WorldWideScience

Sample records for identify heme protein

  1. Heme Sensor Proteins*

    Science.gov (United States)

    Girvan, Hazel M.; Munro, Andrew W.

    2013-01-01

    Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins. PMID:23539616

  2. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, Halina [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Wojaczynski, Jacek [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Mariusz [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Kroliczewski, Jaroslaw [Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-148 Wroclaw (Poland); Latos-Grazynski, Lechoslaw [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Teresa [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland)

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  3. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    International Nuclear Information System (INIS)

    Wojtowicz, Halina; Wojaczynski, Jacek; Olczak, Mariusz; Kroliczewski, Jaroslaw; Latos-Grazynski, Lechoslaw; Olczak, Teresa

    2009-01-01

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and 1 H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  4. Characterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC transport system.

    Science.gov (United States)

    Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W

    2008-02-26

    Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

  5. The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake.

    Directory of Open Access Journals (Sweden)

    Marcelo L Merli

    2016-01-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport, which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.

  6. Mini Heme-Proteins: Designability of Structure and Diversity of Functions.

    Science.gov (United States)

    Rai, Jagdish

    2017-08-30

    Natural heme proteins may have heme bound to poly-peptide chain as a cofactor via noncovalent forces or heme as a prosthetic group may be covalently bound to the proteins. Nature has used porphyrins in diverse functions like electron transfer, oxidation, reduction, ligand binding, photosynthesis, signaling, etc. by modulating its properties through diverse protein matrices. Synthetic chemists have tried to utilize these molecules in equally diverse industrial and medical applications due to their versatile electro-chemical and optical properties. The heme iron has catalytic activity which can be modulated and enhanced for specific applications by protein matrix around it. Heme proteins can be designed into novel enzymes for sterio specific catalysis ranging from oxidation to reduction. These designed heme-proteins can have applications in industrial catalysis and biosensing. A peptide folds around heme easily due to hydrophobic effect of the large aromatic ring of heme. The directional property of co-ordinate bonding between peptide and metal ion in heme further specifies the structure. Therefore heme proteins can be easily designed for targeted structure and catalytic activity. The central aromatic chemical entity in heme viz. porphyrin is a very ancient molecule. Its presence in the prebiotic soup and in all forms of life suggests that it has played a vital role in the origin and progressive evolution of living organisms. Porphyrin macrocycles are highly conjugated systems composed of four modified pyrrole subunits interconnected at their α -carbon atoms via methine (=CH-) bridges. Initial minimalist models of hemoproteins focused on effect of heme-ligand co-ordinate bonding on chemical reactivity, spectroscopy, electrochemistry and magnetic properties of heme. The great sensitivity of these spectroscopic features of heme to its surrounding makes them extremely useful in structural elucidation of designed heme-peptide complexes. Therefore heme proteins are

  7. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  8. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    International Nuclear Information System (INIS)

    Majuri, R.

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of 35 S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with 35 S. The same two bands were observed if the cell surface proteins were labeled with 125 I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author)

  9. Characterization of Heme Proteins Involved in Microbial Exoelectric Activity and Small Molecule-Sensing

    KAUST Repository

    Vogler, Malvina M.

    2018-01-01

    Heme proteins, also termed cytochromes, are a widespread class of metalloproteins containing an Fe-protoporphyrin IX cofactor. They perform numerous functions in nature such as oxygen-transport by hemoglobin, monooxygenation reactions catalyzed by Cytochrome P-450, and electron transfer reactions during photosynthesis. The differences between proteincofactor binding characteristics and the cofactor environment greatly influence the extensive range of functions. In this dissertation, proteins from the Mtr pathway of Shewanella oneidensis are characterized. These c-type cytochromes contain multiple heme cofactors per protein molecule that covalently attach to the protein amino acid sequence and are involved in electron transfer to extracellular metal oxides during anaerobic conditions. Successful recombinant expression of pathway components MtrC and MtrA is achieved in Escherichia coli. Heme-dependent gel staining and UV/Vis spectroscopy show characteristic c-type cytochrome characteristics. Mass spectrometry confirms that the correct extensive post-translational modifications were performed and the ten heme groups were incorporated per protein of MtrC and MtrA and the correct lipid-anchor was attached to extracellular MtrC. Raman spectroscopy measurements of MtrA provide intriguing structural information and highlight the strong influence of the heme cofactors within the protein structure. Next, an Arabidopsis thaliana protein is analyzed. It was previously identified via a motif search of the plant genome, based on conserved residues in the H4 NOX pocket. Here, the incorporation of a heme b cofactor is confirmed. UV/Vis spectroscopy under anaerobic conditions demonstrates reversible binding of nitric oxide to the heme iron and depicts the previously published characteristic absorption maxima for other H-NOX proteins.

  10. Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.

    Science.gov (United States)

    Rice, Selena L; Preimesberger, Matthew R; Johnson, Eric A; Lecomte, Juliette T J

    2014-12-01

    The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Evaristus Chibunna Mbanefo

    Full Text Available BACKGROUND: We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. METHODOLOGY/PRINCIPAL FINDINGS: Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10(-6 M and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. CONCLUSIONS: The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation, and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted.

  12. Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    Science.gov (United States)

    Mbanefo, Evaristus Chibunna; Kikuchi, Mihoko; Huy, Nguyen Tien; Shuaibu, Mohammed Nasir; Cherif, Mahamoud Sama; Yu, Chuanxin; Wakao, Masahiro; Suda, Yasuo; Hirayama, Kenji

    2014-01-01

    Background We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. Methodology/Principal Findings Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10−6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. Conclusions The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted. PMID:24416467

  13. Identification of the Mitochondrial Heme Metabolism Complex.

    Science.gov (United States)

    Medlock, Amy E; Shiferaw, Mesafint T; Marcero, Jason R; Vashisht, Ajay A; Wohlschlegel, James A; Phillips, John D; Dailey, Harry A

    2015-01-01

    Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex.

  14. Hal Is a Bacillus anthracis Heme Acquisition Protein

    Science.gov (United States)

    Balderas, Miriam A.; Nobles, Christopher L.; Honsa, Erin S.; Alicki, Embriette R.

    2012-01-01

    The metal iron is a limiting nutrient for bacteria during infection. Bacillus anthracis, the causative agent of anthrax and a potential weapon of bioterrorism, grows rapidly in mammalian hosts, which suggests that it efficiently attains iron during infection. Recent studies have uncovered both heme (isd) and siderophore-mediated (asb) iron transport pathways in this pathogen. Whereas deletion of the asb genes results in reduced virulence, the loss of three surface components from isd had no effect, thereby leaving open the question of what additional factors in B. anthracis are responsible for iron uptake from the most abundant iron source for mammals, heme. Here, we describe the first functional characterization of bas0520, a gene recently implicated in anthrax disease progression. bas0520 encodes a single near-iron transporter (NEAT) domain and several leucine-rich repeats. The NEAT domain binds heme, despite lacking a stabilizing tyrosine common to the NEAT superfamily of hemoproteins. The NEAT domain also binds hemoglobin and can acquire heme from hemoglobin in solution. Finally, deletion of bas0520 resulted in bacilli unable to grow efficiently on heme or hemoglobin as an iron source and yielded the most significant phenotype relative to that for other putative heme uptake systems, a result that suggests that this protein plays a prominent role in the replication of B. anthracis in hematogenous environments. Thus, we have assigned the name of Hal (heme-acquisition leucine-rich repeat protein) to BAS0520. These studies advance our understanding of heme acquisition by this dangerous pathogen and justify efforts to determine the mechanistic function of this novel protein for vaccine or inhibitor development. PMID:22865843

  15. Heme transport and erythropoiesis

    Science.gov (United States)

    Yuan, Xiaojing; Fleming, Mark D.; Hamza, Iqbal

    2013-01-01

    In humans, systemic heme homeostasis is achieved via coordinated regulation of heme synthesis, transport and degradation. Although the heme biosynthesis and degradation pathways have been well characterized, the pathways for heme trafficking and incorporation into hemoproteins remains poorly understood. In the past few years, researchers have exploited genetic, cellular and biochemical tools, to identify heme transporters and, in the process, reveal unexpected functions for this elusive group of proteins. However, given the complexity of heme trafficking pathways, current knowledge of heme transporters is fragmented and sometimes contradictory. This review seeks to focus on recent studies on heme transporters with specific emphasis on their functions during erythropoiesis. PMID:23415705

  16. In vivo heme scavenging by Staphylococcus aureus IsdC and IsdE proteins

    International Nuclear Information System (INIS)

    Mack, John; Vermeiren, Christie; Heinrichs, David E.; Stillman, Martin J.

    2004-01-01

    We report the first characterization of the in vivo porphyrin scavenging abilities of two components of a newly discovered heme scavenging system involving iron-regulated surface determinant (Isd) proteins. These proteins are present within the cell envelope of the Gram-positive human pathogen Staphylococcus aureus. IsdC and IsdE, when expressed heterologously in Escherichia coli, efficiently scavenged intracellular heme and resulted in de novo heme synthesis in excess of 100-fold above background. Magnetic circular dichroism analyses showed that the heme-binding properties of the two proteins differ significantly from one another. IsdC bound almost exclusively free-base protoporphyrin IX, whereas the IsdE protein was associated with low spin Fe(III) and Fe(II) heme. These properties provide important insight into the possible mechanisms of iron scavenging from bound heme by Isd proteins

  17. The effect of proteins from animal source foods on heme iron bioavailability in humans.

    Science.gov (United States)

    Pizarro, Fernando; Olivares, Manuel; Valenzuela, Carolina; Brito, Alex; Weinborn, Valerie; Flores, Sebastián; Arredondo, Miguel

    2016-04-01

    Forty-five women (35-45 year) were randomly assigned to three iron (Fe) absorption sub-studies, which measured the effects of dietary animal proteins on the absorption of heme Fe. Study 1 was focused on heme, red blood cell concentrate (RBCC), hemoglobin (Hb), RBCC+beef meat; study 2 on heme, heme+fish, chicken, and beef; and study 3 on heme and heme+purified animal protein (casein, collagen, albumin). Study 1: the bioavailability of heme Fe from Hb was similar to heme only (∼13.0%). RBCC (25.0%) and RBCC+beef (21.3%) were found to be increased 2- and 1.6-fold, respectively, when compared with heme alone (pProteins from animal source foods and their digestion products did not enhance heme Fe absorption. Copyright © 2015. Published by Elsevier Ltd.

  18. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    Science.gov (United States)

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  19. Control of intracellular heme levels: Heme transporters and heme oxygenases

    OpenAIRE

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number...

  20. Control of intracellular heme levels: Heme transporters and Heme oxygenases

    Science.gov (United States)

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. PMID:21238504

  1. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917.

    Science.gov (United States)

    Fiege, Kerstin; Querebillo, Christine Joy; Hildebrandt, Peter; Frankenberg-Dinkel, Nicole

    2018-05-15

    Recombinant production of heme proteins in Escherichia coli is often limited by the availability of heme in the host. Therefore, several methods, including the reconstitution of heme proteins after production but prior to purification or the HPEX system, conferring the ability to take up external heme have been developed and used in the past. Here we describe the use of the apathogenic E. coli strain Nissle 1917 (EcN) as a suitable host for the recombinant production of heme proteins. EcN has an advantage over commonly used lab strains in that it is able to take up heme from the environment through the heme receptor ChuA. Expression of several heme proteins from different prokaryotic sources led to high yield and quantitative incorporation of the cofactor when heme was supplied in the growth medium. Comparative UV-vis and resonance Raman measurements revealed that the method employed has significant influence on heme coordination with the EcN system representing the most native situation. Therefore, the use of EcN as a host for recombinant heme protein production represents an inexpensive and straightforward method to facilitate further investigations of structure and function.

  2. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors.

    Science.gov (United States)

    Hanna, David A; Martinez-Guzman, Osiris; Reddi, Amit R

    2017-04-04

    Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.

  3. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  4. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin.

    Science.gov (United States)

    Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel

    2014-10-01

    Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.

  5. Heme isomers substantially affect heme's electronic structure and function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as du...

  6. The heme-heme oxygenase system: a molecular switch in wound healing.

    NARCIS (Netherlands)

    Wagener, F.A.D.T.G.; Beurden, H.E. van; Hoff, J.W. Von den; Adema, G.J.; Figdor, C.G.

    2003-01-01

    When cells are injured they release their contents, resulting in a local accumulation of free heme proteins and heme. Here, we investigated the involvement of heme and its degrading enzyme heme oxygenase (HO) in the inflammatory process during wound healing. We observed that heme directly

  7. The Extracellular Heme-binding Protein HbpS from the Soil Bacterium Streptomyces reticuli Is an Aquo-cobalamin Binder*

    Science.gov (United States)

    Ortiz de Orué Lucana, Darío; Fedosov, Sergey N.; Wedderhoff, Ina; Che, Edith N.; Torda, Andrew E.

    2014-01-01

    The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl+) but not to other cobalamins. Competition experiments with the H2OCbl+-coordinating ligand CN− and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl+ and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl+. Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins. PMID:25342754

  8. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes

    DEFF Research Database (Denmark)

    Albrecht, Tim; Li, WW; Ulstrup, Jens

    2005-01-01

    On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme...

  9. Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters

    Directory of Open Access Journals (Sweden)

    Norifumi Muraki

    2016-05-01

    Full Text Available Corynebacteria contain a heme uptake system encoded in hmuTUV genes, in which HmuT protein acts as a heme binding protein to transport heme to the cognate transporter HmuUV. The crystal structure of HmuT from Corynebacterium glutamicum (CgHmuT reveals that heme is accommodated in the central cleft with His141 and Tyr240 as the axial ligands and that Tyr240 forms a hydrogen bond with Arg242. In this work, the crystal structures of H141A, Y240A, and R242A mutants were determined to understand the role of these residues for the heme binding of CgHmuT. Overall and heme environmental structures of these mutants were similar to those of the wild type, suggesting that there is little conformational change in the heme-binding cleft during heme transport reaction with binding and the dissociation of heme. A loss of one axial ligand or the hydrogen bonding interaction with Tyr240 resulted in an increase in the redox potential of the heme for CgHmuT to be reduced by dithionite, though the wild type was not reduced under physiological conditions. These results suggest that the heme environmental structure stabilizes the ferric heme binding in CgHmuT, which will be responsible for efficient heme uptake under aerobic conditions where Corynebacteria grow.

  10. A dual component heme biosensor that integrates heme transport and synthesis in bacteria.

    Science.gov (United States)

    Nobles, Christopher L; Clark, Justin R; Green, Sabrina I; Maresso, Anthony W

    2015-11-01

    Bacterial pathogens acquire host iron to power cellular processes and replication. Heme, an iron-containing cofactor bound to hemoglobin, is scavenged by bacterial proteins to attain iron. Methods to measure intracellular heme are laborious, involve complex chemistry, or require radioactivity. Such drawbacks limit the study of the mechanistic steps of heme transport and breakdown. Hypothesizing heme homeostasis could be measured with fluorescent methods, we coupled the conversion of heme to biliverdin IXα (a product of heme catabolism) by heme oxygenase 1 (HO1) with the production of near-infrared light upon binding this verdin by infrared fluorescent protein (IFP1.4). The resultant heme sensor, IFP-HO1, was fluorescent in pathogenic E. coli exposed to heme but not in the absence of the heme transporter ChuA and membrane coupling protein TonB, thereby validating their long-standing proposed role in heme uptake. Fluorescence was abolished in a strain lacking hemE, the central gene in the heme biosynthetic pathway, but stimulated by iron, signifying the sensor reports on intracellular heme production. Finally, an invasive strain of E. coli harboring the sensor was fluorescent during an active infection. This work will allow researchers to expand the molecular toolbox used to study heme and iron acquisition in culture and during infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Energy transfer at the active sites of heme proteins

    International Nuclear Information System (INIS)

    Dlott, D.D.; Hill, J.R.

    1995-01-01

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes

  12. Genome-based analysis of heme biosynthesis and uptake in prokaryotic systems.

    Science.gov (United States)

    Cavallaro, Gabriele; Decaria, Leonardo; Rosato, Antonio

    2008-11-01

    Heme is the prosthetic group of many proteins that carry out a variety of key biological functions. In addition, for many pathogenic organisms, heme (acquired from the host) may constitute a very important source of iron. Organisms can meet their heme demands by taking it up from external sources, by producing the cofactor through a dedicated biosynthetic pathway, or both. Here we analyzed the distribution of proteins specifically involved in the processes of heme biosynthesis and heme uptake in 474 prokaryotic organisms. These data allowed us to identify which organisms are capable of performing none, one, or both processes, based on the similarity to known systems. Some specific instances where one or more proteins along the pathways had unusual modifications were singled out. For two key protein domains involved in heme uptake, we could build a series of structural models, which suggested possible alternative modes of heme binding. Future directions for experimental work are given.

  13. NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis*

    Science.gov (United States)

    Adamczack, Julia; Hoffmann, Martin; Papke, Ulrich; Haufschildt, Kristin; Nicke, Tristan; Bröring, Martin; Sezer, Murat; Weimar, Rebecca; Kuhlmann, Uwe; Hildebrandt, Peter; Layer, Gunhild

    2014-01-01

    Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1. PMID:25204657

  14. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    . Conclusions HemeBIND is the first specialized algorithm used to predict binding residues in protein structures for heme ligands. Extensive experiments indicated that both the structure-based and sequence-based methods have effectively identified heme binding residues while the complementary relationship between them can result in a significant improvement in prediction performance. The value of our method is highlighted through the development of HemeBIND web server that is freely accessible at http://mleg.cse.sc.edu/hemeBIND/.

  15. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans.

    Science.gov (United States)

    Mieno, Ayako; Yamamoto, Yuji; Yoshikawa, Yasunaga; Watanabe, Kiyotaka; Mukai, Takao; Orino, Koichi

    2013-01-01

    Bacterial and mammalian ferritins are known to bind heme. The use of α-casein and biotinylated hemin could be applicable to detection of protein-bound heme and of proteins with heme-binding capacity, respectively. Although commercial horse spleen ferritin and purified horse spleen ferritin (L:H subunit ratio=4) bound to an α-casein-coated plate, and this binding could be inhibited by hemin, recombinant iron-binding protein (rDpr), derived from heme-deficient Streptococcus mutans and expressed in Escherichia coli, did not bind to an α-casein-coated plate. Both horse spleen ferritins bound to α-casein-immobilized beads. Commercial horse spleen ferritin and rDpr showed direct binding to hemin-agarose beads. After preincubation of commercial horse spleen ferritin or rDpr with biotinylated hemin, they showed indirect binding to avidin-immobilized beads through biotinylated hemin. These results demonstrate that α-casein is useful for detection of heme-binding ferritin and that both hemin-agarose and the combination of biotinylated hemin and avidin-beads are useful for detection of the heme-binding capacity of ferritin. In addition, this study also revealed that Dpr, a decameric iron-binding protein, from heme-deficient cells binds heme.

  16. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Halina Wójtowicz

    2009-05-01

    Full Text Available Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-beta fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.

  17. Heme Oxygenase-1 and breast cancer resistance protein protect against heme-induced toxicity

    NARCIS (Netherlands)

    Wagener, Frank A D T G; Dankers, Anita C A; van Summeren, Frank; Scharstuhl, Alwin; van den Heuvel, Jeroen J M W; Koenderink, Jan B; Pennings, Sebastiaan W C; Russel, Frans G M; Masereeuw, R.

    2013-01-01

    Heme is the functional group of diverse hemoproteins and crucial for many cellular processes. However, heme is increasingly recognized as a culprit for a wide variety of pathologies, including sepsis, malaria, and kidney failure. Excess of free heme can be detrimental to tissues by mediating

  18. Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences

    International Nuclear Information System (INIS)

    Nagao, Satoshi; Hirai, Yueki; Kawano, Shin; Imai, Kiyohiro; Suzuki, Akihiro; Yamamoto, Yasuhiko

    2007-01-01

    A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12, 18-trimethyl-porphyrin-atoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using 19 F NMR and the O 2 binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in α- and β- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity in deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O 2 affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O 2 affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O 2 affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A

  19. Heme metabolism in stress regulation and protein production: from Cinderella to a key player

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Petranovic, D.; Nielsen, Jens

    2016-01-01

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer....

  20. Identification of the receptor scavenging hemopexin-heme complexes

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Maniecki, Maciej B; Jacobsen, Christian

    2005-01-01

    and is suggested to facilitate cellular heme metabolism. Using a ligand-affinity approach, we purified the human hemopexin-heme receptor and identified it as the low-density lipoprotein receptor-related protein (LRP)/CD91, a receptor expressed in several cell types including macrophages, hepatocytes, neurons......, and syncytiotrophoblasts. Binding experiments, including Biacore analysis, showed that hemopexin-heme complex formation elicits the high receptor affinity. Uptake studies of radio-labeled hemopexin-heme complex in LRP/CD91-expressing COS cells and confocal microscopy of the cellular processing of fluorescent hemopexin......-heme complexes are removed by a receptor-mediated pathway showing striking similarities to the CD163-mediated haptoglobin-hemoglobin clearance in macrophages. Furthermore, the data indicate a hitherto unknown role of LRP/CD91 in inflammation....

  1. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1989-01-01

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide, and menadione. The known antioxidant properties of heme catabolites taken together with the observation of a high level of induction of the enzyme in cells from an organ not involved in hemoglobin breakdown strongly supports the proposal that the induction of heme oxygenase may be a general response to oxidant stress and constitutes an important cellular defense mechanism against oxidative damage

  2. Transmutation of a heme protein.

    Science.gov (United States)

    Barker, P D; Ferrer, J C; Mylrajan, M; Loehr, T M; Feng, R; Konishi, Y; Funk, W D; MacGillivray, R T; Mauk, A G

    1993-01-01

    Residue Asn57 of bovine liver cytochrome b5 has been replaced with a cysteine residue, and the resulting variant has been isolated from recombinant Escherichia coli as a mixture of four major species: A, BI, BII, and C. A combination of electronic spectroscopy, 1H NMR spectroscopy, resonance Raman spectroscopy, electrospray mass spectrometry, and direct electrochemistry has been used to characterize these four major cytochrome derivatives. The red form A (E(m) = -19 mV) is found to possess a heme group bound covalently through a thioether linkage involving Cys57 and the alpha carbon of the heme 4-vinyl group. Form BI has a covalently bound heme group coupled through a thioether linkage involving the beta carbon of the heme 4-vinyl group. Form BII is similar to BI except that the sulfur involved in the thioether linkage is oxidized to a sulfoxide. The green form C (E(m) = 175 mV) possesses a noncovalently bound prosthetic group with spectroscopic properties characteristic of a chlorin. A mechanism is proposed for the generation of these derivatives, and the implications of these observations for the biosynthesis of cytochrome c and naturally occurring chlorin prosthetic groups are discussed. PMID:8341666

  3. Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron

    International Nuclear Information System (INIS)

    Gardner, L.C.; Cox, T.M.

    1988-01-01

    Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular free heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation

  4. Analysis of the electrochemistry of hemes with Ems spanning 800 mV

    Science.gov (United States)

    Zheng, Zhong; Gunner, M. R.

    2009-01-01

    The free energy of heme reduction in different proteins is found to vary over more than 18 kcal/mol. It is a challenge to determine how proteins manage to achieve this enormous range of Ems with a single type of redox cofactor. Proteins containing 141 unique hemes of a-, b-, and c-type, with bis-His, His-Met, and aquo-His ligation were calculated using Multi-Conformation Continuum Electrostatics (MCCE). The experimental Ems range over 800 mV from −350 mV in cytochrome c3 to 450 mV in cytochrome c peroxidase (vs. SHE). The quantitative analysis of the factors that modulate heme electrochemistry includes the interactions of the heme with its ligands, the solvent, the protein backbone, and sidechains. MCCE calculated Ems are in good agreement with measured values. Using no free parameters the slope of the line comparing calculated and experimental Ems is 0.73 (R2 = 0.90), showing the method accounts for 73% of the observed Em range. Adding a +160 mV correction to the His-Met c-type hemes yields a slope of 0.97 (R2 = 0.93). With the correction 65% of the hemes have an absolute error smaller than 60 mV and 92% are within 120 mV. The overview of heme proteins with known structures and Ems shows both the lowest and highest potential hemes are c-type, whereas the b-type hemes are found in the middle Em range. In solution, bis-His ligation lowers the Em by ≈205 mV relative to hemes with His-Met ligands. The bis-His, aquo-His, and His-Met ligated b-type hemes all cluster about Ems which are ≈200 mV more positive in protein than in water. In contrast, the low potential bis-His c-type hemes are shifted little from in solution, whereas the high potential His-Met c-type hemes are raised by ≈300 mV from solution. The analysis shows that no single type of interaction can be identified as the most important in setting heme electrochemistry in proteins. For example, the loss of solvation (reaction field) energy, which raises the Em, has been suggested to be a major factor in

  5. An ethane-bridged porphyrin dimer as a model of di-heme proteins: inorganic and bioinorganic perspectives and consequences of heme-heme interactions.

    Science.gov (United States)

    Sil, Debangsu; Rath, Sankar Prasad

    2015-10-07

    Interaction between heme centers has been cleverly implemented by Nature in order to regulate different properties of multiheme cytochromes, thereby allowing them to perform a wide variety of functions. Our broad interest lies in unmasking the roles played by heme-heme interactions in modulating different properties viz., metal spin state, redox potential etc., of the individual heme centers using an ethane-bridged porphyrin dimer as a synthetic model of dihemes. The large differences in the structure and properties of the diheme complexes, as compared to the monoheme analogs, provide unequivocal evidence of the role played by heme-heme interactions in the dihemes. This Perspective provides a brief account of our recent efforts to explore these interesting aspects and the subsequent outcomes.

  6. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS)

    Czech Academy of Sciences Publication Activity Database

    Du, Y.; Liu, G.; Yan, Y.; Huang, D.; Luo, W.; Martínková, M.; Man, Petr; Shimizu, T.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 839-852 ISSN 0966-0844 Institutional support: RVO:61388971 Keywords : Heme oxygenase * Heme protein * Hydrogen sulfide Subject RIV: CE - Biochemistry Impact factor: 2.689, year: 2013

  7. Voltammetry and In Situ Scanning Tunnelling Microscopy of De Novo Designed Heme Protein Monolayers on Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Albrecht, Tim; Li, Wu; Haehnel, Wolfgang

    2006-01-01

    to the tunnelling current, apparently due to slow electron transfer kinetics. As a consequence, STM images of heme-containing and heme-free MOP-C did not reveal any notable differences in apparent height or physical extension. The apparent height of heme-containing MOP-C did not show any dependence on the substrate...... potential being varied around the redox potential of the protein. The mere presence of an accessible molecular energy level is not sufficient to result in detectable tunnelling current modulation. (c) 2006 Elsevier B.V. All rights reserved.......In the present work, we report the electrochemical characterization and in situ scanning tunnelling microscopy (STM) studies of monolayers of an artificial de novo designed heme protein MOP-C, covalently immobilized on modified Au(111) surfaces. The protein forms closely packed monolayers, which...

  8. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4).

    Science.gov (United States)

    Monari, Stefano; Battistuzzi, Gianantonio; Borsari, Marco; Di Rocco, Giulia; Martini, Laura; Ranieri, Antonio; Sola, Marco

    2009-10-15

    The recombinant diheme cytochrome c(4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 and its Met64Ala and Met164Ala variants, which feature a hydroxide ion axially bound to the heme iron at the N- and C-terminal domains, respectively, were found to exchange electrons efficiently with a gold electrode coated with a SAM of 11-mercapto-1-undecanoic acid. The mutation-induced removal of the redox equivalence of the two heme groups and changes in the net charge of the protein lobes yield two-centered protein systems with unprecedented properties in the electrode-immobilized state. The heterogeneous and intraheme electron transfer processes were characterized for these species in which the high- and low-potential heme groups are swapped over in the bilobal protein framework and experience a constrained (M64A) and unconstrained (M164A) orientation toward the electrode. The reduction thermodynamics for the native and mutated hemes were measured for the first time for a diheme cytochrome c. In the diffusing regime, they reproduce closely those for the corresponding centers in single-heme class-I cytochromes c, despite the low sequence identity. Larger differences are observed in the thermodynamics of the immobilized species and in the heterogeneous electron transfer rate constants. T-dependent kinetic measurements show that the proteins are positioned approximately 7 A from the HOOC-terminated SAM-coated electrode. Protein-electrode orientation and efficient intraheme ET enable the His,OH(-)-ligated heme A of the immobilized Met64Ala variant to carry out the reductive electrocatalysis of molecular oxygen. This system therefore constitutes a novel two-centered heme-based biocatalytic interface to be exploited for "third-generation" amperometric biosensing.

  9. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    Science.gov (United States)

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  10. The Role of Heme Chirality in the Circular Dichroism of Heme Proteins

    Science.gov (United States)

    Woody, Robert W.; Pescitelli, Gennaro

    2014-07-01

    The rotational strength (R) of the Soret transition in sperm-whale myoglobin (SW Mb), the hemoglobin from Chironomus thummi thummi (CTT Hb), and human hemoglobin (hHb) has been calculated using 20 high-resolution ( Raro > Rpep. For CTT Hb and hHB, the orders were, respectively, Rint > Rpep > Raro and Rint > Raro ≈ Rpep. Human Hb ɑ chains showed the same trend as CTT Hb. Only in the hHb β chains did Raro predominate, with the order Raro > Rint > Rpep. The total predicted Rtot for SW Mb, CTT Hb, and hHb averaged +0.77±0.10 (0.56 - 0.80), -0.37±0.12 (-0.5), and +0.31±0.17 DBM (0.23 - 0.50), respectively. (Values in parentheses are experimental values.) Thus, contrary to the currently accepted view, coupling with aromatic side-chain or peptide transitions is not the dominant factor in the Soret circular dichroism (CD) of these proteins. The Soret CD is dominated by intrinsic CD of the heme chromophore, of which vinyl torsion is the major determinant. This result suggests an explanation for the large effect of heme isomerism on the Soret CD of Mb and Hb. Rotation about the ɑ-γ axis may be associated with large changes in vinyl torsion and thus substantially alter the intrinsic CD, even reversing its sign.

  11. Heme-Protein Active Site Models via Self-Assembly in Water

    NARCIS (Netherlands)

    Fiammengo, R.; Wojciechowski, Kamil; Crego Calama, Mercedes; Figoli, A.; Wessling, Matthias; Reinhoudt, David; Timmerman, P.

    2003-01-01

    Water-soluble models of heme-protein active sites are obtained via the self-assembly of cationic porphyrins 1 and tetrasulfonato calix[4]arene 2 (K1·2 = 105 M-1). Selective binding of ligands either outside or inside the cavity of assemblies 1·2 via coordination to the zinc center has been observed.

  12. Using porphyrin-amino acid pairs to model the electrochemistry of heme proteins: experimental and theoretical investigations.

    Science.gov (United States)

    Samajdar, Rudra N; Manogaran, Dhivya; Yashonath, S; Bhattacharyya, Aninda J

    2018-04-18

    Quasi reversibility in electrochemical cycling between different oxidation states of iron is an often seen characteristic of iron containing heme proteins that bind dioxygen. Surprisingly, the system becomes fully reversible in the bare iron-porphyrin complex: hemin. This leads to the speculation that the polypeptide bulk (globin) around the iron-porphyrin active site in these heme proteins is probably responsible for the electrochemical quasi reversibility. To understand the effect of such polypeptide bulk on iron-porphyrin, we study the interaction of specific amino acids with the hemin center in solution. We choose three representative amino acids-histidine (a well-known iron coordinator in bio-inorganic systems), tryptophan (a well-known fluoroprobe for proteins), and cysteine (a redox-active organic molecule). The interactions of these amino acids with hemin are studied using electrochemistry, spectroscopy, and density functional theory. The results indicate that among these three, the interaction of histidine with the iron center is strongest. Further, histidine maintains the electrochemical reversibility of iron. On the other hand, tryptophan and cysteine interact weakly with the iron center but disturb the electrochemical reversibility by contributing their own redox active processes to the system. Put together, this study attempts to understand the molecular interactions that can control electrochemical reversibility in heme proteins. The results obtained here from the three representative amino acids can be scaled up to build a heme-amino acid interaction database that may predict the electrochemical properties of any protein with a defined polypeptide sequence.

  13. Heme Mobilization in Animals: A Metallolipid's Journey.

    Science.gov (United States)

    Reddi, Amit R; Hamza, Iqbal

    2016-06-21

    Heme is universally recognized as an essential and ubiquitous prosthetic group that enables proteins to carry out a diverse array of functions. All heme-dependent processes, from protein hemylation to heme signaling, require the dynamic and rapid mobilization of heme to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitates that heme mobilization is carefully controlled at the cellular and systemic level. However, the molecules and mechanisms that mediate heme homeostasis are poorly understood. In this Account, we provide a heuristic paradigm with which to conceptualize heme trafficking and highlight the most recent developments in the mechanisms underlying heme trafficking. As an iron-containing tetrapyrrole, heme exhibits properties of both transition metals and lipids. Accordingly, we propose its transport and trafficking will reflect principles gleaned from the trafficking of both metals and lipids. Using this conceptual framework, we follow the flow of heme from the final step of heme synthesis in the mitochondria to hemoproteins present in various subcellular organelles. Further, given that many cells and animals that cannot make heme can assimilate it intact from nutritional sources, we propose that intercellular heme trafficking pathways must exist. This necessitates that heme be able to be imported and exported from cells, escorted between cells and organs, and regulated at the organismal level via a coordinated systemic process. In this Account, we highlight recently discovered heme transport and trafficking factors and provide the biochemical foundation for the cell and systems biology of heme. Altogether, we seek to reconceptualize heme from an exchange inert cofactor buried in hemoprotein active sites to an exchange labile and mobile metallonutrient.

  14. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen

    DEFF Research Database (Denmark)

    Saederup, Kirstine Lindhardt; Stødkilde-Jørgensen, Kristian; Graversen, Jonas Heilskov

    2016-01-01

    Hemolysis is a complication in septic infections with Staphylococcus aureus, which utilizes the released Hb as an iron source. S. aureus can acquire heme in vitro from hemoglobin (Hb) by a heme-sequestering mechanism that involves proteins from the S. aureus iron-regulated surface determinant (Isd...

  15. TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages

    Directory of Open Access Journals (Sweden)

    Mary Philip

    2016-01-01

    Full Text Available Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body’s iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation.

  16. The Chemistry and Biochemistry of Heme c: Functional Bases for Covalent Attachment

    OpenAIRE

    Bowman, Sarah E. J.; Bren, Kara L.

    2008-01-01

    A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histi...

  17. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Science.gov (United States)

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  18. Identification of the heme acquisition system in Vibrio vulnificus M2799.

    Science.gov (United States)

    Kawano, Hiroaki; Miyamoto, Katsushiro; Yasunobe, Megumi; Murata, Masahiro; Yamahata, Eri; Yamaguchi, Ryo; Miyaki, Yuta; Tsuchiya, Takahiro; Tanabe, Tomotaka; Funahashi, Tatsuya; Tsujibo, Hiroshi

    2018-04-01

    Vibrio vulnificus, the causative agent of serious, often fatal, infections in humans, requires iron for its pathogenesis. As such, it obtains iron via both vulnibactin and heme-mediated iron-uptake systems. In this study, we identified the heme acquisition system in V. vulnificus M2799. The nucleotide sequences of the genes encoding heme receptors HupA and HvtA and the ATP-binding cassette (ABC) transport system proteins HupB, HupC, and HupD were determined, and then used in the construction of deletion mutants developed from a Δics strain, which could not synthesize vulnibactin. Growth experiments using these mutants indicated that HupA and HvtA are major and minor heme receptors, respectively. The expressions of two proteins were analyzed by the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Furthermore, complementation analyses confirmed that the HupBCD proteins are the only ABC transport system shared by both the HupA and HvtA receptors. This is the first genetic evidence that the HupBCD proteins are essential for heme acquisition by V. vulnificus. Further investigation showed that hupA, hvtA, and hupBCD are regulated by Fur. The qRT-PCR analysis of the heme receptor genes revealed that HupR, a LysR-family positive transcriptional activator, upregulates the expression of hupA, but not hvtA. In addition, ptrB was co-transcribed with hvtA, and PtrB had no influence on growth in low-iron CM9 medium supplemented with hemin, hemoglobin, or cytochrome C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Molecular characterization of a heme-binding protein of Bacteroides fragilis BE1.

    OpenAIRE

    Otto, B R; Kusters, J G; Luirink, J; de Graaf, F K; Oudega, B

    1996-01-01

    An iron-repressible 44-kDa outer membrane protein plays a crucial role in the acquisition of heme by the anaerobic bacterium Bacteroides fragilis. The DNA sequence of the gene encoding the 44-kDa protein (hupA) was determined. The hupA gene encodes a protein of 431 amino acid residues with a calculated molecular mass of 48,189 Da. The hupA gene is preceded by an open reading frame of 480 bp that probably encodes a protein with a calculated molecular mass of 18,073 Da. hupA and this open readi...

  20. Gas-phase spectroscopy of ferric heme-NO complexes

    DEFF Research Database (Denmark)

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  1. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus*♦

    Science.gov (United States)

    Laakso, Holly A.; Marolda, Cristina L.; Pinter, Tyler B.; Stillman, Martin J.; Heinrichs, David E.

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. PMID:26534960

  2. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus.

    Science.gov (United States)

    Laakso, Holly A; Marolda, Cristina L; Pinter, Tyler B; Stillman, Martin J; Heinrichs, David E

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD-I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Characterization of Heme Proteins Involved in Microbial Exoelectric Activity and Small Molecule-Sensing

    KAUST Repository

    Vogler, Malvina M.

    2018-01-01

    spectrometry confirms that the correct extensive post-translational modifications were performed and the ten heme groups were incorporated per protein of MtrC and MtrA and the correct lipid-anchor was attached to extracellular MtrC. Raman spectroscopy

  4. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    Science.gov (United States)

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries.

  5. Direct electrochemistry and electrocatalysis of heme proteins immobilised in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide composite films in room-temperature ionic liquids.

    Science.gov (United States)

    Wang, Ting; Wang, Lu; Tu, Jiaojiao; Xiong, Huayu; Wang, Shengfu

    2013-12-01

    The direct electrochemistry and electrocatalysis of heme proteins entrapped in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide (CNN-CS-DMF) composite films were investigated in the hydrophilic ionic liquid [bmim][BF4]. The surface morphologies of a representative set of films were characterised via scanning electron microscopy. The proteins immobilised in the composite films were shown to retain their native secondary structure using UV-vis spectroscopy. The electrochemical performance of the heme proteins-CNN-CS-DMF films was evaluated via cyclic voltammetry and chronoamperometry. A pair of stable and well-defined redox peaks was observed for the heme protein films at formal potentials of -0.151 V (HRP), -0.167 V (Hb), -0.155 V (Mb) and -0.193 V (Cyt c) in [bmim][BF4]. Moreover, several electrochemical parameters of the heme proteins were calculated by nonlinear regression analysis of the square-wave voltammetry. The addition of CNN significantly enhanced not only the electron transfer of the heme proteins but also their electrocatalytic activity toward the reduction of H2O2. Low apparent Michaelis-Menten constants were obtained for the heme protein-CNN-CS-DMF films, demonstrating that the biosensors have a high affinity for H2O2. In addition, the resulting electrodes displayed a low detection limit and improved sensitivity for detecting H2O2, which indicates that the biocomposite film can serve as a platform for constructing new non-aqueous biosensors for real detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Science.gov (United States)

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  8. ATP-binding cassette B10 regulates early steps of heme synthesis.

    Science.gov (United States)

    Bayeva, Marina; Khechaduri, Arineh; Wu, Rongxue; Burke, Michael A; Wasserstrom, J Andrew; Singh, Neha; Liesa, Marc; Shirihai, Orian S; Langer, Nathaniel B; Paw, Barry H; Ardehali, Hossein

    2013-07-19

    Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.

  9. TMEM14C is required for erythroid mitochondrial heme metabolism.

    Science.gov (United States)

    Yien, Yvette Y; Robledo, Raymond F; Schultz, Iman J; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J; Cooney, Jeffrey D; Pierce, Eric L; Mohler, Kyla; Dailey, Tamara A; Miyata, Non; Kingsley, Paul D; Garone, Caterina; Hattangadi, Shilpa M; Huang, Hui; Chen, Wen; Keenan, Ellen M; Shah, Dhvanit I; Schlaeger, Thorsten M; DiMauro, Salvatore; Orkin, Stuart H; Cantor, Alan B; Palis, James; Koehler, Carla M; Lodish, Harvey F; Kaplan, Jerry; Ward, Diane M; Dailey, Harry A; Phillips, John D; Peters, Luanne L; Paw, Barry H

    2014-10-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.

  10. Visualization of the role of host heme on the virulence of the heme auxotroph Streptococcus agalactiae.

    Science.gov (United States)

    Joubert, Laetitia; Dagieu, Jean-Baptiste; Fernandez, Annabelle; Derré-Bobillot, Aurélie; Borezée-Durant, Elise; Fleurot, Isabelle; Gruss, Alexandra; Lechardeur, Delphine

    2017-01-16

    Heme is essential for several cellular key functions but is also toxic. Whereas most bacterial pathogens utilize heme as a metabolic cofactor and iron source, the impact of host heme during bacterial infection remains elusive. The opportunist pathogen Streptococcus agalactiae does not synthesize heme but still uses it to activate a respiration metabolism. Concomitantly, heme toxicity is mainly controlled by the HrtBA efflux transporter. Here we investigate how S. agalactiae manages heme toxicity versus benefits in the living host. Using bioluminescent bacteria and heme-responsive reporters for in vivo imaging, we show that the capacity of S. agalactiae to overcome heme toxicity is required for successful infection, particularly in blood-rich organs. Host heme is simultaneously required, as visualized by a generalized infection defect of a respiration-negative mutant. In S. agalactiae, HrtBA expression responds to an intracellular heme signal via activation of the two-component system HssRS. A hssRS promoter-driven intracellular luminescent heme sensor was designed to identify host compartments that supply S. agalactiae with heme. S. agalactiae acquires heme in heart, kidneys, and liver, but not in the brain. We conclude that S. agalactiae response to heme is organ-dependent, and its efflux may be particularly relevant in late stages of infection.

