WorldWideScience

Sample records for identify genetic loci

  1. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  2. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Science.gov (United States)

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991

  3. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    Science.gov (United States)

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  4. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Science.gov (United States)

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  5. Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein.

    Directory of Open Access Journals (Sweden)

    Symen Ligthart

    Full Text Available Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic background of inflammation and cardiometabolic phenotypes using published genome-wide association studies (GWAS. We also evaluated whether the pleiotropic effects of such loci were biological or mediated in nature. First, we examined whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. Second, we tested whether 18 variants identified for serum CRP are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 (0.05/463 as a threshold of significance. We evaluated the independent pleiotropic effect on both phenotypes using individual level data from the Women Genome Health Study. Evaluating the genetic overlap between inflammation and cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10 appeared to have a pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes. These included loci where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18 had an effect on CRP largely mediated through the cardiometabolic phenotypes. In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic variants partially underlie the association between CRP and cardiometabolic phenotypes.

  6. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    Directory of Open Access Journals (Sweden)

    Kimberly AK Carhuatanta

    2014-10-01

    Full Text Available An individual’s genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual’s genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  7. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Michelle R Jones

    2015-08-01

    Full Text Available Genome wide association studies (GWAS have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS, a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  8. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    DEFF Research Database (Denmark)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald

    2016-01-01

    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the under......The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified...

  9. High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    Science.gov (United States)

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E.M.; Huizinga, Tom W.J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I.W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane

    2012-01-01

    Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations. PMID:23143596

  10. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    Science.gov (United States)

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  11. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    Science.gov (United States)

    McKay, James D; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C; Caporaso, Neil E; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A; Qian, David C; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N; Bojesen, Stig E; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A; Wilkens, Lynne R; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F M; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael P A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A; Barnett, Matt P; Chen, Chu; Goodman, Gary E; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H-Erich; Manz, Judith; Muley, Thomas R; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Tsao, Ming-Sound; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S; McLaughlin, John; Stevens, Victoria L; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C; Obeidat, Ma'en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D; Wain, Louise V; Rafnar, Thorunn; Thorgeirsson, Thorgeir E; Reginsson, Gunnar W; Stefansson, Kari; Hancock, Dana B; Bierut, Laura J; Spitz, Margaret R; Gaddis, Nathan C; Lutz, Sharon M; Gu, Fangyi; Johnson, Eric O; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I

    2017-07-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

  12. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    Science.gov (United States)

    Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian’an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimaki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N.A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M.; van Meurs, Joyce B.J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C.M.; Wolffenbuttel, Bruce H.R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I.A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam; Mohlke, Karen L.; O’Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J.F.; Ingelsson, Erik

    2014-01-01

    Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups. PMID:23563607

  13. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    Science.gov (United States)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  14. Seventy-five genetic loci influencing the human red blood cell.

    Science.gov (United States)

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X; Albers, Cornelis A; Al-Hussani, Abtehale; Asselbergs, Folkert W; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M; O'Reilly, Paul F; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S; Shin, So-Youn; Tang, Clara S; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O; Cookson, William O; Das, Debashish; de Bakker, Paul I W; de Boer, Rudolf A; de Geus, Eco J C; de Moor, Marleen H; Dimitriou, Maria; Domingues, Francisco S; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F; Genser, Bernd; Gibson, Quince D; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E; Hartikainen, Anna-Liisa; Hastie, Claire E; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P; Kemp, John P; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J F; Meacham, Stuart; Medland, Sarah E; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T; Parracciani, Debora; Penninx, Brenda W; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H W; Sladek, Rob; Smit, Johannes H; Starr, John M; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H; van Pelt, L Joost; van Veldhuisen, Dirk J; Völker, Uwe; Whitfield, John B; Willemsen, Gonneke; Winkelmann, Bernhard R; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d'Adamo, Adamo Pio; Danesh, John; Deary, Ian J; Dominiczak, Anna F; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G; Metspalu, Andres; Mitchell, Braxton D; Montgomery, Grant W; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R; Smith, George Davey; Smith, J Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tang, W H Wilson; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M; Vollenweider, Peter; Wareham, Nicholas J; Wolffenbuttel, Bruce H R; Boomsma, Dorret I; Beckmann, Jacques S; Dedoussis, George V; Deloukas, Panos; Ferreira, Manuel A; Sanna, Serena; Uda, Manuela; Hicks, Andrew A; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S; Ouwehand, Willem H; Soranzo, Nicole; Chambers, John C

    2012-12-20

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

  15. Identification of genetic loci shared between schizophrenia and the Big Five personality traits.

    Science.gov (United States)

    Smeland, Olav B; Wang, Yunpeng; Lo, Min-Tzu; Li, Wen; Frei, Oleksandr; Witoelar, Aree; Tesli, Martin; Hinds, David A; Tung, Joyce Y; Djurovic, Srdjan; Chen, Chi-Hua; Dale, Anders M; Andreassen, Ole A

    2017-05-22

    Schizophrenia is associated with differences in personality traits, and recent studies suggest that personality traits and schizophrenia share a genetic basis. Here we aimed to identify specific genetic loci shared between schizophrenia and the Big Five personality traits using a Bayesian statistical framework. Using summary statistics from genome-wide association studies (GWAS) on personality traits in the 23andMe cohort (n = 59,225) and schizophrenia in the Psychiatric Genomics Consortium cohort (n = 82,315), we evaluated overlap in common genetic variants. The Big Five personality traits neuroticism, extraversion, openness, agreeableness and conscientiousness were measured using a web implementation of the Big Five Inventory. Applying the conditional false discovery rate approach, we increased discovery of genetic loci and identified two loci shared between neuroticism and schizophrenia and six loci shared between openness and schizophrenia. The study provides new insights into the relationship between personality traits and schizophrenia by highlighting genetic loci involved in their common genetic etiology.

  16. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease

    NARCIS (Netherlands)

    van der Harst, Pim; Verweij, Niek

    2018-01-01

    Rationale: Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic

  17. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    NARCIS (Netherlands)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C

    2016-01-01

    The genetic architecture of human reproductive behavior age at first birth (AFB) and number of children ever born (NEB) has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the

  18. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    NARCIS (Netherlands)

    Barban, Nicola; Jansen, Rick; De Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; Van Der Laan, Sander W.; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S.; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E.; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; Van Der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathleen A.; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; Van Duijn, Cornelia M.; De Geus, Eco J C; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; De Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G.; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G.; Lai, Sandra; Lehtimäki, Terho; Liewald, David C.; Lindgren, Cecilia M.; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrikke; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; De Mutsert, Renée; Nohr, Ellen A.; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Roy Thurik, A.; Timpson, Nicholas J.; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; Den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2016-01-01

    The genetic architecture of human reproductive behavior - age at first birth (AFB) and number of children ever born (NEB) - has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the

  19. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    NARCIS (Netherlands)

    Barban, Nicola; Jansen, Rick; Vlaming, de Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; Laan, van der Sander W.; Perry, John R.B.; Kong, Augustine; Ahluwalia, Tarunveer S.; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E.; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S.F.W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; Most, van der Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathleen A.; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; Duijn, van Cornelia M.; Geus, de Eco J.C.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; Haan, de Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G.; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W.V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; Bianca, la Martina; Lachance, Genevieve; Iacono, William G.; Lai, Sandra; Lehtimäki, Terho; Liewald, David C.; Lindgren, Cecilia M.; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; Mutsert, de Renée; Nohr, Ellen A.; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W.J.H.; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A.R.; Timpson, Nicholas J.; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; Hoed, den Marcel; Snieder, Harold; Mills, Melinda C.

    2016-01-01

    The genetic architecture of human reproductive behavior—age at first birth (AFB) and number of children ever born (NEB)—has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the

  20. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease

    NARCIS (Netherlands)

    Webb, Thomas R.; Erdmann, Jeanette; Stirrups, Kathleen E.; Stitziel, Nathan O.; Masca, Nicholas G. D.; Jansen, Henning; Kanoni, Stavroula; Nelson, Christopher P.; Ferrario, Paola G.; König, Inke R.; Eicher, John D.; Johnson, Andrew D.; Hamby, Stephen E.; Betsholtz, Christer; Ruusalepp, Arno; Franzén, Oscar; Schadt, Eric E.; Björkegren, Johan L. M.; Weeke, Peter E.; Auer, Paul L.; Schick, Ursula M.; Lu, Yingchang; Zhang, He; Dube, Marie-Pierre; Goel, Anuj; Farrall, Martin; Peloso, Gina M.; Won, Hong-Hee; Do, Ron; van Iperen, Erik; Kruppa, Jochen; Mahajan, Anubha; Scott, Robert A.; Willenborg, Christina; Braund, Peter S.; van Capelleveen, Julian C.; Doney, Alex S. F.; Donnelly, Louise A.; Asselta, Rosanna; Merlini, Pier A.; Duga, Stefano; Marziliano, Nicola; Denny, Josh C.; Shaffer, Christian; El-Mokhtari, Nour Eddine; Franke, Andre; Heilmann, Stefanie; Hengstenberg, Christian; Hoffmann, Per; Holmen, Oddgeir L.; Hveem, Kristian; Jansson, Jan-Håkan; Jöckel, Karl-Heinz; Kessler, Thorsten; Kriebel, Jennifer; Laugwitz, Karl L.; Marouli, Eirini; Martinelli, Nicola; McCarthy, Mark I.; van Zuydam, Natalie R.; Meisinger, Christa; Esko, Tõnu; Mihailov, Evelin; Escher, Stefan A.; Alver, Maris; Moebus, Susanne; Morris, Andrew D.; Virtamo, Jarma; Nikpay, Majid; Olivieri, Oliviero; Provost, Sylvie; AlQarawi, Alaa; Robertson, Neil R.; Akinsansya, Karen O.; Reilly, Dermot F.; Vogt, Thomas F.; Yin, Wu; Asselbergs, Folkert W.; Kooperberg, Charles; Jackson, Rebecca D.; Stahl, Eli; Müller-Nurasyid, Martina; Strauch, Konstantin; Varga, Tibor V.; Waldenberger, Melanie; Zeng, Lingyao; Chowdhury, Rajiv; Salomaa, Veikko; Ford, Ian; Jukema, J. Wouter; Amouyel, Philippe; Kontto, Jukka; Nordestgaard, Børge G.; Ferrières, Jean; Saleheen, Danish; Sattar, Naveed; Surendran, Praveen; Wagner, Aline; Young, Robin; Howson, Joanna M. M.; Butterworth, Adam S.; Danesh, John; Ardissino, Diego; Bottinger, Erwin P.; Erbel, Raimund; Franks, Paul W.; Girelli, Domenico; Hall, Alistair S.; Hovingh, G. Kees; Kastrati, Adnan; Lieb, Wolfgang; Meitinger, Thomas; Kraus, William E.; Shah, Svati H.; McPherson, Ruth; Orho-Melander, Marju; Melander, Olle; Metspalu, Andres; Palmer, Colin N. A.; Peters, Annette; Rader, Daniel J.; Reilly, Muredach P.; Loos, Ruth J. F.; Reiner, Alex P.; Roden, Dan M.; Tardif, Jean-Claude; Thompson, John R.; Wareham, Nicholas J.; Watkins, Hugh; Willer, Cristen J.; Samani, Nilesh J.; Schunkert, Heribert; Deloukas, Panos; Kathiresan, Sekar

    2017-01-01

    Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. This study sought to systematically test if genetic variants identified for non-CAD

  1. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    Science.gov (United States)

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  2. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies

    Directory of Open Access Journals (Sweden)

    Adam R. Smith

    2016-06-01

    Full Text Available Alzheimer's disease is a complex neurodegenerative disorder. A large number of genome-wide association studies have been performed, which have been supplemented more recently by the first epigenome-wide association studies, leading to the identification of a number of novel loci altered in disease. Twin studies have shown monozygotic twin discordance for Alzheimer's disease (Gatz et al., 2006, leading to the conclusion that a combination of genetic and epigenetic mechanisms is likely to be involved in disease etiology (Lunnon & Mill, 2013. This review focuses on identifying overlapping pathways between published genome-wide association studies and epigenome-wide association studies, highlighting dysfunctional synaptic, lipid metabolism, plasma membrane/cytoskeleton, mitochondrial, and immune cell activation pathways. Identifying common pathways altered in genetic and epigenetic studies will aid our understanding of disease mechanisms and identify potential novel targets for pharmacological intervention.

  3. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits.

    Science.gov (United States)

    Justice, Anne E; Winkler, Thomas W; Feitosa, Mary F; Graff, Misa; Fisher, Virginia A; Young, Kristin; Barata, Llilda; Deng, Xuan; Czajkowski, Jacek; Hadley, David; Ngwa, Julius S; Ahluwalia, Tarunveer S; Chu, Audrey Y; Heard-Costa, Nancy L; Lim, Elise; Perez, Jeremiah; Eicher, John D; Kutalik, Zoltán; Xue, Luting; Mahajan, Anubha; Renström, Frida; Wu, Joseph; Qi, Qibin; Ahmad, Shafqat; Alfred, Tamuno; Amin, Najaf; Bielak, Lawrence F; Bonnefond, Amelie; Bragg, Jennifer; Cadby, Gemma; Chittani, Martina; Coggeshall, Scott; Corre, Tanguy; Direk, Nese; Eriksson, Joel; Fischer, Krista; Gorski, Mathias; Neergaard Harder, Marie; Horikoshi, Momoko; Huang, Tao; Huffman, Jennifer E; Jackson, Anne U; Justesen, Johanne Marie; Kanoni, Stavroula; Kinnunen, Leena; Kleber, Marcus E; Komulainen, Pirjo; Kumari, Meena; Lim, Unhee; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Mangino, Massimo; Manichaikul, Ani; Marten, Jonathan; Middelberg, Rita P S; Müller-Nurasyid, Martina; Navarro, Pau; Pérusse, Louis; Pervjakova, Natalia; Sarti, Cinzia; Smith, Albert Vernon; Smith, Jennifer A; Stančáková, Alena; Strawbridge, Rona J; Stringham, Heather M; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van der Most, Peter J; Van Vliet-Ostaptchouk, Jana V; Vedantam, Sailaja L; Verweij, Niek; Vink, Jacqueline M; Vitart, Veronique; Wu, Ying; Yengo, Loic; Zhang, Weihua; Hua Zhao, Jing; Zimmermann, Martina E; Zubair, Niha; Abecasis, Gonçalo R; Adair, Linda S; Afaq, Saima; Afzal, Uzma; Bakker, Stephan J L; Bartz, Traci M; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boerwinkle, Eric; Bonnycastle, Lori L; Bottinger, Erwin; Braga, Daniele; Buckley, Brendan M; Buyske, Steve; Campbell, Harry; Chambers, John C; Collins, Francis S; Curran, Joanne E; de Borst, Gert J; de Craen, Anton J M; de Geus, Eco J C; Dedoussis, George; Delgado, Graciela E; den Ruijter, Hester M; Eiriksdottir, Gudny; Eriksson, Anna L; Esko, Tõnu; Faul, Jessica D; Ford, Ian; Forrester, Terrence; Gertow, Karl; Gigante, Bruna; Glorioso, Nicola; Gong, Jian; Grallert, Harald; Grammer, Tanja B; Grarup, Niels; Haitjema, Saskia; Hallmans, Göran; Hamsten, Anders; Hansen, Torben; Harris, Tamara B; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas D; Heath, Andrew C; Hernandez, Dena; Hindorff, Lucia; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Homuth, Georg; Jan Hottenga, Jouke; Huang, Jie; Hung, Joseph; Hutri-Kähönen, Nina; Ingelsson, Erik; James, Alan L; Jansson, John-Olov; Jarvelin, Marjo-Riitta; Jhun, Min A; Jørgensen, Marit E; Juonala, Markus; Kähönen, Mika; Karlsson, Magnus; Koistinen, Heikki A; Kolcic, Ivana; Kolovou, Genovefa; Kooperberg, Charles; Krämer, Bernhard K; Kuusisto, Johanna; Kvaløy, Kirsti; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Leander, Karin; Lee, Nanette R; Lind, Lars; Lindgren, Cecilia M; Linneberg, Allan; Lobbens, Stephane; Loh, Marie; Lorentzon, Mattias; Luben, Robert; Lubke, Gitta; Ludolph-Donislawski, Anja; Lupoli, Sara; Madden, Pamela A F; Männikkö, Reija; Marques-Vidal, Pedro; Martin, Nicholas G; McKenzie, Colin A; McKnight, Barbara; Mellström, Dan; Menni, Cristina; Montgomery, Grant W; Musk, Aw Bill; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Oldehinkel, Albertine J; Olden, Matthias; Ong, Ken K; Padmanabhan, Sandosh; Peyser, Patricia A; Pisinger, Charlotta; Porteous, David J; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rasmussen-Torvik, Laura J; Rawal, Rajesh; Rice, Treva; Ridker, Paul M; Rose, Lynda M; Bien, Stephanie A; Rudan, Igor; Sanna, Serena; Sarzynski, Mark A; Sattar, Naveed; Savonen, Kai; Schlessinger, David; Scholtens, Salome; Schurmann, Claudia; Scott, Robert A; Sennblad, Bengt; Siemelink, Marten A; Silbernagel, Günther; Slagboom, P Eline; Snieder, Harold; Staessen, Jan A; Stott, David J; Swertz, Morris A; Swift, Amy J; Taylor, Kent D; Tayo, Bamidele O; Thorand, Barbara; Thuillier, Dorothee; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vandenput, Liesbeth; Vohl, Marie-Claude; Völzke, Henry; Vonk, Judith M; Waeber, Gérard; Waldenberger, Melanie; Westendorp, R G J; Wild, Sarah; Willemsen, Gonneke; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zhao, Wei; Zillikens, M Carola; Baldassarre, Damiano; Balkau, Beverley; Bandinelli, Stefania; Böger, Carsten A; Boomsma, Dorret I; Bouchard, Claude; Bruinenberg, Marcel; Chasman, Daniel I; Chen, Yii-DerIda; Chines, Peter S; Cooper, Richard S; Cucca, Francesco; Cusi, Daniele; Faire, Ulf de; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Gordon-Larsen, Penny; Grabe, Hans-Jörgen; Gudnason, Vilmundur; Haiman, Christopher A; Hayward, Caroline; Hveem, Kristian; Johnson, Andrew D; Wouter Jukema, J; Kardia, Sharon L R; Kivimaki, Mika; Kooner, Jaspal S; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Marchand, Loic Le; März, Winfried; McCarthy, Mark I; Metspalu, Andres; Morris, Andrew P; Ohlsson, Claes; Palmer, Lyle J; Pasterkamp, Gerard; Pedersen, Oluf; Peters, Annette; Peters, Ulrike; Polasek, Ozren; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Smith, Blair H; Sørensen, Thorkild I A; Strauch, Konstantin; Tiemeier, Henning; Tremoli, Elena; van der Harst, Pim; Vestergaard, Henrik; Vollenweider, Peter; Wareham, Nicholas J; Weir, David R; Whitfield, John B; Wilson, James F; Tyrrell, Jessica; Frayling, Timothy M; Barroso, Inês; Boehnke, Michael; Deloukas, Panagiotis; Fox, Caroline S; Hirschhorn, Joel N; Hunter, David J; Spector, Tim D; Strachan, David P; van Duijn, Cornelia M; Heid, Iris M; Mohlke, Karen L; Marchini, Jonathan; Loos, Ruth J F; Kilpeläinen, Tuomas O; Liu, Ching-Ti; Borecki, Ingrid B; North, Kari E; Cupples, L Adrienne

    2017-04-26

    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.

  4. Association analysis identifies 65 new breast cancer risk loci

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast...... cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P risk single-nucleotide polymorphisms in these loci fall......-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores...

  5. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.

    Science.gov (United States)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H H; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda W J H; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M; Stubhaug, Audun; Nielsen, Christopher S; Männikkö, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno

    2016-08-01

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

  6. Eleven loci with new reproducible genetic associations with allergic disease risk

    NARCIS (Netherlands)

    Ferreira, Manuel A.R.; Vonk, Judith M; Baurecht, Hansjörg; Marenholz, Ingo; Tian, Chao; Hoffman, Joshua D; Helmer, Quinta; Tillander, Annika; Ullemar, Vilhelmina; Lu, Yi; Rüschendorf, Franz; Hinds, David A; Hübner, Norbert; Weidinger, Stephan; Magnusson, Patrik Ke; Jorgenson, Eric; Lee, Young-Ae; Boomsma, Dorret I; Karlsson, Robert; Almqvist, Catarina; Koppelman, Gerard H; Paternoster, Lavinia

    2018-01-01

    BACKGROUND: A recent genome-wide association study (GWAS) identified 99 loci that contain genetic risk variants shared between asthma, hay fever and eczema. Many more risk loci shared between these common allergic diseases remain to be discovered, which could point to new therapeutic opportunities.

  7. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  8. Genome-wide association study identifies three novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Hara, Kazuo; Fujita, Hayato; Johnson, Todd A

    2014-01-01

    Although over 60 loci for type 2 diabetes (T2D) have been identified, there still remains a large genetic component to be clarified. To explore unidentified loci for T2D, we performed a genome-wide association study (GWAS) of 6 209 637 single-nucleotide polymorphisms (SNPs), which were directly g...

  9. Blood Pressure Loci Identified with a Gene-Centric Array

    NARCIS (Netherlands)

    Johnson, Toby; Gaunt, Tom R.; Newhouse, Stephen J.; Padmanabhan, Sandosh; Tomaszewski, Maciej; Kumari, Meena; Morris, Richard W.; Tzoulaki, Ioanna; O'Brien, Eoin T.; Poulter, Neil R.; Sever, Peter; Shields, Denis C.; Thom, Simon; Wannamethee, Sasiwarang G.; Whincup, Peter H.; Brown, Morris J.; Connell, John M.; Dobson, Richard J.; Howard, Philip J.; Mein, Charles A.; Onipinla, Abiodun; Shaw-Hawkins, Sue; Zhang, Yun; Smith, George Davey; Day, Ian N. M.; Lawlor, Debbie A.; Goodall, Alison H.; Fowkes, F. Gerald; Abecasis, Goncalo R.; Elliott, Paul; Gateva, Vesela; Braund, Peter S.; Burton, Paul R.; Nelson, Christopher P.; Tobin, Martin D.; van der Harst, Pim; Glorioso, Nicola; Neuvrith, Hani; Salvi, Erika; Staessen, Jan A.; Stucchi, Andrea; Devos, Nabila; Jeunemaitre, Xavier; Plouin, Pierre-Francois; Tichet, Jean; Juhanson, Peeter; Org, Elin; Westra, Harm-Jan; Wolfs, Marcel G. M.; Franke, Lude

    2011-01-01

    Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a

  10. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits

    DEFF Research Database (Denmark)

    Justice, Anne E; Winkler, Thomas W; Feitosa, Mary F

    2017-01-01

    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87......% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent...... direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting...

  11. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Science.gov (United States)

    Drong, Alexander W; Abbott, James; Wahl, Simone; Tan, Sian-Tsung; Scott, William R; Campanella, Gianluca; Chadeau-Hyam, Marc; Afzal, Uzma; Ahluwalia, Tarunveer S; Bonder, Marc Jan; Chen, Peng; Dehghan, Abbas; Edwards, Todd L; Esko, Tõnu; Go, Min Jin; Harris, Sarah E; Hartiala, Jaana; Kasela, Silva; Kasturiratne, Anuradhani; Khor, Chiea-Chuen; Kleber, Marcus E; Li, Huaixing; Yu Mok, Zuan; Nakatochi, Masahiro; Sapari, Nur Sabrina; Saxena, Richa; Stewart, Alexandre F R; Stolk, Lisette; Tabara, Yasuharu; Teh, Ai Ling; Wu, Ying; Wu, Jer-Yuarn; Zhang, Yi; Aits, Imke; Da Silva Couto Alves, Alexessander; Das, Shikta; Dorajoo, Rajkumar; Hopewell, Jemma C; Kim, Yun Kyoung; Koivula, Robert W; Luan, Jian’an; Lyytikäinen, Leo-Pekka; Nguyen, Quang N; Pereira, Mark A; Postmus, Iris; Raitakari, Olli T; Bryan, Molly Scannell; Scott, Robert A; Sorice, Rossella; Tragante, Vinicius; Traglia, Michela; White, Jon; Yamamoto, Ken; Zhang, Yonghong; Adair, Linda S; Ahmed, Alauddin; Akiyama, Koichi; Asif, Rasheed; Aung, Tin; Barroso, Inês; Bjonnes, Andrew; Braun, Timothy R; Cai, Hui; Chang, Li-Ching; Chen, Chien-Hsiun; Cheng, Ching-Yu; Chong, Yap-Seng; Collins, Rory; Courtney, Regina; Davies, Gail; Delgado, Graciela; Do, Loi D; Doevendans, Pieter A; Gansevoort, Ron T; Gao, Yu-Tang; Grammer, Tanja B; Grarup, Niels; Grewal, Jagvir; Gu, Dongfeng; Wander, Gurpreet S; Hartikainen, Anna-Liisa; Hazen, Stanley L; He, Jing; Heng, Chew-Kiat; Hixson, James E; Hofman, Albert; Hsu, Chris; Huang, Wei; Husemoen, Lise L N; Hwang, Joo-Yeon; Ichihara, Sahoko; Igase, Michiya; Isono, Masato; Justesen, Johanne M; Katsuya, Tomohiro; Kibriya, Muhammad G; Kim, Young Jin; Kishimoto, Miyako; Koh, Woon-Puay; Kohara, Katsuhiko; Kumari, Meena; Kwek, Kenneth; Lee, Nanette R; Lee, Jeannette; Liao, Jiemin; Lieb, Wolfgang; Liewald, David C M; Matsubara, Tatsuaki; Matsushita, Yumi; Meitinger, Thomas; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Mononen, Nina; Müller-Nurasyid, Martina; Nabika, Toru; Nakashima, Eitaro; Ng, Hong Kiat; Nikus, Kjell; Nutile, Teresa; Ohkubo, Takayoshi; Ohnaka, Keizo; Parish, Sarah; Paternoster, Lavinia; Peng, Hao; Peters, Annette; Pham, Son T; Pinidiyapathirage, Mohitha J; Rahman, Mahfuzar; Rakugi, Hiromi; Rolandsson, Olov; Ann Rozario, Michelle; Ruggiero, Daniela; Sala, Cinzia F; Sarju, Ralhan; Shimokawa, Kazuro; Snieder, Harold; Sparsø, Thomas; Spiering, Wilko; Starr, John M; Stott, David J; Stram, Daniel O; Sugiyama, Takao; Szymczak, Silke; Tang, W H Wilson; Tong, Lin; Trompet, Stella; Turjanmaa, Väinö; Ueshima, Hirotsugu; Uitterlinden, André G; Umemura, Satoshi; Vaarasmaki, Marja; van Dam, Rob M; van Gilst, Wiek H; van Veldhuisen, Dirk J; Viikari, Jorma S; Waldenberger, Melanie; Wang, Yiqin; Wang, Aili; Wilson, Rory; Wong, Tien-Yin; Xiang, Yong-Bing; Yamaguchi, Shuhei; Ye, Xingwang; Young, Robin D; Young, Terri L; Yuan, Jian-Min; Zhou, Xueya; Asselbergs, Folkert W; Ciullo, Marina; Clarke, Robert; Deloukas, Panos; Franke, Andre; Franks, Paul W; Franks, Steve; Friedlander, Yechiel; Gross, Myron D; Guo, Zhirong; Hansen, Torben; Jarvelin, Marjo-Riitta; Jørgensen, Torben; Jukema, J Wouter; kähönen, Mika; Kajio, Hiroshi; Kivimaki, Mika; Lee, Jong-Young; Lehtimäki, Terho; Linneberg, Allan; Miki, Tetsuro; Pedersen, Oluf; Samani, Nilesh J; Sørensen, Thorkild I A; Takayanagi, Ryoichi; Toniolo, Daniela; Ahsan, Habibul; Allayee, Hooman; Chen, Yuan-Tsong; Danesh, John; Deary, Ian J; Franco, Oscar H; Franke, Lude; Heijman, Bastiaan T; Holbrook, Joanna D; Isaacs, Aaron; Kim, Bong-Jo; Lin, Xu; Liu, Jianjun; März, Winfried; Metspalu, Andres; Mohlke, Karen L; Sanghera, Dharambir K; Shu, Xiao-Ou; van Meurs, Joyce B J; Vithana, Eranga; Wickremasinghe, Ananda R; Wijmenga, Cisca; Wolffenbuttel, Bruce H W; Yokota, Mitsuhiro; Zheng, Wei; Zhu, Dingliang; Vineis, Paolo; Kyrtopoulos, Soterios A; Kleinjans, Jos C S; McCarthy, Mark I; Soong, Richie; Gieger, Christian; Scott, James

    2016-01-01

    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation. PMID:26390057

  12. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  13. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    NARCIS (Netherlands)

    Eyre, Steve; Bowes, John; Diogo, Dorothee; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E. M.; Huizinga, Tom W. J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I. W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E.; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S.; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Arlsetig, Lisbeth; Martin, Javier; Rantapaa-Dahlqvist, Solbritt; Plenge, Robert M.; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K.; Worthington, Jane

    2012-01-01

    Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data

  14. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease

    NARCIS (Netherlands)

