidence indicates that such blocks are among the areas characterized by small deformation rates relatively to surrounding areas of higher deformation. Still, the largest and most destructive earthquake of the 1990's, the 1995 M6.6 earthquake occurred at the center of one of these "aseismic" zones at the northern part of Greece, found unprotected against seismic hazard. This case was indeed a repeat of the case of the tsunami-associated 1956 Amorgos Island M7.4 earthquake, the largest 20th century event in the Aegean back-arc region: the 1956 earthquake occurred at the center of a geologically distinct region (Cyclades Massif in Central Aegean), till then assumed aseismic. Interestingly, after 1956, the overall idea of aseismic regions remained valid, though a "promontory" of earthquake prone-areas intruding into the aseismic central Aegean was assumed. Exploitation of the archaeological excavation evidence and careful, combined analysis of historical and archaeological data and other palaeoseismic, mostly coastal data, indicated that destructive and major earthquakes have left their traces in previously assumed aseismic blocks. In the latter earthquakes typically occur with relatively low recurrence intervals, >200-300 years, much smaller than in adjacent active areas. Interestingly, areas assumed a-seismic in antiquity are among the most active in the last centuries, while areas hit by major earthquakes in the past are usually classified as areas of low seismic risk in official maps. Some reasons

  14. Calibration and validation of earthquake catastrophe models. Case study: Impact Forecasting Earthquake Model for Algeria

    Science.gov (United States)

    Trendafiloski, G.; Gaspa Rebull, O.; Ewing, C.; Podlaha, A.; Magee, B.

    2012-04-01

    Calibration and validation are crucial steps in the production of the catastrophe models for the insurance industry in order to assure the model's reliability and to quantify its uncertainty. Calibration is needed in all components of model development including hazard and vulnerability. Validation is required to ensure that the losses calculated by the model match those observed in past events and which could happen in future. Impact Forecasting, the catastrophe modelling development centre of excellence within Aon Benfield, has recently launched its earthquake model for Algeria as a part of the earthquake model for the Maghreb region. The earthquake model went through a detailed calibration process including: (1) the seismic intensity attenuation model by use of macroseismic observations and maps from past earthquakes in Algeria; (2) calculation of the country-specific vulnerability modifiers by use of past damage observations in the country. The use of Benouar, 1994 ground motion prediction relationship was proven as the most appropriate for our model. Calculation of the regional vulnerability modifiers for the country led to 10% to 40% larger vulnerability indexes for different building types compared to average European indexes. The country specific damage models also included aggregate damage models for residential, commercial and industrial properties considering the description of the buildings stock given by World Housing Encyclopaedia and the local rebuilding cost factors equal to 10% for damage grade 1, 20% for damage grade 2, 35% for damage grade 3, 75% for damage grade 4 and 100% for damage grade 5. The damage grades comply with the European Macroseismic Scale (EMS-1998). The model was validated by use of "as-if" historical scenario simulations of three past earthquake events in Algeria M6.8 2003 Boumerdes, M7.3 1980 El-Asnam and M7.3 1856 Djidjelli earthquake. The calculated return periods of the losses for client market portfolio align with the

  15. Mental health in L'Aquila after the earthquake

    Directory of Open Access Journals (Sweden)

    Paolo Stratta

    2012-06-01

    Full Text Available INTRODUCTION: In the present work we describe the mental health condition of L'Aquila population in the aftermath of the earthquake in terms of structural, process and outcome perspectives. METHOD: Literature revision of the published reports on the L'Aquila earthquake has been performed. RESULTS: Although important psychological distress has been reported by the population, capacity of resilience can be observed. However if resilient mechanisms intervened in immediate aftermath of the earthquake, important dangers are conceivable in the current medium-long-term perspective due to the long-lasting alterations of day-to-day life and the disruption of social networks that can be well associated with mental health problems. CONCLUSIONS: In a condition such as an earthquake, the immediate physical, medical, and emergency rescue needs must be addressed initially. However training first responders to identify psychological distress symptoms would be important for mental health triage in the field.

  16. Identifying Motivation of the Local Governments to Improve the Sustainability Transparency

    Directory of Open Access Journals (Sweden)

    Andrés NAVARRO GALERA

    2015-06-01

    Full Text Available This paper examines the sustainability tran-sparency of governments, i.e., the disclosure of information on the sustainability of their ac-tions. To do so, we identify contributory factors to the online disclosure of environmental, social, economic and general information by local gov-ernments in Nordic countries. Linear regression analysis was used to identify factors inf uencing the online dissemination of government infor-mation on sustainability; a factor analysis, as a precursor to linear regression, led us to reduce 14 explanatory variables to four factors: f nancial risk, demography, professional qualif cations and local government resources. The results obtained show that local f -nancial priorities have a greater impact on the sustainability-related content of governmental websites than does concern for the needs of the population. Furthermore, an organization’s dis-closure of its f nancial risks, together with greater awareness of stakeholders’ demands, could pro-mote transparency in the f eld of environmental, social and economic sustainability, while local demographic characteristics could foster the publication of information on environmental sus-tainability.

  17. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  18. Earthquake nucleation in weak subducted carbonates

    Science.gov (United States)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Christopher J.; Behrmann, Jan H.

    2016-09-01

    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests performed on simulated fault gouges prepared from ocean-floor carbonates and clays, cored during IODP drilling offshore Costa Rica. Clay-rich gouges show internal friction coefficients (that is, the slope of linearized shear stress versus normal stress data) of μint = 0.44 - 0.56, irrespective of temperature and pore-fluid pressure (Pf). By contrast, μint for the carbonate gouge strongly depends on temperature and pore-fluid pressure, with μint decreasing dramatically from 0.84 at room temperature and Pf = 20 MPa to 0.27 at T = 140 °C and Pf = 120 MPa. This effect provides a fundamental mechanism of shear localization and earthquake generation in subduction zones, and makes carbonates likely nucleation sites for plate-boundary earthquakes. Our results imply that rupture nucleation is prompted by a combination of temperature-controlled frictional instability and temperature- and pore-pressure-dependent weakening of calcareous fault gouges.

  19. NRIAG's Effort to Mitigate Earthquake Disasters in Egypt Using GPS and Seismic Data

    Science.gov (United States)

    Mahmoud, Salah

    It has been estimated that, during historical time more than 50 million people have lost their lives in earthquakes during ground shaking, such as soil amplification and/or liquefaction, landslides and tsunamis or its immediate aftereffects, as fires. The distribution of population takes generally no account of earthquake risk, at least on a large scale. An earthquake may be large but not destructive, on the other hand, an earthquake may be destructive but not large. The absence of correlation is due to the fact that, great number of other factors entering into consideration: first of all, the location of the earthquake in relation to populated areas, also soil conditions and building constructions. Soil liquefaction has been identified as the underlying phenomenon for many ground failures, settlements and lateral spreads, which are a major cause of damage to soil structures and building foundations in many events. Egypt is suffered a numerous of destructive earthquakes as well as Kalabsha earthquake (1981, Mag 5.4) near Aswan city and the High dam, Dahshour earthquake (1992, Mag 5.9) near Cairo city and Aqaba earthquake (1995, Mag 7.2). As the category of earthquake damage includes all the phenomena related to the direct and indirect damages, the Egyptian authorities do a great effort to mitigate the earthquake disasters. The seismicity especially at the zones of high activity is investigated in details in order to obtain the active source zones not only by the Egyptian National Seismic Network (ENSN) but also by the local seismic networks at, Aswan, Hurghada, Aqaba, Abu Dabbab and Dabbaa. On the other hand the soil condition, soil amplification, soil structure interaction, liquefaction and seismic hazard are carried out in particular the urbanized areas and the region near the source zones. All these parameters are integrated to obtain the Egyptian building code which is valid to construct buildings resist damages and consequently mitigate the earthquake

  20. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  1. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    Science.gov (United States)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  2. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of

  3. Scientists Engage South Carolina Community in Earthquake Education and Preparedness

    Science.gov (United States)

    Hall, C.; Beutel, E.; Jaume', S.; Levine, N.; Doyle, B.

    2008-12-01

    Scientists at the College of Charleston are working with the state of South Carolina's Emergency Management Division to increase awareness and understanding of earthquake hazards throughout South Carolina. As part of this mission, the SCEEP (South Carolina Earthquake Education and Preparedness) program was formed at the College of Charleston to promote earthquake research, outreach, and education in the state of South Carolina. Working with local, regional, state and federal offices, SCEEP has developed education programs for everyone from professional hazard management teams to formal and informal educators. SCEEP also works with the media to ensure accurate reporting of earthquake and other hazard information and to increase the public's understanding of earthquake science and earthquake seismology. As part of this program, we have developed a series of activities that can be checked out by educators for use in their classrooms and in informal education venues. These activities are designed to provide educators with the information and tools they lack to adequately, informatively, and enjoyably teach about earthquake and earth science. The toolkits contain seven activities meeting a variety of National Education Standards, not only in Science, but also in Geography, Math, Social Studies, Arts Education, History and Language Arts - providing a truly multidisciplinary toolkit for educators. The activities provide information on earthquake myths, seismic waves, elastic rebound, vectors, liquefaction, location of an epicenter, and then finally South Carolina earthquakes. The activities are engaging and inquiry based, implementing proven effective strategies for peaking learners' interest in scientific phenomena. All materials are provided within the toolkit and so it is truly check and go. While the SCEEP team has provided instructions and grade level suggestions for implementing the activity in an educational setting, the educator has full reign on what to showcase

  4. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  5. Identification of radon anomalies related to earthquakes

    International Nuclear Information System (INIS)

    Ozdas, M.; Inceoglu, F.; Rahman, C.; Yaprak, G.

    2009-01-01

    Put of many proposed earthquake precursors, temporal radon variation in soil is classified as one of a few promising geochemical signals that may be used for earthquake prediction. However, to use radon variation in soil gas as a reliable earthquake precursor, it must be realized that radon changes are controlled not only by deeper phenomena such as earthquake, but they are also controlled by meteorological parameters such as precipitation, barometric pressure, air temperature and etc. Further studies are required to differentiate the changes in the measured radon concentration caused by tectonic disturbances from the meteorological parameters. In the current study, temporal radon variations in soil gas along active faults in Alasehir of Gediz Graben Systems have been continuously monitored by LR-115 nuclear track detectors for two years. Additionally, the meteorological parameters such as barometric pressure, rainfall and air temperature at the monitoring site have been observed during the same period. Accordingly, regression analysis have been applied to the collected data to identify the radon anomalies due to the seismic activities from those of meteorological conditions.

  6. Twitter as Information Source for Rapid Damage Estimation after Major Earthquakes

    Science.gov (United States)

    Eggert, Silke; Fohringer, Joachim

    2014-05-01

    Natural disasters like earthquakes require a fast response from local authorities. Well trained rescue teams have to be available, equipment and technology has to be ready set up, information have to be directed to the right positions so the head quarter can manage the operation precisely. The main goal is to reach the most affected areas in a minimum of time. But even with the best preparation for these cases, there will always be the uncertainty of what really happened in the affected area. Modern geophysical sensor networks provide high quality data. These measurements, however, are only mapping disjoint values from their respective locations for a limited amount of parameters. Using observations of witnesses represents one approach to enhance measured values from sensors ("humans as sensors"). These observations are increasingly disseminated via social media platforms. These "social sensors" offer several advantages over common sensors, e.g. high mobility, high versatility of captured parameters as well as rapid distribution of information. Moreover, the amount of data offered by social media platforms is quite extensive. We analyze messages distributed via Twitter after major earthquakes to get rapid information on what eye-witnesses report from the epicentral area. We use this information to (a) quickly learn about damage and losses to support fast disaster response and to (b) densify geophysical networks in areas where there is sparse information to gain a more detailed insight on felt intensities. We present a case study from the Mw 7.1 Philippines (Bohol) earthquake that happened on Oct. 15 2013. We extract Twitter messages, so called tweets containing one or more specified keywords from the semantic field of "earthquake" and use them for further analysis. For the time frame of Oct. 15 to Oct 18 we get a data base of in total 50.000 tweets whereof 2900 tweets are geo-localized and 470 have a photo attached. Analyses for both national level and locally for

  7. Whereabouts of process and the processing over the issue earthquake disaster waste

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2011-01-01

    The generation amount of earthquake disaster waste due to the Great East Japan Earthquake amounts to totally about 22,720,000 tons by only counting the wreckage generated in the coast areas of three prefectures of Iwate, Miyagi, and Fukushima, which suffered especially large damage, while waste treatment facilities have suffered a great blow. This paper introduces the countermeasures for emergency taken by the government and local governments under such circumstances. First, the government, under leadership of the Ministry of the Environment, promptly drew up guidelines and standards with the cooperation of government-related organizations and academic societies, and issued various guidelines including 'Guidelines for the Removal of Fallen Houses Damaged by the 2011 off the Pacific Coast of Tohoku Earthquake.' In addition, the Ministry of the Environment formulated 'Guidelines (master plan) for Disaster Waste Management after the Great East Japan Earthquake' that shows the procedure for waste treatment. In addition, 'The Act on Special Measures concerning the Handling of Radioactive Pollution by Radioactive Materials Discharged by the Nuclear Power Station' was enacted in order to treat radioactive pollutants discharged from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, and the pollutants are to be treated based on this act. As for the countermeasures by local governments, since the local governments themselves suffered damage, management entrustment is being used for treatment, based on the Local Autonomy Act. As for the situation of treatment, Iwate Prefecture uses mainly cement plants as the treatment center, and Miyagi Prefecture uses mainly general contractors' treatment projects. However, Fukushima Prefecture is under difficult situation for treatment due to pollution problems of radioactive substances. This paper also describes the related budget in the third supplementary budget and the fiscal 2012 demand for budgetary

  8. An eyewitness account of the Bhuj earthquake

    Indian Academy of Sciences (India)

    The occurrence of a severe earthquake is a rare event with its effect localized in a limited region. There are no prior indications of its occurrence too; hence experiencing such an event is just a matter of chance, which the author had by virtue of his posting at Bhuj. This paper presents a detailed account of observations made ...

  9. Moment magnitude, local magnitude and corner frequency of small earthquakes nucleating along a low angle normal fault in the Upper Tiber valley (Italy)

    Science.gov (United States)

    Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.

    2015-12-01

    The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a

  10. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  11. Finding positives after disaster: Insights from nurses following the 2010-2011 Canterbury, NZ earthquake sequence.

    Science.gov (United States)

    Johal, Sarbjit S; Mounsey, Zoe R

    2015-11-01

    This paper identifies positive aspects of nurse experiences during the Canterbury 2010-2011 earthquake sequence and subsequent recovery process. Qualitative semi-structured interviews were undertaken with 11 nurses from the Christchurch area to explore the challenges faced by the nurses during and following the earthquakes. The interviews took place three years after the start of the earthquake experience to enable exploration of the longer term recovery process. The interview transcripts were analysed and coded using a grounded theory approach. The data analysis identified that despite the many challenges faced by the nurses during and following the earthquakes they were able to identify positives from their experience. A number of themes were identified that are related to posttraumatic growth, including; improvement in relationships with others, change in perspective/values, changed views of self and acknowledgement of the value of the experience. The research indicates that nurses were able to identify positive aspects of their experiences of the earthquakes and recovery process, suggesting that both positive and negative impacts on wellbeing can co-exist. These insights have value for employers designing support processes following disasters as focusing on positive elements could enhance nurse wellbeing during stressful times. Copyright © 2015 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  12. Participatory evaluation of disaster resilience performance with urban stakeholders: An implementation case study before and after the 2015 Nepal Ghorka earthquake

    Science.gov (United States)

    Khazai, B.; Anhorn, J.; Burton, C.

    2016-12-01

    Approaches that make resilience tangible and operational for decision makers have to deal effectively with the degree of impact and change required through different strategic actions in addressing agreed-upon resilience goals. A Resilience Performance Scorecard (RPS) has been designed to enable local stakeholders in identifying existing strengths and weaknesses through providing information on key performance targets along six dimensions of urban resilience both at the city and sub-city district level of geography. The purpose in the development of the Scorecard approach is to build a tool that can provide information on the overall resilience performance and capture the key functional and organizational areas for urban resilience with local government officials. The Resilience Performance Scorecard (RPS) was developed jointly by the Center for Disaster Management and Risk Reduction Technology (CEDIM) at Karlsruhe Institute of Technology, the South Asia Institute (SAI) at Heidelberg University, the and Global Earthquake Model (GEM) Foundation. It was initially implemented with the Lalitpur Sub-Metropolitan Municipality in Nepal one year before the 25 April 7.8 magnitude Gorkha earthquake event as a self-evaluation tool through a fully participatory process with local stakeholders. In a follow-up participatory assessment and implementation of the RPS one month after the earthquake, the results of the participatory resilience investigation demonstrate areas where action towards resilience should be prioritized and reflect the change in perception of resilience among the stakeholders in the face of a large damaging event.

  13. Earthquake Forecasting Methodology Catalogue - A collection and comparison of the state-of-the-art in earthquake forecasting and prediction methodologies

    Science.gov (United States)

    Schaefer, Andreas; Daniell, James; Wenzel, Friedemann

    2015-04-01

    Earthquake forecasting and prediction has been one of the key struggles of modern geosciences for the last few decades. A large number of approaches for various time periods have been developed for different locations around the world. A categorization and review of more than 20 of new and old methods was undertaken to develop a state-of-the-art catalogue in forecasting algorithms and methodologies. The different methods have been categorised into time-independent, time-dependent and hybrid methods, from which the last group represents methods where additional data than just historical earthquake statistics have been used. It is necessary to categorize in such a way between pure statistical approaches where historical earthquake data represents the only direct data source and also between algorithms which incorporate further information e.g. spatial data of fault distributions or which incorporate physical models like static triggering to indicate future earthquakes. Furthermore, the location of application has been taken into account to identify methods which can be applied e.g. in active tectonic regions like California or in less active continental regions. In general, most of the methods cover well-known high-seismicity regions like Italy, Japan or California. Many more elements have been reviewed, including the application of established theories and methods e.g. for the determination of the completeness magnitude or whether the modified Omori law was used or not. Target temporal scales are identified as well as the publication history. All these different aspects have been reviewed and catalogued to provide an easy-to-use tool for the development of earthquake forecasting algorithms and to get an overview in the state-of-the-art.

  14. Preliminary Study on Earthquake Surface Rupture Extraction from Uav Images

    Science.gov (United States)

    Yuan, X.; Wang, X.; Ding, X.; Wu, X.; Dou, A.; Wang, S.

    2018-04-01

    Because of the advantages of low-cost, lightweight and photography under the cloud, UAVs have been widely used in the field of seismic geomorphology research in recent years. Earthquake surface rupture is a typical seismic tectonic geomorphology that reflects the dynamic and kinematic characteristics of crustal movement. The quick identification of earthquake surface rupture is of great significance for understanding the mechanism of earthquake occurrence, disasters distribution and scale. Using integrated differential UAV platform, series images were acquired with accuracy POS around the former urban area (Qushan town) of Beichuan County as the area stricken seriously by the 2008 Wenchuan Ms8.0 earthquake. Based on the multi-view 3D reconstruction technique, the high resolution DSM and DOM are obtained from differential UAV images. Through the shade-relief map and aspect map derived from DSM, the earthquake surface rupture is extracted and analyzed. The results show that the surface rupture can still be identified by using the UAV images although the time of earthquake elapse is longer, whose middle segment is characterized by vertical movement caused by compression deformation from fault planes.

  15. The Napa (California, US) earthquake of 24 August 2014 (10.24 UT) Magnitude = 6.0

    International Nuclear Information System (INIS)

    Scotti, Oona

    2014-01-01

    This publication briefly presents the characteristics of an earthquake which occurred in California in August 2014, indicates some data recorded by local seismic stations, and gives a brief overview of human and economic damages. It analyses the geological location of the earthquake, recalls previous events and outlines the local seismic risk. After having noticed that there was no consequence for the closest nuclear power station (300 km away), it indicates lessons learned in terms of seismic event about a crack, in order to better assess the risk of surface failure

  16. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  17. Three-dimensional Upper Crustal Velocity and Attenuation Structures of the Central Tibetan Plateau from Local Earthquake Tomography

    Science.gov (United States)

    Zhou, B.; Liang, X.; Lin, G.; Tian, X.; Zhu, G.; Mechie, J.; Teng, J.

    2017-12-01

    A series of V-shaped conjugate strike-slip faults are the most spectacular geologic features in the central Tibetan plateau. A previous study suggested that this conjugate strike-slip fault system accommodates the east-west extension and coeval north-south contraction. Another previous study suggested that the continuous convergence between the Indian and Eurasian continents and the eastward asthenospheric flow generated lithospheric paired general-shear (PGS) deformation, which then caused the development of conjugate strike-slip faults in central Tibet. Local seismic tomography can image three dimensional upper-crustal velocity and attenuation structures in central Tibet, which will provide us with more information about the spatial distribution of physical properties and compositional variations around the conjugate strike-slip fault zone. Ultimately, this information could improve our understanding of the development mechanism of the conjugate strike-slip fault system. In this study, we collected 6,809 Pg and 2,929 Sg arrival times from 414 earthquakes recorded by the temporary SANDWICH and permanent CNSN networks from November 2013 to November 2015. We also included 300 P and 17 S arrival times from 12 shots recorded by the INDEPTH III project during the summer of 1998 in the velocity tomography. We inverted for preliminary Vp and Vp/Vs models using the SIMUL2000 tomography algorithm, and then relocated the earthquakes with these preliminary velocity models. After that, we inverted for the final velocity models with these improved source locations and origin times. After the velocity inversion, we performed local attenuation tomography using t* measurements from the same dataset with an already existing approach. There are correlated features in the velocity and attenuation structures. From the surface to 10 km depth, the study area is dominated by high Vp and Qp anomalies. However, from 10 km to 20 km depth, there is a low Vp and Qp zone distributed along the

  18. Flash-sourcing or the rapid detection and characterisation of earthquake effects through clickstream data analysis

    Science.gov (United States)

    Bossu, R.; Mazet-Roux, G.; Roussel, F.; Frobert, L.