  11. Heme oxygenase activity increases after exercise in healthy volunteers

    Science.gov (United States)

    AbstractHeme oxygenase (HO) is an essential, rate-limiting protein which participates in the catabolism of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge carbon of the heme is eliminated as CO which can be measured as blood carboxyhemoglobin (COHb)....

  12. Cj1386 Is an Ankyrin-Containing Protein Involved in Heme Trafficking to Catalase in Campylobacter jejuni

    Science.gov (United States)

    Flint, Annika; Sun, Yi-Qian

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis. PMID:22081390

  13. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods

    Science.gov (United States)

    Whiten, Shavonn R.; Eggleston, Heather; Adelman, Zach N.

    2018-01-01

    Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests. PMID:29387018

  14. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    Science.gov (United States)

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  15. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    Science.gov (United States)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  16. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Science.gov (United States)

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  17. Mechanisms of heme utilization by Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Helena Lindgren

    Full Text Available Francisella tularensis is a highly virulent facultative intracellular pathogen causing the severe disease tularemia in mammals. As for other bacteria, iron is essential for its growth but very few mechanisms for iron acquisition have been identified. Here, we analyzed if and how F. tularensis can utilize heme, a major source of iron in vivo. This is by no means obvious since the bacterium lacks components of traditional heme-uptake systems. We show that SCHU S4, the prototypic strain of subspecies tularensis, grew in vitro with heme as the sole iron source. By screening a SCHU S4 transposon insertion library, 16 genes were identified as important to efficiently utilize heme, two of which were required to avoid heme toxicity. None of the identified genes appeared to encode components of a potential heme-uptake apparatus. Analysis of SCHU S4 deletion mutants revealed that each of the components FeoB, the siderophore system, and FupA, contributed to the heme-dependent growth. In the case of the former two systems, iron acquisition was impaired, whereas the absence of FupA did not affect iron uptake but led to abnormally high binding of iron to macromolecules. Overall, the present study demonstrates that heme supports growth of F. tularensis and that the requirements for the utilization are highly complex and to some extent novel.

  18. Heme metabolism as an integral part of iron homeostasis

    Directory of Open Access Journals (Sweden)

    Paweł Lipiński

    2014-01-01

    Full Text Available Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S] – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  19. [Heme metabolism as an integral part of iron homeostasis].

    Science.gov (United States)

    Lipiński, Paweł; Starzyński, Rafał R; Styś, Agnieszka; Gajowiak, Anna; Staroń, Robert

    2014-01-02

    Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways--heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S])--is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  20. Effects of 1,2-dibromo-3-chloropropane on hepatic heme synthesis

    International Nuclear Information System (INIS)

    Moody, D.E.; Clawson, G.A.; Piper, W.N.; Smuckler, E.A.

    1984-01-01

    Previous studies showed that 1,2-dibromo-3-chloropropane (DBCP) caused a decrease in hepatic microsomal cytochrome P-450 suggesting that hepatic heme metabolism may be affected by DBCP treatment. Various parameters of hepatic heme synthesis were measured at intervals ranging from 0 to 72 hr in male Sprague-Dawley rats given a single oral dose (200 mg/kg) of DBCP. Incorporation of the radiolabeled heme precursor [delta-14C]aminolevulinic acid (14C-ALA) into liver, protein, extracted heme, and subcellular fractions of liver homogenates was significantly decreased to 75, 58, and 81% of controls, respectively, at 24 hr. At 48 and 72 hr after DBCP treatment, the accumulation of 14C-ALA label after 4 hr in liver homogenates and subcellular fractions was significantly increased in comparison to controls. These changes in 14C-ALA uptake were accompanied by decreases in total liver and microsomal heme, but not mitochondrial heme. Decreases were found in the spectral content of two heme proteins, cytochromes P-450 and b5, and the activity of another heme protein, catalase. Heme oxygenase activity increased to 130, 151, 209, and 186% of control values at 12, 24, 48, and 72 hr after DBCP, respectively. A slight, but significant, increase in ALA-synthetase to 112% of controls occurred at 24 hr, and slight, but significant, decreases in ALA-dehydratase to 90 and 80% of control occurred at 12 and 24 hr, respectively. No significant changes in uroporphyrinogen-1-synthetase or ferrochelatase at the time points tested was noted. The porphyrin content of liver was increased to 130% of control, while the serum and urine porphyrin levels were decreased to 30% of the control values at 24 hr. Liver ALA content was not significantly altered through the time period studied, but serum and urine levels were increased at 24 hr to 176 and 130% of the control values, respectively. In conclusion, the decreases in liver heme proteins following a single oral dose of DBCP are accompanied by

  1. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans.

    Science.gov (United States)

    Hamza, Iqbal; Dailey, Harry A

    2012-09-01

    The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria

    Science.gov (United States)

    Kathiresan, Meena; Martins, Dorival; English, Ann M.

    2014-01-01

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1’s heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification. PMID:25422453

  3. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria.

    Science.gov (United States)

    Kathiresan, Meena; Martins, Dorival; English, Ann M

    2014-12-09

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification.

  4. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    Science.gov (United States)

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. A Heme-based Redox Sensor in the Methanogenic Archaeon Methanosarcina acetivorans*

    Science.gov (United States)

    Molitor, Bastian; Stassen, Marc; Modi, Anuja; El-Mashtoly, Samir F.; Laurich, Christoph; Lubitz, Wolfgang; Dawson, John H.; Rother, Michael; Frankenberg-Dinkel, Nicole

    2013-01-01

    Based on a bioinformatics study, the protein MA4561 from the methanogenic archaeon Methanosarcina acetivorans was originally predicted to be a multidomain phytochrome-like photosensory kinase possibly binding open-chain tetrapyrroles. Although we were able to show that recombinantly produced and purified protein does not bind any known phytochrome chromophores, UV-visible spectroscopy revealed the presence of a heme tetrapyrrole cofactor. In contrast to many other known cytoplasmic heme-containing proteins, the heme was covalently attached via one vinyl side chain to cysteine 656 in the second GAF domain. This GAF domain by itself is sufficient for covalent attachment. Resonance Raman and magnetic circular dichroism data support a model of a six-coordinate heme species with additional features of a five-coordination structure. The heme cofactor is redox-active and able to coordinate various ligands like imidazole, dimethyl sulfide, and carbon monoxide depending on the redox state. Interestingly, the redox state of the heme cofactor has a substantial influence on autophosphorylation activity. Although reduced protein does not autophosphorylate, oxidized protein gives a strong autophosphorylation signal independent from bound external ligands. Based on its genomic localization, MA4561 is most likely a sensor kinase of a two-component system effecting regulation of the Mts system, a set of three homologous corrinoid/methyltransferase fusion protein isoforms involved in methyl sulfide metabolism. Consistent with this prediction, an M. acetivorans mutant devoid of MA4561 constitutively synthesized MtsF. On the basis of our results, we postulate a heme-based redox/dimethyl sulfide sensory function of MA4561 and propose to designate it MsmS (methyl sulfide methyltransferase-associated sensor). PMID:23661702

  6. Syntheses of carbon-13 labeled protoporphyrin-IX for spectroscopic studies of heme proteins

    International Nuclear Information System (INIS)

    Fujinari, E.M.

    1985-01-01

    The development of various methodologies for synthesis of selectively tailored protoporphyrin-IX dimethyl ester are presented. The iron(II) complex of protoporphyrin-IX is the heme, the prosthetic group for Hb, Mb, cytochromes and peroxidases. The significance of this research is to provide direct means to establish definitive carbon-13 NMR assignments of heme proteins in order to study not only the structure-function relationships, but also protein dynamics of these vital systems. Carbon-13 labeling at the beta-vinyl position was first achieved by ozonolysis of protoporphyrin-IX dimethyl ester. Column LC method were used to first isolate 2,4-diformyldeuteroporphyrin-IX dimethyl ester. Concomitantly, monofomyl-monovinyl porphyrins were obtained as a mixture of two isomers. This mixture was separated by MPLC or prep HPLC to afford the isomerically pure products, Spirographis porphyrin dimethyl ester and Iso-Spirographis porphyrin dimethyl ester. A Wittig reaction to each of these porphyrins with 13 C-methyltriphenylphosphonium iodide gave 2,4-bis[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, 2-[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, and the 4-[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, respectively

  7. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  8. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  9. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Science.gov (United States)

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  10. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology.

    Science.gov (United States)

    Igarashi, Kazuhiko; Watanabe-Matsui, Miki

    2014-04-01

    The connection between gene regulation and metabolism is an old issue that warrants revisiting in order to understand both normal as well as pathogenic processes in higher eukaryotes. Metabolites affect the gene expression by either binding to transcription factors or serving as donors for post-translational modification, such as that involving acetylation and methylation. The focus of this review is heme, a prosthetic group of proteins that includes hemoglobin and cytochromes. Heme has been shown to bind to several transcription factors, including Bach1 and Bach2, in higher eukaryotes. Heme inhibits the transcriptional repressor activity of Bach1, resulting in the derepression of its target genes, such as globin in erythroid cells and heme oxygenase-1 in diverse cell types. Since Bach2 is important for class switch recombination and somatic hypermutation of immunoglobulin genes as well as regulatory and effector T cell differentiation and the macrophage function, the heme-Bach2 axis may regulate the immune response as a signaling cascade. We discuss future issues regarding the topic of the iron/heme-gene regulation network based on current understanding of the heme-Bach axis, including the concept of "iron immunology" as the synthesis of the iron metabolism and the immune response.

  11. Heme A synthase in bacteria depends on one pair of cysteinyls for activity.

    Science.gov (United States)

    Lewin, Anna; Hederstedt, Lars

    2016-02-01

    Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    International Nuclear Information System (INIS)

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-01-01

    Highlights: → Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. → Central iron atom of heme and cysteine-114 of STC1 are essential for binding. → STC1 binds Fe 2+ and Fe 3+ heme. → STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys 114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H 2 O 2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  13. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    Science.gov (United States)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  14. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders.

    Directory of Open Access Journals (Sweden)

    Ann eSmith

    2015-06-01

    Full Text Available The goal here is to describe our current understanding of heme metabolism and the deleterious effects of free heme on immunological processes, endothelial function, systemic inflammation, and various end-organ tissues (e.g. kidney, lung, liver, etc., with particular attention paid to the role of hemopexin (HPX. Because heme toxicity is the impetus for much of the pathology in sepsis, sickle cell disease, and other hemolytic conditions, the biological importance and clinical relevance of HPX, the predominant heme binding protein, is reinforced. A perspective on the function of HPX and haptoglobin (Hp is presented, updating how these two proteins and their respective receptors act simultaneously to protect the body in clinical conditions that entail hemolysis and/or systemic intravascular inflammation. Evidence from longitudinal studies in patients supports that HPX plays a Hp-independent role in genetic and non-genetic hemolytic diseases without the need for global Hp depletion. Evidence also supports that HPX has an important role in the prognosis of complex illnesses characterized predominantly by the presence of hemolysis, such as sickle cell disease, sepsis, hemolytic-uremic syndrome, and conditions involving intravascular and extravascular hemolysis, such as that generated by extracorporeal circulation during cardiopulmonary bypass and from blood transfusions. We propose that quantitating the amounts of plasma heme, HPX, Hb-Hp, heme-HPX and heme-albumin levels in various disease states may aid in the diagnosis and treatment of the above-mentioned conditions, which is crucial to developing targeted plasma protein supplementation (i.e. replenishment therapies for patients with heme toxicity due to HPX depletion.

  15. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  16. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae.

    Directory of Open Access Journals (Sweden)

    MaFeng Liu

    Full Text Available Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe³⁺ uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H₂O₂ induced oxidative stress.

  17. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury.

    Science.gov (United States)

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A; Traylor, Amie; Agarwal, Anupam; Matalon, Sadis

    2016-01-10

    Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. This is the first study delineating the role of heme in ALI caused by Br2. The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.

  18. Diamond Blackfan Anemia at the Crossroad between Ribosome Biogenesis and Heme Metabolism

    Directory of Open Access Journals (Sweden)

    Deborah Chiabrando

    2010-01-01

    Full Text Available Diamond-Blackfan anemia (DBA is a rare, pure red-cell aplasia that presents during infancy. Approximately 40% of cases are associated with other congenital defects, particularly malformations of the upper limb or craniofacial region. Mutations in the gene coding for the ribosomal protein RPS19 have been identified in 25% of patients with DBA, with resulting impairment of 18S rRNA processing and 40S ribosomal subunit formation. Moreover, mutations in other ribosomal protein coding genes account for about 25% of other DBA cases. Recently, the analysis of mice from which the gene coding for the heme exporter Feline Leukemia Virus subgroup C Receptor (FLVCR1 is deleted suggested that this gene may be involved in the pathogenesis of DBA. FLVCR1-null mice show a phenotype resembling that of DBA patients, including erythroid failure and malformations. Interestingly, some DBA patients have disease linkage to chromosome 1q31, where FLVCR1 is mapped. Moreover, it has been reported that cells from DBA patients express alternatively spliced isoforms of FLVCR1 which encode non-functional proteins. Herein, we review the known roles of RPS19 and FLVCR1 in ribosome function and heme metabolism respectively, and discuss how the deficiency of a ribosomal protein or of a heme exporter may result in the same phenotype.

  19. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  20. Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction.

    Science.gov (United States)

    Stranava, Martin; Martínková, Markéta; Stiborová, Marie; Man, Petr; Kitanishi, Kenichi; Muchová, Lucie; Vítek, Libor; Martínek, Václav; Shimizu, Toru

    2014-11-01

    The globin-coupled oxygen sensor, YddV, is a heme-based oxygen sensor diguanylate cyclase. Oxygen binding to the heme Fe(II) complex in the N-terminal sensor domain of this enzyme substantially enhances its diguanylate cyclase activity which is conducted in the C-terminal functional domain. Leu65 is located on the heme distal side and is important for keeping the stability of the heme Fe(II)-O2 complex by preventing the entry of the water molecule to the heme complex. In the present study, it was found that (i) Escherichia coli-overexpressed and purified L65N mutant of the isolated heme-bound domain of YddV (YddV-heme) contained the verdoheme iron complex and other modified heme complexes as determined by optical absorption spectroscopy and mass spectrometry; (ii) CO was generated in the reconstituted system composed of heme-bound L65N and NADPH:cytochrome P450 reductase as confirmed by gas chromatography; (iii) CO generation of heme-bound L65N in the reconstituted system was inhibited by superoxide dismutase and catalase. In a concordance with the result, the reactive oxygen species increased the CO generation; (iv) the E. coli cells overexpressing the L65N protein of YddV-heme also formed significant amounts of CO compared to the cells overexpressing the wild type protein; (v) generation of verdoheme and CO was also observed for other mutants at Leu65 as well, but to a lesser extent. Since Leu65 mutations are assumed to introduce the water molecule into the heme distal side of YddV-heme, it is suggested that the water molecule would significantly contribute to facilitating heme oxygenase reactions for the Leu65 mutants. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Heme-based sensors in biological systems.

    Science.gov (United States)

    Rodgers, K R

    1999-04-01

    The past several years have been witness to a staggering rate of advancement in the understanding of how organisms respond to changes in the availability of diatomic molecules that are toxic and/or crucial to survival. Heme-based sensors presently constitute the majority of the proteins known to sense NO, O2 and CO and to initiate the chemistry required to adapt to changes in their availabilities. Knowledge of the three characterized members of this class, soluble guanylate cyclase, FixL and CooA, has grown substantially during the past year. The major advances have resulted from a broad range of approaches to elucidation of both function and mechanism. They include growth in the understanding of the interplay between the heme and protein in soluble guanylate cyclase, as well as alternate means for its stimulation. Insight into the O2-induced structural changes in FixL has been supplied by the single crystal structure of the heme domain of Bradyrhizobium japonicum. Finally, the ligation environment and ligand interchange that facilitates CO sensing by CooA has been established by spectroscopic and mutagenesis techniques.

  2. Heme A synthesis and CcO activity are essential for Trypanosoma cruzi infectivity and replication.

    Science.gov (United States)

    Merli, Marcelo L; Cirulli, Brenda A; Menéndez-Bravo, Simón M; Cricco, Julia A

    2017-06-27

    Trypanosoma cruzi , the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa 3 (C c O) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic C c O, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 ( Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi , confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more C c O activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on C c O activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being C c O an essential terminal oxidase. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  3. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    Science.gov (United States)

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  4. Heme synthesis in the lead-intoxicated mouse embryo

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, G B; Maes, J

    1978-02-01

    Incorporation of /sup 55/Fe and of (/sup 14/C) glycine was studied in control embryos and mothers and in those which had received lead in the diet from day 7 of pregnancy. Incorporation of Fe into heme of embryonic liver which increases markedly for controls on day 17 of pregnancy was depressed greatly and showed no such increase in lead-intoxicated embryos. These embryos were retarded in growth but had normal heme concentrations in body and liver. Incorporation of glycine into embryonic heme and proteins was not affected. Data on incorporation in the mothers are also presented. It is thought that the impaired synthesis of heme in lead-intoxicated embryos limits their body growth during the late phase of pregnancy.

  5. Heme Recognition By a Staphylococcus Aureus IsdE

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  6. Heme synthesis in normal mouse liver and mouse liver tumors

    International Nuclear Information System (INIS)

    Stout, D.L.; Becker, F.F.

    1990-01-01

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors 55 FeCl3 and [2- 14 C]glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated [2-14C]glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool

  7. A Heme-Sensing Mechanism in the Translational Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    Science.gov (United States)

    Soto, Iliana C.; Fontanesi, Flavia; Myers, Richard S.; Hamel, Patrice; Barrientos, Antoni

    2012-01-01

    Heme plays fundamental roles as cofactor and signaling molecule in multiple pathways devoted to oxygen sensing and utilization in aerobic organisms. For cellular respiration, heme serves as a prosthetic group in electron transfer proteins and redox enzymes. Here we report that in the yeast Saccharomyces cerevisiae a heme-sensing mechanism translationally controls the biogenesis of cytochrome c oxidase (COX), the terminal mitochondrial respiratory chain enzyme. We show that Mss51, a COX1 mRNA-specific translational activator and Cox1 chaperone, which coordinates Cox1 synthesis in mitoribosomes with its assembly in COX, is a heme-binding protein. Mss51 contains two heme regulatory motifs or Cys-Pro-X domains located in its N-terminus. Using a combination of in vitro and in vivo approaches, we have demonstrated that these motifs are important for heme binding and efficient performance of Mss51 functions. We conclude that heme sensing by Mss51 regulates COX biogenesis and aerobic energy production. PMID:23217259

  8. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Heme-coordinated histidine residues form non-specific functional "ferritin-heme" peroxidase system: Possible and partial mechanistic relevance to oxidative stress-mediated pathology in neurodegenerative diseases.

    Science.gov (United States)

    Esmaeili, Sajjad; Kooshk, Mohammad Reza Ashrafi; Asghari, Seyyed Mohsen; Khodarahmi, Reza

    2016-10-01

    Ferritin is a giant protein composed of 24 subunits which is able to sequester up to 4500 atoms of iron. We proposed two kinds of heme binding sites in mammalian ferritins and provided direct evidence for peroxidase activity of heme-ferritin, since there is the possibility that "ferritin-heme" systems display unexpected catalytic behavior like heme-containing enzymes. In the current study, peroxidase activity of heme-bound ferritin was studied using TMB(1), l-DOPA, serotonin, and dopamine, in the presence of H2O2, as oxidant substrate. The catalytic oxidation of TMB was consistent with first-order kinetics with respect to ferritin concentration. Perturbation of the binding affinity and catalytic behavior of heme-bound His-modified ferritin were also documented. We also discuss the importance of the peroxidase-/nitrative-mediated oxidation of vital molecules as well as ferritin-induced catalase inhibition using in vitro experimental system. Uncontrollable "heme-ferritin"-based enzyme activity as well as up-regulation of heme and ferritin may inspire that some oxidative stress-mediated cytotoxic effects in AD-affected cells could be correlated to ferritin-heme interaction and/or ferritin-induced catalase inhibition and describe its contribution as an important causative pathogenesis mechanism in some neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Heme oxygenase-1 comes back to endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  11. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    Science.gov (United States)

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  12. Alteration of the Regiospecificity of Human Heme Oxygenase-1 by Unseating of the Heme but not Disruption of the Distal Hydrogen Bonding Network†

    Science.gov (United States)

    Wang, Jinling; Evans, John P.; Ogura, Hiroshi; La Mar, Gerd N.; Ortiz de Montellano, Paul R.

    2008-01-01

    Heme oxygenase regiospecifically oxidizes heme at the α-meso position to give biliverdin IXα, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry, but partially shifts the oxidation to the β/δ-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by ~90°, causes a slight loss of regiospecificity, but combined with the R183E and K18E mutations results primarily in β/δ-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network, impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane. PMID:16388581

  13. AN ELISA ASSAY FOR HEME OXYGENASE (HO-1)

    Science.gov (United States)

    An ELISA assay for heme oxygenase (HO-l ) Abstract A double antibody capture ELISA for the HO-l protein has been developed to separately quantitate HO-I protein. The use of 2.5% NP40 detergent greatly assists in freeing HO-l protein from membranes and/or other cel...

  14. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.

    Science.gov (United States)

    Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-01-01

    Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.

  15. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  16. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg

    2007-01-01

    and characterization of water-soluble gold nanoparticles (AuNPs) with core diameter 3-4 nm and their application for the enhancement of long-range interfacial ET of a heme protein. Gold nanoparticles were electrostatically conjugated with cyt c to form nanoparticle-protein hybrid ET systems with well...... and the protein molecule. When the nanoparticle-protein conjugates are assembled on Au(111) surfaces, long-range interfacial ET across a physical distance of over 50 A via the nanoparticle becomes feasible. Moreover, significant enhancement of the interfacial ET rate by more than an order of magnitude compared...... with that of cyt c in the absence of AuNPs is observed. AuNPs appear to serve as excellent ET relays, most likely by facilitating the electronic coupling between the protein redox center and the electrode surface....

  17. Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis

    OpenAIRE

    Jacob E. Choby; Caroline M. Grunenwald; Arianna I. Celis; Svetlana Y. Gerdes; Jennifer L. DuBois; Eric P. Skaar; Kimberly A. Kline

    2018-01-01

    Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme hom...

  18. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Science.gov (United States)

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  19. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    International Nuclear Information System (INIS)

    Souza, C.F.; Carneiro, A.B.; Silveira, A.B.; Laranja, G.A.T.; Silva-Neto, M.A.C.; Costa, S.C. Goncalves da; Paes, M.C.

    2009-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  20. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  1. Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix

    International Nuclear Information System (INIS)

    Xu Xin; Tian Bozhi; Zhang Song; Kong Jilie; Zhao Dongyuan; Liu Baohong

    2004-01-01

    The highly ordered mesoporous niobium oxides fabricated by self-adjusted synthesis have been used as immobilization matrices of heme proteins including Cytochrome c (Cyt C) and horseradish peroxidase (HRP) for their large surface areas, narrow pore size distributions and good biocompatibility. The assembling process was investigated by cyclic voltammetry, amperometry and potential step chronoamperometry in details. Niobium oxide matrices with different structural features were templated with the surfactants and the selectivity of these hosts to specific protein characteristics was determined. It was observed that proteins could be readily assembled onto the mesoporous films with detectable retention of bioactivity. The Nb 2 O 5 matrix with a tailored pore size and counterpoised surface charge to that of hemes allowed for a maximum adsorption capacity of biomolecules. The adsorbed redox molecules exhibited direct electrochemical behavior and gave a pair of well-defined quasi-reversible cyclic voltammetric peaks, indicating that the mesoporous niobium oxide matrix could effectively promote the direct electron transfer between the protein redox site adsorbed and the electrode surface. The midpoint redox potentials of adsorbed Cyt-c and HRP were 14 and -122 mV versus SCE, respectively. Furthermore, the immobilized HRP onto Nb 2 O 5 derived electrode presented good bioactivity and thus was fabricated as an amperometric biosensor for the response of hydrogen peroxide in the range from 0.1 μM to 0.1 mM

  2. Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras.

    Science.gov (United States)

    Braeuning, Albert; Schwarz, Michael

    2010-11-01

    Cytochrome P450 (CYP) hemoproteins play an important role in hepatic biotransformation. Recently, β-catenin and Ha-ras signaling have been identified as players controlling transcription of various CYP genes in mouse liver. The aim of the present study was to analyze the role of β-catenin and Ha-ras in the regulation of heme synthesis. Heme synthesis-related gene expression was analyzed in normal liver, in transgenic mice expressing activated β-catenin or Ha-ras, and in hepatomas. Regulation of the aminolevulinate dehydratase promoter was studied in vitro. Elevated expression of mRNAs and proteins involved in heme biosynthesis was linked to β-catenin activation in perivenous hepatocytes, in transgenic hepatocytes, and in hepatocellular tumors. Stimulation of the aminolevulinate dehydratase promoter by β-catenin was independent of the β-catenin/T-cell-specific transcription factor dimer. By contrast, activation of Ha-ras repressed heme synthesis-related gene expression. The present data suggest that β-catenin enhances the expression of both CYPs and heme synthesis-related genes, thus coordinating the availability of CYP apoprotein and its prosthetic group heme. The reciprocal regulation of heme synthesis by β-catenin and Ha-ras-dependent signaling supports our previous hypothesis that antagonistic action of these pathways plays a major role in the control of zonal gene expression in healthy mouse liver and aberrant expression patterns in hepatocellular tumors.

  3. Characterization of hemin-binding protein 35 (HBP35 in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization

    Directory of Open Access Journals (Sweden)

    Abiko Yoshimitsu

    2010-05-01

    Full Text Available Abstract Background The periodontal pathogen Porphyromonas gingivalis is an obligate anaerobe that requires heme for growth. To understand its heme acquisition mechanism, we focused on a hemin-binding protein (HBP35 protein, possessing one thioredoxin-like motif and a conserved C-terminal domain, which are proposed to be involved in redox regulation and cell surface attachment, respectively. Results We observed that the hbp35 gene was transcribed as a 1.1-kb mRNA with subsequent translation resulting in three proteins with molecular masses of 40, 29 and 27 kDa in the cytoplasm, and one modified form of the 40-kDa protein on the cell surface. A recombinant 40-kDa HBP35 exhibited thioredoxin activity in vitro and mutation of the two putative active site cysteine residues abolished this activity. Both recombinant 40- and 27-kDa proteins had the ability to bind hemin, and growth of an hbp35 deletion mutant was substantially retarded under hemin-depleted conditions compared with growth of the wild type under the same conditions. Conclusion P. gingivalis HBP35 exhibits thioredoxin and hemin-binding activities and is essential for growth in hemin-depleted conditions suggesting that the protein plays a significant role in hemin acquisition.

  4. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Ana B. Walter-Nuno

    2018-02-01

    Full Text Available Iron is an essential element for most organisms However, free iron and heme, its complex with protoporphyrin IX, can be extremely cytotoxic, due to the production of reactive oxygen species, eventually leading to oxidative stress. Thus, eukaryotic cells control iron availability by regulating its transport, storage and excretion as well as the biosynthesis and degradation of heme. In the genome of Rhodnius prolixus, the vector of Chagas disease, we identified 36 genes related to iron and heme metabolism We performed a comprehensive analysis of these genes, including identification of homologous genes described in other insect genomes. We observed that blood-meal modulates the expression of ferritin, Iron Responsive protein (IRP, Heme Oxygenase (HO and the heme exporter Feline Leukemia Virus C Receptor (FLVCR, components of major pathways involved in the regulation of iron and heme metabolism, particularly in the posterior midgut (PM, where an intense release of free heme occurs during the course of digestion. Knockdown of these genes impacted the survival of nymphs and adults, as well as molting, oogenesis and embryogenesis at different rates and time-courses. The silencing of FLVCR caused the highest levels of mortality in nymphs and adults and reduced nymph molting. The oogenesis was mildly affected by the diminished expression of all of the genes whereas embryogenesis was dramatically impaired by the knockdown of ferritin expression. Furthermore, an intense production of ROS in the midgut of blood-fed insects occurs when the expression of ferritin, but not HO, was inhibited. In this manner, the degradation of dietary heme inside the enterocytes may represent an oxidative challenge that is counteracted by ferritins, conferring to this protein a major antioxidant role. Taken together these results demonstrate that the regulation of iron and heme metabolism is of paramount importance for R. prolixus physiology and imbalances in the levels of

  5. Cloning and Characterization of an Outer Membrane Protein of Vibrio vulnificus Required for Heme Utilization: Regulation of Expression and Determination of the Gene Sequence

    Science.gov (United States)

    Litwin, Christine M.; Byrne, Burke L.

    1998-01-01

    Vibrio vulnificus is a halophilic, marine pathogen that has been associated with septicemia and serious wound infections in patients with iron overload and preexisting liver disease. For V. vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. V. vulnificus is able to use host iron sources such as hemoglobin and heme. We previously constructed a fur mutant of V. vulnificus which constitutively expresses at least two iron-regulated outer membrane proteins, of 72 and 77 kDa. The N-terminal amino acid sequence of the 77-kDa protein purified from the V. vulnificus fur mutant had 67% homology with the first 15 amino acids of the mature protein of the Vibrio cholerae heme receptor, HutA. In this report, we describe the cloning, DNA sequence, mutagenesis, and analysis of transcriptional regulation of the structural gene for HupA, the heme receptor of V. vulnificus. DNA sequencing of hupA demonstrated a single open reading frame of 712 amino acids that was 50% identical and 66% similar to the sequence of V. cholerae HutA and similar to those of other TonB-dependent outer membrane receptors. Primer extension analysis localized one promoter for the V. vulnificus hupA gene. Analysis of the promoter region of V. vulnificus hupA showed a sequence homologous to the consensus Fur box. Northern blot analysis showed that the transcript was strongly regulated by iron. An internal deletion in the V. vulnificus hupA gene, done by using marker exchange, resulted in the loss of expression of the 77-kDa protein and the loss of the ability to use hemin or hemoglobin as a source of iron. The hupA deletion mutant of V. vulnificus will be helpful in future studies of the role of heme iron in V. vulnificus pathogenesis. PMID:9632577

  6. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Science.gov (United States)

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  7. Genetic Variability of the Heme Uptake System among Different Strains of the Fish Pathogen Vibrio anguillarum: Identification of a New Heme Receptor

    Science.gov (United States)

    Mouriño, Susana; Rodríguez-Ares, Isabel; Osorio, Carlos R.; Lemos, Manuel L.

    2005-01-01

    The ability to utilize heme compounds as iron sources was investigated in Vibrio anguillarum strains belonging to serotypes O1 to O10. All strains, regardless of their serotype or isolation origin could utilize hemin and hemoglobin as sole iron sources. Similarly, all of the isolates could bind hemin and Congo red, and this binding was mediated by cell envelope proteins. PCR and Southern hybridization were used to assay the occurrence of heme transport genes huvABCD, which have been previously described in serotype O1. Of 23 strains studied, two serotype O3 isolates proved negative for all huvABCD genes, whereas nine strains included in serotypes O2, O3, O4, O6, O7, and O10 tested negative for the outer membrane heme receptor gene huvA. A gene coding for a novel outer membrane heme receptor was cloned and characterized in a V. anguillarum serotype O3 strain lacking huvA. The new heme receptor, named HuvS, showed significant similarity to other outer membrane heme receptors described in Vibrionaceae, but little homology (39%) to HuvA. This heme receptor was present in 9 out of 11 of the V. anguillarum strains that tested negative for HuvA. Furthermore, complementation experiments demonstrated that HuvS could substitute for the HuvA function in Escherichia coli and V. anguillarum mutants. The huvS and huvA sequences alignment, as well as the analysis of their respective upstream and downstream DNA sequences, suggest that horizontal transfer and recombination might be responsible for generating this genetic diversity. PMID:16332832

  8. Chemical Synthesis of the 20 kDa Heme Protein Nitrophorin 4 by α-Ketoacid-Hydroxylamine (KAHA) Ligation.

    Science.gov (United States)

    He, Chunmao; Kulkarni, Sameer S; Thuaud, Frédéric; Bode, Jeffrey W

    2015-10-26

    The chemical synthesis of the 184-residue ferric heme-binding protein nitrophorin 4 was accomplished by sequential couplings of five unprotected peptide segments using α-ketoacid-hydroxylamine (KAHA) ligation reactions. The fully assembled protein was folded to its native structure and coordinated to the ferric heme b cofactor. The synthetic holoprotein, despite four homoserine residues at the ligation sites, showed identical properties to the wild-type protein in nitric oxide binding and nitrite dismutase reactivity. This work establishes the KAHA ligation as a valuable and viable approach for the chemical synthesis of proteins up to 20 kDa and demonstrates that it is well-suited for the preparation of hydrophobic protein targets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multi-heme Cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Marian; Rosso, Kevin M.; Blumberger, Jochen; Butt, Julea N.

    2014-11-05

    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies.

  10. Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis within the Prevalent Canine Oral Species Porphyromonas cangingivalis.

    Science.gov (United States)

    O'Flynn, Ciaran; Deusch, Oliver; Darling, Aaron E; Eisen, Jonathan A; Wallis, Corrin; Davis, Ian J; Harris, Stephen J

    2015-11-13

    Porphyromonads play an important role in human periodontal disease and recently have been shown to be highly prevalent in canine mouths. Porphyromonas cangingivalis is the most prevalent canine oral bacterial species in both plaque from healthy gingiva and plaque from dogs with early periodontitis. The ability of P. cangingivalis to flourish in the different environmental conditions characterized by these two states suggests a degree of metabolic flexibility. To characterize the genes responsible for this, the genomes of 32 isolates (including 18 newly sequenced and assembled) from 18 Porphyromonad species from dogs, humans, and other mammals were compared. Phylogenetic trees inferred using core genes largely matched previous findings; however, comparative genomic analysis identified several genes and pathways relating to heme synthesis that were present in P. cangingivalis but not in other Porphyromonads. Porphyromonas cangingivalis has a complete protoporphyrin IX synthesis pathway potentially allowing it to synthesize its own heme unlike pathogenic Porphyromonads such as Porphyromonas gingivalis that acquire heme predominantly from blood. Other pathway differences such as the ability to synthesize siroheme and vitamin B12 point to enhanced metabolic flexibility for P. cangingivalis, which may underlie its prevalence in the canine oral cavity. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Science.gov (United States)

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  12. Spray nozzle pattern test for the DWPF HEME Task QA Plan

    International Nuclear Information System (INIS)

    Lee, L.

    1991-01-01

    The DWPF melter off-gas systems have two High Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine mists and particulates from the off-gas. To have an acceptable filter life and an efficient operation, an air atomized water is spray on the HEME. The water spray keeps the HEME wet and dissolves the soluble particulates and enhances and HEME efficiency. DWPF Technical asked SRL to determine the conditions which will give satisfactory atomization and distribution of water so that the HEME will operate efficiently. The purpose of this document is to identify, QA controls to be applied in the pursuit of this task (WSRC-RP-91-1151)

  13. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal.

    Science.gov (United States)

    Correia, Maria Almira; Sinclair, Peter R; De Matteis, Francesco

    2011-02-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.

  14. Intracellular Zn(II) Intoxication Leads to Dysregulation of the PerR Regulon Resulting in Heme Toxicity in Bacillus subtilis

    Science.gov (United States)

    2016-01-01

    Transition metal ions (Zn(II), Cu(II)/(I), Fe(III)/(II), Mn(II)) are essential for life and participate in a wide range of biological functions. Cellular Zn(II) levels must be high enough to ensure that it can perform its essential roles. Yet, since Zn(II) binds to ligands with high avidity, excess Zn(II) can lead to protein mismetallation. The major targets of mismetallation, and the underlying causes of Zn(II) intoxication, are not well understood. Here, we use a forward genetic selection to identify targets of Zn(II) toxicity. In wild-type cells, in which Zn(II) efflux prevents intoxication of the cytoplasm, extracellular Zn(II) inhibits the electron transport chain due to the inactivation of the major aerobic cytochrome oxidase. This toxicity can be ameliorated by depression of an alternate oxidase or by mutations that restrict access of Zn(II) to the cell surface. Conversely, efflux deficient cells are sensitive to low levels of Zn(II) that do not inhibit the respiratory chain. Under these conditions, intracellular Zn(II) accumulates and leads to heme toxicity. Heme accumulation results from dysregulation of the regulon controlled by PerR, a metal-dependent repressor of peroxide stress genes. When metallated with Fe(II) or Mn(II), PerR represses both heme biosynthesis (hemAXCDBL operon) and the abundant heme protein catalase (katA). Metallation of PerR with Zn(II) disrupts this coordination, resulting in depression of heme biosynthesis but continued repression of catalase. Our results support a model in which excess heme partitions to the membrane and undergoes redox cycling catalyzed by reduced menaquinone thereby resulting in oxidative stress. PMID:27935957

  15. A role for heme in Alzheimer's disease: Heme binds amyloid β and has altered metabolism

    OpenAIRE

    Atamna, Hani; Frey, William H.

    2004-01-01

    Heme is a common factor linking several metabolic perturbations in Alzheimer's disease (AD), including iron metabolism, mitochondrial complex IV, heme oxygenase, and bilirubin. Therefore, we determined whether heme metabolism was altered in temporal lobes obtained at autopsy from AD patients and age-matched nondemented subjects. AD brain demonstrated 2.5-fold more heme-b (P < 0.01) and 26% less heme-a (P = 0.16) compared with controls, resulting in a highly significant 2.9-fold decrease in he...

  16. No changes in heme synthesis in human Friedreich´s ataxia erythroid progenitor cells.

    Science.gov (United States)

    Steinkellner, Hannes; Singh, Himanshu Narayan; Muckenthaler, Martina U; Goldenberg, Hans; Moganty, Rajeswari R; Scheiber-Mojdehkar, Barbara; Sturm, Brigitte

    2017-07-20

    Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Emergence of the acute-phase protein hemopexin in jawed vertebrates

    OpenAIRE

    Dooley, Helen; Buckingham, E. Bryan; Criscitiello, Michael F.; Flajnik, Martin F.

    2010-01-01

    When released from damaged erythrocytes free heme not only provides a source of iron for invading bacteria but is also highly toxic due to its ability to catalyze free radical formation. Hemopexin (Hx) binds free heme with very high affinity and thus protects against heme toxicity, sequesters heme from pathogens, and helps conserve valuable iron. Hx is also an acute-phase serum protein (APP), whose expression is induced by inflammation. To date Hx has been identified as far back in phylogeny ...

  18. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead

    International Nuclear Information System (INIS)

    Cabell, Leigh; Ferguson, Charles; Luginbill, Deana; Kern, Marcey; Weingart, Adam; Audesirk, Gerald

    2004-01-01

    We examined the effects of exposure to inorganic lead (Pb 2+ ) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb 2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 μM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb 2+ exposure (100 nM to 100 μM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb 2+ exposure (100 nM to 10 μM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb 2+ at concentrations up to 100 μM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb 2+ and many other stresses, including heat, nitric oxide, H 2 O 2 , and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb 2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb 2+ induces HO-1 synthesis in astrocytes

  19. Histidine at Position 195 is Essential for Association of Heme-b in Lcp1VH2

    Science.gov (United States)

    Oetermann, Sylvia; Vivod, Robin; Hiessl, Sebastian; Hogeback, Jens; Holtkamp, Michael; Karst, Uwe; Steinbüchel, Alexander

    2018-03-01

    The latex clearing protein (Lcp) is the key enzyme of polyisoprene degradation in actinomycetes (Yikmis and Steinbüchel in Appl Environ Microbiol 78:4543-4551, https://doi.org/10.1128/AEM.00001-12, 2012). In this study it was shown that Lcp from Gordonia polyisoprenivorans VH2 (Lcp1VH2) harbors a non-covalently bound heme b as cofactor, which was identified by pyridine hemochrome spectra and confirmed by LC/ESI-ToF-MS. It contains iron, most likely in the Fe3+ state. We focused on the characterization of the heme-cofactor, its accessibility with respect to the conformation of Lcp1VH2, and the identification of putative histidine residues involved in the coordination of heme. A change was detectable in UV/Vis-spectra of reduced Lcp1VH2 when imidazole was added, showing that Lcp1VH2 "as isolated" occurs in an open state, directly being accessible for external ligands. In addition, three highly conserved histidines (H195, H200 and H228), presumably acting as ligands coordinating the heme within the heme pocket, were replaced with alanines by site-directed mutagenesis. The effect of these changes on in vivo rubber-mineralization was investigated. The lcp- deletion mutant complemented with the H195A variant of lcp1 VH2 was unable to mineralize poly(cis-1,4-isoprene). In vitro analyses of purified, recombinant Lcp1VH2H195A confirmed the loss of enzyme activity, which could be ascribed to the loss of heme. Hence, H195 is essential for the association of heme-b in the central region of Lcp1VH2.