    Webb, Thomas R; Erdmann, Jeanette; Stirrups, Kathleen E; Stitziel, Nathan O; Masca, Nicholas G D; Jansen, Henning; Kanoni, Stavroula; Nelson, Christopher P; Ferrario, Paola G; König, Inke R; Eicher, John D; Johnson, Andrew D; Hamby, Stephen E; Betsholtz, Christer; Ruusalepp, Arno; Franzén, Oscar; Schadt, Eric E; Björkegren, Johan L M; Weeke, Peter E; Auer, Paul L; Schick, Ursula M; Lu, Yingchang; Zhang, He; Dube, Marie-Pierre; Goel, Anuj; Farrall, Martin; Peloso, Gina M; Won, Hong-Hee; Do, Ron; van Iperen, Erik; Kruppa, Jochen; Mahajan, Anubha; Scott, Robert A; Willenborg, Christina; Braund, Peter S; van Capelleveen, Julian C; Doney, Alex S F; Donnelly, Louise A; Asselta, Rosanna; Merlini, Pier A; Duga, Stefano; Marziliano, Nicola; Denny, Josh C; Shaffer, Christian; El-Mokhtari, Nour Eddine; Franke, Andre; Heilmann, Stefanie; Hengstenberg, Christian; Hoffmann, Per; Holmen, Oddgeir L; Hveem, Kristian; Jansson, Jan-Håkan; Jöckel, Karl-Heinz; Kessler, Thorsten; Kriebel, Jennifer; Laugwitz, Karl L; Marouli, Eirini; Martinelli, Nicola; McCarthy, Mark I; Van Zuydam, Natalie R; Meisinger, Christa; Esko, Tõnu; Mihailov, Evelin; Escher, Stefan A; Alver, Maris; Moebus, Susanne; Morris, Andrew D; Virtamo, Jarma; Nikpay, Majid; Olivieri, Oliviero; Provost, Sylvie; AlQarawi, Alaa; Robertson, Neil R; Akinsansya, Karen O; Reilly, Dermot F; Vogt, Thomas F; Yin, Wu; Asselbergs, Folkert W; Kooperberg, Charles; Jackson, Rebecca D; Stahl, Eli; Müller-Nurasyid, Martina; Strauch, Konstantin; Varga, Tibor V; Waldenberger, Melanie; Zeng, Lingyao; Chowdhury, Rajiv; Salomaa, Veikko; Ford, Ian; Jukema, J Wouter; Amouyel, Philippe; Kontto, Jukka; Nordestgaard, Børge G; Ferrières, Jean; Saleheen, Danish; Sattar, Naveed; Surendran, Praveen; Wagner, Aline; Young, Robin; Howson, Joanna M M; Butterworth, Adam S; Danesh, John; Ardissino, Diego; Bottinger, Erwin P; Erbel, Raimund; Franks, Paul W; Girelli, Domenico; Hall, Alistair S; Hovingh, G Kees; Kastrati, Adnan; Lieb, Wolfgang; Meitinger, Thomas; Kraus, William E; Shah, Svati H; McPherson, Ruth; Orho-Melander, Marju; Melander, Olle; Metspalu, Andres; Palmer, Colin N A; Peters, Annette; Rader, Daniel J; Reilly, Muredach P; Loos, Ruth J F; Reiner, Alex P; Roden, Dan M; Tardif, Jean-Claude; Thompson, John R; Wareham, Nicholas J; Watkins, Hugh; Willer, Cristen J; Samani, Nilesh J; Schunkert, Heribert; Deloukas, Panos; Kathiresan, Sekar

    2017-01-01

    BACKGROUND: Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. OBJECTIVES: This study sought to systematically test if genetic variants

  15. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    NARCIS (Netherlands)

    Paternoster, Lavinia; Standl, Marie; Waage, Johannes; Baurecht, Hansjoerg; Hotze, Melanie; Strachan, David P.; Curtin, John A.; Bonnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P.; den Dekker, Herman T.; Ferreira, Manuel A.; Altmaier, Elisabeth; Sleiman, Patrick M. A.; Xiao, Feng Li; Gonzalez, Juan R.; Marenholz, Ingo; Kalb, Birgit; Pino-Yanes, Maria; Xu, Chengjian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M.; Venturini, Cristina; Pennell, Craig E.; Barton, Sheila J.; Levin, Albert M.; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Moller, Eskil; Lockett, Gabrielle A.; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A.; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y.; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L.; Henderson, A. John; Kemp, John P.; Zheng, Jie; Smith, George Davey; Rueschendorf, Franz; Postma, Dirkje S.; Weiss, Scott T.; Koppelman, Gerard H.

    2015-01-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases

  16. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    DEFF Research Database (Denmark)

    Paternoster, Lavinia; Standl, Marie; Waage, Johannes

    2015-01-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases...

  17. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    Science.gov (United States)

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  18. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci.

    Science.gov (United States)

    Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Cho, Soo-Kyung; Choi, Chan-Bum; Sung, Yoon-Kyoung; Kim, Tae-Hwan; Jun, Jae-Bum; Yoo, Dae Hyun; Kang, Young Mo; Kim, Seong-Kyu; Suh, Chang-Hee; Shim, Seung-Cheol; Lee, Shin-Seok; Lee, Jisoo; Chung, Won Tae; Choe, Jung-Yoon; Shin, Hyoung Doo; Lee, Jong-Young; Han, Bok-Ghee; Nath, Swapan K; Eyre, Steve; Bowes, John; Pappas, Dimitrios A; Kremer, Joel M; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlestig, Lisbeth; Okada, Yukinori; Diogo, Dorothée; Liao, Katherine P; Karlson, Elizabeth W; Raychaudhuri, Soumya; Rantapää-Dahlqvist, Solbritt; Martin, Javier; Klareskog, Lars; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Greenberg, Jeffrey D; Plenge, Robert M; Bae, Sang-Cheol

    2015-03-01

    A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism

    Science.gov (United States)

    Horikoshi, Momoko; Yaghootkar, Hanieh; Mook-Kanamori, Dennis O.; Sovio, Ulla; Taal, H. Rob; Hennig, Branwen J.; Bradfield, Jonathan P.; St. Pourcain, Beate; Evans, David M.; Charoen, Pimphen; Kaakinen, Marika; Cousminer, Diana L.; Lehtimäki, Terho; Kreiner-Møller, Eskil; Warrington, Nicole M.; Bustamante, Mariona; Feenstra, Bjarke; Berry, Diane J.; Thiering, Elisabeth; Pfab, Thiemo; Barton, Sheila J.; Shields, Beverley M.; Kerkhof, Marjan; van Leeuwen, Elisabeth M.; Fulford, Anthony J.; Kutalik, Zoltán; Zhao, Jing Hua; den Hoed, Marcel; Mahajan, Anubha; Lindi, Virpi; Goh, Liang-Kee; Hottenga, Jouke-Jan; Wu, Ying; Raitakari, Olli T.; Harder, Marie N.; Meirhaeghe, Aline; Ntalla, Ioanna; Salem, Rany M.; Jameson, Karen A.; Zhou, Kaixin; Monies, Dorota M.; Lagou, Vasiliki; Kirin, Mirna; Heikkinen, Jani; Adair, Linda S.; Alkuraya, Fowzan S.; Al-Odaib, Ali; Amouyel, Philippe; Andersson, Ehm Astrid; Bennett, Amanda J.; Blakemore, Alexandra I.F.; Buxton, Jessica L.; Dallongeville, Jean; Das, Shikta; de Geus, Eco J. C.; Estivill, Xavier; Flexeder, Claudia; Froguel, Philippe; Geller, Frank; Godfrey, Keith M.; Gottrand, Frédéric; Groves, Christopher J.; Hansen, Torben; Hirschhorn, Joel N.; Hofman, Albert; Hollegaard, Mads V.; Hougaard, David M.; Hyppönen, Elina; Inskip, Hazel M.; Isaacs, Aaron; Jørgensen, Torben; Kanaka-Gantenbein, Christina; Kemp, John P.; Kiess, Wieland; Kilpeläinen, Tuomas O.; Klopp, Norman; Knight, Bridget A.; Kuzawa, Christopher W.; McMahon, George; Newnham, John P.; Niinikoski, Harri; Oostra, Ben A.; Pedersen, Louise; Postma, Dirkje S.; Ring, Susan M.; Rivadeneira, Fernando; Robertson, Neil R.; Sebert, Sylvain; Simell, Olli; Slowinski, Torsten; Tiesler, Carla M.T.; Tönjes, Anke; Vaag, Allan; Viikari, Jorma S.; Vink, Jacqueline M.; Vissing, Nadja Hawwa; Wareham, Nicholas J.; Willemsen, Gonneke; Witte, Daniel R.; Zhang, Haitao; Zhao, Jianhua; Wilson, James F.; Stumvoll, Michael; Prentice, Andrew M.; Meyer, Brian F.; Pearson, Ewan R.; Boreham, Colin A.G.; Cooper, Cyrus; Gillman, Matthew W.; Dedoussis, George V.; Moreno, Luis A; Pedersen, Oluf; Saarinen, Maiju; Mohlke, Karen L.; Boomsma, Dorret I.; Saw, Seang-Mei; Lakka, Timo A.; Körner, Antje; Loos, Ruth J.F.; Ong, Ken K.; Vollenweider, Peter; van Duijn, Cornelia M.; Koppelman, Gerard H.; Hattersley, Andrew T.; Holloway, John W.; Hocher, Berthold; Heinrich, Joachim; Power, Chris; Melbye, Mads; Guxens, Mònica; Pennell, Craig E.; Bønnelykke, Klaus; Bisgaard, Hans; Eriksson, Johan G.; Widén, Elisabeth; Hakonarson, Hakon; Uitterlinden, André G.; Pouta, Anneli; Lawlor, Debbie A.; Smith, George Davey; Frayling, Timothy M.; McCarthy, Mark I.; Grant, Struan F.A.; Jaddoe, Vincent W.V.; Jarvelin, Marjo-Riitta; Timpson, Nicholas J.; Prokopenko, Inga; Freathy, Rachel M.

    2012-01-01

    Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism. PMID:23202124

  20. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism

    DEFF Research Database (Denmark)

    Horikoshi, Momoko; Yaghootkar, Hanieh; Mook-Kanamori, Dennis O

    2013-01-01

    -wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between...... diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome......Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2...

  1. Common genetic variation and novel loci associated with volumetric mammographic density.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  2. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci

    NARCIS (Netherlands)

    Jones, G.T.; Tromp, G.; Kuivaniemi, H.; Gretarsdottir, S.; Baas, A.F.; Giusti, B.; Strauss, E.; Hof, F.N. van 't; Webb, T.R.; Erdman, R.; Ritchie, M.D.; Elmore, J.R.; Verma, A.; Pendergrass, S.; Kullo, I.J.; Ye, Z.; Peissig, P.L.; Gottesman, O.; Verma, S.S.; Malinowski, J.; Rasmussen-Torvik, L.J.; Borthwick, K.M.; Smelser, D.T.; Crosslin, D.R.; Andrade, M. de; Ryer, E.J.; McCarty, C.A.; Bottinger, E.P.; Pacheco, J.A.; Crawford, D.C.; Carrell, D.S.; Gerhard, G.S.; Franklin, D.P.; Carey, D.J.; Phillips, V.L.; Williams, M.J.; Wei, W.; Blair, R.; Hill, A.A.; Vasudevan, T.M.; Lewis, D.R.; Thomson, I.A.; Krysa, J.; Hill, G.B.; Roake, J.; Merriman, T.R.; Oszkinis, G.; Galora, S.; Saracini, C.; Abbate, R.; Pulli, R.; Pratesi, C.; Saratzis, A.; Verissimo, A.R.; Bumpstead, S.; Badger, S.A.; Clough, R.E.; Cockerill, G.; Hafez, H.; Scott, D.J.; Futers, T.S.; Romaine, S.P.; Bridge, K.; Griffin, K.J.; Bailey, M.A.; Smith, A.; Thompson, M.M.; Bockxmeer, F.M. van; Matthiasson, S.E.; Thorleifsson, G.; Thorsteinsdottir, U.; Blankensteijn, J.D.; Teijink, J.A.; Wijmenga, C.; Graaf, J. de; Kiemeney, L.A.L.M.; Lindholt, J.S.; Hughes, A.; Bradley, D.T.; Stirrups, K.; Golledge, J.; Norman, P.E.; Powell, J.T.; Humphries, S.E.; Hamby, S.E.; Goodall, A.H.; Nelson, C.P.; Sakalihasan, N.; Courtois, A.; Ferrell, R.E.; Eriksson, P.; Folkersen, L.; Franco-Cereceda, A.; Eicher, J.D.; Johnson, A.D.; Betsholtz, C.; Ruusalepp, A.; Franzen, O.; Schadt, E.E.; Bjorkegren, J.L.; et al.,

    2017-01-01

    RATIONALE: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. OBJECTIVE: To identify additional AAA risk loci using data from all available

  3. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    Science.gov (United States)

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Genetic variation of twenty autosomal STR loci and evaluate the ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... the second objective of the study was to evaluate the importance of these loci for forensic genetic purposes. ... of discrimination values for all tested loci was from 75 to 96%; therefore, those loci can be safely used to establish a ..... lists the frequency distribution of individual alleles within a given genetic ...

  5. Identification of novel genetic loci for osteoporosis and/or rheumatoid arthritis using cFDR approach.

    Directory of Open Access Journals (Sweden)

    Rou Zhou

    Full Text Available There are co-morbidity between osteoporosis (OP and rheumatoid arthritis (RA. Some genetic risk factors have been identified for these two phenotypes respectively in previous research; however, they accounted for only a small portion of the underlying total genetic variances. Here, we sought to identify additional common genetic loci associated with OP and/or RA. The conditional false discovery rate (cFDR approach allows detection of additional genetic factors (those respective ones as well as common pleiotropic ones for the two associated phenotypes. We collected and analyzed summary statistics provided by large, multi-center GWAS studies of FNK (femoral neck BMD (a major risk factor for osteoporosis (n = 53,236 and RA (n = 80,799. The conditional quantile-quantile (Q-Q plots can assess the enrichment of SNPs related to FNK BMD and RA, respectively. Furthermore, we identified shared loci between FNK BMD and RA using conjunction cFDR (ccFDR. We found strong enrichment of p-values in FNK BMD when conditional Q-Q was done on RA and vice versa. We identified 30 novel OP-RA associated pleiotropic loci that have not been reported in previous OP or RA GWAS, 18 of which located in the MHC (major histocompatibility complex region previously reported to play an important role in immune system and bone health. We identified some specific novel polygenic factors for OP and RA respectively, and identified 30 novel OP-RA associated pleiotropic loci. These discovery findings may offer novel pathobiological insights, and suggest new targets and pathways for drug development in OP and RA patients.

  6. Association analysis identifies 65 new breast cancer risk loci.

    Science.gov (United States)

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe; Beesley, Jonathan; Hui, Shirley; Kar, Siddhartha; Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D; Qing Chen, Xiao; Fachal, Laura; McCue, Karen; McCart Reed, Amy E; Ghoussaini, Maya; Carroll, Jason S; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N; Arndt, Volker; Aronson, Kristan J; Arun, Banu; Auer, Paul L; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D; Castelao, Jose E; Chan, Tsun L; David Cheng, Ting-Yuan; Seng Chia, Kee; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L; Collée, Margriet; Conroy, Don M; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Devilee, Peter; Doheny, Kimberly F; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M; Ekici, Arif B; Eliassen, A Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M; García-Sáenz, José A; Gaudet, Mia M; Georgoulias, Vassilios; Giles, Graham G; Glendon, Gord; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Grenaker Alnæs, Grethe I; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N; Hartikainen, Jaana M; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I; Kim, Sung-Won; Knight, Julia A; Kosma, Veli-Matti; Kristensen, Vessela N; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Le Marchand, Loic; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Neng Lee, Chuen; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P; Ma, Edmond S K; MacInnis, Robert J; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Taib, Nur Aishah Mohd; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F; Noh, Dong-Young; Nordestgaard, Børge G; Norman, Aaron; Olopade, Olufunmilayo I; Olson, Janet E; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V Shane; Park, Sue K; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I A; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofyeva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J T; Saloustros, Emmanouil; Sandler, Dale P; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Daniel F; Schmutzler, Rita K; Schneeweiss, Andreas; Schoemaker, Minouk J; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E; Shrubsole, Martha J; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C; Spinelli, John J; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A; Tengström, Maria; Teo, Soo H; Beth Terry, Mary; Tessier, Daniel C; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A E M; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-Chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J; Van Den Berg, David; van den Ouweland, Ans M W; van der Kolk, Lizet; van der Luijt, Rob B; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R; Wendt, Camilla; Whittemore, Alice S; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R; Har Yip, Cheng; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R; Antoniou, Antonis C; Droit, Arnaud; Andrulis, Irene L; Amos, Christopher I; Couch, Fergus J; Pharoah, Paul D P; Chang-Claude, Jenny; Hall, Per; Hunter, David J; Milne, Roger L; García-Closas, Montserrat; Schmidt, Marjanka K; Chanock, Stephen J; Dunning, Alison M; Edwards, Stacey L; Bader, Gary D; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F

    2017-11-02

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10 -8 . The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.

  7. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    S.I. Berndt (Sonja); S. Gustafsson (Stefan); R. Mägi (Reedik); A. Ganna (Andrea); E. Wheeler (Eleanor); M.F. Feitosa (Mary Furlan); A.E. Justice (Anne); K.L. Monda (Keri); D.C. Croteau-Chonka (Damien); F.R. Day (Felix); T. Esko (Tõnu); M. Fall (Magnus); T. Ferreira (Teresa); D. Gentilini (Davide); A.U. Jackson (Anne); J. Luan; J.C. Randall (Joshua); S. Vedantam (Sailaja); C.J. Willer (Cristen); T.W. Winkler (Thomas); A.R. Wood (Andrew); T. Workalemahu (Tsegaselassie); Y.-J. Hu (Yi-Juan); S.H. Lee (Sang Hong); L. Liang (Liming); D.Y. Lin (Dan); J. Min (Josine); B.M. Neale (Benjamin); G. Thorleifsson (Gudmar); J. Yang (Jian); E. Albrecht (Eva); N. Amin (Najaf); J.L. Bragg-Gresham (Jennifer L.); G. Cadby (Gemma); M. den Heijer (Martin); N. Eklund (Niina); K. Fischer (Krista); A. Goel (Anuj); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); I. Jarick (Ivonne); A. Johansson (Åsa); T. Johnson (Toby); S. Kanoni (Stavroula); M.E. Kleber (Marcus); I.R. König (Inke); K. Kristiansson (Kati); Z. Kutalik (Zoltán); C. Lamina (Claudia); C. Lecoeur (Cécile); G. Li (Guo); M. Mangino (Massimo); W.L. McArdle (Wendy); M.C. Medina-Gomez (Carolina); M. Müller-Nurasyid (Martina); J.S. Ngwa; I.M. Nolte (Ilja); L. Paternoster (Lavinia); S. Pechlivanis (Sonali); M. Perola (Markus); M.J. Peters (Marjolein); M. Preuss (Michael); L.M. Rose (Lynda); J. Shi (Jianxin); D. Shungin (Dmitry); G.D. Smith; R.J. Strawbridge (Rona); I. Surakka (Ida); A. Teumer (Alexander); M.D. Trip (Mieke); J.P. Tyrer (Jonathan); J.V. van Vliet-Ostaptchouk (Jana); L. Vandenput (Liesbeth); L. Waite (Lindsay); J.H. Zhao (Jing Hua); D. Absher (Devin); F.W. Asselbergs (Folkert); M. Atalay (Mustafa); A.P. Attwood (Antony); A.J. Balmforth (Anthony); D.C.G. Basart (Dick); J.P. Beilby (John); L.L. Bonnycastle (Lori); P. Brambilla (Paolo); M. Bruinenberg (M.); H. Campbell (Harry); D.I. Chasman (Daniel); P.S. Chines (Peter); F.S. Collins (Francis); J. Connell (John); W. O Cookson (William); U. de Faire (Ulf); F. de Vegt (Femmie); M. Dei (Mariano); M. Dimitriou (Maria); T. Edkins (Ted); K. Estrada Gil (Karol); D.M. Evans (David); M. Farrall (Martin); F. Ferrario (Franco); J. Ferrières (Jean); L. Franke (Lude); F. Frau (Francesca); P.V. Gejman (Pablo); H. Grallert (Harald); H. Grönberg (Henrik); V. Gudnason (Vilmundur); A. Hall (Anne); A.S. Hall (Alistair); A.L. Hartikainen; C. Hayward (Caroline); N.L. Heard-Costa (Nancy); A.C. Heath (Andrew); J. Hebebrand (Johannes); G. Homuth (Georg); F.B. Hu (Frank); S.E. Hunt (Sarah); E. Hyppönen (Elina); C. Iribarren (Carlos); K.B. Jacobs (Kevin); J.-O. Jansson (John-Olov); A. Jula (Antti); M. Kähönen (Mika); S. Kathiresan (Sekar); F. Kee (F.); K-T. Khaw (Kay-Tee); M. Kivimaki (Mika); W. Koenig (Wolfgang); A. Kraja (Aldi); M. Kumari (Meena); K. Kuulasmaa (Kari); J. Kuusisto (Johanna); J. Laitinen (Jaana); T.A. Lakka (Timo); C. Langenberg (Claudia); L.J. Launer (Lenore); L. Lind (Lars); J. Lindstrom (Jaana); J. Liu (Jianjun); A. Liuzzi (Antonio); M.L. Lokki; M. Lorentzon (Mattias); P.A. Madden (Pamela); P.K. Magnusson (Patrik); P. Manunta (Paolo); D. Marek (Diana); W. März (Winfried); I.M. Leach (Irene Mateo); B. McKnight (Barbara); S.E. Medland (Sarah Elizabeth); E. Mihailov (Evelin); L. Milani (Lili); G.W. Montgomery (Grant); V. Mooser (Vincent); T.W. Mühleisen (Thomas); P. Munroe (Patricia); A.W. Musk (Arthur); N. Narisu (Narisu); G. Navis (Gerjan); G. Nicholson (Ggeorge); C. Nohr (Christian); K. Ong (Ken); B.A. Oostra (Ben); C.N.A. Palmer (Colin); A. Palotie (Aarno); J. Peden (John); N. Pedersen; A. Peters (Annette); O. Polasek (Ozren); A. Pouta (Anneli); P.P. Pramstaller (Peter Paul); I. Prokopenko (Inga); C. Pütter (Carolin); A. Radhakrishnan (Aparna); O. Raitakari (Olli); A. Rendon (Augusto); F. Rivadeneira Ramirez (Fernando); I. Rudan (Igor); T. Saaristo (Timo); J.G. Sambrook (Jennifer); A.R. Sanders (Alan); S. Sanna (Serena); J. Saramies (Jouko); S. Schipf (Sabine); S. Schreiber (Stefan); H. Schunkert (Heribert); S.-Y. Shin; S. Signorini (Stefano); J. Sinisalo (Juha); B. Skrobek (Boris); N. Soranzo (Nicole); A. Stancáková (Alena); K. Stark (Klaus); J. Stephens (Jonathan); K. Stirrups (Kathy); R.P. Stolk (Ronald); M. Stumvoll (Michael); A.J. Swift (Amy); E.V. Theodoraki (Eirini); B. Thorand (Barbara); D.-A. Tregouet (David-Alexandre); E. Tremoli (Elena); M.M. van der Klauw (Melanie); J.B.J. van Meurs (Joyce); S.H.H.M. Vermeulen (Sita); J. Viikari (Jorma); J. Virtamo (Jarmo); V. Vitart (Veronique); G. Waeber (Gérard); Z. Wang (Zhaoming); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); B. Winkelmann; J.C.M. Witteman (Jacqueline); B.H.R. Wolffenbuttel (Bruce); A. Wong (Andrew); A.F. Wright (Alan); M.C. Zillikens (Carola); P. Amouyel (Philippe); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); S.J. Chanock (Stephen); L.A. Cupples (Adrienne); D. Cusi (Daniele); G.V. Dedoussis (George); J. Erdmann (Jeanette); J.G. Eriksson (Johan); P.W. Franks (Paul); P. Froguel (Philippe); C. Gieger (Christian); U. Gyllensten (Ulf); A. Hamsten (Anders); T.B. Harris (Tamara); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hingorani (Aroon); A. Hinney (Anke); A. Hofman (Albert); G.K. Hovingh (Kees); K. Hveem (Kristian); T. Illig (Thomas); M.-R. Jarvelin (Marjo-Riitta); K.-H. Jöckel (Karl-Heinz); S. Keinanen-Kiukaanniemi (Sirkka); L.A.L.M. Kiemeney (Bart); D. Kuh (Diana); M. Laakso (Markku); T. Lehtimäki (Terho); D.F. Levinson (Douglas); N.G. Martin (Nicholas); A. Metspalu (Andres); A.D. Morris (Andrew); M.S. Nieminen (Markku); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); W.H. Ouwehand (Willem); C. Palmer (Cameron); B.W.J.H. Penninx (Brenda); C. Power (Christopher); M.A. Province (Mike); B.M. Psaty (Bruce); L. Qi (Lu); R. Rauramaa (Rainer); P.M. Ridker (Paul); S. Ripatti (Samuli); V. Salomaa (Veikko); N.J. Samani (Nilesh); H. Snieder (Harold); H.G. Sorensen; T.D. Spector (Timothy); J-A. Zwart (John-Anker); A. Tönjes (Anke); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); P. van der Harst (Pim); P. Vollenweider (Peter); H. Wallaschofski (Henri); N.J. Wareham (Nick); H. Watkins (Hugh); H.E. Wichmann (Heinz Erich); J.F. Wilson (James F); G.R. Abecasis (Gonçalo); T.L. Assimes (Themistocles); I.E. Barroso (Inês); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); C. Fox (Craig); T.M. Frayling (Timothy); L. Groop (Leif); T. Haritunian (Talin); I.M. Heid (Iris); D. Hunter (David); R.C. Kaplan (Robert); F. Karpe (Fredrik); M.F. Moffatt (Miriam); K.L. Mohlke (Karen); J.R. O´Connell; Y. Pawitan (Yudi); E.E. Schadt (Eric); D. Schlessinger (David); V. Steinthorsdottir (Valgerdur); D.P. Strachan (David); U. Thorsteinsdottir (Unnur); C.M. van Duijn (Cornelia); P.M. Visscher (Peter); A.M. Di Blasio (Anna Maria); J.N. Hirschhorn (Joel); C.M. Lindgren (Cecilia); A.D. Morris (Andrew); D. Meyre (David); A. Scherag (Andre); M.I. McCarthy (Mark); E.K. Speliotes (Elizabeth); K.E. North (Kari); R.J.F. Loos (Ruth); E. Ingelsson (Erik)

    2013-01-01

    textabstractApproaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of

  8. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach

    DEFF Research Database (Denmark)

    Bothwell, H.; Bisbing, S.; Therkildsen, Nina Overgaard

    2013-01-01

    It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental...... loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi...... variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major...

  9. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F; Justice, Anne E; Monda, Keri L; Croteau-Chonka, Damien C; Day, Felix R; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U; Luan, Jian'an; Randall, Joshua C; Vedantam, Sailaja; Willer, Cristen J; Winkler, Thomas W; Wood, Andrew R; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L; Neale, Benjamin M; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E; König, Inke R; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S; Nolte, Ilja M; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J; Preuss, Michael; Rose, Lynda M; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J; Surakka, Ida; Teumer, Alexander; Trip, Mieke D; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Waite, Lindsay L; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W; Atalay, Mustafa; Attwood, Antony P; Balmforth, Anthony J; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I; Chines, Peter S; Collins, Francis S; Connell, John M; Cookson, William O; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M; Farrall, Martin; Ferrario, Marco M; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L; Heath, Andrew C; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B; Hunt, Sarah E; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H; Lakka, Timo A; Langenberg, Claudia; Launer, Lenore J; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A; Magnusson, Patrik K; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W; Mooser, Vincent; Mühleisen, Thomas W; Munroe, Patricia B; Musk, Arthur W; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A; Ong, Ken K; Oostra, Ben A; Palmer, Colin N A; Palotie, Aarno; Peden, John F; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E; Sambrook, Jennifer G; Sanders, Alan R; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C; Stirrups, Kathleen; Stolk, Ronald P; Stumvoll, Michael; Swift, Amy J; Theodoraki, Eirini V; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M; van Meurs, Joyce B J; Vermeulen, Sita H; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H; Willemsen, Gonneke; Winkelmann, Bernhard R; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wong, Andrew; Wright, Alan F; Zillikens, M Carola; Amouyel, Philippe; Boehm, Bernhard O; Boerwinkle, Eric; Boomsma, Dorret I; Caulfield, Mark J; Chanock, Stephen J; Cupples, L Adrienne; Cusi, Daniele; Dedoussis, George V; Erdmann, Jeanette; Eriksson, Johan G; Franks, Paul W; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hengstenberg, Christian; Hicks, Andrew A; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F; Martin, Nicholas G; Metspalu, Andres; Morris, Andrew D; Nieminen, Markku S; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Ouwehand, Willem H; Palmer, Lyle J; Penninx, Brenda; Power, Chris; Province, Michael A; Psaty, Bruce M; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J; Snieder, Harold; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Abecasis, Goncalo R; Assimes, Themistocles L; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Fox, Caroline S; Frayling, Timothy; Groop, Leif C; Haritunian, Talin; Heid, Iris M; Hunter, David; Kaplan, Robert C; Karpe, Fredrik; Moffatt, Miriam F; Mohlke, Karen L; O'Connell, Jeffrey R; Pawitan, Yudi; Schadt, Eric E; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Visscher, Peter M; Di Blasio, Anna Maria; Hirschhorn, Joel N; Lindgren, Cecilia M; Morris, Andrew P; Meyre, David; Scherag, André; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Loos, Ruth J F; Ingelsson, Erik

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass

  10. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    NARCIS (Netherlands)

    Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian'an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Asa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William O.; de Faire, Ulf; de Vegt, Femmie; dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimäki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N. A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; van der Klauw, Melanie M.; van Meurs, Joyce B. J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C. M.; Wolffenbuttel, Bruce H. R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam F.; Mohlke, Karen L.; O'Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J. F.; Ingelsson, Erik

    2013-01-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass

  11. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    DEFF Research Database (Denmark)

    Berndt, Sonja I; Gustafsson, Stefan; Mägi, Reedik

    2013-01-01

    Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass ...