    2011-12-01

    Rapid characterisation of earthquake effects is essential for a timely and appropriate response in favour of victims and/or of eyewitnesses. In case of damaging earthquakes, any field observations that can fill the information gap characterising their immediate aftermath can contribute to more efficient rescue operations. This paper presents the last developments of a method called "flash-sourcing" addressing these issues. It relies on eyewitnesses, the first informed and the first concerned by an earthquake occurrence. More precisely, their use of the EMSC earthquake information website (www.emsc-csem.org) is analysed in real time to map the area where the earthquake was felt and identify, at least under certain circumstances zones of widespread damage. The approach is based on the natural and immediate convergence of eyewitnesses on the website who rush to the Internet to investigate cause of the shaking they just felt causing our traffic to increase The area where an earthquake was felt is mapped simply by locating Internet Protocol (IP) addresses during traffic surges. In addition, the presence of eyewitnesses browsing our website within minutes of an earthquake occurrence excludes the possibility of widespread damage in the localities they originate from: in case of severe damage, the networks would be down. The validity of the information derived from this clickstream analysis is confirmed by comparisons with EMS98 macroseismic map obtained from online questionnaires. The name of this approach, "flash-sourcing", is a combination of "flash-crowd" and "crowdsourcing" intending to reflect the rapidity of the data collation from the public. For computer scientists, a flash-crowd names a traffic surge on a website. Crowdsourcing means work being done by a "crowd" of people; It also characterises Internet and mobile applications collecting information from the public such as online macroseismic questionnaires. Like crowdsourcing techniques, flash-sourcing is a

  19. Overview of the critical disaster management challenges faced during Van 2011 earthquakes.

    Science.gov (United States)

    Tolon, Mert; Yazgan, Ufuk; Ural, Derin N; Goss, Kay C

    2014-01-01

    On October 23, 2011, a M7.2 earthquake caused damage in a widespread area in the Van province located in eastern Turkey. This strong earthquake was followed by a M5.7 earthquake on November 9, 2011. This sequence of damaging earthquakes led to 644 fatalities. The management during and after these earthquake disaster imposed many critical challenges. In this article, an overview of these challenges is presented based on the observations by the authors in the aftermath of this disaster. This article presents the characteristics of 2011 Van earthquakes. Afterward, the key information related to the four main phases (ie, preparedness, mitigation, response, and recovery) of the disaster in Van is presented. The potential strategies that can be taken to improve the disaster management practice are identified, and a set of recommendations are proposed to improve the existing situation.

  20. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    Science.gov (United States)

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  1. Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude

    OpenAIRE

    Edwards, Benjamin; Allmann, Bettina; Fäh, Donat; Clinton, John

    2017-01-01

    Moment magnitudes (MW) are computed for small and moderate earthquakes using a spectral fitting method. 40 of the resulting values are compared with those from broadband moment tensor solutions and found to match with negligible offset and scatter for available MW values of between 2.8 and 5.0. Using the presented method, MW are computed for 679 earthquakes in Switzerland with a minimum ML= 1.3. A combined bootstrap and orthogonal L1 minimization is then used to produce a scaling relation bet...

  2. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  3. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  4. Characterising large scenario earthquakes and their influence on NDSHA maps

    Science.gov (United States)

    Magrin, Andrea; Peresan, Antonella; Panza, Giuliano F.

    2016-04-01

    The neo-deterministic approach to seismic zoning, NDSHA, relies on physically sound modelling of ground shaking from a large set of credible scenario earthquakes, which can be defined based on seismic history and seismotectonics, as well as incorporating information from a wide set of geological and geophysical data (e.g. morphostructural features and present day deformation processes identified by Earth observations). NDSHA is based on the calculation of complete synthetic seismograms; hence it does not make use of empirical attenuation models (i.e. ground motion prediction equations). From the set of synthetic seismograms, maps of seismic hazard that describe the maximum of different ground shaking parameters at the bedrock can be produced. As a rule, the NDSHA, defines the hazard as the envelope ground shaking at the site, computed from all of the defined seismic sources; accordingly, the simplest outcome of this method is a map where the maximum of a given seismic parameter is associated to each site. In this way, the standard NDSHA maps permit to account for the largest observed or credible earthquake sources identified in the region in a quite straightforward manner. This study aims to assess the influence of unavoidable uncertainties in the characterisation of large scenario earthquakes on the NDSHA estimates. The treatment of uncertainties is performed by sensitivity analyses for key modelling parameters and accounts for the uncertainty in the prediction of fault radiation and in the use of Green's function for a given medium. Results from sensitivity analyses with respect to the definition of possible seismic sources are discussed. A key parameter is the magnitude of seismic sources used in the simulation, which is based on information from earthquake catalogue, seismogenic zones and seismogenic nodes. The largest part of the existing Italian catalogues is based on macroseismic intensities, a rough estimate of the error in peak values of ground motion can

  5. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography

    Directory of Open Access Journals (Sweden)

    Zhenwang Li

    2014-03-01

    Full Text Available On 12 May 2008, the 8.0-magnitude Wenchuan earthquake occurred in Sichuan Province, China, triggering thousands of landslides, debris flows, and barrier lakes, leading to a substantial loss of life and damage to the local environment and infrastructure. This study aimed to monitor the status of geologic hazards and vegetation recovery in a post-earthquake disaster area using high-resolution aerial photography from 2008 to 2011, acquired from the Center for Earth Observation and Digital Earth (CEODE, Chinese Academy of Sciences. The distribution and range of hazards were identified in 15 large, representative geologic hazard areas triggered by the Wenchuan earthquake. After conducting an overlay analysis, the variations of these hazards between successive years were analyzed to reflect the geologic hazard development and vegetation recovery. The results showed that in the first year after the Wenchuan earthquake, debris flows occurred frequently with high intensity. Resultantly, with the source material becoming less available and the slope structure stabilizing, the intensity and frequency of debris flows gradually decreased with time. The development rate of debris flows between 2008 and 2011 was 3% per year. The lithology played a dominant role in the formation of debris flows, and the topography and hazard size in the earthquake affected area also had an influence on the debris flow development process. Meanwhile, the overall geologic hazard area decreased at 12% per year, and the vegetation recovery on the landslide mass was 15% to 20% per year between 2008 and 2011. The outcomes of this study provide supporting data for ecological recovery as well as debris flow control and prevention projects in hazard-prone areas.

  6. A moment in time: emergency nurses and the Canterbury earthquakes.

    Science.gov (United States)

    Richardson, S; Ardagh, M; Grainger, P; Robinson, V

    2013-06-01

    To outline the impact of the Canterbury, New Zealand (NZ) earthquakes on Christchurch Hospital, and the experiences of emergency nurses during this time. NZ has experienced earthquakes and aftershocks centred in the Canterbury region of the South Island. The location of these, around and within the major city of Christchurch, was unexpected and associated with previously unknown fault lines. While the highest magnitude quake occurred in September 2010, registering 7.1 on the Richter scale, it was the magnitude 6.3 event on 22 February 2011 which was associated with the greatest injury burden and loss of life. Staff working in the only emergency department in the city were faced with an external emergency while also being directly affected as part of the disaster. SOURCES OF EVIDENCE: This paper developed following interviews with nurses who worked during this period, and draws on literature related to healthcare responses to earthquakes and natural disasters. The establishment of an injury database allowed for an accurate picture to emerge of the injury burden, and each of the authors was present and worked in a clinical capacity during the earthquake. Nurses played a significant role in the response to the earthquakes and its aftermath. However, little is known regarding the impact of this, either in personal or professional terms. This paper presents an overview of the earthquakes and experiences of nurses working during this time, identifying a range of issues that will benefit from further exploration and research. It seeks to provide a sense of the experiences and the potential meanings that were derived from being part of this 'moment in time'. Examples of innovations in practice emerged during the earthquake response and a number of recommendations for nursing practice are identified. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.

  7. The 2015 Nepal Earthquake(s): Lessons Learned From the Disability and Rehabilitation Sector's Preparation for, and Response to, Natural Disasters.

    Science.gov (United States)

    Landry, Michel D; Sheppard, Phillip S; Leung, Kit; Retis, Chiara; Salvador, Edwin C; Raman, Sudha R

    2016-11-01

    The frequency of natural disasters appears to be mounting at an alarming rate, and the degree to which people are surviving such traumatic events also is increasing. Postdisaster survival often triggers increases in population and individual disability-related outcomes in the form of impairments, activity limitations, and participation restrictions, all of which have an important impact on the individual, his or her family, and their community. The increase in postdisaster disability-related outcomes has provided a rationale for the increased role of the disability and rehabilitation sector's involvement in emergency response, including physical therapists. A recent major earthquake that has drawn the world's attention occurred in the spring of 2015 in Nepal. The response of the local and international communities was large and significant, and although the collection of complex health and disability issues have yet to be fully resolved, there has been a series of important lessons learned from the 2015 Nepal earthquake(s). This perspective article outlines lessons learned from Nepal that can be applied to future disasters to reduce overall disability-related outcomes and more fully integrate rehabilitation in preparation and planning. First, information is presented on disasters in general, and then information is presented that focuses on the earthquake(s) in Nepal. Next, field experience in Nepal before, during, and after the earthquake is described, and actions that can and should be adopted prior to disasters as part of disability preparedness planning are examined. Then, the emerging roles of rehabilitation providers such as physical therapists during the immediate and postdisaster recovery phases are discussed. Finally, approaches are suggested that can be adopted to "build back better" for, and with, people with disabilities in postdisaster settings such as Nepal. © 2016 American Physical Therapy Association.

  8. Deterministic modeling for microzonation of Bucharest: Case study for August 30, 1986, and May 30-31, 1990. Vrancea earthquakes

    International Nuclear Information System (INIS)

    Cioflan, C.O.; Apostol, B.F.; Moldoveanu, C.L.; Marmureanu, G.; Panza, G.F.

    2002-03-01

    The mapping of the seismic ground motion in Bucharest, due to the strong Vrancea earthquakes is carried out using a complex hybrid waveform modeling method which combines the modal summation technique, valid for laterally homogenous anelastic media, with finite-differences technique and optimizes the advantages of both methods. For recent earthquakes, it is possible to validate the modeling by comparing the synthetic seismograms with the records. As controlling records we consider the accelerograms of the Magurele station, low pass filtered with a cut off frequency of 1.0 Hz, of the 3 last major strong (M w >6) Vrancea earthquakes. Using the hybrid method with a double-couple- seismic source approximation, scaled for the source dimensions and relatively simple regional (bedrock) and local structure models we succeeded in reproducing the recorded ground motion in Bucharest, at a satisfactory level for seismic engineering. Extending the modeling to the whole territory of the Bucharest area, we construct a new seismic microzonation map, where five different zones are identified by their characteristic response spectra. (author)

  9. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  10. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    Science.gov (United States)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  11. Clustering and interpretation of local earthquake tomography models in the southern Dead Sea basin

    Science.gov (United States)

    Bauer, Klaus; Braeuer, Benjamin

    2016-04-01

    The Dead Sea transform (DST) marks the boundary between the Arabian and the African plates. Ongoing left-lateral relative plate motion and strike-slip deformation started in the Early Miocene (20 MA) and produced a total shift of 107 km until presence. The Dead Sea basin (DSB) located in the central part of the DST is one of the largest pull-apart basins in the world. It was formed from step-over of different fault strands at a major segment boundary of the transform fault system. The basin development was accompanied by deposition of clastics and evaporites and subsequent salt diapirism. Ongoing deformation within the basin and activity of the boundary faults are indicated by increased seismicity. The internal architecture of the DSB and the crustal structure around the DST were subject of several large scientific projects carried out since 2000. Here we report on a local earthquake tomography study from the southern DSB. In 2006-2008, a dense seismic network consisting of 65 stations was operated for 18 months in the southern part of the DSB and surrounding regions. Altogether 530 well-constrained seismic events with 13,970 P- and 12,760 S-wave arrival times were used for a travel time inversion for Vp, Vp/Vs velocity structure and seismicity distribution. The work flow included 1D inversion, 2.5D and 3D tomography, and resolution analysis. We demonstrate a possible strategy how several tomographic models such as Vp, Vs and Vp/Vs can be integrated for a combined lithological interpretation. We analyzed the tomographic models derived by 2.5D inversion using neural network clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The DSB shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, a well-defined body

  12. Earthquake correlations and networks: A comparative study

    International Nuclear Information System (INIS)

    Krishna Mohan, T. R.; Revathi, P. G.

    2011-01-01

    We quantify the correlation between earthquakes and use the same to extract causally connected earthquake pairs. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski [M. Baiesi and M. Paczuski, Phys. Rev. E 69, 066106 (2004)]. A network of earthquakes is then constructed from the time-ordered catalog and with links between the more correlated ones. A list of recurrences to each of the earthquakes is identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions (viz., California, Japan, and the Himalayas) are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the density of events in the neighborhood. Power laws, with two regimes having different exponents, are obtained with recurrence time distribution. The first regime confirms the Omori law for aftershocks while the second regime, with a faster falloff for the larger recurrence times, establishes that pure spatial recurrences also follow a power-law distribution. The crossover to the second power-law regime can be taken to be signaling the end of the aftershock regime in an objective fashion.

  13. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  14. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  15. Identifying the dynamic characteristics of a dual core-wall and frame building in Chile using aftershocks of the 27 February 2010 (Mw=8.8) Maule, Chile, earthquake

    Science.gov (United States)

    Çelebi, Mehmet; Sereci, Mark; Boroschek, Ruben; Carreño, Rodrigo; Bonelli, Patricio

    2013-01-01

    Following the 27 February 2010 (Mw = 8.8) Offshore Maule, Chile earthquake, a temporary, 16-channel, real-time data streaming array was installed in a recently constructed building in Viña del Mar to capture its responses to aftershocks. The cast-in-place, reinforced concrete building is 16 stories high, with 3 additional basement levels, and has dual system comprising multiple structural walls and perimeter frames. This building was not damaged during the main-shock, but other buildings of similar design in Viña del Mar and other parts of Chile were damaged, although none collapsed. Dynamic characteristics of the building identified from the low-amplitude (PGA of about 2 Gal) response recordings of aftershocks are found to compare well with those determined from modal analyses using a design level FEM model. Distinct “major-axes” translational and torsional fundamental frequencies, as well as frequencies of secondary modes, are identified. Evidence of beating is consistently observed in the response data for each earthquake. Results do not match well with U.S. code formulas.

  16. Protecting your family from earthquakes: The seven steps to earthquake safety

    Science.gov (United States)

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  17. Social Media as Seismic Networks for the Earthquake Damage Assessment

    Science.gov (United States)

    Meletti, C.; Cresci, S.; La Polla, M. N.; Marchetti, A.; Tesconi, M.

    2014-12-01

    The growing popularity of online platforms, based on user-generated content, is gradually creating a digital world that mirrors the physical world. In the paradigm of crowdsensing, the crowd becomes a distributed network of sensors that allows us to understand real life events at a quasi-real-time rate. The SoS-Social Sensing project [http://socialsensing.it/] exploits the opportunistic crowdsensing, involving users in the sensing process in a minimal way, for social media emergency management purposes in order to obtain a very fast, but still reliable, detection of emergency dimension to face. First of all we designed and implemented a decision support system for the detection and the damage assessment of earthquakes. Our system exploits the messages shared in real-time on Twitter. In the detection phase, data mining and natural language processing techniques are firstly adopted to select meaningful and comprehensive sets of tweets. Then we applied a burst detection algorithm in order to promptly identify outbreaking seismic events. Using georeferenced tweets and reported locality names, a rough epicentral determination is also possible. The results, compared to Italian INGV official reports, show that the system is able to detect, within seconds, events of a magnitude in the region of 3.5 with a precision of 75% and a recall of 81,82%. We then focused our attention on damage assessment phase. We investigated the possibility to exploit social media data to estimate earthquake intensity. We designed a set of predictive linear models and evaluated their ability to map the intensity of worldwide earthquakes. The models build on a dataset of almost 5 million tweets exploited to compute our earthquake features, and more than 7,000 globally distributed earthquakes data, acquired in a semi-automatic way from USGS, serving as ground truth. We extracted 45 distinct features falling into four categories: profile, tweet, time and linguistic. We run diagnostic tests and

  18. Earthquake clustering in modern seismicity and its relationship with strong historical earthquakes around Beijing, China

    Science.gov (United States)

    Wang, Jian; Main, Ian G.; Musson, Roger M. W.

    2017-11-01

    Beijing, China's capital city, is located in a typical intraplate seismic belt, with relatively high-quality instrumental catalogue data available since 1970. The Chinese historical earthquake catalogue contains six strong historical earthquakes of Ms ≥ 6 around Beijing, the earliest in 294 AD. This poses a significant potential hazard to one of the most densely populated and economically active parts of China. In some intraplate areas, persistent clusters of events associated with historical events can occur over centuries, for example, the ongoing sequence in the New Madrid zone of the eastern US. Here we will examine the evidence for such persistent clusters around Beijing. We introduce a metric known as the `seismic density index' that quantifies the degree of clustering of seismic energy release. For a given map location, this multi-dimensional index depends on the number of events, their magnitudes, and the distances to the locations of the surrounding population of earthquakes. We apply the index to modern instrumental catalogue data between 1970 and 2014, and identify six clear candidate zones. We then compare these locations to earthquake epicentre and seismic intensity data for the six largest historical earthquakes. Each candidate zone contains one of the six historical events, and the location of peak intensity is within 5 km or so of the reported epicentre in five of these cases. In one case—the great Ms 8 earthquake of 1679—the peak is closer to the area of strongest shaking (Intensity XI or more) than the reported epicentre. The present-day event rates are similar to those predicted by the modified Omori law but there is no evidence of ongoing decay in event rates. Accordingly, the index is more likely to be picking out the location of persistent weaknesses in the lithosphere. Our results imply zones of high seismic density index could be used in principle to indicate the location of unrecorded historical of palaeoseismic events, in China and

  19. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  20. Transforming local government by project portfolio management: Identifying and overcoming control problems

    DEFF Research Database (Denmark)

    Hansen, Lars Kristian

    2013-01-01

    Purpose – As public organizations strive for higher e-government maturity, information technology (IT) Project Portfolio Management (IT PPM) has become a high priority issue. Assuming control is central in IT PPM, the purpose of this paper is to investigate how a Danish local government conducts...... workshop, and analyses of documents. Findings – It is found that the local government relies vastly on informal control mechanisms and five control problems are identified: weak accountability processes between the political and administrative level; weak accountability between the director level...... the identified control problems. Research limitations/implications – As a single qualitative case study, the results are limited to one organization and subject. Practical implications – The paper has implications for IT PPM in Danish local governments and similar organizations in other countries. The paper...

  1. Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty

    Science.gov (United States)

    Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon

    2006-01-01

    Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions

  2. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  3. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.

    2017-12-01

    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow

  4. Statistics and Analysis of the Relations between Rainstorm Floods and Earthquakes

    Directory of Open Access Journals (Sweden)

    Baodeng Hou

    2016-01-01

    Full Text Available The frequent occurrence of geophysical disasters under climate change has drawn Chinese scholars to pay their attention to disaster relations. If the occurrence sequence of disasters could be identified, long-term disaster forecast could be realized. Based on the Earth Degassing Effect (EDE which is valid, this paper took the magnitude, epicenter, and occurrence time of the earthquake, as well as the epicenter and occurrence time of the rainstorm floods as basic factors to establish an integrated model to study the correlation between rainstorm floods and earthquakes. 2461 severe earthquakes occurred in China or within 3000 km from China and the 169 heavy rainstorm floods occurred in China over the past 200+ years as the input data of the model. The computational results showed that although most of the rainstorm floods have nothing to do with the severe earthquakes from a statistical perspective, some floods might relate to earthquakes. This is especially true when the earthquakes happen in the vapor transmission zone where rainstorms lead to abundant water vapors. In this regard, earthquakes are more likely to cause big rainstorm floods. However, many cases of rainstorm floods could be found after severe earthquakes with a large extent of uncertainty.

  5. The 4 January 2016 Manipur earthquake in the Indo-Burmese wedge, an intra-slab event

    Directory of Open Access Journals (Sweden)

    V. K. Gahalaut

    2016-09-01

    Full Text Available Earthquakes in the Indo-Burmese wedge occur due to India-Sunda plate motion. These earthquakes generally occur at depth between 25 and 150 km and define an eastward gently dipping seismicity trend surface that coincides with the Indian slab. Although this feature mimics the subduction zone, the relative motion of Indian plate predominantly towards north, earthquake focal mechanisms suggest that these earthquakes are of intra-slab type which occur on steep plane within the Indian plate. The relative motion between the India and Sunda plates is accommodated at the Churachandpur-Mao fault (CMF and Sagaing Fault. The 4 January 2016 Manipur earthquake (M 6.7 is one such earthquake which occurred 20 km west of the CMF at ∼60 km depth. Fortunately, this earthquake occurred in a very sparse population region with very traditional wooden frame houses and hence, the damage caused by the earthquake in the source region was very minimal. However, in the neighbouring Imphal valley, it caused some damage to the buildings and loss of eight lives. The damage in Imphal valley due to this and historical earthquakes in the region emphasizes the role of local site effect in the Imphal valley.