  20. Histidine at Position 195 is Essential for Association of Heme- b in Lcp1VH2

    Science.gov (United States)

    Oetermann, Sylvia; Vivod, Robin; Hiessl, Sebastian; Hogeback, Jens; Holtkamp, Michael; Karst, Uwe; Steinbüchel, Alexander

    2018-05-01

    The latex clearing protein (Lcp) is the key enzyme of polyisoprene degradation in actinomycetes (Yikmis and Steinbüchel in Appl Environ Microbiol 78:4543-4551, https://doi.org/10.1128/AEM.00001-12 , 2012). In this study it was shown that Lcp from Gordonia polyisoprenivorans VH2 (Lcp1VH2) harbors a non-covalently bound heme b as cofactor, which was identified by pyridine hemochrome spectra and confirmed by LC/ESI-ToF-MS. It contains iron, most likely in the Fe3+ state. We focused on the characterization of the heme-cofactor, its accessibility with respect to the conformation of Lcp1VH2, and the identification of putative histidine residues involved in the coordination of heme. A change was detectable in UV/Vis-spectra of reduced Lcp1VH2 when imidazole was added, showing that Lcp1VH2 "as isolated" occurs in an open state, directly being accessible for external ligands. In addition, three highly conserved histidines (H195, H200 and H228), presumably acting as ligands coordinating the heme within the heme pocket, were replaced with alanines by site-directed mutagenesis. The effect of these changes on in vivo rubber-mineralization was investigated. The lcp- deletion mutant complemented with the H195A variant of lcp1 VH2 was unable to mineralize poly( cis-1,4-isoprene). In vitro analyses of purified, recombinant Lcp1VH2H195A confirmed the loss of enzyme activity, which could be ascribed to the loss of heme. Hence, H195 is essential for the association of heme- b in the central region of Lcp1VH2.

  1. Molecular hijacking of siroheme for the synthesis of heme and d1 heme.

    Science.gov (United States)

    Bali, Shilpa; Lawrence, Andrew D; Lobo, Susana A; Saraiva, Lígia M; Golding, Bernard T; Palmer, David J; Howard, Mark J; Ferguson, Stuart J; Warren, Martin J

    2011-11-08

    Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.

  2. CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents.

    Directory of Open Access Journals (Sweden)

    Anthony Bruce

    Full Text Available The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae and human progesterone receptor membrane component 1 (PGRMC1, have revealed that conserved tyrosine (Y 73, Y79, aspartic acid (D 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G at D86 (D86G within its cytochrome b5 heme-binding (cyt-b5 domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs, we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1 and drug metabolism (CYP3A4. CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR, while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1 levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin, with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to

  3. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  6. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.

    Science.gov (United States)

    Kruglik, Sergei G; Jasaitis, Audrius; Hola, Klara; Yamashita, Taku; Liebl, Ursula; Martin, Jean-Louis; Vos, Marten H

    2007-05-01

    Dissociation of oxygen from the heme domain of the bacterial oxygen sensor protein FixL constitutes the first step in hypoxia-induced signaling. In the present study, the photodissociation of the heme-O2 bond was used to synchronize this event, and time-resolved resonance Raman (TR(3)) spectroscopy with subpicosecond time resolution was implemented to characterize the heme configuration of the primary photoproduct. TR(3) measurements on heme-oxycomplexes are highly challenging and have not yet been reported. Whereas in all other known six-coordinated heme protein complexes with diatomic ligands, including the oxymyoglobin reported here, heme iron out-of-plane motion (doming) occurs faster than 1 ps after iron-ligand bond breaking; surprisingly, no sizeable doming is observed in the oxycomplex of the Bradyrhizobium japonicum FixL sensor domain (FixLH). This assessment is deduced from the absence of the iron-histidine band around 217 cm(-1) as early as 0.5 ps. We suggest that efficient ultrafast oxygen rebinding to the heme occurs on the femtosecond time scale, thus hindering heme doming. Comparing WT oxy-FixLH, mutant proteins FixLH-R220H and FixLH-R220Q, the respective carbonmonoxy-complexes, and oxymyoglobin, we show that a hydrogen bond of the terminal oxygen atom with the residue in position 220 is responsible for the observed behavior; in WT FixL this residue is arginine, crucially implicated in signal transmission. We propose that the rigid O2 configuration imposed by this residue, in combination with the hydrophobic and constrained properties of the distal cavity, keep dissociated oxygen in place. These results uncover the origin of the "oxygen cage" properties of this oxygen sensor protein.

  7. Heme-induced ROS in Trypanosoma cruzi activates CaMKII-like that triggers epimastigote proliferation. One helpful effect of ROS.

    Directory of Open Access Journals (Sweden)

    Natália Pereira de Almeida Nogueira

    Full Text Available Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time- and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.

  8. Heme Synthesis and Acquisition in Bacterial Pathogens

    OpenAIRE

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  9. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  10. Mutations in the FMN domain modulate MCD spectra of the heme site in the oxygenase domain of inducible nitric oxide synthase.

    Science.gov (United States)

    Sempombe, Joseph; Elmore, Bradley O; Sun, Xi; Dupont, Andrea; Ghosh, Dipak K; Guillemette, J Guy; Kirk, Martin L; Feng, Changjian

    2009-05-27

    The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.

  11. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases.

    Science.gov (United States)

    Su, Yang; Majtan, Tomas; Freeman, Katherine M; Linck, Rachel; Ponter, Sarah; Kraus, Jan P; Burstyn, Judith N

    2013-01-29

    Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway, which is critical for the synthesis of cysteine from methionine in eukaryotes. CBS uses coenzyme pyridoxal 5'-phosphate (PLP) for catalysis, and S-adenosylmethionine regulates the activity of human CBS, but not yeast CBS. Human and fruit fly CBS contain heme; however, the role for heme is not clear. This paper reports biochemical and spectroscopic characterization of CBS from fruit fly Drosophila melanogaster (DmCBS) and the CO/NO gas binding reactions of DmCBS and human CBS. Like CBS enzymes from lower organisms (e.g., yeast), DmCBS is intrinsically highly active and is not regulated by AdoMet. The DmCBS heme coordination environment, the reactivity, and the accompanying effects on enzyme activity are similar to those of human CBS. The DmCBS heme bears histidine and cysteine axial ligands, and the enzyme becomes inactive when the cysteine ligand is replaced. The Fe(II) heme in DmCBS is less stable than that in human CBS, undergoing more facile reoxidation and ligand exchange. In both CBS proteins, the overall stability of the protein is correlated with the heme oxidation state. Human and DmCBS Fe(II) hemes react relatively slowly with CO and NO, and the rate of the CO binding reaction is faster at low pH than at high pH. Together, the results suggest that heme incorporation and AdoMet regulation in CBS are not correlated, possibly providing two independent means for regulating the enzyme.

  12. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.

    Science.gov (United States)

    Quan, S; Yang, L; Abraham, N G; Kappas, A

    2001-10-09

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin.

  13. Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme.

    Science.gov (United States)

    Babbitt, Shalon E; San Francisco, Brian; Bretsnyder, Eric C; Kranz, Robert G

    2014-08-19

    C-type cytochromes are distinguished by the covalent attachment of a heme cofactor, a modification that is typically required for its subsequent folding, stability, and function. Heme attachment takes place in the mitochondrial intermembrane space and, in most eukaryotes, is mediated by holocytochrome c synthase (HCCS). HCCS is the primary component of the eukaryotic cytochrome c biogenesis pathway, known as System III. The catalytic function of HCCS depends on its ability to coordinate interactions between its substrates: heme and cytochrome c. Recent advancements in the recombinant expression and purification of HCCS have facilitated comprehensive analyses of the roles of conserved residues in HCCS, as demonstrated in this study. Previously, we proposed a four-step model describing HCCS-mediated cytochrome c assembly, identifying a conserved histidine residue (His154) as an axial ligand to the heme iron. In this study, we performed a systematic mutational analysis of 17 conserved residues in HCCS, and we provide evidence that the enzyme contains two heme-binding domains. Our data indicate that heme contacts mediated by residues within these domains modulate the dynamics of heme binding and contribute to the stability of the HCCS-heme-cytochrome c steady state ternary complex. While some residues are essential for initial heme binding (step 1), others impact the subsequent release of the holocytochrome c product (step 4). Certain HCCS mutants that were defective in heme binding were corrected for function by exogenous aminolevulinic acid (ALA, the precursor to heme). This chemical "correction" supports the proposed role of heme binding for the corresponding residues.

  14. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome.

    Science.gov (United States)

    Yang, Zhantao; Keel, Siobán B; Shimamura, Akiko; Liu, Li; Gerds, Aaron T; Li, Henry Y; Wood, Brent L; Scott, Bart L; Abkowitz, Janis L

    2016-05-11

    Diamond Blackfan anemia (DBA) and myelodysplastic syndrome (MDS) with isolated del(5q) are severe macrocytic anemias; although both are associated with impaired ribosome assembly, why the anemia occurs is not known. We cultured marrow cells from DBA (n = 3) and del(5q) MDS (n = 6) patients and determined how heme (a toxic chemical) and globin (a protein) are coordinated. We show that globin translation initiates slowly, whereas heme synthesis proceeds normally. This results in insufficient globin protein, excess heme and excess reactive oxygen species in early erythroid precursors, and CFU-E (colony-forming unit-erythroid)/proerythroblast cell death. The cells that can more rapidly and effectively export heme or can slow heme synthesis preferentially survive and appropriately mature. Consistent with these observations, treatment with 10 μM succinylacetone, a specific inhibitor of heme synthesis, improved the erythroid cell output of DBA and del(5q) MDS marrow cultures by 68 to 95% (P = 0.03 to 0.05), whereas the erythroid cell output of concurrent control marrow cultures decreased by 4 to 13%. Our studies demonstrate that erythropoiesis fails when heme exceeds globin. Our data further suggest that therapies that decrease heme synthesis (or facilitate heme export) could improve the red blood cell production of persons with DBA, del(5q) MDS, and perhaps other macrocytic anemias. Copyright © 2016, American Association for the Advancement of Science.

  15. Effects of Zinc Deuteroporphyrin Bis Glycol on Newborn Mice After Heme-Loading

    Science.gov (United States)

    He, Cynthia X.; Campbell, Claire M.; Zhao, Hui; Kalish, Flora S.; Schulz, Stephanie; Vreman, Hendrik J.; Wong, Ronald J.; Stevenson, David K.

    2011-01-01

    Infants with hemolytic diseases frequently develop hyperbilirubinemia, but standard phototherapy only eliminates bilirubin after its production. A better strategy might be to directly inhibit heme oxygenase (HO), the rate-limiting enzyme in bilirubin production. Metalloporphyrins (Mps) are heme analogs that competitively inhibit HO activity in vitro and in vivo and suppress plasma bilirubin levels in vivo. A promising Mp, zinc deuteroporphyrin bis glycol (ZnBG), is orally absorbed and effectively inhibits HO activity at relatively low doses. We determined the I50 (the dose needed to inhibit HO activity by 50%) of orally administered ZnBG in vivo and then evaluated ZnBG’s effects on in vivo bilirubin production, HO activity, HO protein levels, and HO-1 gene expression in newborn mice following heme-loading, a model analogous to a hemolytic infant. The I50 of ZnBG was found to be 4.0 μmol/kg body weight (BW). At a dose of 15-μmol/kg BW, ZnBG reduced in vivo bilirubin production, inhibited heme-induced liver HO activity and spleen HO activity to and below baseline, respectively, transiently induced liver and spleen HO-1 gene transcription, and induced liver and spleen HO-1 protein levels. We conclude that ZnBG may be an attractive compound for treating severe neonatal hyperbilirubinemia caused by hemolytic disease. PMID:21785387

  16. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.

    Science.gov (United States)

    Ryu, Moon-Suhn; Zhang, Deliang; Protchenko, Olga; Shakoury-Elizeh, Minoo; Philpott, Caroline C

    2017-05-01

    Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC-binding protein 1 (PCBP1) and PCBP2 deliver iron to ferritin, the sole cytosolic iron storage protein, and nuclear receptor coactivator 4 (NCOA4) mediates the autophagic turnover of ferritin. The roles of PCBP, ferritin, and NCOA4 in erythroid development remain unclear. Here, we show that PCBP1, NCOA4, and ferritin are critical for murine red cell development. Using a cultured cell model of erythroid differentiation, depletion of PCBP1 or NCOA4 impaired iron trafficking through ferritin, which resulted in reduced heme synthesis, reduced hemoglobin formation, and perturbation of erythroid regulatory systems. Mice lacking Pcbp1 exhibited microcytic anemia and activation of compensatory erythropoiesis via the regulators erythropoietin and erythroferrone. Ex vivo differentiation of erythroid precursors from Pcbp1-deficient mice confirmed defects in ferritin iron flux and heme synthesis. These studies demonstrate the importance of ferritin for the vectorial transfer of imported iron to mitochondria in developing red cells and of PCBP1 and NCOA4 in mediating iron flux through ferritin.

  17. LC-MS of Metmyoglobin at pH = 2: Separation and Characterization of Apomyoglobin and Heme by ESI-MS and UV-Vis

    Science.gov (United States)

    Stynes, Helen Cleary; Layo, Araceli; Smith, Richard W.

    2004-01-01

    The protein species of apomyoglobin (apoMb) and heme are freed and segregated from the aqueous protein solution of metmyoglobin by liquid chromatography, and are distinguished by UV-Vis absorption or electrospray ionization mass spectrometry (ESI-MS). This is an ingenious and effective approach to characterize apomyoglobin and heme, while students…

  18. Dietary heme-mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon.

    Directory of Open Access Journals (Sweden)

    Noortje Ijssennagger

    Full Text Available Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome analysis of mucosa of heme-fed mice showed, besides stress- and proliferation-related genes, many upregulated lipid metabolism-related PPARα target genes. The aim of this study was to investigate the role of PPARα in heme-induced hyperproliferation and hyperplasia. Male PPARα KO and WT mice received a purified diet with or without heme. As PPARα is proposed to protect against oxidative stress and lipid peroxidation, we hypothesized that the absence of PPARα leads to more surface injury and crypt hyperproliferation in the colon upon heme-feeding. Heme induced luminal cytotoxicity and lipid peroxidation and colonic hyperproliferation and hyperplasia to the same extent in WT and KO mice. Transcriptome analysis of colonic mucosa confirmed similar heme-induced hyperproliferation in WT and KO mice. Stainings for alkaline phosphatase activity and expression levels of Vanin-1 and Nrf2-targets indicated a compromised antioxidant defense in heme-fed KO mice. Our results suggest that the protective role of PPARα in antioxidant defense involves the Nrf2-inhibitor Fosl1, which is upregulated by heme in PPARα KO mice. We conclude that PPARα plays a protective role in colon against oxidative stress, but PPARα does not mediate heme-induced hyperproliferation. This implies that oxidative stress of surface cells is not the main determinant of heme-induced hyperproliferation and hyperplasia.

  19. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness.

    Directory of Open Access Journals (Sweden)

    Guangqi Li

    Full Text Available Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57 would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator, member 5 (SLC25A5 and down-regulated translocator protein (TSPO would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF. In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation.

  20. Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states.

    Science.gov (United States)

    Bandara, D M Indika; Sono, Masanori; Bruce, Grant S; Brash, Alan R; Dawson, John H

    2011-12-01

    Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg(+)-N(ω)-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O(2) states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg(+)-N(ω)-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice

    Directory of Open Access Journals (Sweden)

    Marco Constante

    2017-09-01

    Full Text Available Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD, where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis

  2. The FTO (fat mass and obesity associated gene codes for a novel member of the non-heme dioxygenase superfamily

    Directory of Open Access Journals (Sweden)

    Andrade-Navarro Miguel A

    2007-11-01

    Full Text Available Abstract Background Genetic variants in the FTO (fat mass and obesity associated gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II- and 2-oxoglutarate-dependent dioxygenases superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans.

  3. Stability enhancement of cytochrome c through heme deprotonation and mutations.

    Science.gov (United States)

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.

  4. Nitric oxide heme interactions in nitrophorin from Cimex lectularius

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, R.; Auerbach, H., E-mail: auerbach@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Berry, R. E.; Walker, F. A. [The University of Arizona, Department of Chemistry and Biochemistry (United States); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The nitrophorin from the bedbug Cimex lectularius (cNP) is a nitric oxide (NO) carrying protein. Like the nitrophorins (rNPs) from the kissing bug Rhodnius prolixus, cNP forms a stable heme Fe(III)-NO complex, where the NO can be stored reversibly for a long period of time. In both cases, the NPs are found in the salivary glands of blood-sucking bugs. The insects use the nitrophorins to transport the NO to the victim’s tissues, resulting in vasodilation and reduced blood coagulation. However, the structure of cNP is significantly different to those of the rNPs from Rhodnius prolixus. Furthermore, the cNP can bind a second NO molecule to the proximal heme cysteine when present at higher concentrations. High field Mössbauer spectroscopy on {sup 57}Fe enriched cNP complexed with NO shows reduction of the heme iron and formation of a ferrous nitric oxide (Fe(II)-NO) complex. Density functional theory calculations reproduce the experimental Mössbauer parameters and confirm this observation.

  5. Temperature dependence of Q-band electron paramagnetic resonance spectra of nitrosyl heme proteins

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Marco; Wajnberg, Eliane; Bemski, George

    1997-11-01

    The Q-band (35 GHz) electron paramagnetic resonance (EPR) spectra of nitrosyl hemoglobin (Hb N O) and nitrosyl myoglobin (Mb NO) were studied as a function of temperature between 19 K and 200 K. The spectra of both heme proteins show classes of variations as a function of temperature. The first one has previously been associated with the existence of two paramagnetic species, one with rhombic and the other with axial symmetry. The second one manifests itself in changes in the g-factors and linewidths of each species. These changes are correlated with the conformational substates model and associate the variations of g-values with changes in the angle of the N(his)-Fe-N (NO) bond in the rhombic species and with changes in the distance between Fe and N of the proximal (F8) histidine in the axial species. (author) 24 refs., 6 figs.

  6. Heme and erythropoieis: more than a structural role.

    Science.gov (United States)

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-06-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own synthesis and regulates the expression of several erythroid-specific genes. Heme is synthesized in developing erythroid progenitors by the stage of proerythroblast, through a series of eight enzymatic reactions divided between mitochondria and cytosol. Defects of heme synthesis in the erythroid lineage result in sideroblastic anemias, characterized by microcytic anemia associated to mitochondrial iron overload, or in erythropoietic porphyrias, characterized by porphyrin deposition in erythroid cells. Here, we focus on the heme biosynthetic pathway and on human erythroid disorders due to defective heme synthesis. The regulatory role of heme during erythroid differentiation is discussed as well as the heme-mediated regulatory mechanisms that allow the orchestration of the adaptive cell response to heme deficiency. Copyright© Ferrata Storti Foundation.

  7. Single or functionalized fullerenes interacting with heme group

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  8. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.

    Science.gov (United States)

    Vu, B Christie; Nothnagel, Henry J; Vuletich, David A; Falzone, Christopher J; Lecomte, Juliette T J

    2004-10-05

    The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed

  9. Insights on Heme Synthesis in the Malaria Parasite.

    Science.gov (United States)

    Nagaraj, Viswanathan A; Padmanaban, Govindarajan

    2017-08-01

    The malaria parasite has a functional heme-biosynthetic pathway, although it can access host hemoglobin-heme. The heme pathway is dispensable for blood stages, but essential in the mosquito stages which do not acquire hemoglobin-heme. We propose that the blood stage parasites maintain a dynamic heme pool through multiple back-up mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging

    Directory of Open Access Journals (Sweden)

    Jens Haugbølle Thomsen

    2013-01-01

    Full Text Available The haptoglobin- (Hp- CD163-heme oxygenase-1 (HO-1 pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO, biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6, but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.

  11. Peroxide-Dependent Analyte Conversion by the Heme Prosthetic Group, the Heme Peptide “Microperoxidase-11” and Cytochrome c on Chitosan Capped Gold Nanoparticles Modified Electrodes

    Directory of Open Access Journals (Sweden)

    Frieder W. Scheller

    2012-05-01

    Full Text Available In view of the role ascribed to the peroxidatic activity of degradation products of cytochrome c (cyt c in the processes of apoptosis, we investigate the catalytic potential of heme and of the cyt c derived heme peptide MP-11 to catalyse the cathodic reduction of hydrogen peroxide and to oxidize aromatic compounds. In order to check whether cyt c has an enzymatic activity in the native state where the protein matrix should suppress the inherent peroxidatic activity of its heme prosthetic group, we applied a biocompatible immobilization matrix and very low concentrations of the co-substrate H2O2. The biocatalysts were entrapped on the surface of a glassy carbon electrode in a biocompatible chitosan layer which contained gold nanoparticles. The electrochemical signal for the peroxide reduction is generated by the redox conversion of the heme group, whilst a reaction product of the substrate oxidation is cathodically reduced in the substrate indication. The catalytic efficiency of microperoxidase-11 is sufficient for sensors indicating HRP substrates, e.g., p-aminophenol, paracetamol and catechol, but also the hydroxylation of aniline and dehalogenation of 4-fluoroaniline. The lower limit of detection for p-aminophenol is comparable to previously published papers with different enzyme systems. The peroxidatic activity of cyt c immobilized in the chitosan layer for catechol was found to be below 1 per mill and for p-aminophenol about 3% as compared with that of heme or MP-11.

  12. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    OpenAIRE

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We inv...

  13. Heme oxygenase is not involved in the anti-proliferative effects of statins on pancreatic cancer cells

    International Nuclear Information System (INIS)

    Vanova, K.; Boukalova, S.; Gbelcova, H.; Muchova, L.; Neuzil, J.; Gurlich, R.; Ruml, T.; Vitek, L.

    2016-01-01

    Pancreatic cancer is recognized as one of the most fatal tumors due to its aggressiveness and resistance to therapy. Statins were previously shown to inhibit the proliferation of cancer cells via various signaling pathways. In healthy tissues, statins activate the heme oxygenase pathway, nevertheless the role of heme oxygenase in pancreatic cancer is still controversial. The aim of this study was to evaluate, whether anti-proliferative effects of statins in pancreatic cancer cells are mediated via the heme oxygenase pathway. In vitro effects of various statins and hemin, a heme oxygenase inducer, on cell proliferation were evaluated in PA-TU-8902, MiaPaCa-2 and BxPC-3 human pancreatic cancer cell lines. The effect of statins on heme oxygenase activity was assessed and heme oxygenase-silenced cells were used for pancreatic cancer cell proliferation studies. Cell death rate and reactive oxygen species production were measured in PA-TU-8902 cells, followed by evaluation of the effect of cerivastatin on GFP-K-Ras trafficking and expression of markers of invasiveness, osteopontin (SPP1) and SOX2. While simvastatin and cerivastatin displayed major anti-proliferative properties in all cell lines tested, pravastatin did not affect the cell growth at all. Strong anti-proliferative effect was observed also for hemin. Co-treatment of cerivastatin and hemin increased anti-proliferative potential of these agents, via increased production of reactive oxygen species and cell death compared to individual treatment. Heme oxygenase silencing did not prevent pancreatic cancer cells from the tumor-suppressive effect of cerivastatin or hemin. Cerivastatin, but not pravastatin, protected Ras protein from trafficking to the cell membrane and significantly reduced expressions of SPP1 (p < 0.05) and SOX2 (p < 0.01). Anti-proliferative effects of statins and hemin on human pancreatic cancer cell lines do not seem to be related to the heme oxygenase pathway. While hemin triggers reactive

  14. Heme oxygenase-1: a metabolic nike.

    Science.gov (United States)

    Wegiel, Barbara; Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C; Otterbein, Leo E

    2014-04-10

    Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

  15. Selenolate complexes of CYP101 and the heme-bound hHO-1/H25A proximal cavity mutant.

    Science.gov (United States)

    Jiang, Yongying; Ortiz de Montellano, Paul R

    2008-05-05

    Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.

  16. Relationship between natural and heme-mediated antibody polyreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Hadzhieva, Maya; Vassilev, Tchavdar [Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France); Dimitrov, Jordan D., E-mail: jordan.dimitrov@crc.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France)

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.

  17. Role of heme in bromine-induced lung injury

    Science.gov (United States)

    Lam, Adam; Vetal, Nilam; Matalon, Sadis; Aggarwal, Saurabh

    2016-01-01

    Bromine (Br2) gas inhalation poses an environmental and occupational hazard resulting in high morbidity and mortality. In this review, we underline the acute lung pathology (within 24 hours of exposure) and potential therapeutic interventions that may be utilized to mitigate Br2-induced human toxicity. We will discuss our latest published data, which suggests that an increase in heme-dependent tissue injury underlies the pathogenesis of Br2 toxicity. Our study was based on previous findings that demonstrated that Br2 upregulates the heme-degrading enzyme heme oxygenase-1 (HO-1), which converts toxic heme into billiverdin. Interestingly, following Br2 inhalation, heme levels were indeed elevated in bronchoalveolar lavage fluid, plasma, and whole lung tissue in C57BL/6 mice. High heme levels correlated with increased lung oxidative stress, lung inflammation, respiratory acidosis, lung edema, higher airway resistance, and mortality. However, therapeutic reduction of heme levels, by either scavenging with hemopexin or degradation by HO-1, improved lung function and survival. Therefore, heme attenuation may prove a useful adjuvant therapy to treat patients after Br2 exposure. PMID:27244263

  18. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes

    International Nuclear Information System (INIS)

    Du, Pan; Liu, Shuna; Wu, Ping; Cai, Chenxin

    2007-01-01

    This work describes the formation and possible electrochemical application of a novel nanocomposite based on single-walled carbon nanotubes (SWNTs) and imidazolium-based room-temperature ionic liquids (RTILs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF 4 , a hydrophilic RTIL) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF 6 , a hydrophobic RTIL). The nanocomposites ([bmim]BF 4 -SWNTs, and [bmim]PF 6 -SWNTs) were formed by simply grinding the SWNTs with the respective RTIL. The results of the X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy indicated that the nanocomposites were formed by adsorption of an imidazolium ion on the surface of SWNTs via the 'cation-π' interaction. SEM images showed that [bmim]BF 4 -SWNTs (or [bmim]PF 6 -SWNTs) nanocomposites could uniformly cover the surface of a glassy carbon (GC) electrode resulting in a RTILs-SWNTs/GC modified electrode with a high stability. The RTILs-SWNTs composite could be readily used as a matrix to immobilize heme-containing proteins/enzymes (myoglobin, cytochrome c, and horseradish peroxidase) without undergoing denaturation, as was verified by UV-vis and circular dichroic (CD) spectroscopic results. The voltammetric results showed that heme-containing proteins/enzymes entrapped in RTILs-SWNTs composites displayed a pair of well-defined, stable redox peaks, which were ascribed to their direct electron-transfer reactions. The results of controlled experiments showed that the positive charged imidazolium ion played a significant effect on the electrochemical parameters, such as the redox peak separation and the value of the formal potentials, etc., of the electron-transfer reaction of non-neutral species dissolved in solution or immobilized on the electrode surface. Further results demonstrated that the heme-containing proteins/enzymes entrapped in RTILs-SWNTs composites could still retain their bioelectrocatalytic activity toward the reduction of oxygen and hydrogen

  19. Functional Characterization of the Canine Heme-Regulated eIF2α Kinase: Regulation of Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Kimon C. Kanelakis

    2009-01-01

    Full Text Available The heme-regulated inhibitor (HRI negatively regulates protein synthesis by phosphorylating eukaryotic initiation factor-2α (eIF2α thereby inhibiting protein translation. The importance of HRI in regulating hemoglobin synthesis in erythroid cells makes it an attractive molecular target in need of further characterization. In this work, we have cloned and expressed the canine form of the HRI kinase. The canine nucleotide sequence has 86%, 82%, and 81% identity to the human, mouse, and rat HRI, respectively. It was noted that an isoleucine residue in the ATP binding site of human, rat, and mouse HRI is replaced by a valine in the canine kinase. The expression of canine HRI protein by in vitro translation using wheat germ lysate or in Sf9 cells using a baculovirus expression system was increased by the addition of hemin. Following purification, the canine protein was found to be 72 kD and showed kinase activity determined by its ability to phosphorylate a synthetic peptide substrate. Quercetin, a kinase inhibitor known to inhibit mouse and human HRI, inhibits canine HRI in a concentration-dependent manner. Additionally, quercetin is able to increase de novo protein synthesis in canine reticulocytes. We conclude that the canine is a suitable model species for studying the role of HRI in erythropoiesis.

  20. Heme biosynthesis and its regulation : Toward understanding and improvement of heme biosynthesis in filamentous fungi.

    NARCIS (Netherlands)

    S. de Weert; P.J. Punt; Christien Lokman; C.A. van den Hondel; A.C. Franken; A.F. Ram

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  1. Heme biosynthesis and its regulation: Towards understanding and improvement of heme biosynthesis in filamentous fungi

    NARCIS (Netherlands)

    Franken, A.C.W.; Lokman, B.C.; Ram, A.F.J.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Weert, S. de

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  2. Up-regulation of A1M/α1-microglobulin in skin by heme and reactive oxygen species gives protection from oxidative damage.

    Science.gov (United States)

    Olsson, Magnus G; Allhorn, Maria; Larsson, Jörgen; Cederlund, Martin; Lundqvist, Katarina; Schmidtchen, Artur; Sørensen, Ole E; Mörgelin, Matthias; Akerström, Bo

    2011-01-01

    During bleeding the skin is subjected to oxidative insults from free heme and radicals, generated from extracellular hemoglobin. The lipocalin α(1)-microglobulin (A1M) was recently shown to have reductase properties, reducing heme-proteins and other substrates, and to scavenge heme and radicals. We investigated the expression and localization of A1M in skin and the possible role of A1M in the protection of skin tissue from damage induced by heme and reactive oxygen species. Skin explants, keratinocyte cultures and purified collagen I were exposed to heme, reactive oxygen species, and/or A1M and investigated by biochemical methods and electron microscopy. The results demonstrate that A1M is localized ubiquitously in the dermal and epidermal layers, and that the A1M-gene is expressed in keratinocytes and up-regulated after exposure to heme and reactive oxygen species. A1M inhibited the heme- and reactive oxygen species-induced ultrastructural damage, up-regulation of antioxidation and cell cycle regulatory genes, and protein carbonyl formation in skin and keratinocytes. Finally, A1M bound to purified collagen I (K(d) = 0.96×10(-6) M) and could inhibit and repair the destruction of collagen fibrils by heme and reactive oxygen species. The results suggest that A1M may have a physiological role in protection of skin cells and matrix against oxidative damage following bleeding.

  3. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  4. Emergence of the acute-phase protein hemopexin in jawed vertebrates.

    Science.gov (United States)

    Dooley, Helen; Buckingham, E Bryan; Criscitiello, Michael F; Flajnik, Martin F

    2010-01-01

    When released from damaged erythrocytes free heme not only provides a source of iron for invading bacteria but also highly toxic due to its ability to catalyze free radical formation. Hemopexin (Hx) binds free heme with very high-affinity and thus protects against heme toxicity, sequesters heme from pathogens, and helps conserve valuable iron. Hx is also an acute-phase serum protein (APP), whose expression is induced by inflammation. To date Hx has been identified as far back in phylogeny as bony fish where it is called warm-temperature acclimation-related 65 kDa protein (WAP65), as serum protein levels are increased at elevated environmental temperatures as well as by infection. During analysis of nurse shark (Ginglymostoma cirratum) plasma we isolated a Ni(2+)-binding serum glycoprotein and characterized it as the APP Hx. We subsequently cloned Hx from nurse shark and another cartilaginous fish species, the little skate Leucoraja erinacea. Functional analysis showed shark Hx, like that of mammals, binds heme but is found at unusually high levels in normal shark serum. As an Hx orthologue could not be found in the genomes of jawless vertebrates or lower deuterostomes it appears to have arisen just prior to the emergence of jawed vertebrates, coincident with the second round of genome-wide duplication and the appearance of tetrameric hemoglobin (Hb). Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. A Heme Oxygenase-1 Transducer Model of Degenerative and Developmental Brain Disorders

    Directory of Open Access Journals (Sweden)

    Hyman M. Schipper

    2015-03-01

    Full Text Available Heme oxygenase-1 (HO-1 is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders.

  6. Effects of heme-PrP complex on cell-free conversion and peroxidase-linked immunodetection of prions in blood-based assays.

    Science.gov (United States)

    Soutyrine, Andrei; Yogasingam, Nishandan; Huang, Hongsheng; Mitchell, Gordon

    2015-08-01

    Prion protein (PrP) binding to natural and synthetic porphyrins has been previously demonstrated but the effects of endogenous heme interactions with PrP remain uncertain. This study investigated implications of this interaction in blood-based peroxidase-linked prion immunodetection and seeded conversion of cellular prion (PrP(C)) into disease associated form (PrP(Sc)). Heme binding to recombinant PrP(C) enhanced intrinsic peroxidase activity (POD) by 2.5-fold and POD inherent to denatured blood accounted for over 84% of luminol-based substrate oxidation in a prion immunodetection assay. An immuno-capture assay showed that 75-98% of blood POD was attributable to binding of PrP(C) with endogenous heme. Additionally, 10 μM heme inhibited (PPrP(C) to PrP(Sc) through the protein misfolding cycling amplification assay. We conclude that the observed effects can interfere with cell-free conversion and peroxidase-linked immunodetection of prions in blood-based assays. These results indicate that heme-PrP interactions could modulate intrinsic POD and protect PrP(C) from conversion into PrP(Sc). Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Increase on the initial soluble heme levels in acidic conditions is an important mechanism for spontaneous heme crystallization in vitro.

    Directory of Open Access Journals (Sweden)

    Renata Stiebler

    Full Text Available BACKGROUND: Hemozoin (Hz is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH (the synthetic counterpart of Hz formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO and a series of polyethyleneglycols (PEGs. We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000 increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300 caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations. CONCLUSIONS: The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels.

  8. Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Kobayashi, Yuki; Ando, Hiroyuki; Hanaoka, Mitsumasa; Tanaka, Kan

    2016-05-01

    ABA is a phytohormone that is synthesized in response to abiotic stresses and other environmental changes, inducing various physiological responses. While ABA has been found in unicellular photosynthetic organisms, such as cyanobacteria and eukaryotic algae, its function in these organisms is poorly understood. Here, we found that ABA accumulated in the unicellular red alga Cyanidioschyzon merolae under conditions of salt stress and that the cell cycle G1/S transition was inhibited when ABA was added to the culture medium. A gene encoding heme-scavenging tryptophan-rich sensory protein-related protein (CmTSPO; CMS231C) was positively regulated by ABA, as in Arabidopsis, and CmTSPO bound heme in vitro. The intracellular content of total heme was increased by addition of ABA, but unfettered heme decreased, presumably due to scavenging by CmTSPO. The inhibition of DNA replication by ABA was negated by addition of heme to the culture medium. Thus, we propose a regulatory role for ABA and heme in algal cell cycle initiation. Finally, we found that a C. merolae mutant that is defective in ABA production was more susceptible to salt stress, indicating the importance of ABA to stress resistance in red algae. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. A rapid, simple method for obtaining radiochemically pure hepatic heme

    International Nuclear Information System (INIS)

    Bonkowski, H.L.; Bement, W.J.; Erny, R.

    1978-01-01

    Radioactively-labelled heme has usually been isolated from liver to which unlabelled carrier has been added by long, laborious techniques involving organic solvent extraction followed by crystallization. A simpler, rapid method is devised for obtaining radiochemically-pure heme synthesized in vivo in rat liver from delta-amino[4- 14 C]levulinate. This method, in which the heme is extracted into ethyl acetate/glacial acetic acid and in which porphyrins are removed from the heme-containing organic phase with HCl washes, does not require addition of carrier heme. The new method gives better heme recoveries than and heme specific activities identical to, those obtained using the crystallization method. In this new method heme must be synthesized from delta-amino[4- 14 C]levulinate; it is not satisfactory to use [2- 14 C]glycine substrate because non-heme counts are isolated in the heme fraction. (Auth.)

  10. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  11. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    Science.gov (United States)

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. © 2015 Wiley Periodicals, Inc.

  12. Heme and erythropoieis: more than a structural role

    OpenAIRE

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own ...

  13. The Protein Identifier Cross-Referencing (PICR service: reconciling protein identifiers across multiple source databases

    Directory of Open Access Journals (Sweden)

    Leinonen Rasko

    2007-10-01

    Full Text Available Abstract Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR service, a web application that provides interactive and programmatic (SOAP and REST access to a mapping algorithm that uses the UniProt Archive (UniParc as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV or Microsoft Excel (XLS files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR

  14. Chemistry and Molecular Dynamics Simulations of Heme b-HemQ and Coproheme-HemQ.

    Science.gov (United States)

    Hofbauer, Stefan; Dalla Sega, Marco; Scheiblbrandner, Stefan; Jandova, Zuzana; Schaffner, Irene; Mlynek, Georg; Djinović-Carugo, Kristina; Battistuzzi, Gianantonio; Furtmüller, Paul G; Oostenbrink, Chris; Obinger, Christian

    2016-09-27

    Recently, a novel pathway for heme b biosynthesis in Gram-positive bacteria has been proposed. The final poorly understood step is catalyzed by an enzyme called HemQ and includes two decarboxylation reactions leading from coproheme to heme b. Coproheme has been suggested to act as both substrate and redox active cofactor in this reaction. In the study presented here, we focus on HemQs from Listeria monocytogenes (LmHemQ) and Staphylococcus aureus (SaHemQ) recombinantly produced as apoproteins in Escherichia coli. We demonstrate the rapid and two-phase uptake of coproheme by both apo forms and the significant differences in thermal stability of the apo forms, coproheme-HemQ and heme b-HemQ. Reduction of ferric high-spin coproheme-HemQ to the ferrous form is shown to be enthalpically favored but entropically disfavored with standard reduction potentials of -205 ± 3 mV for LmHemQ and -207 ± 3 mV for SaHemQ versus the standard hydrogen electrode at pH 7.0. Redox thermodynamics suggests the presence of a pronounced H-bonding network and restricted solvent mobility in the heme cavity. Binding of cyanide to the sixth coproheme position is monophasic but relatively slow (∼1 × 10(4) M(-1) s(-1)). On the basis of the available structures of apo-HemQ and modeling of both loaded forms, molecular dynamics simulation allowed analysis of the interaction of coproheme and heme b with the protein as well as the role of the flexibility at the proximal heme cavity and the substrate access channel for coproheme binding and heme b release. Obtained data are discussed with respect to the proposed function of HemQ in monoderm bacteria.

  15. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes

    International Nuclear Information System (INIS)

    Lara, F.A.; Sant'Anna, C.; Lemos, D.; Laranja, G.A.T.; Coelho, M.G.P.; Reis Salles, I.; Michel, A.; Oliveira, P.L.; Cunha-e-Silva, N.; Salmon, D.; Paes, M.C.

    2007-01-01

    Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane

  16. The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wen-Ying [Department of Pathology, Chi-Mei Hospital, Tainan, Taiwan (China); Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Chen, Yen-Chou [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Shih, Chwen-Ming; Lin, Chun-Mao; Cheng, Chia-Hsiung; Chen, Ku-Chung [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Cheng-Wei, E-mail: cwlin@tmu.edu.tw [Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-01-01

    Heme oxygenase (HO)-1 is an oxidative stress-response enzyme which catalyzes the degradation of heme into bilirubin, ferric ion, and carbon monoxide (CO). Induction of HO-1 was reported to have antitumor activity; the inhibitory mechanism, however, is still unclear. In the present study, we found that treatment with [Ru(CO){sub 3}Cl{sub 2}]{sub 2} (RuCO), a CO-releasing compound, reduced the growth of human MCF7 and MDA-MB-231 breast cancer cells. Analysis of growth-related proteins showed that treatment with RuCO down-regulated cyclinD1, CDK4, and hTERT protein expressions. Interestingly, RuCO treatment resulted in opposite effects on wild-type and mutant p53 proteins. These results were similar to those of cells treated with geldanamycin (a heat shock protein (HSP)90 inhibitor), suggesting that RuCO might affect HSP90 activity. Moreover, RuCO induced mutant p53 protein destabilization accompanied by promotion of ubiquitination and proteasome degradation. The induction of HO-1 by cobalt protoporphyrin IX (CoPP) showed consistent results, while the addition of tin protoporphyrin IX (SnPP), an HO-1 enzymatic inhibitor, diminished the RuCO-mediated effect. RuCO induction of HO-1 expression was reduced by a p38 mitogen-activated protein kinase inhibitor (SB203580). Additionally, treatment with a chemopreventive compound, curcumin, induced HO-1 expression accompanied with reduction of HSP90 client protein expression. The induction of HO-1 by curcumin inhibited 12-O-tetradecanoyl-13-acetate (TPA)-elicited matrix metalloproteinase-9 expression and tumor invasion. In conclusion, we provide novel evidence underlying HO-1's antitumor mechanism. CO, a byproduct of HO-1, suppresses HSP90 protein activity, and the induction of HO-1 may possess potential as a cancer therapeutic. - Highlights: • CO and HO-1 inhibited the growth of human breast cancer cells. • CO and HO-1 attenuated HSP90 and its client proteins expression. • CO induced mutant p53 protein

  17. 50 Hz electric field effects on protein carbonyl (PCO), heme oxygenase-1 (HO-1) and hydroxyproline levels

    International Nuclear Information System (INIS)

    Ozgur, Elcin; Goknur, Guler; Seyhan, Nesrin

    2008-01-01

    Full text: Non-ionizing electromagnetic field (EMF) radiation sources, such as power lines and other Extremely Low Frequency (ELF) sources have become one of the most ubiquitous components of the spectrum of the human environment, and the possibility that they may have hazardous effects on human health is a major a public concern. Although it is well documented that EMFs have biological effects, the degree to which these exposures constitute a human health hazard is not clear yet. Today relation between production of oxidative stress resulted by reactive oxygen species and electrical stimulus, also the protective effects of antioxidant treatments are mentioned in many researches. In this study, it was aimed to determine both oxidation of proteins and protein collagen levels under 50 Hz 12 kV/m vertical Electric (E) Field exposure and the N-Acetylcysteine (NAC) administration which is a well-known antioxidant. To this end, protein carbonyl levels (PCO) as bio-markers of oxidative stress and Heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme analyzed to figure out the protein oxidation. Hydroxyproline level, a major component of the protein collagen was measured in order to express the level of collagen in lung tissue. Guinea pigs, weighted 250-300 g, were used in the study. A total forty male guinea pigs were randomly divided into four groups which are composed of 10 guinea pigs each for groups: 1) Group I (Sham); 2) Group II (NAC-administrated group); 3) Group III (E Field Exposure group); 4) Group IV (NAC administrated + E Field exposed group). One week exposure period for 8 hours per daily was conducted for each exposure groups (Group III, Group IV ). The electric field exposure period was from 9 a.m. to 5 p.m. After the last exposure day, the guinea pigs were anesthetized by the injection of ketamine and xylazine. The guinea pigs were killed by decapitation. Statistical analyses were carried out using SPSS software (SPSS 11.5 for windows

  18. Moessbauer spectroscopic study of polymer-bound heme complexes

    International Nuclear Information System (INIS)

    Tsuchida, Eishun; Nishide, Hiroyuki; Yokoyama, Hiroyuki; Inoue, Hidenari; Shirai, Tsuneo.