  12. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Kottgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; O'Seaghdha, C.M.; Haller, T.; Yang, Q.; Johnson, A.D.; Kutalik, Z.; Smith, A.V.; Shi, J.L.; Struchalin, M.; Middelberg, R.P.S.; Brown, M.J.; Gaffo, A.L.; Pirastu, N.; Li, G.; Hayward, C.; Zemunik, T.; Huffman, J.; Yengo, L.; Zhao, J.H.; Demirkan, A.; Feitosa, M.F.; Liu, X.; Malerba, G.; Lopez, L.M.; van der Harst, P.; Li, X.Z.; Kleber, M.E.; Hicks, A.A.; Nolte, I.M.; Johansson, A.; Murgia, F.; Wild, S.H.; Bakker, S.J.L.; Peden, J.F.; Dehghan, A.; Steri, M.; Tenesa, A.; Lagou, V.; Salo, P.; Mangino, M.; Rose, L.M.; Lehtimaki, T.; Woodward, O.M.; Okada, Y.; Tin, A.; Muller, C.; Oldmeadow, C.; Putku, M.; Czamara, D.; Kraft, P.; Frogheri, L.; Thun, G.A.; Grotevendt, A.; Gislason, G.K.; Harris, T.B.; Launer, L.J.; McArdle, P.; Shuldiner, A.R.; Boerwinkle, E.; Coresh, J.; Schmidt, H.; Schallert, M.; Martin, N.G.; Montgomery, G.W.; Kubo, M.; Nakamura, Y.; Tanaka, T.; Munroe, P.B.; Samani, N.J.; Jacobs, D.R.; Liu, K.; d'Adamo, P.; Ulivi, S.; Rotter, J.I.; Psaty, B.M.; Vollenweider, P.; Waeber, G.; Campbell, S.; Devuyst, O.; Navarro, P.; Kolcic, I.; Hastie, N.; Balkau, B.; Froguel, P.; Esko, T.; Salumets, A.; Khaw, K.T.; Langenberg, C.; Wareham, N.J.; Isaacs, A.; Kraja, A.; Zhang, Q.Y.; Penninx, B.W.J.H.; Smit, J.H.; Bochud, M.; Gieger, C.

    2013-01-01

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with

  13. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations

    NARCIS (Netherlands)

    Köttgen, Anna; Albrecht, Eva; Teumer, Alexander; Vitart, Veronique; Krumsiek, Jan; Hundertmark, Claudia; Pistis, Giorgio; Ruggiero, Daniela; O'Seaghdha, Conall M; Haller, Toomas; Yang, Qiong; Tanaka, Toshiko; Johnson, Andrew D; Kutalik, Zoltán; Smith, Albert V; Shi, Julia; Struchalin, Maksim; Middelberg, Rita P S; Brown, Morris J; Gaffo, Angelo L; Pirastu, Nicola; Li, Guo; Hayward, Caroline; Zemunik, Tatijana; Huffman, Jennifer; Yengo, Loic; Zhao, Jing Hua; Demirkan, Ayse; Feitosa, Mary F; Liu, Xuan; Malerba, Giovanni; Lopez, Lorna M; van der Harst, Pim; Li, Xinzhong; Kleber, Marcus E; Hicks, Andrew A; Nolte, Ilja M; Johansson, Asa; Murgia, Federico; Bakker, Stephan J L; Lagou, Vasiliki; Bruinenberg, Marcel; Stolk, Ronald P; Penninx, Brenda W; Mateo Leach, Irene; van Gilst, Wiek H; Hillege, Hans L; Wolffenbuttel, Bruce H R; Snieder, Harold; Navis, Gerjan

    Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with

  14. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry.

    Science.gov (United States)

    Sun, Celi; Molineros, Julio E; Looger, Loren L; Zhou, Xu-Jie; Kim, Kwangwoo; Okada, Yukinori; Ma, Jianyang; Qi, Yuan-Yuan; Kim-Howard, Xana; Motghare, Prasenjeet; Bhattarai, Krishna; Adler, Adam; Bang, So-Young; Lee, Hye-Soon; Kim, Tae-Hwan; Kang, Young Mo; Suh, Chang-Hee; Chung, Won Tae; Park, Yong-Beom; Choe, Jung-Yoon; Shim, Seung Cheol; Kochi, Yuta; Suzuki, Akari; Kubo, Michiaki; Sumida, Takayuki; Yamamoto, Kazuhiko; Lee, Shin-Seok; Kim, Young Jin; Han, Bok-Ghee; Dozmorov, Mikhail; Kaufman, Kenneth M; Wren, Jonathan D; Harley, John B; Shen, Nan; Chua, Kek Heng; Zhang, Hong; Bae, Sang-Cheol; Nath, Swapan K

    2016-03-01

    Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,478 SLE cases and 12,656 controls from six East Asian cohorts to identify new SLE susceptibility loci and better localize known loci. We identified ten new loci and confirmed 20 known loci with genome-wide significance. Among the new loci, the most significant locus was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta = 3.75 × 10(-117), odds ratio (OR) = 2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We identified the most likely functional variants at each locus by analyzing epigenetic marks and gene expression data. Ten candidate variants are known to alter gene expression in cis or in trans. Enrichment analysis highlights the importance of these loci in B cell and T cell biology. The new loci, together with previously known loci, increase the explained heritability of SLE to 24%. The new loci share functional and ontological characteristics with previously reported loci and are possible drug targets for SLE therapeutics.

  15. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    Science.gov (United States)

    Beaumont, Robin N; Warrington, Nicole M; Cavadino, Alana; Tyrrell, Jessica; Nodzenski, Michael; Horikoshi, Momoko; Geller, Frank; Myhre, Ronny; Richmond, Rebecca C; Paternoster, Lavinia; Bradfield, Jonathan P; Kreiner-Møller, Eskil; Huikari, Ville; Metrustry, Sarah; Lunetta, Kathryn L; Painter, Jodie N; Hottenga, Jouke-Jan; Allard, Catherine; Barton, Sheila J; Espinosa, Ana; Marsh, Julie A; Potter, Catherine; Zhang, Ge; Ang, Wei; Berry, Diane J; Bouchard, Luigi; Das, Shikta; Hakonarson, Hakon; Heikkinen, Jani; Helgeland, Øyvind; Hocher, Berthold; Hofman, Albert; Inskip, Hazel M; Jones, Samuel E; Kogevinas, Manolis; Lind, Penelope A; Marullo, Letizia; Medland, Sarah E; Murray, Anna; Murray, Jeffrey C; Njølstad, Pål R; Nohr, Ellen A; Reichetzeder, Christoph; Ring, Susan M; Ruth, Katherine S; Santa-Marina, Loreto; Scholtens, Denise M; Sebert, Sylvain; Sengpiel, Verena; Tuke, Marcus A; Vaudel, Marc; Weedon, Michael N; Willemsen, Gonneke; Wood, Andrew R; Yaghootkar, Hanieh; Muglia, Louis J; Bartels, Meike; Relton, Caroline L; Pennell, Craig E; Chatzi, Leda; Estivill, Xavier; Holloway, John W; Boomsma, Dorret I; Montgomery, Grant W; Murabito, Joanne M; Spector, Tim D; Power, Christine; Järvelin, Marjo-Ritta; Bisgaard, Hans; Grant, Struan F A; Sørensen, Thorkild I A; Jaddoe, Vincent W; Jacobsson, Bo; Melbye, Mads; McCarthy, Mark I; Hattersley, Andrew T; Hayes, M Geoffrey; Frayling, Timothy M; Hivert, Marie-France; Felix, Janine F; Hyppönen, Elina; Lowe, William L; Evans, David M; Lawlor, Debbie A; Feenstra, Bjarke

    2018-01-01

    Abstract Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother–child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10−8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights. PMID:29309628

  16. Association analysis identifies 65 new breast cancer risk loci

    Science.gov (United States)

    Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K.; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew; Wang, Zhaoming; Allen, Jamie; Keeman, Renske; Eilber, Ursula; French, Juliet D.; Chen, Xiao Qing; Fachal, Laura; McCue, Karen; McCart Reed, Amy E.; Ghoussaini, Maya; Carroll, Jason; Jiang, Xia; Finucane, Hilary; Adams, Marcia; Adank, Muriel A.; Ahsan, Habibul; Aittomäki, Kristiina; Anton-Culver, Hoda; Antonenkova, Natalia N.; Arndt, Volker; Aronson, Kristan J.; Arun, Banu; Auer, Paul L.; Bacot, François; Barrdahl, Myrto; Baynes, Caroline; Beckmann, Matthias W.; Behrens, Sabine; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Blomqvist, Carl; Bogdanova, Natalia V.; Bojesen, Stig E.; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brand, Judith S.; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Brinton, Louise; Broberg, Per; Brock, Ian W.; Broeks, Annegien; Brooks-Wilson, Angela; Brucker, Sara Y.; Brüning, Thomas; Burwinkel, Barbara; Butterbach, Katja; Cai, Qiuyin; Cai, Hui; Caldés, Trinidad; Canzian, Federico; Carracedo, Angel; Carter, Brian D.; Castelao, Jose E.; Chan, Tsun L.; Cheng, Ting-Yuan David; Chia, Kee Seng; Choi, Ji-Yeob; Christiansen, Hans; Clarke, Christine L.; Collée, Margriet; Conroy, Don M.; Cordina-Duverger, Emilie; Cornelissen, Sten; Cox, David G; Cox, Angela; Cross, Simon S.; Cunningham, Julie M.; Czene, Kamila; Daly, Mary B.; Devilee, Peter; Doheny, Kimberly F.; Dörk, Thilo; dos-Santos-Silva, Isabel; Dumont, Martine; Durcan, Lorraine; Dwek, Miriam; Eccles, Diana M.; Ekici, Arif B.; Eliassen, A. Heather; Ellberg, Carolina; Elvira, Mingajeva; Engel, Christoph; Eriksson, Mikael; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fritschi, Lin; Gaborieau, Valerie; Gabrielson, Marike; Gago-Dominguez, Manuela; Gao, Yu-Tang; Gapstur, Susan M.; García-Sáenz, José A.; Gaudet, Mia M.; Georgoulias, Vassilios; Giles, Graham G.; Glendon, Gord; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Grenaker Alnæs, Grethe I.; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Guénel, Pascal; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Harrington, Patricia; Hart, Steven N.; Hartikainen, Jaana M.; Hartman, Mikael; Hein, Alexander; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Ho, Dona N.; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Robert N.; Hopper, John L.; Hou, Ming-Feng; Hsiung, Chia-Ni; Huang, Guanmengqian; Humphreys, Keith; Ishiguro, Junko; Ito, Hidemi; Iwasaki, Motoki; Iwata, Hiroji; Jakubowska, Anna; Janni, Wolfgang; John, Esther M.; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kasuga, Yoshio; Kerin, Michael J.; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I.; Kim, Sung-Won; Knight, Julia A.; Kosma, Veli-Matti; Kristensen, Vessela N.; Krüger, Ute; Kwong, Ava; Lambrechts, Diether; Marchand, Loic Le; Lee, Eunjung; Lee, Min Hyuk; Lee, Jong Won; Lee, Chuen Neng; Lejbkowicz, Flavio; Li, Jingmei; Lilyquist, Jenna; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Lophatananon, Artitaya; Lubinski, Jan; Luccarini, Craig; Lux, Michael P.; Ma, Edmond S.K.; MacInnis, Robert J.; Maishman, Tom; Makalic, Enes; Malone, Kathleen E; Kostovska, Ivana Maleva; Mannermaa, Arto; Manoukian, Siranoush; Manson, JoAnn E.; Margolin, Sara; Mariapun, Shivaani; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; McKay, James; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Menéndez, Primitiva; Menon, Usha; Meyer, Jeffery; Miao, Hui; Miller, Nicola; Mohd Taib, Nur Aishah; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Nielsen, Sune F.; Noh, Dong-Young; Nordestgaard, Børge G.; Norman, Aaron; Olopade, Olufunmilayo I.; Olson, Janet E.; Olsson, Håkan; Olswold, Curtis; Orr, Nick; Pankratz, V. Shane; Park, Sue K.; Park-Simon, Tjoung-Won; Lloyd, Rachel; Perez, Jose I.A.; Peterlongo, Paolo; Peto, Julian; Phillips, Kelly-Anne; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Prentice, Ross; Presneau, Nadege; Prokofieva, Darya; Pugh, Elizabeth; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rennert, Gadi; Rennert, Hedy S.; Rhenius, Valerie; Romero, Atocha; Romm, Jane; Ruddy, Kathryn J; Rüdiger, Thomas; Rudolph, Anja; Ruebner, Matthias; Rutgers, Emiel J. Th.; Saloustros, Emmanouil; Sandler, Dale P.; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Daniel F.; Schmutzler, Rita K.; Schneeweiss, Andreas; Schoemaker, Minouk J.; Schumacher, Fredrick; Schürmann, Peter; Scott, Rodney J.; Scott, Christopher; Seal, Sheila; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Grace; Sherman, Mark E.; Shrubsole, Martha J.; Shu, Xiao-Ou; Smeets, Ann; Sohn, Christof; Southey, Melissa C.; Spinelli, John J.; Stegmaier, Christa; Stewart-Brown, Sarah; Stone, Jennifer; Stram, Daniel O.; Surowy, Harald; Swerdlow, Anthony; Tamimi, Rulla; Taylor, Jack A.; Tengström, Maria; Teo, Soo H.; Terry, Mary Beth; Tessier, Daniel C.; Thanasitthichai, Somchai; Thöne, Kathrin; Tollenaar, Rob A.E.M.; Tomlinson, Ian; Tong, Ling; Torres, Diana; Truong, Thérèse; Tseng, Chiu-chen; Tsugane, Shoichiro; Ulmer, Hans-Ulrich; Ursin, Giske; Untch, Michael; Vachon, Celine; van Asperen, Christi J.; Van Den Berg, David; van den Ouweland, Ans M.W.; van der Kolk, Lizet; van der Luijt, Rob B.; Vincent, Daniel; Vollenweider, Jason; Waisfisz, Quinten; Wang-Gohrke, Shan; Weinberg, Clarice R.; Wendt, Camilla; Whittemore, Alice S.; Wildiers, Hans; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H.; Xia, Lucy; Yamaji, Taiki; Yang, Xiaohong R.; Yip, Cheng Har; Yoo, Keun-Young; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Lakhani, Sunil R.; Antoniou, Antonis C.; Droit, Arnaud; Andrulis, Irene L.; Amos, Christopher I.; Couch, Fergus J.; Pharoah, Paul D.P.; Chang-Claude, Jenny; Hall, Per; Hunter, David J.; Milne, Roger L.; García-Closas, Montserrat; Schmidt, Marjanka K.; Chanock, Stephen J.; Dunning, Alison M.; Edwards, Stacey L.; Bader, Gary D.; Chenevix-Trench, Georgia; Simard, Jacques; Kraft, Peter; Easton, Douglas F.

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes such as BRCA1 and many common, mainly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. We report results from a genome-wide association study (GWAS) of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry1. We identified 65 new loci associated with overall breast cancer at pcancer due to all SNPs in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the utility of genetic risk scores for individualized screening and prevention. PMID:29059683

  17. Association analysis identifies 65 new breast cancer risk loci

    OpenAIRE

    Michailidou, Kyriaki; Lindström, Sara; Dennis, Joe; Beesley, Jonathan; Hui, Shirley; Kar, Siddhartha; Lemaçon, Audrey; Soucy, Penny; Glubb, Dylan; Rostamianfar, Asha; Bolla, Manjeet K; Wang, Qin; Tyrer, Jonathan; Dicks, Ed; Lee, Andrew

    2017-01-01

    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer ri...

  18. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration

    DEFF Research Database (Denmark)

    de Vries, Paul S; Chasman, Daniel I; Sabater-Lleal, Maria

    2016-01-01

    Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. W...

  19. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration

    NARCIS (Netherlands)

    P.S. de Vries (Paul); D.I. Chasman (Daniel); M. Sabater-Lleal (Maria); M.-H. Chen (Ming-Huei); J.E. Huffman (Jennifer E.); M. Steri (Maristella); W. Tang (Weihong); A. Teumer (Alexander); R.E. Marioni (Riccardo); V. Grossmann (Vera); J.J. Hottenga (Jouke Jan); S. Trompet (Stella); M. Müller-Nurasyid (Martina); J.H. Zhao (Jing Hua); J. Brody (Jennifer); M.E. Kleber (Marcus); X. Guo (Xiuqing); J.J. Wang (Jie Jin); P. Auer (Paul); J. Attia (John); L.R. Yanek (Lisa); T.S. Ahluwalia (Tarunveer Singh); J. Lahti (Jari); C. Venturini (Cristina); T. Tanaka (Toshiko); L.F. Bielak (Lawrence F.); P.K. Joshi (Peter); A. Rocanin-Arjo (Ares); I. Kolcic (Ivana); P. Navarro (Pau); L.M. Rose (Lynda); C. Oldmeadow (Christopher); H. Riess (Helene); J. Mazur (Johanna); S. Basu (Saonli); A. Goel (Anuj); Q. Yang (Qiong); M. Ghanbari (Mohsen); Gonnekewillemsen; A. Rumley (Ann); E. Fiorillo (Edoardo); A.J. de Craen (Anton); A. Grotevendt (Anne); R.A. Scott (Robert); K.D. Taylor (Kent D.); G.E. Delgado (Graciela E.); J. Yao (Jie); A. Kifley (Annette); C. Kooperberg (Charles); Q. Qayyum (Rehan); L. Lopez (Lornam); T.L. Berentzen (Tina L.); K. Räikkönen (Katri); Massimomangino; S. Bandinelli (Stefania); P.A. Peyser (Patricia A.); S. Wild (Sarah); D.-A. Tregouet (David-Alexandre); A.F. Wright (Alan); J. Marten (Jonathan); T. Zemunik (Tatijana); A.C. Morrison (Alanna); B. Sennblad (Bengt); G.H. Tofler (Geoffrey); M.P.M. de Maat (Moniek); E.J.C. de Geus (Eco); G.D. Lowe (Gordon D.); M. Zoledziewska (Magdalena); N. Sattar (Naveed); H. Binder (Harald); U. Völker (Uwe); M. Waldenberger (Melanie); K.-T. Khaw (Kay-Tee); B. McKnight (Barbara); J. Huang (Jian); N.S. Jenny (Nancy); E.G. Holliday (Elizabeth); L. Qi (Lihong); M.G. Mcevoy (Mark G.); D.M. Becker (Diane); J.M. Starr (John); A.-P. Sarin; P.G. Hysi (Pirro); D.G. Hernandez (Dena); M.A. Jhun (Min A.); H. Campbell (Harry); A. Hamsten (Anders); F. Sarin (Fernando); W.L. McArdle (Wendy); P. Eline Slagboom; T. Zeller (Tanja); W. Koenig (Wolfgang); B. Psaty (Brucem); T. Haritunians (Talin); J. Liu (Jingmin); A. Palotie (Aarno); A.G. Uitterlinden (André); D.J. Stott (David J.); A. Hofman (Albert); O.H. Franco (Oscar); O. Polasek (Ozren); I. Rudan (Igor); P.-E. Morange (P.); J.F. Wilson (James F.); S.L. Kardia (Sharon L.r); L. Ferrucci (Luigi); T.D. Spector (Timothy); J.G. Eriksson (Johan G.); T. Hansen (Torben); I.J. Deary (Ian); L.C. Becker (Lewis); R.J. Scott (Rodney); P. Mitchell (Paul); W. März (Winfried); N.J. Wareham (Nick J.); A. Peters (Annette); A. Greinacher (Andreas); P.S. Wild (Philipp S.); J.W. Jukema (Jan Wouter); D.I. Boomsma (Dorret I.); C. Hayward (Caroline); F. Cucca (Francesco); R.P. Tracy (Russell); H. Watkins (Hugh); A.P. Reiner (Alex P.); A.R. Folsom (Aaron); P.M. Ridker (Paul); C.J. O'Donnell (Christopher J.); N.L. Smith (Nicholas L.); D.P. Strachan (David P.); A. Dehghan (Abbas)

    2016-01-01

    textabstractGenome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes

  20. Application of multi-locus analytical methods to identify interacting loci in case-control studies.

    NARCIS (Netherlands)

    Vermeulen, S.; Heijer, M. den; Sham, P.; Knight, J.

    2007-01-01

    To identify interacting loci in genetic epidemiological studies the application of multi-locus methods of analysis is warranted. Several more advanced classification methods have been developed in the past years, including multiple logistic regression, sum statistics, logic regression, and the

  1. A genetic risk score combining ten psoriasis risk loci improves disease prediction.

    Directory of Open Access Journals (Sweden)

    Haoyan Chen

    2011-04-01

    Full Text Available Psoriasis is a chronic, immune-mediated skin disease affecting 2-3% of Caucasians. Recent genetic association studies have identified multiple psoriasis risk loci; however, most of these loci contribute only modestly to disease risk. In this study, we investigated whether a genetic risk score (GRS combining multiple loci could improve psoriasis prediction. Two approaches were used: a simple risk alleles count (cGRS and a weighted (wGRS approach. Ten psoriasis risk SNPs were genotyped in 2815 case-control samples and 858 family samples. We found that the total number of risk alleles in the cases was significantly higher than in controls, mean 13.16 (SD 1.7 versus 12.09 (SD 1.8, p = 4.577×10(-40. The wGRS captured considerably more risk than any SNP considered alone, with a psoriasis OR for high-low wGRS quartiles of 10.55 (95% CI 7.63-14.57, p = 2.010×10(-65. To compare the discriminatory ability of the GRS models, receiver operating characteristic curves were used to calculate the area under the curve (AUC. The AUC for wGRS was significantly greater than for cGRS (72.0% versus 66.5%, p = 2.13×10(-8. Additionally, the AUC for HLA-C alone (rs10484554 was equivalent to the AUC for all nine other risk loci combined (66.2% versus 63.8%, p = 0.18, highlighting the dominance of HLA-C as a risk locus. Logistic regression revealed that the wGRS was significantly associated with two subphenotypes of psoriasis, age of onset (p = 4.91×10(-6 and family history (p = 0.020. Using a liability threshold model, we estimated that the 10 risk loci account for only 11.6% of the genetic variance in psoriasis. In summary, we found that a GRS combining 10 psoriasis risk loci captured significantly more risk than any individual SNP and was associated with early onset of disease and a positive family history. Notably, only a small fraction of psoriasis heritability is captured by the common risk variants identified to date.

  2. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    Directory of Open Access Journals (Sweden)

    Harsh Raman

    2016-10-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola. This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 503 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07 and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of A. thaliana and B. napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.

  3. Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Directory of Open Access Journals (Sweden)

    Sjur Reppe

    Full Text Available Bone Mineral Density (BMD is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR method to identify single nucleotide polymorphisms (SNPs associated with BMD by leveraging cardiovascular disease (CVD associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.

  4. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution

    NARCIS (Netherlands)

    C.M. Lindgren (Cecilia); I.M. Heid (Iris); J.C. Randall (Joshua); C. Lamina (Claudia); V. Steinthorsdottir (Valgerdur); L. Qi (Lu); E.K. Speliotes (Elizabeth); G. Thorleifsson (Gudmar); C.J. Willer (Cristen); B.M. Herrera (Blanca); A.U. Jackson (Anne); N. Lim (Noha); P. Scheet (Paul); N. Soranzo (Nicole); N. Amin (Najaf); Y.S. Aulchenko (Yurii); J.C. Chambers (John); A. Drong (Alexander); J. Luan; H.N. Lyon (Helen); F. Rivadeneira Ramirez (Fernando); S. Sanna (Serena); N.J. Timpson (Nicholas); M.C. Zillikens (Carola); H.Z. Jing; P. Almgren (Peter); S. Bandinelli (Stefania); A.J. Bennett (Amanda); R.N. Bergman (Richard); L.L. Bonnycastle (Lori); S. Bumpstead (Suzannah); S.J. Chanock (Stephen); L. Cherkas (Lynn); P.S. Chines (Peter); L. Coin (Lachlan); C. Cooper (Charles); G. Crawford (Gabe); A. Doering (Angela); A. Dominiczak (Anna); A.S.F. Doney (Alex); S. Ebrahim (Shanil); P. Elliott (Paul); M.R. Erdos (Michael); K. Estrada Gil (Karol); L. Ferrucci (Luigi); G. Fischer (Guido); N.G. Forouhi (Nita); C. Gieger (Christian); H. Grallert (Harald); C.J. Groves (Christopher); S.M. Grundy (Scott); C. Guiducci (Candace); D. Hadley (David); A. Hamsten (Anders); A.S. Havulinna (Aki); A. Hofman (Albert); R. Holle (Rolf); J.W. Holloway (John); T. Illig (Thomas); B. Isomaa (Bo); L.C. Jacobs (Leonie); K. Jameson (Karen); P. Jousilahti (Pekka); F. Karpe (Fredrik); J. Kuusisto (Johanna); J. Laitinen (Jaana); G.M. Lathrop (Mark); D.A. Lawlor (Debbie); M. Mangino (Massimo); W.L. McArdle (Wendy); T. Meitinger (Thomas); M.A. Morken (Mario); A.P. Morris (Andrew); P. Munroe (Patricia); N. Narisu (Narisu); A. Nordström (Anna); B.A. Oostra (Ben); C.N.A. Palmer (Colin); F. Payne (Felicity); J. Peden (John); I. Prokopenko (Inga); F. Renström (Frida); A. Ruokonen (Aimo); V. Salomaa (Veikko); M.S. Sandhu (Manjinder); L.J. Scott (Laura); A. Scuteri (Angelo); K. Silander (Kaisa); K. Song (Kijoung); X. Yuan (Xin); H.M. Stringham (Heather); A.J. Swift (Amy); T. Tuomi (Tiinamaija); M. Uda (Manuela); P. Vollenweider (Peter); G. Waeber (Gérard); C. Wallace (Chris); G.B. Walters (Bragi); M.N. Weedon (Michael); J.C.M. Witteman (Jacqueline); C. Zhang (Cuilin); M. Caulfield (Mark); F.S. Collins (Francis); G.D. Smith; I.N.M. Day (Ian); P.W. Franks (Paul); A.T. Hattersley (Andrew); F.B. Hu (Frank); M.-R. Jarvelin (Marjo-Riitta); A. Kong (Augustine); J.S. Kooner (Jaspal); M. Laakso (Markku); E. Lakatta (Edward); V. Mooser (Vincent); L. Peltonen (Leena Johanna); N.J. Samani (Nilesh); T.D. Spector (Timothy); D.P. Strachan (David); T. Tanaka (Toshiko); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi); N.J. Wareham (Nick); H. Watkins (Hugh); D. Waterworth (Dawn); M. Boehnke (Michael); P. Deloukas (Panagiotis); L. Groop (Leif); D.J. Hunter (David); U. Thorsteinsdottir (Unnur); D. Schlessinger (David); H.E. Wichmann (Erich); T.M. Frayling (Timothy); G.R. Abecasis (Gonçalo); J.N. Hirschhorn (Joel); R.J.F. Loos (Ruth); J-A. Zwart (John-Anker); K.L. Mohlke (Karen); I.E. Barroso (Inês); M.I. McCarthy (Mark)

    2009-01-01

    textabstractTo identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the

  5. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of

  6. Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies.