  6. SEISMOTECTONIC DEFORMATION IN THE CONTACT AREA OF THE NAZCA AND SOUTH AMERICAN LITHOSPHERIC PLATES IN RELATION TO THE FEBRUARY 27, 2010 MW 8.8 MAULE EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    P. G. Dyadkov

    2017-01-01

    Full Text Available Based on the data on earthquake focal mechanisms, we estimated seismotectonic deformation related to the 2010 Мw 8.8 Maule earthquake and analyzed the deformation at different depths. In the main seismic dislocation of the Maule earthquake and the northern area, the deformation field to a depth of 70 km is typical of subduction zones as evidenced by shortening in the direction of the oceanic plate subduction. Below a depth of 70 km, the deformation pattern changes sharply to horizontal stretching. After the main seismic event, as well as before it, nearlatitudinal shortening was dominant in the focal zone, while the region of the main seismic dislocations was surrounded by separate areas of near-latitudinal stretching, which is an opposite type of deformation. We conducted a detailed analysis of the seismotectonic deformations in the oceanic uplift area to the west of the deep-water trough and identified local zones of near-latitudinal stretching near the southern and northern boundaries of the future Maule earthquake zone. Detecting such zones can provide important data for early forecasting of regions wherein strong subduction-related earthquakes are being prepared.

  7. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    Science.gov (United States)

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  8. The performance review of EEWS(Earthquake Early Warning System) about Gyeongju earthquakes with Ml 5.1 and Ml 5.8 in Korea

    Science.gov (United States)

    Park, Jung-Ho; Chi, Heon-Cheol; Lim, In-Seub; Seong, Yun-Jeong; Park, Jihwan

    2017-04-01

    EEW(Earthquake Early Warning) service to the public has been officially operated by KMA (Korea Meteorological Administration) from 2015 in Korea. For the KMA's official EEW service, KIGAM has adopted ElarmS from UC Berkeley BSL and modified local magnitude relation, 1-D travel time curves and association procedures with real time waveform from about 201 seismic stations of KMA, KIGAM, KINS and KEPRI. There were two moderate size earthquakes with magnitude Ml 5.1 and Ml 5.8 close to Gyeongju city located at the southeastern part of Korea on Sep. 12. 2016. We have checked the performance of EEWS(Earthquake Early Warning System) named as TrigDB by KIGAM reviewing of these two Gyeongju earthquakes. The nearest station to epicenters of two earthquakes Ml 5.1(35.7697 N, 129.1904 E) and Ml 5.8(35.7632 N, 129.1898 E) was MKL which detected P phases in about 2.1 and 3.6 seconds after the origin times respectively. The first events were issued in 6.3 and 7.0 seconds from each origin time. Because of the unstable results on the early steps due to very few stations and unexpected automated analysis, KMA has the policy to wait for more 20 seconds for confirming the reliability. For these events KMA published EEW alarms in about 26 seconds after origin times with M 5.3 and M 5.9 respectively.

  9. Source discrimination between Mining blasts and Earthquakes in Tianshan orogenic belt, NW China

    Science.gov (United States)

    Tang, L.; Zhang, M.; Wen, L.

    2017-12-01

    In recent years, a large number of quarry blasts have been detonated in Tianshan Mountains of China. It is necessary to discriminate those non-earthquake records from the earthquake catalogs in order to determine the real seismicity of the region. In this study, we have investigated spectral ratios and amplitude ratios as discriminants for regional seismic-event identification using explosions and earthquakes recorded at Xinjiang Seismic Network (XJSN) of China. We used a data set that includes 1071 earthquakes and 2881 non-earthquakes as training data recorded by the XJSN between years of 2009 and 2016, with both types of events in a comparable local magnitude range (1.5 to 2.9). The non-earthquake and earthquake groups were well separated by amplitude ratios of Pg/Sg, with the separation increasing with frequency when averaged over three stations. The 8- to 15-Hz Pg/Sg ratio was proved to be the most precise and accurate discriminant, which works for more than 90% of the events. In contrast, the P spectral ratio performed considerably worse with a significant overlap (about 60% overlap) between the earthquake and explosion populations. The comparison results show amplitude ratios between compressional and shear waves discriminate better than low-frequency to high-frequency spectral ratios for individual phases. In discriminating between explosions and earthquakes, none of two discriminants were able to completely separate the two populations of events. However, a joint discrimination scheme employing simple majority voting reduces misclassifications to 10%. In the region of the study, 44% of the examined seismic events were determined to be non-earthquakes and 55% to be earthquakes. The earthquakes occurring on land are related to small faults, while the blasts are concentrated in large quarries.

  10. Limits on the potential accuracy of earthquake risk evaluations using the L’Aquila (Italy earthquake as an example

    Directory of Open Access Journals (Sweden)

    John Douglas

    2015-06-01

    Full Text Available This article is concerned with attempting to ‘predict’ (hindcast the damage caused by the L’Aquila 2009 earthquake (Mw 6.3 and, more generally, with the question of how close predicted damage can ever be to observations. Damage is hindcast using a well-established empirical-based approach based on vulnerability indices and macroseismic intensities, adjusted for local site effects. Using information that was available before the earthquake and assuming the same event characteristics as the L’Aquila mainshock, the overall damage is reasonably well predicted but there are considerable differences in the damage pattern. To understand the reasons for these differences, information that was only available after the event were include within the calculation. Despite some improvement in the predicted damage, in particularly by the modification of the vulnerability indices and the parameter influencing the width of the damage distribution, these hindcasts do not match all the details of the observations. This is because of local effects: both in terms of the ground shaking, which is only detectable by the installation of a much denser strong-motion network and a detailed microzonation, and in terms of the building vulnerability, which cannot be modeled using a statistical approach but would require detailed analytical modeling for which calibration data are likely to be lacking. Future studies should concentrate on adjusting the generic components of the approach to make them more applicable to their location of interest. To increase the number of observations available to make these adjustments, we encourage the collection of damage states (and not just habitability classes following earthquakes and also the installation of dense strong-motion networks in built-up areas.

  11. Fan-structure wave as a source of earthquake instability

    Science.gov (United States)

    Tarasov, Boris

    2015-04-01

    Today frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength at confined compression corresponding to the seismogenic layer. This determines the lithospheric strength and the primary earthquake mechanism associated with frictional stick-slip instability on pre-existing faults. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism the rock failure, associated with consecutive creation of small slabs (known as 'domino-blocks') from the intact rock in the rupture tip, is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new domino-blocks), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the lower limit of the lithospheric strength and favours the generation of new faults in pristine rocks in preference to frictional stick-slip instability along pre-existing faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created

  12. The Landers earthquake; preliminary instrumental results

    Science.gov (United States)

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  13. Urban Policies and Earthquake Risk Mitigation

    International Nuclear Information System (INIS)

    Sarlo, Antonella

    2008-01-01

    The paper aims at proposing some considerations about some recent experiences of research carried out on the theme of earthquake risk mitigation and combining policies and actions of mitigation with urban development strategies. The objective was to go beyond the classical methodological approach aiming at defining a 'technical' evaluation of the earthquake risk through a procedure which can correlate the three 'components' of danger, exposure and vulnerability. These researches experiment, in terms of methodology and application, with a new category of interpretation and strategy: the so-called Struttura Urbana Minima (Minimum urban structure).Actually, the introduction of the Struttura Urbana Minima establishes a different approach towards the theme of safety in the field of earthquake risk, since it leads to a wider viewpoint, combining the building aspect of the issue with the purely urban one, involving not only town planning, but also social and managerial implications.In this sense the constituent logic of these researches is strengthened by two fundamental issues:- The social awareness of earthquake;- The inclusion of mitigation policies in the ordinary strategies for town and territory management. Three main aspects of the first point, that is of the 'social awareness of earthquake', characterize this issue and demand to be considered within a prevention policy:- The central role of the risk as a social production,- The central role of the local community consent,- The central role of the local community capability to planTherefore, consent, considered not only as acceptance, but above all as participation in the elaboration and implementation of choices, plays a crucial role in the wider issue of prevention policies.As far as the second point is concerned, the inclusion of preventive mitigation policies in ordinary strategies for the town and territory management demands the identification of criteria of choice and priorities of intervention and, as a

  14. Feasibility study of earthquake early warning (EEW) in Hawaii

    Science.gov (United States)

    Thelen, Weston A.; Hotovec-Ellis, Alicia J.; Bodin, Paul

    2016-09-30

    The effects of earthquake shaking on the population and infrastructure across the State of Hawaii could be catastrophic, and the high seismic hazard in the region emphasizes the likelihood of such an event. Earthquake early warning (EEW) has the potential to give several seconds of warning before strong shaking starts, and thus reduce loss of life and damage to property. The two approaches to EEW are (1) a network approach (such as ShakeAlert or ElarmS) where the regional seismic network is used to detect the earthquake and distribute the alarm and (2) a local approach where a critical facility has a single seismometer (or small array) and a warning system on the premises.The network approach, also referred to here as ShakeAlert or ElarmS, uses the closest stations within a regional seismic network to detect and characterize an earthquake. Most parameters used for a network approach require observations on multiple stations (typically 3 or 4), which slows down the alarm time slightly, but the alarms are generally more reliable than with single-station EEW approaches. The network approach also benefits from having stations closer to the source of any potentially damaging earthquake, so that alarms can be sent ahead to anyone who subscribes to receive the notification. Thus, a fully implemented ShakeAlert system can provide seconds of warning for both critical facilities and general populations ahead of damaging earthquake shaking.The cost to implement and maintain a fully operational ShakeAlert system is high compared to a local approach or single-station solution, but the benefits of a ShakeAlert system would be felt statewide—the warning times for strong shaking are potentially longer for most sources at most locations.The local approach, referred to herein as “single station,” uses measurements from a single seismometer to assess whether strong earthquake shaking can be expected. Because of the reliance on a single station, false alarms are more common than

  15. Coupling mode-destination accessibility with seismic risk assessment to identify at-risk communities

    International Nuclear Information System (INIS)

    Miller, Mahalia; Baker, Jack W.

    2016-01-01

    In this paper, we develop a framework for coupling mode-destination accessibility with quantitative seismic risk assessment to identify communities at high risk for travel disruptions after an earthquake. Mode-destination accessibility measures the ability of people to reach destinations they desire. We use a probabilistic seismic risk assessment procedure, including a stochastic set of earthquake events, ground-motion intensity maps, damage maps, and realizations of traffic and accessibility impacts. For a case study of the San Francisco Bay Area, we couple our seismic risk framework with a practical activity-based traffic model. As a result, we quantify accessibility risk probabilistically by community and household type. We find that accessibility varies more strongly as a function of travelers' geographic location than as a function of their income class, and we identify particularly at-risk communities. We also observe that communities more conducive to local trips by foot or bike are predicted to be less impacted by losses in accessibility. This work shows the potential to link quantitative risk assessment methodologies with high-resolution travel models used by transportation planners. Quantitative risk metrics of this type should have great utility for planners working to reduce risk to a region's infrastructure systems. - Highlights: • We couple mode-destination accessibility with probabilistic seismic risk assessment. • Results identify communities at high risk for post-earthquake travel disruptions. • Accessibility varies more as a function of home location than by income. • Our model predicts reduced accessibility risk for more walking-friendly communities.

  16. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-01-01

    Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal’s second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away.

  17. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng; Hainzl, Sebastian; Mai, Paul Martin

    2015-01-01

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  18. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng

    2015-11-11

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  19. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  20. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  1. Research on Collection of Earthquake Disaster Information from the Crowd

    Science.gov (United States)

    Nian, Z.

    2017-12-01

    In China, the assessment of the earthquake disasters information is mainly based on the inversion of the seismic source mechanism and the pre-calculated population data model, the real information of the earthquake disaster is usually collected through the government departments, the accuracy and the speed need to be improved. And in a massive earthquake like the one in Mexico, the telecommunications infrastructure on ground were damaged , the quake zone was difficult to observe by satellites and aircraft in the bad weather. Only a bit of information was sent out through maritime satellite of other country. Thus, the timely and effective development of disaster relief was seriously affected. Now Chinese communication satellites have been orbiting, people don't only rely on the ground telecom base station to keep communication with the outside world, to open the web page,to land social networking sites, to release information, to transmit images and videoes. This paper will establish an earthquake information collection system which public can participate. Through popular social platform and other information sources, the public can participate in the collection of earthquake information, and supply quake zone information, including photos, video, etc.,especially those information made by unmanned aerial vehicle (uav) after earthqake, the public can use the computer, potable terminals, or mobile text message to participate in the earthquake information collection. In the system, the information will be divided into earthquake zone basic information, earthquake disaster reduction information, earthquake site information, post-disaster reconstruction information etc. and they will been processed and put into database. The quality of data is analyzed by multi-source information, and is controlled by local public opinion on them to supplement the data collected by government departments timely and implement the calibration of simulation results ,which will better guide

  2. Geomorphic legacy of medieval Himalayan earthquakes in the Pokhara Valley

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    The Himalayas and their foreland belong to the world's most earthquake-prone regions. With millions of people at risk from severe ground shaking and associated damages, reliable data on the spatial and temporal occurrence of past major earthquakes is urgently needed to inform seismic risk analysis. Beyond the instrumental record such information has been largely based on historical accounts and trench studies. Written records provide evidence for damages and fatalities, yet are difficult to interpret when derived from the far-field. Trench studies, in turn, offer information on rupture histories, lengths and displacements along faults but involve high chronological uncertainties and fail to record earthquakes that do not rupture the surface. Thus, additional and independent information is required for developing reliable earthquake histories. Here, we present exceptionally well-dated evidence of catastrophic valley infill in the Pokhara Valley, Nepal. Bayesian calibration of radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments yields a robust age distribution that matches the timing of nearby M>8 earthquakes in ~1100, 1255, and 1344 AD. The upstream dip of tributary valley fills and X-ray fluorescence spectrometry of their provenance rule out local sediment sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from the Annapurna Massif >60 km away. The landscape-changing consequences of past large Himalayan earthquakes have so far been elusive. Catastrophic aggradation in the wake of two historically documented medieval earthquakes and one inferred from trench studies underscores that Himalayan valley fills should be considered as potential archives of past earthquakes. Such valley fills are pervasive in the Lesser Himalaya though high erosion rates reduce

  3. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  4. Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data

    Science.gov (United States)

    Funning, G. J.; Cockett, R.

    2012-12-01

    models. We envisage that the ensemble of contributed models will be useful both as a research resource and in the classroom. Locations of earthquakes derived from InSAR data have already been demonstrated to differ significantly from those obtained from global seismic networks (Weston et al., 2011), and the locations obtained by our users will enable us to identify systematic mislocations that are likely due to errors in Earth velocity models used to locate earthquakes. If the tool is incorporated into geophysics, tectonics and/or structural geology classes, in addition to familiarizing students with InSAR and elastic deformation modeling, the spread of different results for each individual earthquake will allow the teaching of concepts such as model uncertainty and non-uniqueness when modeling real scientific data. Additionally, the process students go through to optimize their estimates of fault parameters can easily be tied into teaching about the concepts of forward and inverse problems, which are common in geophysics.

  5. Historical reconstruction of oil and gas spills during moderate and strong earthquakes and related geochemical surveys in Southern Apennines

    Science.gov (United States)

    Sciarra, Alessandra; Cantucci, Barbara; Ferrari, Graziano; Pizzino, Luca; Quattrocchi, Fedora

    2016-04-01

    The aim of this study is to contribute to the assessment of natural hazards in a seismically active area of southern Italy through the joint analysis of historical sources and fluid geochemistry. In particular, our studies have been focalized in the Val d'Agri basin, in the Apennines extensional belt, since it hosts the largest oilfield in onshore Europe and normal-fault systems with high seismogenic potential (up to M7). The work was organized into three main themes: 1) literature search aimed at identifying fluid emissions during previous moderate-strong earthquakes; 2) consultation of local and national archives to identify historic local place names correlated to natural fluids emissions; 3) geochemical sampling of groundwater and gas issuing at surface, identified on the basis of the bibliographic sources. A reasoned reading of written documents and available historical data was performed. Moreover, we reworked information reported in historical catalogues, referred to liquid and gas hydrocarbon leakages occurred during seismic events of the past (in a range of magnitude from 5 to 7) in the Southern Apennines (with a particular focus on the Val d'Agri). Special attention was given to the phenomena of geochemical emissions related to major historical earthquakes that took place in the area, most notably that of 16 December 1857 (M = 7). A careful analysis of the Robert Mallet's report, a complete work aimed at describing the social impact and the effects on the environment produced by this earthquake through illustrated maps and diagrams, included several hundred monoscopic and stereoscopic photographs, was done. From archival sources (at national and/or local administrations), "sensitive" sites to the onset of leakage of liquid and gaseous hydrocarbons in the past were identified. A soil-gas survey (22 gas concentrations and flux measurements) and 35 groundwater samplings were carried out in specific sites recognized through the above studies. From a

  6. Ionospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece

    Science.gov (United States)

    Perrone, Loredana; De Santis, Angelo; Abbattista, Cristoforo; Alfonsi, Lucilla; Amoruso, Leonardo; Carbone, Marianna; Cesaroni, Claudio; Cianchini, Gianfranco; De Franceschi, Giorgiana; De Santis, Anna; Di Giovambattista, Rita; Marchetti, Dedalo; Pavòn-Carrasco, Francisco J.; Piscini, Alessandro; Spogli, Luca; Santoro, Francesca

    2018-03-01

    Ionosonde data and crustal earthquakes with magnitude M ≥ 6.0 observed in Greece during the 2003-2015 period were examined to check if the relationships obtained earlier between precursory ionospheric anomalies and earthquakes in Japan and central Italy are also valid for Greek earthquakes. The ionospheric anomalies are identified on the observed variations of the sporadic E-layer parameters (h'Es, foEs) and foF2 at the ionospheric station of Athens. The corresponding empirical relationships between the seismo-ionospheric disturbances and the earthquake magnitude and the epicentral distance are obtained and found to be similar to those previously published for other case studies. The large lead times found for the ionospheric anomalies occurrence may confirm a rather long earthquake preparation period. The possibility of using the relationships obtained for earthquake prediction is finally discussed.

  7. Ionospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2018-03-01

    Full Text Available Ionosonde data and crustal earthquakes with magnitude M ≥ 6.0 observed in Greece during the 2003–2015 period were examined to check if the relationships obtained earlier between precursory ionospheric anomalies and earthquakes in Japan and central Italy are also valid for Greek earthquakes. The ionospheric anomalies are identified on the observed variations of the sporadic E-layer parameters (h′Es, foEs and foF2 at the ionospheric station of Athens. The corresponding empirical relationships between the seismo-ionospheric disturbances and the earthquake magnitude and the epicentral distance are obtained and found to be similar to those previously published for other case studies. The large lead times found for the ionospheric anomalies occurrence may confirm a rather long earthquake preparation period. The possibility of using the relationships obtained for earthquake prediction is finally discussed.

  8. Analysis of the similar epicenter earthquakes on 22 January 2013 and 01 June 2013, Central Gulf of Suez, Egypt

    Science.gov (United States)

    Toni, Mostafa; Barth, Andreas; Ali, Sherif M.; Wenzel, Friedemann

    2016-09-01

    On 22 January 2013 an earthquake with local magnitude ML 4.1 occurred in the central part of the Gulf of Suez. Six months later on 1 June 2013 another earthquake with local magnitude ML 5.1 took place at the same epicenter and different depths. These two perceptible events were recorded and localized by the Egyptian National Seismological Network (ENSN) and additional networks in the region. The purpose of this study is to determine focal mechanisms and source parameters of both earthquakes to analyze their tectonic relation. We determine the focal mechanisms by applying moment tensor inversion and first motion analysis of P- and S-waves. Both sources reveal oblique focal mechanisms with normal faulting and strike-slip components on differently oriented faults. The source mechanism of the larger event on 1 June in combination with the location of aftershock sequence indicates a left-lateral slip on N-S striking fault structure in 21 km depth that is in conformity with the NE-SW extensional Shmin (orientation of minimum horizontal compressional stress) and the local fault pattern. On the other hand, the smaller earthquake on 22 January with a shallower hypocenter in 16 km depth seems to have happened on a NE-SW striking fault plane sub-parallel to Shmin. Thus, here an energy release on a transfer fault connecting dominant rift-parallel structures might have resulted in a stress transfer, triggering the later ML 5.1 earthquake. Following Brune's model and using displacement spectra, we calculate the dynamic source parameters for the two events. The estimated source parameters for the 22 January 2013 and 1 June 2013 earthquakes are fault length (470 and 830 m), stress drop (1.40 and 2.13 MPa), and seismic moment (5.47E+21 and 6.30E+22 dyn cm) corresponding to moment magnitudes of MW 3.8 and 4.6, respectively.