    1984-01-01

    Moessbauer spectra were measured on the heme complexes of poly(1-vinyl- and 1-vinyl-2-methylimidazole)(PVI and PMI) and heme derivatives with covalently bound imidazoleligand (IH) and 2-methylimidazole-ligand (MIH) embedded in poly(1-vinyl-2-pyrrolidone) film. Quadrupole splitting (ΔE sub(Q)) for the carbon monoxide adduct of PMI-heme indicated large electronic field gradient at the iron nucleus, probably due to steric hindrance of the polymer chain, and this behavior agreed with its low affinity with carbon monoxide. PMI-heme formed an oxygen adduct and its isomer shift and ΔE sub(Q) values were obtained. (author)

  19. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Directory of Open Access Journals (Sweden)

    Vladimir López

    2016-03-01

    Full Text Available Mycobacteria of the Mycobacterium tuberculosis complex (MTBC greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB. In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB- and M. bovis-infected young (TB+ and adult animals with different infection status [TB lesions localized in the head (TB+ or affecting multiple organs (TB++]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to

  20. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    Science.gov (United States)

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  1. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Science.gov (United States)

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  2. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Directory of Open Access Journals (Sweden)

    Sam P. de Visser

    2016-04-01

    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  3. Deformations of the Heme Group of Different Ferrocytochrome c Proteins Probed by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Hagarman, Andrew; Schweitzer-Stenner, Reinhard; Wallace, Carmichael; Laberge, Monique

    2008-01-01

    We measured the low-frequency polarized resonance Raman spectra of horse heart, chicken, and yeast(C102T) ferrocytochromes c with Soret excitation. We examined the out-of-plane deformations of the heme groups by determining the relative intensities and depolarization ratios of a variety of out-of-plane and in-plane Raman active bands. Analysis of relative Raman intensities shows differences in non-planarity of the heme groups of yeast(C102T), horse heart and chicken cytochrome c. Cytochrome c has been shown to have a dominant ruffling (B 1u ) deformation by means of normal coordinate structural decomposition (NSD) analysis of the heme group in crystal structures. The presence and intensity of B 1u modes, γ 10 -γ 12 , support the indication of ruffling being the major contribution to the non-planar deformations in cytochrome c. Other types of non-planar deformations like doming (A 2U ) and waving (E g ) can be deduced from the Raman activity of γ 5 (A 2u ), γ 21 and γ 22 (E g ). The depolarization ratios of γ 5 , γ 10 , γ 11 and γ 12 are larger than 0.125, indicating the presence of other deformations such as saddling (B 2u ) and propellering (A 1u ), which is again in agreement with the crystal structures of horse heart and yeast ferrocytochrome c. An analysis of the intensities and depolarization ratios of out-of-plane modes revealed that ruffling is comparable in yeast and horse heart cytochrome c, saddling is larger and doming as well as propellering are lower in yeast cytochrome c. With respect to doming and ruffling our results contradict values obtained from the NSD analysis of the corresponding crystal structures. With respect to saddling, our data are in agreement with the crystal structure. The NSD analysis of heme structures resulting from MD simulations did not correlate very well with the spectroscopically obtained results concerning the ruffling and doming coordinate, whereas a qualitative agreement was again obtained for saddling.

  4. Tyrosine oxidation in heme oxygenase: examination of long-range proton-coupled electron transfer.

    Science.gov (United States)

    Smirnov, Valeriy V; Roth, Justine P

    2014-10-01

    Heme oxygenase is responsible for the degradation of a histidine-ligated ferric protoporphyrin IX (Por) to biliverdin, CO, and the free ferrous ion. Described here are studies of tyrosyl radical formation reactions that occur after oxidizing Fe(III)(Por) to Fe(IV)=O(Por(·+)) in human heme oxygenase isoform-1 (hHO-1) and the structurally homologous protein from Corynebacterium diphtheriae (cdHO). Site-directed mutagenesis on hHO-1 probes the reduction of Fe(IV)=O(Por(·+)) by tyrosine residues within 11 Å of the prosthetic group. In hHO-1, Y58· is implicated as the most likely site of oxidation, based on the pH and pD dependent kinetics. The absence of solvent deuterium isotope effects in basic solutions of hHO-1 and cdHO contrasts with the behavior of these proteins in the acidic solution, suggesting that long-range proton-coupled electron transfer predominates over electron transfer.

  5. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Directory of Open Access Journals (Sweden)

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  6. Potent heme-degrading action of antimony and antimony-containing parasiticidal agents.

    Science.gov (United States)

    Drummond, G S; Kappas, A

    1981-02-01

    The ability of antimony and antimony-containing parasiticidal agents to enhance the rate of heme degradation in liver and kidney was investigated. Trivalent antimony was shown to be an extremely potent inducer of heme oxygenase, the initial and rate-limiting enzyme in heme degradation, in both organs, whereas the pentavalent form was a weak inducer of this enzyme. The ability of antimony to induce heme oxygenase was dose-dependent, independent of the salt used, and not a result of a direct activation of the enzyme in vitro. Concomitant with heme oxygenase induction by antimony, microsomal heme and cytochrome P-450 contents decreased, the cyto-chrome P-450-dependent mixed function oxidase system was impaired, and delta-ami-nolevulinate synthase (ALAS), the rate-limiting enzyme of heme synthesis, underwent the sequential changes-initial inhibition followed by rebound induction-usually associated with the administration of transition elements such as cobalt. Antimony induction of heme oxygenase however, unlike the enzyme induction elicited by cobalt, was not prevented either by cysteine administered orally or as a cysteine metal complex, or by simultaneous zinc administration. Desferoxamine also did not block heme oxygenase induction by antimony, but this chelator did prevent the rebound increase in ALAS activity associated with antimony or cobalt treatment. Antimony-containing parasiticidal drugs were also potent inducers of heme oxygenase in liver and kidney. The heme degradative action of these drugs may be related in part to the jaundice commonly associated with the prolonged therapeutic use of these agents. The heme-oxygenase-inducing action of antimony-containing parasiticidal drugs is a newly defined biological property of these compounds. The relation between the parasiticidal and the heme-oxygenase-inducing actions of such drugs is unknown. However, certain parasites contain hemoproteins or require heme compounds during their life cycle. It may therefore be

  7. Acquisition of iron from transferrin regulates reticulocyte heme synthesis

    International Nuclear Information System (INIS)

    Ponka, P.; Schulman, H.M.

    1985-01-01

    Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59 Fe from [ 59 Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [ 59 Fe]transferrin. Also, Fe-SIH stimulates [2- 14 C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59 Fe incorporation into heme from either [ 59 Fe]transferrin or [ 59 Fe]SIH but does reverse the inhibition of 59 Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes

  8. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin

    Directory of Open Access Journals (Sweden)

    Benvenisti-Zarom Luna

    2004-09-01

    Full Text Available Abstract Background Hemin, the oxidized form of heme, accumulates in intracranial hematomas and is a potent oxidant. Growing evidence suggests that it contributes to delayed injury to surrounding tissue, and that this process is affected by the heme oxygenase enzymes. In a prior study, heme oxygenase-2 gene deletion increased the vulnerability of cultured cortical astrocytes to hemin. The present study tested the effect of HO-2 gene deletion on protein oxidation, reactive oxygen species formation, and cell viability after mixed cortical neuron/astrocyte cultures were incubated with neurotoxic concentrations of hemin. Results Continuous exposure of wild-type cultures to 1–10 μM hemin for 14 h produced concentration-dependent neuronal death, as detected by both LDH release and fluorescence intensity after propidium iodide staining, with an EC50 of 1–2 μM; astrocytes were not injured by these low hemin concentrations. Cell death was consistently reduced by at least 60% in knockout cultures. Exposure to hemin for 4 hours, a time point that preceded cell lysis, increased protein oxidation in wild-type cultures, as detected by staining of immunoblots for protein carbonyl groups. At 10 μM hemin, carbonylation was increased 2.3-fold compared with control sister cultures subjected to medium exchanges only; this effect was reduced by about two-thirds in knockout cultures. Cellular reactive oxygen species, detected by fluorescence intensity after dihydrorhodamine 123 (DHR staining, was markedly increased by hemin in wild-type cultures and was localized to neuronal cell bodies and processes. In contrast, DHR fluorescence intensity in knockout cultures did not differ from that of sham-washed controls. Neuronal death in wild-type cultures was almost completely prevented by the lipid-soluble iron chelator phenanthroline; deferoxamine had a weaker but significant effect. Conclusions These results suggest that HO-2 gene deletion protects neurons in mixed

  9. Coordinate expression of heme and globin is essential for effective erythropoiesis.

    Science.gov (United States)

    Doty, Raymond T; Phelps, Susan R; Shadle, Christina; Sanchez-Bonilla, Marilyn; Keel, Siobán B; Abkowitz, Janis L

    2015-12-01

    Erythropoiesis requires rapid and extensive hemoglobin production. Heme activates globin transcription and translation; therefore, heme synthesis must precede globin synthesis. As free heme is a potent inducer of oxidative damage, its levels within cellular compartments require stringent regulation. Mice lacking the heme exporter FLVCR1 have a severe macrocytic anemia; however, the mechanisms that underlie erythropoiesis dysfunction in these animals are unclear. Here, we determined that erythropoiesis failure occurs in these animals at the CFU-E/proerythroblast stage, a point at which the transferrin receptor (CD71) is upregulated, iron is imported, and heme is synthesized--before ample globin is produced. From the CFU-E/proerythroblast (CD71(+) Ter119(-) cells) stage onward, erythroid progenitors exhibited excess heme content, increased cytoplasmic ROS, and increased apoptosis. Reducing heme synthesis in FLVCR1-defient animals via genetic and biochemical approaches improved the anemia, implying that heme excess causes, and is not just associated with, the erythroid marrow failure. Expression of the cell surface FLVCR1 isoform, but not the mitochondrial FLVCR1 isoform, restored normal rbc production, demonstrating that cellular heme export is essential. Together, these studies provide insight into how heme is regulated to allow effective erythropoiesis, show that erythropoiesis fails when heme is excessive, and emphasize the importance of evaluating Ter119(-) erythroid cells when studying erythroid marrow failure in murine models.

  10. [Update on the biology of heme synthesis in erythroid cells].

    Science.gov (United States)

    Fujiwara, Tohru; Harigae, Hideo

    2015-02-01

    Heme is a prosthetic group of hemoproteins playing important roles in oxygen transport, detoxification, circadian rhythm, microRNA processing, regulation of transcription, and translation. The majority of heme (-85%) is synthesized in red blood cells mainly for hemoglobin production, whereas hepatocytes account for most of the rest, functioning primarily in the synthesis of cytochrome P450 enzymes and mitochondrial respiratory enzymes. Thus, failure of heme biosynthesis causes severe inherited or acquired disorders in humans, including porphyria and sideroblastic anemia. The heme biosynthetic pathway is composed of eight enzymes that work in either mitochondria or the cytoplasm, which have been extensively researched and frequently reviewed. On the other hand, the mechanisms governing transport and intracellular trafficking of heme intermediates, as well as their potential links to human diseases, are poorly understood. Herein, we focus on recent understanding of the heme biosynthetic pathway and on human disorders due to defective heme synthesis in erythroid cells, such as X-linked sideroblastic anemia and erythropoietic protoporphyria.

  11. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete

    2003-01-01

    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein...

  12. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury.

    Science.gov (United States)

    Sawicki, Konrad Teodor; Shang, Meng; Wu, Rongxue; Chang, Hsiang-Chun; Khechaduri, Arineh; Sato, Tatsuya; Kamide, Christine; Liu, Ting; Naga Prasad, Sathyamangla V; Ardehali, Hossein

    2015-07-31

    Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the

  13. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1

    Science.gov (United States)

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J.

    2016-01-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma. PMID:25659933

  14. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  15. Effect of Multiple Mutations in the Hemoglobin- and Hemoglobin-Haptoglobin-Binding Proteins, HgpA, HgpB, and HgpC, of Haemophilus influenzae Type b

    OpenAIRE

    Morton, Daniel J.; Whitby, Paul W.; Jin, Hongfan; Ren, Zhen; Stull, Terrence L.

    1999-01-01

    Haemophilus influenzae requires heme for growth and can utilize hemoglobin and hemoglobin-haptoglobin as heme sources. We previously identified two hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA and HgpB, in H. influenzae HI689. Insertional mutation of hgpA and hgpB, either singly or together, did not abrogate the ability to utilize or bind either hemoglobin or the hemoglobin-haptoglobin complex. A hemoglobin affinity purification method was used to isolate a protein of approxi...

  16. Successful recombinant production of Allochromatium vinosum cytochrome c' requires coexpression of cmm genes in heme-rich Escherichia coli JCB712

    International Nuclear Information System (INIS)

    Evers, Toon H.; Merkx, Maarten

    2005-01-01

    Cytochrome c' from the purple photosynthetic bacterium Allochromatium vinosum (CCP) displays a unique, reversible dimer-to-monomer transition upon binding of NO, CO, and CN - . This small, four helix bundle protein represents an attractive model for the study of other heme protein biosensors, provided a recombinant expression system is available. Here we report the development of an efficient expression system for CCP that makes use of a maltose binding protein fusion strategy to enhance periplasmic expression and allow easy purification by affinity chromatography. Coexpression of cytochrome c maturase genes and the use of a heme-rich Escherichia coli strain were found to be necessary to obtain reasonable yields of cytochrome c'. Characterization using circular dichroism, UV-vis spectroscopy, and size-exclusion chromatography confirms the native-like properties of the recombinant protein, including its ligand-induced monomerization

  17. Heme and blood-feeding parasites: friends or foes?

    Directory of Open Access Journals (Sweden)

    Glanfield Amber

    2010-11-01

    Full Text Available Abstract Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification.

  18. Heme and blood-feeding parasites: friends or foes?

    Science.gov (United States)

    2010-01-01

    Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification. PMID:21087517

  19. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    Science.gov (United States)

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  20. Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1.

    Science.gov (United States)

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J

    2015-05-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors.

    Science.gov (United States)

    Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Vukomanovic, Dragic; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2010-03-01

    The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole "anchor" which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole "anchor" may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via "induced fit" to accommodate bulky substituents at the 4-position of the dioxolane ring. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Kidney injury and heme oxygenase-1

    Directory of Open Access Journals (Sweden)

    Hai-xing MAI

    2012-02-01

    Full Text Available     Heme oxygenase-1 (HO-1 is one of the main pathways to degrade heme in mammals, and the main degradation products are free iron (Fe2+, carbon monoxide (CO, and bilirubin. Heme plays an important role in promoting cell survival, circulation of intracellular substrates, and immune regulation. Previous studies suggest that HO-1 pathway is an important internal factor in determining the susceptibility and severity of acute kidney injury (AKI. The induction of HO-1 expression can attenuate the severity of renal ischemia-reperfusion injury (IRI, and the inhibition of HO-1 expression will aggravate IRI. The present article summarizes the latest advances in research abroad and at home on protective mechanism by which HO-1 prevents AKI to further deepen our understanding of the role of HO-1 in the treatment of AKI.   

  3. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    Science.gov (United States)

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  4. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    Science.gov (United States)

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  5. Alteration by irradiation and storage at amount of heme iron in poultry meat; Alteracoes provocadas pela irradiacao e armazenamento nos teores de ferro heme em carne de frango

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Adriana Regia Marques de; Arthur, Valter Arthur [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia; Canniatti-Brazaca, Solange Guidolin [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: sgcbraza@esalq.usp.br

    2007-04-15

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 deg C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author)

  6. Thiol Redox Sensitivity of Two Key Enzymes of Heme Biosynthesis and Pentose Phosphate Pathways: Uroporphyrinogen Decarboxylase and Transketolase

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2013-01-01

    Full Text Available Uroporphyrinogen decarboxylase (Hem12p and transketolase (Tkl1p are key mediators of two critical processes within the cell, heme biosynthesis, and the nonoxidative part of the pentose phosphate pathway (PPP. The redox properties of both Hem12p and Tkl1p from Saccharomyces cerevisiae were investigated using proteomic techniques (SRM and label-free quantification and biochemical assays in cell extracts and in vitro with recombinant proteins. The in vivo analysis revealed an increase in oxidized Cys-peptides in the absence of Grx2p, and also after treatment with H2O2 in the case of Tkl1p, without corresponding changes in total protein, demonstrating a true redox response. Out of three detectable Cys residues in Hem12p, only the conserved residue Cys52 could be modified by glutathione and efficiently deglutathionylated by Grx2p, suggesting a possible redox control mechanism for heme biosynthesis. On the other hand, Tkl1p activity was sensitive to thiol redox modification and although Cys622 could be glutathionylated to a limited extent, it was not a natural substrate of Grx2p. The human orthologues of both enzymes have been involved in certain cancers and possess Cys residues equivalent to those identified as redox sensitive in yeast. The possible implication for redox regulation in the context of tumour progression is put forward.

  7. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex.

    Science.gov (United States)

    Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D

    2004-12-27

    Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief

  8. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX.

    Science.gov (United States)

    Assunção-Miranda, I; Cruz-Oliveira, C; Neris, R L S; Figueiredo, C M; Pereira, L P S; Rodrigues, D; Araujo, D F F; Da Poian, A T; Bozza, M T

    2016-03-01

    To investigate the effect of heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX (CoPPIX and SnPPIX), macrocyclic structures composed by a tetrapyrrole ring with a central metallic ion, on Dengue Virus (DENV) and Yellow Fever Virus (YFV) infection. Treatment of HepG2 cells with heme, CoPPIX and SnPPIX after DENV infection reduced infectious particles without affecting viral RNA contents in infected cells. The reduction of viral load occurs only with the direct contact of DENV with porphyrins, suggesting a direct effect on viral particles. Previously incubation of DENV and YFV with heme, CoPPIX and SnPPIX resulted in viral particles inactivation in a dose-dependent manner. Biliverdin, a noncyclical porphyrin, was unable to inactivate the viruses tested. Infection of HepG2 cells with porphyrin-pretreated DENV2 results in a reduced or abolished viral protein synthesis, RNA replication and cell death. Treatment of HepG2 or THP-1 cell lineage with heme or CoPPIX after DENV infection with a very low MOI resulted in a decreased DENV replication and protection from death. Heme, CoPPIX and SnPPIX possess a marked ability to inactivate DENV and YFV, impairing its ability to infect and induce cytopathic effects on target cells. These results open the possibility of therapeutic application of porphyrins or their use as models to design new antiviral drugs against DENV and YFV. © 2016 The Society for Applied Microbiology.

  9. Red meat and colon cancer : how dietary heme initiates hyperproliferation

    NARCIS (Netherlands)

    IJssennagger, N.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in Western countries. The risk to develop colorectal cancer is associated with the intake of red meat. Red meat contains the porphyrin pigment heme. Heme is an irritant for the colonic wall and it is previously shown that the addition of heme

  10. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  11. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  12. Fasciola spp: Mapping of the MF6 epitope and antigenic analysis of the MF6p/HDM family of heme-binding proteins.

    Directory of Open Access Journals (Sweden)

    Victoria Martínez-Sernández

    Full Text Available MF6p/FhHDM-1 is a small cationic heme-binding protein which is recognized by the monoclonal antibody (mAb MF6, and abundantly present in parenchymal cells and secreted antigens of Fasciola hepatica. Orthologs of this protein (MF6p/HDMs also exist in other causal agents of important foodborne trematodiasis, such as Clonorchis sinensis, Opisthorchis viverrini and Paragonimus westermani. Considering that MF6p/FhHDM-1 is relevant for heme homeostasis in Fasciola and was reported to have immunomodulatory properties, this protein is expected to be a useful target for vaccination. Thus, in this study we mapped the epitope recognized by mAb MF6 and evaluated its antigenicity in sheep. The sequence of the MF6p/FhHDM-1 ortholog from F. gigantica (MF6p/FgHDM-1 was also reported. By means of ELISA inhibitions with overlapping synthetic peptides, we determined that the epitope recognized by mAb MF6 is located within the C-terminal moiety of MF6p/FhHDM-1, which is the most conserved region of MF6p/HDMs. By immunoblotting analysis of parasite extracts and ELISA inhibitions with synthetic peptides we also determined that mAb MF6 reacted with the same intensity with F. hepatica and F. gigantica, and in decreasing order of intensity with C. sinensis, O.viverrini and P. westermani orthologs. On the contrary, mAb MF6 showed no reactivity against Dicrocoelium dendriticum and Schistosoma mansoni. The study of the recognition of peptides covering different regions of MF6p/FhHDM-1 by sera from immunized sheep revealed that the C-terminal moiety is the most antigenic, thus being of potential interest for vaccination. We also demonstrated that the production of antibodies to MF6p/FhHDM-1 in sheep infected by F. hepatica occurs relatively early and follows the same pattern as those produced against L-cathepsins.

  13. In vitro studies on heme oxygenase-1 and P24 antigen HIV-1 level ...

    African Journals Online (AJOL)

    Background: Heme oxygenase-1 (HO-1) is a protein secreted by immune cells as a part of immune response mechanism.HO-1 can be induced by variety agents that causingoxidative stress, such as exposure to 100% oxygenat2,4 ATA pressure.It plays a vital role in maintaining cellular homeostasis.This study was ...

  14. Cytochrome c and c1 heme lyases are essential in Plasmodium berghei.

    Science.gov (United States)

    Posayapisit, Navaporn; Songsungthong, Warangkhana; Koonyosying, Pongpisid; Falade, Mofolusho O; Uthaipibull, Chairat; Yuthavong, Yongyuth; Shaw, Philip J; Kamchonwongpaisan, Sumalee

    Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc 1 hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc 1 hl are both essential and thus may be antimalarial targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Wiring of heme enzymes by methylene-blue labeled dendrimers

    DEFF Research Database (Denmark)

    Álvarez-Martos, Isabel; Shahdost-fard, Faezeh; Ferapontova, Elena

    2017-01-01

    Redox-modified branched 3D dendrimeric nanostructures may be considered as perspective wires for electrical connection between redox enzymes and electrodes. Here, we studied electron transfer (ET) reactions and bioelectrocatalysis of heme-containing horseradish peroxidase (HRP) and heme- and moli......Redox-modified branched 3D dendrimeric nanostructures may be considered as perspective wires for electrical connection between redox enzymes and electrodes. Here, we studied electron transfer (ET) reactions and bioelectrocatalysis of heme-containing horseradish peroxidase (HRP) and heme......- and molibdopterin-containing sulfite oxidase (SOx), wired to gold by the methylene blue (MB)-labeled polyamidoamine (PAMAM) dendrimers. The enzymes’ electrochemical transformation and bioelectrocatalytic function could be followed at both unlabeled and MB-labeled dendrimer-modified electrodes with the formal redox......, optimization of bioelectrocatalysis of complex intermembrane and, possibly, membrane enzymes....

  16. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Science.gov (United States)

    Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo

    2016-12-01

    Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  17. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Directory of Open Access Journals (Sweden)

    Deborah Chiabrando

    2016-12-01

    Full Text Available Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs. Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1 gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  18. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Fader, Kelly A.; Nault, Rance [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Kirby, Mathew P.; Markous, Gena [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Matthews, Jason [Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0316 (Norway); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2017-04-15

    Persistent aryl hydrocarbon receptor (AhR) agonists elicit dose-dependent hepatic lipid accumulation, oxidative stress, inflammation, and fibrosis in mice. Iron (Fe) promotes AhR-mediated oxidative stress by catalyzing reactive oxygen species (ROS) production. To further characterize the role of Fe in AhR-mediated hepatotoxicity, male C57BL/6 mice were orally gavaged with sesame oil vehicle or 0.01–30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. Duodenal epithelial and hepatic RNA-Seq data were integrated with hepatic AhR ChIP-Seq, capillary electrophoresis protein measurements, and clinical chemistry analyses. TCDD dose-dependently repressed hepatic expression of hepcidin (Hamp and Hamp2), the master regulator of systemic Fe homeostasis, resulting in a 2.6-fold increase in serum Fe with accumulating Fe spilling into urine. Total hepatic Fe levels were negligibly increased while transferrin saturation remained unchanged. Furthermore, TCDD elicited dose-dependent gene expression changes in heme biosynthesis including the induction of aminolevulinic acid synthase 1 (Alas1) and repression of uroporphyrinogen decarboxylase (Urod), leading to a 50% increase in hepatic hemin and a 13.2-fold increase in total urinary porphyrins. Consistent with this heme accumulation, differential gene expression suggests that heme activated BACH1 and REV-ERBα/β, causing induction of heme oxygenase 1 (Hmox1) and repression of fatty acid biosynthesis, respectively. Collectively, these results suggest that Hamp repression, Fe accumulation, and increased heme levels converge to promote oxidative stress and the progression of TCDD-elicited hepatotoxicity. - Highlights: • TCDD represses hepatic hepcidin expression, leading to systemic iron overloading. • Dysregulation of heme biosynthesis is consistent with heme and porphyrin accumulation. • Heme-activated REV-ERBα/β repress circadian-regulated hepatic lipid metabolism. • Disruption of iron

  19. Role of distal arginine in early sensing intermediates in the heme domain of the oxygen sensor FixL.

    Science.gov (United States)

    Jasaitis, Audrius; Hola, Klara; Bouzhir-Sima, Latifa; Lambry, Jean-Christophe; Balland, Veronique; Vos, Marten H; Liebl, Ursula

    2006-05-16

    FixL is a bacterial heme-based oxygen sensor, in which release of oxygen from the sensing PAS domain leads to activation of an associated kinase domain. Static structural studies have suggested an important role of the conserved residue arginine 220 in signal transmission at the level of the heme domain. To assess the role of this residue in the dynamics and properties of the initial intermediates in ligand release, we have investigated the effects of R220X (X = I, Q, E, H, or A) mutations in the FixLH heme domain on the dynamics and spectral properties of the heme upon photolysis of O(2), NO, and CO using femtosecond transient absorption spectroscopy. Comparison of transient spectra for CO and NO dissociation with steady-state spectra indicated less strain on the heme in the ligand dissociation species for all mutants compared to the wild type (WT). For CO and NO, the kinetics were similar to those of the wild type, with the exception of (1) a relatively low yield of picosecond NO rebinding to R220A, presumably related to the increase in the free volume of the heme pocket, and (2) substantial pH-dependent picosecond to nanosecond rebinding of CO to R220H, related to formation of a hydrogen bond between CO and histidine 220. Upon excitation of the complex bound with the physiological sensor ligand O(2), a 5-8 ps decay phase and a nondecaying (>4 ns) phase were observed for WT and all mutants. The strong distortion of the spectrum associated with the decay phase in WT is substantially diminished in all mutant proteins, indicating an R220-induced role of the heme in the primary intermediate in signal transmission. Furthermore, the yield of dissociated oxygen after this phase ( approximately 10% in WT) is increased in all mutants, up to almost unity in R220A, indicating a key role of R220 in caging the oxygen near the heme through hydrogen bonding. Molecular dynamics simulations corroborate these findings and suggest motions of O(2) and arginine 220 away from the heme

  20. Structure-Function Relationships in the Gas-Sensing Heme-Dependent Transcription Factors RcoM and DNR

    Science.gov (United States)

    Bowman, Hannah E.

    Transition metals play an important role in many biological processes, however, they are also toxic at high concentrations. Therefore, the uptake and efflux of these metals must be tightly regulated by the cell. Bacteria have evolved a variety of pathways and regulatory systems to monitor the presence and concentration of metals in the cellular environment. A key component of those systems are transcription factors that either "sense metals" or use "metal sensors". The first class of these proteins have metals as their allosteric effector ligand. The second class of these proteins utilize transition metal containing cofactors to sense other environmental cues through the specific chemistry afforded by the cofactor. Chapter 1 reviews the current literature regarding both types of transcription factors. The focus of this work has been on two heme-containing, gas-sensing transcription factors found in bacteria, RcoM (regulator of CO metabolism) and DNR (dissimilative nitrate respiration regulator). RcoM is a CO-dependent protein found in Burkholderia xenovorans and sits upstream of the cox operon for oxidative CO metabolism. RcoM senses the presence of CO, as well as changes in redox potential, through a ligand switch process at its heme cofactor. Chapter 2 details spectroscopic characterization of several methionine mutants to identify the Fe(II) ligand trans to His 74. That study concludes that Met104 acts as the CO-replacable ligand. Met105, while not the ligand, does play an important role in reversibility of the ligand switch process. RcoM has a unique tertiary structure that combines a sensory domain and a DNA-binding domain normally found in two-component systems. Chapter 3 provides evidence that RcoM adopts a dimeric state. Further biophysical and structural characterization gives further insight into how the two domains are organized and the implications for the DNA-binding mechanism. DNR is a NO-sensing transcription factor from Pseudomonas aeruginosa and

  1. Magnetic resonance spectral characterization of the heme active site of Coprinus cinereus peroxidase

    International Nuclear Information System (INIS)

    Lukat, G.S.; Rodgers, K.R.; Jabro, M.N.; Goff, H.M.

    1989-01-01

    Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, the authors characterize the H 2 O 2 -oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Caprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum

  2. Anti-inflammatory effect of transduced PEP-1-heme oxygenase-1 in Raw 264.7 cells and a mouse edema model

    International Nuclear Information System (INIS)

    Kwon, Soon Won; Sohn, Eun Jeong; Kim, Dae Won; Jeong, Hoon Jae; Kim, Mi Jin; Ahn, Eun Hee; Kim, Young Nam; Dutta, Suman; Kim, Duk-Soo; Park, Jinseu; Eum, Won Sik; Hwang, Hyun Sook; Choi, Soo Young

    2011-01-01

    Highlights: → Recombinant PEP-1 heme oxygenase-1 expression vector was constructed and overexpressed. → We investigated transduction efficiency of PEP-1-HO-1 protein in Raw 264.7 cells. → PEP-1-HO-1 was efficiently transduced into Raw 264.7 cells in a dose and time dependent manner. → PEP-1-HO-1 exerted anti-inflammatory activity in Raw 264.7 cells and in a mice edema model. → PEP-1-HO-1 could be used as a therapeutic drug against inflammatory diseases. -- Abstract: Heme oxygenase-1 (HO-1), which catalyzes the degradation of free heme to biliverdin, carbon monoxide (CO), and free iron (Fe 2+ ), is up-regulated by several cellular stress and cell injuries, including inflammation, ischemia and hypoxia. In this study, we examined whether fusion of HO-1 with PEP-1, a protein transduction domain that is able to deliver exogenous molecules to living cells or tissues, would facilitate HO-1 delivery to target cells and tissues, and thereby effectively exert a therapeutically useful response against inflammation. Western blot analysis demonstrated that PEP-1-HO-1 fusion proteins were transduced into Raw 264.7 cells in time- and dose-dependent manners, and were stably maintained in the cells for about 60 h. In addition, fluorescence analysis revealed that only PEP-1-HO-1 fusion proteins were significantly transduced into the cytoplasm of cells, while HO-1 proteins failed to be transduced. In lipopolysaccharide (LPS)-stimulated Raw 264.7 cells and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse edema model, transduced PEP-1-HO-1 fusion proteins effectively inhibited the overexpression of pro-inflammatory mediators and cytokines. Also, histological analysis demonstrated that PEP-1-HO-1 remarkably suppressed ear edema. The results suggest that the PEP-1-HO-1 fusion protein can be used as a therapeutic molecule against reactive oxygen species-related inflammatory diseases.

  3. Alteration by irradiation and storage at amount of heme iron in poultry meat

    International Nuclear Information System (INIS)

    Souza, A.R.M. de; Arthur, V.; Canniatti-Brazaca, S.G.

    2007-01-01

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 °C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author) [pt

  4. Alteration by irradiation and storage at amount of heme iron in poultry meat

    International Nuclear Information System (INIS)

    Souza, Adriana Regia Marques de; Arthur, Valter Arthur; Canniatti-Brazaca, Solange Guidolin

    2007-01-01

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 deg C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author)

  5. Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Quang M Tran

    Full Text Available The role of the heme b in Escherichia coli succinate dehydrogenase is highly ambiguous and its role in catalysis is questionable. To examine whether heme reduction is an essential step of the catalytic mechanism, we generated a series of site-directed mutations around the heme binding pocket, creating a library of variants with a stepwise decrease in the midpoint potential of the heme from the wild-type value of +20 mV down to -80 mV. This difference in midpoint potential is enough to alter the reactivity of the heme towards succinate and thus its redox state under turnover conditions. Our results show both the steady state succinate oxidase and fumarate reductase catalytic activity of the enzyme are not a function of the redox potential of the heme. As well, lower heme potential did not cause an increase in the rate of superoxide production both in vitro and in vivo. The electron paramagnetic resonance (EPR spectrum of the heme in the wild-type enzyme is a combination of two distinct signals. We link EPR spectra to structure, showing that one of the signals likely arises from an out-of-plane distortion of the heme, a saddled conformation, while the second signal originates from a more planar orientation of the porphyrin ring.

  6. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.

    Science.gov (United States)

    Domingues-Hamdi, Elisa; Vasseur, Corinne; Fournier, Jean-Baptiste; Marden, Michael C; Wajcman, Henri; Baudin-Creuza, Véronique

    2014-01-01

    Alpha-Hemoglobin Stabilizing Protein (AHSP) binds to α-hemoglobin (α-Hb) or α-globin and maintains it in a soluble state until its association with the β-Hb chain partner to form Hb tetramers. AHSP specifically recognizes the G and H helices of α-Hb. To investigate the degree of interaction of the various regions of the α-globin H helix with AHSP, this interface was studied by stepwise elimination of regions of the α-globin H helix: five truncated α-Hbs α-Hb1-138, α-Hb1-134, α-Hb1-126, α-Hb1-123, α-Hb1-117 were co-expressed with AHSP as two glutathione-S-transferase (GST) fusion proteins. SDS-PAGE and Western Blot analysis revealed that the level of expression of each truncated α-Hb was similar to that of the wild type α-Hb except the shortest protein α-Hb1-117 which displayed a decreased expression. While truncated GST-α-Hb1-138 and GST-α-Hb1-134 were normally soluble; the shorter globins GST-α-Hb1-126 and GST-α-Hb1-117 were obtained in very low quantities, and the truncated GST-α-Hb1-123 provided the least material. Absorbance and fluorescence studies of complexes showed that the truncated α-Hb1-134 and shorter forms led to modified absorption spectra together with an increased fluorescence emission. This attests that shortening the H helix leads to a lower affinity of the α-globin for the heme. Upon addition of β-Hb, the increase in fluorescence indicates the replacement of AHSP by β-Hb. The CO binding kinetics of different truncated AHSPWT/α-Hb complexes showed that these Hbs were not functionally normal in terms of the allosteric transition. The N-terminal part of the H helix is primordial for interaction with AHSP and C-terminal part for interaction with heme, both features being required for stability of α-globin chain.

  7. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    Science.gov (United States)

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  8. Heme oxygenase and carbon monoxide protect from muscle dystrophy.

    Science.gov (United States)

    Chan, Mun Chun; Ziegler, Olivia; Liu, Laura; Rowe, Glenn C; Das, Saumya; Otterbein, Leo E; Arany, Zoltan

    2016-11-28

    Duchenne muscle dystrophy (DMD) is one of the most common lethal genetic diseases of children worldwide and is 100% fatal. Steroids, the only therapy currently available, are marred by poor efficacy and a high side-effect profile. New therapeutic approaches are urgently needed. Here, we leverage PGC-1α, a powerful transcriptional coactivator known to protect against dystrophy in the mdx murine model of DMD, to search for novel mechanisms of protection against dystrophy. We identify heme oxygenase-1 (HO-1) as a potential novel target for the treatment of DMD. Expression of HO-1 is blunted in the muscles from the mdx murine model of DMD, and further reduction of HO-1 by genetic haploinsufficiency worsens muscle damage in mdx mice. Conversely, induction of HO-1 pharmacologically protects against muscle damage. Mechanistically, HO-1 degrades heme into biliverdin, releasing in the process ferrous iron and carbon monoxide (CO). We show that exposure to a safe low dose of CO protects against muscle damage in mdx mice, as does pharmacological treatment with CO-releasing molecules. These data identify HO-1 and CO as novel therapeutic agents for the treatment of DMD. Safety profiles and clinical testing of inhaled CO already exist, underscoring the translational potential of these observations.

  9. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    Science.gov (United States)

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. Copyright 2005 Wiley-Liss, Inc.

  10. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Science.gov (United States)

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  11. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes

    OpenAIRE

    Chiabrando, Deborah; Vinchi, Francesca; Fiorito, Veronica; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multi...

  12. Peroxidase-type reactions suggest a heterolytic/nucleophilic O–O joining mechanism in the heme-dependent chlorite dismutase†

    Science.gov (United States)

    Mayfield, Jeffrey A.; Blanc, Béatrice; Rodgers, Kenton R.; Lukat-Rodgers, Gudrun S.; DuBois, Jennifer L.

    2015-01-01

    Heme-containing chlorite dismutases (Clds) catalyze a highly unusual O–O bond forming reaction. The O–O cleaving reactions of hydrogen peroxide and peracetic acid (PAA) with the Cld from Dechloromonas aromatica (DaCld) were studied to better understand the Cl–O cleavage of the natural substrate and subsequent O–O bond formation. While reactions with H2O2 resulted in slow destruction of the heme, at acidic pH, heterolytic cleavage of the O–O bond of PAA cleanly yielded the ferryl porphyrin cation radical (Compound I). At alkaline pH, the reaction proceeds more rapidly and the first observed intermediate is a ferryl heme. Freezequench EPR confirmed that the latter has an uncoupled protein-based radical, indicating that Compound I is the first intermediate formed at all pH values and that radical migration is faster at alkaline pH. These results suggest by analogy that two-electron Cl–O bond cleavage to yield a ferryl-porphyrin cation radical is the most likely initial step in O–O bond formation from chlorite. PMID:24001266

  13. Rapid, convenient method for screening imidazole-containing compounds for heme oxygenase inhibition.

    Science.gov (United States)

    Vlahakis, Jason Z; Rahman, Mona N; Roman, Gheorghe; Jia, Zongchao; Nakatsu, Kanji; Szarek, Walter A

    2011-01-01

    Sensitive assays for measuring heme oxygenase activity have been based on the gas-chromatographic detection of carbon monoxide using elaborate, expensive equipment. The present study describes a rapid and convenient method for screening imidazole-containing candidates for inhibitory activity against heme oxygenase using a plate reader, based on the spectroscopic evaluation of heme degradation. A PowerWave XS plate reader was used to monitor the absorbance (as a function of time) of heme bound to purified truncated human heme oxygenase-1 (hHO-1) in the individual wells of a standard 96-well plate (with or without the addition of a test compound). The degradation of heme by heme oxygenase-1 was initiated using l-ascorbic acid, and the collected relevant absorbance data were analyzed by three different methods to calculate the percent control activity occurring in wells containing test compounds relative to that occurring in control wells with no test compound present. In the cases of wells containing inhibitory compounds, significant shifts in λ(max) from 404 to near 412 nm were observed as well as a decrease in the rate of heme degradation relative to that of the control. Each of the three methods of data processing (overall percent drop in absorbance over 1.5h, initial rate of reaction determined over the first 5 min, and estimated pseudo first-order reaction rate constant determined over 1.5h) gave similar and reproducible results for percent control activity. The fastest and easiest method of data analysis was determined to be that using initial rates, involving data acquisition for only 5 min once reactions have been initiated using l-ascorbic acid. The results of the study demonstrate that this simple assay based on the spectroscopic detection of heme represents a rapid, convenient method to determine the relative inhibitory activity of candidate compounds, and is useful in quickly screening a series or library of compounds for heme oxygenase inhibition

  14. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S.; Thomsen, Julianne M.; Li, Jinyang; Schwab, Mark J.; Brudvig, Gary W.; Taylor, André D.

    2016-01-01

    One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries. Here, we show that the heme molecule, a common porphyrin cofactor in blood, can function as a soluble redox catalyst and oxygen shuttle for efficient oxygen evolution in non-aqueous Li-O2 batteries. The heme's oxygen binding capability facilitates battery recharge by accepting and releasing dissociated oxygen species while benefiting charge transfer with the cathode. We reveal the chemical change of heme redox molecules where synergy exists with the electrolyte species. This study brings focus to the rational design of solution-based catalysts and suggests a sustainable cross-link between biomolecules and advanced energy storage. PMID:27759005

  15. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1

    OpenAIRE

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J.