    Science.gov (United States)

    Leu, Costin; de Kovel, Carolien G F; Zara, Federico; Striano, Pasquale; Pezzella, Marianna; Robbiano, Angela; Bianchi, Amedeo; Bisulli, Francesca; Coppola, Antonietta; Giallonardo, Anna Teresa; Beccaria, Francesca; Trenité, Dorothée Kasteleijn-Nolst; Lindhout, Dick; Gaus, Verena; Schmitz, Bettina; Janz, Dieter; Weber, Yvonne G; Becker, Felicitas; Lerche, Holger; Kleefuss-Lie, Ailing A; Hallman, Kerstin; Kunz, Wolfram S; Elger, Christian E; Muhle, Hiltrud; Stephani, Ulrich; Møller, Rikke S; Hjalgrim, Helle; Mullen, Saul; Scheffer, Ingrid E; Berkovic, Samuel F; Everett, Kate V; Gardiner, Mark R; Marini, Carla; Guerrini, Renzo; Lehesjoki, Anna-Elina; Siren, Auli; Nabbout, Rima; Baulac, Stephanie; Leguern, Eric; Serratosa, Jose M; Rosenow, Felix; Feucht, Martha; Unterberger, Iris; Covanis, Athanasios; Suls, Arvid; Weckhuysen, Sarah; Kaneva, Radka; Caglayan, Hande; Turkdogan, Dilsad; Baykan, Betul; Bebek, Nerses; Ozbek, Ugur; Hempelmann, Anne; Schulz, Herbert; Rüschendorf, Franz; Trucks, Holger; Nürnberg, Peter; Avanzini, Giuliano; Koeleman, Bobby P C; Sander, Thomas

    2012-02-01

    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively. Meta-analysis of three genome-wide linkage datasets was carried out in 379 GGE-multiplex families of European ancestry including 982 relatives with GGEs. To dissect out seizure type-related susceptibility genes, two family subgroups were stratified comprising 235 families with predominantly genetic absence epilepsies (GAEs) and 118 families with an aggregation of juvenile myoclonic epilepsy (JME). To map shared and seizure type-related susceptibility loci, both nonparametric loci (NPL) and parametric linkage analyses were performed for a broad trait model (GGEs) in the entire set of GGE-multiplex families and a narrow trait model (typical absence or myoclonic seizures) in the subgroups of JME and GAE families. For the entire set of 379 GGE-multiplex families, linkage analysis revealed six loci achieving suggestive evidence for linkage at 1p36.22, 3p14.2, 5q34, 13q12.12, 13q31.3, and 19q13.42. The linkage finding at 5q34 was consistently supported by both NPL and parametric linkage results across all three family groups. A genome-wide significant nonparametric logarithm of odds score of 3.43 was obtained at 2q34 in 118 JME families. Significant parametric linkage to 13q31.3 was found in 235 GAE families assuming recessive inheritance (heterogeneity logarithm of odds = 5.02). Our linkage results support an oligogenic predisposition of familial GGE syndromes. The genetic risk factor at 5q34 confers risk to a broad spectrum of familial GGE syndromes, whereas susceptibility loci at 2q34 and 13q31

  7. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    Science.gov (United States)

    Dupuis, Josée; Langenberg, Claudia; Prokopenko, Inga; Saxena, Richa; Soranzo, Nicole; Jackson, Anne U; Wheeler, Eleanor; Glazer, Nicole L; Bouatia-Naji, Nabila; Gloyn, Anna L; Lindgren, Cecilia M; Mägi, Reedik; Morris, Andrew P; Randall, Joshua; Johnson, Toby; Elliott, Paul; Rybin, Denis; Thorleifsson, Gudmar; Steinthorsdottir, Valgerdur; Henneman, Peter; Grallert, Harald; Dehghan, Abbas; Hottenga, Jouke Jan; Franklin, Christopher S; Navarro, Pau; Song, Kijoung; Goel, Anuj; Perry, John R B; Egan, Josephine M; Lajunen, Taina; Grarup, Niels; Sparsø, Thomas; Doney, Alex; Voight, Benjamin F; Stringham, Heather M; Li, Man; Kanoni, Stavroula; Shrader, Peter; Cavalcanti-Proença, Christine; Kumari, Meena; Qi, Lu; Timpson, Nicholas J; Gieger, Christian; Zabena, Carina; Rocheleau, Ghislain; Ingelsson, Erik; An, Ping; O’Connell, Jeffrey; Luan, Jian'an; Elliott, Amanda; McCarroll, Steven A; Payne, Felicity; Roccasecca, Rosa Maria; Pattou, François; Sethupathy, Praveen; Ardlie, Kristin; Ariyurek, Yavuz; Balkau, Beverley; Barter, Philip; Beilby, John P; Ben-Shlomo, Yoav; Benediktsson, Rafn; Bennett, Amanda J; Bergmann, Sven; Bochud, Murielle; Boerwinkle, Eric; Bonnefond, Amélie; Bonnycastle, Lori L; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Bumpstead, Suzannah J; Charpentier, Guillaume; Chen, Yii-Der Ida; Chines, Peter; Clarke, Robert; Coin, Lachlan J M; Cooper, Matthew N; Cornelis, Marilyn; Crawford, Gabe; Crisponi, Laura; Day, Ian N M; de Geus, Eco; Delplanque, Jerome; Dina, Christian; Erdos, Michael R; Fedson, Annette C; Fischer-Rosinsky, Antje; Forouhi, Nita G; Fox, Caroline S; Frants, Rune; Franzosi, Maria Grazia; Galan, Pilar; Goodarzi, Mark O; Graessler, Jürgen; Groves, Christopher J; Grundy, Scott; Gwilliam, Rhian; Gyllensten, Ulf; Hadjadj, Samy; Hallmans, Göran; Hammond, Naomi; Han, Xijing; Hartikainen, Anna-Liisa; Hassanali, Neelam; Hayward, Caroline; Heath, Simon C; Hercberg, Serge; Herder, Christian; Hicks, Andrew A; Hillman, David R; Hingorani, Aroon D; Hofman, Albert; Hui, Jennie; Hung, Joe; Isomaa, Bo; Johnson, Paul R V; Jørgensen, Torben; Jula, Antti; Kaakinen, Marika; Kaprio, Jaakko; Kesaniemi, Y Antero; Kivimaki, Mika; Knight, Beatrice; Koskinen, Seppo; Kovacs, Peter; Kyvik, Kirsten Ohm; Lathrop, G Mark; Lawlor, Debbie A; Le Bacquer, Olivier; Lecoeur, Cécile; Li, Yun; Lyssenko, Valeriya; Mahley, Robert; Mangino, Massimo; Manning, Alisa K; Martínez-Larrad, María Teresa; McAteer, Jarred B; McCulloch, Laura J; McPherson, Ruth; Meisinger, Christa; Melzer, David; Meyre, David; Mitchell, Braxton D; Morken, Mario A; Mukherjee, Sutapa; Naitza, Silvia; Narisu, Narisu; Neville, Matthew J; Oostra, Ben A; Orrù, Marco; Pakyz, Ruth; Palmer, Colin N A; Paolisso, Giuseppe; Pattaro, Cristian; Pearson, Daniel; Peden, John F; Pedersen, Nancy L.; Perola, Markus; Pfeiffer, Andreas F H; Pichler, Irene; Polasek, Ozren; Posthuma, Danielle; Potter, Simon C; Pouta, Anneli; Province, Michael A; Psaty, Bruce M; Rathmann, Wolfgang; Rayner, Nigel W; Rice, Kenneth; Ripatti, Samuli; Rivadeneira, Fernando; Roden, Michael; Rolandsson, Olov; Sandbaek, Annelli; Sandhu, Manjinder; Sanna, Serena; Sayer, Avan Aihie; Scheet, Paul; Scott, Laura J; Seedorf, Udo; Sharp, Stephen J; Shields, Beverley; Sigurðsson, Gunnar; Sijbrands, Erik J G; Silveira, Angela; Simpson, Laila; Singleton, Andrew; Smith, Nicholas L; Sovio, Ulla; Swift, Amy; Syddall, Holly; Syvänen, Ann-Christine; Tanaka, Toshiko; Thorand, Barbara; Tichet, Jean; Tönjes, Anke; Tuomi, Tiinamaija; Uitterlinden, André G; van Dijk, Ko Willems; van Hoek, Mandy; Varma, Dhiraj; Visvikis-Siest, Sophie; Vitart, Veronique; Vogelzangs, Nicole; Waeber, Gérard; Wagner, Peter J; Walley, Andrew; Walters, G Bragi; Ward, Kim L; Watkins, Hugh; Weedon, Michael N; Wild, Sarah H; Willemsen, Gonneke; Witteman, Jaqueline C M; Yarnell, John W G; Zeggini, Eleftheria; Zelenika, Diana; Zethelius, Björn; Zhai, Guangju; Zhao, Jing Hua; Zillikens, M Carola; Borecki, Ingrid B; Loos, Ruth J F; Meneton, Pierre; Magnusson, Patrik K E; Nathan, David M; Williams, Gordon H; Hattersley, Andrew T; Silander, Kaisa; Salomaa, Veikko; Smith, George Davey; Bornstein, Stefan R; Schwarz, Peter; Spranger, Joachim; Karpe, Fredrik; Shuldiner, Alan R; Cooper, Cyrus; Dedoussis, George V; Serrano-Ríos, Manuel; Morris, Andrew D; Lind, Lars; Palmer, Lyle J; Hu, Frank B.; Franks, Paul W; Ebrahim, Shah; Marmot, Michael; Kao, W H Linda; Pankow, James S; Sampson, Michael J; Kuusisto, Johanna; Laakso, Markku; Hansen, Torben; Pedersen, Oluf; Pramstaller, Peter Paul; Wichmann, H Erich; Illig, Thomas; Rudan, Igor; Wright, Alan F; Stumvoll, Michael; Campbell, Harry; Wilson, James F; Hamsten, Anders; Bergman, Richard N; Buchanan, Thomas A; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; Valle, Timo T; Altshuler, David; Rotter, Jerome I; Siscovick, David S; Penninx, Brenda W J H; Boomsma, Dorret; Deloukas, Panos; Spector, Timothy D; Frayling, Timothy M; Ferrucci, Luigi; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; van Duijn, Cornelia M; Aulchenko, Yurii S; Cao, Antonio; Scuteri, Angelo; Schlessinger, David; Uda, Manuela; Ruokonen, Aimo; Jarvelin, Marjo-Riitta; Waterworth, Dawn M; Vollenweider, Peter; Peltonen, Leena; Mooser, Vincent; Abecasis, Goncalo R; Wareham, Nicholas J; Sladek, Robert; Froguel, Philippe; Watanabe, Richard M; Meigs, James B; Groop, Leif; Boehnke, Michael; McCarthy, Mark I; Florez, Jose C; Barroso, Inês

    2010-01-01

    Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes. PMID:20081858

  8. Loci associated with skin pigmentation identified in African populations

    Science.gov (United States)

    Crawford, Nicholas G.; Kelly, Derek E.; Hansen, Matthew E. B.; Beltrame, Marcia H.; Fan, Shaohua; Bowman, Shanna L.; Jewett, Ethan; Ranciaro, Alessia; Thompson, Simon; Lo, Yancy; Pfeifer, Susanne P.; Jensen, Jeffrey D.; Campbell, Michael C.; Beggs, William; Hormozdiari, Farhad; Mpoloka, Sununguko Wata; Mokone, Gaonyadiwe George; Nyambo, Thomas; Meskel, Dawit Wolde; Belay, Gurja; Haut, Jake; Rothschild, Harriet; Zon, Leonard; Zhou, Yi; Kovacs, Michael A.; Xu, Mai; Zhang, Tongwu; Bishop, Kevin; Sinclair, Jason; Rivas, Cecilia; Elliot, Eugene; Choi, Jiyeon; Li, Shengchao A.; Hicks, Belynda; Burgess, Shawn; Abnet, Christian; Watkins-Chow, Dawn E.; Oceana, Elena; Song, Yun S.; Eskin, Eleazar; Brown, Kevin M.; Marks, Michael S.; Loftus, Stacie K.; Pavan, William J.; Yeager, Meredith; Chanock, Stephen; Tishkoff, Sarah

    2017-01-01

    Despite the wide range of skin pigmentation in humans, little is known about its genetic basis in global populations. Examining ethnically diverse African genomes, we identify variants in or near SLC24A5, MFSD12, DDB1, TMEM138, OCA2 and HERC2 that are significantly associated with skin pigmentation. Genetic evidence indicates that the light pigmentation variant at SLC24A5 was introduced into East Africa by gene flow from non-Africans. At all other loci, variants associated with dark pigmentation in Africans are identical by descent in southern Asian and Australo-Melanesian populations. Functional analyses indicate that MFSD12 encodes a lysosomal protein that affects melanogenesis in zebrafish and mice, and that mutations in melanocyte-specific regulatory regions near DDB1/TMEM138 correlate with expression of UV response genes under selection in Eurasians. PMID:29025994

  9. Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic variation in populations.

    Directory of Open Access Journals (Sweden)

    Heather A Lawson

    2011-09-01

    Full Text Available Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS components (obesity, dyslipidemia, and diabetes-related traits. MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL in an F(16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; n = 1002. Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine.

  10. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Directory of Open Access Journals (Sweden)

    Cecilia M Lindgren

    2009-06-01

    Full Text Available To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580 informative for adult waist circumference (WC and waist-hip ratio (WHR. We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11 and MSRA (WC, P = 8.9x10(-9. A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8. The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.

  11. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.

    Science.gov (United States)

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; Wietze van der Veen, J P; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R; Santorico, Stephanie A; Spritz, Richard A

    2016-11-01

    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment.

  12. Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    DEFF Research Database (Denmark)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara

    2013-01-01

    differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls......), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER...

  13. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease

    DEFF Research Database (Denmark)

    Lu, Xiangfeng; Peloso, Gina M; Liu, Dajiang J

    2017-01-01

    Most genome-wide association studies have been of European individuals, even though most genetic variation in humans is seen only in non-European samples. To search for novel loci associated with blood lipid levels and clarify the mechanism of action at previously identified lipid loci, we used a...

  14. Meta-Analysis of Genome-Wide Association Studies Identifies Genetic Risk Factors for Stroke in African Americans.

    Science.gov (United States)

    Carty, Cara L; Keene, Keith L; Cheng, Yu-Ching; Meschia, James F; Chen, Wei-Min; Nalls, Mike; Bis, Joshua C; Kittner, Steven J; Rich, Stephen S; Tajuddin, Salman; Zonderman, Alan B; Evans, Michele K; Langefeld, Carl D; Gottesman, Rebecca; Mosley, Thomas H; Shahar, Eyal; Woo, Daniel; Yaffe, Kristine; Liu, Yongmei; Sale, Michèle M; Dichgans, Martin; Malik, Rainer; Longstreth, W T; Mitchell, Braxton D; Psaty, Bruce M; Kooperberg, Charles; Reiner, Alexander; Worrall, Bradford B; Fornage, Myriam

    2015-08-01

    The majority of genome-wide association studies (GWAS) of stroke have focused on European-ancestry populations; however, none has been conducted in African Americans, despite the disproportionately high burden of stroke in this population. The Consortium of Minority Population Genome-Wide Association Studies of Stroke (COMPASS) was established to identify stroke susceptibility loci in minority populations. Using METAL, we conducted meta-analyses of GWAS in 14 746 African Americans (1365 ischemic and 1592 total stroke cases) from COMPASS, and tested genetic variants with Pstroke genetic studies in European-ancestry populations. We also evaluated stroke loci previously identified in European-ancestry populations. The 15q21.3 locus linked with lipid levels and hypertension was associated with total stroke (rs4471613; P=3.9×10(-8)) in African Americans. Nominal associations (Pstroke were observed for 18 variants in or near genes implicated in cell cycle/mRNA presplicing (PTPRG, CDC5L), platelet function (HPS4), blood-brain barrier permeability (CLDN17), immune response (ELTD1, WDFY4, and IL1F10-IL1RN), and histone modification (HDAC9). Two of these loci achieved nominal significance in METASTROKE: 5q35.2 (P=0.03), and 1p31.1 (P=0.018). Four of 7 previously reported ischemic stroke loci (PITX2, HDAC9, CDKN2A/CDKN2B, and ZFHX3) were nominally associated (Pstroke in COMPASS. We identified a novel genetic variant associated with total stroke in African Americans and found that ischemic stroke loci identified in European-ancestry populations may also be relevant for African Americans. Our findings support investigation of diverse populations to identify and characterize genetic risk factors, and the importance of shared genetic risk across populations. © 2015 American Heart Association, Inc.

  15. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Science.gov (United States)

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; van der Veen, JP Wietze; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W.; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R.; Santorico, Stephanie A; Spritz, Richard A

    2016-01-01

    Vitiligo is an autoimmune disease in which depigmented skin results from destruction of melanocytes1, with epidemiologic association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1, GWAS2), we identified 27 vitiligo susceptibility loci in patients of European (EUR) ancestry. We carried out a third GWAS (GWAS3) in EUR subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new loci and 7 suggestive loci, most encoding immune and apoptotic regulators, some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some corresponding to eQTL at these loci. Together, the identified genes provide a framework for vitiligo genetic architecture and pathobiology, highlight relationships to other autoimmune diseases and melanoma, and offer potential targets for treatment. PMID:27723757

  16. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    Science.gov (United States)

    Wain, Louise V; Verwoert, Germaine C; O’Reilly, Paul F; Shi, Gang; Johnson, Toby; Johnson, Andrew D; Bochud, Murielle; Rice, Kenneth M; Henneman, Peter; Smith, Albert V; Ehret, Georg B; Amin, Najaf; Larson, Martin G; Mooser, Vincent; Hadley, David; Dörr, Marcus; Bis, Joshua C; Aspelund, Thor; Esko, Tõnu; Janssens, A Cecile JW; Zhao, Jing Hua; Heath, Simon; Laan, Maris; Fu, Jingyuan; Pistis, Giorgio; Luan, Jian’an; Arora, Pankaj; Lucas, Gavin; Pirastu, Nicola; Pichler, Irene; Jackson, Anne U; Webster, Rebecca J; Zhang, Feng; Peden, John F; Schmidt, Helena; Tanaka, Toshiko; Campbell, Harry; Igl, Wilmar; Milaneschi, Yuri; Hotteng, Jouke-Jan; Vitart, Veronique; Chasman, Daniel I; Trompet, Stella; Bragg-Gresham, Jennifer L; Alizadeh, Behrooz Z; Chambers, John C; Guo, Xiuqing; Lehtimäki, Terho; Kühnel, Brigitte; Lopez, Lorna M; Polašek, Ozren; Boban, Mladen; Nelson, Christopher P; Morrison, Alanna C; Pihur, Vasyl; Ganesh, Santhi K; Hofman, Albert; Kundu, Suman; Mattace-Raso, Francesco US; Rivadeneira, Fernando; Sijbrands, Eric JG; Uitterlinden, Andre G; Hwang, Shih-Jen; Vasan, Ramachandran S; Wang, Thomas J; Bergmann, Sven; Vollenweider, Peter; Waeber, Gérard; Laitinen, Jaana; Pouta, Anneli; Zitting, Paavo; McArdle, Wendy L; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Glazer, Nicole L; Taylor, Kent D; Harris, Tamara B; Alavere, Helene; Haller, Toomas; Keis, Aime; Tammesoo, Mari-Liis; Aulchenko, Yurii; Barroso, Inês; Khaw, Kay-Tee; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Eyheramendy, Susana; Org, Elin; Sõber, Siim; Lu, Xiaowen; Nolte, Ilja M; Penninx, Brenda W; Corre, Tanguy; Masciullo, Corrado; Sala, Cinzia; Groop, Leif; Voight, Benjamin F; Melander, Olle; O’Donnell, Christopher J; Salomaa, Veikko; d’Adamo, Adamo Pio; Fabretto, Antonella; Faletra, Flavio; Ulivi, Sheila; Del Greco, M Fabiola; Facheris, Maurizio; Collins, Francis S; Bergman, Richard N; Beilby, John P; Hung, Joseph; Musk, A William; Mangino, Massimo; Shin, So-Youn; Soranzo, Nicole; Watkins, Hugh; Goel, Anuj; Hamsten, Anders; Gider, Pierre; Loitfelder, Marisa; Zeginigg, Marion; Hernandez, Dena; Najjar, Samer S; Navarro, Pau; Wild, Sarah H; Corsi, Anna Maria; Singleton, Andrew; de Geus, Eco JC; Willemsen, Gonneke; Parker, Alex N; Rose, Lynda M; Buckley, Brendan; Stott, David; Orru, Marco; Uda, Manuela; van der Klauw, Melanie M; Zhang, Weihua; Li, Xinzhong; Scott, James; Chen, Yii-Der Ida; Burke, Gregory L; Kähönen, Mika; Viikari, Jorma; Döring, Angela; Meitinger, Thomas; Davies, Gail; Starr, John M; Emilsson, Valur; Plump, Andrew; Lindeman, Jan H; ’t Hoen, Peter AC; König, Inke R; Felix, Janine F; Clarke, Robert; Hopewell, Jemma C; Ongen, Halit; Breteler, Monique; Debette, Stéphanie; DeStefano, Anita L; Fornage, Myriam; Mitchell, Gary F; Smith, Nicholas L; Holm, Hilma; Stefansson, Kari; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Samani, Nilesh J; Preuss, Michael; Rudan, Igor; Hayward, Caroline; Deary, Ian J; Wichmann, H-Erich; Raitakari, Olli T; Palmas, Walter; Kooner, Jaspal S; Stolk, Ronald P; Jukema, J Wouter; Wright, Alan F; Boomsma, Dorret I; Bandinelli, Stefania; Gyllensten, Ulf B; Wilson, James F; Ferrucci, Luigi; Schmidt, Reinhold; Farrall, Martin; Spector, Tim D; Palmer, Lyle J; Tuomilehto, Jaakko; Pfeufer, Arne; Gasparini, Paolo; Siscovick, David; Altshuler, David; Loos, Ruth JF; Toniolo, Daniela; Snieder, Harold; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J; Oostra, Ben A; Metspalu, Andres; Launer, Lenore; Rettig, Rainer; Strachan, David P; Beckmann, Jacques S; Witteman, Jacqueline CM; Erdmann, Jeanette; van Dijk, Ko Willems; Boerwinkle, Eric; Boehnke, Michael; Ridker, Paul M; Jarvelin, Marjo-Riitta; Chakravarti, Aravinda; Abecasis, Goncalo R; Gudnason, Vilmundur; Newton-Cheh, Christopher; Levy, Daniel; Munroe, Patricia B; Psaty, Bruce M; Caulfield, Mark J; Rao, Dabeeru C

    2012-01-01

    Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP. PMID:21909110

  17. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci.

    Science.gov (United States)

    Aung, Tin; Ozaki, Mineo; Lee, Mei Chin; Schlötzer-Schrehardt, Ursula; Thorleifsson, Gudmar; Mizoguchi, Takanori; Igo, Robert P; Haripriya, Aravind; Williams, Susan E; Astakhov, Yury S; Orr, Andrew C; Burdon, Kathryn P; Nakano, Satoko; Mori, Kazuhiko; Abu-Amero, Khaled; Hauser, Michael; Li, Zheng; Prakadeeswari, Gopalakrishnan; Bailey, Jessica N Cooke; Cherecheanu, Alina Popa; Kang, Jae H; Nelson, Sarah; Hayashi, Ken; Manabe, Shin-Ichi; Kazama, Shigeyasu; Zarnowski, Tomasz; Inoue, Kenji; Irkec, Murat; Coca-Prados, Miguel; Sugiyama, Kazuhisa; Järvelä, Irma; Schlottmann, Patricio; Lerner, S Fabian; Lamari, Hasnaa; Nilgün, Yildirim; Bikbov, Mukharram; Park, Ki Ho; Cha, Soon Cheol; Yamashiro, Kenji; Zenteno, Juan C; Jonas, Jost B; Kumar, Rajesh S; Perera, Shamira A; Chan, Anita S Y; Kobakhidze, Nino; George, Ronnie; Vijaya, Lingam; Do, Tan; Edward, Deepak P; de Juan Marcos, Lourdes; Pakravan, Mohammad; Moghimi, Sasan; Ideta, Ryuichi; Bach-Holm, Daniella; Kappelgaard, Per; Wirostko, Barbara; Thomas, Samuel; Gaston, Daniel; Bedard, Karen; Greer, Wenda L; Yang, Zhenglin; Chen, Xueyi; Huang, Lulin; Sang, Jinghong; Jia, Hongyan; Jia, Liyun; Qiao, Chunyan; Zhang, Hui; Liu, Xuyang; Zhao, Bowen; Wang, Ya-Xing; Xu, Liang; Leruez, Stéphanie; Reynier, Pascal; Chichua, George; Tabagari, Sergo; Uebe, Steffen; Zenkel, Matthias; Berner, Daniel; Mossböck, Georg; Weisschuh, Nicole; Hoja, Ursula; Welge-Luessen, Ulrich-Christoph; Mardin, Christian; Founti, Panayiota; Chatzikyriakidou, Anthi; Pappas, Theofanis; Anastasopoulos, Eleftherios; Lambropoulos, Alexandros; Ghosh, Arkasubhra; Shetty, Rohit; Porporato, Natalia; Saravanan, Vijayan; Venkatesh, Rengaraj; Shivkumar, Chandrashekaran; Kalpana, Narendran; Sarangapani, Sripriya; Kanavi, Mozhgan R; Beni, Afsaneh Naderi; Yazdani, Shahin; Lashay, Alireza; Naderifar, Homa; Khatibi, Nassim; Fea, Antonio; Lavia, Carlo; Dallorto, Laura; Rolle, Teresa; Frezzotti, Paolo; Paoli, Daniela; Salvi, Erika; Manunta, Paolo; Mori, Yosai; Miyata, Kazunori; Higashide, Tomomi; Chihara, Etsuo; Ishiko, Satoshi; Yoshida, Akitoshi; Yanagi, Masahide; Kiuchi, Yoshiaki; Ohashi, Tsutomu; Sakurai, Toshiya; Sugimoto, Takako; Chuman, Hideki; Aihara, Makoto; Inatani, Masaru; Miyake, Masahiro; Gotoh, Norimoto; Matsuda, Fumihiko; Yoshimura, Nagahisa; Ikeda, Yoko; Ueno, Morio; Sotozono, Chie; Jeoung, Jin Wook; Sagong, Min; Park, Kyu Hyung; Ahn, Jeeyun; Cruz-Aguilar, Marisa; Ezzouhairi, Sidi M; Rafei, Abderrahman; Chong, Yaan Fun; Ng, Xiao Yu; Goh, Shuang Ru; Chen, Yueming; Yong, Victor H K; Khan, Muhammad Imran; Olawoye, Olusola O; Ashaye, Adeyinka O; Ugbede, Idakwo; Onakoya, Adeola; Kizor-Akaraiwe, Nkiru; Teekhasaenee, Chaiwat; Suwan, Yanin; Supakontanasan, Wasu; Okeke, Suhanya; Uche, Nkechi J; Asimadu, Ifeoma; Ayub, Humaira; Akhtar, Farah; Kosior-Jarecka, Ewa; Lukasik, Urszula; Lischinsky, Ignacio; Castro, Vania; Grossmann, Rodolfo Perez; Sunaric Megevand, Gordana; Roy, Sylvain; Dervan, Edward; Silke, Eoin; Rao, Aparna; Sahay, Priti; Fornero, Pablo; Cuello, Osvaldo; Sivori, Delia; Zompa, Tamara; Mills, Richard A; Souzeau, Emmanuelle; Mitchell, Paul; Wang, Jie Jin; Hewitt, Alex W; Coote, Michael; Crowston, Jonathan G; Astakhov, Sergei Y; Akopov, Eugeny L; Emelyanov, Anton; Vysochinskaya, Vera; Kazakbaeva, Gyulli; Fayzrakhmanov, Rinat; Al-Obeidan, Saleh A; Owaidhah, Ohoud; Aljasim, Leyla Ali; Chowbay, Balram; Foo, Jia Nee; Soh, Raphael Q; Sim, Kar Seng; Xie, Zhicheng; Cheong, Augustine W O; Mok, Shi Qi; Soo, Hui Meng; Chen, Xiao Yin; Peh, Su Qin; Heng, Khai Koon; Husain, Rahat; Ho, Su-Ling; Hillmer, Axel M; Cheng, Ching-Yu; Escudero-Domínguez, Francisco A; González-Sarmiento, Rogelio; Martinon-Torres, Frederico; Salas, Antonio; Pathanapitoon, Kessara; Hansapinyo, Linda; Wanichwecharugruang, Boonsong; Kitnarong, Naris; Sakuntabhai, Anavaj; Nguyn, Hip X; Nguyn, Giang T T; Nguyn, Trình V; Zenz, Werner; Binder, Alexander; Klobassa, Daniela S; Hibberd, Martin L; Davila, Sonia; Herms, Stefan; Nöthen, Markus M; Moebus, Susanne; Rautenbach, Robyn M; Ziskind, Ari; Carmichael, Trevor R; Ramsay, Michele; Álvarez, Lydia; García, Montserrat; González-Iglesias, Héctor; Rodríguez-Calvo, Pedro P; Fernández-Vega Cueto, Luis; Oguz, Çilingir; Tamcelik, Nevbahar; Atalay, Eray; Batu, Bilge; Aktas, Dilek; Kasım, Burcu; Wilson, M Roy; Coleman, Anne L; Liu, Yutao; Challa, Pratap; Herndon, Leon; Kuchtey, Rachel W; Kuchtey, John; Curtin, Karen; Chaya, Craig J; Crandall, Alan; Zangwill, Linda M; Wong, Tien Yin; Nakano, Masakazu; Kinoshita, Shigeru; den Hollander, Anneke I; Vesti, Eija; Fingert, John H; Lee, Richard K; Sit, Arthur J; Shingleton, Bradford J; Wang, Ningli; Cusi, Daniele; Qamar, Raheel; Kraft, Peter; Pericak-Vance, Margaret A; Raychaudhuri, Soumya; Heegaard, Steffen; Kivelä, Tero; Reis, André; Kruse, Friedrich E; Weinreb, Robert N; Pasquale, Louis R; Haines, Jonathan L; Thorsteinsdottir, Unnur; Jonasson, Fridbert; Allingham, R Rand; Milea, Dan; Ritch, Robert; Kubota, Toshiaki; Tashiro, Kei; Vithana, Eranga N; Micheal, Shazia; Topouzis, Fotis; Craig, Jamie E; Dubina, Michael; Sundaresan, Periasamy; Stefansson, Kari; Wiggs, Janey L; Pasutto, Francesca; Khor, Chiea Chuen

    2017-07-01

    Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results across populations, and to identify new variants associated with XFS. We identified a rare protective allele at LOXL1 (p.Phe407, odds ratio (OR) = 25, P = 2.9 × 10 -14 ) through deep resequencing of XFS cases and controls from nine countries. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10 -8 ). We identified association signals at 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.