  9. Hazus® estimated annualized earthquake losses for the United States

    Science.gov (United States)

    Jaiswal, Kishor; Bausch, Doug; Rozelle, Jesse; Holub, John; McGowan, Sean

    2017-01-01

    Large earthquakes can cause social and economic disruption that can be unprecedented to any given community, and the full recovery from these impacts may or may not always be achievable. In the United States (U.S.), the 1994 M6.7 Northridge earthquake in California remains the third costliest disaster in U.S. history; and it was one of the most expensive disasters for the federal government. Internationally, earthquakes in the last decade alone have claimed tens of thousands of lives and caused hundreds of billions of dollars of economic impact throughout the globe (~90 billion U.S. dollars (USD) from 2008 M7.9 Wenchuan China, ~20 billion USD from 2010 M8.8 Maule earthquake in Chile, ~220 billion USD from 2011 M9.0 Tohoku Japan earthquake, ~25 billion USD from 2011 M6.3 Christchurch New Zealand, and ~22 billion USD from 2016 M7.0 Kumamoto Japan). Recent earthquakes show a pattern of steadily increasing damages and losses that are primarily due to three key factors: (1) significant growth in earthquake-prone urban areas, (2) vulnerability of the older building stock, including poorly engineered non-ductile concrete buildings, and (3) an increased interdependency in terms of supply and demand for the businesses that operate among different parts of the world. In the United States, earthquake risk continues to grow with increased exposure of population and development even though the earthquake hazard has remained relatively stable except for the regions of induced seismic activity. Understanding the seismic hazard requires studying earthquake characteristics and locales in which they occur, while understanding the risk requires an assessment of the potential damage from earthquake shaking to the built environment and to the welfare of people—especially in high-risk areas. Estimating the varying degree of earthquake risk throughout the United States is critical for informed decision-making on mitigation policies, priorities, strategies, and funding levels in the

  10. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    Science.gov (United States)

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  11. An evaluation of Health of the Nation Outcome Scales data to inform psychiatric morbidity following the Canterbury earthquakes.

    Science.gov (United States)

    Beaglehole, Ben; Frampton, Chris M; Boden, Joseph M; Mulder, Roger T; Bell, Caroline J

    2017-11-01

    Following the onset of the Canterbury, New Zealand earthquakes, there were widespread concerns that mental health services were under severe strain as a result of adverse consequences on mental health. We therefore examined Health of the Nation Outcome Scales data to see whether this could inform our understanding of the impact of the Canterbury earthquakes on patients attending local specialist mental health services. Health of the Nation Outcome Scales admission data were analysed for Canterbury mental health services prior to and following the Canterbury earthquakes. These findings were compared to Health of the Nation Outcome Scales admission data from seven other large District Health Boards to delineate local from national trends. Percentage changes in admission numbers were also calculated before and after the earthquakes for Canterbury and the seven other large district health boards. Admission Health of the Nation Outcome Scales scores in Canterbury increased after the earthquakes for adult inpatient and community services, old age inpatient and community services, and Child and Adolescent inpatient services compared to the seven other large district health boards. Admission Health of the Nation Outcome Scales scores for Child and Adolescent community services did not change significantly, while admission Health of the Nation Outcome Scales scores for Alcohol and Drug services in Canterbury fell compared to other large district health boards. Subscale analysis showed that the majority of Health of the Nation Outcome Scales subscales contributed to the overall increases found. Percentage changes in admission numbers for the Canterbury District Health Board and the seven other large district health boards before and after the earthquakes were largely comparable with the exception of admissions to inpatient services for the group aged 4-17 years which showed a large increase. The Canterbury earthquakes were followed by an increase in Health of the Nation

  12. Discrimination between earthquakes and chemical explosions using artificial neural networks

    International Nuclear Information System (INIS)

    Kundu, Ajit; Bhadauria, Y.S.; Roy, Falguni

    2012-05-01

    An Artificial Neural Network (ANN) for discriminating between earthquakes and chemical explosions located at epicentral distances, Δ <5 deg from Gauribidanur Array (GBA) has been developed using the short period digital seismograms recorded at GBA. For training the ANN spectral amplitude ratios between P and Lg phases computed at 13 different frequencies in the frequency range of 2-8 Hz, corresponding to 20 earthquakes and 23 chemical explosions were used along with other parameters like magnitude, epicentral distance and amplitude ratios Rg/P and Rg/Lg. After training and development, the ANN has correctly identified a set of 21 test events, comprising 6 earthquakes and 15 chemical explosions. (author)

  13. The Chiloé Mw 7.6 earthquake of 2016 December 25 in Southern Chile and its relation to the Mw 9.5 1960 Valdivia earthquake

    Science.gov (United States)

    Lange, Dietrich; Ruiz, Javier; Carrasco, Sebastián; Manríquez, Paula

    2018-04-01

    On 2016 December 25, an Mw 7.6 earthquake broke a portion of the Southern Chilean subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and historical times with very sparse interseismic activity due to the subduction of a young (˜15 Ma), and therefore hot, oceanic plate. We estimate the coseismic slip distribution based on a kinematic finite-fault source model, and through joint inversion of teleseismic body waves and strong motion data. The coseismic slip model yields a total seismic moment of 3.94 × 1020 N.m that occurred over ˜30 s, with the rupture propagating mainly downdip, reaching a peak slip of ˜4.2 m. Regional moment tensor inversion of stronger aftershocks reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity is mostly related to the subduction interface with sparse seismicity in the overriding crust. The 2016 Chiloé event broke a region with increased locking and most likely broke an asperity of the 1960 earthquake. The updip limit of the main event, aftershocks, foreshocks and interseismic activity are spatially similar, located ˜15 km offshore and parallel to Chiloé Islands west coast. The coseismic slip model of the 2016 Chiloé earthquake suggests a peak slip of 4.2 m that locally exceeds the 3.38 m slip deficit that has accumulated since 1960. Therefore, the 2016 Chiloé earthquake possibly released strain that has built up prior to the 1960 Valdivia earthquake.

  14. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    Science.gov (United States)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  15. Comparison of hypocentre parameters of earthquakes in the Aegean region

    Science.gov (United States)

    Özel, Nurcan M.; Shapira, Avi; Harris, James

    2007-06-01

    The Aegean Sea is one of the more seismically active areas in the Euro-Mediterranean region. The seismic activity in the Aegean Sea is monitored by a number of local agencies that contribute their data to the International Seismological Centre (ISC). Consequently, the ISC Bulletin may serve as a reliable reference for assessing the capabilities of local agencies to monitor moderate and low magnitude earthquakes. We have compared bulletins of the Kandilli Observatory and Earthquake Research Institute (KOERI) and the ISC, for the period 1976-2003 that comprises the most complete data sets for both KOERI and ISC. The selected study area is the East Aegean Sea and West Turkey, bounded by latitude 35-41°N and by longitude 24-29°E. The total number of events known to occur in this area, during 1976-2003 is about 41,638. Seventy-two percent of those earthquakes were located by ISC and 75% were located by KOERI. As expected, epicentre location discrepancy between ISC and KOERI solutions are larger as we move away from the KOERI seismic network. Out of the 22,066 earthquakes located by both ISC and KOERI, only 4% show a difference of 50 km or more. About 140 earthquakes show a discrepancy of more than 100 km. Focal Depth determinations differ mainly in the subduction zone along the Hellenic arc. Less than 2% of the events differ in their focal depth by more than 25 km. Yet, the location solutions of about 30 events differ by more than 100 km. Almost a quarter of the events listed in the ISC Bulletin are missed by KOERI, most of them occurring off the coast of Turkey, in the East Aegean. Based on the frequency-magnitude distributions, the KOERI Bulletin is complete for earthquakes with duration magnitudes Md > 2.7 (both located and assigned magnitudes) where as the threshold magnitude for events with location and magnitude determinations by ISC is mb > 4.0. KOERI magnitudes seem to be poorly correlated with ISC magnitudes suggesting relatively high uncertainty in the

  16. Earthquake correlations and networks: A comparative study

    Science.gov (United States)

    Krishna Mohan, T. R.; Revathi, P. G.

    2011-04-01

    We quantify the correlation between earthquakes and use the same to extract causally connected earthquake pairs. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski [M. Baiesi and M. Paczuski, Phys. Rev. E EULEEJ1539-375510.1103/PhysRevE.69.06610669, 066106 (2004)]. A network of earthquakes is then constructed from the time-ordered catalog and with links between the more correlated ones. A list of recurrences to each of the earthquakes is identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions (viz., California, Japan, and the Himalayas) are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub structure rooted on the large magnitude earthquakes. In-degree distribution is seen to be dependent on the density of events in the neighborhood. Power laws, with two regimes having different exponents, are obtained with recurrence time distribution. The first regime confirms the Omori law for aftershocks while the second regime, with a faster falloff for the larger recurrence times, establishes that pure spatial recurrences also follow a power-law distribution. The crossover to the second power-law regime can be taken to be signaling the end of the aftershock regime in an objective fashion.

  17. Application and analysis of debris-flow early warning system in Wenchuan earthquake-affected area

    Science.gov (United States)

    Liu, D. L.; Zhang, S. J.; Yang, H. J.; Zhao, L. Q.; Jiang, Y. H.; Tang, D.; Leng, X. P.

    2016-02-01

    The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of the lives and property of local people is threatened by DFs. A physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results via a comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with a contribution-factor-based system currently used by the weather bureau of Sichuan province. The storm on 17 August 2012 was used as a case study for this comparison. The comparison shows that the false negative rate and false positive rate of the new system is, respectively, 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. On the invitation of the weather bureau of Sichuan province, the authors upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July 2013 and 10 July 2014 were chosen to further demonstrate that the new EWS has high stability, efficiency, and prediction accuracy.

  18. Local food in Iceland: identifying behavioral barriers to increased production and consumption

    Science.gov (United States)

    Ósk Halldórsdóttir, Þórhildur; Nicholas, Kimberly A.

    2016-11-01

    Increased production and consumption of local food may reduce the negative environmental, social, and economic impacts of industrialized and globalized food production. Here we examined potential barriers to increasing production and consumption of food produced in Iceland. First, we developed a new framework to address the behaviors of production and consumption simultaneously, to comprehensively analyze their potential barriers. We examined structural barriers by estimating the food production capacity of Iceland, and cultural and personal barriers through survey data on cultural norms and purchasing behavior from Matís, a research and development company. We found no structural barriers preventing Iceland from increasing production of local cereals, which would compliment current local production of meat and dairy and reduce reliance on imports, currently at 50% of the daily caloric intake. However, if food production became entirely local without changing the current mix of crops grown, there would be a 50% reduction in diversity (from 50 to 25 items in eight out of ten food categories). We did not identify any cultural barriers, as survey results demonstrated that consumers hold generally positive worldviews towards local food, with 88% satisfied with local food they had purchased. More than two-thirds of consumers regarded supporting the local farmer and considerations such as environmentally friendly production, fewer food miles, lower carbon footprint as important. However, they rated the local food they have access to as lower in meeting sustainability criteria, showing that they make justifications for not choosing local food in practice. This is a personal barrier to increased consumption of local food, and implies that marketing strategies and general knowledge connected to local food in Iceland might be improved. Although the results apply to the case of Iceland, the method of identifying behavioral barriers to change is applicable to other countries

  19. Development of the U.S. Geological Survey's PAGER system (Prompt Assessment of Global Earthquakes for Response)

    Science.gov (United States)

    Wald, D.J.; Earle, P.S.; Allen, T.I.; Jaiswal, K.; Porter, K.; Hearne, M.

    2008-01-01

    The Prompt Assessment of Global Earthquakes for Response (PAGER) System plays a primary alerting role for global earthquake disasters as part of the U.S. Geological Survey’s (USGS) response protocol. We provide an overview of the PAGER system, both of its current capabilities and our ongoing research and development. PAGER monitors the USGS’s near real-time U.S. and global earthquake origins and automatically identifies events that are of societal importance, well in advance of ground-truth or news accounts. Current PAGER notifications and Web pages estimate the population exposed to each seismic intensity level. In addition to being a useful indicator of potential impact, PAGER’s intensity/exposure display provides a new standard in the dissemination of rapid earthquake information. We are currently developing and testing a more comprehensive alert system that will include casualty estimates. This is motivated by the idea that an estimated range of possible number of deaths will aid in decisions regarding humanitarian response. Underlying the PAGER exposure and loss models are global earthquake ShakeMap shaking estimates, constrained as quickly as possible by finite-fault modeling and observed ground motions and intensities, when available. Loss modeling is being developed comprehensively with a suite of candidate models that range from fully empirical to largely analytical approaches. Which of these models is most appropriate for use in a particular earthquake depends on how much is known about local building stocks and their vulnerabilities. A first-order country-specific global building inventory has been developed, as have corresponding vulnerability functions. For calibrating PAGER loss models, we have systematically generated an Atlas of 5,000 ShakeMaps for significant global earthquakes during the last 36 years. For many of these, auxiliary earthquake source and shaking intensity data are also available. Refinements to the loss models are ongoing

  20. Relations between source parameters for large Persian earthquakes

    Directory of Open Access Journals (Sweden)

    Majid Nemati

    2015-11-01

    Full Text Available Empirical relationships for magnitude scales and fault parameters were produced using 436 Iranian intraplate earthquakes of recently regional databases since the continental events represent a large portion of total seismicity of Iran. The relations between different source parameters of the earthquakes were derived using input information which has usefully been provided from the databases after 1900. Suggested equations for magnitude scales relate the body-wave, surface-wave as well as local magnitude scales to scalar moment of the earthquakes. Also, dependence of source parameters as surface and subsurface rupture length and maximum surface displacement on the moment magnitude for some well documented earthquakes was investigated. For meeting this aim, ordinary linear regression procedures were employed for all relations. Our evaluations reveal a fair agreement between obtained relations and equations described in other worldwide and regional works in literature. The M0-mb and M0-MS equations are correlated well to the worldwide relations. Also, both M0-MS and M0-ML relations have a good agreement with regional studies in Taiwan. The equations derived from this study mainly confirm the results of the global investigations about rupture length of historical and instrumental events. However, some relations like MW-MN and MN-ML which are remarkably unlike to available regional works (e.g., American and Canadian were also found.

  1. Future Developments for the Earthquake Early Warning System following the 2011 off the Pacific Coast of Tohoku Earthquake

    Science.gov (United States)

    Yamada, M.; Mori, J. J.

    2011-12-01

    The 2011 off the Pacific Coast of Tohoku Earthquake (Mw9.0) caused significant damage over a large area of northeastern Honshu. An earthquake early warning was issued to the public in the Tohoku region about 8 seconds after the first P-arrival, which is 31 seconds after the origin time. There was no 'blind zone', and warnings were received at all locations before S-wave arrivals, since the earthquake was fairly far offshore. Although the early warning message was properly reported in Tohoku region which was the most severely affected area, a message was not sent to the more distant Tokyo region because the intensity was underestimated. . This underestimation was because the magnitude determination in the first few seconds was relatively small (Mj8.1)., and there was no consideration of a finite fault with a long length. Another significant issue is that warnings were sometimes not properly provided for aftershocks. Immediately following the earthquake, the waveforms of some large aftershocks were contaminated by long-period surface waves from the mainshock, which made it difficult to pick P-wave arrivals. Also, correctly distinguishing and locating later aftershocks was sometimes difficult, when multiple events occurred within a short period of time. This masinhock begins with relatively small moment release for the first 10 s . Since the amplitude of the initial waveforms is small, most methods that use amplitudes and periods of the P-wave (e.g. Wu and Kanamori, 2005) cannot correctly determine the size of the4 earthquake in the first several seconds. The current JMA system uses the peak displacement amplitude for the magnitude estimation, and the magnitude saturated at about M8 1 minute after the first P-wave arrival. . Magnitudes of smaller earthquakes can be correctly identified from the first few seconds of P- or S-wave arrivals, but this M9 event cannot be characterized in such a short time. The only way to correctly characterize the size of the Tohoku

  2. The Manchester earthquake swarm of October 2002

    Science.gov (United States)

    Baptie, B.; Ottemoeller, L.

    2003-04-01

    An earthquake sequence started in the Greater Manchester area of the United Kingdom on October 19, 2002. This has continued to the time of writing and has consisted of more than 100 discrete earthquakes. Three temporary seismograph stations were installed to supplement existing permanent stations and to better understand the relationship between the seismicity and local geology. Due to the urban location, these were experienced by a large number of people. The largest event on October 21 had a magnitude ML 3.9. The activity appears to be an earthquake swarm, since there is no clear distinction between a main shock and aftershocks. However, most of the energy during the sequence was actually released in two earthquakes separated by a few seconds in time, on October 21 at 11:42. Other examples of swarm activity in the UK include Comrie (1788-1801, 1839-46), Glenalmond (1970-72), Doune (1997) and Blackford (1997-98, 2000-01) in central Scotland, Constantine (1981, 1986, 1992-4) in Cornwall, and Johnstonbridge (mid1980s) and Dumfries (1991,1999). The clustering of these events in time and space does suggest that there is a causal relationship between the events of the sequence. Joint hypocenter determination was used to simultaneously locate the swarm earthquakes, determine station corrections and improve the relative locations. It seems likely that all events in the sequence originate from a relatively small source volume. This is supported by the similarities in source mechanism and waveform signals between the various events. Focal depths were found to be very shallow and of the order of about 2-3 km. Source mechanisms determined for the largest of the events show strike-slip solutions along either northeast-southwest or northwest-southeast striking fault planes. The surface expression of faults in the epicentral area is generally northwest-southeast, suggesting that this is the more likely fault plane.

  3. The earthquake problem in engineering design: generating earthquake design basis information

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1987-01-01

    Designing earthquake resistant structures requires certain design inputs specific to the seismotectonic status of the region, in which a critical facility is to be located. Generating these inputs requires collection of earthquake related information using present day techniques in seismology and geology, and processing the collected information to integrate it to arrive at a consolidated picture of the seismotectonics of the region. The earthquake problem in engineering design has been outlined in the context of a seismic design of nuclear power plants vis a vis current state of the art techniques. The extent to which the accepted procedures of assessing seismic risk in the region and generating the design inputs have been adherred to determine to a great extent the safety of the structures against future earthquakes. The document is a step towards developing an aproach for generating these inputs, which form the earthquake design basis. (author)

  4. FEATURES AND PROBLEMS WITH HISTORICAL GREAT EARTHQUAKES AND TSUNAMIS IN THE MEDITERRANEAN SEA

    Directory of Open Access Journals (Sweden)

    Lobkovsky L.

    2016-11-01

    Full Text Available The present study examines the historical earthquakes and tsunamis of 21 July 365 and of 9 February 1948 in the Eastern Mediterranean Sea. Numerical simulations were performed for the tsunamis generated by underwater seismic sources in frames of the keyboard model, as well as for their propagation in the Mediterranean Sea basin. Similarly examined were three different types of seismic sources at the same localization near the Island of Crete for the earthquake of 21 July 365, and of two different types of seismic sources for the earthquake of 9 February 1948 near the Island of Karpathos. For each scenario, the tsunami wave field characteristics from the earthquake source to coastal zones in Mediterranean Sea’s basin were obtained and histograms were constructed showing the distribution of maximum tsunami wave heights, along a 5-m isobath. Comparison of tsunami wave characteristics for all the above mentioned scenarios, demonstrates that underwater earthquakes with magnitude M > 7 in the Eastern Mediterranean Sea basin, can generate waves with coastal runup up to 9 m.

  5. Response and recovery lessons from the 2010-2011 earthquake sequence in Canterbury, New Zealand

    Science.gov (United States)

    Pierepiekarz, Mark; Johnston, David; Berryman, Kelvin; Hare, John; Gomberg, Joan S.; Williams, Robert A.; Weaver, Craig S.

    2014-01-01

    The impacts and opportunities that result when low-probability moderate earthquakes strike an urban area similar to many throughout the US were vividly conveyed in a one-day workshop in which social and Earth scientists, public officials, engineers, and an emergency manager shared their experiences of the earthquake sequence that struck the city of Christchurch and surrounding Canterbury region of New Zealand in 2010-2011. Without question, the earthquake sequence has had unprecedented impacts in all spheres on New Zealand society, locally to nationally--10% of the country's population was directly impacted and losses total 8-10% of their GDP. The following paragraphs present a few lessons from Christchurch.

  6. The impact of the Canterbury earthquakes on prescribing for mental health.

    Science.gov (United States)

    Beaglehole, Ben; Bell, Caroline; Frampton, Christopher; Hamilton, Greg; McKean, Andrew

    2015-08-01

    The aim of this study is to evaluate the impact of the Canterbury earthquakes on the mental health of the local population by examining prescribing patterns of psychotropic medication. Dispensing data from community pharmacies for antidepressants, antipsychotics, anxiolytics and sedatives/hypnotics are routinely recorded in a national database. The close relationship between prescribing and dispensing provides the opportunity to assess prescribing trends for Canterbury compared to national data and therefore examines the longitudinal impact of the earthquakes on prescribing patterns. Short-term increases in the use of anxiolytics and sedatives/hypnotics were observed after the most devastating February 2011 earthquake, but this effect was not sustained. There were no observable effects of the earthquakes on antidepressant or antipsychotic dispensing. Short-term increases in dispensing were only observed for the classes of anxiolytics and sedatives/hypnotics. No sustained changes in dispensing occurred. These findings suggest that long-term detrimental effects on the mental health of the Canterbury population were either not present or have not resulted in increased prescribing of psychotropic medication. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  7. Pattern recognition and modelling of earthquake registrations with interactive computer support

    International Nuclear Information System (INIS)

    Manova, Katarina S.