    2015-01-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorpo...

  16. Radical transfer between proteins: role of tyrosine, tryptophan and protein peroxyl radicals

    International Nuclear Information System (INIS)

    Irwin, J.A.; Ostdal, H.; Davies, M.J.

    1998-01-01

    Reaction of the Fe(III) forms of the heme proteins myoglobin (Mb) and horseradish peroxidase (HRP) with H 2 O 2 gives rise to high-oxidation-state heme-derived species which can be described as a Fe(IV)-oxo porphyrin radical-cation ('Compound 1'). In the case of Mb, the Fe(IV)-oxo porphyrin radical-cation undergoes rapid electron transfer with the surrounding protein to give protein (globin)-derived radicals and an Fe(lV)-oxo species ('Compound 2'). The globin-derived radicals have been shown to be located at two (or more) sites: Tyr-103 or Trp-14, with the latter radical known to react with oxygen to give a Trp-derived peroxyl radical (Mb-Trp-OO*). With HRP, the Fe(lV)-oxo porphyrin radical-cation carries out two successive one-electron oxidation reactions at the exposed heme edge to give firstly 'Compound 2' [the Fe(lV)oxo species] and then the resting Fe(III) state of the enzyme. n this study we have investigated whether the Trp-14 peroxyl radical from Mb and the Compound 1 and 2 species from HRP (in the absence and presence of free Tyr) can oxidise amino acids, peptides and proteins. Such reactions constitute intermolecular protein-to-protein radical transfer reactions and hence protein chain-oxidation. We have also examined whether these oxidants react with antioxidants. Reaction of these heme-protein derived oxidants with amino acids, proteins and antioxidants has been carried out at room temperature for defined periods of time before freeze-quenching to 77K to halt reaction. The radical species present in the reaction system at the time of freezing were subsequently examined by EPR spectroscopy at 77K. Three free amino acids, Tyr, Trp and Cys (with Cys the least efficient) have been shown to react rapidly with Mb-Trp-OO*, as evidenced by the loss of the characteristic EPR features of Mb-Trp-OO* on inclusion of increasing concentrations of the amino acids. All other amino acids are much less reactive. Evidence has also been obtained for (inefficient) hydrogen

  17. Allocation of Heme is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    Directory of Open Access Journals (Sweden)

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1 and null (fc1-2 mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1 and null (fc2-2 mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.

  18. EXPRESSION AND CHARACTERIZATION OF FULL-LENGTH HUMAN HEME OXYGENASE-1: PRESENCE OF INTACT MEMBRANE-BINDING REGION LEADS TO INCREASED BINDING AFFINITY FOR NADPH-CYTOCHROME P450 REDUCTASE

    Science.gov (United States)

    Huber, Warren J.; Backes, Wayne L.

    2009-01-01

    Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953

  19. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review

    OpenAIRE

    Delimont, Nicole M.; Rosenkranz, Sara K.; Haub, Mark D.; Lindshield, Brian L.

    2017-01-01

    Background Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. Aim To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme ir...

  20. Identifying Key Attributes for Protein Beverages.

    Science.gov (United States)

    Oltman, A E; Lopetcharat, K; Bastian, E; Drake, M A

    2015-06-01

    This study identified key attributes of protein beverages and evaluated effects of priming on liking of protein beverages. An adaptive choice-based conjoint study was conducted along with Kano analysis to gain insight on protein beverage consumers (n = 432). Attributes evaluated included label claim, protein type, amount of protein, carbohydrates, sweeteners, and metabolic benefits. Utility scores for levels and importance scores for attributes were determined. Subsequently, two pairs of clear acidic whey protein beverages were manufactured that differed by age of protein source or the amount of whey protein per serving. Beverages were evaluated by 151 consumers on two occasions with or without priming statements. One priming statement declared "great flavor," the other priming statement declared 20 g protein per serving. A two way analysis of variance was applied to discern the role of each priming statement. The most important attribute for protein beverages was sweetener type, followed by amount of protein, followed by type of protein followed by label claim. Beverages with whey protein, naturally sweetened, reduced sugar and ≥15 g protein per serving were most desired. Three consumer clusters were identified, differentiated by their preferences for protein type, sweetener and amount of protein. Priming statements positively impacted concept liking (P 0.05). Consistent with trained panel profiles of increased cardboard flavor with higher protein content, consumers liked beverages with 10 g protein more than beverages with 20 g protein (6.8 compared with 5.7, P appeal. © 2015 Institute of Food Technologists®

  1. Synthesis of a Non-Heme Template for Attaching Four Peptides : An Approach to Artificial Iron(II)-Containing Peroxidases

    NARCIS (Netherlands)

    Heuvel, Marco van den; Berg, Tieme A. van den; Kellogg, Richard M.; Choma, Christin T.; Feringa, Bernard

    2004-01-01

    We are developing all-synthetic model cofactor-protein complexes in order to define the parameters controlling non-natural cofactor activity. The long-term objective is to establish the theoretical and practical basis for designing novel enzymes. A non-heme pentadentate ligand (N4Py) is being

  2. In vitro Activation of heme oxygenase-2 by menadione and its analogs.

    Science.gov (United States)

    Vukomanovic, Dragic; Rahman, Mona N; Bilokin, Yaroslav; Golub, Andriy G; Brien, James F; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2014-02-18

    Previously, we reported that menadione activated rat, native heme oxygenase-2 (HO-2) and human recombinant heme oxygenase-2 selectively; it did not activate spleen, microsomal heme oxygenase-1. The purpose of this study was to explore some structure-activity relationships of this activation and the idea that redox properties may be an important aspect of menadione efficacy. Heme oxygenase activity was determined in vitro using rat spleen and brain microsomes as the sources of heme oxygenase-1 and -2, respectively, as well as recombinant, human heme oxygenase-2. Menadione analogs with bulky aliphatic groups at position-3, namely vitamins K1 and K2, were not able to activate HO-2. In contrast, several compounds with similar bulky but less lipophilic moieties at position-2 (and -3) were able to activate HO-2 many fold; these compounds included polar, rigid, furan-containing naphthoquinones, furan-benzoxazine naphthoquinones, 2-(aminophenylphenyl)-3-piperidin-1-yl naphthoquinones. To explore the idea that redox properties might be involved in menadione efficacy, we tested analogs such as 1,4-dimethoxy-2-methylnaphthalene, pentafluoromenadione, monohalogenated naphthoquinones, α-tetralone and 1,4-naphthoquinone. All of these compounds were inactive except for 1,4-naphthoquinone. Menadione activated full-length recombinant human heme oxygenase-2 (FL-hHO-2) as effectively as rat brain enzyme, but it did not activate rat spleen heme oxygenase. These observations are consistent with the idea that naphthoquinones such as menadione bind to a receptor in HO-2 and activate the enzyme through a mechanism that may involve redox properties.

  3. O2-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    International Nuclear Information System (INIS)

    Ascenzi, Paolo; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2011-01-01

    Research highlights: → Human serum heme-albumin displays globin-like properties. → O 2 -mediated oxidation of ferrous nitrosylated human serum heme-albumin. → Allosteric modulation of human serum heme-albumin reactivity. → Rifampicin is an allosteric effector of human serum heme-albumin. → Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O 2 -mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O 2 -mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10 -5 and 8.3 x 10 -4 s -1 , and h = 1.3 x 10 -4 and 8.5 x 10 -4 s -1 , in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 o C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O 2 -mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O 2 does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O 2 -mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  4. Human heme oxygenase oxidation of 5- and 15-phenylhemes.

    Science.gov (United States)

    Wang, Jinling; Niemevz, Fernando; Lad, Latesh; Huang, Liusheng; Alvarez, Diego E; Buldain, Graciela; Poulos, Thomas L; de Montellano, Paul R Ortiz

    2004-10-08

    Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity.

  5. Aldoxime dehydratase: probing the heme environment involved in the synthesis of the carbon-nitrogen triple bond.

    Science.gov (United States)

    Pinakoulaki, Eftychia; Koutsoupakis, Constantinos; Sawai, Hitomi; Pavlou, Andrea; Kato, Yasuo; Asano, Yasuhisa; Aono, Shigetoshi

    2011-11-10

    Fourier transform infrared (FTIR) spectra, "light" minus "dark" difference FTIR spectra, and time-resolved step-scan (TRS(2)) FTIR spectra are reported for carbonmonoxy aldoxime dehydratase. Two C-O modes of heme at 1945 and 1964 cm(-1) have been identified and remained unchanged in H(2)O/D(2)O exchange and in the pH 5.6-8.5 range, suggesting the presence of two conformations at the active site. The observed C-O frequencies are 5 and 16 cm(-1) lower and higher, respectively, than that obtained previously (Oinuma, K.-I.; et al. FEBS Lett.2004, 568, 44-48). We suggest that the strength of the Fe-His bond and the neutralization of the negatively charged propionate groups modulate the ν(Fe-CO)/ν(CO) back-bonding correlation. The "light" minus "dark" difference FTIR spectra indicate that the heme propionates are in both the protonated and deprotonated forms, and the photolyzed CO becomes trapped within a ligand docking site (ν(CO) = 2138 cm(-1)). The TRS(2)-FTIR spectra show that the rate of recombination of CO to the heme is k(1945 cm(-1)) = 126 ± 20 s(-1) and k(1964 cm(-1)) = 122 ± 20 s(-1) at pH 5.6, and k(1945 cm(-1)) = 148 ± 30 s(-1) and k(1964 cm(-1)) = 158 ± 32 s(-1) at pH 8.5. The rate of decay of the heme propionate vibrations is on a time scale coincident with the rate of rebinding, suggesting that there is a coupling between ligation dynamics in the distal heme environment and the environment sensed by the heme propionates. The implications of these results with respect to the proximal His-Fe heme environment including the propionates and the positively charged or proton-donating residues in the distal pocket which are crucial for the synthesis of nitriles are discussed.

  6. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  7. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome em>c>4

    DEFF Research Database (Denmark)

    Natzmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.

    2012-01-01

    force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe...

  9. Clinically Important Features of Porphyrin and Heme Metabolism and the Porphyrias

    Directory of Open Access Journals (Sweden)

    Siddesh Besur

    2014-11-01

    Full Text Available Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA, porphobilinogen and porphyrins are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther’s disease and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow. We also describe salient clinical, laboratory and genetic features of the eight types of porphyria.

  10. Effect of lead on heme synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, A.

    1975-01-01

    Recently, a fair amount of work has been done on the effect of lead on porphobilinogen dehydratase, which has been used as a sensitive indicator of lead poisoning. How far this is in itself harmful depends on the Michaelis constants of both the aminolaevulinic synthetase and of the dehydratase, and in addition on the relative activities of the two enzymes in a cell and also on the tissue concentration of glycine. Information on some of these points is still fragmentary, and a reliable judgement is at the present not very easy. Another step in the heme synthesis, which is sensitive to low concentrations of lead, is the incorporation of iron into protoporphyrin. Inhibition of this step may be important in accounting to a large extent for the anaemia found in individuals with lead poisoning. Reduction in the tissue concentration of heme or of heme-like compounds may also explain, through the mechanism of de-repression, the excretion of increased amounts of aminolaevulinic acid in the urine observed in cases of lead poisoning. A third step in heme synthesis, which might be sensitive to lead, is the oxidative decarboxylation of coproporphyrin to protoporphyrin, and this may explain why the former derivative is excreted in the urine. Recent work of the Harvard Medical School has indicated that greatly reduced levels of ALA dehydratase may be found in most cases of severe liver damage due to alcoholism. In most of these cases the level of lead in the blood is within normal limits, and there is no history of exposure to toxic amounts of lead. We therefore have to assume that a reduction in the blood level of this enzyme is not necessarily an indication of lead poisoning.

  11. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis

    NARCIS (Netherlands)

    Donker, A.E.; Raymakers, R.A.P.; Vlasveld, L.T.; Barneveld, T. van; Terink, R.; Dors, N.; Brons, P.P.T.; Knoers, N.V.A.M.; Swinkels, D.W.

    2014-01-01

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel

  12. The effect of irradiation and thermal process on beef heme iron concentration and color properties

    International Nuclear Information System (INIS)

    Mistura, Liliana Perazzini Furtado; Colli, Celia

    2009-01-01

    The aim of this study was to evaluate the influence of irradiation and thermal process on the heme iron (heme-Fe) concentration and color properties of Brazilian cattle beef. Beef samples (patties and steaks) were irradiated at 0-10 kGy and cooked in a combination oven at 250 deg C for 9 minutes with 70% humidity. Total iron and heme iron (heme-Fe) concentrations were determined. The data were compared by multiple comparisons and fixed- effects ANOVA. Irradiation at doses higher than 5 kGy significantly altered the heme-Fe concentration. However, the sample preparation conditions interfered more in the heme-Fe content than did the irradiation. Depending on the animal species, meat heme iron levels between 35 and 52% of the total iron are used for dietetic calculations. In this study the percentage of heme-iron was, on average, 70% of the total iron showing that humidity is an important factor for its preservation. The samples were analyzed instrumentally for CIE L * , a * , and b * values. (author)

  13. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Directory of Open Access Journals (Sweden)

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  14. Heme: From quantum spin crossover to oxygen manager of life

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    The review discusses how the electronic structure of heme explains its central importance to oxygen-based life on Earth. Emphasis is on the chemical bonding of heme, its spin crossover, reversible O2 binding, and O-O bond activation, put in relation to its physiological functions. The review disc...

  15. Examination of the ligand-binding and enzymatic properties of a bilin-binding protein from the poisonous caterpillar Lonomia obliqua.

    Directory of Open Access Journals (Sweden)

    Ana B G Veiga

    Full Text Available The bilin-binding proteins (BBP from lepidopteran insects are members of the lipocalin family of proteins and play a special role in pigmentation through the binding of biliverdin IXγ. Lopap, a BBP-like protein from the venom of the toxic caterpillar Lonomia obliqua has been reported to act as a serine protease that activates the coagulation proenzyme prothrombin. Here we show that BBPLo, a variant of lopap from the same organism binds biliverdin IXγ, forming a complex that is spectrally identical with previously described BBP proteins. Although BBPLo is nearly identical in sequence to lopap, no prothrombinase activity was detected in our recombinant preparations using reconstituted systems containing coagulation factors Xa and Va, as well as anionic phospholipids. In addition to biliverdin, BBPLo was found to form a 1:1 complex with heme prompting us to examine whether the unusual biliverdin IXγ ligand of BBPs forms as a result of oxidation of bound heme in situ rather than by a conventional heme oxygenase. Using ascorbate or a NADPH(+-ferredoxin reductase-ferredoxin system as a source of reducing equivalents, spectral changes are seen that suggest an initial reduction of heme to the Fe(II state and formation of an oxyferrous complex. The complex then disappears and a product identified as a 5-coordinate carbonyl complex of verdoheme, an intermediate in the biosynthesis of biliverdin, is formed. However, further reaction to form biliverdin was not observed, making it unlikely that biliverdin IXγ is formed by this pathway.

  16. Mononuclear non-heme iron(III)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate. Mallayan Palaniandavar Kusalendiran Visvaganesan.

  17. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.

    Science.gov (United States)

    Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan

    2018-02-01

    Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Moessbauer spectroscopic evidence on the heme binding to the proximal histidine in unfolded carbonmonoxy myoglobin by guanidine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Harami, Taikan, E-mail: harami.taikan@jaea.go.jp [Japan Atomic Energy Agency (Japan); Kitao, Shinji; Kobayashi, Yasuhiro [Kyoto University, Research Reactor Institute (Japan); Mitsui, Takaya [Japan Atomic Energy Agency (Japan)

    2008-01-15

    The unfolded heme structure in myoglobin is controversial because of no chance of direct X-ray structure analyses. The unfolding of carbonmonoxy myoglobin (MbCO) by guanidine hydrochloride (GdnHCl) was studied by the Moessbauer spectroscopy. The spectra show the presence of a sort of spectrum in the unfolded MbCO, independent on the concentration of GdnHCl from 1 to 6 M and the increase of the fraction of unfolded MbCO, depending on the GdnHCl concentration. The isomer shift of the iron of heme in the unfolded MbCO was identified to be different from that of the native MbCO as the globin structure in Mb collapses under the unfolded conditions. This result and the existing related Moessbauer data proved that the heme in the unfolded MbCO may remain coordinated to the proximal histidine.

  19. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

    Science.gov (United States)

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-03-25

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Control of heme synthesis during Friend cell differentiation: role of iron and transferrin

    International Nuclear Information System (INIS)

    Laskey, J.D.; Ponka, P.; Schulman, H.M.

    1986-01-01

    In many types of cells the synthesis of σ-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from this laboratory with reticulocytes suggest that the rate of iron uptake from 125 I-transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels or 59 Fe-Tf (20 μM). Furthermore, in induced Friend cells 100 μM Fe-SIH stimulated 2- 14 C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells

  1. The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS.

    Science.gov (United States)

    Söderberg, Christopher; Gillam, Mallory E; Ahlgren, Eva-Christina; Hunter, Gregory A; Gakh, Oleksandr; Isaya, Grazia; Ferreira, Gloria C; Al-Karadaghi, Salam

    2016-05-27

    Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Interaction of nitric oxide with human heme oxygenase-1.

    Science.gov (United States)

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  3. Metabolomics analyses identify platelet activating factors and heme breakdown products as Lassa fever biomarkers.

    Directory of Open Access Journals (Sweden)

    Trevor V Gale

    2017-09-01

    Full Text Available Lassa fever afflicts tens of thousands of people in West Africa annually. The rapid progression of patients from febrile illness to fulminant syndrome and death provides incentive for development of clinical prognostic markers that can guide case management. The small molecule profile of serum from febrile patients triaged to the Viral Hemorrhagic Fever Ward at Kenema Government Hospital in Sierra Leone was assessed using untargeted Ultra High Performance Liquid Chromatography Mass Spectrometry. Physiological dysregulation resulting from Lassa virus (LASV infection occurs at the small molecule level. Effects of LASV infection on pathways mediating blood coagulation, and lipid, amino acid, nucleic acid metabolism are manifest in changes in the levels of numerous metabolites in the circulation. Several compounds, including platelet activating factor (PAF, PAF-like molecules and products of heme breakdown emerged as candidates that may prove useful in diagnostic assays to inform better care of Lassa fever patients.

  4. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    International Nuclear Information System (INIS)

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-01-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and 14 C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of 14 C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose

  5. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O2 and H2O2 Yield Ferric Heme b.

    Science.gov (United States)

    Streit, Bennett R; Celis, Arianna I; Shisler, Krista; Rodgers, Kenton R; Lukat-Rodgers, Gudrun S; DuBois, Jennifer L

    2017-01-10

    A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O 2 and H 2 O 2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O 2 to the ferric state. The subsequent second-order reaction between the ferric complex and H 2 O 2 is slow, pH-dependent, and further decelerated by D 2 O 2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H 2 O 2 . Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H 2 O 2 cleavage is therefore unclear. From a cellular perspective, the use of H 2 O 2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.

  6. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenglong [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zheng, Haining [Department of Hyperbaric Oxygen, Nanjing General Hospital of Nanjing Military Command, Nanjing (China); Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Ding, Dafa, E-mail: dingdafa2004@aliyun.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Lu, Yibing, E-mail: luyibing2004@126.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  7. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    International Nuclear Information System (INIS)

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-01-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK

  8. Heme and HO-1 inhibition of HCV, HBV, and HIV

    Directory of Open Access Journals (Sweden)

    Warren N Schmidt

    2012-10-01

    Full Text Available Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system are virucidal for all three viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.

  9. Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Adi Dror

    2012-09-01

    Full Text Available Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.

  10. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2.

    Science.gov (United States)

    Kathiresan, Meena; English, Ann M

    2017-02-01

    We recently reported that cytochrome c peroxidase (Ccp1) functions as a H 2 O 2 sensor protein when H 2 O 2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (Cyc II ), determines whether Ccp1 acts as a H 2 O 2 sensor or peroxidase. For H 2 O 2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H 2 O 2 in the absence of Cyc II to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H 2 O 2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H 2 O 2 shuts down heterolytic cleavage of H 2 O 2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H 2 O 2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O 2 reactivity.

  11. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin

    International Nuclear Information System (INIS)

    Ascenzi, Paolo; Imperi, Francesco; Coletta, Massimo; Fasano, Mauro

    2008-01-01

    Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k off ) is reported. In the absence of drugs, the value of k off is (1.3 ± 0.2) x 10 -4 s -1 . Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k off value increases to (8.6 ± 0.9) x 10 -4 s -1 . From the dependence of k off on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 ± 0.2) x 10 -3 M and (6.2 ± 0.7) x 10 -5 M, respectively) were determined. The increase of k off values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors

  12. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials▿

    Science.gov (United States)

    Creek, Darren J.; Charman, William N.; Chiu, Francis C. K.; Prankerd, Richard J.; Dong, Yuxiang; Vennerstrom, Jonathan L.; Charman, Susan A.

    2008-01-01

    The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study. PMID:18268087

  14. Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation

    Science.gov (United States)

    Matuschewski, Kai; Haussig, Joana M.

    2016-01-01

    Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503

  15. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.

    Science.gov (United States)

    Singh, Neha; Bhatla, Satish C

    2016-02-29

    Nitric oxide is a significant component of iron signaling in plants. Heme is one of the iron sensors in plants. Free heme is highly toxic and can cause cell damage as it catalyzes the formation of reactive oxygen species (ROS). Its catabolism is carried out by heme oxygenase (HOs; EC 1.14.99.3) which uses heme both as a prosthetic group and as a substrate. Two significant events, which accompany adaptation to salt stress in sunflower seedlings, are accumulation of ROS and enhanced production of nitric oxide (NO) in roots and cotyledons. Present investigations on the immunolocalization of heme oxygenase distribution in sunflower seedling cotyledons by confocal laser scanning microscopic (CLSM) imaging provide new information on the differential spatial distribution of the inducible form of HO (HO-1) as a long distance in response to NaCl stress. The enzyme is abundantly distributed in the specialized cells around the secretory canals (SCs) in seedling cotyledons. Abundance of tyrosine nitrated proteins has also been observed in the specialized cells around the secretory canals in cotyledons derived from salt stressed seedlings. The spatial distribution of tyrosine nitrated proteins and HO-1 expression further correlates with the abundance of mitochondria in these cells. Present findings, thus, highlight a link among distribution of HO-1 expression, abundance of tyrosine nitrated proteins and mitochondria in specialized cells around the secretory canal as a long distance mechanism of salt stress tolerance in sunflower seedlings. Enhanced spatial distribution of HO-1 in response to NaCl stress in seedling cotyledons is in congruence with the observed increase in specific activity of HO-1 in NaCl stressed conditions. The enzyme activity is further enhanced by hemin (HO-1 inducer) both in the absence or presence of NaCl stress and inhibited by zinc protoporphyrin. Western blot analysis of cotyledon homogenates using anti-HO-1 polyclonal antibody shows one major band (29

  16. Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Fu, Guang-Qing; Jin, Qi-Jiang; Lin, Yu-Ting; Feng, Jian-Fei; Nie, Li; Shen, Wen-Biao; Zheng, Tian-Qing

    2011-11-01

    Heme oxygenase (HO, EC 1.14.99.3) catalyzes the oxidation of heme and performs vital roles in plant development and stress responses. Two HO isozymes exist in plants. Between these, HO-1 is an oxidative stress-response protein, and HO-2 usually exhibited constitutive expression. Although alfalfa HO-1 gene (MsHO1) has been investigated previously, HO2 is still poorly understood. In this study, we report the cloning and characterization of HO2 gene, MsHO2, from alfalfa (Medica sativa L.). The full-length cDNA of MsHO2 contains an ORF of 870 bp and encodes for 290 amino acid residues with a predicted molecular mass of 33.3 kDa. Similar to MsHO1, MsHO2 also appears to have an N-terminal transit peptide sequence for chloroplast import. Many conserved residues in plant HO were also conserved in MsHO2. However, unlike HO-1, the conserved histidine (His) required for heme-iron binding and HO activity was replaced by tyrosine (Tyr) in MsHO2. Further biochemical activity analysis of purified mature MsHO2 showed no HO activity, suggesting that MsHO2 may not be a true HO in nature. Semi-quantitative RT-PCR confirmed its maximum expression in the germinating seeds. Importantly, the expression levels of MsHO2 were up-regulated under sodium nitroprusside (SNP) and H(2)O(2) (especially) treatment, respectively.

  17. Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment.

    Directory of Open Access Journals (Sweden)

    Kelath Murali Manoj

    Full Text Available Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP, uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the "steady state kinetics" of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of "the product of interest" in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of "substrate concentration at maximum observed rate". The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes.

  18. CYTOCHROME P450 REGULATION: THE INTERPLAY BETWEEN ITS HEME AND APOPROTEIN MOIETIES IN SYNTHESIS, ASSEMBLY, REPAIR AND DISPOSAL123

    OpenAIRE

    Correia, Maria Almira; Sinclair, Peter R.; De Matteis, Francesco

    2010-01-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biot...

  19. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging

    DEFF Research Database (Denmark)

    Thomsen, Jens Haugbølle; Etzerodt, Anders; Svendsen, Pia

    2013-01-01

    The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex...

  20. Hormonal fluctuations during the estrous cycle modulate Heme Oxygenase-1 expression in the uterus

    Directory of Open Access Journals (Sweden)

    Maria Laura Zenclussen

    2014-03-01

    Full Text Available Deletion of the Heme Oxygenase-1 (Hmox1 locus in mice results in intrauterine lethality. The expression of the heme catabolyzing enzyme encoded by this gene, namely HO 1, is required to successfully support reproductive events. We have previously observed that HO-1 acts at several key events in reproduction ensuring pregnancy. HO-1 defines ovulation, positively influences implantation and placentation and ensures fetal growth and survival. Here, we embarked on a study aimed to determine whether hormonal changes during the estrous cycle in the mouse define HO-1 expression, thus influencing receptivity. We analyzed the serum levels of progesterone and estrogen by ELISA and HO-1 mRNA expression in uterus by real time RT-PCR at the metestrus, proestrus, estrus and diestrus phases of the estrous cycle. Further, we studied the HO-1 protein expression by Western Blot upon hormone addition to cultured uterine AN3 cells. We observed that HO-1 variations in uterine tissue correlated to changes in hormonal levels at different phases of the estrus cycle. In vitro, HO-1 protein levels in AN3 cells augmented after the addition of physiological concentrations of progesterone and estradiol, which confirmed our in vivo observations. Our data suggest an important role for hormones in HO-1 regulation in uterus that has a significant impact in receptivity and later on blastocyst implantation.

  1. Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats.

    Science.gov (United States)

    Martin, O C B; Lin, C; Naud, N; Tache, S; Raymond-Letron, I; Corpet, D E; Pierre, F H

    2015-01-01

    Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme. Using a factorial design we studied if microbiota could be involved in heme-induced carcinogenesis, by modulating peroxidation. Rats treated or not with an antibiotic cocktail were given a control or a hemoglobin-diet. Fecal bacteria were counted on agar and TBARs concentration assayed in fecal water. The suppression of microbiota by antibiotics was associated with a reduction of crypt height and proliferation and with a cecum enlargement, which are characteristics of germ-free rats. Rats given hemoglobin diets had increased fecal TBARs, which were suppressed by the antibiotic treatment. A duplicate experiment in rats given dietary hemin yielded similar results. These data show that the intestinal microbiota is involved in enhancement of lipoperoxidation by heme iron. We thus suggest that microbiota could play a role in the heme-induced promotion of colorectal carcinogenesis.

  2. Irradiation of bovine meat: effect of heme-iron concentration.; Irradiacao de carne bovina: efeito na concentracao de ferro heme

    Energy Technology Data Exchange (ETDEWEB)

    Mistura, Liliana Perazzini Furtado

    2002-07-01

    The irradiation is often used, nowadays, for meat conservation and it is important to know how much this process interferes with the nutritional quality of the meat. In this study round cut meat, ground and steaks (from a local supermarket) was irradiated with doses of O; 1; 2; 3; 4; 5; 7,5 and 10 kGy (JS-7500 Nordium Inc -Canada) and the interference of irradiation and the process of food preparation on heme-iron (H Fe) content was determined. Half of the sample was kept raw and the other half was grilled in a pre-warmed oven at 250 deg C for 9 min and a controlled humidity of 70%. The chemical composition, the total iron (T Fe) (EM) and the heme iron concentration were determined (Hornsey,1956) and the sensorial quality evaluated. The average T Fe concentration of raw and ground , ground and grilled, raw steaks and grilled steak meat, on dry and degreased basis was 113 mug/g, 121 mug/g , 91 mug/g and 77 mug/g; and the H Fe concentration 105 mug/g (93% of T Fe) , 88 mug/g (73% of T Fe), 90 mug/g (99% of T Fe) and 52 mug/g (68% of T Fe) respectively. Data were evaluated by ANOVA with fixed effects and multiple comparisons. The irradiation neither altered the chemical composition nor the proportion of heme iron of meat. The preparation conditions (temperature, cooking time, environment humidity, meat presentation) of the sample interfered more with the heme iron content than the irradiation. With the sensorial analysis we verified that meats irradiated with doses of 3 kGy were better evaluated in softness and succulency attributes than the others. Meat submitted to irradiation doses up to 3 kGy were accepted by the specialists' panel. (author)

  3. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.

  4. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Guilherme Curty Lechuga

    2016-12-01

    Full Text Available Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM, with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.

  5. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    Science.gov (United States)

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  6. Heme and menaquinone induced electron transport in lactic acid bacteria

    OpenAIRE

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacill...

  7. Identification of heme oxygenase-1 stimulators by a convenient ELISA-based bilirubin quantification assay.

    Science.gov (United States)

    Rücker, Hannelore; Amslinger, Sabine

    2015-01-01

    The upregulation of heme oxygenase-1 (HO-1) has proven to be a useful tool for fighting inflammation. In order to identify new HO-1 inducers, an efficient screening method was developed which can provide new lead structures for drug research. We designed a simple ELISA-based HO-1 enzyme activity assay, which allows for the screening of 12 compounds in parallel in the setting of a 96-well plate. The well-established murine macrophage cell line RAW264.7 is used and only about 26µg of protein from whole cell lysates is needed for the analysis of HO-1 activity. The quantification of HO-1 activity is based on an indirect ELISA using the specific anti-bilirubin antibody 24G7 to quantify directly bilirubin in the whole cell lysate, applying a horseradish peroxidase-tagged antibody together with ortho-phenylenediamine and H2O2 for detection. The bilirubin is produced on the action of HO enzymes by converting their substrate heme to biliverdin and additional recombinant biliverdin reductase together with NADPH at pH 7.4 in buffer. This sensitive assay allows for the detection of 0.57-82pmol bilirubin per sample in whole cell lysates. Twenty-three small molecules, mainly natural products with an α,β-unsaturated carbonyl unit such as polyphenols, including flavonoids and chalcones, terpenes, an isothiocyanate, and the drug oltipraz were tested at typically 6 or 24h incubation with RAW264.7 cells. The activity of known HO-1 inducers was confirmed, while the chalcones cardamonin, flavokawain A, calythropsin, 2',3,4'-trihydroxy-4-methoxychalcone (THMC), and 2',4'-dihydroxy-3,4-dimethoxychalcone (DHDMC) were identified as new potent HO-1 inducers. The highest inductive power after 6h incubation was found at 10µM for DHDMC (6.1-fold), carnosol (3.9-fold), butein (3.1-fold), THMC (2.9-fold), and zerumbone (2.5-fold). Moreover, the time dependence of HO-1 protein production for DHDMC was compared to its enzyme activity, which was further evaluated in the presence of

  8. Heme pathway evolution in kinetoplastid protists

    Czech Academy of Sciences Publication Activity Database

    Cenci, U.; Moog, D.; Curtis, B.A.; Tanifuji, G.; Eme, L.; Lukeš, Julius; Archibald, J.M.

    2016-01-01

    Roč. 16, MAY 18 (2016), č. článku 109. ISSN 1471-2148 Institutional support: RVO:60077344 Keywords : heme * kinetoplastea * Paramoeba pemaquidensis * Perkinsela * evolution * endosymbiosis * Prokinetoplastina * lateral gene transfer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.221, year: 2016

  9. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom.

    Science.gov (United States)

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5' untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.

  10. Synthesis and Evaluation of Amyloid β Derived and Amyloid β Independent Enhancers of the Peroxidase-like Activity of Heme.

    Science.gov (United States)

    Wißbrock, Amelie; Kühl, Toni; Silbermann, Katja; Becker, Albert J; Ohlenschläger, Oliver; Imhof, Diana

    2017-01-12

    Labile heme has been suggested to have an impact in several severe diseases. In the context of Alzheimer's disease (AD), however, decreased levels of free heme have been reported. Therefore, we were looking for an assay system that can be used for heme concentration determination. From a biochemical point of view the peroxidase activity of the Aβ-heme complex seemed quite attractive to pursue this goal. As a consequence, a peptide that is able to increase the readout even in the case of a low heme concentration is favorable. The examination of Aβ- and non-Aβ-derived peptides in complex with heme revealed that the peroxidase-like activity significantly depends on the peptide sequence and length. A 23mer His-based peptide derived from human fatty acyl-CoA reductase 1 in complex with heme exhibited a significantly higher peroxidase activity than Aβ(40)-heme. Structural modeling of both complexes demonstrated that heme binding via a histidine can be supported by hydrogen bond interactions of a basic residue near the propionate carboxyl function of protoporphyrin IX. Furthermore, the interplay of Aβ-heme and the lipoprotein LDL as a potential physiological effector of Aβ was examined.

  11. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  12. A solute-binding protein for iron transport in Streptococcus iniae

    Directory of Open Access Journals (Sweden)

    Li Anxing

    2010-12-01

    Full Text Available Abstract Background Streptococcus iniae (S. iniae is a major pathogen that causes considerable morbidity and mortality in cultured fish worldwide. The pathogen's ability to adapt to the host affects the extent of infection, hence understanding the mechanisms by which S. iniae overcomes physiological stresses during infection will help to identify potential virulence determinants of streptococcal infection. Grow S. iniae under iron-restricted conditions is one approach for identifying host-specific protein expression. Iron plays an important role in many biological processes but it has low solubility under physiological condition. Many microorganisms have been shown to be able to circumvent this nutritional limitation by forming direct contacts with iron-containing proteins through ATP-binding cassette (ABC transporters. The ABC transporter superfamilies constitute many different systems that are widespread among living organisms with different functions, such as ligands translocation, mRNA translation, and DNA repair. Results An ABC transporter system, named as mtsABC (metal transport system was cloned from S. iniae HD-1, and was found to be involved in heme utilization. mtsABC is cotranscribed by three downstream genes, i.e., mtsA, mtsB, and mtsC. In this study, we cloned the first gene of the mtsABC transporter system (mtsA, and purified the corresponding recombinant protein MtsA. The analysis indicated that MtsA is a putative lipoprotein which binds to heme that can serve as an iron source for the microorganism, and is expressed in vivo during Kunming mice infection by S. iniae HD-1. Conclusions This is believed to be the first report on the cloning the ABC transporter lipoprotein from S. iniae genomic DNA. Together, our data suggested that MtsA is associated with heme, and is expressed in vivo during Kunming mice infection by S. iniae HD-1 which indicated that it can be a potential candidate for S. iniae subunit vaccine.

  13. Mitochondrial Cytochrome c Oxidase Biogenesis Is Regulated by the Redox State of a Heme-Binding Translational Activator.

    Science.gov (United States)

    Soto, Iliana C; Barrientos, Antoni

    2016-02-20

    Mitochondrial cytochrome c oxidase (COX), the last enzyme of the respiratory chain, catalyzes the reduction of oxygen to water and therefore is essential for cell function and viability. COX is a multimeric complex, whose biogenesis is extensively regulated. One type of control targets cytochrome c oxidase subunit 1 (Cox1), a key COX enzymatic core subunit translated on mitochondrial ribosomes. In Saccharomyces cerevisiae, Cox1 synthesis and COX assembly are coordinated through a negative feedback regulatory loop. This coordination is mediated by Mss51, a heme-sensing COX1 mRNA-specific processing factor and translational activator that is also a Cox1 chaperone. In this study, we investigated whether Mss51 hemylation and Mss51-mediated Cox1 synthesis are both modulated by the reduction-oxidation (redox) environment. We report that Cox1 synthesis is attenuated under oxidative stress conditions and have identified one of the underlying mechanisms. We show that in vitro and in vivo exposure to hydrogen peroxide induces the formation of a disulfide bond in Mss51 involving CPX motif heme-coordinating cysteines. Mss51 oxidation results in a heme ligand switch, thereby lowering heme-binding affinity and promoting its release. We demonstrate that in addition to affecting Mss51-dependent heme sensing, oxidative stress compromises Mss51 roles in COX1 mRNA processing and translation. H2O2-induced downregulation of mitochondrial translation has so far not been reported. We show that high H2O2 concentrations induce a global attenuation effect, but milder concentrations specifically affect COX1 mRNA processing and translation in an Mss51-dependent manner. The redox environment modulates Mss51 functions, which are essential for regulation of COX biogenesis and aerobic energy production.

  14. Interaction of Proteins Identified in Human Thyroid Cells

    Science.gov (United States)

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  15. Interaction of Proteins Identified in Human Thyroid Cells

    Directory of Open Access Journals (Sweden)

    Jessica Pietsch

    2013-01-01

    Full Text Available Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains.

  16. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Science.gov (United States)

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  17. Scleroglucan-borax hydrogel: a flexible tool for redox protein immobilization.

    Science.gov (United States)

    Frasconi, Marco; Rea, Sara; Matricardi, Pietro; Favero, Gabriele; Mazzei, Franco

    2009-09-15

    A highly stable biological film was prepared by casting an aqueous dispersion of protein and composite hydrogel obtained from the polysaccharide Scleroglucan (Sclg) and borax as a cross-linking agent. Heme proteins, such as hemoglobin (Hb), myoglobin (Mb), and horseradish peroxidase (HRP), were chosen as model proteins to investigate the immobilized system. A pair of well-defined quasi-reversible redox peaks, characteristics of the protein heme FeII/FeIII redox couples, were obtained at the Sclg-borax/proteins films on pyrolytic graphite (PG) electrodes, as a consequence of the direct electron transfer between the protein and the PG electrode. A full characterization of the electron transfer kinetic was performed by opportunely modeling data obtained from cyclic voltammetry and square wave voltammetry experiments. The efficiency of our cross-linking approach was investigated by studying the influence of different borax groups percentage in the Sclg matrix, revealing the versatility of this hydrogel in the immobilization of redox proteins. The native conformation of the three heme proteins entrapped in the hydrogel films were proved to be unchanged, reflected by the unaltered Soret adsorption band and by the catalytic activity toward hydrogen peroxide (H2O2). The main kinetic parameters, such as the apparent Michaelis-Menten constant, for the electrocatalytic reaction were also evaluated. The peculiar characteristics of Sclg-borax matrix make it possible to find wide opportunities as proteins immobilizing agent for studies of direct electrochemistry and biosensors development.

  18. SitesIdentify: a protein functional site prediction tool

    Directory of Open Access Journals (Sweden)

    Doig Andrew J

    2009-11-01

    Full Text Available Abstract Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify, based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/

  19. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    International Nuclear Information System (INIS)

    Ramos-Santana, Brenda J.; López-Garriga, Juan

    2012-01-01

    Highlights: ► H-bonding network loop by PheB10Tyr mutation is proposed. ► The propionate group H-bonding network restricted the flexibility of the heme. ► The hydrogen bonding interaction modulates the electron density of the iron. ► Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. 1 H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OHη at 31.00 ppm, GlnE7 N ε1 H/N ε2 H at 10.66 ppm/−3.27 ppm, and PheE11 C δ H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen

  20. Novel bacterial gas sensor proteins with transition metal-containing prosthetic groups as active sites.

    Science.gov (United States)

    Aono, Shigetoshi

    2012-04-01

    Gas molecules function as signaling molecules in many biological regulatory systems responsible for transcription, chemotaxis, and other complex physiological processes. Gas sensor proteins play a crucial role in regulating such biological systems in response to gas molecules. New sensor proteins that sense oxygen or nitric oxide have recently been found, and they have been characterized by X-ray crystallographic and/or spectroscopic analysis. It has become clear that the interaction between a prosthetic group and gas molecules triggers dynamic structural changes in the protein backbone when a gas sensor protein senses gas molecules. Gas sensor proteins employ novel mechanisms to trigger conformational changes in the presence of a gas. In gas sensor proteins that have iron-sulfur clusters as active sites, the iron-sulfur clusters undergo structural changes, which trigger a conformational change. Heme-based gas sensor proteins reconstruct hydrogen-bonding networks around the heme and heme-bound ligand. Gas sensor proteins have two functional states, on and off, which are active and inactive, respectively, for subsequent signal transduction in response to their physiological effector molecules. To fully understand the structure-function relationships of gas sensor proteins, it is vital to perform X-ray crystal structure analyses of full-length proteins in both the on and off states.

  1. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  2. Dietary heme mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    NARCIS (Netherlands)

    IJssennagger, Noortje; Wit, de Nicole; Muller, Michael; Meer, van der Roelof

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  3. Dietary heme-mediated PPARa activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    NARCIS (Netherlands)

    IJssenagger, N.; Wit, de N.J.W.; Muller, M.R.; Meer, van der R.

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  4. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2012-02-01

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from DeltaF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, alpha(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  5. Pulmonary Proteases in the Cystic Fibrosis Lung Induce Interleukin 8 Expression from Bronchial Epithelial Cells via a Heme/Meprin/Epidermal Growth Factor Receptor/Toll-like Receptor Pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2011-03-04

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from ΔF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, α(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  6. A lanthipeptide library used to identify a protein-protein interaction inhibitor.