  18. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high-resolution Affymetrix Genome-Wide Human SNP arrays containing about 1 million single-nucleotide polymorphisms (SNPs). Nonparametric linkage analysis...... in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin...

  19. Seven newly identified loci for autoimmune thyroid disease.

    Science.gov (United States)

    Cooper, Jason D; Simmonds, Matthew J; Walker, Neil M; Burren, Oliver; Brand, Oliver J; Guo, Hui; Wallace, Chris; Stevens, Helen; Coleman, Gillian; Franklyn, Jayne A; Todd, John A; Gough, Stephen C L

    2012-12-01

    Autoimmune thyroid disease (AITD), including Graves' disease (GD) and Hashimoto's thyroiditis (HT), is one of the most common of the immune-mediated diseases. To further investigate the genetic determinants of AITD, we conducted an association study using a custom-made single-nucleotide polymorphism (SNP) array, the ImmunoChip. The SNP array contains all known and genotype-able SNPs across 186 distinct susceptibility loci associated with one or more immune-mediated diseases. After stringent quality control, we analysed 103 875 common SNPs (minor allele frequency >0.05) in 2285 GD and 462 HT patients and 9364 controls. We found evidence for seven new AITD risk loci (P test derived significance threshold), five at locations previously associated and two at locations awaiting confirmation, with other immune-mediated diseases.

  20. Multi-ethnic fine-mapping of 14 central adiposity loci

    NARCIS (Netherlands)

    Liu, C.T.; Buchkovich, M.L.; Winkler, T.W.; Heid, I.M.; Hottenga, J.J.; Boomsma, D.I.; de Geus, E.J.C.; Willemsen, G.; Borecki, I.B.; Fox, C.S.; Mohlke, K.L.; North, K.E.; Cupples, L.A.

    2014-01-01

    The Genetic Investigation of Anthropometric Traits (GIANT) consortium identified 14 loci in European Ancestry (EA) individuals associated with waist-to-hip ratio (WHR) adjusted for body mass index. These loci are wide and narrowingthe signalsremains necessary. Twelve of 14 loci identified inGIANTEA

  1. Genome-wide association study identifies 74 loci associated with educational attainment

    Science.gov (United States)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  2. Application of novel polymorphic microsatellite loci identified in the Korean Pacific Abalone (Haliotis diversicolor supertexta (Haliotidae)) in the genetic characterization of wild and released populations.

    Science.gov (United States)

    An, Hye Suck; Lee, Jang Wook; Hong, Seong Wan

    2012-01-01

    The small abalone, Haliotis diversicolor supertexta, of the family Haliotidae, is one of the most important species of marine shellfish in eastern Asia. Over the past few decades, this species has drastically declined in Korea. Thus, hatchery-bred seeds have been released into natural coastal areas to compensate for the reduced fishery resources. However, information on the genetic background of the small abalone is scarce. In this study, 20 polymorphic microsatellite DNA markers were identified using next-generation sequencing techniques and used to compare allelic variation between wild and released abalone populations in Korea. Using high-throughput genomic sequencing, a total of 1516 (2.26%; average length of 385 bp) reads containing simple sequence repeats were obtained from 86,011 raw reads. Among the 99 loci screened, 28 amplified successfully, and 20 were polymorphic. When comparing allelic variation between wild and released abalone populations, a total of 243 different alleles were observed, with 18.7 alleles per locus. High genetic diversity (mean heterozygosity = 0.81; mean allelic number = 15.5) was observed in both populations. A statistical analysis of the fixation index (F(ST)) and analysis of molecular variance (AMOVA) indicated limited genetic differences between the two populations (F(ST) = 0.002, p > 0.05). Although no significant reductions in the genetic diversity were found in the released population compared with the wild population (p > 0.05), the genetic diversity parameters revealed that the seeds released for stock abundance had a different genetic composition. These differences are likely a result of hatchery selection and inbreeding. Additionally, all the primer pair sets were effectively amplified in another congeneric species, H. diversicolor diversicolor, indicating that these primers are useful for both abalone species. These microsatellite loci may be valuable for future aquaculture and population genetic studies aimed at

  3. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    OpenAIRE

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Renter��a, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivi��res, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjus...

  4. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture

    Science.gov (United States)

    Estrada, Karol; Styrkarsdottir, Unnur; Evangelou, Evangelos; Hsu, Yi-Hsiang; Duncan, Emma L; Ntzani, Evangelia E; Oei, Ling; Albagha, Omar M E; Amin, Najaf; Kemp, John P; Koller, Daniel L; Li, Guo; Liu, Ching-Ti; Minster, Ryan L; Moayyeri, Alireza; Vandenput, Liesbeth; Willner, Dana; Xiao, Su-Mei; Yerges-Armstrong, Laura M; Zheng, Hou-Feng; Alonso, Nerea; Eriksson, Joel; Kammerer, Candace M; Kaptoge, Stephen K; Leo, Paul J; Thorleifsson, Gudmar; Wilson, Scott G; Wilson, James F; Aalto, Ville; Alen, Markku; Aragaki, Aaron K; Aspelund, Thor; Center, Jacqueline R; Dailiana, Zoe; Duggan, David J; Garcia, Melissa; Garcia-Giralt, Natàlia; Giroux, Sylvie; Hallmans, Göran; Hocking, Lynne J; Husted, Lise Bjerre; Jameson, Karen A; Khusainova, Rita; Kim, Ghi Su; Kooperberg, Charles; Koromila, Theodora; Kruk, Marcin; Laaksonen, Marika; Lacroix, Andrea Z; Lee, Seung Hun; Leung, Ping C; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nguyen, Tuan V; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Rose, Lynda M; Scollen, Serena; Siggeirsdottir, Kristin; Smith, Albert V; Svensson, Olle; Trompet, Stella; Trummer, Olivia; van Schoor, Natasja M; Woo, Jean; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Buckley, Brendan M; Cheng, Sulin; Christiansen, Claus; Cooper, Cyrus; Dedoussis, George; Ford, Ian; Frost, Morten; Goltzman, David; González-Macías, Jesús; Kähönen, Mika; Karlsson, Magnus; Khusnutdinova, Elza; Koh, Jung-Min; Kollia, Panagoula; Langdahl, Bente Lomholt; Leslie, William D; Lips, Paul; Ljunggren, Östen; Lorenc, Roman S; Marc, Janja; Mellström, Dan; Obermayer-Pietsch, Barbara; Olmos, José M; Pettersson-Kymmer, Ulrika; Reid, David M; Riancho, José A; Ridker, Paul M; Rousseau, François; Slagboom, P Eline; Tang, Nelson LS; Urreizti, Roser; Van Hul, Wim; Viikari, Jorma; Zarrabeitia, María T; Aulchenko, Yurii S; Castano-Betancourt, Martha; Grundberg, Elin; Herrera, Lizbeth; Ingvarsson, Thorvaldur; Johannsdottir, Hrefna; Kwan, Tony; Li, Rui; Luben, Robert; Medina-Gómez, Carolina; Palsson, Stefan Th; Reppe, Sjur; Rotter, Jerome I; Sigurdsson, Gunnar; van Meurs, Joyce B J; Verlaan, Dominique; Williams, Frances MK; Wood, Andrew R; Zhou, Yanhua; Gautvik, Kaare M; Pastinen, Tomi; Raychaudhuri, Soumya; Cauley, Jane A; Chasman, Daniel I; Clark, Graeme R; Cummings, Steven R; Danoy, Patrick; Dennison, Elaine M; Eastell, Richard; Eisman, John A; Gudnason, Vilmundur; Hofman, Albert; Jackson, Rebecca D; Jones, Graeme; Jukema, J Wouter; Khaw, Kay-Tee; Lehtimäki, Terho; Liu, Yongmei; Lorentzon, Mattias; McCloskey, Eugene; Mitchell, Braxton D; Nandakumar, Kannabiran; Nicholson, Geoffrey C; Oostra, Ben A; Peacock, Munro; Pols, Huibert A P; Prince, Richard L; Raitakari, Olli; Reid, Ian R; Robbins, John; Sambrook, Philip N; Sham, Pak Chung; Shuldiner, Alan R; Tylavsky, Frances A; van Duijn, Cornelia M; Wareham, Nick J; Cupples, L Adrienne; Econs, Michael J; Evans, David M; Harris, Tamara B; Kung, Annie Wai Chee; Psaty, Bruce M; Reeve, Jonathan; Spector, Timothy D; Streeten, Elizabeth A; Zillikens, M Carola; Thorsteinsdottir, Unnur; Ohlsson, Claes; Karasik, David; Richards, J Brent; Brown, Matthew A; Stefansson, Kari; Uitterlinden, André G; Ralston, Stuart H; Ioannidis, John P A; Kiel, Douglas P; Rivadeneira, Fernando

    2012-01-01

    Bone mineral density (BMD) is the most important predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and East Asian ancestry. We tested the top-associated BMD markers for replication in 50,933 independent subjects and for risk of low-trauma fracture in 31,016 cases and 102,444 controls. We identified 56 loci (32 novel)associated with BMD atgenome-wide significant level (P<5×10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal-stem-cell differentiation, endochondral ossification and the Wnt signalling pathways. However, we also discovered loci containing genes not known to play a role in bone biology. Fourteen BMD loci were also associated with fracture risk (P<5×10−4, Bonferroni corrected), of which six reached P<5×10−8 including: 18p11.21 (C18orf19), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility. PMID:22504420

  5. Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function.

    Science.gov (United States)

    Smeland, Olav B; Frei, Oleksandr; Kauppi, Karolina; Hill, W David; Li, Wen; Wang, Yunpeng; Krull, Florian; Bettella, Francesco; Eriksen, Jon A; Witoelar, Aree; Davies, Gail; Fan, Chun C; Thompson, Wesley K; Lam, Max; Lencz, Todd; Chen, Chi-Hua; Ueland, Torill; Jönsson, Erik G; Djurovic, Srdjan; Deary, Ian J; Dale, Anders M; Andreassen, Ole A

    2017-10-01

    Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and

  6. Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD.

    Directory of Open Access Journals (Sweden)

    Carsten A Böger

    2011-09-01

    Full Text Available Family studies suggest a genetic component to the etiology of chronic kidney disease (CKD and end stage renal disease (ESRD. Previously, we identified 16 loci for eGFR in genome-wide association studies, but the associations of these single nucleotide polymorphisms (SNPs for incident CKD or ESRD are unknown. We thus investigated the association of these loci with incident CKD in 26,308 individuals of European ancestry free of CKD at baseline drawn from eight population-based cohorts followed for a median of 7.2 years (including 2,122 incident CKD cases defined as eGFR <60ml/min/1.73m(2 at follow-up and with ESRD in four case-control studies in subjects of European ancestry (3,775 cases, 4,577 controls. SNPs at 11 of the 16 loci (UMOD, PRKAG2, ANXA9, DAB2, SHROOM3, DACH1, STC1, SLC34A1, ALMS1/NAT8, UBE2Q2, and GCKR were associated with incident CKD; p-values ranged from p = 4.1e-9 in UMOD to p = 0.03 in GCKR. After adjusting for baseline eGFR, six of these loci remained significantly associated with incident CKD (UMOD, PRKAG2, ANXA9, DAB2, DACH1, and STC1. SNPs in UMOD (OR = 0.92, p = 0.04 and GCKR (OR = 0.93, p = 0.03 were nominally associated with ESRD. In summary, the majority of eGFR-related loci are either associated or show a strong trend towards association with incident CKD, but have modest associations with ESRD in individuals of European descent. Additional work is required to characterize the association of genetic determinants of CKD and ESRD at different stages of disease progression.

  7. Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. II. Mapping hybrid male sterility loci on the third chromosome.

    Science.gov (United States)

    Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C

    2003-08-01

    Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations.

  8. Identification of multiple genetic loci in the mouse controlling immobility time in the tail suspension and forced swimming tests.

    Science.gov (United States)

    Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi

    2015-05-01

    Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.

  9. Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function.

    Directory of Open Access Journals (Sweden)

    Dana B Hancock

    Full Text Available Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV(1, and its ratio to forced vital capacity (FEV(1/FVC. Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA of single nucleotide polymorphism (SNP and SNP-by-smoking (ever-smoking or pack-years associations on FEV(1 and FEV(1/FVC across 19 studies (total N = 50,047. We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest P(JMA = 5.00×10(-11, HLA-DQB1 and HLA-DQA2 (smallest P(JMA = 4.35×10(-9, and KCNJ2 and SOX9 (smallest P(JMA = 1.28×10(-8 were associated with FEV(1/FVC or FEV(1 in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.

  10. Characterization of new microsatellite loci for population genetic studies in the Smooth Cauliflower Coral (Stylophora sp.)

    KAUST Repository

    Banguera-Hinestroza, E.

    2013-01-09

    A total of one hundred microsatellites loci were selected from the draft genome of Stylophora pistillata and evaluated in previously characterized samples of Stylophora cf pistillata from the Red Sea. 17 loci were amplified successfully and tested in 24 individuals from samples belonging to a single population from the central region of the Red Sea. The number of alleles ranged from 3 to 15 alleles per locus, while observed heterozygosity ranged from 0. 292 to 0. 95. Six of these loci showed significant deviations from Hardy-Weinberg equilibrium (HWE) expectations, and 4/136 paired loci comparisons suggested linkage disequilibrium after Bonferroni corrections. After excluding loci with significant HWE deviation and evidence of null alleles, average genetic diversity over loci in the population studied (N = 24, Nloci = 11) was 0. 701 ± 0. 380. This indicates that these loci can be used effectively to evaluate genetic diversity and undertake population genetics studies in Stylophora sp. populations. 2013 The Author(s).

  11. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    NARCIS (Netherlands)

    N. Kato (Norihiro); M. Loh (Marie); F. Takeuchi (Fumihiko); N. Verweij (Niek); X. Wang (Xu); W. Zhang (Weihua); T. NKelly (Tanika); D. Saleheen; B. Lehne (Benjamin); I.M. Leach (Irene Mateo); A. Drong (Alexander); J. Abbott (James); S. Wahl (Simone); S.-T. Tan (Sian-Tsung); W.R. Scott (William R.); G. Campanella (Gianluca); M. Chadeau-Hyam (Marc); U. Afzal (Uzma); T.S. Ahluwalia (Tarunveer Singh); M.J. Bonder (Marc); P. Chen (Ping); A. Dehghan (Abbas); T.L. Edwards (Todd L.); T. Esko (Tõnu); M.J. Go (Min Jin); S.E. Harris (Sarah); J. Hartiala (Jaana); S. Kasela (Silva); A. Kasturiratne (Anuradhani); C.C. Khor; M.E. Kleber (Marcus); H. Li (Huaixing); Z.Y. Mok (Zuan Yu); M. Nakatochi (Masahiro); N.S. Sapari (Nur Sabrina); R. Saxena (Richa); A.F. Stewart (Alexandre F.); L. Stolk (Lisette); Y. Tabara (Yasuharu); A.L. Teh (Ai Ling); Y. Wu (Ying); J.-Y. Wu (Jer-Yuarn); Y. Zhang (Yi); I. Aits (Imke); A. Da Silva Couto Alves (Alexessander); S. Das (Shikta); R. Dorajoo (Rajkumar); J. CHopewell (Jemma); Y.K. Kim (Yun Kyoung); R. WKoivula (Robert); J. Luan (Jian'An); L.-P. Lyytikäinen (Leo-Pekka); Q. NNguyen (Quang); M.A. Pereira (Mark A); D. Postmus (Douwe); O. TRaitakari (Olli); M. Scannell Bryan (Molly); R.A. Scott (Robert); R. Sorice; V. Tragante (Vinicius); M. Traglia (Michela); J. White (Jon); K. Yamamoto (Ken); Y. Zhang (Yonghong); L.S. Adair (Linda); A. Ahmed (Alauddin); K. Akiyama (Koichi); R. Asif (Rasheed); T. Aung (Tin); I.E. Barroso (Inês); A. Bjonnes (Andrew); T.R. Braun (Timothy R.); H. Cai (Hui); L.-C. Chang (Li-Ching); C.-H. Chen; C-Y. Cheng (Ching-Yu); Y.-S. Chong (Yap-Seng); F.S. Collins (Francis); R. Courtney (Regina); G. Davies (Gail); G. Delgado; L.D. Do (Loi D.); P.A. Doevendans (Pieter); R.T. Gansevoort (Ron); Y. Gao; T.B. Grammer (Tanja B); N. Grarup (Niels); J. Grewal (Jagvir); D. Gu (D.); G. SWander (Gurpreet); A.L. Hartikainen; S.L. Hazen (Stanley); J. He (Jing); C.K. Heng (Chew-Kiat); E.J.A. Hixso (E. James Ames); A. Hofman (Albert); C. Hsu (Chris); W. Huang (Wei); L.L.N. Husemoen (Lise Lotte); J.-Y. Hwang (Joo-Yeon); S. Ichihara (Sahoko); M. Igase (Michiya); M. Isono (Masato); J.M. Justesen (Johanne M.); T. Katsuya (Tomohiro); M. GKibriya (Muhammad); Y.J. Kim; M. Kishimoto (Miyako); W.-P. Koh (Woon-Puay); K. Kohara (Katsuhiko); M. Kumari (Meena); K. Kwek (Kenneth); N.R. Lee (Nanette); J. Lee (Jeannette); J. Liao (Jie); W. Lieb (Wolfgang); D.C. Liewald (David C.); T. Matsubara (Tatsuaki); Y. Matsushita (Yumi); T. Meitinger (Thomas); E. Mihailov (Evelin); L. Milani (Lili); R. Mills (Rebecca); K. Mononen (Kari); M. Müller-Nurasyid (Martina); T. Nabika (Toru); E. Nakashima (Eitaro); H.K. Ng (Hong Kiat); K. Nikus (Kjell); T. Nutile; T. Ohkubo (Takayoshi); K. Ohnaka (Keizo); S. Parish (Sarah); L. Paternoster (Lavinia); H. Peng (Hao); A. Peters (Annette); S. TPham (Son); M.J. Pinidiyapathirage (Mohitha J.); M. Rahman (Mahfuzar); H. Rakugi (Hiromi); O. Rolandsson (Olov); M.A. Rozario (Michelle Ann); D. Ruggiero; C. Sala (Cinzia); R. Sarju (Ralhan); K. Shimokawa (Kazuro); H. Snieder (Harold); T. Sparsø (Thomas); W. Spiering (Wilko); J.M. Starr (John); D.J. Stott (David J.); D. OStram (Daniel); T. Sugiyama (Takao); S. Szymczak (Silke); W.H.W. Tang (W.H. Wilson); L. Tong (Lin); S. Trompet (Stella); V. Turjanmaa (Väinö); H. Ueshima (Hirotsugu); A.G. Uitterlinden (André); S. Umemura (Satoshi); M. Vaarasmaki (Marja); R.M. Dam (Rob Mvan); W.H. van Gilst (Wiek); D.J. van Veldhuisen (Dirk); J. Viikari (Jorma); M. Waldenberger (Melanie); Y. Wang (Yiqin); A. Wang (Aili); R. Wilson (Rory); T.Y. Wong (Tien Yin); Y.-B. Xiang (Yong-Bing); S. Yamaguchi (Shuhei); X. Ye (Xingwang); R. Young (Robin); T.L. Young (Terri); J.-M. Yuan (Jian-Min); X. Zhou (Xueya); F.W. Asselbergs (Folkert); M. Ciullo; R. Clarke (Robert); P. Deloukas (Panagiotis); A. Franke (Andre); W.F. Paul (W. Frank); S. Franks (Steve); Y. Friedlander (Yechiel); M.D. Gross (Myron D.); Z. Guo (Zhirong); T. Hansen (T.); M.-R. Jarvelin (Marjo-Riitta); T. Jørgensen (Torben); J.W. Jukema (Jan Wouter); M. Kähönen (Mika); H. Kajio (Hiroshi); M. Kivimaki (Mika); J.-Y. Lee (Jong-Young); T. Lehtimäki (Terho); A. Linneberg (Allan); T. Miki (Tetsuro); O. Pedersen (Oluf); N.J. Samani (Nilesh); T.I.A. Sørensen (Thorkild); R. Takayanagi (Ryoichi); D. Toniolo (Daniela); H. Ahsan (Habibul); H. Allayee (Hooman); Y.-T. Chen (Yuan-Tsong); J. Danesh (John); I.J. Deary (Ian J.); O.H. Franco (Oscar); L. Franke (Lude); B. THeijman (Bastiaan); J.D. Holbrook (Joanna D.); A.J. Isaacs (Aaron); B.-J. Kim (Bong-Jo); X. Lin (Xu); J. Liu (Jianjun); W. März (Winfried); A. Metspalu (Andres); K.L. Mohlke (Karen); K. Sangher; D. Harambir (Dharambir); X.-O. Shu (Xiao-Ou); J.B.J. van Meurs (Joyce); E.N. Vithana (Eranga); A.R. Wickremasinghe (Ananda); C. Wijmenga (Cisca); B.H.W. Wolffenbuttel (Bruce H.W.); M. Yokota (Mitsuhiro); W. Zheng (Wei); D. Zhu (Dingliang); P. Vineis (Paolo); S.A. Kyrtopoulos (Soterios A.); J.C.S. Kleinjans (Jos C.S.); M.I. McCarthy (Mark); R. Soong (Richie); C. Gieger (Christian); J. Scott (James); Y.Y. Teo (Yik Ying); J. He (Jiang); P. Elliott (Paul); E.S. Tai (Shyong); P. van der Harst (Pim); J.S. Kooner (Jaspal S.); J.C. Chambers (John)

    2015-01-01

    textabstractWe carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10 -11 to

  12. Genome-wide association study identifies novel breast cancer susceptibility loci

    Science.gov (United States)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  13. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia.

    Science.gov (United States)

    Ward, Joey; Strawbridge, Rona J; Bailey, Mark E S; Graham, Nicholas; Ferguson, Amy; Lyall, Donald M; Cullen, Breda; Pidgeon, Laura M; Cavanagh, Jonathan; Mackay, Daniel F; Pell, Jill P; O'Donovan, Michael; Escott-Price, Valentina; Smith, Daniel J

    2017-11-30

    Mood instability is a core clinical feature of affective and psychotic disorders. In keeping with the Research Domain Criteria approach, it may be a useful construct for identifying biology that cuts across psychiatric categories. We aimed to investigate the biological validity of a simple measure of mood instability and evaluate its genetic relationship with several psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, attention deficit hyperactivity disorder (ADHD), anxiety disorder and post-traumatic stress disorder (PTSD). We conducted a genome-wide association study (GWAS) of mood instability in 53,525 cases and 60,443 controls from UK Biobank, identifying four independently associated loci (on chromosomes 8, 9, 14 and 18), and a common single-nucleotide polymorphism (SNP)-based heritability estimate of ~8%. We found a strong genetic correlation between mood instability and MDD (r g  = 0.60, SE = 0.07, p = 8.95 × 10 -17 ) and a small but significant genetic correlation with both schizophrenia (r g  = 0.11, SE = 0.04, p = 0.01) and anxiety disorders (r g  = 0.28, SE = 0.14, p = 0.04), although no genetic correlation with BD, ADHD or PTSD was observed. Several genes at the associated loci may have a role in mood instability, including the DCC netrin 1 receptor (DCC) gene, eukaryotic translation initiation factor 2B subunit beta (eIF2B2), placental growth factor (PGF) and protein tyrosine phosphatase, receptor type D (PTPRD). Strengths of this study include the very large sample size, but our measure of mood instability may be limited by the use of a single question. Overall, this work suggests a polygenic basis for mood instability. This simple measure can be obtained in very large samples; our findings suggest that doing so may offer the opportunity to illuminate the fundamental biology of mood regulation.

  14. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    DEFF Research Database (Denmark)

    Kato, Norihiro; Loh, Marie; Takeuchi, Fumihiko

    2015-01-01

    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10(-11) to 5.0 × 10...

  15. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    NARCIS (Netherlands)

    Kato, Norihiro; Loh, Marie; Takeuchi, Fumihiko; Verweij, Niek; Wang, Xu; Zhang, Weihua; Kelly, Tanika N.; Saleheen, Danish; Lehne, Benjamin; Leach, Irene Mateo; Drong, Alexander W.; Abbott, James; Wahl, Simone; Tan, Sian-Tsung; Scott, William R.; Campanella, Gianluca; Chadeau-Hyam, Marc; Afzal, Uzma; Ahluwalia, Tarunveer S.; Bonder, Marc Jan; Chen, Peng; Dehghan, Abbas; Edwards, Todd L.; Esko, Tonu; Go, Min Jin; Harris, Sarah E.; Hartiala, Jaana; Kasela, Silva; Kasturiratne, Anuradhani; Khor, Chiea-Chuen; Kleber, Marcus E.; Li, Huaixing; Mok, Zuan Yu; Nakatochi, Masahiro; Sapari, Nur Sabrina; Saxena, Richa; Stewart, Alexandre F. R.; Stolk, Lisette; Tabara, Yasuharu; Teh, Ai Ling; Wu, Ying; Wu, Jer-Yuarn; Zhang, Yi; Aits, Imke; Alves, Alexessander Da Silva Couto; Das, Shikta; Dorajoo, Rajkumar; Hopewell, Jemma C.; Kim, Yun Kyoung; Koivula, Robert W.; Luan, Jian'an; Lyytikainen, Leo-Pekka; Nguyen, Quang N.; Pereira, Mark A.; Postmus, Iris; Raitakari, Olli T.; Bryan, Molly Scannell; Scott, Robert A.; Sorice, Rossella; Tragante, Vinicius; Traglia, Michela; White, Jon; Yamamoto, Ken; Zhang, Yonghong; Adair, Linda S.; Ahmed, Alauddin; Akiyama, Koichi; Asif, Rasheed; Aung, Tin; Barroso, Ines; Bjonnes, Andrew; Braun, Timothy R.; Cai, Hui; Chang, Li-Ching; Chen, Chien-Hsiun; Cheng, Ching-Yu; Chong, Yap-Seng; Collins, Rory; Courtney, Regina; Davies, Gail; Delgado, Graciela; Do, Loi D.; Doevendans, Pieter A.; Gansevoort, Ron T.; Gao, Yu-Tang; Grammer, Tanja B.; Grarup, Niels; Grewal, Jagvir; Gu, Dongfeng; Wander, Gurpreet S.; Hartikainen, Anna-Liisa; Hazen, Stanley L.; He, Jing; Heng, Chew-Kiat; Hixson, James E.; Hofman, Albert; Hsu, Chris; Huang, Wei; Husemoen, Lise L. N.; Hwang, Joo-Yeon; Ichihara, Sahoko; Igase, Michiya; Isono, Masato; Justesen, Johanne M.; Katsuy, Tomohiro; Kibriya, Muhammad G.; Kim, Young Jin; Kishimoto, Miyako; Koh, Woon-Puay; Kohara, Katsuhiko; Kumari, Meena; Kwek, Kenneth; Lee, Nanette R.; Lee, Jeannette; Liao, Jiemin; Lieb, Wolfgang; Liewald, David C. M.; Matsubara, Tatsuaki; Matsushita, Yumi; Meitinger, Thomas; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Mononen, Nina; Mueller-Nurasyid, Martina; Nabika, Toru; Nakashima, Eitaro; Ng, Hong Kiat; Nikus, Kjell; Nutile, Teresa; Ohkubo, Takayoshi; Ohnaka, Keizo; Parish, Sarah; Paternoster, Lavinia; Peng, Hao; Peters, Annette; Pham, Son T.; Pinidiyapathirage, Mohitha J.; Rahman, Mahfuzar; Rakugi, Hiromi; Rolandsson, Olov; Rozario, Michelle Ann; Ruggiero, Daniela; Sala, Cinzia F.; Sarju, Ralhan; Shimokawa, Kazuro; Snieder, Harold; Sparso, Thomas; Spiering, Wilko; Starr, John M.; Stott, David J.; Stram, Daniel O.; Sugiyama, Takao; Szymczak, Silke; Tang, W. H. Wilson; Tong, Lin; Trompet, Stella; Turjanmaa, Vaino; Ueshima, Hirotsugu; Uitterlinden, Andre G.; Umemura, Satoshi; Vaarasmaki, Marja; van Dam, Rob M.; van Gilst, Wiek H.; van Veldhuisen, Dirk J.; Viikari, Jorma S.; Waldenberger, Melanie; Wang, Yiqin; Wang, Aili; Wilson, Rory; Wong, Tien-Yin; Xiang, Yong-Bing; Yamaguchi, Shuhei; Ye, Xingwang; Young, Robin D.; Young, Terri L.; Yuan, Jian-Min; Zhou, Xueya; Asselbergs, Folkert W.; Ciullo, Marina; Clarke, Robert; Deloukas, Panos; Franke, Andre; Franks, Paul W.; Franks, Steve; Friedlander, Yechiel; Gross, Myron D.; Guo, Zhirong; Hansen, Torben; Jarvelin, Marjo-Riitta; Jorgensen, Torben; Jukema, J. Wouter; Kahonen, Mika; Kajio, Hiroshi; Kivimaki, Mika; Lee, Jong-Young; Lehtimaki, Terho; Linneberg, Allan; Miki, Tetsuro; Pedersen, Oluf; Samani, Nilesh J.; Sorensen, Thorkild I. A.; Takayanagi, Ryoichi; Toniolo, Daniela; Ahsan, Habibul; Allayee, Hooman; Chen, Yuan-Tsong; Danesh, John; Deary, Ian J.; Franco, Oscar H.; Franke, Lude; Heijman, Bastiaan T.; Holbrook, Joanna D.; Isaacs, Aaron; Kim, Bong-Jo; Lin, Xu; Liu, Jianjun; Maerz, Winfried; Metspalu, Andres; Mohlke, Karen L.; Sanghera, Dharambir K.; Shu, Xiao-Ou; van Meurs, Joyce B. J.; Vithana, Eranga; Wickremasinghe, Ananda R.; Wijmenga, Cisca; Wolffenbuttel, Bruce H. W.; Yokota, Mitsuhiro; Zheng, Wei; Zhu, Dingliang; Vineis, Paolo; Kyrtopoulos, Soterios A.; Kleinjans, Jos C. S.; McCarthy, Mark I.; Soong, Richie; Gieger, Christian; Scott, James; Teo, Yik-Ying; He, Jiang; Elliott, Paul; Tai, E. Shyong; van der Harst, Pim; Kooner, Jaspal S.; Chambers, John C.