    2004-01-01

    The object of the thesis is Pattern Recognition. Pattern recognition i.e. classification, is applied in many fields: speech recognition, hand printed character recognition, medical analysis, satellite and aerial-photo interpretations, biology, computer vision, information retrieval and so on. In this thesis is studied its applicability in seismology. Signal classification is an area of great importance in a wide variety of applications. This thesis deals with the problem of (automatic) classification of earthquake signals, which are non-stationary signals. Non-stationary signal classification is an area of active research in the signal and image processing community. The goal of the thesis is recognition of earthquake signals according to their epicentral zone. Source classification i.e. recognition is based on transformation of seismograms (earthquake registrations) to images, via time-frequency transformations, and applying image processing and pattern recognition techniques for feature extraction, classification and recognition. The tested data include local earthquakes from seismic regions in Macedonia. By using actual seismic data it is shown that proposed methods provide satisfactory results for classification and recognition.(Author)

  8. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  9. Frictional heating processes during laboratory earthquakes

    Science.gov (United States)

    Aubry, J.; Passelegue, F. X.; Deldicque, D.; Lahfid, A.; Girault, F.; Pinquier, Y.; Escartin, J.; Schubnel, A.

    2017-12-01

    Frictional heating during seismic slip plays a crucial role in the dynamic of earthquakes because it controls fault weakening. This study proposes (i) to image frictional heating combining an in-situ carbon thermometer and Raman microspectrometric mapping, (ii) to combine these observations with fault surface roughness and heat production, (iii) to estimate the mechanical energy dissipated during laboratory earthquakes. Laboratory earthquakes were performed in a triaxial oil loading press, at 45, 90 and 180 MPa of confining pressure by using saw-cut samples of Westerly granite. Initial topography of the fault surface was +/- 30 microns. We use a carbon layer as a local temperature tracer on the fault plane and a type K thermocouple to measure temperature approximately 6mm away from the fault surface. The thermocouple measures the bulk temperature of the fault plane while the in-situ carbon thermometer images the temperature production heterogeneity at the micro-scale. Raman microspectrometry on amorphous carbon patch allowed mapping the temperature heterogeneities on the fault surface after sliding overlaid over a few micrometers to the final fault roughness. The maximum temperature achieved during laboratory earthquakes remains high for all experiments but generally increases with the confining pressure. In addition, the melted surface of fault during seismic slip increases drastically with confining pressure. While melting is systematically observed, the strength drop increases with confining pressure. These results suggest that the dynamic friction coefficient is a function of the area of the fault melted during stick-slip. Using the thermocouple, we inverted the heat dissipated during each event. We show that for rough faults under low confining pressure, less than 20% of the total mechanical work is dissipated into heat. The ratio of frictional heating vs. total mechanical work decreases with cumulated slip (i.e. number of events), and decreases with

  10. Scale-free networks of earthquakes and aftershocks

    International Nuclear Information System (INIS)

    Baiesi, Marco; Paczuski, Maya

    2004-01-01

    We propose a metric to quantify correlations between earthquakes. The metric consists of a product involving the time interval and spatial distance between two events, as well as the magnitude of the first one. According to this metric, events typically are strongly correlated to only one or a few preceding ones. Thus a classification of events as foreshocks, main shocks, or aftershocks emerges automatically without imposing predetermined space-time windows. In the simplest network construction, each earthquake receives an incoming link from its most correlated predecessor. The number of aftershocks for any event, identified by its outgoing links, is found to be scale free with exponent γ=2.0(1). The original Omori law with p=1 emerges as a robust feature of seismicity, holding up to years even for aftershock sequences initiated by intermediate magnitude events. The broad distribution of distances between earthquakes and their linked aftershocks suggests that aftershock collection with fixed space windows is not appropriate

  11. Characterizing Aftershock Sequences of the Recent Strong Earthquakes in Central Italy

    Science.gov (United States)

    Kossobokov, Vladimir G.; Nekrasova, Anastasia K.

    2017-10-01

    The recent strong earthquakes in Central Italy allow for a comparative analysis of their aftershocks from the viewpoint of the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. In particular, we consider aftershocks as a sequence of avalanches in self-organized system of blocks-and-faults of the Earth lithosphere, each aftershock series characterized with the distribution of the USLE control parameter, η. We found the existence, in a long-term, of different, intermittent levels of rather steady seismic activity characterized with a near constant value of η, which switch, in mid-term, at times of transition associated with catastrophic events. On such a transition, seismic activity may follow different scenarios with inter-event time scaling of different kind, including constant, logarithmic, power law, exponential rise/decay or a mixture of those as observed in the case of the ongoing one associated with the three strong earthquakes in 2016. Evidently, our results do not support the presence of universality of seismic energy release, while providing constraints on modelling seismic sequences for earthquake physicists and supplying decision makers with information for improving local seismic hazard assessments.

  12. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  13. Source characteristics and geological implications of the January 2016 induced earthquake swarm near Crooked Lake, Alberta

    Science.gov (United States)

    Wang, Ruijia; Gu, Yu Jeffrey; Schultz, Ryan; Zhang, Miao; Kim, Ahyi

    2017-08-01

    On 2016 January 12, an intraplate earthquake with an initial reported local magnitude (ML) of 4.8 shook the town of Fox Creek, Alberta. While there were no reported damages, this earthquake was widely felt by the local residents and suspected to be induced by the nearby hydraulic-fracturing (HF) operations. In this study, we determine the earthquake source parameters using moment tensor inversions, and then detect and locate the associated swarm using a waveform cross-correlation based method. The broad-band seismic recordings from regional arrays suggest a moment magnitude (M) 4.1 for this event, which is the largest in Alberta in the past decade. Similar to other recent M ∼ 3 earthquakes near Fox Creek, the 2016 January 12 earthquake exhibits a dominant strike-slip (strike = 184°) mechanism with limited non-double-couple components (∼22 per cent). This resolved focal mechanism, which is also supported by forward modelling and P-wave first motion analysis, indicates an NE-SW oriented compressional axis consistent with the maximum compressive horizontal stress orientations delineated from borehole breakouts. Further detection analysis on industry-contributed recordings unveils 1108 smaller events within 3 km radius of the epicentre of the main event, showing a close spatial-temporal relation to a nearby HF well. The majority of the detected events are located above the basement, comparable to the injection depth (3.5 km) on the Duvernay shale Formation. The spatial distribution of this earthquake cluster further suggests that (1) the source of the sequence is an N-S-striking fault system and (2) these earthquakes were induced by an HF well close to but different from the well that triggered a previous (January 2015) earthquake swarm. Reactivation of pre-existing, N-S oriented faults analogous to the Pine Creek fault zone, which was reported by earlier studies of active source seismic and aeromagnetic data, are likely responsible for the occurrence of the

  14. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  15. The EM Earthquake Precursor

    Science.gov (United States)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  16. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya.

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-01-08

    Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal's second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away. Copyright © 2016, American Association for the Advancement of Science.

  17. Earthquake prediction rumors can help in building earthquake awareness: the case of May the 11th 2011 in Rome (Italy)

    Science.gov (United States)

    Amato, A.; Arcoraci, L.; Casarotti, E.; Cultrera, G.; Di Stefano, R.; Margheriti, L.; Nostro, C.; Selvaggi, G.; May-11 Team

    2012-04-01

    Banner headlines in an Italian newspaper read on May 11, 2011: "Absence boom in offices: the urban legend in Rome become psychosis". This was the effect of a large-magnitude earthquake prediction in Rome for May 11, 2011. This prediction was never officially released, but it grew up in Internet and was amplified by media. It was erroneously ascribed to Raffaele Bendandi, an Italian self-taught natural scientist who studied planetary motions and related them to earthquakes. Indeed, around May 11, 2011, there was a planetary alignment and this increased the earthquake prediction credibility. Given the echo of this earthquake prediction, INGV decided to organize on May 11 (the same day the earthquake was predicted to happen) an Open Day in its headquarter in Rome to inform on the Italian seismicity and the earthquake physics. The Open Day was preceded by a press conference two days before, attended by about 40 journalists from newspapers, local and national TV's, press agencies and web news magazines. Hundreds of articles appeared in the following two days, advertising the 11 May Open Day. On May 11 the INGV headquarter was peacefully invaded by over 3,000 visitors from 9am to 9pm: families, students, civil protection groups and many journalists. The program included conferences on a wide variety of subjects (from social impact of rumors to seismic risk reduction) and distribution of books and brochures, in addition to several activities: meetings with INGV researchers to discuss scientific issues, visits to the seismic monitoring room (open 24h/7 all year), guided tours through interactive exhibitions on earthquakes and Earth's deep structure. During the same day, thirteen new videos have also been posted on our youtube/INGVterremoti channel to explain the earthquake process and hazard, and to provide real time periodic updates on seismicity in Italy. On May 11 no large earthquake happened in Italy. The initiative, built up in few weeks, had a very large feedback

  18. Social impacts of earthquakes caused by gas extraction in the Province of Groningen, The Netherlands

    NARCIS (Netherlands)

    van den Voort, Nick; Vanclay, Frank

    Gas extraction from the Groningen gasfield in the northern Netherlands has led to localized earthquakes which are projected to become more severe. The social impacts experienced by local residents include: damage to property; declining house prices; concerns about the chance of dykes breaking;

  19. Shallow microearthquakes near Chongqing, China triggered by the Rayleigh waves of the 2015 M7.8 Gorkha, Nepal earthquake

    Science.gov (United States)

    Han, Libo; Peng, Zhigang; Johnson, Christopher W.; Pollitz, Fred F.; Li, Lu; Wang, Baoshan; Wu, Jing; Li, Qiang; Wei, Hongmei

    2017-12-01

    We present a case of remotely triggered seismicity in Southwest China by the 2015/04/25 M7.8 Gorkha, Nepal earthquake. A local magnitude ML3.8 event occurred near the Qijiang district south of Chongqing city approximately 12 min after the Gorkha mainshock. Within 30 km of this ML3.8 event there are 62 earthquakes since 2009 and only 7 ML > 3 events, which corresponds to a likelihood of 0.3% for a ML > 3 on any given day by a random chance. This observation motivates us to investigate the relationship between the ML3.8 event and the Gorkha mainshock. The ML3.8 event was listed in the China Earthquake National Center (CENC) catalog and occurred at shallow depth (∼3 km). By examining high-frequency waveforms, we identify a smaller local event (∼ML 2.5) ∼ 15 s before the ML3.8 event. Both events occurred during the first two cycles of the Rayleigh waves from the Gorkha mainshock. We perform seismic event detection based on envelope function and waveform matching by using the two events as templates. Both analyses found a statistically significant rate change during the mainshock, suggesting that they were indeed dynamically triggered by the Rayleigh waves. Both events occurred during the peak normal and dilatational stress changes (∼10-30 kPa), consistent with observations of dynamic triggering in other geothermal/volcanic regions. Although other recent events (i.e., the 2011 M9.1 Tohoku-Oki earthquake) produced similar peak ground velocities, the 2015 Gorkha mainshock was the only event that produced clear dynamic triggering in this region. The triggering site is close to hydraulic fracturing wells that began production in 2013-2014. Hence we suspect that fluid injections may increase the region's susceptibility to remote dynamic triggering.

  20. Report on the 2010 Chilean earthquake and tsunami response

    Science.gov (United States)

    ,

    2011-01-01

    In July 2010, in an effort to reduce future catastrophic natural disaster losses for California, the American Red Cross coordinated and sent a delegation of 20 multidisciplinary experts on earthquake response and recovery to Chile. The primary goal was to understand how the Chilean society and relevant organizations responded to the magnitude 8.8 Maule earthquake that struck the region on February 27, 2010, as well as how an application of these lessons could better prepare California communities, response partners and state emergency partners for a comparable situation. Similarities in building codes, socioeconomic conditions, and broad extent of the strong shaking make the Chilean earthquake a very close analog to the impact of future great earthquakes on California. To withstand and recover from natural and human-caused disasters, it is essential for citizens and communities to work together to anticipate threats, limit effects, and rapidly restore functionality after a crisis. The delegation was hosted by the Chilean Red Cross and received extensive briefings from both national and local Red Cross officials. During nine days in Chile, the delegation also met with officials at the national, regional, and local government levels. Technical briefings were received from the President’s Emergency Committee, emergency managers from ONEMI (comparable to FEMA), structural engineers, a seismologist, hospital administrators, firefighters, and the United Nations team in Chile. Cities visited include Santiago, Talca, Constitución, Concepción, Talcahuano, Tumbes, and Cauquenes. The American Red Cross Multidisciplinary Team consisted of subject matter experts, who carried out special investigations in five Teams on the (1) science and engineering findings, (2) medical services, (3) emergency services, (4) volunteer management, and (5) executive and management issues (see appendix A for a full list of participants and their titles and teams). While developing this

  1. Local seismicity in the area of Tornio River (northern Fennoscandia) revealed by analysis of local events registered by the POLENET/LAPNET array

    Science.gov (United States)

    Kozlovskaya, E.; Usoltseva, O.; Konstantinovskaya, N.

    2012-04-01

    The region of Tornio river (22-26 deg E and 66.5-69 deg N) is very interesting for seismological studies because it is crossed by systems of tectonic faults spreading in two different directions. 56 local earthquakes originated from this region were recorded by the POLENET/LAPNET temporary array from May, 2007 to May, 2009. Hypocenter depths of earthquakes are in the range of 1-35 km and their magnitudes vary from 0.8 to 2.2. For events detection we used the bulletin of the Institute of Seismology (Helsinki university) and Norway Global Beam Forming bulletin, compiled on the base of automatic detection of events, using the data of Noress, Arcess, Finess, SPA, HFS, APA arrays. In addition to local earthquakes, the array recorded 364 blasts from this region during the POLENET/LAPNET observation period. The events were relocated using manually measured travel times of refracted P waves from events at local distances (less than 200 km) and the 1-D velocity model along the wide-angle reflection and refraction HUKKA profile. The epicenters of relocated events show good correlation with known faults in the region. For each earthquake we constructed travel-time curves with reduction velocity of 8 km/s and compared them with the theoretical travel-time curves, in order to avoid phase misinterpretation. We found out that the largest reduction of travel time residuals during relocation was reached for deep earthquakes, due to more precise depth determination. The other aim of our study was to estimate what part of travel time residuals is not connected with the reference 1D velocity model and accuracy of location, but is rather due to 3-D heterogeneities in the crust. We also analyzed the amplitude characteristics of P-wave arrivals from different layers in the crust and upper mantle and also compared spectrograms of deep earthquakes, shallow earthquakes and blasts.

  2. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Science.gov (United States)

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  3. Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes

    Science.gov (United States)

    Liu, Ching-Yi; Chia, Yeeping; Chuang, Po-Yu; Chiu, Yung-Chia; Tseng, Tai-Lin

    2018-03-01

    Changes in groundwater level during earthquakes have been reported worldwide. In this study, field observations of co-seismic groundwater-level changes in wells under different aquifer conditions and sampling intervals due to near-field earthquake events in Taiwan are presented. Sustained changes, usually observed immediately after earthquakes, are found in the confined aquifer. Oscillatory changes due to the dynamic strain triggered by passing earthquake waves can only be recorded by a high-frequency data logger. While co-seismic changes recover rapidly in an unconfined aquifer, they can sustain for months or longer in a confined aquifer. Three monitoring wells with long-term groundwater-level data were examined to understand the association of co-seismic changes with local hydrogeological conditions. The finite element software ABAQUS is used to simulate the pore-pressure changes induced by the displacements due to fault rupture. The calculated co-seismic change in pore pressure is related to the compressibility of the formation. The recovery rate of the change is rapid in the unconfined aquifer due to the hydrostatic condition at the water table, but slow in the confined aquifer due to the less permeable confining layer. Fracturing of the confining layer during earthquakes may enhance the dissipation of pore pressure and induce the discharge of the confined aquifer. The study results indicated that aquifer characteristics play an important role in determining groundwater-level changes during and after earthquakes.

  4. Earthquake engineering development before and after the March 4, 1977, Vrancea, Romania earthquake

    International Nuclear Information System (INIS)

    Georgescu, E.-S.

    2002-01-01

    At 25 years since the of the Vrancea earthquake of March, 4th 1977, we can analyze in an open and critical way its impact on the evolution of earthquake engineering codes and protection policies in Romania. The earthquake (M G-R = 7.2; M w = 7.5), produced 1,570 casualties and more than 11,300 injured persons (90% of the victims in Bucharest), seismic losses were estimated at more then USD 2 billions. The 1977 earthquake represented a significant episode of XXth century in seismic zones of Romania and neighboring countries. The INCERC seismic record of March 4, 1977 put, for the first time, in evidence the spectral content of long period seismic motions of Vrancea earthquakes, the duration, the number of cycles and values of actual accelerations, with important effects of overloading upon flexible structures. The seismic coefficients k s , the spectral curve (the dynamic coefficient β r ) and the seismic zonation map, the requirements in the antiseismic design norms were drastically, changed while the microzonation maps of the time ceased to be used, and the specific Vrancea earthquake recurrence was reconsidered based on hazard studies Thus, the paper emphasises: - the existing engineering knowledge, earthquake code and zoning maps requirements until 1977 as well as seismology and structural lessons since 1977; - recent aspects of implementing of the Earthquake Code P.100/1992 and harmonization with Eurocodes, in conjunction with the specific of urban and rural seismic risk and enforcing policies on strengthening of existing buildings; - a strategic view of disaster prevention, using earthquake scenarios and loss assessments, insurance, earthquake education and training; - the need of a closer transfer of knowledge between seismologists, engineers and officials in charge with disaster prevention public policies. (author)

  5. Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.

    2013-12-01

    Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.

  6. Early Results of Three-Year Monitoring of Red Wood Ants’ Behavioral Changes and Their Possible Correlation with Earthquake Events

    Directory of Open Access Journals (Sweden)

    Gabriele Berberich

    2013-02-01

    Full Text Available Short-term earthquake predictions with an advance warning of several hours or days are currently not possible due to both incomplete understanding of the complex tectonic processes and inadequate observations. Abnormal animal behaviors before earthquakes have been reported previously, but create problems in monitoring and reliability. The situation is different with red wood ants (RWA; Formica rufa-group (Hymenoptera: Formicidae. They have stationary mounds on tectonically active, gas-bearing fault systems. These faults may be potential earthquake areas. For three years (2009–2012, two red wood ant mounds (Formica rufa-group, located at the seismically active Neuwied Basin (Eifel, Germany, have been monitored 24/7 by high-resolution cameras with both a color and an infrared sensor. Early results show that ants have a well-identifiable standard daily routine. Correlation with local seismic events suggests changes in the ants’ behavior hours before the earthquake: the nocturnal rest phase and daily activity are suppressed, and standard daily routine does not resume until the next day. At present, an automated image evaluation routine is being applied to the more than 45,000 hours of video streams. Based on this automated approach, a statistical analysis of the ants’ behavior will be carried out. In addition, other parameters (climate, geotectonic and biological, which may influence behavior, will be included in the analysis.

  7. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  8. Determination Hypocentre and Focal Mechanism Earthquake of Oct 31, 2016 in Bone, South Sulawesi

    Science.gov (United States)

    Altin Massinai, Muhammad; Fawzy Ismullah M, Muhammad

    2018-03-01

    Indonesian Meteorology, Climatology and Geophysics Agency (BMKG) recorded an earthquake with M4.6 on at October 31, 2016 at Bone District, around 80 Km northeast form Makassar, South Sulawesi. The earthquake occurred 18:18:14 local time in 4.7°S, 120°E with depth 10 Km. Seismicity around location predicted caused by activity Walennae fault. We reprocessed earthquake data to determine precise hypocentre location and focal mechanism. The P- and S-wave arrival time got from BMKG used as input HYPOELLIPSE code to determine hypocentre. The results showed that the earthquake occurred 10:18:14.46 UTC in 4.638°S, 119.966°E with depth 24.76 Km. The hypocentre resolved 10 Km fix depth and had lower travel time residual than BMKG result. Focal mechanism determination used Azmtak code based on the first arrival polarity at earthquake waveform manually picked. The result showed a reverse mechanism with strike direction 38°, dip 44°, rake angle 134° on fault plane I and strike direction 164°, dip 60°, rake angle 56° on fault plane II. So, the earthquake which may be related to a reverse East Walennae Fault.