    Science.gov (United States)

    Yang, Xiao; Lennard, Katherine R; He, Chang; Walker, Mark C; Ball, Andrew T; Doigneaux, Cyrielle; Tavassoli, Ali; van der Donk, Wilfred A

    2018-04-01

    In this article we describe the production and screening of a genetically encoded library of 10 6 lanthipeptides in Escherichia coli using the substrate-tolerant lanthipeptide synthetase ProcM. This plasmid-encoded library was combined with a bacterial reverse two-hybrid system for the interaction of the HIV p6 protein with the UEV domain of the human TSG101 protein, which is a critical protein-protein interaction for HIV budding from infected cells. Using this approach, we identified an inhibitor of this interaction from the lanthipeptide library, whose activity was verified in vitro and in cell-based virus-like particle-budding assays. Given the variety of lanthipeptide backbone scaffolds that may be produced with ProcM, this method may be used for the generation of genetically encoded libraries of natural product-like lanthipeptides containing substantial structural diversity. Such libraries may be combined with any cell-based assay to identify lanthipeptides with new biological activities.

  7. Binding of Pseudomonas aeruginosa Apo-Bacterioferritin Associated Ferredoxin to Bacterioferritin B Promotes Heme Mediation of Electron Delivery and Mobilization of Core Mineral Iron†

    Science.gov (United States)

    Weeratunga, Saroja K.; Gee, Casey E.; Lovell, Scott; Zeng, Yuhong; Woodin, Carrie L.; Rivera, Mario

    2009-01-01

    The bfrB gene from Pseudomonas aeruginosa was cloned and expressed in E. coli. The resultant protein (BfrB), which assembles into a 445.3 kDa complex0020from 24 identical subunits, binds 12 molecules of heme axially coordinated by two Met residues. BfrB, isolated with 5–10 iron atoms per protein molecule, was reconstituted with ferrous ions to prepare samples with a core mineral containing 600 ± 40 ferric ions per BfrB molecule and approximately one phosphate molecule per iron atom. In the presence of sodium dithionite or in the presence of P. aeruginosa ferredoxin NADP reductase (FPR) and NADPH the heme in BfrB remains oxidized and the core iron mineral is mobilized sluggishly. In stark contrast, addition of NADPH to a solution containing BfrB, FPR and the apo-form of P. aeruginosa bacterioferritin associated ferredoxin (apo-Bfd) results in rapid reduction of the heme in BfrB and in the efficient mobilization of the core iron mineral. Results from additional experimentation indicate that Bfd must bind to BfrB to promote heme mediation of electrons from the surface to the core to support the efficient mobilization of ferrous ions from BfrB. In this context, the thus far mysterious role of heme in bacterioferritins has been brought to the front by reconstituting BfrB with its physiological partner, apo-Bfd. These findings are discussed in the context of a model for the utilization of stored iron in which the significant upregulation of the bfd gene under low-iron conditions [Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L. (2002) Mol. Microbiol. 45, 1277–1287] ensures sufficient concentrations of apo-Bfd to bind BfrB and unlock the iron stored in its core. Although these findings are in contrast to previous speculations suggesting redox mediation of electron transfer by holo-Bfd, the ability of apo-Bfd to promote iron mobilization is an economical strategy used by the cell because it obviates the need to further deplete cellular iron levels to

  8. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.

    Science.gov (United States)

    Huber, Warren J; Backes, Wayne L

    2007-10-30

    Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.

  9. Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

    Science.gov (United States)

    Fiorito, Veronica; Geninatti Crich, Simonetta; Silengo, Lorenzo; Aime, Silvio; Altruda, Fiorella; Tolosano, Emanuela

    2013-01-01

    The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

  10. Rearrangement of the distal pocket accompanying E7 His → Gln substitution in elephant carbonmonoxy- and oxymyoglobin: 1H NMR identification of a new aromatic residue in the heme pocket

    International Nuclear Information System (INIS)

    Yu, L.P.; La Mar, G.N.; Mizukami, H.

    1990-01-01

    Two-dimensional 1 H NMR methods have been used to assign side-chain resonances for the residues in the distal heme pocket of elephant carbonmonoxymyoglobin (MbCO) and oxymyoglobin (MbO 2 ). It is shown that, while the other residues in the heme pocket are minimally perturbed, the Phe CD4 residue in elephant MbCO and MbO 2 resonates considerably upfield compared to the corresponding residue in sperm whale MbCO. The new NOE connectivities to Val E11 and heme-induced ring current calculations indicate that Phe CD4 has been inserted into the distal heme pocket by reorienting the aromatic side chain and moving the CD corner closer to the heme. The CζH proton of the Phe CD4 was found to move toward the iron of the heme by ∼4 angstrom relative to the position in sperm whale MbCO, requiring minimally a 3-angstrom movement of the CD helical backbone. The significantly altered distal conformation in elephant myoglobin, rather than the single distal E7 substitution, forms a plausible basis for its altered functional properties of lower autoxidation rate, higher redox potential, and increased affinity for CO ligand. These results demonstrate that one-to-one interpretation of amino acid residue substitution (E7 His → Gln) is oversimplified and that conformational changes of substituted proteins which are not readily predicted have to be considered for interpretation of their functional properties

  11. Immunolocalization of heme oxygenase-1 in periodontal diseases

    Directory of Open Access Journals (Sweden)

    G Gayathri

    2014-01-01

    Conclusion: The results of our study is an increasing evidence of involvement of antioxidant enzymes like heme oxygenase-1 in periodontal inflammation and their implication for treatment of chronic periodontitis.

  12. Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts.

    Directory of Open Access Journals (Sweden)

    João M P Alves

    Full Text Available It has been known for decades that some insect-infecting trypanosomatids can survive in culture without heme supplementation while others cannot, and that this capability is associated with the presence of a betaproteobacterial endosymbiont in the flagellate's cytoplasm. However, the specific mechanisms involved in this process remained obscure. In this work, we sequence and phylogenetically analyze the heme pathway genes from the symbionts and from their hosts, as well as from a number of heme synthesis-deficient Kinetoplastida. Our results show that the enzymes responsible for synthesis of heme are encoded on the symbiont genomes and produced in close cooperation with the flagellate host. Our evidence suggests that this synergistic relationship is the end result of a history of extensive gene loss and multiple lateral gene transfer events in different branches of the phylogeny of the Trypanosomatidae.

  13. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    Science.gov (United States)

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Communication Maps: Exploring Energy Transport through Proteins and Water

    Czech Academy of Sciences Publication Activity Database

    Agbo, J. K.; Gnanasekaran, Ramachandran; Leitner, D. M.

    2014-01-01

    Roč. 54, 8/9 (2014), s. 1065-1073 ISSN 0021-2148 Institutional support: RVO:61388963 Keywords : energy transfer * heme proteins * hydrogen bonds * molecular modeling * protein models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.221, year: 2014

  15. Heme as a danger molecule in pathogen recognition.

    Science.gov (United States)

    Wegiel, Barbara; Hauser, Carl J; Otterbein, Leo E

    2015-12-01

    Appropriate control of redox mechanisms are critical for and effective innate immune response, which employs multiple cell types, receptors and molecules that recognize danger signals when they reach the host. Recognition of pathogen-associated pattern molecules (PAMPs) is a fundamental host survival mechanism for efficient elimination of invading pathogens and resolution of the infection and inflammation. In addition to PAMPs, eukaryotic cells contain a plethora of intracellular molecules that are normally secured within the confines of the plasma membrane, but if liberated and encountered in the extracellular milieu can provoke rapid cell activation. These are known as Alarmins or Danger-Associated Molecular Patterns (DAMPs) and can be released actively by cells or passively as a result of sterile cellular injury after trauma, ischemia, or toxin-induced cell rupture. Both PAMPs and DAMPs are recognized by a series of cognate receptors that increase the generation of free radicals and activate specific signaling pathways that result in regulation of a variety of stress response, redox sensitive genes. Multiple mediators released, as cells die include, but are not limited to ATP, hydrogen peroxide, heme, formyl peptides, DNA or mitochondria provide the second signal to amplify immune responses. In this review, we will focus on how sterile and infective stimuli activate the stress response gene heme oxygenase-1 (Hmox1, HO-1), a master gene critical to an appropriate host response that is now recognized as one with enormous therapeutic potential. HO-1 gene expression is regulated in large part by redox-sensitive proteins including but not limited to nrf2. Both PAMPs and DAMPs increase the activation of nrf2 and HO-1. Heme is a powerful pro-oxidant and as such should be qualified as a DAMP. With its degradation by HO-1a molecule of carbon monoxide (CO) is generated that in turn serves as a bioactive signaling molecule. PAMPs such as bacterial endotoxin activate HO-1

  16. Factors for the bioavailability of heme iron preparation in female rats

    OpenAIRE

    村上, 亜由美; 岸本, 三香子; 川口, 真規子; 松浦, 寿喜; 市川, 富夫; Ayumi, Murakami; Mikako, Kishimoto; Makiko, Kawaguchi; Toshiki, Matsuura; Tomio, Ichikawa

    1998-01-01

    Factors for iron absorption in small intestine using heme iron preparation (HIP) and ferric citrate (FC) were investigated. We measured the solubility of iron of experimental diets (FC-normal, FC-overload, HIP-normal, HIP-overload) in water (adjusted pH6.8) and the diffusibility of dietary iron after digestion in vitro. The results did not show significantly differences between FC and HIP. Also, we measured microsomal heme oxygenase (HO) activity in intestinal mucosa of female rats fed experi...

  17. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2009-07-01

    Full Text Available Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole can interrupt transmission predominantly by killing microfilariae (mf larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs.Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP, which targets ferrochelatase (FC, the last step. Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA between Wolbachia and human 5

  18. [The conformational dynamics of the tetramer hemoglobin molecule as revealed by hydrogen exchange. III. Influence of the heme removal].

    Science.gov (United States)

    Abaturov, L V; Nosova, N G; Shliapnikova, S V

    2006-01-01

    Two main types of conformational fluctuations--local and global are characteristic of the native protein structure and revealed by hydrogen exchange. The probability of those fluctuations changes to a different extent upon hemoglobin oxygenation, changing of pH, splitting of the intersubunit contacts. To compare with the influence of the heme removal the rate of the H-D exchange of the peptide NH atoms of the human apoHb was studied at the pH range 5.5-9.0 and temperature 10-38 degrees C by the IR spectroscopy. The removal of the heme increases the rate of the H-D exchange of the 80% peptide NH atoms with the factor retardation of the exchange rate (P) in the range approximately 10(2)-10(8). For the most of the peptide NH atoms the probability of the local fluctuations weakly depends on the temperature, the enthalpy changes upon all such local conformational transitions deltaH(op) degrees are 0-15 kcal/M. Characterized by the stronger temperature dependence the global fluctuations are not arised upon the temperature increases up to 38 degrees C at pH 7.0 inspite of in these conditions the slow denaturation and aggregation of apoHb begin to occur. Upon the destabilization of the apoHb structure by the simultaneous decreasing of pH to 5.5 and temperature to 10 degrees C the global fluctuations of the apoHb native structure described by deltaH(op)o < 0 begin to intensify. The mechanism of the overall intensification of the local fluctuations upon the heme removal, the peculiarity of the heat denaturation of apoHb in conditions, close to that existing upon the selfassembly of Hb in vivo, and analogy between low temperature global fluctuations and cold denaturation of globular proteins are discussed.

  19. Automatically identifying gene/protein terms in MEDLINE abstracts.

    Science.gov (United States)

    Yu, Hong; Hatzivassiloglou, Vasileios; Rzhetsky, Andrey; Wilbur, W John

    2002-01-01

    Natural language processing (NLP) techniques are used to extract information automatically from computer-readable literature. In biology, the identification of terms corresponding to biological substances (e.g., genes and proteins) is a necessary step that precedes the application of other NLP systems that extract biological information (e.g., protein-protein interactions, gene regulation events, and biochemical pathways). We have developed GPmarkup (for "gene/protein-full name mark up"), a software system that automatically identifies gene/protein terms (i.e., symbols or full names) in MEDLINE abstracts. As a part of marking up process, we also generated automatically a knowledge source of paired gene/protein symbols and full names (e.g., LARD for lymphocyte associated receptor of death) from MEDLINE. We found that many of the pairs in our knowledge source do not appear in the current GenBank database. Therefore our methods may also be used for automatic lexicon generation. GPmarkup has 73% recall and 93% precision in identifying and marking up gene/protein terms in MEDLINE abstracts. A random sample of gene/protein symbols and full names and a sample set of marked up abstracts can be viewed at http://www.cpmc.columbia.edu/homepages/yuh9001/GPmarkup/. Contact. hy52@columbia.edu. Voice: 212-939-7028; fax: 212-666-0140.

  20. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

    Science.gov (United States)

    Oh, Joo-Yeun; Stapley, Ryan; Harper, Victoria; Marques, Marisa B; Patel, Rakesh P

    2015-12-01

    Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme. © 2015 AABB.

  1. Proton NMR investigation of heme pocket mobility in hemoglobin via hydrogen isotope exchange kinetics

    International Nuclear Information System (INIS)

    Han, K.

    1985-01-01

    Dynamic mobility of heme cavity, the active site of Hb, was investigated by analyzing the hydrogen isotope exchange kinetics of the proximal histidyl ring NH of various kinds of Hbs with the aid of the high field Fourier Transform 1 H NMR spectroscopy. The exchange reaction occurs faster in oxy or R-state Hb than in deoxy or T-state Hb and there exists a good correlation between the oxygen affinity of Hb and the heme pocket mobility reflected in the hydrogen exchange rate. The effect of pH on the exchange is dramatically different for the two subunits of Hb A. Studying the exchange characteristics of mutant Hbs and chemically modified Hbs not only showed the existence of three well-defined localized paths for transmission of conformational changes between different heme pockets through a 1 b 2 subunit interface, but also indicated that the heme pocket mobility is regulated by the quaternary state of Hb as well as by the ligation state of Hb. Finally, the effect of the quaternary state on the heme pocket mobility is separated from that of the ligation by following the exchange reactions in Hbs where only their quaternary structure transition can be achieved without changing their ligation states by adjusting experimental conditions such as adding inositol hexaphosphate

  2. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.

  3. Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks.

    Science.gov (United States)

    Jiang, Wei; Yang, Jiebing; Wang, Xinghuo; Han, Haobo; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-01-01

    The aim of this work was to construct a peroxidase mimic for achieving the phenol degradation through Fenton reaction. The enzyme mimic was synthesized through the conjugation of heme with the amino group of 2-amino-1,4-benzene dicarboxylate in UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. Compared to free heme, the composite Heme-ZrMOF exhibited an obviously enhanced ability for phenol degradation with up to 97.3% of phenol removal after 2h. Meanwhile, it could achieve the easy separation of catalyst from the system and the elimination of iron residues in the process of phenol degradation. Finally, the catalyst Heme-ZrMOF was observed to possess good recyclability in the phenol degradation with still 76.2% of phenol removal after 4 cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Irradiation of bovine meat: effect of heme-iron concentration

    International Nuclear Information System (INIS)

    Mistura, Liliana Perazzini Furtado

    2002-01-01

    The irradiation is often used, nowadays, for meat conservation and it is important to know how much this process interferes with the nutritional quality of the meat. In this study round cut meat, ground and steaks (from a local supermarket) was irradiated with doses of O; 1; 2; 3; 4; 5; 7,5 and 10 kGy (JS-7500 Nordium Inc -Canada) and the interference of irradiation and the process of food preparation on heme-iron (H Fe) content was determined. Half of the sample was kept raw and the other half was grilled in a pre-warmed oven at 250 deg C for 9 min and a controlled humidity of 70%. The chemical composition, the total iron (T Fe) (EM) and the heme iron concentration were determined (Hornsey,1956) and the sensorial quality evaluated. The average T Fe concentration of raw and ground , ground and grilled, raw steaks and grilled steak meat, on dry and degreased basis was 113 mug/g, 121 mug/g , 91 mug/g and 77 mug/g; and the H Fe concentration 105 mug/g (93% of T Fe) , 88 mug/g (73% of T Fe), 90 mug/g (99% of T Fe) and 52 mug/g (68% of T Fe) respectively. Data were evaluated by ANOVA with fixed effects and multiple comparisons. The irradiation neither altered the chemical composition nor the proportion of heme iron of meat. The preparation conditions (temperature, cooking time, environment humidity, meat presentation) of the sample interfered more with the heme iron content than the irradiation. With the sensorial analysis we verified that meats irradiated with doses of 3 kGy were better evaluated in softness and succulency attributes than the others. Meat submitted to irradiation doses up to 3 kGy were accepted by the specialists' panel. (author)

  5. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    Science.gov (United States)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  6. Studying disorders of vertebrate iron and heme metabolism using zebrafish.

    Science.gov (United States)

    van der Vorm, Lisa N; Paw, Barry H

    2017-01-01

    Iron is a crucial component of heme- and iron-sulfur clusters, involved in vital cellular functions such as oxygen transport, DNA synthesis, and respiration. Both excess and insufficient levels of iron and heme-precursors cause human disease, such as iron-deficiency anemia, hemochromatosis, and porphyrias. Hence, their levels must be tightly regulated, requiring a complex network of transporters and feedback mechanisms. The use of zebrafish to study these pathways and the underlying genetics offers many advantages, among others their optical transparency, ex-vivo development and high genetic and physiological conservations. This chapter first reviews well-established methods, such as large-scale mutagenesis screens that have led to the initial identification of a series of iron and heme transporters and the generation of a variety of mutant lines. Other widely used techniques are based on injection of RNA, including complementary morpholino knockdown and gene overexpression. In addition, we highlight several recently developed approaches, most notably endonuclease-based gene knockouts such as TALENs or the CRISPR/Cas9 system that have been used to study how loss of function can induce human disease phenocopies in zebrafish. Rescue by chemical complementation with iron-based compounds or small molecules can subsequently be used to confirm causality of the genetic defect for the observed phenotype. All together, zebrafish have proven to be - and will continue to serve as an ideal model to advance our understanding of the pathogenesis of human iron and heme-related diseases and to develop novel therapies to treat these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress.

    Science.gov (United States)

    Mancini, Stefano; Imlay, James A

    2015-05-01

    Hydrogen peroxide pervades many natural environments, including the phagosomes that mediate cell-based immunity. Transcriptomic analysis showed that during protracted low-grade H(2)O(2) stress, Escherichia coli responds by activating both the OxyR defensive regulon and the Fur iron-starvation response. OxyR induced synthesis of two members of the nine-step heme biosynthetic pathway: ferrochelatase (HemH) and an isozyme of coproporphyrinogen III oxidase (HemF). Mutations that blocked either adaptation caused the accumulation of porphyrin intermediates, inadequate activation of heme enzymes, low catalase activity, defective clearance of H(2)O(2) and a failure to grow. Genetic analysis indicated that HemH induction is needed to compensate for iron sequestration by the mini-ferritin Dps. Dps activity protects DNA and proteins by limiting Fenton chemistry, but it interferes with the ability of HemH to acquire the iron that it needs to complete heme synthesis. HemF is a manganoprotein that displaces HemN, an iron-sulfur enzyme whose synthesis and/or stability is apparently problematic during H(2)O(2) stress. Thus, the primary responses to H(2)O(2), including the sequestration of iron, require compensatory adjustments in the mechanisms of iron-cofactor synthesis. The results support the growing evidence that oxidative stress is primarily an iron pathology. © 2015 John Wiley & Sons Ltd.

  8. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  9. Reversible formation of high-valent-iron-oxo-porphyrin intermediate in heme-based catalysis: revisiting the kinetic model for horseradish peroxidase.

    NARCIS (Netherlands)

    Haandel, van M.J.H.; Primus, J.L.; Teunis, C.; Boersma, M.G.; Osman, A.M.; Veeger, C.; Rietjens, I.M.C.M.

    1998-01-01

    Many heme-containing biocatalysts exert their catalytic action through the initial formation of so-called high-valent-iron-oxo porphyrin intermediates. For horseradish peroxidase the initial intermediate formed has been identified as a high-valent-iron-oxo porphyrin π-radical cation, called compound

  10. Effects of Zinc Deuteroporphyrin Bis Glycol on Newborn Mice After Heme-Loading

    OpenAIRE

    He, Cynthia X.; Campbell, Claire M.; Zhao, Hui; Kalish, Flora S.; Schulz, Stephanie; Vreman, Hendrik J.; Wong, Ronald J.; Stevenson, David K.

    2011-01-01

    Infants with hemolytic diseases frequently develop hyperbilirubinemia, but standard phototherapy only eliminates bilirubin after its production. A better strategy might be to directly inhibit heme oxygenase (HO), the rate-limiting enzyme in bilirubin production. Metalloporphyrins (Mps) are heme analogs that competitively inhibit HO activity in vitro and in vivo and suppress plasma bilirubin levels in vivo. A promising Mp, zinc deuteroporphyrin bis glycol (ZnBG), is orally absorbed and effecti...

  11. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

    Science.gov (United States)

    Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto

    2013-10-01

    The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of Metalloporphyrins on Heme Oxygenase-1 Transcription: Correlative Cell Culture Assays Guide in Vivo Imaging

    OpenAIRE

    Monica Hajdena-Dawson; Weisheng Zhang; Pamela R. Contag; Ronald J. Wong; Hendrik J. Vreman; David K. Stevenson; Christopher H. Contag

    2003-01-01

    Heme oxygenase (HO) is the rate-limiting step in the heme degradation pathway and is a potential target for the control, or prevention, of pathologic jaundice in neonates. Metalloporphyrins (Mps), a diverse set of synthetic derivatives of heme, can competitively inhibit the HO enzymes. However, certain Mps are phototoxic and some increase transcription of HO-1, the inducible HO isozyme. Therefore, effective development of this class of compounds as therapeutics for treating pathologic jaundic...

  13. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    Science.gov (United States)

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  14. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Directory of Open Access Journals (Sweden)

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  15. Identification of residues in the heme domain of soluble guanylyl cyclase that are important for basal and stimulated catalytic activity.

    Directory of Open Access Journals (Sweden)

    Padmamalini Baskaran

    Full Text Available Nitric oxide signals through activation of soluble guanylyl cyclase (sGC, a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain to the effector domain (catalytic domain, in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105 of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC.

  16. Improvements in the Protein Identifier Cross-Reference service.

    Science.gov (United States)

    Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A

    2012-07-01

    The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.

  17. Differential Control of Heme Reactivity in Alpha and Beta Subunits of Hemoglobin: A Combined Raman Spectroscopic and Computational Study

    Science.gov (United States)

    2015-01-01

    The use of hybrid hemoglobin (Hb), with mesoheme substituted for protoheme, allows separate monitoring of the α or β hemes along the allosteric pathway. Using resonance Raman (rR) spectroscopy in silica gel, which greatly slows protein motions, we have observed that the Fe–histidine stretching frequency, νFeHis, which is a monitor of heme reactivity, evolves between frequencies characteristic of the R and T states, for both α or β chains, prior to the quaternary R–T and T–R shifts. Computation of νFeHis, using QM/MM and the conformational search program PELE, produced remarkable agreement with experiment. Analysis of the PELE structures showed that the νFeHis shifts resulted from heme distortion and, in the α chain, Fe–His bond tilting. These results support the tertiary two-state model of ligand binding (Henry et al., Biophys. Chem.2002, 98, 149). Experimentally, the νFeHis evolution is faster for β than for α chains, and pump–probe rR spectroscopy in solution reveals an inflection in the νFeHis time course at 3 μs for β but not for α hemes, an interval previously shown to be the first step in the R–T transition. In the α chain νFeHis dropped sharply at 20 μs, the final step in the R–T transition. The time courses are fully consistent with recent computational mapping of the R–T transition via conjugate peak refinement by Karplus and co-workers (Fischer et al., Proc. Natl. Acad. Sci. U. S. A.2011, 108, 5608). The effector molecule IHP was found to lower νFeHis selectively for α chains within the R state, and a binding site in the α1α2 cleft is suggested. PMID:24991732

  18. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum.

    Science.gov (United States)

    Jääskeläinen, Elina; Johansson, Per; Kostiainen, Olli; Nieminen, Timo; Schmidt, Georg; Somervuo, Panu; Mohsina, Marzia; Vanninen, Paula; Auvinen, Petri; Björkroth, Johanna

    2013-02-01

    Leuconostoc gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) which causes spoilage in cold-stored modified-atmosphere-packaged (MAP) meat products. In addition to the fermentative metabolism, L. gasicomitatum is able to respire when exogenous heme and oxygen are available. In this study, we investigated the respiration effects on growth rate, biomass, gene expression, and volatile organic compound (VOC) production in laboratory media and pork loin. The meat samples were evaluated by a sensory panel every second or third day for 29 days. We observed that functional respiration increased the growth (rate and yield) of L. gasicomitatum in laboratory media with added heme and in situ meat with endogenous heme. Respiration increased enormously (up to 2,600-fold) the accumulation of acetoin and diacetyl, which are buttery off-odor compounds in meat. Our transcriptome analyses showed that the gene expression patterns were quite similar, irrespective of whether respiration was turned off by excluding heme from the medium or mutating the cydB gene, which is essential in the respiratory chain. The respiration-based growth of L. gasicomitatum in meat was obtained in terms of population development and subsequent development of sensory characteristics. Respiration is thus a key factor explaining why L. gasicomitatum is so well adapted in high-oxygen packed meat.

  19. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.

    Science.gov (United States)

    Hematian, Shabnam; Garcia-Bosch, Isaac; Karlin, Kenneth D

    2015-08-18

    Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper or iron ions or both, those reacting with dioxygen (O2) or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2(-))) or both. As inspiration for this work, we turn to mitochondrial cytochrome c oxidase, which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis, and characterization of new O2 adducts whose further study will add insights into O2 reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO's function, which is intimately tied to cellular O2 balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-Fe(III)-O-Cu(II)(L) products; their properties are discussed. The O-atom is derived from dioxygen, and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a "naked" synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active sites. The other sector of research is focused on heme/Cu assemblies mediating the redox

  20. Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an activity-based artemisinin probe

    Directory of Open Access Journals (Sweden)

    Jigang Wang

    2016-04-01

    Full Text Available Artemisinin and its analogues are currently the most effective anti-malarial drugs. The activation of artemisinin requires the cleavage of the endoperoxide bridge in the presence of iron sources. Once activated, artemisinins attack macromolecules through alkylation and propagate a series of damages, leading to parasite death. Even though several parasite proteins have been reported as artemisinin targets, the exact mechanism of action (MOA of artemisinin is still controversial and its high potency and specificity against the malaria parasite could not be fully accounted for. Recently, we have developed an unbiased chemical proteomics approach to directly probe the MOA of artemisinin in P. falciparum. We synthesized an activity-based artemisinin probe with an alkyne tag, which can be coupled with biotin through click chemistry. This enabled selective purification and identification of 124 protein targets of artemisinin. Many of these targets are critical for the parasite survival. In vitro assays confirmed the specific artemisinin binding and inhibition of selected targets. We thus postulated that artemisinin kills the parasite through disrupting its biochemical landscape. In addition, we showed that artemisinin activation requires heme, rather than free ferrous iron, by monitoring the extent of protein binding using a fluorescent dye coupled with the alkyne-tagged artemisinin. The extremely high level of heme released from the hemoglobin digestion by the parasite makes artemisinin exceptionally potent against late-stage parasites (trophozoite and schizont stages compared to parasites at early ring stage, which have low level of heme, possibly derived from endogenous synthesis. Such a unique activation mechanism also confers artemisinin with extremely high specificity against the parasites, while the healthy red blood cells are unaffected. Our results provide a sound explanation of the MOA of artemisinin and its specificity against malaria

  1. Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.

    Science.gov (United States)

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim

    2017-09-01

    To delineate the commonalities and differences in gaseous ligand discrimination among the heme-based sensors with Heme Nitric oxide/OXygen binding protein (H-NOX) scaffold, the binding kinetic parameters for gaseous ligands NO, CO, and O 2 , including K D , k on , and k off , of Shewanella oneidensis H-NOX (So H-NOX) were characterized in detail in this study and compared to those of previously characterized H-NOXs from Clostridium botulinum (Cb H-NOX), Nostoc sp. (Ns H-NOX), Thermoanaerobacter tengcongensis (Tt H-NOX), Vibrio cholera (Vc H-NOX), and human soluble guanylyl cyclase (sGC), an H-NOX analogue. The K D (NO) and K D (CO) of each bacterial H-NOX or sGC follow the "sliding scale rule"; the affinities of the bacterial H-NOXs for NO and CO vary in a small range but stronger than those of sGC by at least two orders of magnitude. On the other hand, each bacterial H-NOX exhibits different characters in the stability of its 6c NO complex, reactivity with secondary NO, stability of oxyferrous heme and autoxidation to ferric heme. A facile access channel for gaseous ligands is also identified, implying that ligand access has only minimal effect on gaseous ligand selectivity of H-NOXs or sGC. This comparative study of the binding parameters of the bacterial H-NOXs and sGC provides a basis to guide future new structural and functional studies of each specific heme sensor with the H-NOX protein fold. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. The Heme Biosynthesis Pathway Is Essential for Plasmodium falciparum Development in Mosquito Stage but Not in Blood Stages*

    Science.gov (United States)

    Ke, Hangjun; Sigala, Paul A.; Miura, Kazutoyo; Morrisey, Joanne M.; Mather, Michael W.; Crowley, Jan R.; Henderson, Jeffrey P.; Goldberg, Daniel E.; Long, Carole A.; Vaidya, Akhil B.

    2014-01-01

    Heme is an essential cofactor for aerobic organisms. Its redox chemistry is central to a variety of biological functions mediated by hemoproteins. In blood stages, malaria parasites consume most of the hemoglobin inside the infected erythrocytes, forming nontoxic hemozoin crystals from large quantities of heme released during digestion. At the same time, the parasites possess a heme de novo biosynthetic pathway. This pathway in the human malaria parasite Plasmodium falciparum has been considered essential and is proposed as a potential drug target. However, we successfully disrupted the first and last genes of the pathway, individually and in combination. These knock-out parasite lines, lacking 5-aminolevulinic acid synthase and/or ferrochelatase (FC), grew normally in blood-stage culture and exhibited no changes in sensitivity to heme-related antimalarial drugs. We developed a sensitive LC-MS/MS assay to monitor stable isotope incorporation into heme from its precursor 5-[13C4]aminolevulinic acid, and this assay confirmed that de novo heme synthesis was ablated in FC knock-out parasites. Disrupting the FC gene also caused no defects in gametocyte generation or maturation but resulted in a greater than 70% reduction in male gamete formation and completely prevented oocyst formation in female Anopheles stephensi mosquitoes. Our data demonstrate that the heme biosynthesis pathway is not essential for asexual blood-stage growth of P. falciparum parasites but is required for mosquito transmission. Drug inhibition of pathway activity is therefore unlikely to provide successful antimalarial therapy. These data also suggest the existence of a parasite mechanism for scavenging host heme to meet metabolic needs. PMID:25352601

  3. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.

    Science.gov (United States)

    Haynes, Richard K; Cheu, Kwan-Wing; N'Da, David; Coghi, Paolo; Monti, Diego

    2013-08-01

    - reactions employing catalytic reagents under aqueous or semi-aqueous conditions - to those conducted under highly reducing and eminently artificial conditions, usually in the solvent dimethyl sulfoxide (DMSO) that both forms well characterized complexes with heme-Fe(2+) and actually assists in driving single electron transfer processes. It is noted that alkylated products tend to form in high yields under the last conditions, and this aspect is readily explained. Irrespective of product yields obtained under various conditions, an overarching correlation between facility of the reaction of the peroxide with heme and their antimalarial activities does not exist. The is underscored by the reproducible outcomes of reactions conducted under biomimetic conditions indicating adducts cannot form in physiologically meaningful concentrations and that heme is a recalcitrant reaction partner to artemisinins in general. Again, as in the case of the C-radical hypothesis, structure-activity data from a wide variety of artemisinins and synthetic peroxides is difficult to reconcile with the heme hypothesis. This applies in particular to dimeric and trimeric artemisinin derivatives where the ascribing of biological activity to reactions of the derived radicals or to the vastly encumbered artemisinin-heme adducts is physically unrealistic. Finally, the facile metabolism and induction of metabolism of the current clinically used artemisinins by members of the CYP superfamily - heme proteins that require an intimate interaction of the heme with the artemisinin for metabolism to occur - is incompatible with the oft-cited proclivity of the peroxide to associate via complex formation with heme as a prelude to its 'activation' as an antimalarial agent within the malaria parasite. (ABSTRACT TRUNCATED)

  4. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    Science.gov (United States)

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.

  5. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    Science.gov (United States)

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (PHHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  6. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  7. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  8. L-ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1.

    Science.gov (United States)

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of l-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2',7'-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    Science.gov (United States)

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Watching proteins function with picosecond X-ray crystallography and molecular dynamics simulations.

    Science.gov (United States)

    Anfinrud, Philip

    2006-03-01

    Time-resolved electron density maps of myoglobin, a ligand-binding heme protein, have been stitched together into movies that unveil with molecular dynamics (MD) calculations and picosecond time-resolved X-ray structures provides single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin following ligand dissociation reproduce the direction, amplitude, and timescales of crystallographically-determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories, which identify and structurally characterize a conformational switch that directs dissociated ligands to one of two nearby protein cavities. This unique combination of simulation and experiment unveils functional protein motions and illustrates at an atomic level relationships among protein structure, dynamics, and function. In collaboration with Friedrich Schotte and Gerhard Hummer, NIH.

  11. Heme iron content in lamb meat is differentially altered upon boiling, grilling, or frying as assessed by four distinct analytical methods.

    Science.gov (United States)

    Pourkhalili, Azin; Mirlohi, Maryam; Rahimi, Ebrahim

    2013-01-01

    Lamb meat is regarded as an important source of highly bioavailable iron (heme iron) in the Iranians diet. The main objective of this study is to evaluate the effect of traditional cooking methods on the iron changes in lamb meat. Four published experimental methods for the determination of heme iron were assessed analytically and statistically. Samples were selected from lambs' loin. Standard methods (AOAC) were used for proximate analysis. For measuring heme iron, the results of four experimental methods were compared regarding their compliance to Ferrozine method which was used for the determination of nonheme iron. Among three cooking methods, the lowest total iron and heme iron were found in boiling method. The heme iron proportions to the total iron in raw, boiled lamb meat and grilled, were counted as 65.70%, 67.75%, and 76.01%, receptively. Measuring the heme iron, the comparison of the methods in use showed that the method in which heme extraction solution was composed of 90% acetone, 18% water, and 2% hydrochloric acid was more appropriate and more correlated with the heme iron content calculated by the difference between total iron and nonheme iron.

  12. Heme Iron Content in Lamb Meat Is Differentially Altered upon Boiling, Grilling, or Frying as Assessed by Four Distinct Analytical Methods

    Directory of Open Access Journals (Sweden)

    Azin Pourkhalili

    2013-01-01

    Full Text Available Lamb meat is regarded as an important source of highly bioavailable iron (heme iron in the Iranians diet. The main objective of this study is to evaluate the effect of traditional cooking methods on the iron changes in lamb meat. Four published experimental methods for the determination of heme iron were assessed analytically and statistically. Samples were selected from lambs' loin. Standard methods (AOAC were used for proximate analysis. For measuring heme iron, the results of four experimental methods were compared regarding their compliance to Ferrozine method which was used for the determination of nonheme iron. Among three cooking methods, the lowest total iron and heme iron were found in boiling method. The heme iron proportions to the total iron in raw, boiled lamb meat and grilled, were counted as 65.70%, 67.75%, and 76.01%, receptively. Measuring the heme iron, the comparison of the methods in use showed that the method in which heme extraction solution was composed of 90% acetone, 18% water, and 2% hydrochloric acid was more appropriate and more correlated with the heme iron content calculated by the difference between total iron and nonheme iron.

  13. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    Science.gov (United States)

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.

  14. Heme-binding activity of methoxyflavones from Pentzia monodiana Maire (Asteraceae).

    Science.gov (United States)

    Ortiz, Sergio; Dali-Yahia, Kamel; Vasquez-Ocmin, Pedro; Grougnet, Raphaël; Grellier, Philippe; Michel, Sylvie; Maciuk, Alexandre; Boutefnouchet, Sabrina

    2017-04-01

    A heme-binding assay based on mass spectrometry was performed on P. monodiana Maire (Asteraceae) extracts to identify metabolites able to form adducts with heminic part of haemoglobin, as potential antimalarial drugs. Main adducts were characterized and their stability was measured. Isolation of main constituents of P. monodiana Maire lead to identification of the two methoxyflavones 3'-O-methyleupatorin (7) and artemetin (8) involved in the adducts formation. Four seco-tanapartholides (1-4), a guaianolide (5), a germacranolide (6) and two other methoxyflavones (9, 10) were also characterized. Evaluation of isolated compounds on P. falciparum and T. brucei brucei showed a moderate antiprotozoal activity of the two methoxyflavones. Copyright © 2017. Published by Elsevier B.V.

  15. Biochemical Characterization and Vaccine Potential of a Heme-Binding Glutathione Transferase from the Adult Hookworm Ancylostoma caninum

    Science.gov (United States)

    Zhan, Bin; Liu, Sen; Perally, Samirah; Xue, Jian; Fujiwara, Ricardo; Brophy, Peter; Xiao, Shuhua; Liu, Yueyuan; Feng, Jianjun; Williamson, Angela; Wang, Yan; Bueno, Lilian L.; Mendez, Susana; Goud, Gaddam; Bethony, Jeffrey M.; Hawdon, John M.; Loukas, Alex; Jones, Karen; Hotez, Peter J.

    2005-01-01

    We report the cloning and expression of Ac-GST-1, a novel glutathione S-transferase from the adult hookworm Ancylostoma caninum, and its possible role in parasite blood feeding and as a vaccine target. The predicted Ac-GST-1 open reading frame contains 207 amino acids (mass, 24 kDa) and exhibited up to 65% amino acid identity with other nematode GSTs. mRNA encoding Ac-GST-1 was detected in adults, eggs, and larval stages, but the protein was detected only in adult hookworm somatic extracts and excretory/secretory products. Using antiserum to the recombinant protein, Ac-GST-1 was immunolocalized to the parasite hypodermis and muscle tissue and weakly to the intestine. Recombinant Ac-GST-1 was enzymatically active, as determined by conjugation of glutathione to a model substrate, and exhibited a novel high-affinity binding site for hematin. The possible role of Ac-GST-1 in parasite heme detoxification during hemoglobin digestion or heme uptake prompted interest in evaluating it as a potential vaccine antigen. Vaccination of dogs with Ac-GST-1 resulted in a 39.4% reduction in the mean worm burden and 32.3% reduction in egg counts compared to control dogs following larval challenge, although the reductions were not statistically significant. However, hamsters vaccinated with Ac-GST-1 exhibited statistically significant worm reduction (53.7%) following challenge with heterologous Necator americanus larvae. These studies suggest that Ac-GST-1 is a possible drug and vaccine target for hookworm infection. PMID:16177370

  16. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    Science.gov (United States)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  17. A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks.

    Science.gov (United States)

    Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-07-01

    Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Marcia Cristina Paes

    2011-01-01

    Full Text Available Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology.

  19. Dual Role for Hsc70 in the Biogenesis and Regulation of the Heme-Regulated Kinase of the α Subunit of Eukaryotic Translation Initiation Factor 2

    Science.gov (United States)

    Uma, Sheri; Thulasiraman, Vanitha; Matts, Robert L.

    1999-01-01

    The heme-regulated kinase of the α subunit of eukaryotic initiation factor 2 (HRI) is activated in rabbit reticulocyte lysate (RRL) in response to a number of environmental conditions, including heme deficiency, heat shock, and oxidative stress. Activation of HRI causes an arrest of initiation of protein synthesis. Recently, we have demonstrated that the heat shock cognate protein Hsc70 negatively modulates the activation of HRI in RRL in response to these environmental conditions. Hsc70 is also known to be a critical component of the Hsp90 chaperone machinery in RRL, which plays an obligatory role for HRI to acquire and maintain a conformation that is competent to activate. Using de novo-synthesized HRI in synchronized pulse-chase translations, we have examined the role of Hsc70 in the regulation of HRI biogenesis and activation. Like Hsp90, Hsc70 interacted with nascent HRI and HRI that was matured to a state which was competent to undergo stimulus-induced activation (mature-competent HRI). Interaction of HRI with Hsc70 was required for the transformation of HRI, as the Hsc70 antagonist clofibric acid inhibited the folding of HRI into a mature-competent conformation. Unlike Hsp90, Hsc70 also interacted with transformed HRI. Clofibric acid disrupted the interaction of Hsc70 with transformed HRI that had been matured and transformed in the absence of the drug. Disruption of Hsc70 interaction with transformed HRI in heme-deficient RRL resulted in its hyperactivation. Furthermore, activation of HRI in response to heat shock or denatured proteins also resulted in a similar blockage of Hsc70 interaction with transformed HRI. These results indicate that Hsc70 is required for the folding and transformation of HRI into an active kinase but is subsequently required to negatively attenuate the activation of transformed HRI. PMID:10454533

  20. Heme oxygenase-1, oxidation, inflammation and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jesus A Araujo

    2012-07-01

    Full Text Available Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1 is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of heme oxygenase, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This article reviews the evidence that supports the antiatherogenic role of HO-1, potential pathways and mechanisms mediating

  1. Identifying New Small Proteins in Escherichia coli.

    Science.gov (United States)

    VanOrsdel, Caitlin E; Kelly, John P; Burke, Brittany N; Lein, Christina D; Oufiero, Christopher E; Sanchez, Joseph F; Wimmers, Larry E; Hearn, David J; Abuikhdair, Fatimeh J; Barnhart, Kathryn R; Duley, Michelle L; Ernst, Sarah E G; Kenerson, Briana A; Serafin, Aubrey J; Hemm, Matthew R

    2018-04-12

    The number of small proteins (SPs) encoded in the Escherichia coli genome is unknown, as current bioinformatics and biochemical techniques make short gene and small protein identification challenging. One method of small protein identification involves adding an epitope tag to the 3' end of a short open reading frame (sORF) on the chromosome, with synthesis confirmed by immunoblot assays. In this study, this strategy was used to identify new E. coli small proteins, tagging 80 sORFs in the E. coli genome, and assayed for protein synthesis. The selected sORFs represent diverse sequence characteristics, including degrees of sORF conservation, predicted transmembrane domains, sORF direction with respect to flanking genes, ribosome binding site (RBS) prediction, and ribosome profiling results. Of 80 sORFs, 36 resulted in encoded synthesized proteins-a 45% success rate. Modeling of detected versus non-detected small proteins analysis showed predictions based on RBS prediction, transcription data, and ribosome profiling had statistically-significant correlation with protein synthesis; however, there was no correlation between current sORF annotation and protein synthesis. These results suggest substantial numbers of small proteins remain undiscovered in E. coli, and existing bioinformatics techniques must continue to improve to facilitate identification. © 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Towson University.