    2015-01-01

    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 x 10(-11) to 5.0 x

  16. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    OpenAIRE

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behav...

  17. A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure

    NARCIS (Netherlands)

    Sung, Yun J.; Winkler, Thomas W.; de las Fuentes, Lisa; Bentley, Amy R.; Brown, Michael R.; Kraja, Aldi T.; Schwander, Karen; Ntalla, Ioanna; Guo, Xiuqing; Franceschini, Nora; Lu, Yingchang; Cheng, Ching-Yu; Sim, Xueling; Vojinovic, Dina; Marten, Jonathan; Musani, Solomon K.; Li, Changwei; Feitosa, Mary F.; Kilpelainen, Tuomas O.; Richard, Melissa A.; Noordam, Raymond; Aslibekyan, Stella; Aschard, Hugues; Bartz, Traci M.; Dorajoo, Rajkumar; Liu, Yongmei; Manning, Alisa K.; Rankinen, Tuomo; Smith, Albert Vernon; Tajuddin, Salman M.; Tayo, Bamidele O.; Warren, Helen R.; Zhao, Wei; Zhou, Yanhua; Matoba, Nana; Sofer, Tamar; Alver, Maris; Amini, Marzyeh; Boissel, Mathilde; Chai, Jin Fang; Chen, Xu; Divers, Jasmin; Gandin, Ilaria; Gao, Chuan; Giulianini, Franco; Goel, Anuj; Harris, Sarah E.; Hartwig, Fernando Pires; Horimoto, Andrea R. V. R.; Hsu, Fang-Chi; Jackson, Anne U.; Kahonen, Mika; Kasturiratne, Anuradhani; Kuhnel, Brigitte; Leander, Karin; Lee, Wen-Jane; Lin, Keng-Hung; Luan, Jian' an; McKenzie, Colin A.; He Meian,; Nelson, Christopher P.; Rauramaa, Rainer; Schupf, Nicole; Scott, Robert A.; Sheu, Wayne H. H.; Stancakova, Alena; Takeuchi, Fumihiko; van der Most, Peter J.; Varga, Tibor V.; Wang, Heming; Wang, Yajuan; Ware, Erin B.; Weiss, Stefan; Wen, Wanqing; Yanek, Lisa R.; Zhang, Weihua; Zhao, Jing Hua; Afaq, Saima; Alfred, Tamuno; Amin, Najaf; Arking, Dan; Aung, Tin; Barr, R. Graham; Bielak, Lawrence F.; Boerwinkle, Eric; Bottinger, Erwin P.; Braund, Peter S.; Brody, Jennifer A.; Broeckel, Ulrich; Cabrera, Claudia P.; Cade, Brian; Yu Caizheng,; Campbell, Archie; Canouil, Mickael; Chakravarti, Aravinda; Chauhan, Ganesh; Christensen, Kaare; Cocca, Massimiliano; Collins, Francis S.; Connell, John M.; de Mutsert, Renee; de Silva, H. Janaka; Debette, Stephanie; Dorr, Marcus; Duan, Qing; Eaton, Charles B.; Ehret, Georg; Evangelou, Evangelos; Faul, Jessica D.; Fisher, Virginia A.; Forouhi, Nita G.; Franco, Oscar H.; Friedlander, Yechiel; Gao, He; Gigante, Bruna; Graff, Misa; Gu, C. Charles; Gu, Dongfeng; Gupta, Preeti; Hagenaars, Saskia P.; Harris, Tamara B.; He, Jiang; Heikkinen, Sami; Heng, Chew-Kiat; Hirata, Makoto; Hofman, Albert; Howard, Barbara V.; Hunt, Steven; Irvin, Marguerite R.; Jia, Yucheng; Joehanes, Roby; Justice, Anne E.; Katsuya, Tomohiro; Kaufman, Joel; Kerrison, Nicola D.; Khor, Chiea Chuen; Koh, Woon-Puay; Koistinen, Heikki A.; Komulainen, Pirjo; Kooperberg, Charles; Krieger, Jose E.; Kubo, Michiaki; Kuusisto, Johanna; Langefeld, Carl D.; Langenberg, Claudia; Launer, Lenore J.; Lehne, Benjamin; Lewis, Cora E.; Li, Yize; Lim, Sing Hui; Lin, Shiow; Liu, Ching-Ti; Liu, Jianjun; Liu, Jingmin; Liu, Kiang; Liu, Yeheng; Loh, Marie; Lohman, Kurt K.; Long, Jirong; Louie, Tin; Magi, Reedik; Mahajan, Anubha; Meitinger, Thomas; Metspalu, Andres; Milani, Lili; Momozawa, Yukihide; Morris, Andrew P.; Mosley, Thomas H.; Munson, Peter; Murray, Alison D.; Nalls, Mike A.; Nasri, Ubaydah; Norris, Jill M.; North, Kari; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R.; Palmer, Nicholette D.; Pankow, James S.; Pedersen, Nancy L.; Peters, Annette; Peyser, Patricia A.; Polasek, Ozren; Raitakari, Olli T.; Renstrom, Frida; Rice, Treva K.; Ridker, Paul M.; Robino, Antonietta; Robinson, Jennifer G.; Rose, Lynda M.; Rudan, Igor; Sabanayagam, Charumathi; Salako, Babatunde L.; Sandow, Kevin; Schmidt, Carsten O.; Schreiner, Pamela J.; Scott, William R.; Seshadri, Sudha; Sever, Peter; Sitlani, Colleen M.; Smith, Jennifer A.; Snieder, Harold; Starr, John M.; Strauch, Konstantin; Tang, Hua; Taylor, Kent D.; Teo, Yik Ying; Tham, Yih Chung; Ultterlinden, Andre G.; Waldenberger, Melanie; Wang, Lihua; Wang, Ya X.; Bin Wei, Wen; Williams, Christine; Wilson, Gregory; Wojczynski, Mary K.; Yao, Jie; Yuan, Jian-Min; Zonderman, Alan B.; Becker, Diane M.; Boehnke, Michael; Bowden, Donald W.; Chambers, John C.; Chen, Yii-Der Ida; de Faire, Ulf; Deary, Ian J.; Esko, Tonu; Farrall, Martin; Forrester, Terrence; Franks, Paul W.; Freedman, Barry I.; Froguel, Philippe; Gasparini, Paolo; Gieger, Christian; Horta, Bernardo Lessa; Hung, Yi-Jen; Jonas, Jost B.; Kato, Norihiro; Kooner, Jaspal S.; Laakso, Markku; Lehtimaki, Terho; Liang, Kae-Woei; Magnusson, Patrik K. E.; Newman, Anne B.; Oldehinkel, Albertine J.; Pereira, Alexandre C.; Redline, Susan; Rettig, Rainer; Samani, Nilesh J.; Scott, James; Shu, Xiao-Ou; van der Harst, Pim; Wagenknecht, Lynne E.; Wareham, Nicholas J.; Watkins, Hugh; Weir, David R.; Wickremasinghe, Ananda R.; Wu, Tangchun; Zheng, Wei; Kamatani, Yoichiro; Laurie, Cathy C.; Bouchard, Claude; Cooper, Richard S.; Evans, Michele K.; Gudnason, Vilmundur; Kardia, Sharon L. R.; Kritchevsky, Stephen B.; Levy, Daniel; O'Connell, Jeff R.; Psaty, Bruce M.; van Dam, Rob M.; Sims, Mario; Arnett, Donna K.; Mook-Kanamori, Dennis O.; Kelly, Tanika N.; Fox, Ervin R.; Hayward, Caroline; Fornage, Myriam; Rotimi, Charles N.; Province, Michael A.; van Duijn, Cornelia M.; Tai, E. Shyong; Wong, Tien Yin; Loos, Ruth J. F.; Reiner, Alex P.; Rotter, Jerome I.; Zhu, Xiaofeng; Bierut, Laura J.; Gauderman, W. James; Caulfield, Mark J.; Elliott, Paul; Rice, Kenneth; Munroe, Patricia B.; Morrison, Alanna C.; Cupples, L. Adrienne; Rao, Dabeeru C.; Chasman, Daniel I.; Study, Lifelines Cohort

    2018-01-01

    Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed

  18. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Zhidong Tu

    Full Text Available Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6 and diabetes-susceptible (BTBR mouse strains made genetically obese by the Leptin(ob/ob mutation (Lep(ob. High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.

  19. A genome-wide association meta-analysis identifies new childhood obesity loci

    Science.gov (United States)

    Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, André; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M.A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St. Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeinera, Fernando; Uitterlinden, André G.; van Duijn, Cornelia M.; van der Valk, Ralf J.P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, William J.; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Mägi, Reedik; Boreham, Colin A.G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimäki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George; Ring, Susan M.; Kemp, John P.; Buxton, Jessica L.; Blakemore, Alexandra I.F.; Bustamante, Mariona; Guxens, Mònica; Hirschhorn, Joel N.; Gillman, Matthew W.; Kreiner-Møller, Eskil; Bisgaard, Hans; Gilliland, Frank D.; Heinrich, Joachim; Wheeler, Eleanor; Barroso, Inês; O'Rahilly, Stephen; Meirhaeghe, Aline; Sørensen, Thorkild I.A.; Power, Chris; Palmer, Lyle J.; Hinney, Anke; Widen, Elisabeth; Farooqi, I. Sadaf; McCarthy, Mark I.; Froguel, Philippe; Meyre, David; Hebebrand, Johannes; Jarvelin, Marjo-Riitta; Jaddoe, Vincent W.V.; Smith, George Davey; Hakonarson, Hakon; Grant, Struan F.A.

    2012-01-01

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1. PMID:22484627

  20. Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality.

    Directory of Open Access Journals (Sweden)

    Johannes Raffler

    2015-09-01

    Full Text Available Genome-wide association studies with metabolic traits (mGWAS uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3. Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13, pulmonary hypertension (CPS1, and ischemic stroke (XYLB. By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular

  1. A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure

    DEFF Research Database (Denmark)

    Sung, Yun J; Winkler, Thomas W; de Las Fuentes, Lisa

    2018-01-01

    Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genom...

  2. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    Science.gov (United States)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  3. Discovery and refinement of loci associated with lipid levels

    DEFF Research Database (Denmark)

    Willer, C. J.; Schmidt, E. M.; Sengupta, S.

    2013-01-01

    Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individ...... of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.......Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188......,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry...

  4. High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens.

    Science.gov (United States)

    Hu, Xin-Sheng; Yeh, Francis C; Hu, Yang; Deng, Li-Ting; Ennos, Richard A; Chen, Xiaoyang

    2017-02-22

    Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G st  = 0.05 ± 0.049). The smallest divergence is among African populations (G st  = 0.0081 ± 0.0025), with increased divergence among non-African populations (G st  = 0.0217 ± 0.0109) and then among African and non-African populations (G st  = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci.

  5. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Science.gov (United States)

    Ried, Janina S.; Jeff M., Janina; Chu, Audrey Y.; Bragg-Gresham, Jennifer L.; van Dongen, Jenny; Huffman, Jennifer E.; Ahluwalia, Tarunveer S.; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F.; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L.; Jackson, Anne U.; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L.; Nolte, Ilja M.; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M.; Salvi, Erika; Smith, Megan T.; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W.; Wang, Sophie R.; Wild, Sarah H.; Willems, Sara M.; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J. L.; Barlassina, Cristina; Bartz, Traci M.; Beilby, John; Bellis, Claire; Bergman, Richard N.; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W. K.; Chines, Peter S.; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J .C.; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G.; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G.; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A.; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S.; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G.; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L.; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E.; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M.; Kinnunen, Leena; Knekt, Paul B.; Koistinen, Heikki A.; Kolcic, Ivana; Kooner, Ishminder K.; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M.; Lichtner, Peter; Lindgren, Cecilia M.; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L.; Mcknight, Barbara; Mohlke, Karen L.; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E.; Morris, Andrew P.; Müller, Gabriele; Musk, Arthur W.; Narisu, Narisu; Ong, Ken K.; Oostra, Ben A.; Osmond, Clive; Palotie, Aarno; Pankow, James S.; Paternoster, Lavinia; Penninx, Brenda W.; Pichler, Irene; Pilia, Maria G.; Polašek, Ozren; Pramstaller, Peter P.; Raitakari, Olli T; Rankinen, Tuomo; Rao, D. C.; Rayner, Nigel W.; Ribel-Madsen, Rasmus; Rice, Treva K.; Richards, Marcus; Ridker, Paul M.; Rivadeneira, Fernando; Ryan, Kathy A.; Sanna, Serena; Sarzynski, Mark A.; Scholtens, Salome; Scott, Robert A.; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P.; Strauch, Konstantin; Stringham, Heather M.; Swertz, Morris A.; Swift, Amy J.; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J.; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S.; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M.; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W.; Wright, Alan F.; Yerges-Armstrong, Laura M.; Hua Zhao, Jing; Carola Zillikens, M.; Boomsma, Dorret I.; Bouchard, Claude; Chambers, John C.; Chasman, Daniel I.; Cusi, Daniele; Gansevoort, Ron T.; Gieger, Christian; Hansen, Torben; Hicks, Andrew A.; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S.; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Palmer, Lyle J.; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M.; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E. H.; Shudiner, Alan R.; Smit, Jan H.; Sørensen, Thorkild I. A.; Spector, Timothy D.; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J.; Watkins, Hugh; Wilson, James F.; Zeggini, Eleftheria; Abecasis, Goncalo R.; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; van Duijn, Cornelia M.; Fox, Caroline; Groop, Leif C.; Heid, Iris M.; Hunter, David J.; Kaplan, Robert C.; McCarthy, Mark I.; North, Kari E.; O'Connell, Jeffrey R.; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P.; Frayling, Timothy; Hirschhorn, Joel N.; Müller-Nurasyid, Martina; Loos, Ruth J. F.

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways. PMID:27876822

  6. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia

    OpenAIRE

    Berndt, S.I.; Skibola, C.F.; Joseph, V.; Camp, N.J.; Nieters, A.; Wang, Z.; Cozen, W.; Monnereau, A.; Wang, S.S.; Kelly, R.S.; Lan, Q.; Teras, L.R.; Chatterjee, N.; Chung, C.C.; Yeager, M.

    2013-01-01

    Genome-wide association studies (GWAS) have previously identified 13 loci associated with risk of chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we conducted the largest meta-analysis for CLL thus far, including four GWAS with a total of 3,100 individuals with CLL (cases) and 7,667 controls. In the meta-analysis, we identified ten independent associated SNPs in nine new loci at 10q23.31 (ACTA2 or FAS (ACTA2/FAS), P = 1.22 × 10...

  7. Novel association strategy with copy number variation for identifying new risk Loci of human diseases.

    Directory of Open Access Journals (Sweden)

    Xianfeng Chen

    2010-08-01

    Full Text Available Copy number variations (CNV are important causal genetic variations for human disease; however, the lack of a statistical model has impeded the systematic testing of CNVs associated with disease in large-scale cohort.Here, we developed a novel integrated strategy to test CNV-association in genome-wide case-control studies. We converted the single-nucleotide polymorphism (SNP signal to copy number states using a well-trained hidden Markov model. We mapped the susceptible CNV-loci through SNP site-specific testing to cope with the physiological complexity of CNVs. We also ensured the credibility of the associated CNVs through further window-based CNV-pattern clustering. Genome-wide data with seven diseases were used to test our strategy and, in total, we identified 36 new susceptible loci that are associated with CNVs for the seven diseases: 5 with bipolar disorder, 4 with coronary artery disease, 1 with Crohn's disease, 7 with hypertension, 9 with rheumatoid arthritis, 7 with type 1 diabetes and 3 with type 2 diabetes. Fifteen of these identified loci were validated through genotype-association and physiological function from previous studies, which provide further confidence for our results. Notably, the genes associated with bipolar disorder converged in the phosphoinositide/calcium signaling, a well-known affected pathway in bipolar disorder, which further supports that CNVs have impact on bipolar disorder.Our results demonstrated the effectiveness and robustness of our CNV-association analysis and provided an alternative avenue for discovering new associated loci of human diseases.

  8. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians

    DEFF Research Database (Denmark)

    Cho, Yoon Shin; Chen, Chien-Hsiun; Hu, Cheng

    2012-01-01

    We conducted a three-stage genetic study to identify susceptibility loci for type 2 diabetes (T2D) in east Asian populations. We followed our stage 1 meta-analysis of eight T2D genome-wide association studies (6,952 cases with T2D and 11,865 controls) with a stage 2 in silico replication analysis...... (5,843 cases and 4,574 controls) and a stage 3 de novo replication analysis (12,284 cases and 13,172 controls). The combined analysis identified eight new T2D loci reaching genome-wide significance, which mapped in or near GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16, MAEA, GCC1-PAX4, PSMD6 and ZFAND3...

  9. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk

    Science.gov (United States)

    Lindström, Sara; Thompson, Deborah J.; Paterson, Andrew D.; Li, Jingmei; Gierach, Gretchen L.; Scott, Christopher; Stone, Jennifer; Douglas, Julie A.; dos-Santos-Silva, Isabel; Fernandez-Navarro, Pablo; Verghase, Jajini; Smith, Paula; Brown, Judith; Luben, Robert; Wareham, Nicholas J.; Loos, Ruth J.F.; Heit, John A.; Pankratz, V. Shane; Norman, Aaron; Goode, Ellen L.; Cunningham, Julie M.; deAndrade, Mariza; Vierkant, Robert A.; Czene, Kamila; Fasching, Peter A.; Baglietto, Laura; Southey, Melissa C.; Giles, Graham G.; Shah, Kaanan P.; Chan, Heang-Ping; Helvie, Mark A.; Beck, Andrew H.; Knoblauch, Nicholas W.; Hazra, Aditi; Hunter, David J.; Kraft, Peter; Pollan, Marina; Figueroa, Jonine D.; Couch, Fergus J.; Hopper, John L.; Hall, Per; Easton, Douglas F.; Boyd, Norman F.; Vachon, Celine M.; Tamimi, Rulla M.

    2015-01-01

    Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5×10−8) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B, SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23, TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease susceptibility loci. PMID:25342443

  10. Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci

    DEFF Research Database (Denmark)

    Glubb, Dylan M; Johnatty, Sharon E; Quinn, Michael C J

    2017-01-01

    We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D...... and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity...... and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates...

  11. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    NARCIS (Netherlands)

    F.J. Couch (Fergus); X. Wang (Xing); L. McGuffog (Lesley); A. Lee (Andrew); C. Olswold (Curtis); K.B. Kuchenbaecker (Karoline); P. Soucy (Penny); Z. Fredericksen (Zachary); D. Barrowdale (Daniel); J. Dennis (Joe); M.M. Gaudet (Mia); E. Dicks (Ed); M. Kosel (Matthew); S. Healey (Sue); O. Sinilnikova (Olga); F. Bacot (Francois); D. Vincent (Daniel); F.B.L. Hogervorst (Frans); S. Peock (Susan); D. Stoppa-Lyonnet (Dominique); A. Jakubowska (Anna); P. Radice (Paolo); R.K. Schmutzler (Rita); S.M. Domchek (Susan); M. Piedmonte (Marion); C.F. Singer (Christian); E. Friedman (Eitan); M. Thomassen (Mads); T.V.O. Hansen (Thomas); S.L. Neuhausen (Susan); C. Szabo (Csilla); I. Blanco (Ignacio); M.H. Greene (Mark); B.Y. Karlan (Beth); J. Garber; C. Phelan (Catherine); J.N. Weitzel (Jeffrey); M. Montagna (Marco); E. Olah; I.L. Andrulis (Irene); A.K. Godwin (Andrew); D. Yannoukakos (Drakoulis); D. Goldgar (David); T. Caldes (Trinidad); H. Nevanlinna (Heli); A. Osorio (Ana); M.-B. Terry (Mary-Beth); M.B. Daly (Mary); E.J. van Rensburg (Elizabeth); U. Hamann (Ute); S.J. Ramus (Susan); A. Ewart-Toland (Amanda); M.A. Caligo (Maria); O.I. Olopade (Olofunmilayo); N. Tung (Nadine); K. Claes (Kathleen); M.S. Beattie (Mary); M.C. Southey (Melissa); E.N. Imyanitov (Evgeny); M. Tischkowitz (Marc); R. Janavicius (Ramunas); E.M. John (Esther); A. Kwong (Ava); O. Diez (Orland); J. Balmana (Judith); R.B. Barkardottir (Rosa); B.K. Arun (Banu); G. Rennert (Gad); S.-H. Teo (Soo-Hwang); P.A. Ganz (Patricia); I. Campbell (Ian); A.H. van der Hout (Annemarie); C.H.M. van Deurzen (Carolien); C.M. Seynaeve (Caroline); E.B. Gómez García (Encarna); F.E. van Leeuwen (F.); H. Meijers-Heijboer (Hanne); J.J. Gille (Johan); M.G.E.M. Ausems (Margreet); M.J. Blok (Marinus); M.J. Ligtenberg (Marjolijn); M.A. Rookus (Matti); P. Devilee (Peter); S. Verhoef; T.A.M. van Os (Theo); J.T. Wijnen (Juul); D. Frost (Debra); S. Ellis (Steve); E. Fineberg (Elena); R. Platte (Radka); D.G. Evans (Gareth); L. Izatt (Louise); R. Eeles (Rosalind); J.W. Adlard (Julian); D. Eccles (Diana); J. Cook (Jackie); C. Brewer (C.); F. Douglas (Fiona); S.V. Hodgson (Shirley); P.J. Morrison (Patrick); L. Side (Lucy); A. Donaldson (Alan); C. Houghton (Catherine); M.T. Rogers (Mark); H. Dorkins (Huw); J. Eason (Jacqueline); H. Gregory (Helen); E. McCann (Emma); A. Murray (Alexandra); A. Calender (Alain); A. Hardouin (Agnès); P. Berthet (Pascaline); C.D. Delnatte (Capucine); C. Nogues (Catherine); C. Lasset (Christine); C. Houdayer (Claude); D. Leroux (Dominique); E. Rouleau (Etienne); F. Prieur (Fabienne); F. Damiola (Francesca); H. Sobol (Hagay); I. Coupier (Isabelle); L. Vénat-Bouvet (Laurence); L. Castera (Laurent); M. Gauthier-Villars (Marion); M. Léone (Mélanie); P. Pujol (Pascal); S. Mazoyer (Sylvie); Y.-J. Bignon (Yves-Jean); E. Złowocka-Perłowska (Elzbieta); J. Gronwald (Jacek); J. Lubinski (Jan); K. Durda (Katarzyna); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); A.B. Spurdle (Amanda); A. Viel (Alessandra); B. Peissel (Bernard); B. Bonnani (Bernardo); G. Melloni (Giulia); L. Ottini (Laura); L. Papi (Laura); L. Varesco (Liliana); M.G. Tibiletti (Maria Grazia); P. Peterlongo (Paolo); S. Volorio (Sara); S. Manoukian (Siranoush); V. Pensotti (Valeria); N. Arnold (Norbert); C. Engel (Christoph); H. Deissler (Helmut); D. Gadzicki (Dorothea); P.A. Gehrig (Paola A.); K. Kast (Karin); K. Rhiem (Kerstin); A. Meindl (Alfons); D. Niederacher (Dieter); N. Ditsch (Nina); H. Plendl (Hansjoerg); S. Preisler-Adams (Sabine); S. Engert (Stefanie); C. Sutter (Christian); R. Varon-Mateeva (Raymonda); B. Wapenschmidt (Barbara); B.H.F. Weber (Bernhard); B. Arver (Brita Wasteson); M. Stenmark-Askmalm (M.); N. Loman (Niklas); R. Rosenquist (R.); Z. Einbeigi (Zakaria); K.L. Nathanson (Katherine); R. Rebbeck (Timothy); S.V. Blank (Stephanie); D.E. Cohn (David); G.C. Rodriguez (Gustavo); L. Small (Laurie); M. Friedlander (Michael); V.L. Bae-Jump (Victoria L.); A. Fink-Retter (Anneliese); C. Rappaport (Christine); D. Gschwantler-Kaulich (Daphne); G. Pfeiler (Georg); M.-K. Tea; N.M. Lindor (Noralane); B. Kaufman (Bella); S. Shimon Paluch (Shani); Y. Laitman (Yael); A.-B. Skytte (Anne-Bine); A-M. Gerdes (Anne-Marie); I.S. Pedersen (Inge Sokilde); S.T. Moeller (Sanne Traasdahl); T.A. Kruse (Torben); U.B. Jensen; J. Vijai (Joseph); K. Sarrel (Kara); M. Robson (Mark); N. Kauff (Noah); A.M. Mulligan (Anna Marie); G. Glendon (Gord); H. Ozcelik (Hilmi); B. Ejlertsen (Bent); F.C. Nielsen (Finn); L. Jønson (Lars); M.K. Andersen (Mette); Y.C. Ding (Yuan); L. Steele (Linda); L. Foretova (Lenka); A. Teulé (A.); C. Lazaro (Conxi); J. Brunet (Joan); M.A. Pujana (Miguel); P.L. Mai (Phuong); J.T. Loud (Jennifer); C.S. Walsh (Christine); K.J. Lester (Kathryn); S. Orsulic (Sandra); S. Narod (Steven); J. Herzog (Josef); S.R. Sand (Sharon); S. Tognazzo (Silvia); S. Agata (Simona); T. Vaszko (Tibor); J. Weaver (JoEllen); A. Stavropoulou (Alexandra); S.S. Buys (Saundra); A. Romero (Alfonso); M. de La Hoya (Miguel); K. Aittomäki (Kristiina); T.A. Muranen (Taru); M. Durán (Mercedes); W.K. Chung (Wendy); A. Lasa (Adriana); C.M. Dorfling (Cecelia); A. Miron (Alexander); J. Benítez (Javier); L. Senter (Leigha); D. Huo (Dezheng); S. Chan (Salina); A. Sokolenko (Anna); J. Chiquette (Jocelyne); L. Tihomirova (Laima); M.O.W. Friebel (Mark ); B.A. Agnarsson (Bjarni); K.H. Lu (Karen); F. Lejbkowicz (Flavio); P.A. James (Paul ); A.S. Hall (Alistair); A.M. Dunning (Alison); Y. Tessier (Yann); J. Cunningham (Jane); S. Slager (Susan); C. Wang (Chen); S. Hart (Stewart); K. Stevens (Kristen); J. Simard (Jacques); T. Pastinen (Tomi); V.S. Pankratz (Shane); K. Offit (Kenneth); D.F. Easton (Douglas); G. Chenevix-Trench (Georgia); A.C. Antoniou (Antonis); H. Thorne (Heather); E. Niedermayr (Eveline); Å. Borg (Åke); H. Olsson; H. Jernström (H.); K. Henriksson (Karin); K. Harbst (Katja); M. Soller (Maria); U. Kristoffersson (Ulf); A. Öfverholm (Anna); M. Nordling (Margareta); P. Karlsson (Per); A. von Wachenfeldt (Anna); A. Liljegren (Annelie); A. Lindblom (Annika); G.B. Bustinza; J. Rantala (Johanna); B. Melin (Beatrice); C.E. Ardnor (Christina Edwinsdotter); M. Emanuelsson (Monica); H. Ehrencrona (Hans); M.H. Pigg (Maritta ); S. Liedgren (Sigrun); M.A. Rookus (M.); S. Verhoef (S.); F.E. van Leeuwen (F.); M.K. Schmidt (Marjanka); J.L. de Lange (J.); J.M. Collée (Margriet); A.M.W. van den Ouweland (Ans); M.J. Hooning (Maartje); C.J. van Asperen (Christi); J.T. Wijnen (Juul); R.A.E.M. Tollenaar (Rob); P. Devilee (Peter); T.C.T.E.F. van Cronenburg; C.M. Kets; A.R. Mensenkamp (Arjen); R.B. van der Luijt (Rob); C.M. Aalfs (Cora); T.A.M. van Os (Theo); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); E.B. Gomez Garcia (Encarna); J.C. Oosterwijk (Jan); M.J. Mourits (Marjan); G.H. de Bock (Geertruida); S.D. Ellis (Steve); E. Fineberg (Elena); Z. Miedzybrodzka (Zosia); L. Jeffers (Lisa); T.J. Cole (Trevor); K.-R. Ong (Kai-Ren); J. Hoffman (Jonathan); M. James (Margaret); J. Paterson (Joan); A. Taylor (Amy); A. Murray (Anna); M.J. Kennedy (John); D.E. Barton (David); M.E. Porteous (Mary); S. Drummond (Sarah); C. Brewer (Carole); E. Kivuva (Emma); A. Searle (Anne); S. Goodman (Selina); R. Davidson (Rosemarie); V. Murday (Victoria); N. Bradshaw (Nicola); L. Snadden (Lesley); M. Longmuir (Mark); C. Watt (Catherine); S. Gibson (Sarah); E. Haque (Eshika); E. Tobias (Ed); A. Duncan (Alexis); L. Izatt (Louise); C. Jacobs (Chris); C. Langman (Caroline); A.F. Brady (Angela); S.A. Melville (Scott); K. Randhawa (Kashmir); J. Barwell (Julian); G. Serra-Feliu (Gemma); I.O. Ellis (Ian); F. Lalloo (Fiona); J. Taylor (James); A. Male (Alison); C. Berlin (Cheryl); R. Collier (Rebecca); F. Douglas (Fiona); O. Claber (Oonagh); I. Jobson (Irene); L.J. Walker (Lisa); D. McLeod (Diane); D. Halliday (Dorothy); S. Durell (Sarah); B. Stayner (Barbara); S. Shanley (Susan); N. Rahman (Nazneen); R. Houlston (Richard); A. Stormorken (Astrid); E.K. Bancroft (Elizabeth); E. Page (Elizabeth); A. Ardern-Jones (Audrey); K. Kohut (Kelly); J. Wiggins (Jennifer); E. Castro (Elena); S.R. Killick; S. Martin (Sue); D. Rea (Dan); A. Kulkarni (Anjana); O. Quarrell (Oliver); C. Bardsley (Cathryn); S. Goff (Sheila); G. Brice (Glen); L. Winchester (Lizzie); C. Eddy (Charlotte); V. Tripathi (Vishakha); V. Attard (Virginia); A. Lehmann (Anna); A. Lucassen (Anneke); G. Crawford (Gabe); D. McBride (Donna); S. Smalley (Sarah); S. Mazoyer (Sylvie); F. Damiola (Francesca); L. Barjhoux (Laure); C. Verny-Pierre (Carole); S. Giraud (Sophie); D. Stoppa-Lyonnet (Dominique); B. Buecher (Bruno); V. Moncoutier (Virginie); M. Belotti (Muriel); C. Tirapo (Carole); A. de Pauw (Antoine); B. Bressac-de Paillerets (Brigitte); O. Caron (Olivier); Y.-J. Bignon (Yves-Jean); N. Uhrhammer (Nancy); V. Bonadona (Valérie); S. Handallou (Sandrine); A. hardouin (Agnès); H. Sobol (Hagay); V. Bourdon (Violaine); T. Noguchi (Tetsuro); A. Remenieras (Audrey); F. Eisinger (François); J.-P. Peyrat; J. Fournier (Joëlle); F. Révillion (Françoise); P. Vennin (Philippe); C. Adenis (Claude); R. Lidereau (Rosette); L. Demange (Liliane); D.W. Muller (Danièle); J.P. Fricker (Jean Pierre); E. Barouk-Simonet (Emmanuelle); F. Bonnet (Françoise); V. Bubien (Virginie); N. Sevenet (Nicolas); M. Longy (Michel); C. Toulas (Christine); R. Guimbaud (Rosine); L. Gladieff (Laurence); V. Feillel (Viviane); H. Dreyfus (Hélène); C. Rebischung (Christine); M. Peysselon (Magalie); F. Coron (Fanny); L. Faivre (Laurence); M. Lebrun (Marine); C. Kientz (Caroline); S.F. Ferrer; M. Frenay (Marc); I. Mortemousque (Isabelle); F. Coulet (Florence); C. Colas (Chrystelle); F. Soubrier; J. Sokolowska (Johanna); M. Bronner (Myriam); H. Lynch (Henry); C.L. Snyder (Carrie); M. Angelakos (Maggie); J. Maskiell (Judi); G.S. Dite (Gillian)