  9. Study on post-earthquake plant evaluation and communication (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    Iijima, Toru; Taoka, Hideto; Yamada, Hiroyuki; Sano, Kyoko

    2011-01-01

    The aims of this study are to establish a post-earthquake plant evaluation method and to develop a communication system for the improving seismic safety regulations as well as encouraging public communication. The Miyagiken-oki earthquake in 2005, Onagawa Nuclear Power Plant shut down automatically. Subsequently, JNES started development of post-earthquake plant evaluation and communication system based on the experience of the cross-check analysis for Onagawa Nuclear Power Plant. The Niigata-ken Chuetsu-oki Earthquake in 2007, the plant situation was not transmitted promptly. The loss of information sharing between local community and related organizations caused the public anxiety. The importance of plant information transmission as well as seismic information gathering were recognized. The proposal for the solution of the information issues were performed by government committee. In this study, the evaluation method for soundness of the main structure and equipment after earthquake event were updated. Moreover, procedure of the post-earthquake plant soundness evaluation and multi-functional seismic information system were developed. In addition, the implementation strategy of the easy-to -understand information dissemination to the public and transparent communication methodology was examined by the Industry-Academia-Government cooperation in the Kashiwazaki-Kariwa region. (author)

  10. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  11. Fault structure in the Nepal Himalaya as illuminated by aftershocks of the 2015 Mw 7.8 Gorkha earthquake recorded by the local NAMASTE network

    Science.gov (United States)

    Ghosh, A.; Mendoza, M.; LI, B.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2017-12-01

    Geometry of the Main Himalayan Thrust (MHT), that accommodates majority of the plate motion between Indian and Eurasian plate, is being debated for a long time. Different models have been proposed; some of them are significantly different from others. Obtaining a well constrained geometry of the MHT is challenging mainly because of the lack of high quality data, inherent low resolution and non-uniqueness of the models. We used a dense local seismic network - NAMASTE - to record and analyze a prolific aftershock sequence following the 2015 Mw 7.8 Gorkha earthquake, and determine geometry of the MHT constrained by precisely located well-constrained aftershocks. We detected and located more than 15,000 aftershocks of the Gorkha earthquake using Hypoinverse and then relatively relocated using HypoDD algorithm. We selected about 7,000 earthquakes that are particularly well constrained to analyze the geometry of the megathrust. They illuminate fault structure in this part of the Himalaya with unprecedented detail. The MHT shows two subhorizontal planes connected by a duplex structure. The duplex structure is characterized by multiple steeply dipping planes. In addition, we used four large-aperture continental-scale seismic arrays at teleseismic distances to backproject high-frequency seismic radiation. Moreover, we combined all arrays to significantly increase the resolution and detectability. We imaged rupture propagation of the mainshock showing complexity near the end of the rupture that might help arresting of the rupture to the east. Furthermore, we continuously scanned teleseismic data for two weeks starting from immediately after the mainshock to detect and locate aftershock activity only using the arrays. Spatial pattern of the aftershocks was similar to the existing global catalog using conventional seismic network and technique. However, we detected more than twice as many aftershocks using the array technique compared to the global catalog including many

  12. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  13. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  14. Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M ≈ 3 earthquakes in 2015 and 2017

    Science.gov (United States)

    Dahm, Torsten; Heimann, Sebastian; Funke, Sigward; Wendt, Siegfried; Rappsilber, Ivo; Bindi, Dino; Plenefisch, Thomas; Cotton, Fabrice

    2018-05-01

    On April 29, 2017 at 0:56 UTC (2:56 local time), an M W = 2.8 earthquake struck the metropolitan area between Leipzig and Halle, Germany, near the small town of Markranstädt. The earthquake was felt within 50 km from the epicenter and reached a local intensity of I 0 = IV. Already in 2015 and only 15 km northwest of the epicenter, a M W = 3.2 earthquake struck the area with a similar large felt radius and I 0 = IV. More than 1.1 million people live in the region, and the unusual occurrence of the two earthquakes led to public attention, because the tectonic activity is unclear and induced earthquakes have occurred in neighboring regions. Historical earthquakes south of Leipzig had estimated magnitudes up to M W ≈ 5 and coincide with NW-SE striking crustal basement faults. We use different seismological methods to analyze the two recent earthquakes and discuss them in the context of the known tectonic structures and historical seismicity. Novel stochastic full waveform simulation and inversion approaches are adapted for the application to weak, local earthquakes, to analyze mechanisms and ground motions and their relation to observed intensities. We find NW-SE striking normal faulting mechanisms for both earthquakes and centroid depths of 26 and 29 km. The earthquakes are located where faults with large vertical offsets of several hundred meters and Hercynian strike have developed since the Mesozoic. We use a stochastic full waveform simulation to explain the local peak ground velocities and calibrate the method to simulate intensities. Since the area is densely populated and has sensitive infrastructure, we simulate scenarios assuming that a 12-km long fault segment between the two recent earthquakes is ruptured and study the impact of rupture parameters on ground motions and expected damage.

  15. Turning the rumor of May 11, 2011 earthquake prediction In Rome, Italy, into an information day on earthquake hazard

    Science.gov (United States)

    Amato, A.; Cultrera, G.; Margheriti, L.; Nostro, C.; Selvaggi, G.; INGVterremoti Team

    2011-12-01

    A devastating earthquake had been predicted for May 11, 2011 in Rome. This prediction was never released officially by anyone, but it grew up in the Internet and was amplified by media. It was erroneously ascribed to Raffaele Bendandi, an Italian self-taught natural scientist who studied planetary motions. Indeed, around May 11, 2011, a planetary alignment was really expected and this contributed to give credibility to the earthquake prediction among people. During the previous months, INGV was overwhelmed with requests for information about this supposed prediction by Roman inhabitants and tourists. Given the considerable mediatic impact of this expected earthquake, INGV decided to organize an Open Day in its headquarter in Rome for people who wanted to learn more about the Italian seismicity and the earthquake as natural phenomenon. The Open Day was preceded by a press conference two days before, in which we talked about this prediction, we presented the Open Day, and we had a scientific discussion with journalists about the earthquake prediction and more in general on the real problem of seismic risk in Italy. About 40 journalists from newspapers, local and national tv's, press agencies and web news attended the Press Conference and hundreds of articles appeared in the following days, advertising the 11 May Open Day. The INGV opened to the public all day long (9am - 9pm) with the following program: i) meetings with INGV researchers to discuss scientific issues; ii) visits to the seismic monitoring room, open 24h/7 all year; iii) guided tours through interactive exhibitions on earthquakes and Earth's deep structure; iv) lectures on general topics from the social impact of rumors to seismic risk reduction; v) 13 new videos on channel YouTube.com/INGVterremoti to explain the earthquake process and give updates on various aspects of seismic monitoring in Italy; vi) distribution of books and brochures. Surprisingly, more than 3000 visitors came to visit INGV

  16. Examination of earthquake Ground Motion in the deep underground environment of Japan

    International Nuclear Information System (INIS)

    Goto, J.; Tsuchi, H.; Mashimo, M.

    2009-01-01

    Among the possible impacts of earthquakes on the geological disposal system, ground motion is not included in the criteria for selecting a candidate repository site because, in general, ground motion deep underground is considered to be smaller than at the surface. Also, after backfilling/closure, the repository moves together with the surrounding rock. We have carried out a detailed examination of earthquake ground motion deep underground using extensive data from recent observation networks to support the above assumption. As a result, it has been reconfirmed that earthquake ground motion deep underground is relatively smaller than at the surface. Through detailed analysis of data, we have identified the following important parameters for evaluating earthquake ground motion deep underground: depth and velocity distribution of the rock formations of interest, the intensity of the short period component of earthquakes and incident angle of seismic waves to the rock formations. (authors)

  17. Full wave field recording of the vertical strain at SAFOD from local, regional and teleseismic earthquakes

    Science.gov (United States)

    Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.

    2017-12-01

    The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.

  18. The Effect of Sonic Booms on Earthquake Warning Systems

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.

    2011-01-01

    Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.

  19. Grid-Based Moment Tensor Inversion Technique by Using 3-D Green's Functions Database: A Demonstration of the 23 October 2004 Taipei Earthquake

    Directory of Open Access Journals (Sweden)

    Shiann-Jong Lee

    2010-01-01

    Full Text Available Moment tensor inversion is a routine procedure to obtain information on an earthquake source for moment magnitude and focal mechanism. However, the inversion quality is usually controlled by factors such as knowledge of an earthquake location and the suitability of a 1-D velocity model used. Here we present an improved method to invert the moment tensor solution for local earthquakes. The proposed method differs from routine centroid-moment-tensor inversion of the Broadband Array in Taiwan for Seismology in three aspects. First, the inversion is repeated in the neighborhood of an earthquake_?s hypocenter on a grid basis. Second, it utilizes Green_?s functions based on a true three-dimensional velocity model. And third, it incorporates most of the input waveforms from strong-motion records. The proposed grid-based moment tensor inversion is applied to a local earthquake that occurred near the Taipei basin on 23 October 2004 to demonstrate its effectiveness and superiority over methods used in previous studies. By using the grid-based moment tensor inversion technique and 3-D Green_?s functions, the earthquake source parameters, including earthquake location, moment magnitude and focal mechanism, are accurately found that are sufficiently consistent with regional ground motion observations up to a frequency of 1.0 Hz. This approach can obtain more precise source parameters for other earthquakes in or near a well-modeled basin and crustal structure.

  20. Earthquakes, May-June 1991

    Science.gov (United States)

    Person, W.J.

    1992-01-01

    One major earthquake occurred during this reporting period. This was a magntidue 7.1 in Indonesia (Minahassa Peninsula) on June 20. Earthquake-related deaths were reported in the Western Caucasus (Georgia, USSR) on May 3 and June 15. One earthquake-related death was also reported El Salvador on June 21. 

  1. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  2. Natural Time, Nowcasting and the Physics of Earthquakes: Estimation of Seismic Risk to Global Megacities

    Science.gov (United States)

    Rundle, John B.; Luginbuhl, Molly; Giguere, Alexis; Turcotte, Donald L.

    2018-02-01

    Natural Time ("NT") refers to the concept of using small earthquake counts, for example of M > 3 events, to mark the intervals between large earthquakes, for example M > 6 events. The term was first used by Varotsos et al. (2005) and later by Holliday et al. (2006) in their studies of earthquakes. In this paper, we discuss ideas and applications arising from the use of NT to understand earthquake dynamics, in particular by use of the idea of nowcasting. Nowcasting differs from forecasting, in that the goal of nowcasting is to estimate the current state of the system, rather than the probability of a future event. Rather than focus on an individual earthquake faults, we focus on a defined local geographic region surrounding a particular location. This local region is considered to be embedded in a larger regional setting from which we accumulate the relevant statistics. We apply the nowcasting idea to the practical development of methods to estimate the current state of risk for dozens of the world's seismically exposed megacities, defined as cities having populations of over 1 million persons. We compute a ranking of these cities based on their current nowcast value, and discuss the advantages and limitations of this approach. We note explicitly that the nowcast method is not a model, in that there are no free parameters to be fit to data. Rather, the method is simply a presentation of statistical data, which the user can interpret. Among other results, we find, for example, that the current nowcast ranking of the Los Angeles region is comparable to its ranking just prior to the January 17, 1994 Northridge earthquake.

  3. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  4. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  5. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  6. Study on post-earthquake plant evaluation and communication (Annual safety research report, JFY 2011)

    International Nuclear Information System (INIS)

    2012-01-01

    The aims of this study are to establish a post-earthquake plant evaluation method and to develop a communication system for the improving seismic safety regulations as well as encouraging public communication. The Miyagiken-oki earthquake in 2005, Onagawa Nuclear Power Plant shut down automatically. Subsequently, JNES started development of post-earthquake plant evaluation and communication system based on the experience of the cross-check analysis for Onagawa Nuclear Power Plant. The Niigata-ken Chuetsu-oki Earthquake in 2007, the plant situation was not transmitted promptly. The loss of information sharing between local community and related organizations caused the public anxiety. The importance of plant information transmission as well as seismic information gathering were recognized. The proposal for the solution of the information issues were performed by government committee, In this study the evaluation method for soundness of the main structure and equipment after earthquake event were updated. Moreover, information dissemination to the public and transparent communication methodology was examined by the Industry-Academia-Government cooperation in the Kashiwazaki-Kariwa region. (author)

  7. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  8. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    Science.gov (United States)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image

  9. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  10. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    Science.gov (United States)

    Serata, S.

    2006-12-01

    basis to disclose an acting earthquake shear stress S at top of the tectonic plate is established at the depth of 600-800m (Window). This concept is supported by outcome of the Japanese government stress measurement made at the epicenter of the Kobe earthquake of 1995, where S is found to be less than 5 MPa. At the same time S at the earthquake active Ashio mining district was found to be 36 MPa (90 percent of maximum S) at Window. These findings led to formulation of a quantitative method proposed to monitor earthquake triggering potential in and around any growing earthquake stress nucleus along shallow active faults. For future earthquake time prediction, the Stressmeter can be applied first to survey general distribution of earthquake shear stress S along major active faults. A site with its shear stress greater than 30 MPa may be identified as a site of growing stress nucleus. A Stressmeter must be permanently buried at the site to monitor future stress growth toward a possible triggering by mathematical analysis of the stress excursion dynamics. This is made possible by the automatic stress measurement capability of the Stressmeter at a frequency up to 100 times per day. The significance of this approach is a possibility to save lives by time-prediction of a forthcoming major earthquake with accuracy in hours and minutes.

  11. St. Louis Area Earthquake Hazards Mapping Project - A Progress Report-November 2008

    Science.gov (United States)

    Karadeniz, D.; Rogers, J.D.; Williams, R.A.; Cramer, C.H.; Bauer, R.A.; Hoffman, D.; Chung, J.; Hempen, G.L.; Steckel, P.H.; Boyd, O.L.; Watkins, C.M.; McCallister, N.S.; Schweig, E.

    2009-01-01

    St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project (SLAEHMP) is producing digital maps that show variability of earthquake hazards, including liquefaction and ground shaking, in the St. Louis area. The maps will be available free via the internet. Although not site specific enough to indicate the hazard at a house-by-house resolution, they can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as the result of an earthquake. Earthquake hazard maps provide one way of conveying such estimates. The U.S. Geological Survey (USGS), which produces earthquake hazard maps for the Nation, is working with local partners to develop detailed maps for urban areas vulnerable to strong ground shaking. These partners, which along with the USGS comprise the SLAEHMP, include the Missouri University of Science and Technology-Rolla (Missouri S&T), Missouri Department of Natural Resources (MDNR), Illinois State Geological Survey (ISGS), Saint Louis University, Missouri State Emergency Management Agency, and URS Corporation. Preliminary hazard maps covering a test portion of the 29-quadrangle St. Louis study area have been produced and are currently being evaluated by the SLAEHMP. A USGS Fact Sheet summarizing this project was produced and almost 1000 copies have been distributed at several public outreach meetings and field trips that have featured the SLAEHMP (Williams and others, 2007). In addition, a USGS website focusing on the SLAEHMP, which provides links to project results and relevant earthquake hazard information, can be found at: http://earthquake.usgs.gov/regional/ceus/urban_map/st_louis/index.php. This progress report summarizes the

  12. The 2009 Samoa-Tonga great earthquake triggered doublet

    Science.gov (United States)

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  13. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  14. The Geological Susceptibility of Induced Earthquakes in the Duvernay Play

    Science.gov (United States)

    Pawley, Steven; Schultz, Ryan; Playter, Tiffany; Corlett, Hilary; Shipman, Todd; Lyster, Steven; Hauck, Tyler

    2018-02-01

    Presently, consensus on the incorporation of induced earthquakes into seismic hazard has yet to be established. For example, the nonstationary, spatiotemporal nature of induced earthquakes is not well understood. Specific to the Western Canada Sedimentary Basin, geological bias in seismogenic activation potential has been suggested to control the spatial distribution of induced earthquakes regionally. In this paper, we train a machine learning algorithm to systemically evaluate tectonic, geomechanical, and hydrological proxies suspected to control induced seismicity. Feature importance suggests that proximity to basement, in situ stress, proximity to fossil reef margins, lithium concentration, and rate of natural seismicity are among the strongest model predictors. Our derived seismogenic potential map faithfully reproduces the current distribution of induced seismicity and is suggestive of other regions which may be prone to induced earthquakes. The refinement of induced seismicity geological susceptibility may become an important technique to identify significant underlying geological features and address induced seismic hazard forecasting issues.

  15. Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence

    Science.gov (United States)

    Borghi, A.; Aoudia, A.; Javed, F.; Barzaghi, R.

    2016-05-01

    Slow-slip events (SSEs) are common at subduction zone faults where large mega earthquakes occur. We report here that one of the best-recorded moderate size continental earthquake, the 2009 April 6 moment magnitude (Mw) 6.3 L'Aquila (Italy) earthquake, was preceded by a 5.9 Mw SSE that originated from the decollement beneath the reactivated normal faulting system. The SSE is identified from a rigorous analysis of continuous GPS stations and occurred on the 12 February and lasted for almost two weeks. It coincided with a burst in the foreshock activity with small repeating earthquakes migrating towards the main-shock hypocentre as well as with a change in the elastic properties of rocks in the fault region. The SSE has caused substantial stress loading at seismogenic depths where the magnitude 4.0 foreshock and Mw 6.3 main shock nucleated. This stress loading is also spatially correlated with the lateral extent of the aftershock sequence.

  16. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  17. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    Science.gov (United States)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of

  18. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    Science.gov (United States)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  19. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  20. Analysis of Seismotektonic Patterns in Sumatra Region Based on the Focal Mechanism of Earthquake Period 1976-2016

    Science.gov (United States)

    Indah, F. P.; Syafriani, S.; Andiyansyah, Z. S.

    2018-04-01

    Sumatra is in an active subduction zone between the indo-australian plate and the eurasian plate and is located at a fault along the sumatra fault so that sumatra is vulnerable to earthquakes. One of the ways to find out the cause of earthquake can be done by identifying the type of earthquake-causing faults based on earthquake of focal mechanism. The data used to identify the type of fault cause of earthquake is the earth tensor moment data which is sourced from global cmt period 1976-2016. The data used in this research using magnitude m ≥ 6 sr. This research uses gmt software (generic mapping tolls) to describe the form of fault. From the research result, it is found that the characteristics of fault field that formed in every region in sumatera island based on data processing and data of earthquake history of 1976-2016 period that the type of fault in sumatera fault is strike slip, fault type in mentawai fault is reverse fault (rising faults) and dip-slip, while the fault type in the subduction zone is dip-slip.

  1. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  2. Homogeneity of small-scale earthquake faulting, stress, and fault strength

    Science.gov (United States)

    Hardebeck, J.L.

    2006-01-01

    Small-scale faulting at seismogenic depths in the crust appears to be more homogeneous than previously thought. I study three new high-quality focal-mechanism datasets of small (M angular difference between their focal mechanisms. Closely spaced earthquakes (interhypocentral distance earthquakes contemporaneously. On these short length scales, the crustal stress orientation and fault strength (coefficient of friction) are inferred to be homogeneous as well, to produce such similar earthquakes. Over larger length scales (???2-50 km), focal mechanisms become more diverse with increasing interhypocentral distance (differing on average by 40-70??). Mechanism variability on ???2- to 50 km length scales can be explained by ralatively small variations (???30%) in stress or fault strength. It is possible that most of this small apparent heterogeneity in stress of strength comes from measurement error in the focal mechanisms, as negligibble variation in stress or fault strength (<10%) is needed if each earthquake is assigned the optimally oriented focal mechanism within the 1-sigma confidence region. This local homogeneity in stress orientation and fault strength is encouraging, implying it may be possible to measure these parameters with enough precision to be useful in studying and modeling large earthquakes.

  3. Antarctic icequakes triggered by the 2010 Maule earthquake in Chile

    Science.gov (United States)

    Peng, Zhigang; Walter, Jacob I.; Aster, Richard C.; Nyblade, Andrew; Wiens, Douglas A.; Anandakrishnan, Sridhar

    2014-09-01

    Seismic waves from distant, large earthquakes can almost instantaneously trigger shallow micro-earthquakes and deep tectonic tremor as they pass through Earth's crust. Such remotely triggered seismic activity mostly occurs in tectonically active regions. Triggered seismicity is generally considered to reflect shear failure on critically stressed fault planes and is thought to be driven by dynamic stress perturbations from both Love and Rayleigh types of surface seismic wave. Here we analyse seismic data from Antarctica in the six hours leading up to and following the 2010 Mw 8.8 Maule earthquake in Chile. We identify many high-frequency seismic signals during the passage of the Rayleigh waves generated by the Maule earthquake, and interpret them as small icequakes triggered by the Rayleigh waves. The source locations of these triggered icequakes are difficult to determine owing to sparse seismic network coverage, but the triggered events generate surface waves, so are probably formed by near-surface sources. Our observations are consistent with tensile fracturing of near-surface ice or other brittle fracture events caused by changes in volumetric strain as the high-amplitude Rayleigh waves passed through. We conclude that cryospheric systems can be sensitive to large distant earthquakes.

  4. 3-D crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, K. H.; Park, J. H.; Park, Y.; Hao, T.; Kang, S. Y.; Kim, H. J.

    2017-12-01

    Located at the eastern margin of the Eurasian continent, the geology and tectonic evolution of the Korean Peninsula are closely related to the rest of the Asian continent. Although the widespread deformation of eastern Asia and its relation to the geology and tectonics of the Korean Peninsula have been extensively studied, the answers to many fundamental questions about the peninsula's history remain inconclusive. The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks maintained by Korea Meteorological Administration and Korea Institute of Geosciences and Mineral Resources. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  5. Use of external fixators for damage-control orthopaedics in natural disasters like the 2005 Pakistan earthquake.

    Science.gov (United States)

    Awais, Syed; Saeed, Ayesha; Ch, Asad

    2014-08-01

    In the 2005 Pakistan earthquake, the great many injured with multiple fractures and open wounds provided a unique opportunity to practice damage-control orthopaedics. External fixators remain a time-tested tools for operating surgeons on such occasions. The locally manufactured, readily available Naseer-Awais (NA) external fixator filled such needs of this disaster with good outcome. This is a retrospective descriptive study of 19,700 patients that presented over seven months to the two centres established by the lead author (SMA) in Muzaffarabad and Mansehra just one night after the 2005 earthquake. A series of local and foreign orthopaedic surgeon teams operated in succession. The computerised patient data collection of 1,145 operations was retrospectively analysed. Of the 19,700 patients presenting to the SMA centres, 50% had limb injuries. Total fracture fixations were 1,145, of which 295 were external fixations: 185 were applied on the lower limb and 90 on upper limb, the majority were applied on tibia. External fixators are valuable damage-control tools in natural disasters and warfare injuries. The locally manufactured NA external fixator served the needs of the many limb injuries during the 2005 Pakistan earthquake.