  2. Structure prediction and activity analysis of human heme oxygenase-1 and its mutant.

    Science.gov (United States)

    Xia, Zhen-Wei; Zhou, Wen-Pu; Cui, Wen-Jun; Zhang, Xue-Hong; Shen, Qing-Xiang; Li, Yun-Zhu; Yu, Shan-Chang

    2004-08-15

    To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (delta hHO-1) structures, to clone and express them and analyze their activities. Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5alpha. Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured. rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of delta hHO-1 was reduced 91.21% after mutation compared with whHO-1. Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. delta hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. delta hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia.

  3. Identifying Floppy and Rigid Regions in Proteins

    Science.gov (United States)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  4. Relationship of Heme Oxygenase-1 (HO-1 Level with Onset and Severity in Normotensive Pregnancy and Severe Preeclampsia

    Directory of Open Access Journals (Sweden)

    John Johannes Wantania

    2016-08-01

    Full Text Available Background: Preeclampsia still becomes a major problem in pregnancies. Various evidences showed that heme oxygenase-1 (HO-1 is very important in pregnancy. This study aims to understand the relationship of heme oxygenase-1 level with onset and severity in normotensive pregnancy and severe preeclampsia. Methods: This is a cross sectional analytic comparative study, the subjects consisted of 26 patients with normotensive pregnancies and 26 patients with severe preeclampsia. Blood samples from women with < 34 / ≥ 34 weeks’ normotensive pregnancies and women with severe preeclampsia were taken. HO-1 ELISA kit used to quantitate heme oxygenase-1 level in samples. Results: The level of heme oxygenase-1 in normotensive pregnant women < 34 weeks lower than severe preeclampsia pregnant women < 34 weeks (3.28 ± 0.46 ng/mL vs 4.20 ± 0.64 ng/mL, p=0.003, respectively. The median level of heme oxygenase-1 in normotensive pregnant women ≥ 34 weeks was 2.96 (2.41–4.39 ng/mL, while severe preeclampsia pregnant women ≥ 34 weeks was 3.52 (2.88–5.43 ng/mL, (p=0.040. The median level of heme oxygenase-1 in normotensive pregnant women was 3.04 (2.41–4.39 ng/mL, while severe preeclampsia pregnant women was 3.68 (2.88–5.67 ng/mL, (p=0.001. Conclusions: There is correlation between the incidence of severe preeclampsia with heme oxygenase-1 level in < 34 and ≥ 34 weeks of pregnancy. There is a significant difference between the level of heme oxygenase-1 in pregnant women with severe preeclampsia and in women with normotensive pregnancy. 

  5. Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus

    DEFF Research Database (Denmark)

    Stiebler, R.; Majerowicz, David; Knudsen, Jens

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membrane...

  6. Molecular mechanism and functional consequences of lansoprazole-mediated heme oxygenase-1 induction

    Science.gov (United States)

    Schulz-Geske, Stephanie; Erdmann, Kati; Wong, Ronald J; Stevenson, David K; Schröder, Henning; Grosser, Nina

    2009-01-01

    AIM: To investigate the molecular mechanism and functional consequences of heme oxygenase-1 (HO-1) activation by lansoprazole in endothelial cells and macrophages. METHODS: Expression of HO-1 mRNA was analyzed by Northern blotting. Western blotting was used to determine the HO-1 and ferritin protein levels. NADPH-dependent reactive oxygen species (ROS) formation was measured with lucigenin-enhanced chemiluminescence. HO-1 promoter activity in mouse fibroblasts, stably transfected with a 15-kb HO-1 gene that drives expression of the reporter gene luciferase, was assessed using in vivo bioluminescence imaging. RESULTS: Lansoprazole increased HO-1 mRNA levels in endothelial cells and HO-1 protein levels in macrophages. In addition, lansoprazole-induced ferritin protein levels in both cell systems. Moreover, induction of the antioxidant proteins HO-1 and ferritin by lansoprazole was followed by a decrease in NADPH-mediated ROS formation. The radical scavenging properties of lansoprazole were diminished in the presence of the HO inhibitor, chromium mesoporphyrin IX. Induction of HO-1 gene expression by lansoprazole was not related to oxidative stress or to the activation of the mitogen-activated protein kinase pathway. However, the phosphatidylinositol 3-kinase inhibitor LY294002 showed a concentration-dependent inhibition of HO-1 mRNA and promoter activity. CONCLUSION: Activation of HO-1 and ferritin may account for the gastric protection of lansoprazole and is dependent on a pathway blocked by LY294002. PMID:19764090

  7. Genes Important for Catalase Activity in Enterococcus faecalis

    Science.gov (United States)

    Baureder, Michael; Hederstedt, Lars

    2012-01-01

    Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly. PMID:22590595

  8. Catalytic enhancement of the heme-based oxygen-sensing phosphodiesterase EcDOS by hydrogen sulfide is caused by changes in heme coordination structure

    Czech Academy of Sciences Publication Activity Database

    Yang, F.; Fojtíková, V.; Man, Petr; Stráňava, M.; Martínková, M.; Du, Y.; Huang, D.; Shimizu, T.

    2015-01-01

    Roč. 28, č. 4 (2015), s. 637-652 ISSN 0966-0844 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Heme * O-2 sensor * Phosphodiesterase Subject RIV: CE - Biochemistry Impact factor: 2.134, year: 2015

  9. Efficiency and Loading Evaluation of High Efficiency Mist Eliminators (HEME) - 12003

    Energy Technology Data Exchange (ETDEWEB)

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd Starkville, MS 39759 (United States)

    2012-07-01

    High efficiency mist eliminators (HEME) are filters primarily used to remove moisture and/or liquid aerosols from an air stream. HEME elements are designed to reduce aerosol and particulate load on primary High Efficiency Particulate Air (HEPA) filters and to have a liquid particle removal efficiency of approximately 99.5% for aerosols down to sub-micron size particulates. The investigation presented here evaluates the loading capacity of the element in the absence of a water spray cleaning system. The theory is that without the cleaning system, the HEME element will suffer rapid buildup of solid aerosols, greatly reducing the particle loading capacity. Evaluation consists of challenging the element with a waste surrogate dry aerosol and di-octyl phthalate (DOP) at varying intervals of differential pressure to examine the filtering efficiency of three different element designs at three different media velocities. Also, the elements are challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. These tests allow the loading capacity of the unit to be determined and the effectiveness of washing down the interior of the elements to be evaluated. (authors)

  10. Exploiting genomic data to identify proteins involved in abalone reproduction.

    Science.gov (United States)

    Mendoza-Porras, Omar; Botwright, Natasha A; McWilliam, Sean M; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L

    2014-08-28

    Aside from their critical role in reproduction, abalone gonads serve as an indicator of sexual maturity and energy balance, two key considerations for effective abalone culture. Temperate abalone farmers face issues with tank restocking with highly marketable abalone owing to inefficient spawning induction methods. The identification of key proteins in sexually mature abalone will serve as the foundation for a greater understanding of reproductive biology. Addressing this knowledge gap is the first step towards improving abalone aquaculture methods. Proteomic profiling of female and male gonads of greenlip abalone, Haliotis laevigata, was undertaken using liquid chromatography-mass spectrometry. Owing to the incomplete nature of abalone protein databases, in addition to searching against two publicly available databases, a custom database comprising genomic data was used. Overall, 162 and 110 proteins were identified in females and males respectively with 40 proteins common to both sexes. For proteins involved in sexual maturation, sperm and egg structure, motility, acrosomal reaction and fertilization, 23 were identified only in females, 18 only in males and 6 were common. Gene ontology analysis revealed clear differences between the female and male protein profiles reflecting a higher rate of protein synthesis in the ovary and higher metabolic activity in the testis. A comprehensive mass spectrometry-based analysis was performed to profile the abalone gonad proteome providing the foundation for future studies of reproduction in abalone. Key proteins involved in both reproduction and energy balance were identified. Genomic resources were utilised to build a database of molluscan proteins yielding >60% more protein identifications than in a standard workflow employing public protein databases. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase.

    Science.gov (United States)

    Kwon, Yong-Chan; Oh, In-Seok; Lee, Nahum; Lee, Kyung-Ho; Yoon, Yeo Joon; Lee, Eun Yeol; Kim, Byung-Gee; Kim, Dong-Myung

    2013-04-01

    Harnessing the isolated protein synthesis machinery, cell-free protein synthesis reproduces the cellular process of decoding genetic information in artificially controlled environments. More often than not, however, generation of functional proteins requires more than simple translation of genetic sequences. For instance, many of the industrially important enzymes require non-protein prosthetic groups for biological activity. Herein, we report the complete cell-free biogenesis of a heme prosthetic group and its integration with concurrent apoenzyme synthesis for the production of functional P450 monooxygenase. Step reactions required for the syntheses of apoenzyme and the prosthetic group have been designed so that these two separate pathways take place in the same reaction mixture, being insulated from each other. Combined pathways for the synthesis of functional P450 monooxygenase were then further integrated with in situ assay reactions to enable real-time measurement of enzymatic activity during its synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  12. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    International Nuclear Information System (INIS)

    Huang, Y.-N.; Wu, C.-H.; Lin, T.-C.; Wang, J.-Y.

    2009-01-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.

  13. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique

    International Nuclear Information System (INIS)

    Duan Li; He Qiang; Yan Xuehai; Cui Yue; Wang Kewei; Li Junbai

    2007-01-01

    Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabrication remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules

  14. hebp3, a novel member of the heme-binding protein gene family, is expressed in the medaka meninges with higher abundance in females due to a direct stimulating action of ovarian estrogens.

    Science.gov (United States)

    Nakasone, Kiyoshi; Nagahama, Yoshitaka; Okubo, Kataaki

    2013-02-01

    The brains of teleost fish exhibit remarkable sexual plasticity throughout their life span. To dissect the molecular basis for the development and reversal of sex differences in the teleost brain, we screened for genes differentially expressed between sexes in the brain of medaka (Oryzias latipes). One of the genes identified in the screen as being preferentially expressed in females was found to be a new member of the heme-binding protein gene family that includes hebp1 and hebp2 and was designated here as hebp3. The medaka hebp3 is expressed in the meninges with higher abundance in females, whereas there is no expression within the brain parenchyma. This female-biased expression of hebp3 is not attributable to the direct action of sex chromosome genes but results from the transient and reversible action of estrogens derived from the ovary. Moreover, estrogens directly activate the transcription of hebp3 via a palindromic estrogen-responsive element in the hebp3 promoter. Taken together, our findings demonstrate that hebp3 is a novel transcriptional target of estrogens, with female-biased expression in the meninges. The definite but reversible sexual dimorphism of the meningeal hebp3 expression may contribute to the development and reversal of sex differences in the teleost brain.

  15. Characterization of the Ala62Pro polymorphic variant of human cytochrome P450 1A1 using recombinant protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Kang, Sukmo [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of); Dong, Mi Sook [School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Park, Jung-Duck [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of); Park, Jinseo; Rhee, Sangkee [College of Agriculture of Life Science, Seoul National University, Seoul (Korea, Republic of); Ryu, Doug-Young, E-mail: dyryu@snu.ac.kr [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of)

    2015-06-15

    Cytochrome P450 (CYP) 1A1 is a heme-containing enzyme involved in detoxification of hydrophobic pollutants. Its Ala62Pro variant has been identified previously. Ala62 is located in α-helix A of CYP1A1. Residues such as Pro and Gly are α-helix breakers. In this study, the Ala62Pro variant was characterized using heterologous expression. E. coli expressing the Ala62Pro variant, and the purified variant protein, had lower CYP (i.e. holoenzyme) contents than their wild-type (WT) equivalents. The CYP variant from E. coli and mammalian cells exhibited lower 7-ethoxyresorufin O-dealkylation (EROD) and benzo[a]pyrene hydroxylation activities than the WT. Enhanced supplementation of a heme precursor during E. coli culture did not increase CYP content in E. coli expressing the variant, but did for the WT. As for Ala62Pro, E. coli expressing an Ala62Gly variant had a lower CYP content than the WT counterpart, but substitution of Ala62 with α-helix-compatible residues such as Ser and Val partially recovered the level of CYP produced. Microsomes from mammalian cells expressing Ala62Pro and Ala62Gly variants exhibited lower EROD activities than those expressing the WT or Ala62Val variant. A region harboring α-helix A has interactions with another region containing heme-interacting residues. Site-directed mutagenesis analyses suggest the importance of interactions between the two regions on holoenzyme expression. Together, these findings suggest that the Ala62Pro substitution leads to changes in protein characteristics and function of CYP1A1 via structural disturbance of the region where the residue is located. - Highlights: • Ala62 is located in α-helix A of the carcinogen-metabolizing enzyme CYP1A1. • Pro acts as an α-helix breaker. • A variant protein of CYP1A1, Ala62Pro, had lower heme content than the wild-type. • The variant of CYP1A1 had lower enzyme activities than the wild-type.

  16. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2004-01-01

    or detoxify such peroxides. It is shown that catalase, horseradish peroxidase, and Cu/Zn superoxide dismutase do not react rapidly with these peroxides. Oxymyoglobin and oxyhemoglobin, but not the met (Fe3+) forms of these proteins, react with peptide but not protein, peroxides with oxidation of the heme iron...

  17. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Diego L. Costa

    2016-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX, a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.

  18. Monomeric Yeast Frataxin is an Iron-Binding Protein

    International Nuclear Information System (INIS)

    Cook, J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron

  19. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis.

    Science.gov (United States)

    Donker, Albertine E; Raymakers, Reinier A P; Vlasveld, L Thom; van Barneveld, Teus; Terink, Rieneke; Dors, Natasja; Brons, Paul P T; Knoers, Nine V A M; Swinkels, Dorine W

    2014-06-19

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel molecular discoveries in clinical practice has increased our understanding of the presentation, diagnosis, and management of these diseases. Integration of these insights into daily clinical practice will reduce delays in establishing a proper diagnosis, invasive and/or costly diagnostic tests, and unnecessary or even detrimental treatments. To assist the clinician, we developed evidence-based multidisciplinary guidelines on the management of rare microcytic anemias due to genetic disorders of iron metabolism and heme synthesis. These genetic disorders may present at all ages, and therefore these guidelines are relevant for pediatricians as well as clinicians who treat adults. This article summarizes these clinical practice guidelines and includes background on pathogenesis, conclusions, and recommendations and a diagnostic flowchart to facilitate using these guidelines in the clinical setting. © 2014 by The American Society of Hematology.

  20. Heme Oxygenase Induction Suppresses Hepatic Hepcidin and Rescues Ferroportin and Ferritin Expression in Obese Mice

    Directory of Open Access Journals (Sweden)

    Nitin Puri

    2017-01-01

    Full Text Available Hepcidin, a phase II reactant secreted by hepatocytes, regulates cellular iron levels by increasing internalization of ferroportin-a transmembrane protein facilitating egress of cellular iron. Chronic low-grade inflammatory states, such as obesity, have been shown to increase oxidative stress and enhance hepcidin secretion from hepatocytes and macrophages. Heme-heme oxygenase (HO is a stress response system which reduces oxidative stress. We investigated the effects of HO-1 induction on hepatic hepcidin levels and on iron homeostasis in hepatic tissues from lean and obese mice. Obese mice exhibited hyperglycemia (p<0.05; increased levels of proinflammatory cytokines (MCP-1, IL-6, p<0.05; oxidative stress (p<0.05; and increased hepatic hepcidin levels (p<0.05. Enhancement of hepcidin was reflected in the reduced expression of ferroportin in obese mice (p<0.05. However, this effect is accompanied by a significant decline in ferritin expression. Additionally, there are reduced insulin receptor phosphorylation and attenuation of metabolic regulators pAMPK, pAKT, and pLKB1. Cobalt protoporphyrin- (CoPP- induced HO-1 upregulation in obese mice reversed these alterations (p<0.05, while attenuating hepatic hepcidin levels. These effects of CoPP were prevented in obese mice concurrently exposed to an inhibitor of HO (SnMP (p<0.05. Our results highlight a modulatory effect of HO on iron homeostasis mediated through the suppression of hepatic hepcidin.

  1. Visualizing changes in electron distribution in coupled chains of cytochrome bc(1) by modifying barrier for electron transfer between the FeS cluster and heme c(1).

    Science.gov (United States)

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-02-01

    Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites

  2. Gene Unprediction with Spurio: A tool to identify spurious protein sequences.

    Science.gov (United States)

    Höps, Wolfram; Jeffryes, Matt; Bateman, Alex

    2018-01-01

    We now have access to the sequences of tens of millions of proteins. These protein sequences are essential for modern molecular biology and computational biology. The vast majority of protein sequences are derived from gene prediction tools and have no experimental supporting evidence for their translation.  Despite the increasing accuracy of gene prediction tools there likely exists a large number of spurious protein predictions in the sequence databases.  We have developed the Spurio tool to help identify spurious protein predictions in prokaryotes.  Spurio searches the query protein sequence against a prokaryotic nucleotide database using tblastn and identifies homologous sequences. The tblastn matches are used to score the query sequence's likelihood of being a spurious protein prediction using a Gaussian process model. The most informative feature is the appearance of stop codons within the presumed translation of homologous DNA sequences. Benchmarking shows that the Spurio tool is able to distinguish spurious from true proteins. However, transposon proteins are prone to be predicted as spurious because of the frequency of degraded homologs found in the DNA sequence databases. Our initial experiments suggest that less than 1% of the proteins in the UniProtKB sequence database are likely to be spurious and that Spurio is able to identify over 60 times more spurious proteins than the AntiFam resource. The Spurio software and source code is available under an MIT license at the following URL: https://bitbucket.org/bateman-group/spurio.

  3. Unsaturated glycerophospholipids mediate heme crystallization: biological implications for hemozoin formation in the kissing bug Rhodnius prolixus.

    Directory of Open Access Journals (Sweden)

    Renata Stiebler

    Full Text Available Hemozoin (Hz is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM. Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE and phosphatidylcholine (uPC, with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9-17.7 minutes than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut.

  4. Heme oxygenase is not involved in the anti-proliferative effects of statins on pancreatic cancer cells

    Czech Academy of Sciences Publication Activity Database

    Váňová, K.; Boukalová, Štěpána; Gbelcová, H.; Muchová, L.; Neužil, Jiří; Gürlich, R.; Ruml, T.; Vítek, L.

    2016-01-01

    Roč. 16, May 12 (2016), č. článku 309. ISSN 1471-2407 R&D Projects: GA MZd NT14078; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Heme * Heme oxygenase * Pancreatic cancer * Statins Subject RIV: FD - Oncology ; Hematology Impact factor: 3.288, year: 2016

  5. Semantic integration to identify overlapping functional modules in protein interaction networks

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2007-07-01

    Full Text Available Abstract Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification.

  6. A coevolution analysis for identifying protein-protein interactions by Fourier transform

    Science.gov (United States)

    Yin, Changchuan; Yau, Stephen S. -T.

    2017-01-01

    Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI). PMID:28430779

  7. A coevolution analysis for identifying protein-protein interactions by Fourier transform.

    Directory of Open Access Journals (Sweden)

    Changchuan Yin

    Full Text Available Protein-protein interactions (PPIs play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA; however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40. The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI.

  8. Structures of the multicomponent Rieske non-heme iron toluene 2, 3-dioxygenase enzyme system

    Energy Technology Data Exchange (ETDEWEB)

    Friemann, Rosmarie [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Lee, Kyoung [Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773 (Korea, Republic of); Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Brown, Eric N. [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Gibson, David T. [Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Ramaswamy, S., E-mail: s-ramaswamy@uiowa.edu [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden)

    2009-01-01

    The crystal structures of the three-component toluene 2, 3-dioxygenase system provide a model for electron transfer among bacterial Rieske non-heme iron dioxygenases. Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2, 3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe–2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe–2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.

  9. A central role for heme iron in colon carcinogenesis associated with red meat intake.

    Science.gov (United States)

    Bastide, Nadia M; Chenni, Fatima; Audebert, Marc; Santarelli, Raphaelle L; Taché, Sylviane; Naud, Nathalie; Baradat, Maryse; Jouanin, Isabelle; Surya, Reggie; Hobbs, Ditte A; Kuhnle, Gunter G; Raymond-Letron, Isabelle; Gueraud, Françoise; Corpet, Denis E; Pierre, Fabrice H F

    2015-03-01

    Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines, and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat. The relative part of heme iron (1% in diet), heterocyclic amines (PhIP + MeIQx, 50 + 25 μg/kg in diet), and NOC (induced by NaNO₂+ NaNO₂; 0.17 + 0.23 g/L of drinking water) was determined by a factorial design and preneoplastic endpoints in chemically induced rats and validated on tumors in Min mice. The molecular mechanisms (genotoxicity, cytotoxicity) were analyzed in vitro in normal and Apc-deficient cell lines and confirmed on colon mucosa. Heme iron increased the number of preneoplastic lesions, but dietary heterocyclic amines and NOC had no effect on carcinogenesis in rats. Dietary hemoglobin increased tumor load in Min mice (control diet: 67 ± 39 mm²; 2.5% hemoglobin diet: 114 ± 47 mm², P = 0.004). In vitro, fecal water from rats given hemoglobin was rich in aldehydes and was cytotoxic to normal cells, but not to premalignant cells. The aldehydes 4-hydroxynonenal and 4-hydroxyhexenal were more toxic to normal versus mutated cells and were only genotoxic to normal cells. Genotoxicity was also observed in colon mucosa of mice given hemoglobin. These results highlight the role of heme iron in the promotion of colon cancer by red meat and suggest that heme iron could initiate carcinogenesis through lipid peroxidation. . ©2015 American Association for Cancer Research.

  10. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    Effect of a heme oxygenase-1 inducer on NADPH oxidase expression in ... and immunohistochemistry of hepatic NOX1 and NOX4 were investigated in week 4. ... (HO-1 inhibitor) administration caused upregulation of NOX gene expression ...

  11. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Ni [Department of Nursing, Hsin Sheng College of Medical Care and Management, Taoyuan, Taiwan (China); Wang, Jiz-Yuh [Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lee, Ching-Tien [Department of Nursing, Hsin Sheng College of Medical Care and Management, Taoyuan, Taiwan (China); Lin, Chih-Hung [Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lai, Chien-Cheng [Far Eastern Memorial Hospital, Department of Surgery, Taipei, Taiwan (China); Wang, Jia-Yi, E-mail: jywang2010@tmu.edu.tw [Graduate Institute of Medical Sciences and Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  12. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    International Nuclear Information System (INIS)

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-01-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS production by

  13. Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease

    Science.gov (United States)

    Keane, Harriet; Ryan, Brent J.; Jackson, Brendan; Whitmore, Alan; Wade-Martins, Richard

    2015-11-01

    Neurodegenerative diseases are complex multifactorial disorders characterised by the interplay of many dysregulated physiological processes. As an exemplar, Parkinson’s disease (PD) involves multiple perturbed cellular functions, including mitochondrial dysfunction and autophagic dysregulation in preferentially-sensitive dopamine neurons, a selective pathophysiology recapitulated in vitro using the neurotoxin MPP+. Here we explore a network science approach for the selection of therapeutic protein targets in the cellular MPP+ model. We hypothesised that analysis of protein-protein interaction networks modelling MPP+ toxicity could identify proteins critical for mediating MPP+ toxicity. Analysis of protein-protein interaction networks constructed to model the interplay of mitochondrial dysfunction and autophagic dysregulation (key aspects of MPP+ toxicity) enabled us to identify four proteins predicted to be key for MPP+ toxicity (P62, GABARAP, GBRL1 and GBRL2). Combined, but not individual, knockdown of these proteins increased cellular susceptibility to MPP+ toxicity. Conversely, combined, but not individual, over-expression of the network targets provided rescue of MPP+ toxicity associated with the formation of autophagosome-like structures. We also found that modulation of two distinct proteins in the protein-protein interaction network was necessary and sufficient to mitigate neurotoxicity. Together, these findings validate our network science approach to multi-target identification in complex neurological diseases.

  14. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.

    Science.gov (United States)

    Dailey, Harry A; Dailey, Tamara A; Gerdes, Svetlana; Jahn, Dieter; Jahn, Martina; O'Brian, Mark R; Warren, Martin J

    2017-03-01

    The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized. Copyright © 2017 American Society for Microbiology.

  15. Dietary heme injures surface epithelium resulting in hyperproliferation, inhibition of apoptosis and crypt hyperplasia in rat colon

    NARCIS (Netherlands)

    de Vogel, Johan; van-Eck, Wytske Boersma; Sesink, Aloys L. A.; Jonker-Termont, Denise S. M. L.; Kleibeuker, Jan; van der Meer, Roelof

    Epidemiological and animal model studies suggest that a high intake of heme, present in red meat, is associated with an increased risk of colon cancer. The aim of this study was to elucidate the effects of dietary heme on colonic cell homeostasis in rats. Rats were fed a purified, humanized, control

  16. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2016-02-01

    Full Text Available Ergosterol is a major and specific component of the fungal plasma membrane, and thus, the cytochrome P450 enzymes (Erg proteins that catalyze ergosterol synthesis have been selected as valuable targets of azole antifungals. However, the opportunistic pathogen Aspergillus fumigatus has developed worldwide resistance to azoles largely through mutations in the cytochrome P450 enzyme Cyp51 (Erg11. In this study, we demonstrate that a cytochrome b5-like heme-binding damage resistance protein (Dap family, comprised of DapA, DapB, and DapC, coordinately regulates the functionality of cytochrome P450 enzymes Erg5 and Erg11 and oppositely affects susceptibility to azoles. The expression of all three genes is induced in an azole concentration-dependent way, and the decreased susceptibility to azoles requires DapA stabilization of cytochrome P450 protein activity. In contrast, overexpression of DapB and DapC causes dysfunction of Erg5 and Erg11, resulting in abnormal accumulation of sterol intermediates and further accentuating the sensitivity of ΔdapA strains to azoles. The results of exogenous-hemin rescue and heme-binding-site mutagenesis experiments demonstrate that the heme binding of DapA contributes the decreased azole susceptibility, while DapB and -C are capable of reducing the activities of Erg5 and Erg11 through depletion of heme. In vivo data demonstrate that inactivated DapA combined with activated DapB yields an A. fumigatus mutant that is easily treatable with azoles in an immunocompromised mouse model of invasive pulmonary aspergillosis. Compared to the single Dap proteins found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, we suggest that this complex Dap family regulatory system emerged during the evolution of fungi as an adaptive means to regulate ergosterol synthesis in response to environmental stimuli.

  17. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    International Nuclear Information System (INIS)

    Gade, Sudeep Kumar; Bhattacharya, Subarna; Manoj, Kelath Murali

    2012-01-01

    Highlights: ► At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. ► But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. ► Enhancement positively correlates to the concentration of peroxide in reaction. ► Reducible additives serve as non-specific agents for redox relay in the system. ► Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding – (1) the promiscuous role of cytochrome b 5 in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.

  18. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  19. Mononuclear non-heme iron(III) complexes of linear and tripodal ...

    Indian Academy of Sciences (India)

    The rate of oxygenation depends on the solvent and the. Lewis acidity of iron(III) ... has been achieved by non-heme iron enzymes and their ..... oxygen atoms of nitrate ion (figure 3). ... enhanced covalency of iron-catecholate interaction and.

  20. Pilot-scale tests of HEME and HEPA dissolution process

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  1. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  2. Impairment of heme synthesis in myelin as potential trigger of multiple sclerosis.

    Science.gov (United States)

    Morelli, Alessandro; Ravera, Silvia; Calzia, Daniela; Panfoli, Isabella

    2012-06-01

    The pathogenesis of multiple sclerosis (MS), a disease characterized by demyelination and subsequent axonal degeneration, is as yet unknown. Also, the nature of the disease is as yet not established, since doubts have been cast on its autoimmune origin. Genetic and environmental factors have been implied in MS, leading to the idea of an overall multifactorial origin. An unexpected role in energizing the axon has been reported for myelin, supposed to be the site of consumption of most of oxygen in brain. Myelin would be able to perform oxidative phosphorylation to supply the axons with ATP, thanks to the expression therein of mitochondrial F(o)F(1)-ATP synthase, and respiratory chains. Interestingly, myelin expresses the pathway of heme synthesis, hence of cytochromes, that rely on heme group, in turn depending on Fe availability. Poisoning by these pollutants shares the common characteristic to bring about demyelination both in animal models and in man. Carbon monoxide (CO) and lead poisoning which cause functional imbalance of the heme group, as well as of heme synthesis, cause myelin damage. On the other hand, a lack of essential metals such as iron and copper, produces dramatic myelin decrease. Myelin is a primary target, of iron shortage, indicating that in myelin Fe-dependent processes are more active than in other tissues. The predominant spread of MS in industrialized countries where pollution by heavy metals, and CO poisoning is widespread, suggests a relationship among toxic action of metal pollutants and MS. According to the present hypothesis, MS can be primarily triggered by environmental factors acting on a genetic susceptibility, while the immune response may be a consequence of a primary oxidative damage due to reactive oxygen species produced consequently to an imbalance of cytochromes and respiratory chains in the sheath. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction.

    Science.gov (United States)

    Stranava, Martin; Man, Petr; Skálová, Tereza; Kolenko, Petr; Blaha, Jan; Fojtikova, Veronika; Martínek, Václav; Dohnálek, Jan; Lengalova, Alzbeta; Rosůlek, Michal; Shimizu, Toru; Martínková, Markéta

    2017-12-22

    The heme-based oxygen sensor histidine kinase Af GcHK is part of a two-component signal transduction system in bacteria. O 2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His 183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH - and -CN - complexes of Af GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN - and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length Af GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of Af GcHK. We conclude that Af GcHK functions as an ensemble of molecules sampling at least two conformational states. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    International Nuclear Information System (INIS)

    Sun, Gui-bo; Sun, Xiao; Wang, Min; Ye, Jing-xue; Si, Jian-yong; Xu, Hui-bo; Meng, Xiang-bao; Qin, Meng; Sun, Jing; Wang, Hong-wei; Sun, Xiao-bo

    2012-01-01

    enhances cellular antioxidant defense capacity. ► Luteolin increases the expression of heme oxygenase-1 protein levels. ► Luteolin activates Akt and ERK signal pathways.

  5. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Sun, Xiao; Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Ye, Jing-xue [Jilin Agricultural University, No.2888, Xincheng Street, Changchun, 130021, Jilin (China); Si, Jian-yong [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo [Academy of Chinese Medical Sciences of Jilin Province, Gongnongda road 1745, Changchun, 130021, Jiblin (China); Meng, Xiang-bao; Qin, Meng; Sun, Jing [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2012-12-01

    Luteolin enhances cellular antioxidant defense capacity. ► Luteolin increases the expression of heme oxygenase-1 protein levels. ► Luteolin activates Akt and ERK signal pathways.

  6. Cloning, expression, and characterization of recombinant nitric oxide synthase-like protein from Bacillus anthracis

    International Nuclear Information System (INIS)

    Midha, Shuchi; Mishra, Rajeev; Aziz, M.A.; Sharma, Meenakshi; Mishra, Ashish; Khandelwal, Puneet; Bhatnagar, Rakesh

    2005-01-01

    Nitric oxide synthase (NOS) is amongst a family of evolutionarily conserved enzymes, involved in a multi-turnover process that results in NO as a product. The significant role of NO in various pathological and physiological processes has created an interest in this enzyme from several perspectives. This study describes for the first time, cloning and expression of a NOS-like protein, baNOS, from Bacillus anthracis, a pathogenic bacterium responsible for causing anthrax. baNOS was expressed in Escherichia coli as a soluble and catalytically active enzyme. Homology models generated for baNOS indicated that the key structural features that are involved in the substrate and active site interaction have been highly conserved. Further, the behavior of baNOS in terms of heme-substrate interactions and heme-transitions was studied in detail. The optical perturbation spectra of the heme domain demonstrated that the ligands perturb the heme site in a ligand specific manner. baNOS forms a five-coordinate, high-spin complex with L-arginine analogs and a six-coordinate low-spin complex with inhibitor imidazole. Studies indicated that the binding of L-arginine, N ω -hydroxy-L-arginine, and imidazole produces various spectroscopic species that closely correspond to the equivalent complexes of mammalian NOS. The values of spectral binding constants further corroborated these results. The overall conservation of the key structural features and the correlation of heme-substrate interactions in baNOS and mammalian NOS, thus, point towards an interesting phenomenon of convergent evolution. Importantly, the NO generated by NOS of mammalian macrophages plays a potent role in antimicrobicidal activity. Because of the existence of high structural and behavioral similarity between mammalian NOS and baNOS, we propose that NO produced by B. anthracis may also have a pivotal pathophysiological role in anthrax infection. Therefore, this first report of characterization of a NOS-like protein

  7. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions].

    Science.gov (United States)

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D

    2014-01-01

    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  8. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis.

    Science.gov (United States)

    Parhad, Swapnil S; Jaiswal, Deepa; Ray, Krishanu; Mazumdar, Shyamalava

    2016-03-25

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in l-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hanxia; Falgout, Barry; Takeda, Kazuyo [Food and Drug Administration, Silver Spring, MD (United States); Yamada, Kenneth M. [National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Food and Drug Administration, Silver Spring, MD (United States)

    2017-03-15

    We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of >90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retarding ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection. - Highlights: •Hemin treatment protected monocyte-derived macrophages against Zika virus (ZIKV) infection. •Innate cellular protection against ZIKV infection correlated with Nrf2-dependent HO-1 expression. •Stimulation of innate cellular responses may provide a therapeutic strategy against ZIKV infection.

  10. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication

    International Nuclear Information System (INIS)

    Huang, Hanxia; Falgout, Barry; Takeda, Kazuyo; Yamada, Kenneth M.; Dhawan, Subhash

    2017-01-01

    We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of >90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retarding ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection. - Highlights: •Hemin treatment protected monocyte-derived macrophages against Zika virus (ZIKV) infection. •Innate cellular protection against ZIKV infection correlated with Nrf2-dependent HO-1 expression. •Stimulation of innate cellular responses may provide a therapeutic strategy against ZIKV infection.

  11. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    International Nuclear Information System (INIS)

    Becker, Jan C.; Grosser, Nina; Waltke, Christian; Schulz, Stephanie; Erdmann, Kati; Domschke, Wolfram; Schroeder, Henning; Pohle, Thorsten

    2006-01-01

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidant defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection

  12. Beyond gastric acid reduction: Proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Jan C [Department of Medicine B, University of Muenster, 48149 Muenster (Germany); Grosser, Nina [Department of Pharmacology and Toxicology, School of Pharmacy, Martin Luther University, Halle-Wittenberg, 06099 Halle (Saale) (Germany); Waltke, Christian [Department of Medicine B, University of Muenster, 48149 Muenster (Germany); Schulz, Stephanie [Department of Pharmacology and Toxicology, School of Pharmacy, Martin Luther University, Halle-Wittenberg, 06099 Halle (Saale) (Germany); Erdmann, Kati [Department of Pharmacology and Toxicology, School of Pharmacy, Martin Luther University, Halle-Wittenberg, 06099 Halle (Saale) (Germany); Domschke, Wolfram [Department of Medicine B, University of Muenster, 48149 Muenster (Germany); Schroeder, Henning [Department of Pharmacology and Toxicology, School of Pharmacy, Martin Luther University, Halle-Wittenberg, 06099 Halle (Saale) (Germany); Pohle, Thorsten [Department of Medicine B, University of Muenster, 48149 Muenster (Germany)

    2006-07-07

    Proton pump inhibitors (PPIs) have been demonstrated to prevent gastric mucosal injury by mechanisms independent of acid inhibition. Here we demonstrate that both omeprazole and lansoprazole protect human gastric epithelial and endothelial cells against oxidative stress. This effect was abrogated in the presence of the heme oxygenase-1 (HO-1) inhibitor ZnBG. Exposure to either PPI resulted in a strong induction of HO-1 expression on mRNA and protein level, and led to an increased activity of this enzyme. Expression of cyclooxygenase isoforms 1 and 2 remained unaffected, and COX-inhibitors did not antagonize HO-1 induction by PPIs. Our results suggest that the antioxidant defense protein HO-1 is a target of PPIs in both endothelial and gastric epithelial cells. HO-1 induction might account for the gastroprotective effects of PPIs independently of acid inhibition, especially in NSAID gastropathy. Moreover, our findings provide additional perspectives for a possible but yet unexplored use of PPIs in vasoprotection.

  13. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase

  14. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  15. Electron transfer among the CuA-, heme b- and a3-centers of Thermus thermophilus cytochrome ba3

    DEFF Research Database (Denmark)

    Farver, Ole; Chen, Ying; Fee, James A

    2006-01-01

    The 1-methyl-nicotinamide radical (MNA(*)), produced by pulse radiolysis has previously been shown to reduce the Cu(A)-site of cytochromes aa(3), a process followed by intramolecular electron transfer (ET) to the heme a but not to the heme a(3) [Farver, O., Grell, E., Ludwig, B., Michel, H. and P...

  16. Heme Iron Content in Lamb Meat Is Differentially Altered upon Boiling, Grilling, or Frying as Assessed by Four Distinct Analytical Methods

    OpenAIRE

    Pourkhalili, Azin; Mirlohi, Maryam; Rahimi, Ebrahim

    2013-01-01

    Lamb meat is regarded as an important source of highly bioavailable iron (heme iron) in the Iranians diet. The main objective of this study is to evaluate the effect of traditional cooking methods on the iron changes in lamb meat. Four published experimental methods for the determination of heme iron were assessed analytically and statistically. Samples were selected from lambs' loin. Standard methods (AOAC) were used for proximate analysis. For measuring heme iron, the results of four experi...

  17. Heme and menaquinone induced electron transport in lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait.

  18. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  19. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  20. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.

    Science.gov (United States)

    Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E

    2016-05-01

    The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Heme oxygenase behavior in ultraviolet-B irradiated soybean plants

    International Nuclear Information System (INIS)

    Yannarelli, G.G.; Noriega, G.O.; Tomaro, M.L.

    2005-01-01

    Full text: Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and leads to the generation of reactive oxygen species (ROS). Heme oxygenase (HO) plays a protective role against oxidative stress in mammals, but little is known about this issue in plants. Here, we report for the first time the response of HO in leaves of soybean plants subjected to UV-B radiation. HO activity, protein and gene expression, as well as stress markers were evaluated. Under lower UV-B doses (7.5 and 15 kJ m -2 ), the production of thiobarbituric acid reactive substances (TBARS) remained unaltered, while quantitative RT-PCR revealed that HO and catalase (CAT) transcripts were increased 40% and 20% after 8 h, respectively. Treatment with 30 kJ m -2 brought about a 90% enhancement in TBARS indicating that an oxidative burst occurred, and a downregulation in gene expression was observed. Immunoblot analysis showed a 4.3 and 3.7-fold increase in HO protein after irradiation with 75 and 15 kJ m -2 , respectively. HO and CAT enzymes activities were enhanced at these doses but diminished at 30 kJ m -2 UV-B. These results indicate that the up regulation of HO and CAT genes at the lower doses occurred as a signal of cell protection against oxidative damage. On the other hand, irradiation with 30 kJ m -2 overcome the cellular antioxidant capacity and repressed the response as a result of ROS overproduction. (author)

  2. Juvenile hormone-binding proteins of Melanoplus bivittatus identified by EFDA photoaffinity labeling

    International Nuclear Information System (INIS)

    Winder, B.S.

    1988-01-01

    Proteins that bind juvenile hormone in the hemolymph and fat body of the grasshopper, Melanoplus bivittatus were identified by photoaffinity labeling with radiolabeled epoxyfarnesyl diazoacetate ( 3 H-EFDA), and were characterized by electrophoretic analysis. A protocol was developed which allowed detection of 3 H-EFDA that was covalently linked to proteins upon exposure to ultraviolet light at 254 nm. Quantification of protein-linked 3 H-EFDA by liquid scintillation spectrometry took advantage of the differential solubility of unlinked 3 H-EFDA in toluene alone, and of the protein-linked 3 H-EFDA in toluene plus the detergent, Triton X-100. Competition between EFDA and juvenile hormone (JH) for binding to JH-specific binding sites was measured by hydroxyapatite protein binding assays in the presence of radiolabeled JH or EFDA and competing non-radiolabeled hormone. The protein-linked EFDA was detected on fluorograms of SDS or nondenaturing polyacrylamide gels (PAGE), and by liquid scintillation spectrometry of membranes to which the proteins had been electrophoretically transferred. Proteins which specifically bound JH were identified by photolabeling proteins in the presence and absence of nonlabeled JH-III

  3. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.