    2013-01-01

    textabstractBRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer),

  12. Genetic loci for retinal arteriolar microcirculation.

    Directory of Open Access Journals (Sweden)

    Xueling Sim

    Full Text Available Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12 in combined meta-analysis of discovery and replication cohorts. In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.

  13. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese

    Science.gov (United States)

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-01-01

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10−13, BCAS3), 9p24.2 (rs12236871, P=1.48 × 10−10, RFX3) and 11p15.5 (rs179785, P=1.28 × 10−8, KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis. PMID:25967671

  14. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese.

    Science.gov (United States)

    Li, Changgui; Li, Zhiqiang; Liu, Shiguo; Wang, Can; Han, Lin; Cui, Lingling; Zhou, Jingguo; Zou, Hejian; Liu, Zhen; Chen, Jianhua; Cheng, Xiaoyu; Zhou, Zhaowei; Ding, Chengcheng; Wang, Meng; Chen, Tong; Cui, Ying; He, Hongmei; Zhang, Keke; Yin, Congcong; Wang, Yunlong; Xing, Shichao; Li, Baojie; Ji, Jue; Jia, Zhaotong; Ma, Lidan; Niu, Jiapeng; Xin, Ying; Liu, Tian; Chu, Nan; Yu, Qing; Ren, Wei; Wang, Xuefeng; Zhang, Aiqing; Sun, Yuping; Wang, Haili; Lu, Jie; Li, Yuanyuan; Qing, Yufeng; Chen, Gang; Wang, Yangang; Zhou, Li; Niu, Haitao; Liang, Jun; Dong, Qian; Li, Xinde; Mi, Qing-Sheng; Shi, Yongyong

    2015-05-13

    Gout is one of the most common types of inflammatory arthritis, caused by the deposition of monosodium urate crystals in and around the joints. Previous genome-wide association studies (GWASs) have identified many genetic loci associated with raised serum urate concentrations. However, hyperuricemia alone is not sufficient for the development of gout arthritis. Here we conduct a multistage GWAS in Han Chinese using 4,275 male gout patients and 6,272 normal male controls (1,255 cases and 1,848 controls were genome-wide genotyped), with an additional 1,644 hyperuricemic controls. We discover three new risk loci, 17q23.2 (rs11653176, P=1.36 × 10(-13), BCAS3), 9p24.2 (rs12236871, P=1.48 × 10(-10), RFX3) and 11p15.5 (rs179785, P=1.28 × 10(-8), KCNQ1), which contain inflammatory candidate genes. Our results suggest that these loci are most likely related to the progression from hyperuricemia to inflammatory gout, which will provide new insights into the pathogenesis of gout arthritis.

  15. Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Gene-Environment Interactions

    Science.gov (United States)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra; Dunning, Alison M.; Milne, Roger L.; Bojesen, Stig E.; Swerdlow, Anthony; Andrulis, Irene; Brenner, Hermann; Behrens, Sabine; Orr, Nicholas; Jones, Michael; Ashworth, Alan; Li, Jingmei; Cramp, Helen; Connley, Dan; Czene, Kamila; Darabi, Hatef; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Knight, Julia; Glendon, Gord; Mulligan, Anna M.; Dumont, Martine; Severi, Gianluca; Baglietto, Laura; Olson, Janet; Vachon, Celine; Purrington, Kristen; Moisse, Matthieu; Neven, Patrick; Wildiers, Hans; Spurdle, Amanda; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Hamann, Ute; Ko, Yon-Dschun; Dieffenbach, Aida K.; Arndt, Volker; Stegmaier, Christa; Malats, Núria; Arias Perez, JoséI.; Benítez, Javier; Flyger, Henrik; Nordestgaard, Børge G.; Truong, Théresè; Cordina-Duverger, Emilie; Menegaux, Florence; Silva, Isabel dos Santos; Fletcher, Olivia; Johnson, Nichola; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Braaf, Linde; Atsma, Femke; van den Broek, Alexandra J.; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Cox, Angela; Simard, Jacques; Giles, Graham G.; Lambrechts, Diether; Mannermaa, Arto; Brauch, Hiltrud; Guénel, Pascal; Peto, Julian; Fasching, Peter A.; Hopper, John; Flesch-Janys, Dieter; Couch, Fergus; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Schmidt, Marjanka K.; Hall, Per; Easton, Douglas F.; Chang-Claude, Jenny

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10−07), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m2 (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m2 or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10−05). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci. PMID:24248812

  16. Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis.

    Science.gov (United States)

    Knight, Jo; Spain, Sarah L; Capon, Francesca; Hayday, Adrian; Nestle, Frank O; Clop, Alex; Barker, Jonathan N; Weale, Michael E; Trembath, Richard C

    2012-12-01

    Psoriasis is a common, chronic, inflammatory skin disorder. A number of genetic loci have been shown to confer risk for psoriasis. Collectively, these offer an integrated model for the inherited basis for susceptibility to psoriasis that combines altered skin barrier function together with the dysregulation of innate immune pathogen sensing and adap-tive immunity. The major histocompatibility complex (MHC) harbours the psoriasis susceptibility region which exhibits the largest effect size, driven in part by variation contained on the HLA-Cw*0602 allele. However, the resolution of the number and genomic location of potential independent risk loci are hampered by extensive linkage disequilibrium across the region. We leveraged the power of large psoriasis case and control data sets and the statistical approach of conditional analysis to identify potential further association signals distributed across the MHC. In addition to the major loci at HLA-C (P = 2.20 × 10(-236)), we observed and replicated four additional independent signals for disease association, three of which are novel. We detected evidence for association at SNPs rs2507971 (P = 6.73 × 10(-14)), rs9260313 (P = 7.93 × 10(-09)), rs66609536 (P = 3.54 × 10(-07)) and rs380924 (P = 6.24 × 10(-06)), located within the class I region of the MHC, with each observation replicated in an independent sample (P ≤ 0.01). The previously identified locus is close to MICA, the other three lie near MICB, HLA-A and HCG9 (a non-coding RNA gene). The identification of disease associations with both MICA and MICB is particularly intriguing, since each encodes an MHC class I-related protein with potent immunological function.

  17. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk

    NARCIS (Netherlands)

    Couch, Fergus J.; Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Toland, Amanda Ewart; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per; Dunning, Alison M.; Tessier, Daniel; Cunningham, Julie; Slager, Susan L.; Wang, Chen; Hart, Steven; Stevens, Kristen; Simard, Jacques; Pastinen, Tomi; Pankratz, Vernon S.; Offit, Kenneth; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a

  18. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk

    DEFF Research Database (Denmark)

    Couch, Fergus J; Wang, Xianshu; McGuffog, Lesley

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a fur...

  19. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    NARCIS (Netherlands)

    Mckay, James D.; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeboeller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Marcus, Michael W.; Timens, Wim

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genomewide association

  20. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations.

    Directory of Open Access Journals (Sweden)

    Jingjing Liang

    2017-05-01

    Full Text Available Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10-8 for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4 and multiple-trait analyses identified one novel locus (FRMD3 for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension.

  1. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing

    Science.gov (United States)

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182

  2. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population

    Science.gov (United States)

    Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association stu...

  3. Genetics analysis of 38 STR loci in Uygur population from Southern Xinjiang of China.

    Science.gov (United States)

    Yuan, Li; Liu, Haibo; Liao, Qinxiang; Xu, Xu; Chen, Wen; Hao, Shicheng

    2016-05-01

    The allele frequencies and statistical parameters of 38 autosomal short tandem repeat (STR) loci were analyzed in the Uygur population from Southern Xinjiang of China with 290 unrelated individuals. The results show these 38 STR loci have high or medium power of discrimination and probabilities of exclusion. All loci are in Hardy-Weinberg equilibrium. The genetic distances between the Uygur population and other Chinese populations were also estimated.

  4. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N.J. Timpson (Nicholas); S.F.A. Grant (Struan); V.W.V. Jaddoe (Vincent); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation

  5. Application of Novel Polymorphic Microsatellite Loci Identified in the Korean Pacific Abalone (Haliotis diversicolor supertexta (Haliotidae in the Genetic Characterization of Wild and Released Populations

    Directory of Open Access Journals (Sweden)

    Seong Wan Hong

    2012-08-01

    Full Text Available The small abalone, Haliotis diversicolor supertexta, of the family Haliotidae, is one of the most important species of marine shellfish in eastern Asia. Over the past few decades, this species has drastically declined in Korea. Thus, hatchery-bred seeds have been released into natural coastal areas to compensate for the reduced fishery resources. However, information on the genetic background of the small abalone is scarce. In this study, 20 polymorphic microsatellite DNA markers were identified using next-generation sequencing techniques and used to compare allelic variation between wild and released abalone populations in Korea. Using high-throughput genomic sequencing, a total of 1516 (2.26%; average length of 385 bp reads containing simple sequence repeats were obtained from 86,011 raw reads. Among the 99 loci screened, 28 amplified successfully, and 20 were polymorphic. When comparing allelic variation between wild and released abalone populations, a total of 243 different alleles were observed, with 18.7 alleles per locus. High genetic diversity (mean heterozygosity = 0.81; mean allelic number = 15.5 was observed in both populations. A statistical analysis of the fixation index (FST and analysis of molecular variance (AMOVA indicated limited genetic differences between the two populations (FST = 0.002, p > 0.05. Although no significant reductions in the genetic diversity were found in the released population compared with the wild population (p > 0.05, the genetic diversity parameters revealed that the seeds released for stock abundance had a different genetic composition. These differences are likely a result of hatchery selection and inbreeding. Additionally, all the primer pair sets were effectively amplified in another congeneric species, H. diversicolor diversicolor, indicating that these primers are useful for both abalone species. These microsatellite loci

  6. Effects of multiple genetic loci on the pathogenesis from serum urate to gout

    OpenAIRE

    Zheng Dong; Jingru Zhou; Shuai Jiang; Yuan Li; Dongbao Zhao; Chengde Yang; Yanyun Ma; Yi Wang; Hongjun He; Hengdong Ji; Yajun Yang; Xiaofeng Wang; Xia Xu; Yafei Pang; Hejian Zou

    2017-01-01

    Gout is a common arthritis resulting from increased serum urate, and many loci have been identified that are associated with serum urate and gout. However, their influence on the progression from elevated serum urate levels to gout is unclear. This study aims to explore systematically the effects of genetic variants on the pathogenesis in approximately 5,000 Chinese individuals. Six genes (PDZK1, GCKR, TRIM46, HNF4G, SLC17A1, LRRC16A) were determined to be associated with serum urate (P FDR?

  7. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Cheng

    2009-05-01

    Full Text Available The prevalence of obesity (body mass index (BMI > or =30 kg/m(2 is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20% and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (rho = -0.042, P = 1.6x10(-7. In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = -3.94; and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = -4.62. Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46. Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI.

  8. Identification of novel genetic risk loci in Maltese dogs with necrotizing meningoencephalitis and evidence of a shared genetic risk across toy dog breeds.

    Directory of Open Access Journals (Sweden)

    Isabelle Schrauwen

    Full Text Available Necrotizing meningoencephalitis (NME affects toy and small breed dogs causing progressive, often fatal, inflammation and necrosis in the brain. Genetic risk loci for NME previously were identified in pug dogs, particularly associated with the dog leukocyte antigen (DLA class II complex on chromosome 12, but have not been investigated in other susceptible breeds. We sought to evaluate Maltese and Chihuahua dogs, in addition to pug dogs, to identify novel or shared genetic risk factors for NME development. Genome-wide association testing of single nucleotide polymorphisms (SNPs in Maltese dogs with NME identified 2 regions of genome-wide significance on chromosomes 4 (chr4:74522353T>A, p = 8.1×10-7 and 15 (chr15:53338796A>G, p = 1.5×10-7. Haplotype analysis and fine-mapping suggests that ILR7 and FBXW7, respectively, both important for regulation of immune system function, could be the underlying associated genes. Further evaluation of these regions and the previously identified DLA II locus across all three breeds, revealed an enrichment of nominal significant SNPs associated with chromosome 15 in pug dogs and DLA II in Maltese and Chihuahua dogs. Meta-analysis confirmed effect sizes the same direction in all three breeds for both the chromosome 15 and DLA II loci (p = 8.6×10-11 and p = 2.5×10-7, respectively. This suggests a shared genetic background exists between all breeds and confers susceptibility to NME, but effect sizes might be different among breeds. In conclusion, we identified the first genetic risk factors for NME development in the Maltese, chromosome 4 and chromosome 15, and provide evidence for a shared genetic risk between breeds associated with chromosome 15 and DLA II. Last, DLA II and IL7R both have been implicated in human inflammatory diseases of the central nervous system such as multiple sclerosis, suggesting that similar pharmacotherapeutic targets across species should be investigated.

  9. Identification of novel genetic risk loci in Maltese dogs with necrotizing meningoencephalitis and evidence of a shared genetic risk across toy dog breeds.

    Science.gov (United States)

    Schrauwen, Isabelle; Barber, Renee M; Schatzberg, Scott J; Siniard, Ashley L; Corneveaux, Jason J; Porter, Brian F; Vernau, Karen M; Keesler, Rebekah I; Matiasek, Kaspar; Flegel, Thomas; Miller, Andrew D; Southard, Teresa; Mariani, Christopher L; Johnson, Gayle C; Huentelman, Matthew J

    2014-01-01

    Necrotizing meningoencephalitis (NME) affects toy and small breed dogs causing progressive, often fatal, inflammation and necrosis in the brain. Genetic risk loci for NME previously were identified in pug dogs, particularly associated with the dog leukocyte antigen (DLA) class II complex on chromosome 12, but have not been investigated in other susceptible breeds. We sought to evaluate Maltese and Chihuahua dogs, in addition to pug dogs, to identify novel or shared genetic risk factors for NME development. Genome-wide association testing of single nucleotide polymorphisms (SNPs) in Maltese dogs with NME identified 2 regions of genome-wide significance on chromosomes 4 (chr4:74522353T>A, p = 8.1×10-7) and 15 (chr15:53338796A>G, p = 1.5×10-7). Haplotype analysis and fine-mapping suggests that ILR7 and FBXW7, respectively, both important for regulation of immune system function, could be the underlying associated genes. Further evaluation of these regions and the previously identified DLA II locus across all three breeds, revealed an enrichment of nominal significant SNPs associated with chromosome 15 in pug dogs and DLA II in Maltese and Chihuahua dogs. Meta-analysis confirmed effect sizes the same direction in all three breeds for both the chromosome 15 and DLA II loci (p = 8.6×10-11 and p = 2.5×10-7, respectively). This suggests a shared genetic background exists between all breeds and confers susceptibility to NME, but effect sizes might be different among breeds. In conclusion, we identified the first genetic risk factors for NME development in the Maltese, chromosome 4 and chromosome 15, and provide evidence for a shared genetic risk between breeds associated with chromosome 15 and DLA II. Last, DLA II and IL7R both have been implicated in human inflammatory diseases of the central nervous system such as multiple sclerosis, suggesting that similar pharmacotherapeutic targets across species should be investigated.

  10. Genetic analysis of 20 autosomal STR loci in the Miao ethnic group from Yunnan Province, Southwest China.

    Science.gov (United States)

    Zhang, Xiufeng; Hu, Liping; Du, Lei; Nie, Aiting; Rao, Min; Pang, Jing Bo; Xiran, Zeng; Nie, Shengjie

    2017-05-01

    The genetic polymorphisms of 20 autosomal short tandem repeat (STR) loci included in the PowerPlex ® 21 kit were evaluated from 748 unrelated healthy individuals of the Miao ethnic minority living in the Yunnan province in southwestern China. All of the loci reached Hardy-Weinberg equilibrium. These loci were examined to determine allele frequencies and forensic statistical parameters. The genetic relationship between the Miao population and other Chinese populations were also estimated. The combined discrimination power and probability of excluding paternity of the 20 STR loci were 0.999 999 999 999 999 999 999 991 26 and 0.999 999 975, respectively. The results suggested that the 20 STR loci were highly polymorphic, which makes them suitable for forensic personal identification and paternity testing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Relationship between genetic polymorphisms of 3 SNP loci in 5-HTT gene and paranoid schizophrenia].

    Science.gov (United States)

    Xuan, Jin-Feng; Ding, Mei; Pang, Hao; Xing, Jia-Xin; Sun, Yi-Hua; Yao, Jun; Zhao, Yi; Li, Chun-Mei; Wang, Bao-Jie

    2012-12-01

    To investigate the population genetic data of 3 SNP loci (rs25533, rs34388196 and rs1042173) of 5-hydroxytryptamine transporter (5-HTT) gene and the association with paranoid schizophrenia. Three SNP loci of 5-HTT gene were examined in 132 paranoid schizophrenia patients and 150 unrelated healthy individuals of Northern Chinese Han population by PCR-RFLP technique. The Hardy-Weinberg equilibrium test was performed using the chi-square test and the data of haplotype frequency and population genetics parameters were statistically analyzed. Among these three SNP loci, four haplotypes were obtained. There were no statistically significant differences between the patient group and the control group (P > 0.05). The DP values of the 3 SNP loci were 0.276, 0.502 and 0.502. The PIC of them were 0.151, 0.281 and 0.281. The PE of them were 0.014, 0.072 and 0.072. The three SNP loci and four haplotypes of 5-HTT gene have no association with paranoid schizophrenia, while the polymorphism still have high potential application in forensic practice.

  12. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    NARCIS (Netherlands)

    Ried, Janina S; Jeff M, Janina; Bragg-Gresham, Jennifer L; van Dongen, Jenny; Huffman, Jennifer E; Ahluwalia, Tarunveer S; Cadby, Gemma; Eklund, Niina; Eriksson, Joel; Esko, Tõnu; Feitosa, Mary F; Goel, Anuj; Gorski, Mathias; Hayward, Caroline; Heard-Costa, Nancy L; Jackson, Anne U; Jokinen, Eero; Kanoni, Stavroula; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Luan, Jian'an; Mägi, Reedik; Mahajan, Anubha; Mangino, Massimo; Medina-Gomez, Carolina; Monda, Keri L; Nolte, Ilja M; Pérusse, Louis; Prokopenko, Inga; Qi, Lu; Rose, Lynda M; Salvi, Erika; Smith, Megan T; Snieder, Harold; Stančáková, Alena; Ju Sung, Yun; Tachmazidou, Ioanna; Teumer, Alexander; Thorleifsson, Gudmar; van der Harst, Pim; Walker, Ryan W; Wang, Sophie R; Wild, Sarah H; Willems, Sara M; Wong, Andrew; Zhang, Weihua; Albrecht, Eva; Couto Alves, Alexessander; Bakker, Stephan J L; Barlassina, Cristina; Bartz, Traci M; Beilby, John; Bellis, Claire; Bergman, Richard N; Bergmann, Sven; Blangero, John; Blüher, Matthias; Boerwinkle, Eric; Bonnycastle, Lori L; Bornstein, Stefan R; Bruinenberg, Marcel; Campbell, Harry; Chen, Yii-Der Ida; Chiang, Charleston W K; Chines, Peter S; Collins, Francis S; Cucca, Fracensco; Cupples, L Adrienne; D'Avila, Francesca; de Geus, Eco J C; Dedoussis, George; Dimitriou, Maria; Döring, Angela; Eriksson, Johan G; Farmaki, Aliki-Eleni; Farrall, Martin; Ferreira, Teresa; Fischer, Krista; Forouhi, Nita G; Friedrich, Nele; Gjesing, Anette Prior; Glorioso, Nicola; Graff, Mariaelisa; Grallert, Harald; Grarup, Niels; Gräßler, Jürgen; Grewal, Jagvir; Hamsten, Anders; Harder, Marie Neergaard; Hartman, Catharina A; Hassinen, Maija; Hastie, Nicholas; Hattersley, Andrew Tym; Havulinna, Aki S; Heliövaara, Markku; Hillege, Hans; Hofman, Albert; Holmen, Oddgeir; Homuth, Georg; Hottenga, Jouke-Jan; Hui, Jennie; Husemoen, Lise Lotte; Hysi, Pirro G; Isaacs, Aaron; Ittermann, Till; Jalilzadeh, Shapour; James, Alan L; Jørgensen, Torben; Jousilahti, Pekka; Jula, Antti; Marie Justesen, Johanne; Justice, Anne E; Kähönen, Mika; Karaleftheri, Maria; Tee Khaw, Kay; Keinanen-Kiukaanniemi, Sirkka M; Kinnunen, Leena; Knekt, Paul B; Koistinen, Heikki A; Kolcic, Ivana; Kooner, Ishminder K; Koskinen, Seppo; Kovacs, Peter; Kyriakou, Theodosios; Laitinen, Tomi; Langenberg, Claudia; Lewin, Alexandra M; Lichtner, Peter; Lindgren, Cecilia M; Lindström, Jaana; Linneberg, Allan; Lorbeer, Roberto; Lorentzon, Mattias; Luben, Robert; Lyssenko, Valeriya; Männistö, Satu; Manunta, Paolo; Leach, Irene Mateo; McArdle, Wendy L; Mcknight, Barbara; Mohlke, Karen L; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Montasser, May E; Morris, Andrew P; Müller, Gabriele; Musk, Arthur W; Narisu, Narisu; Ong, Ken K; Oostra, Ben A; Osmond, Clive; Palotie, Aarno; Pankow, James S; Paternoster, Lavinia; Penninx, Brenda W; Pichler, Irene; Pilia, Maria G; Polašek, Ozren; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rayner, Nigel W; Ribel-Madsen, Rasmus; Rice, Treva K; Richards, Marcus; Ridker, Paul M; Rivadeneira, Fernando; Ryan, Kathy A; Sanna, Serena; Sarzynski, Mark A; Scholtens, Salome; Scott, Robert A; Sebert, Sylvain; Southam, Lorraine; Sparsø, Thomas Hempel; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Stolk, Ronald P; Strauch, Konstantin; Stringham, Heather M; Swertz, Morris A; Swift, Amy J; Tönjes, Anke; Tsafantakis, Emmanouil; van der Most, Peter J; Van Vliet-Ostaptchouk, Jana V; Vandenput, Liesbeth; Vartiainen, Erkki; Venturini, Cristina; Verweij, Niek; Viikari, Jorma S; Vitart, Veronique; Vohl, Marie-Claude; Vonk, Judith M; Waeber, Gérard; Widén, Elisabeth; Willemsen, Gonneke; Wilsgaard, Tom; Winkler, Thomas W; Wright, Alan F; Yerges-Armstrong, Laura M; Hua Zhao, Jing; Carola Zillikens, M; Boomsma, Dorret I; Bouchard, Claude; Chambers, John C; Chasman, Daniel I; Cusi, Daniele; Gansevoort, Ron T; Gieger, Christian; Hansen, Torben; Hicks, Andrew A; Hu, Frank; Hveem, Kristian; Jarvelin, Marjo-Riitta; Kajantie, Eero; Kooner, Jaspal S; Kuh, Diana; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lehtimäki, Terho; Metspalu, Andres; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J; Palmer, Lyle J; Pedersen, Oluf; Perola, Markus; Peters, Annette; Psaty, Bruce M; Puolijoki, Hannu; Rauramaa, Rainer; Rudan, Igor; Salomaa, Veikko; Schwarz, Peter E H; Shudiner, Alan R; Smit, Jan H; Sørensen, Thorkild I A; Spector, Timothy D; Stefansson, Kari; Stumvoll, Michael; Tremblay, Angelo; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; Völker, Uwe; Vollenweider, Peter; Wareham, Nicholas J; Watkins, Hugh; Wilson, James F; Zeggini, Eleftheria; Abecasis, Goncalo R; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; van Duijn, Cornelia M; Fox, Caroline; Groop, Leif C; Heid, Iris M; Hunter, David J; Kaplan, Robert C; McCarthy, Mark I; North, Kari E; O'Connell, Jeffrey R; Schlessinger, David; Thorsteinsdottir, Unnur; Strachan, David P; Frayling, Timothy; Hirschhorn, Joel N; Müller-Nurasyid, Martina; Loos, Ruth J F

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates

  13. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    DEFF Research Database (Denmark)

    Ried, Janina S; Jeff M, Janina; Chu, Audrey Y

    2016-01-01

    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculate...