  6. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    Science.gov (United States)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  7. Quantifying capability of a local seismic network in terms of locations and focal mechanism solutions of weak earthquakes

    Science.gov (United States)

    Fojtíková, Lucia; Kristeková, Miriam; Málek, Jiří; Sokos, Efthimios; Csicsay, Kristián; Zahradník, Jiří

    2016-01-01

    Extension of permanent seismic networks is usually governed by a number of technical, economic, logistic, and other factors. Planned upgrade of the network can be justified by theoretical assessment of the network capability in terms of reliable estimation of the key earthquake parameters (e.g., location and focal mechanisms). It could be useful not only for scientific purposes but also as a concrete proof during the process of acquisition of the funding needed for upgrade and operation of the network. Moreover, the theoretical assessment can also identify the configuration where no improvement can be achieved with additional stations, establishing a tradeoff between the improvement and additional expenses. This paper presents suggestion of a combination of suitable methods and their application to the Little Carpathians local seismic network (Slovakia, Central Europe) monitoring epicentral zone important from the point of seismic hazard. Three configurations of the network are considered: 13 stations existing before 2011, 3 stations already added in 2011, and 7 new planned stations. Theoretical errors of the relative location are estimated by a new method, specifically developed in this paper. The resolvability of focal mechanisms determined by waveform inversion is analyzed by a recent approach based on 6D moment-tensor error ellipsoids. We consider potential seismic events situated anywhere in the studied region, thus enabling "mapping" of the expected errors. Results clearly demonstrate that the network extension remarkably decreases the errors, mainly in the planned 23-station configuration. The already made three-station extension of the network in 2011 allowed for a few real data examples. Free software made available by the authors enables similar application in any other existing or planned networks.

  8. The Global Earthquake Model and Disaster Risk Reduction

    Science.gov (United States)

    Smolka, A. J.

    2015-12-01

    Advanced, reliable and transparent tools and data to assess earthquake risk are inaccessible to most, especially in less developed regions of the world while few, if any, globally accepted standards currently allow a meaningful comparison of risk between places. The Global Earthquake Model (GEM) is a collaborative effort that aims to provide models, datasets and state-of-the-art tools for transparent assessment of earthquake hazard and risk. As part of this goal, GEM and its global network of collaborators have developed the OpenQuake engine (an open-source software for hazard and risk calculations), the OpenQuake platform (a web-based portal making GEM's resources and datasets freely available to all potential users), and a suite of tools to support modelers and other experts in the development of hazard, exposure and vulnerability models. These resources are being used extensively across the world in hazard and risk assessment, from individual practitioners to local and national institutions, and in regional projects to inform disaster risk reduction. Practical examples for how GEM is bridging the gap between science and disaster risk reduction are: - Several countries including Switzerland, Turkey, Italy, Ecuador, Papua-New Guinea and Taiwan (with more to follow) are computing national seismic hazard using the OpenQuake-engine. In some cases these results are used for the definition of actions in building codes. - Technical support, tools and data for the development of hazard, exposure, vulnerability and risk models for regional projects in South America and Sub-Saharan Africa. - Going beyond physical risk, GEM's scorecard approach evaluates local resilience by bringing together neighborhood/community leaders and the risk reduction community as a basis for designing risk reduction programs at various levels of geography. Actual case studies are Lalitpur in the Kathmandu Valley in Nepal and Quito/Ecuador. In agreement with GEM's collaborative approach, all

  9. Magnetic storm free ULF analysis in relation with earthquakes in Taiwan

    Directory of Open Access Journals (Sweden)

    S. Wen

    2012-05-01

    Full Text Available Despite early optimism, pre-earthquake anomalous phenomena can be determined by using enhanced amplitude at the ultra-low-frequency range from geomagnetic data via the Fourier transform. In reality, accuracy of the enhanced amplitude in relation to earthquakes (deduced from time-varied geomagnetic data would be damaged by magnetic storms and/or other unwanted influences resulting from solar activity and/or variations in the ionosphere, respectively. We substitute values of the cross correlation between amplitudes, summarized from the earthquake-related (0.1–0.01 Hz and the comparable (0.01–0.001 Hz frequency bands, for isolated amplitude enhancements as indexes of determination associated with seismo-magnetic anomalies to mitigate disturbance caused by magnetic storms. A station located about 300 km away from the others is also taken into account to further examine whether changes of the cross correlation values are caused by seismo-magnetic anomalies limited within local regions or not. Analytical results show that the values suddenly decrease near epicenters a few days before and after 67% (= 6/9 of earthquakes (M > = 5 in Taiwan between September 2010 and March 2011. Seismo-magnetic signals determined by using the values of cross correlation methods partially improve results yielded from the Fourier transform alone and provide advantageous information of earthquake locations.

  10. Tehuantepec and Morelos-Puebla earthquakes lived and reported by the Servicio Sismológico Nacional, Mexico

    Science.gov (United States)

    Perez-Campos, X.

    2017-12-01

    On September 2017, Mexico experienced two significant inslab earthquakes with only 11 days apart from each other. Both caused severe damage in the epicentral states: Chiapas, Oaxaca, Puebla, Morelos, and Mexico City. In all senses, they tested the capabilities of the Servicio Sismológico Nacional (SSN, Mexican National Seismological Service), from the acquisition, processing, and reporting systems (both, automatic and manual), to social network and media response. In this work, we present the various aspects of the performance of the SSN and the results obtained real-time and the days after. The first earthquake occurred on 8 September within the Gulf of Tehuantepec. The SSN estimated its magnitude as Mww8.2, from W-phase inversion of local and regional data. Forty days later, it has had more than 7750 aftershocks with magnitudes larger than 2.5, making restless to inhabitants in the epicentral area. A preliminary hypo-DD relocation of the aftershocks shows two parallel SE-NW alignments. The mainshock seemed to have triggered seismicity in central Mexico, an effect previously observed by Singh et al. (1998) for coastal earthquakes. Barely 11 days had passed since this major quake. The SSN was in the middle of an intense aftershock sequence and conducting several outreach activities due to the anniversary of the 19 September 1985 (Mw8.0) earthquake, when the second quake hit. SSN located its epicenter at the border of the states of Morelos and Puebla and estimated its magnitude as Mww7.1. In this case, SSN identified only eight aftershocks, which was a similar behavior for previous inslab earthquakes in the region. Important aspects that these events have highlighted are the media and social network responses. Immediately after the first quake, SSN faced misinformation due to viral videos and social media messages predicting massive earthquakes and their relation to a solar storm that took place days before. Outreach to the public and the media became essential

  11. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    Science.gov (United States)

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  12. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    Science.gov (United States)

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  13. Locating Very-Low-Frequency Earthquakes in the San Andreas Fault.

    Science.gov (United States)

    Peña-Castro, A. F.; Harrington, R. M.; Cochran, E. S.

    2016-12-01

    The portion of tectonic fault where rheological properties transtition from brittle to ductile hosts a variety of seismic signals suggesting a range of slip velocities. In subduction zones, the two dominantly observed seismic signals include very-low frequency earthquakes ( VLFEs), and low-frequency earthquakes (LFEs) or tectonic tremor. Tremor and LFE are also commonly observed in transform faults, however, VLFEs have been reported dominantly in subduction zone environments. Here we show some of the first known observations of VLFEs occurring on a plate boundary transform fault, the San Andreas Fault (SAF) between the Cholame-Parkfield segment in California. We detect VLFEs using both permanent and temporary stations in 2010-2011 within approximately 70 km of Cholame, California. We search continous waveforms filtered from 0.02-0.05 Hz, and remove time windows containing teleseismic events and local earthquakes, as identified in the global Centroid Moment Tensor (CMT) and the Northern California Seismic Network (NCSN) catalog. We estimate the VLFE locations by converting the signal into envelopes, and cross-correlating them for phase-picking, similar to procedures used for locating tectonic tremor. We first perform epicentral location using a grid search method and estimate a hypocenter location using Hypoinverse and a shear-wave velocity model when the epicenter is located close to the SAF trace. We account for the velocity contrast across the fault using separate 1D velocity models for stations on each side. Estimated hypocentral VLFE depths are similar to tremor catalog depths ( 15-30 km). Only a few VLFEs produced robust hypocentral locations, presumably due to the difficulty in picking accurate phase arrivals with such a low-frequency signal. However, for events for which no location could be obtained, the moveout of phase arrivals across the stations were similar in character, suggesting that other observed VLFEs occurred in close proximity.

  14. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  15. Near field earthquake sources scenarios and related tsunamis on the French-Italian Riviera (Western Mediterranean

    Science.gov (United States)

    Larroque, Christophe; Ioualalen, Mansour; Scotti, Oona

    2014-05-01

    The large system of thrust faults recently evidenced at the foot of the northern Ligurian margin accommodates the inversion of this ancient passive margin since at least 5 Ma (Messinian times). At depth, these faults are certainly connected to a major northward dipping thrust that accounts for the major part of the seismicity in the northern Ligurian Sea. The deformations of the Quaternary sediments along the faults attest to a compressive tectonic regime consistent with the focal mechanisms of earthquakes. The major event in the area (the Ligurian earthquake, 1887/02/23, Mw 6.7-6.9 and the related tsunami) could result from the activation of part of the Ligurian thrust. Starting from the Ligurian earthquake source characteristics (strike: N55°E, dip: 16°N, length: 35 km, width: 17 km, co-seismic slip: 1.5 m, focal depth: 15 km, Mw 6.9), we have built an exhaustive set of earthquake scenarios involving the 80 km long Ligurian thrust. (1) Two of these earthquake scenarios ruptured respectively the eastern (offshore Imperia) and western (offshore Nice) part of the Ligurian thrust. (2) As these scenarios must scan the range of potential events in accordance with the geology, a second group of scenarios tests an 80 km long rupture of the entire Ligurian thrust with different strikes (N55°E and N70°E) and different widths of the faulting surface (17 km and 27 km) and then co-seismic slips of 2 m and 3.3 m, respectively. As the Ligurian coast is a densely populated and industrial area, the vulnerability is high. We want to stress here that we are more concerned with tsunamis triggered by local earthquakes. This is because, considering their arrival times (a few minutes), the risk prevention cannot be handled by existing tsunami warning system. For all scenarios we evaluate the tsunami coastal impact. The spatial distribution of the maximum wave height (MWH) is provided with a tentative identification of the processes that are responsible for it. The predictions

  16. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    Science.gov (United States)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  17. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  18. Crustal stress evolution of last 700 years in North China and earthquake occurrences

    Science.gov (United States)

    Wan, Y.; Shen, Z.; Gan, W.; Li, T.; Zeng, Y.

    2004-12-01

    We simulate the evolution process of cumulative Coulomb failure stress change (Δ CFS) in North China since 1303, manifested by secular tectonic stress loading and occurrence of large earthquakes. Secular tectonic stress loading is averaged from crustal strain rates derived from GPS. Fault rupture parameters of historical earthquakes are estimated as follows: the earthquake rupture length and the amount of slip are derived based on their statistical relationships with the earthquake intensity distribution and magnitude, calibrated using parameters of instrumental measured contemporary earthquakes. The earthquake rake angle is derived based on geologically determined fault setting parameters and seismically estimated orientation of regional tectonic stresses. Assuming a layered visco-elastic medium, we calculate stress evolution resulted from secular tectonic loading and coseismic and postseismic deformation. 49 M¡Y6.5 earthquakes occurred in North China since 1303. Statistics shows that 39 out of the 48 subsequent events were triggered by positive Δ CFS, yielding a triggering rate of 81.3%. The triggering rate for M¡Y5 earthquakes after the 1976 Tangshan earthquake is 82.1%. The triggering rate is up to 90% if corrections are made for some aftershocks which were wrongly identified as occurred in stress shadow zones because of errors in parameter estimates of historical earthquakes. Our study shows very high correlation between positive Δ CFS and earthquake occurrences. Relatively high Δ CFS in North China at present time is concentrated around the Bohai Sea, the west segment of the Northern Qinling fault, western end of the Zhangjiakou-Bohai seismic zone, and the Taiyuan basin in Shanxi rift zone, suggesting relatively higher earthquake potential in these areas.

  19. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  20. Risk assessment study of fire following earthquake: a case study of petrochemical enterprises in China

    Science.gov (United States)

    Li, J.; Wang, Y.; Chen, H.; Lin, L.

    2013-04-01

    After an earthquake, the fire risk of petrochemistry enterprises is higher than that of other enterprises as it involves production processes with inflammable and explosive characteristics. Using Chinese petrochemical enterprises as the research object, this paper uses a literature review and case summaries to study, amongst others, the classification of petrochemical enterprises, the proportion of daily fires, and fire loss ratio. This paper builds a fire following earthquake risk assessment model of petrochemical enterprises based on a previous earthquake fire hazard model, and the earthquake loss prediction assessment method, calculates the expected loss of the fire following earthquake in various counties and draws a risk map. Moreover, this research identifies high-risk areas, concentrating on the Beijing-Tianjin-Tangshan region, and Shandong, Jiangsu, and Zhejiang provinces. Differences in enterprise type produce different levels and distribution of petrochemical enterprises earthquake fire risk. Furthermore, areas at high risk of post-earthquake fires and with low levels of seismic fortification require extra attention to ensure appropriate mechanisms are in place.

  1. Facilitators and obstacles in pre-hospital medical response to earthquakes: a qualitative study

    Science.gov (United States)

    2011-01-01

    Background Earthquakes are renowned as being amongst the most dangerous and destructive types of natural disasters. Iran, a developing country in Asia, is prone to earthquakes and is ranked as one of the most vulnerable countries in the world in this respect. The medical response in disasters is accompanied by managerial, logistic, technical, and medical challenges being also the case in the Bam earthquake in Iran. Our objective was to explore the medical response to the Bam earthquake with specific emphasis on pre-hospital medical management during the first days. Methods The study was performed in 2008; an interview based qualitative study using content analysis. We conducted nineteen interviews with experts and managers responsible for responding to the Bam earthquake, including pre-hospital emergency medical services, the Red Crescent, and Universities of Medical Sciences. The selection of participants was determined by using a purposeful sampling method. Sample size was given by data saturation. Results The pre-hospital medical service was divided into three categories; triage, emergency medical care and transportation, each category in turn was identified into facilitators and obstacles. The obstacles identified were absence of a structured disaster plan, absence of standardized medical teams, and shortage of resources. The army and skilled medical volunteers were identified as facilitators. Conclusions The most compelling, and at the same time amenable obstacle, was the lack of a disaster management plan. It was evident that implementing a comprehensive plan would not only save lives but decrease suffering and enable an effective praxis of the available resources at pre-hospital and hospital levels. PMID:21575233

  2. Facilitators and obstacles in pre-hospital medical response to earthquakes: a qualitative study.

    Science.gov (United States)

    Djalali, Ahmadreza; Khankeh, Hamidreza; Öhlén, Gunnar; Castrén, Maaret; Kurland, Lisa

    2011-05-16

    Earthquakes are renowned as being amongst the most dangerous and destructive types of natural disasters. Iran, a developing country in Asia, is prone to earthquakes and is ranked as one of the most vulnerable countries in the world in this respect. The medical response in disasters is accompanied by managerial, logistic, technical, and medical challenges being also the case in the Bam earthquake in Iran. Our objective was to explore the medical response to the Bam earthquake with specific emphasis on pre-hospital medical management during the first days. The study was performed in 2008; an interview based qualitative study using content analysis. We conducted nineteen interviews with experts and managers responsible for responding to the Bam earthquake, including pre-hospital emergency medical services, the Red Crescent, and Universities of Medical Sciences. The selection of participants was determined by using a purposeful sampling method. Sample size was given by data saturation. The pre-hospital medical service was divided into three categories; triage, emergency medical care and transportation, each category in turn was identified into facilitators and obstacles. The obstacles identified were absence of a structured disaster plan, absence of standardized medical teams, and shortage of resources. The army and skilled medical volunteers were identified as facilitators. The most compelling, and at the same time amenable obstacle, was the lack of a disaster management plan. It was evident that implementing a comprehensive plan would not only save lives but decrease suffering and enable an effective praxis of the available resources at pre-hospital and hospital levels.

  3. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  4. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    International Nuclear Information System (INIS)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-01-01

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered

  5. Near real-time aftershock hazard maps for earthquakes

    Science.gov (United States)

    McCloskey, J.; Nalbant, S. S.

    2009-04-01

    Stress interaction modelling is routinely used to explain the spatial relationships between earthquakes and their aftershocks. On 28 October 2008 a M6.4 earthquake occurred near the Pakistan-Afghanistan border killing several hundred and causing widespread devastation. A second M6.4 event occurred 12 hours later 20km to the south east. By making some well supported assumptions concerning the source event and the geometry of any likely triggered event it was possible to map those areas most likely to experience further activity. Using Google earth, it would further have been possible to identify particular settlements in the source area which were particularly at risk and to publish their locations globally within about 3 hours of the first earthquake. Such actions could have significantly focused the initial emergency response management. We argue for routine prospective testing of such forecasts and dialogue between social and physical scientists and emergency response professionals around the practical application of these techniques.

  6. Earthquake hypocenter relocation using double difference method in East Java and surrounding areas

    International Nuclear Information System (INIS)

    C, Aprilia Puspita; Nugraha, Andri Dian; Puspito, Nanang T

    2015-01-01

    Determination of precise hypocenter location is very important in order to provide information about subsurface fault plane and for seismic hazard analysis. In this study, we have relocated hypocenter earthquakes in Eastern part of Java and surrounding areas from local earthquake data catalog compiled by Meteorological, Climatological, and Geophysical Agency of Indonesia (MCGA) in time period 2009-2012 by using the double-difference method. The results show that after relocation processes, there are significantly changes in position and orientation of earthquake hypocenter which is correlated with the geological setting in this region. We observed indication of double seismic zone at depths of 70-120 km within the subducting slab in south of eastern part of Java region. Our results will provide useful information for advance seismological studies and seismic hazard analysis in this study

  7. Earthquake hypocenter relocation using double difference method in East Java and surrounding areas

    Energy Technology Data Exchange (ETDEWEB)

    C, Aprilia Puspita [Geophysical Engineering Program, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung (Indonesia); Meteorological, Climatological, and Geophysical Agency (MCGA) of Indonesian, Jakarta (Indonesia); Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id [Geophysical Engineering Program, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung (Indonesia); Puspito, Nanang T [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung (Indonesia)

    2015-04-24

    Determination of precise hypocenter location is very important in order to provide information about subsurface fault plane and for seismic hazard analysis. In this study, we have relocated hypocenter earthquakes in Eastern part of Java and surrounding areas from local earthquake data catalog compiled by Meteorological, Climatological, and Geophysical Agency of Indonesia (MCGA) in time period 2009-2012 by using the double-difference method. The results show that after relocation processes, there are significantly changes in position and orientation of earthquake hypocenter which is correlated with the geological setting in this region. We observed indication of double seismic zone at depths of 70-120 km within the subducting slab in south of eastern part of Java region. Our results will provide useful information for advance seismological studies and seismic hazard analysis in this study.

  8. PROPOSAL FOR IMPROVEMENT OF BUINESS CONTINUITY PLAN (BCP) BASED ON THE LESSONS OF THE GREAT EAST JAPAN EARTHQUAKE

    Science.gov (United States)

    Maruya, Hiroaki

    For most Japanese companies and organizations, the enormous damage of the Great East Japan Earthquake was more than expected. In addition to great tsunami and earthquake motion, the lack of electricity and fuel disturbed to business activities seriously, and they should be considered important constraint factors in future earthquakes. Furthermore, disruption of supply chains also led considerable decline of production in many industries across Japan and foreign countries. Therefore it becomes urgent need for Japanese government and industries to utilize the lessons of the Great Earthquake and execute effective countermeasures, considering great earthquakes such as Tonankai & Nankai earthquakes and Tokyo Inland Earthquakes. Obviously most basic step is improving earthquake-resistant ability of buildings and facilities. In addition the spread of BCP and BCM to enterprises and organizations is indispensable. Based on the lessons, the BCM should include the point of view of the supply chain management more clearly, and emphasize "substitute strategy" more explicitly because a company should survive even if it completely loses its present production base. The central and local governments are requested, in addition to develop their own BCP, to improve related systematic conditions for BCM of the private sectors.

  9. Stress triggering of the Lushan M7. 0 earthquake by the Wenchuan Ms8. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Wu Jianchao

    2013-08-01

    Full Text Available The Wenchuan Ms8. 0 earthquake and the Lushan M7. 0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8. 0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan M7. 0 earthquake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 – 0. 152 bar in the source of the Lushan M7. 0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7. 0 earthquake was most likely triggered by the coulomb failure stress change.

  10. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  11. Studying local earthquakes in the northern Fennoscandian Shield using the data of the POLENET/LAPNET temporary array

    Science.gov (United States)

    Usoltseva, O. A.; Kozlovskaya, E. G.

    2015-12-01

    Earthquakes within areas inside continental plates are still not completely understood and the progress in understanding intraplate seismicity is slow due to short history of instrumental seismology and sparse regional seismic networks in seismically non-active areas. However, knowledge about position and depth of seismogenic structures in such areas is necessary, in order to estimate seismic hazard for such critical facilities as nuclear power plants and nuclear waste deposits. In the present paper we address the problem of seismicity in the intraplate area of northern Fennoscandia using the information on local events recorded by the POLENET/LAPNET temporary seismic array during the International Polar Year 2007-2009. We relocate the seismic events by the program HYPOELLIPS and grid search method. We use the first arrivals of P-waves of local events in order to calculate a 3-D tomographic P-wave velocity model of the uppermost crust (down to 20 km) for selected region inside the study area and show that the velocity heterogeneities in the upper crust correlate well with known tectonic units. We compare position of the velocity heterogeneities with the seismogenic structures delineated by epicentres of relocated events and demonstrate that these structures generally do not correlate with the crustal units formed as a result of crustal evolution in Archean and Paleoproterozoic. On the contrary, they correlate well with the post-glacial faults located in the area of the Baltic-Bothnia Megashear (BBMS). Hypocentres of local events have depths down to 30 km. We also obtain focal mechanisms of two selected events with good data quality. Both focal mechanisms are of strike-slip type in which shift prevails over uplift. Our results demonstrate that Baltic-Bothnia Megashear is an important large-scale, reactivated tectonic structure that has to be taken into account in estimating seismic hazard in northern Fennoscandia.