    Science.gov (United States)

    Zhang, Tiantian; Bu, Pengli; Zeng, Joey; Vancura, Ales

    2017-10-13

    Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast Saccharomyces cerevisiae metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria. However, how pyruvate controls the transcriptional responses underlying the metabolic switch from fermentation to respiration is unknown. Here, we report that this pyruvate effect involves heme. We found that heme induces transcription of HAP4 , the transcriptional activation subunit of the Hap2/3/4/5p complex, required for growth on nonfermentable carbon sources, in a Hap1p- and Hap2/3/4/5p-dependent manner. Increasing cellular heme levels by inactivating ROX1 , which encodes a repressor of many hypoxic genes, or by overexpressing HEM3 or HEM12 induced respiration and elevated ATP levels. Increased heme synthesis, even under conditions of glucose repression, activated Hap1p and the Hap2/3/4/5p complex and induced transcription of HAP4 and genes required for the tricarboxylic acid (TCA) cycle, electron transport chain, and oxidative phosphorylation, leading to a switch from fermentation to respiration. Conversely, inhibiting metabolic flux into the TCA cycle reduced cellular heme levels and HAP4 transcription. Together, our results indicate that the glucose-mediated repression of respiration in budding yeast is at least partly due to the low cellular heme level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  5. Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay

    Energy Technology Data Exchange (ETDEWEB)

    Gade, Sudeep Kumar; Bhattacharya, Subarna [Heme and Flavo Proteins Laboratory, 204, Center for Biomedical Research, VIT University, Vellore, Tamil Nadu 632014 (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [Heme and Flavo Proteins Laboratory, 204, Center for Biomedical Research, VIT University, Vellore, Tamil Nadu 632014 (India)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer At low concentrations, cytochrome c/vitamin C do not catalyze peroxidations. Black-Right-Pointing-Pointer But low levels of cytochrome c/vitamin C enhance diverse heme peroxidase activities. Black-Right-Pointing-Pointer Enhancement positively correlates to the concentration of peroxide in reaction. Black-Right-Pointing-Pointer Reducible additives serve as non-specific agents for redox relay in the system. Black-Right-Pointing-Pointer Insight into electron transfer processes in routine and oxidative-stress states. -- Abstract: We report that incorporation of very low concentrations of redox protein cytochrome c and redox active small molecule vitamin C impacted the outcome of one-electron oxidations mediated by structurally distinct plant/fungal heme peroxidases. Evidence suggests that cytochrome c and vitamin C function as a redox relay for diffusible reduced oxygen species in the reaction system, without invoking specific or affinity-based molecular interactions for electron transfers. The findings provide novel perspectives to understanding - (1) the promiscuous role of cytochrome b{sub 5} in the metabolism mediated by liver microsomal xenobiotic metabolizing systems and (2) the roles of antioxidant molecules in affording relief from oxidative stress.

  6. Delineation of the Pasteurellaceae-specific GbpA-family of glutathione-binding proteins

    Directory of Open Access Journals (Sweden)

    Vergauwen Bjorn

    2011-11-01

    Full Text Available Abstract Background The Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp permease of Escherichia coli. The solute binding protein (SBP that mediates glutathione transport in H. influenzae is a lipoprotein termed GbpA and is 54% identical to E. coli DppA, a well-studied member of family 5 SBP's. The discovery linking GbpA to glutathione import came rather unexpectedly as this import-priming SBP was previously annotated as a heme-binding protein (HbpA, and was thought to mediate heme acquisition. Nonetheless, although many SBP's have been implicated in more than one function, a prominent physiological role for GbpA and its partner permease in heme acquisition appears to be very unlikely. Here, we sought to characterize five representative GbpA homologs in an effort to delineate the novel GbpA-family of glutathione-specific family 5 SBPs and to further clarify their functional role in terms of ligand preferences. Results Lipoprotein and non-lipoprotein GbpA homologs were expressed in soluble form and substrate specificity was evaluated via a number of ligand binding assays. A physiologically insignificant affinity for hemin was observed for all five GbpA homologous test proteins. Three out of five test proteins were found to bind glutathione and some of its physiologically relevant derivatives with low- or submicromolar affinity. None of the tested SBP family 5 allocrites interacted with the remaining two GbpA test proteins. Structure-based sequence alignments and phylogenetic analysis show that the two binding-inert GbpA homologs clearly form a separate phylogenetic cluster. To elucidate a structure-function rationale for this phylogenetic differentiation, we determined the crystal

  7. Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase.

    Science.gov (United States)

    Mashhadi, Zahra; Boeglin, William E; Brash, Alan R

    2014-11-01

    True catalases efficiently breakdown hydrogen peroxide, whereas the catalase-related enzyme allene oxide synthase (cAOS) is completely unreactive and instead metabolizes a fatty acid hydroperoxide. In cAOS a Thr residue adjacent to the distal His restrains reaction with H2O2 (Tosha et al. (2006) J. Biol. Chem. 281:12610; De Luna et al. (2013) J. Phys. Chem. B 117: 14635) and its mutation to the consensus Val of true catalases permits the interaction. Here we investigated the effects of the reciprocal experiment in which the Val74 of human catalase is mutated to Thr, Ser, Met, Pro, or Ala. The Val74Thr substitution decreased catalatic activity by 3.5-fold and peroxidatic activity by 3-fold. Substitution with Ser had similar negative effects (5- and 3-fold decreases). Met decreased catalatic activity 2-fold and eliminated peroxidatic activity altogether, whereas the Val74Ala substitution was well tolerated. (The Val74Pro protein lacked heme). We conclude that the conserved Val74 of true catalases helps optimize catalysis. There are rare substitutions of Val74 with Ala, Met, or Pro, but not with Ser of Thr, possibly due their hydrogen bonding affecting the conformation of His75, the essential distal heme residue for activity in catalases. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  8. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  9. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    Science.gov (United States)

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Heme-Mediated Induction of CXCL10 and Depletion of CD34+ Progenitor Cells Is Toll-Like Receptor 4 Dependent.

    Directory of Open Access Journals (Sweden)

    Carmen M Dickinson-Copeland

    Full Text Available Plasmodium falciparum infection can cause microvascular dysfunction, cerebral encephalopathy and death if untreated. We have previously shown that high concentrations of free heme, and C-X-C motif chemokine 10 (CXCL10 in sera of malaria patients induce apoptosis in microvascular endothelial and neuronal cells contributing to vascular dysfunction, blood-brain barrier (BBB damage and mortality. Endothelial progenitor cells (EPC are microvascular endothelial cell precursors partly responsible for repair and regeneration of damaged BBB endothelium. Studies have shown that EPC's are depleted in severe malaria patients, but the mechanisms mediating this phenomenon are unknown. Toll-like receptors recognize a wide variety of pathogen-associated molecular patterns generated by pathogens such as bacteria and parasites. We tested the hypothesis that EPC depletion during malaria pathogenesis is a function of heme-induced apoptosis mediated by CXCL10 induction and toll-like receptor (TLR activation. Heme and CXCL10 concentrations in plasma obtained from malaria patients were elevated compared with non-malaria subjects. EPC numbers were significantly decreased in malaria patients (P < 0.02 and TLR4 expression was significantly elevated in vivo. These findings were confirmed in EPC precursors in vitro; where it was determined that heme-induced apoptosis and CXCL10 expression was TLR4-mediated. We conclude that increased serum heme mediates depletion of EPC during malaria pathogenesis.

  11. vProtein: identifying optimal amino acid complements from plant-based foods.

    Directory of Open Access Journals (Sweden)

    Peter J Woolf

    Full Text Available BACKGROUND: Indispensible amino acids (IAAs are used by the body in different proportions. Most animal-based foods provide these IAAs in roughly the needed proportions, but many plant-based foods provide different proportions of IAAs. To explore how these plant-based foods can be better used in human nutrition, we have created the computational tool vProtein to identify optimal food complements to satisfy human protein needs. METHODS: vProtein uses 1251 plant-based foods listed in the United States Department of Agriculture standard release 22 database to determine the quantity of each food or pair of foods required to satisfy human IAA needs as determined by the 2005 daily recommended intake. The quantity of food in a pair is found using a linear programming approach that minimizes total calories, total excess IAAs, or the total weight of the combination. RESULTS: For single foods, vProtein identifies foods with particularly balanced IAA patterns such as wheat germ, quinoa, and cauliflower. vProtein also identifies foods with particularly unbalanced IAA patterns such as macadamia nuts, degermed corn products, and wakame seaweed. Although less useful alone, some unbalanced foods provide unusually good complements, such as Brazil nuts to legumes. Interestingly, vProtein finds no statistically significant bias toward grain/legume pairings for protein complementation. These analyses suggest that pairings of plant-based foods should be based on the individual foods themselves instead of based on broader food group-food group pairings. Overall, the most efficient pairings include sweet corn/tomatoes, apple/coconut, and sweet corn/cherry. The top pairings also highlight the utility of less common protein sources such as the seaweeds laver and spirulina, pumpkin leaves, and lambsquarters. From a public health perspective, many of the food pairings represent novel, low cost food sources to combat malnutrition. Full analysis results are available online

  12. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Solip [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Nguyen, Van Thu [College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702 (Korea, Republic of); Tae, Nara; Lee, Suhyun [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Ryoo, Sungwoo [Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Min, Byung-Sun [College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702 (Korea, Republic of); Lee, Jeong-Hyung, E-mail: jhlee36@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of)

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  13. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    International Nuclear Information System (INIS)

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-01-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE 2 , butyl lucidenateD 2 (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these triterpenes

  14. Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition.

    Science.gov (United States)

    Baer, Brian R; DeLisle, Robert Kirk; Allen, Andrew

    2009-07-01

    Gemfibrozil-1-O-beta-glucuronide (GEM-1-O-gluc), a major metabolite of the antihyperlipidemic drug gemfibrozil, is a mechanism-based inhibitor of P450 2C8 in vitro, and this irreversible inactivation may lead to clinical drug-drug interactions between gemfibrozil and other P450 2C8 substrates. In light of this in vitro finding and the observation that the glucuronide conjugate does not contain any obvious structural alerts, the current study was conducted to determine the potential site of GEM-1-O-gluc bioactivation and the subsequent mechanism of P450 2C8 inhibition (i.e., modification of apoprotein or heme). LC/MS analysis of a reaction mixture containing recombinant P450 2C8 and GEM-1-O-gluc revealed that the substrate was covalently linked to the heme prosthetic heme group during catalysis. A combination of mass spectrometry and deuterium isotope effects revealed that a benzylic carbon on the 2',5'-dimethylphenoxy group of GEM-1-O-gluc was covalently bound to the heme of P450 2C8. The regiospecificity of substrate addition to the heme group was not confirmed experimentally, but computational modeling experiments indicated that the gamma-meso position was the most likely site of modification. The metabolite profile, which consisted of two benzyl alcohol metabolites and a 4'-hydroxy-GEM-1-O-gluc metabolite, indicated that oxidation of GEM-1-O-gluc was limited to the 2',5'-dimethylphenoxy group. These results are consistent with an inactivation mechanism wherein GEM-1-O-gluc is oxidized to a benzyl radical intermediate, which evades oxygen rebound, and adds to the gamma-meso position of heme. Mechanism-based inhibition of P450 2C8 can be rationalized by the formation of the GEM-1-O-gluc-heme adduct and the consequential restriction of additional substrate access to the catalytic iron center.

  15. Proteomic profiling of human plasma exosomes identifies PPARγ as an exosome-associated protein

    International Nuclear Information System (INIS)

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-01

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARγ as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  16. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction.

    Directory of Open Access Journals (Sweden)

    Pradeep R Dumpala

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05 difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.

  17. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice

    Directory of Open Access Journals (Sweden)

    Fu Na

    2010-10-01

    Full Text Available Abstract Objective Heme oxygenase-1 (HO-1, the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant properties. However, the role of HO-1 on hepatocyte apoptosis remains unclear. We aim to elucidate the effects of HO-1 on oxidative stress related hepatocellular apoptosis in nutritional steatohepatitis in mice. Methods C57BL/6J mice were fed with methionine-choline deficient (MCD diet for four weeks to induce hepatic steatohepatitis. HO-1 chemical inducer (hemin, HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX and/or adenovirus carrying HO-1 gene (Ad-HO-1 were administered to mice, respectively. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay, the mRNA and protein expression of apoptosis related genes were assayed by quantitative real-time PCR and Western blot. Results Hepatocyte signs of oxidative related apoptotic injury were presented in mice fed with MCD diet for 4 weeks. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver histology, which was associated with decreased hepatic lipid peroxidation content, reduced number of apoptotic cells by TUNEL staining, down-regulated expression of pro-apoptosis related genes including Fas/FasL, Bax, caspase-3 and caspase-9, reduced expression of cytochrome p4502E1 (CYP2E1, inhibited cytochrome c (Cyt-c release, and up-regulated expression of anti-apoptosis gene Bcl-2. Whereas, inhibition of HO-1 by ZnPP-IX caused oxidative stress related hepatic injury, which concomitant with increased number of TUNEL positive cells and up-regulated expression of pro-apoptosis related genes. Conclusions The present study provided evidences for the protective role of HO-1 in preventing nutritional steatohepatitis through suppressing hepatocyte apoptosis in mice.

  18. A Plastid Protein That Evolved from Ubiquitin and Is Required for Apicoplast Protein Import in Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Justin D. Fellows

    2017-06-01

    Full Text Available Apicomplexan parasites cause a variety of important infectious diseases, including malaria, toxoplasma encephalitis, and severe diarrhea due to Cryptosporidium. Most apicomplexans depend on an organelle called the apicoplast which is derived from a red algal endosymbiont. The apicoplast is essential for the parasite as the compartment of fatty acid, heme, and isoprenoid biosynthesis. The majority of the approximate 500 apicoplast proteins are nucleus encoded and have to be imported across the four membranes that surround the apicoplast. Import across the second outermost membrane of the apicoplast, the periplastid membrane, depends on an apicoplast-specific endoplasmic reticulum-associated protein degradation (ERAD complex and on enzymes of the associated ubiquitination cascade. However, identification of an apicoplast ubiquitin associated with this machinery has long been elusive. Here we identify a plastid ubiquitin-like protein (PUBL, an apicoplast protein that is derived from a ubiquitin ancestor but that has significantly changed in its primary sequence. PUBL is distinct from known ubiquitin-like proteins, and phylogenomic analyses suggest a clade specific to apicomplexans. We demonstrate that PUBL and the AAA ATPase CDC48AP both act to translocate apicoplast proteins across the periplastid membrane during protein import. Conditional null mutants and genetic complementation show that both proteins are critical for this process and for parasite survival. PUBL residues homologous to those that are required for ubiquitin conjugation onto target proteins are essential for this function, while those required for polyubiquitination and preprotein processing are dispensable. Our experiments provide a mechanistic understanding of the molecular machinery that drives protein import across the membranes of the apicoplast.

  19. 14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...

  20. ["Kuhu me siis läheme? - Eks ikka koju."] / M. J.

    Index Scriptorium Estoniae

    Jõgi, Mall, 1947-

    2016-01-01

    Tutvustus: „Kuhu me siis läheme? - Eks ikka koju.“ : sajandivahetus saksa kirjanduses 200 aastat tagasi : Goethe, Schiller, Tieck, Kleist, Hoffmann, Eichendorff, Büchner, Novalis, Hegel (Schelling? Hölderlin?), Schlegel / saksa keelest valinud ja tõlkinud Mati Sirkel. Tallinn : Eesti Keele Sihtasutus, 2015

  1. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  2. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    Science.gov (United States)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  3. Structure-Activity Relationships of 1,2-Disubstituted Benzimidazoles: Selective Inhibition of Heme Oxygenase-2 Activity.

    Science.gov (United States)

    Kong, Xianqi; Vukomanovic, Dragic; Nakatsu, Kanji; Szarek, Walter A

    2015-08-01

    Devising ways to up- or down-regulate heme oxygenase activity is attracting much interest as a strategy for the treatment of a variety of disorders. With a view of obtaining compounds that exhibit high potency and selectivity as inhibitors of the heme oxygenase-2 (HO-2) isozyme (constitutive) relative to the heme oxygenase-1 (HO-1) isozyme (inducible), several 1,2-disubstituted 1H-benzimidazoles were designed and synthesized. Specifically, analogues were synthesized in which the C2 substituent was the following: (1H-imidazol-1-yl)methyl, (N-morpholinyl)methyl, cyclopentylmethyl, cyclohexylmethyl, or (norborn-2-yl)methyl. Compounds with the cyclic system in the C2 substituent being a carbocyclic ring, especially cyclohexyl or norborn-2-yl, and the N1 substituent being a ring-substituted benzyl group, especially 4-chlorobenzyl or 4-bromobenzyl, best exhibited the target criteria of high potency and selectivity toward inhibition of HO-2. The new candidates should be useful pharmacological tools and may have therapeutic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Identify High-Quality Protein Structural Models by Enhanced K-Means.

    Science.gov (United States)

    Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.

  5. Heme and menaquinone induced electron transport in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  6. Heme and menaquinone induced electron transport in lactic acid bacteria.

    Science.gov (United States)

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  7. Adding biological meaning to human protein-protein interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools.

    Science.gov (United States)

    Felgueiras, Juliana; Silva, Joana Vieira; Fardilha, Margarida

    2018-01-16

    "A man is known by the company he keeps" is a popular expression that perfectly fits proteins. A common approach to characterize the function of a target protein is to identify its interacting partners and thus infer its roles based on the known functions of the interactors. Protein-protein interaction networks (PPINs) have been created for several organisms, including humans, primarily as results of high-throughput screenings, such as yeast two-hybrid (Y2H). Their unequivocal use to understand events underlying human pathophysiology is promising in identifying genes and proteins associated with diseases. Therefore, numerous opportunities have emerged for PPINs as tools for clinical management of diseases: network-based disease classification systems, discovery of biomarkers and identification of therapeutic targets. Despite the great advantages of PPINs, their use is still unrecognised by several researchers who generate high-throughput data to generally characterize interactions in a certain model or to select an interaction to study in detail. We strongly believe that both approaches are not exclusive and that we can use PPINs as a complementary methodology and rich-source of information to the initial study proposal. Here, we suggest a pipeline to deal with Y2H results using bioinformatics tools freely available for academics. Yeast two-hybrid is widely-used to identify protein-protein interactions. Conventionally, the positive clones that result from a yeast two-hybrid screening are sequenced to identify the interactors of the protein of interest (also known as bait protein), and few interactions, thought as potentially relevant for the model in study, are selected for further validation using biochemical methods (e.g. co-immunoprecipitation and co-localization). The huge amount of data that is potentially lost during this conservative approach motivated us to write this tutorial-like review, so that researchers feel encouraged to take advantage of

  8. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    Science.gov (United States)

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  9. Study on models of O2 binding to heme using density functional theory

    Directory of Open Access Journals (Sweden)

    Hovorun D. M.

    2009-08-01

    Full Text Available Aim. To study a mechanism of molecular oxygen binding to heme three models of geometry structure of the complex are considered: the axis of O2 molecule is situated perpendicularly to the porphin macrocycle, parallel, and angularly. Methods. The Fe(II porphin complexes with dioxygen are calculated by the quantum-chemical method of density functional theory with the UB3LYP/6-311G approximation. Results. The optimized geometry and electron structures as well as the absorption IR spectra of the complexes in the high-spin (septet state are described. Conclusions. It is shown that the main mechanism of spin-orbit coupling during the O2 binding to heme is connected with peculiarity of the O2 molecule electronic structure.

  10. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    International Nuclear Information System (INIS)

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-01-01

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection

  11. Heme-containing enzymes and inhibitors for tryptophan metabolism.

    Science.gov (United States)

    Yan, Daojing; Lin, Ying-Wu; Tan, Xiangshi

    2017-09-20

    Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.

  12. Method for early detection of infectious mononucleosis by identifying Inmono proteins

    Science.gov (United States)

    Willard, Karen E.

    1984-01-01

    Early detection of infectious mononucleosis is carried out using a sample of human blood by isolating and identifying the presence of Inmono proteins in the sample from a two-dimensional protein map with the proteins being characterized by having isoelectric banding as measured in urea of about -16 to -17 with respect to certain isoelectric point standards and molecular mass of about 70 to 75 K daltons as measured in the presence of sodium dodecylsulfate containing polyacrylamide gels, the presence of the Inmono proteins being correlated with the existence of infectious mononucleosis.

  13. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

    Directory of Open Access Journals (Sweden)

    Andrea Müllebner

    2018-01-01

    Full Text Available BackgroundMacrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis.AimThe aim of this study is to understand whether heme oxygenase (HO and nitric oxide synthase (NOS contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX activity and phagocytosis, two key components of macrophage function.MethodsThis study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance.ResultsWe show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme.ConclusionBoth enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

  14. Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168.

    Science.gov (United States)

    Philibert, Tuyishime; Rao, Zhiming; Yang, Taowei; Zhou, Junping; Huang, Genshu; Irene, Komera; Samuel, Niyomukiza

    2016-06-01

    Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 10(3) s(-1)). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe(2+) preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains.

  15. Target and identify: triazene linker helps identify azidation sites of labelled proteins via click and cleave strategy.

    Science.gov (United States)

    Lohse, Jonas; Schindl, Alexandra; Danda, Natasha; Williams, Chris P; Kramer, Karl; Kuster, Bernhard; Witte, Martin D; Médard, Guillaume

    2017-10-31

    A method for identifying probe modification of proteins via tandem mass spectrometry was developed. Azide bearing molecules are immobilized on functionalised sepharose beads via copper catalysed Huisgen-type click chemistry and selectively released under acidic conditions by chemical cleavage of the triazene linkage. We applied this method to identify the modification site of targeted-diazotransfer on BirA.

  16. Hemin inhibits NO production by IL-1β-stimulated human astrocytes through induction of heme oxygenase-1 and reduction of p38 MAPK activation

    Directory of Open Access Journals (Sweden)

    Sheng Wen S

    2010-09-01

    Full Text Available Abstract Background Heme oxygenase (HO-1 has been shown to attenuate oxidative injury and reduce apoptosis. HO-1 can be induced by various stimuli released during cellular injury, such as heme. Deleterious free heme is degraded by HO-1 to carbon monoxide, iron and biliverdin, which have potent anti-oxidant and anti-inflammatory properties. In this study, we tested the hypothesis that upregulation of HO-1 would inhibit production of the free radical (NO by interlukin (IL-1β-activated human astrocytes. Methods To measure NO production, inducible NO synthase (iNOS, HO-1 expression and mitogen-activated protein (MAP kinase activation we used hemin as an HO-1 inducer and tin protoporphyrin (SnPP IX as an inhibitor of HO-1 activity in human astrocyte cultures prior to IL-1β exposure. Transfection of astrocyte cultures was performed using a pLEX expression vector carrying the human HO-1 sequence prior to IL-1β treatment. Supernatants of astrocyte cultures pretreated with inhibitors of p38 MAPK or MEK1/2 prior to IL-1β exposure were collected for NO assay. Results IL-1β treatment of astrocytes alone induced undetectable amounts of HO-1 protein by western blot. However, HO-1 mRNA expression was modestly up-regulated in response to IL-1β stimulation. Pretreatment with hemin alone substantially induced both HO-1 mRNA and protein expression, and HO-1 mRNA expression was further enhanced when hemin was combined with IL-1β treatment. In contrast, IL-1β-induced iNOS mRNA expression and NO production were markedly inhibited by hemin treatment. When pretreated with SnPP, the inhibitory effect of hemin on IL-1β-induced NO production and iNOS expression was reversed, suggesting the involvement of HO-1. IL-1β-induced p38 MAPK activation, which is known to be required for NO production, was also down-regulated by hemin. Conclusion These findings support the hypothesis that up-regulation of HO-1 in astrocytes is associated with down-regulation of i

  17. Heme oxygenase-1 dependant pathway contributes to protection by tetramethylpyrazine against chronic hypoxic injury on medulla oblongata in rats.

    Science.gov (United States)

    Ding, Yan; Hou, Xuefei; Chen, Li; Zhou, Hua; Gong, Yanju; Dai, Liqun; Zheng, Yu

    2016-02-15

    Tetramethylpyrazine (TMP), one of the active ingredients of the Chinese herb Lingusticum Wallichii (Chuan Xiong) has been proved to protect the medulla oblongata from chronic hypoxia injury. However, the underlying mechanism remains unclear. The purpose of this study was to determine whether the protective effects of TMP are associated with the heme oxygenase-1 (HO-1) dependant pathway in adult rats. The morphological changes of neurons in the hypoglossal nucleus (12N), the nucleus ambiguus (Amb), the nucleus tractus solitarius (NTS), and the pre-Bötzinger complex (pre-BötC) were investigated by Nissl staining; the malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured to evaluate the anti-oxidant effect; some apoptosis parameters, Bax mRNA and Bcl-2 mRNA, were tested; and the double immunochemistry staining of active caspase-3/NeuN was performed. Meanwhile, the HO-1 protein expression and heme oxygenase (HO) activity were examined. Tin-protoporphyrin (SnPP), a potent inhibitor of HO, was used to further confirm the effect of HO-1. We found that TMP ameliorated the neuron loss in 12N, Amb and NTS, the decrease in SOD activity and the increase in MDA content, the decrease in Bcl-2 mRNA of medulla oblongata (Pmedulla oblongata in the rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. msiDBN: A Method of Identifying Critical Proteins in Dynamic PPI Networks

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2014-01-01

    Full Text Available Dynamics of protein-protein interactions (PPIs reveals the recondite principles of biological processes inside a cell. Shown in a wealth of study, just a small group of proteins, rather than the majority, play more essential roles at crucial points of biological processes. This present work focuses on identifying these critical proteins exhibiting dramatic structural changes in dynamic PPI networks. First, a comprehensive way of modeling the dynamic PPIs is presented which simultaneously analyzes the activity of proteins and assembles the dynamic coregulation correlation between proteins at each time point. Second, a novel method is proposed, named msiDBN, which models a common representation of multiple PPI networks using a deep belief network framework and analyzes the reconstruction errors and the variabilities across the time courses in the biological process. Experiments were implemented on data of yeast cell cycles. We evaluated our network construction method by comparing the functional representations of the derived networks with two other traditional construction methods. The ranking results of critical proteins in msiDBN were compared with the results from the baseline methods. The results of comparison showed that msiDBN had better reconstruction rate and identified more proteins of critical value to yeast cell cycle process.

  19. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability.

    Science.gov (United States)

    Dufay, J Noelia; Fernández-Murray, J Pedro; McMaster, Christopher R

    2017-06-07

    The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25 Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1 Δ hem25 Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components. Copyright © 2017 Dufay et al.

  1. SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability

    Directory of Open Access Journals (Sweden)

    J. Noelia Dufay

    2017-06-01

    Full Text Available The SLC25 family member SLC25A38 (Hem25 in yeast was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25. Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1Δ hem25Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components.

  2. Effects of Metalloporphyrins on Heme Oxygenase-1 Transcription: Correlative Cell Culture Assays Guide in Vivo Imaging

    Directory of Open Access Journals (Sweden)

    Monica Hajdena-Dawson

    2003-07-01

    Full Text Available Heme oxygenase (HO is the rate-limiting step in the heme degradation pathway and is a potential target for the control, or prevention, of pathologic jaundice in neonates. Metalloporphyrins (Mps, a diverse set of synthetic derivatives of heme, can competitively inhibit the HO enzymes. However, certain Mps are phototoxic and some increase transcription of HO-1, the inducible HO isozyme. Therefore, effective development of this class of compounds as therapeutics for treating pathologic jaundice will require rapid and integrated biological screens to identify the most efficacious and safe Mps. To study the safety of these compounds, we assessed their cytotoxic effects and measured luciferase activity by bioluminescent imaging (BLI as an index of HO-1 transcription, first in live cell cultures and then in living transgenic reporter mice. A total of 12 Mps were first evaluated in the correlative cell culture assay. Based on results from this study, 2 Mps, zinc protoporphyrin (ZnPP and zinc bis glycol porphyrin (ZnBG, were selected for further studies in the live animal model. In vitro BLI showed ZnPP to be a strong inducer of HO-1 transcription in comparison to ZnBG, which showed minimal induction. Cytotoxicity studies revealed that ZnPP was phototoxic, whereas ZnBG had no effect on cell viability. In vivo BLI showed that both ZnPP and ZnBG had minimal effects on the levels of HO-1 transcription in the animals. Furthermore, serum enzyme assays indicated that neither caused detectable liver toxicity. These findings, and especially those with ZnBG, support the use of selected Mps as therapies for pathologic jaundice. Coupling the high throughput advantage of cell culture with the capability of imaging for whole-body temporal analyses could accelerate and refine the preclinical phases of drug development. Thus, this study serves as a model for understanding the effects of specific compounds in relation to defined targets using an integrated approach.

  3. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction.

    Science.gov (United States)

    Spencer, Christopher S; Yunta, Cristina; de Lima, Glauber Pacelli Gomes; Hemmings, Kay; Lian, Lu-Yun; Lycett, Gareth; Paine, Mark J I

    2018-05-03

    The mosquito Anopheles gambiae is the principal vector for malaria in sub-Saharan Africa. The ability of A. gambiae to transmit malaria is strictly related to blood feeding and digestion, which releases nutrients for oogenesis, as well as substantial amounts of highly toxic free heme. Heme degradation by heme oxygenase (HO) is a common protective mechanism, and a gene for HO exists in the An. gambiae genome HO (AgHO), although it has yet to be functionally examined. Here, we have cloned and expressed An. gambiae HO (AgHO) in E. coli. Purified recombinant AgHO bound hemin stoichiometrically to form a hemin-enzyme complex similar to other HOs, with a K D of 3.9 ± 0.6 μM; comparable to mammalian and bacterial HOs, but 7-fold lower than that of Drosophila melanogaster HO. AgHO also degraded hemin to biliverdin and released CO and iron in the presence of NADPH cytochrome P450 oxidoreductase (CPR). Optimal AgHO activity was observed at 27.5 °C and pH 7.5. To investigate effects of AgHO inhibition, adult female A. gambiae were fed heme analogues Sn- and Zn-protoporphyrins (SnPP and ZnPP), known to inhibit HO. These led to a dose dependent decrease in oviposition. Cu-protoporphyrin (CuPP), which does not inhibit HO had no effect. These results demonstrate that AgHO is a catalytically active HO and that it may play a key role in egg production in mosquitoes. It also presents a potential target for the development of compounds aimed at sterilising mosquitoes for vector control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Dinitrosyl non-heme iron complexes at the gamma radiation treatment of animals

    International Nuclear Information System (INIS)

    Aliev, D.I.; Alieva, I.N.; Abilov, Z.G.; Gurbanov, I.S.

    2003-01-01

    Full text: At the present time there are a great number investigations dedicated to revealing of mechanism formation of 2,03 complexes at the some pathologies in an organism. These complexes are represented weakly bounded form of non-heme iron, including into beside iron two nitrogen oxide molecules (NO) and two paired RS- groups of proteins or low-molecular compounds. 2,03 complexes are characterized by an axial symmetrical tensory of the g-factor with g=2,037, g=2,012 and g=2,03. In this study the data testifying 2,03 complexes formation into liver of animal treated by the fatal dose of gamma-radiation are reported. The changing of the ESR signal form was observed. It was shown that the form and intensity of the 2,03 signal in healthy and irradiated animals are differ from each other. The analysis of the 2,03 signal parameters is confirm this fact, too. The conclusion was made that 2,03 complexes ESR signal may be considered as an indicator of integrity of intracellular membranes of the gamma-irradiated animals

  5. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    Science.gov (United States)

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Khalil Karimi

    Full Text Available We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells.

  7. Signature proteins for the major clades of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Mathews Divya W

    2010-01-01

    Full Text Available Abstract Background The phylogeny and taxonomy of cyanobacteria is currently poorly understood due to paucity of reliable markers for identification and circumscription of its major clades. Results A combination of phylogenomic and protein signature based approaches was used to characterize the major clades of cyanobacteria. Phylogenetic trees were constructed for 44 cyanobacteria based on 44 conserved proteins. In parallel, Blastp searches were carried out on each ORF in the genomes of Synechococcus WH8102, Synechocystis PCC6803, Nostoc PCC7120, Synechococcus JA-3-3Ab, Prochlorococcus MIT9215 and Prochlor. marinus subsp. marinus CCMP1375 to identify proteins that are specific for various main clades of cyanobacteria. These studies have identified 39 proteins that are specific for all (or most cyanobacteria and large numbers of proteins for other cyanobacterial clades. The identified signature proteins include: (i 14 proteins for a deep branching clade (Clade A of Gloebacter violaceus and two diazotrophic Synechococcus strains (JA-3-3Ab and JA2-3-B'a; (ii 5 proteins that are present in all other cyanobacteria except those from Clade A; (iii 60 proteins that are specific for a clade (Clade C consisting of various marine unicellular cyanobacteria (viz. Synechococcus and Prochlorococcus; (iv 14 and 19 signature proteins that are specific for the Clade C Synechococcus and Prochlorococcus strains, respectively; (v 67 proteins that are specific for the Low B/A ecotype Prochlorococcus strains, containing lower ratio of chl b/a2 and adapted to growth at high light intensities; (vi 65 and 8 proteins that are specific for the Nostocales and Chroococcales orders, respectively; and (vii 22 and 9 proteins that are uniquely shared by various Nostocales and Oscillatoriales orders, or by these two orders and the Chroococcales, respectively. We also describe 3 conserved indels in flavoprotein, heme oxygenase and protochlorophyllide oxidoreductase proteins that

  8. Bis-methionyl Coordination in the Crystal Structure of the Set up a citation RSS feed (Opens new window) Citation Feed

    Energy Technology Data Exchange (ETDEWEB)

    Aranda IV, Roman; Worley, Chad E.; Liu, Mengyao; Bitto, Eduard; Cates, M. Susan; Olson, John S.; Lei, Benfang; Phillips, Jr., George N. (UWM); (Rice); (Montana)

    2010-01-07

    Surface proteins Shr, Shp, and the ATP-binding cassette (ABC) transporter HtsABC are believed to make up the machinery for heme uptake in Streptococcus pyogenes. Shp transfers its heme to HtsA, the lipoprotein component of HtsABC, providing the only experimentally demonstrated example of direct heme transfer from a surface protein to an ABC transporter in Gram-positive bacteria. To understand the structural basis of heme transfer in this system, the heme-binding domain of Shp (Shp{sup 180}) was crystallized, and its structure determined to a resolution of 2.1 {angstrom}. Shp{sup 180} exhibits an immunoglobulin-like {beta}-sandwich fold that has been recently found in other pathogenic bacterial cell surface heme-binding proteins, suggesting that the mechanisms of heme acquisition are conserved. Shp shows minimal amino acid sequence identity to these heme-binding proteins and the structure of Shp{sup 180} reveals a unique heme-iron coordination with the axial ligands being two methionine residues from the same Shp molecule. A negative electrostatic surface of protein structure surrounding the heme pocket may serve as a docking interface for heme transfer from the more basic outer cell wall heme receptor protein Shr. The crystal structure of Shp{sup 180} reveals two exogenous, weakly bound hemins, which form a large interface between the two Shp{sup 180} molecules in the asymmetric unit. These 'extra' hemins form a stacked pair with a structure similar to that observed previously for free hemin dimers in aqueous solution. The propionates of the protein-bound heme coordinate to the iron atoms of the exogenous hemin dimer, contributing to the stability of the protein interface. Gel filtration and analytical ultracentrifugation studies indicate that both full-length Shp and Shp{sup 180} are monomeric in dilute aqueous solution.

  9. Mechanisms of Mitochondrial Holocytochrome c Synthase and the Key Roles Played by Cysteines and Histidine of the Heme Attachment Site, Cys-XX-Cys-His*

    Science.gov (United States)

    Babbitt, Shalon E.; San Francisco, Brian; Mendez, Deanna L.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; Bretsnyder, Eric C.; Kranz, Robert G.

    2014-01-01

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. PMID:25170082

  10. Structural and Functional Models of Non-Heme Iron Enzymes : A Study of the 2-His-1-Carboxylate Facial Triad Structural Motif

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.

    2007-01-01

    The structural and functional modeling of a specific group of non-heme iron enzymes by the synthesis of small synthetic analogues is the topic of this thesis. The group of non-heme iron enzymes with the 2-His-1-carboxylate facial triad has recently been established as a common platform for the

  11. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis.

    Science.gov (United States)

    De Franceschi, Lucia; Bertoldi, Mariarita; De Falco, Luigia; Santos Franco, Sara; Ronzoni, Luisa; Turrini, Franco; Colancecco, Alessandra; Camaschella, Clara; Cappellini, Maria Domenica; Iolascon, Achille

    2011-11-01

    β-thalassemic syndromes are inherited red cell disorders characterized by severe ineffective erythropoiesis and increased levels of reactive oxygen species whose contribution to β-thalassemic anemia is only partially understood. We studied erythroid precursors from normal and β-thalassemic peripheral CD34(+) cells in two-phase liquid culture by proteomic, reverse transcriptase polymerase chain reaction and immunoblot analyses. We measured intracellular reactive oxygen species, heme levels and the activity of δ-aminolevulinate-synthase-2. We exposed normal cells and K562 cells with silenced peroxiredoxin-2 to H(2)O(2) and generated a recombinant peroxiredoxin-2 for kinetic measurements in the presence of H(2)O(2) or hemin. In β-thalassemia the increased production of reactive oxygen species was associated with down-regulation of heme oxygenase-1 and biliverdin reductase and up-regulation of peroxiredoxin-2. In agreement with these observations in β-thalassemic cells we found decreased heme levels related to significantly reduced activity of the first enzyme of the heme pathway, δ-aminolevulinate synthase-2 without differences in its expression. We demonstrated that the activity of recombinant δ-aminolevulinate synthase-2 is inhibited by both reactive oxygen species and hemin as a protective mechanism in β-thalassemic cells. We then addressed the question of the protective role of peroxiredoxin-2 in erythropoiesis by exposing normal cells to oxidative stress and silencing peroxiredoxin-2 in human erythroleukemia K562 cells. We found that peroxiredoxin-2 expression is up-regulated in response to oxidative stress and required for K562 cells to survive oxidative stress. We then showed that peroxiredoxin-2 binds heme in erythroid precursors with high affinity, suggesting a possible multifunctional cytoprotective role of peroxiredoxin-2 in β-thalassemia. In β-thalassemic erythroid cells the reduction of δ-aminolevulinate synthase-2 activity and the increased

  12. Heme-dependent up-regulation of the α-globin gene expression by transcriptional repressor Bach1 in erythroid cells

    International Nuclear Information System (INIS)

    Tahara, Tsuyoshi; Sun Jiying; Igarashi, Kazuhiko; Taketani, Shigeru

    2004-01-01

    The transcriptional factor Bach1 forms a heterodimer with small Maf family, and functions as a repressor of the Maf recognition element (MARE) in vivo. To investigate the involvement of Bach1 in the heme-dependent regulation of the expression of the α-globin gene, human erythroleukemia K562 cells were cultured with succinylacetone (SA), a heme biosynthetic inhibitor, and the level of α-globin mRNA was examined. A decrease of α-globin mRNA was observed in SA-treated cells, which was restored by the addition of hemin. The heme-dependent expression of α-globin occurred at the transcriptional level since the expression of human α-globin gene promoter-reporter gene containing hypersensitive site-40 (HS-40) was decreased when K562 cells were cultured with SA. Hemin treatment restored the decrease of the promoter activity by SA. The regulation of the HS-40 activity by heme was dependent on the NF-E2/AP-1 (NA) site, which is similar to MARE. The NA site-binding activity of Bach1 in K562 increased upon SA-treatment, and the increase was diminished by the addition of hemin. The transient expression of Bach1 and mutated Bach1 lacking CP motifs suppressed the HS-40 activity, and cancellation of the repressor activity by hemin was observed when wild-type Bach1 was expressed. The expression of NF-E2 strengthened the restoration of the Bach1-effect by hemin. Interestingly, nuclear localization of Bach1 increased when cells were treated with SA, while hemin induced the nuclear export of Bach1. These results indicated that heme plays an important role in the induction of α-globin gene expression through disrupting the interaction of Bach1 and the NA site in HS-40 enhancer in erythroid cells

  13. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.

    Science.gov (United States)

    Brown, Breann L; Kardon, Julia R; Sauer, Robert T; Baker, Tania A

    2018-04-03

    5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    Science.gov (United States)

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  15. Mechanisms of mitochondrial holocytochrome c synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His.

    Science.gov (United States)

    Babbitt, Shalon E; San Francisco, Brian; Mendez, Deanna L; Lukat-Rodgers, Gudrun S; Rodgers, Kenton R; Bretsnyder, Eric C; Kranz, Robert G

    2014-10-17

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes.

    Science.gov (United States)

    Turkseven, Saadet; Kruger, Adam; Mingone, Christopher J; Kaminski, Pawel; Inaba, Muneo; Rodella, Luigi F; Ikehara, Susumu; Wolin, Michael S; Abraham, Nader G

    2005-08-01

    Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.

  17. A non-heme iron-mediated chemical demethylation in DNA and RNA.

    Science.gov (United States)

    Yi, Chengqi; Yang, Cai-Guang; He, Chuan

    2009-04-21

    DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes

  18. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    Science.gov (United States)

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  19. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Science.gov (United States)

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  20. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of