  12. An overview of the geotechnical damage brought by the 2016 Kumamoto Earthquake, Japan

    Science.gov (United States)

    Hemanta Hazarika,; Takaji Kokusho,; Kayen, Robert E.; Dashti, Shideh; Yutaka Tanoue,; Shuuichi Kuroda and Kentaro Kuribayashi,; Daisuke Matsumoto,; Furuichi, Hideo

    2016-01-01

    The 2016 Kumamoto earthquake with a moment magnitude of 7.0 (Japanese intensity = 7) that struck on April 16 brought devastation in many areas of Kumamoto Prefecture and partly in Oita Prefecture in Kyushu Region, Japan. The earthquake succeeds a foreshock of magnitude 6.5 (Japanese intensity = 7) on April 14. The authors conducted two surveys on the devastated areas: one during April 16-17, and the other during May 11-14. This report summarizes the damage brought to geotechnical structures by the two consecutive earthquakes within a span of twenty-eight hours. This report highlights some of the observed damage and identifies reasons for such damage. The geotechnical challenges towards mitigation of losses from such earthquakes are also suggested.

  13. Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths also resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.

  14. Prevalence and predictors of stress disorders following two earthquakes.

    Science.gov (United States)

    Yuan, Kang Chuan; Ruo Yao, Zhao; Zhen Yu, Shi; Xu Dong, Zhao; Jian Zhong, Yang; Edwards, Jason Glen; Edwards, Glen David

    2013-09-01

    Studies about stress disorders following a disaster have mainly been based on single-event trauma with little emphasis on multiple traumas. This study investigated the prevalence and predictors of stress disorders following two earthquakes in China. Subjects were randomly sampled from 11 villages in rural China. A total of 624 subjects were administered with the 12-item General Health Questionnaire (GHQ-12), Symptom Checklist -90-R (SCL-90-R), Coping Style Scale and Social Support Rating Scale. This was followed by a structural clinical interview using the Chinese translation of the Structured Clinical Interview for Diagnostic and Statistical Manual (DSM)-IV-TR axis 1 disorders (SCID-I-P) for acute stress disorder (ASD) and post-traumatic stress disorder (PTSD). The prevalence of ASD and PTSD was 15% and 29%, respectively. Regression analysis indicated that high intensity of trauma exposure, lower educational level, subjective feeling of economic status and psychological stress after the first earthquake significantly predicted the outcome of PTSD. The study suggested that the prevalence of stress disorders in two earthquakes were higher than that experienced in a single disaster. The intensity of trauma exposure, low educational level, bad subjective feeling of economic status, and psychological stress after the first earthquake could be used to identify survivors at risk of developing PTSD in two earthquakes.

  15. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Science.gov (United States)

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; pchest (45/143 vs. 11/66 patients, RR = 1.9; ptraumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  16. Preliminary observations from the 3 January 2017, MW 5.6 Manu, Tripura (India) earthquake

    Science.gov (United States)

    Debbarma, Jimmi; Martin, Stacey S.; Suresh, G.; Ahsan, Aktarul; Gahalaut, Vineet K.

    2017-10-01

    On 3 January 2017, a MW 5.6 earthquake occurred in Dhalai district in Tripura (India), at 14:39:03 IST (09:09:03 UTC) with an epicentre at 24.018°N ± 4.9 km and 91.964°E ± 4.4 km, and a focal depth of 31 ± 6.0 km. The focal mechanism solution determined after evaluating data from seismological observatories in India indicated a predominantly strike-slip motion on a steeply dipping plane. The estimated focal depth and focal mechanism solution places this earthquake in the Indian plate that lies beneath the overlying Indo-Burmese wedge. As in the 2016 Manipur earthquake, a strong motion record from Shillong, India, appears to suggest site amplification possibly due to topographic effects. In the epicentral region in Tripura, damage assessed from a field survey and from media reports indicated that the macroseismic intensity approached 6-7 EMS with damage also reported in adjacent parts of Bangladesh. A striking feature of this earthquake were the numerous reports of liquefaction that were forthcoming from fluvial locales in the epicentral region in Tripura, and at anomalous distances farther north in Bangladesh. The occurrence of the 2017 Manu earthquake emphasises the hazard posed by intraplate earthquakes in Tripura and in the neighbouring Bengal basin region where records of past earthquakes are scanty or vague, and where the presence of unconsolidated deltaic sediments and poor implementation of building codes pose a significant societal and economic threat during larger earthquakes in the future.

  17. Earthquake Early Warning: A Prospective User's Perspective (Invited)

    Science.gov (United States)

    Nishenko, S. P.; Savage, W. U.; Johnson, T.

    2009-12-01

    With more than 25 million people at risk from high hazard faults in California alone, Earthquake Early Warning (EEW) presents a promising public safety and emergency response tool. EEW represents the real-time end of an earthquake information spectrum which also includes near real-time notifications of earthquake location, magnitude, and shaking levels; as well as geographic information system (GIS)-based products for compiling and visually displaying processed earthquake data such as ShakeMap and ShakeCast. Improvements to and increased multi-national implementation of EEW have stimulated interest in how such information products could be used in the future. Lifeline organizations, consisting of utilities and transportation systems, can use both onsite and regional EEW information as part of their risk management and public safety programs. Regional EEW information can provide improved situational awareness to system operators before automatic system protection devices activate, and allow trained personnel to take precautionary measures. On-site EEW is used for earthquake-actuated automatic gas shutoff valves, triggered garage door openers at fire stations, system controls, etc. While there is no public policy framework for preemptive, precautionary electricity or gas service shutdowns by utilities in the United States, gas shut-off devices are being required at the building owner level by some local governments. In the transportation sector, high-speed rail systems have already demonstrated the ‘proof of concept’ for EEW in several countries, and more EEW systems are being installed. Recently the Bay Area Rapid Transit District (BART) began collaborating with the California Integrated Seismic Network (CISN) and others to assess the potential benefits of EEW technology to mass transit operations and emergency response in the San Francisco Bay region. A key issue in this assessment is that significant earthquakes are likely to occur close to or within the BART

  18. Consideration for standard earthquake vibration (1). The Niigataken Chuetsu-oki Earthquake in 2007

    International Nuclear Information System (INIS)

    Ishibashi, Katsuhiko

    2007-01-01

    Outline of new guideline of quakeproof design standard of nuclear power plant and the standard earthquake vibration are explained. The improvement points of new guideline are discussed on the basis of Kashiwazaki-Kariwa Nuclear Power Plant incidents. The fundamental limits of new guideline are pointed. Placement of the quakeproof design standard of nuclear power plant, JEAG4601 of Japan Electric Association, new guideline, standard earthquake vibration of new guideline, the Niigataken Chuetsu-oki Earthquake in 2007 and damage of Kashiwazaki-Kariwa Nuclear Power Plant are discussed. The safety criteria of safety review system, organization, standard and guideline should be improved on the basis of this earthquake and nuclear plant accident. The general knowledge, 'a nuclear power plant is not constructed in the area expected large earthquake', has to be realized. Preconditions of all nuclear power plants should not cause damage to anything. (S.Y.)

  19. Earthquake Emergency Education in Dushanbe, Tajikistan

    Science.gov (United States)

    Mohadjer, Solmaz; Bendick, Rebecca; Halvorson, Sarah J.; Saydullaev, Umed; Hojiboev, Orifjon; Stickler, Christine; Adam, Zachary R.

    2010-01-01

    We developed a middle school earthquake science and hazards curriculum to promote earthquake awareness to students in the Central Asian country of Tajikistan. These materials include pre- and post-assessment activities, six science activities describing physical processes related to earthquakes, five activities on earthquake hazards and mitigation…

  20. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    Science.gov (United States)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  1. An Earthquake Swarm Search Implemented at Major Convergent Margins to Test for Associated Aseismic Slip

    Science.gov (United States)

    Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.; Brudzinski, M. R.

    2009-12-01

    Recent geodetic analysis indicates earthquake swarms may be associated with slow slip such that earthquakes may only represent a fraction of the moment release. To investigate this potential relationship, we have developed a manual search approach to identify earthquake swarms from a seismicity catalog. Our technique is designed to be insensitive to spatial and temporal scales and the total number of events, as seismicity rates vary in different fault zones. Our first application of this technique on globally recorded earthquakes in South America detects 35 possible swarms of varying spatial scale, with 18 in the megathrust region and 8 along the volcanic arc. Three swarms in the vicinity of the arc appear to be triggered by the Mw=8.5 2001 Peru earthquake, and are examined for possible triggering mechanisms. Coulomb stress modeling suggests that static stress changes due to the earthquake are insufficient to trigger activity, so a dynamic or secondary triggering mechanism is more likely. Volcanic swarms are often associated with ground deformation, either associated with fluid movement (e.g. dike intrusion or chamber inflation or deflation) or fault movement, although these processes are sometimes difficult to differentiate. The only swarm along the arc with sufficient geodetic data that we can process and model is near Ticsani Volcano in Peru. In this case, a swarm of events southeast of the volcano precedes a more typical earthquake sequence beneath the volcano, and evidence for deformation is found in the location of the swarm, but there is no evidence for aseismic slip. Rather, we favor a model where the swarm is associated with deflation of a magma body to the southeast that triggered the earthquake sequence by promoting movement on a fault beneath Ticsani. Since swarms on the subduction interface may indicate aseismic moment release, with a direct impact on hazard, we examine potential relations between swarms and megathrust ruptures. We find evidence that

  2. Evidences of landslide earthquake triggering due to self-excitation process

    Science.gov (United States)

    Bozzano, F.; Lenti, L.; Martino, Salvatore; Paciello, A.; Scarascia Mugnozza, G.

    2011-06-01

    The basin-like setting of stiff bedrock combined with pre-existing landslide masses can contribute to seismic amplifications in a wide frequency range (0-10 Hz) and induce a self-excitation process responsible for earthquake-triggered landsliding. Here, the self-excitation process is proposed to justify the far-field seismic trigger of the Cerda landslide (Sicily, Italy) which was reactivated by the 6th September 2002 Palermo earthquake ( M s = 5.4), about 50 km far from the epicentre. The landslide caused damage to farm houses, roads and aqueducts, close to the village of Cerda, and involved about 40 × 106 m3 of clay shales; the first ground cracks due to the landslide movement formed about 30 min after the main shock. A stress-strain dynamic numerical modelling, performed by FDM code FLAC 5.0, supports the notion that the combination of local geological setting and earthquake frequency content played a fundamental role in the landslide reactivation. Since accelerometric records of the triggering event are not available, dynamic equivalent inputs have been used for the numerical modelling. These inputs can be regarded as representative for the local ground shaking, having a PGA value up to 0.2 m/s2, which is the maximum expected in 475 years, according to the Italian seismic hazard maps. A 2D numerical modelling of the seismic wave propagation in the Cerda landslide area was also performed; it pointed out amplification effects due to both the structural setting of the stiff bedrock (at about 1 Hz) and the pre-existing landslide mass (in the range 3-6 Hz). The frequency peaks of the resulting amplification functions ( A( f)) fit well the H/ V spectral ratios from ambient noise and the H/ H spectral ratios to a reference station from earthquake records, obtained by in situ velocimetric measurements. Moreover, the Fourier spectra of earthquake accelerometric records, whose source and magnitude are consistent with the triggering event, show a main peak at about 1 Hz

  3. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    Science.gov (United States)

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change.

  4. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    Science.gov (United States)

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  5. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  6. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  7. The CATDAT damaging earthquakes database

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  8. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  9. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  10. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  11. ELER software - a new tool for urban earthquake loss assessment

    Science.gov (United States)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M.

    2010-12-01

    ATC-55 (Yang, 2005). An urban loss assessment exercise for a scenario earthquake for the city of Istanbul is conducted and physical and social losses are presented. Damage to the urban environment is compared to the results obtained from similar software, i.e. KOERILoss (KOERI, 2002) and DBELA (Crowley et al., 2004). The European rapid loss estimation tool is expected to help enable effective emergency response, on both local and global level, as well as public information.

  12. Palaeoseismological evidence for the 1570 Ferrara earthquake, Italy

    Science.gov (United States)

    Caputo, R.; Poli, M. E.; Minarelli, L.; Rapti, D.; Sboras, S.; Stefani, M.; Zanferrari, A.

    2016-06-01

    In May 2012, two earthquakes (Mw 6.1 and 5.9) affected the Po Plain, Italy. The strongest shock produced extensive secondary effects associated with liquefaction phenomena. Few weeks after the earthquakes, an exploratory trench was excavated across a levee of the palaeo-Reno reach, where a system of aligned ground ruptures was observed. The investigated site well preserves the geomorphic expression of a fluvial body that mainly formed in the fifteenth to sixteenth centuries as historical sources and radiometric data testify. In the trench several features pinpointed the occurrence of past liquefaction events: (i) dikes filled with overpressured injected sand and associated with vertical displacements have no correspondence with the fractures mapped at the surface; (ii) thick dikes are buried by the plowed level or even by fluvial deposits; (iii) although some of the 2012 ground fractures characterized by vertical displacement and opening occurred in correspondence of thick dikes observed in the trench, sand and water ejection did not occur; (iv) some seismites (load casts) were observed in the trench well above the 2012 water level. The results strongly suggest that shaking has locally occurred in the past producing a sufficient ground motion capable of triggering liquefaction phenomena prior to, and likely stronger than, the May 2012 earthquake. Historical seismicity documents three seismic events that might have been able to generate liquefaction in the broader investigated area. Based on the analysis of their macroseismic fields, the 17 November 1570 Ferrara earthquake is the most likely causative event of the observed palaeoliquefactions.

  13. Learning to Identify Local Flora with Human Feedback (Author’s Manuscript)

    Science.gov (United States)

    2014-06-23

    cally tag images with species names of flora or fauna to sup- port content-based retrieval [10]. Detecting and identifying species could help to infer...Learning to Identify Local Flora with Human Feedback Stefan Lee and David Crandall School of Informatics and Computing Indiana University {steflee...applications that use consumer pho- tos to track the distribution of natural phenomena [8]. But flora identification is a very difficult problem, both

  14. Tradable Earthquake Certificates

    NARCIS (Netherlands)

    Woerdman, Edwin; Dulleman, Minne

    2018-01-01

    This article presents a market-based idea to compensate for earthquake damage caused by the extraction of natural gas and applies it to the case of Groningen in the Netherlands. Earthquake certificates give homeowners a right to yearly compensation for both property damage and degradation of living

  15. Systematic Analysis of Dynamic Earthquake Triggering Using the EarthScope's USArray Data

    Science.gov (United States)

    Cerda, I.; Gonzalez-Huizar, H.; Velasco, A. A.; Kilb, D. L.; Pankow, K. L.

    2011-12-01

    Advances are continually made in our understanding of the physics governing earthquake triggering, yet many questions remain. Here, we investigate if there exists a minimum dynamic stress threshold (i.e., in amplitude, frequency or both) required to trigger remote earthquakes using data collected by >400 stations in EarthScope's USArray Transportable Array (USArray TA) network, supplemented by data from ~100 local seismic network stations when available. We also assess if remote triggering is enhanced if the orientation of the passing seismic waves aligns favorably with the local stress field and/or orientation of faults in the local triggered region. The uniform spacing of the USArray TA stations across the contiguous USA allows us to examine these types of characteristics of remote triggering within a variety of tectonic provinces, background seismicity rates, and within regions of both documented cases of triggered earthquakes and areas of no known triggered earthquakes. Our work focuses on assessing remote triggering capabilities of two teleseismic megatrust events (Japan M=9.0 2011 and Chile M=8.8 2010) and two large regional events (Baja California M=7.2 2010 and Wells Nevada M=6.0 2008). These events provide a range of seismic wave amplitudes and orientations across the footprint of the USArray TA stations. We use the Antelope software to develop an automated detection algorithm that computes the short-term (1 s) average (STA) to long-term (10 s) average (LTA) ratio, which we apply to 5 Hz high pass filtered data. Using a threshold ratio of 3.5 we apply this algorithm to data spanning ±5 hours from the mainshock's P-wave arrival time. We find that for each of our four mainshocks our algorithm nets, on average, hundreds of detections within the 10 hour time windows. Results suggest the orientation of the passing seismic waves can play a role in the high (or low) number of detections in select regions (e.g., western part of Texas), but in other regions there

  16. Adapting Controlled-source Coherence Analysis to Dense Array Data in Earthquake Seismology

    Science.gov (United States)

    Schwarz, B.; Sigloch, K.; Nissen-Meyer, T.

    2017-12-01

    Exploration seismology deals with highly coherent wave fields generated by repeatable controlled sources and recorded by dense receiver arrays, whose geometry is tailored to back-scattered energy normally neglected in earthquake seismology. Owing to these favorable conditions, stacking and coherence analysis are routinely employed to suppress incoherent noise and regularize the data, thereby strongly contributing to the success of subsequent processing steps, including migration for the imaging of back-scattering interfaces or waveform tomography for the inversion of velocity structure. Attempts have been made to utilize wave field coherence on the length scales of passive-source seismology, e.g. for the imaging of transition-zone discontinuities or the core-mantle-boundary using reflected precursors. Results are however often deteriorated due to the sparse station coverage and interference of faint back-scattered with transmitted phases. USArray sampled wave fields generated by earthquake sources at an unprecedented density and similar array deployments are ongoing or planned in Alaska, the Alps and Canada. This makes the local coherence of earthquake data an increasingly valuable resource to exploit.Building on the experience in controlled-source surveys, we aim to extend the well-established concept of beam-forming to the richer toolbox that is nowadays used in seismic exploration. We suggest adapted strategies for local data coherence analysis, where summation is performed with operators that extract the local slope and curvature of wave fronts emerging at the receiver array. Besides estimating wave front properties, we demonstrate that the inherent data summation can also be used to generate virtual station responses at intermediate locations where no actual deployment was performed. Owing to the fact that stacking acts as a directional filter, interfering coherent wave fields can be efficiently separated from each other by means of coherent subtraction. We

  17. The 2006 Pingtung Earthquake Doublet Triggered Seafloor Liquefaction: Revisiting the Evidence with Ultra-High-Resolution Seafloor Mapping

    Science.gov (United States)

    Su, C. C.; Chen, T. T.; Paull, C. K.; Gwiazda, R.; Chen, Y. H.; Lundsten, E. M.; Caress, D. W.; Hsu, H. H.; Liu, C. S.

    2017-12-01

    Since Heezen and Ewing's (1952) classic work on the 1929 Grand Banks earthquake, the damage of submarine cables have provided critical information on the nature of seafloor mass movements or sediment density flows. However, the understanding of the local conditions that lead to particular seafloor failures earthquakes trigger is still unclear. The Decemeber 26, 2006 Pingtung earthquake doublet which occurred offshore of Fangliao Township, southwestern Taiwan damaged 14 submarine cables between Gaoping slope to the northern terminus of the Manila Trench. Local fisherman reported disturbed waters at the head of the Fangliao submarine canyon, which lead to conjectures that eruptions of mud volcanoes which are common off the southwestern Taiwan. Geophysical survey were conducted to evaluate this area which revealed a series of faults, liquefied strata, pockmarks and acoustically transparent sediments with doming structures which may relate to the submarine groundwater discharge. Moreover, shipboard multi-beam bathymetric survey which was conducted at the east of Fangliao submarine canyon head shows over 10 km2 area with maximum depth around 40 m of seafloor subsidence after Pingtung earthquake. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable failed after Pingtung earthquake. The evidences suggests the earthquake triggered widespeard liquefaction and generated debris flows within Fangliao submarine canyon. In May 2017, an IONTU-MBARI Joint Survey Cruise (OR1-1163) was conducted on using MBARI Mapping AUV and miniROV to revisit the area where the cable damaged after Pingtung earthquake. From newly collected ultra-high-resolution (1-m lateral resolution) bathymetry data, the stair-stepped morphology is observed at the edge of canyon. The comet-shaped depressions are located along the main headwall of the seafloor failure. The new detailed bathymetry reveal details which suggest Fangliao submarine canyon head is

  18. What Can Sounds Tell Us About Earthquake Interactions?

    Science.gov (United States)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  19. A global probabilistic tsunami hazard assessment from earthquake sources

    Science.gov (United States)

    Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana

    2017-01-01

    Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.

  20. Van earthquakes (23 October 2011 and 9 November 2011) and performance of masonry and adobe structures

    Science.gov (United States)

    Güney, D.

    2012-11-01

    Earthquakes, which are unavoidable natural phenomena in Turkey, have often produced economic and social disaster. The latest destructive earthquakes happened in Van city. Van, Turkey, earthquakes with M = 7.2 occurred on 23 October 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanlı village) and M = 5.6 on 9 November 2011 epicentered near the town of Edremit south of Van in eastern Turkey and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 4000 buildings collapsed or were seriously damaged. The majority of the damaged structures were seismically insufficient, unreinforced masonry and adobe buildings in rural areas. In this paper, site surveys of the damaged masonry and adobe buildings are presented and the reasons for the caused damages are discussed in detail.