  14. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    NARCIS (Netherlands)

    J.S. Ried (Janina); J. Jeff (Janina); A.Y. Chu (Audrey Y); Bragg-Gresham, J.L. (Jennifer L.); J. van Dongen (Jenny); J.E. Huffman (Jennifer); T.S. Ahluwalia (Tarunveer Singh); G. Cadby (Gemma); N. Eklund (Niina); J. Eriksson (Joel); T. Esko (Tõnu); M.F. Feitosa (Mary Furlan); A. Goel (Anuj); M. Gorski (Mathias); C. Hayward (Caroline); N.L. Heard-Costa (Nancy); A.U. Jackson (Anne); Jokinen, E. (Eero); S. Kanoni (Stavroula); K. Kristiansson (Kati); Z. Kutalik (Zoltán); J. Lahti (Jari); J. Luan (Jian'An); R. Mägi (Reedik); A. Mahajan (Anubha); M. Mangino (Massimo); M.C. Medina-Gomez (Carolina); K.L. Monda (Keri); I.M. Nolte (Ilja); L. Perusse (Louis); I. Prokopenko (Inga); Qi, L. (Lu); L.M. Rose (Lynda); Salvi, E. (Erika); Smith, M.T. (Megan T.); H. Snieder (Harold); Standáková, A. (Alena); Ju Sung, Y. (Yun); I. Tachmazidou (Ioanna); A. Teumer (Alexander); G. Thorleifsson (Gudmar); P. van der Harst (Pim); Walker, R.W. (Ryan W.); S.R. Wang (Sophie); S.H. Wild (Sarah); S.M. Willems (Sara); A. Wong (Andrew); W. Zhang (Weihua); E. Albrecht (Eva); A. Couto-Alves (Alexessander); S.J.L. Bakker (Stephan); Barlassina, C. (Cristina); T.M. Bartz (Traci M.); J.P. Beilby (John); C. Bellis (Claire); Bergman, R.N. (Richard N.); S.M. Bergmann (Sven); J. Blangero (John); M. Blüher (Matthias); E.A. Boerwinkle (Eric); L.L. Bonnycastle (Lori); S.R. Bornstein (Stefan R.); M. Bruinenberg (M.); H. Campbell (Harry); Y.-D.I. Chen (Yii-Der Ida); Chiang, C.W.K. (Charleston W. K.); P.S. Chines (Peter); F.S. Collins (Francis); Cucca, F. (Fracensco); L.A. Cupples (Adrienne); D'avila, F. (Francesca); E.J.C. de Geus (Eco); G.V. Dedoussis (George); M. Dimitriou (Maria); A. Döring (Angela); K. Hagen (Knut); A.-E. Farmaki (Aliki-Eleni); M. Farrall (Martin); T. Ferreira (Teresa); K. Fischer (Krista); N.G. Forouhi (Nita); N. Friedrich (Nele); A.P. Gjesing (Anette); N. Glorioso (Nicola); M.J. Graff (Maud J.L.); H. Grallert (Harald); N. Grarup (Niels); J. Gräßler (Jürgen); J. Grewal (Jagvir); A. Hamsten (Anders); Harder, M.N. (Marie Neergaard); Hartman, C.A. (Catharina A.); Hassinen, M. (Maija); N. Hastie (Nick); A.T. Hattersley (Andrew); A.S. Havulinna (Aki); M. Heliovaara (Markku); H.L. Hillege (Hans); A. Hofman (Albert); O.L. Holmen (Oddgeir); G. Homuth (Georg); J.J. Hottenga (Jouke Jan); J. Hui (Jennie); L.L.N. Husemoen (Lise Lotte); P.G. Hysi (Pirro); A.J. Isaacs (Aaron); T. Ittermann (Till); S. Jalilzadeh (Shapour); A. James (Alan); T. Jorgensen (Torben); P. Jousilahti (Pekka); A. Jula (Antti); Marie Justesen, J. (Johanne); A.E. Justice (Anne); M. Kähönen (Mika); M. Karaleftheri (Maria); Tee Khaw, K. (Kay); S. Keinanen-Kiukaanniemi (Sirkka); L. Kinnunen (Leena); P. Knekt; H. Koistinen (Heikki); I. Kolcic (Ivana); I.K. Kooner (Ishminder K.); S. Koskinen (Seppo); P. Kovacs (Peter); T. Kyriakou (Theodosios); Laitinen, T. (Tomi); C. Langenberg (Claudia); A. Lewin (Alex); P. Lichtner (Peter); C.M. Lindgren (Cecilia); J. Lindström (Jaana); A. Linneberg (Allan); R. Lorbeer (Roberto); M. Lorentzon (Mattias); R.N. Luben (Robert); V. Lyssenko (Valeriya); S. Männistö (Satu); P. Manunta (Paolo); I.M. Leach (Irene Mateo); W.L. McArdle (Wendy); Mcknight, B. (Barbara); K.L. Mohlke (Karen); E. Mihailov (Evelin); L. Milani (Lili); R. Mills (Rebecca); M.E. Montasser (May E.); A.P. Morris (Andrew); G. Müller (Gabriele); Musk, A.W. (Arthur W.); N. Narisu (Narisu); K.K. Ong (Ken K.); B.A. Oostra (Ben); C. Osmond (Clive); A. Palotie (Aarno); J.S. Pankow (James); L. Paternoster (Lavinia); B.W.J.H. Penninx (Brenda); I. Pichler (Irene); M.G. Pilia (Maria Grazia); O. Polasek (Ozren); P.P. Pramstaller (Peter Paul); O.T. Raitakari (Olli T.); T. Rankinen (Tuomo); Rao, D.C.; N.W. Rayner (Nigel William); Ribel-Madsen, R. (Rasmus); Rice, T.K. (Treva K.); Richards, M. (Marcus); P.M. Ridker (Paul); F. Rivadeneira Ramirez (Fernando); Ryan, K.A. (Kathy A.); S. Sanna (Serena); M.A. Sarzynski (Mark A.); S. Scholtens (Salome); R.A. Scott (Robert); S. Sebert (Sylvain); L. Southam (Lorraine); T. Sparsø (Thomas); V. Steinthorsdottir (Valgerdur); K. Stirrups (Kathy); R.P. Stolk (Ronald); K. Strauch (Konstantin); H.M. Stringham (Heather); M. Swertz (Morris); A.J. Swift (Amy); A. Tönjes (Anke); E. Tsafantakis (Emmanouil); P.J. van der Most (Peter); J.V. van Vliet-Ostaptchouk (Jana); L. Vandenput (Liesbeth); Vartiainen, E. (Erkki); C. Venturini (Cristina); N. Verweij (Niek); J. Viikari (Jorma); Vitart, V. (Veronique); M.-C. Vohl (Marie-Claude); J.M. Vonk (Judith); G. Waeber (Gérard); E. Widen (Elisabeth); G.A.H.M. Willemsen (Gonneke); T. Wilsgaard (Tom); T.W. Winkler (Thomas W.); A.F. Wright (Alan); L.M. Yerges-Armstrong (Laura); Zhao, J.H. (Jing Hua); M.C. Zillikens (Carola); D.I. Boomsma (Dorret); C. Bouchard (Claude); J.C. Chambers (John); D.I. Chasman (Daniel); D. Cusi (Daniele); R.T. Gansevoort (Ron); C. Gieger (Christian); T. Hansen (T.); A.A. Hicks (Andrew); Hu, F. (Frank); K. Hveem (Kristian); M.-R. Jarvelin (Marjo-Riitta); E. Kajantie (Eero); J.S. Kooner (Jaspal S.); D. Kuh (Diana); J. Kuusisto (Johanna); M. Laakso (Markku); T.A. Lakka (Timo); T. Lehtimäki (Terho); A. Metspalu (Andres); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); Palmer, L.J. (Lyle J.); O. Pedersen (Oluf); M. Perola (Markus); A. Peters (Annette); B.M. Psaty (Bruce); Puolijoki, H. (Hannu); R. Rauramaa (Rainer); I. Rudan (Igor); V. Salomaa (Veikko); P.E.H. Schwarz (Peter); Shudiner, A.R. (Alan R.); J.H. Smit (Jan); T.I.A. Sørensen (Thorkild); T.D. Spector (Timothy); J-A. Zwart (John-Anker); M. Stumvoll (Michael); Tremblay, A. (Angelo); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); Uusitupa, M. (Matti); U. Völker (Uwe); P. Vollenweider (Peter); N.J. Wareham (Nick); H. Watkins (Hugh); J.F. Wilson (James); E. Zeggini (Eleftheria); G.R. Abecasis (Gonçalo); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); C.M. van Duijn (Cornelia); C.S. Fox (Caroline); L. Groop (Leif); I.M. Heid (Iris); Hunter, D.J. (David J.); R.C. Kaplan (Robert); M.I. McCarthy (Mark); K.E. North (Kari); J.R. O´Connell; Schlessinger, D. (David); U. Thorsteinsdottir (Unnur); D.P. Strachan (David); T.M. Frayling (Timothy); J.N. Hirschhorn (Joel); M. Müller-Nurasyid (Martina); R.J.F. Loos (Ruth)

    2016-01-01

    textabstractLarge consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that

  15. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  16. Genetic polymorphisms of 20 autosomal STR loci in the Vietnamese population from Yunnan Province, Southwest China.

    Science.gov (United States)

    Zhang, Xiufeng; Hu, Liping; Du, Lei; Nie, Aiting; Rao, Min; Pang, Jing Bo; Nie, Shengjie

    2017-05-01

    The genetic polymorphisms of 20 autosomal short tandem repeat (STR) loci included in the PowerPlex® 21 kit were evaluated in 522 healthy unrelated Vietnamese from Yunnan, China. All of the loci reached the Hardy-Weinberg equilibrium. These loci were examined to determine allele frequencies and forensic statistical parameters. The combined discrimination power and probability of excluding paternity of the 20 STR loci were 0.999999999999999999999991 26 and 0.999999975, respectively. Results suggested that the 20 STR loci are highly polymorphic, which is suitable for forensic personal identification and paternity testing.

  17. Quantitative trait loci associated with anthracnose resistance in sorghum

    Science.gov (United States)

    With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...

  18. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease

    Science.gov (United States)

    Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Harold, Denise; Naj, Adam C; Sims, Rebecca; Bellenguez, Céline; Jun, Gyungah; DeStefano, Anita L; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Jones, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Gerrish, Amy; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Choi, Seung-Hoan; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Ramirez, Alfredo; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Morón, Francisco J; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Green, Robert; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; St George-Hyslop, Peter; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petroula; Collinge, John; Sorbi, Sandro; Sanchez-Garcia, Florentino; Fox, Nick C; Hardy, John; Deniz Naranjo, Maria Candida; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Mancuso, Michelangelo; Matthews, Fiona; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Bullido, Maria; Panza, Francesco; Caffarra, Paolo; Nacmias, Benedetta; Gilbert, John R; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O’Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Wang, Li-san; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Jones, Lesley; Haines, Jonathan L; Holmans, Peter A; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Farrer, Lindsay A; van Duijn, Cornelia M; Van Broeckhoven, Christine; Moskvina, Valentina; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D; Amouyel, Philippe

    2013-01-01

    Eleven susceptibility loci for late-onset Alzheimer’s disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls. In stage 2,11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer’s disease. PMID:24162737

  19. Genetic diversity of Pinus halepensis Mill. populations detected by RAPD loci

    OpenAIRE

    Gómez , Aránzazu; Alía , Ricardo; Bueno , María

    2001-01-01

    International audience; Genetic diversity of Pinus halepensis Mill. was analysed in nine populations (six Spanish populations and one each from Tunisia, France and Greece). Twenty four RAPD loci were amplified with 60 megagametophyte DNA samples from each population. Populations' contribution to Nei gene diversity and to allelic richness were calculated. Results showed higher within population genetic variation but also a $G_{{\\rm ST}} = 13.6\\%$ higher than those detected in previous studies ...

  20. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations.

    Directory of Open Access Journals (Sweden)

    Ayşe Demirkan

    study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.

  1. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  2. Genome-wide association studies identify four ER negative-specific breast cancer risk loci.

    Science.gov (United States)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather S; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van't; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Dos Santos Silva, Isabel; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Berg, David Van Den; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-Gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-04-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers.

  3. Genetic evidence of multiple loci in dystocia - difficult labour

    Directory of Open Access Journals (Sweden)

    Westgren Magnus

    2010-06-01

    Full Text Available Abstract Background Dystocia, difficult labour, is a common but also complex problem during childbirth. It can be attributed to either weak contractions of the uterus, a large infant, reduced capacity of the pelvis or combinations of these. Previous studies have indicated that there is a genetic component in the susceptibility of experiencing dystocia. The purpose of this study was to identify susceptibility genes in dystocia. Methods A total of 104 women in 47 families were included where at least two sisters had undergone caesarean section at a gestational length of 286 days or more at their first delivery. Study of medical records and a telephone interview was performed to identify subjects with dystocia. Whole-genome scanning using Affymetrix genotyping-arrays and non-parametric linkage (NPL analysis was made in 39 women exhibiting the phenotype of dystocia from 19 families. In 68 women re-sequencing was performed of candidate genes showing suggestive linkage: oxytocin (OXT on chromosome 20 and oxytocin-receptor (OXTR on chromosome 3. Results We found a trend towards linkage with suggestive NPL-score (3.15 on chromosome 12p12. Suggestive linkage peaks were observed on chromosomes 3, 4, 6, 10, 20. Re-sequencing of OXT and OXTR did not reveal any causal variants. Conclusions Dystocia is likely to have a genetic component with variations in multiple genes affecting the patient outcome. We found 6 loci that could be re-evaluated in larger patient cohorts.

  4. Genetic evidence of multiple loci in dystocia - difficult labour

    Science.gov (United States)

    2010-01-01

    Background Dystocia, difficult labour, is a common but also complex problem during childbirth. It can be attributed to either weak contractions of the uterus, a large infant, reduced capacity of the pelvis or combinations of these. Previous studies have indicated that there is a genetic component in the susceptibility of experiencing dystocia. The purpose of this study was to identify susceptibility genes in dystocia. Methods A total of 104 women in 47 families were included where at least two sisters had undergone caesarean section at a gestational length of 286 days or more at their first delivery. Study of medical records and a telephone interview was performed to identify subjects with dystocia. Whole-genome scanning using Affymetrix genotyping-arrays and non-parametric linkage (NPL) analysis was made in 39 women exhibiting the phenotype of dystocia from 19 families. In 68 women re-sequencing was performed of candidate genes showing suggestive linkage: oxytocin (OXT) on chromosome 20 and oxytocin-receptor (OXTR) on chromosome 3. Results We found a trend towards linkage with suggestive NPL-score (3.15) on chromosome 12p12. Suggestive linkage peaks were observed on chromosomes 3, 4, 6, 10, 20. Re-sequencing of OXT and OXTR did not reveal any causal variants. Conclusions Dystocia is likely to have a genetic component with variations in multiple genes affecting the patient outcome. We found 6 loci that could be re-evaluated in larger patient cohorts. PMID:20587075

  5. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    Science.gov (United States)

    Pharoah, Paul D. P.; Tsai, Ya-Yu; Ramus, Susan J.; Phelan, Catherine M.; Goode, Ellen L.; Lawrenson, Kate; Price, Melissa; Fridley, Brooke L.; Tyrer, Jonathan P.; Shen, Howard; Weber, Rachel; Karevan, Rod; Larson, Melissa C.; Song, Honglin; Tessier, Daniel C.; Bacot, François; Vincent, Daniel; Cunningham, Julie M.; Dennis, Joe; Dicks, Ed; Aben, Katja K.; Anton-Culver, Hoda; Antonenkova, Natalia; Armasu, Sebastian M.; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Birrer, Michael J.; Bloom, Greg; Bogdanova, Natalia; Brenton, James D.; Brinton, Louise A.; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Campbell, Ian; Carney, Michael E; Carvalho, Renato S.; Chang-Claude, Jenny; Chen, Y. Anne; Chen, Zhihua; Chow, Wong-Ho; Cicek, Mine S.; Coetzee, Gerhard; Cook, Linda S.; Cramer, Daniel W.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Edwards, Robert; Ekici, Arif B.; Fasching, Peter A.; Fenstermacher, David; Flanagan, James; Gao, Yu-Tang; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham; Gjyshi, Anxhela; Gore, Martin; Gronwald, Jacek; Guo, Qi; Halle, Mari K; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Estrid; Høgdall, Claus K.; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Kalli, Kimberly R.; Karlan, Beth Y.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kjaer, Susanne Krüger; Konecny, Gottfried E.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Nathan; Lee, Janet; Leminen, Arto; Lim, Boon Kiong; Lissowska, Jolanta; Lubiński, Jan; Lundvall, Lene; Lurie, Galina; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Nakanishi, Toru; Narod, Steven A.; Ness, Roberta B.; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara; Orlow, Irene; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jenny; Pike, Malcolm C; Poole, Elizabeth M; Qu, Xiaotao; Risch, Harvey A.; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo; Rzepecka, Iwona K; Salvesen, Helga B.; Schwaab, Ira; Severi, Gianluca; Shen, Hui; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Sieh, Weiva; Southey, Melissa C.; Spellman, Paul; Tajima, Kazuo; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S.; van Altena, Anne M.; Berg, David Van Den; Vergote, Ignace; Vierkant, Robert A.; Vitonis, Allison F.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wik, Elisabeth; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H; Yang, Hannah P.; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Goodman, Marc T.; Hall, Per; Easton, Douglas F; Pearce, Celeste L; Berchuck, Andrew; Chenevix-Trench, Georgia; Iversen, Edwin; Monteiro, Alvaro N.A.; Gayther, Simon A.; Schildkraut, Joellen M.; Sellers, Thomas A.

    2013-01-01

    Genome wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC) with another two loci being close to genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the United Kingdom. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. Follow-up genotyping was carried out in 18,174 cases and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 previously near genome-wide significance and identified three novel loci associated with risk; two loci associated with all EOC subtypes, at 8q21 (rs11782652, P=5.5×10-9) and 10p12 (rs1243180; P=1.8×10-8), and another locus specific to the serous subtype at 17q12 (rs757210; P=8.1×10-10). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility that implicates CHMP4C in the pathogenesis of ovarian cancer. PMID:23535730

  6. Genetic analysis of two STR loci (VWA and TPOX in the Iranian province of Khuzestan

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Foroughmand

    2014-08-01

    Conclusion: The examined STR loci in this study have proven a relatively high genetic variation in the Iranian population. The data could be used for construction of a forensic genetic database for the Iranian population.

  7. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    NARCIS (Netherlands)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindström, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomäki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Françoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I.-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Müller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; dos Santos Silva, Isabel; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, Joellen; Schulz-Wendtland, Rüdiger; Wilkens, Lynne R.; van den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of

  8. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified ...

  9. Large-scale association analysis identifies new risk loci for coronary artery disease

    NARCIS (Netherlands)

    Deloukas, Panos; Kanoni, Stavroula; Willenborg, Christina; Farrall, Martin; Assimes, Themistocles L.; Thompson, John R.; Ingelsson, Erik; Saleheen, Danish; Erdmann, Jeanette; Goldstein, Benjamin A.; Stirrups, Kathleen; König, Inke R.; Cazier, Jean-Baptiste; Johansson, Asa; Hall, Alistair S.; Lee, Jong-Young; Willer, Cristen J.; Chambers, John C.; Esko, Tõnu; Folkersen, Lasse; Goel, Anuj; Grundberg, Elin; Havulinna, Aki S.; Ho, Weang K.; Hopewell, Jemma C.; Eriksson, Niclas; Kleber, Marcus E.; Kristiansson, Kati; Lundmark, Per; Lyytikäinen, Leo-Pekka; Rafelt, Suzanne; Shungin, Dmitry; Strawbridge, Rona J.; Thorleifsson, Gudmar; Tikkanen, Emmi; van Zuydam, Natalie; Voight, Benjamin F.; Waite, Lindsay L.; Zhang, Weihua; Ziegler, Andreas; Absher, Devin; Altshuler, David; Balmforth, Anthony J.; Barroso, Inês; Braund, Peter S.; Burgdorf, Christof; Claudi-Boehm, Simone; Cox, David; Dimitriou, Maria; Do, Ron; Doney, Alex S. F.; El Mokhtari, NourEddine; Eriksson, Per; Fischer, Krista; Fontanillas, Pierre; Franco-Cereceda, Anders; Gigante, Bruna; Groop, Leif; Gustafsson, Stefan; Hager, Jörg; Hallmans, Göran; Han, Bok-Ghee; Hunt, Sarah E.; Kang, Hyun M.; Illig, Thomas; Kessler, Thorsten; Knowles, Joshua W.; Kolovou, Genovefa; Kuusisto, Johanna; Langenberg, Claudia; Langford, Cordelia; Leander, Karin; Lokki, Marja-Liisa; Lundmark, Anders; McCarthy, Mark I.; Meisinger, Christa; Melander, Olle; Mihailov, Evelin; Maouche, Seraya; Morris, Andrew D.; Müller-Nurasyid, Martina; Nikus, Kjell; Peden, John F.; Rayner, N. William; Rasheed, Asif; Rosinger, Silke; Rubin, Diana; Rumpf, Moritz P.; Schäfer, Arne; Sivananthan, Mohan; Song, Ci; Stewart, Alexandre F. R.; Tan, Sian-Tsung; Thorgeirsson, Gudmundur; van der Schoot, C. Ellen; Wagner, Peter J.; Wells, George A.; Wild, Philipp S.; Yang, Tsun-Po; Amouyel, Philippe; Arveiler, Dominique; Basart, Hanneke; Boehnke, Michael; Boerwinkle, Eric; Brambilla, Paolo; Cambien, Francois; Cupples, Adrienne L.; de Faire, Ulf; Dehghan, Abbas; Diemert, Patrick; Epstein, Stephen E.; Evans, Alun; Ferrario, Marco M.; Ferrières, Jean; Gauguier, Dominique; Go, Alan S.; Goodall, Alison H.; Gudnason, Villi; Hazen, Stanley L.; Holm, Hilma; Iribarren, Carlos; Jang, Yangsoo; Kähönen, Mika; Kee, Frank; Kim, Hyo-Soo; Klopp, Norman; Koenig, Wolfgang; Kratzer, Wolfgang; Kuulasmaa, Kari; Laakso, Markku; Laaksonen, Reijo; Lee, Ji-Young; Lind, Lars; Ouwehand, Willem H.; Parish, Sarah; Park, Jeong E.; Pedersen, Nancy L.; Peters, Annette; Quertermous, Thomas; Rader, Daniel J.; Salomaa, Veikko; Schadt, Eric; Shah, Svati H.; Sinisalo, Juha; Stark, Klaus; Stefansson, Kari; Trégouët, David-Alexandre; Virtamo, Jarmo; Wallentin, Lars; Wareham, Nicholas; Zimmermann, Martina E.; Nieminen, Markku S.; Hengstenberg, Christian; Sandhu, Manjinder S.; Pastinen, Tomi; Syvänen, Ann-Christine; Hovingh, G. Kees; Dedoussis, George; Franks, Paul W.; Lehtimäki, Terho; Metspalu, Andres; Zalloua, Pierre A.; Siegbahn, Agneta; Schreiber, Stefan; Ripatti, Samuli; Blankenberg, Stefan S.; Perola, Markus; Clarke, Robert; Boehm, Bernhard O.; O'Donnell, Christopher; Reilly, Muredach P.; März, Winfried; Collins, Rory; Kathiresan, Sekar; Hamsten, Anders; Kooner, Jaspal S.; Thorsteinsdottir, Unnur; Danesh, John; Palmer, Colin N. A.; Roberts, Robert; Watkins, Hugh; Schunkert, Heribert; Samani, Nilesh J.

    2013-01-01

    Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2)

  10. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations

    OpenAIRE

    Liang, Jingjing; Le, Thu H.; Edwards, Digna R. Velez; Tayo, Bamidele O.; Gaulton, Kyle J.; Smith, Jennifer A.; Lu, Yingchang; Jensen, Richard A.; Chen, Guanjie; Yanek, Lisa R.; Schwander, Karen; Tajuddin, Salman M.; Sofer, Tamar; Kim, Wonji; Kayima, James

    2017-01-01

    © 2017 Public Library of Science. All Rights Reserved. Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genom...

  11. EXPRESSION OF GENETIC LOCI IN THE PERIPHERAL BLOOD MONONUCLEAR FRACTION FROM PATIENTS WITH PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    M. I. Kogan

    2014-08-01

    Full Text Available The early diagnosis and radical treatment of aggressive prostate cancers (PC is an effective way of improving survival and quality of life in patients. To develop mini-invasive tests is one of the ways of solving the problem. The cells of a peripheral blood mononuclear fraction in the expression patterns of their genetic loci reflect the presence or absence of cancers, including information on therapeutic effectiveness. RT-PRC was used to study the relative expression of 15 genetic loci in a chromosome and one locus of mitochondrial DNA in the cells of the peripheral blood mononuclear fraction in patients with PC or benign prostate hyperplasia and in healthy men. The genetic locus patterns whose change may be of informative value for differential diagnosis in patients with different stages of PC were revealed. The authors studied the relationship and showed the prognostic role and non-relationship of the altered transcriptional activity of loci in the TP53, GSTP1, and IL10 genes in PC to the changes in prostate-specific antigen the level with 90 % specificity and 93 % specificity.

  12. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    Science.gov (United States)

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  13. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    Directory of Open Access Journals (Sweden)

    Shengli Jing

    Full Text Available Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens is the most destructive rice (Oryza sativa pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5 and 14 (Qgr14. This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for

  14. Haplotype and genetic relationship of 27 Y-STR loci in Han population of Chaoshan area of China

    Directory of Open Access Journals (Sweden)

    Qing-hua TIAN

    2017-04-01

    Full Text Available Objective  To investigate the genetic polymorphisms of 27 Y-chromosomal short tandem repeats (Y-STR loci included in Yfiler® Plus kit in Han population of Chaoshan area, and explore the population genetic relationships and evaluate its application value on forensic medicine. Methods  By detecting 795 unrelated Chaoshan Han males with Yfiler® Plus kit, haplotype frequencies and population genetics parameters of the 27 Y-STR loci were statistically analyzed and compared with available data of other populations from different races and regions for analyzing the genetic distance and clustering relation of Chaoshan Han population. Results  Seven hundred and eighty-seven different haplotypes were observed in 795 unrelated male individuals, of which 779 haplotypes were unique, and 8 haplotypes occurred twice. The haplotype diversity (HD was 0.999975 with discriminative capacity (DC of 98.99%. The gene diversity (GD at the 27 Y-STR loci ranged from 0.3637(DYS391 to 0.9559(DYS385a/b. Comparing with Asian reference populations, the genetic distance (Rst between Chaoshan Han and Guangdong Han was the smallest (0.0036, while it was relatively larger between Chaoshan Han and Gansu Tibetan population (0.0935. The multi-dimensional scaling (MDS plot based on Rst values was similar to the results of clustering analysis. Conclusion  Multiplex detection of the 27 Y-STR loci reveals a highly polymorphic genetic distribution in Chaoshan Han population, which demonstrates the important significance of Yfiler® Plus kit for establishing a Y-STR database, studying population genetics, and for good practice in forensic medicine. DOI: 10.11855/j.issn.0577-7402.2017.03.08

  15. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    Science.gov (United States)

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  16. Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum).

    Science.gov (United States)

    Liu, Weizhen; Maccaferri, Marco; Chen, Xianming; Laghetti, Gaetano; Pignone, Domenico; Pumphrey, Michael; Tuberosa, Roberto

    2017-11-01

    SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.

  17. Loci influencing blood pressure identified using a cardiovascular gene-centric array.

    Science.gov (United States)

    Ganesh, Santhi K; Tragante, Vinicius; Guo, Wei; Guo, Yiran; Lanktree, Matthew B; Smith, Erin N; Johnson, Toby; Castillo, Berta Almoguera; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C; Farrall, Martin; Fischer, Mary E; Franceschini, Nora; Gaunt, Tom R; Gho, Johannes M I H; Gieger, Christian; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E; Mateo Leach, Irene; McDonough, Caitrin W; Meijs, Matthijs F L; Mellander, Olle; Molony, Cliona M; Nolte, Ilja M; Padmanabhan, Sandosh; Price, Tom S; Rajagopalan, Ramakrishnan; Shaffer, Jonathan; Shah, Sonia; Shen, Haiqing; Soranzo, Nicole; van der Most, Peter J; Van Iperen, Erik P A; Van Setten, Jessica; Van Setten, Jessic A; Vonk, Judith M; Zhang, Li; Beitelshees, Amber L; Berenson, Gerald S; Bhatt, Deepak L; Boer, Jolanda M A; Boerwinkle, Eric; Burkley, Ben; Burt, Amber; Chakravarti, Aravinda; Chen, Wei; Cooper-Dehoff, Rhonda M; Curtis, Sean P; Dreisbach, Albert; Duggan, David; Ehret, Georg B; Fabsitz, Richard R; Fornage, Myriam; Fox, Ervin; Furlong, Clement E; Gansevoort, Ron T; Hofker, Marten H; Hovingh, G Kees; Kirkland, Susan A; Kottke-Marchant, Kandice; Kutlar, Abdullah; Lacroix, Andrea Z; Langaee, Taimour Y; Li, Yun R; Lin, Honghuang; Liu, Kiang; Maiwald, Steffi; Malik, Rainer; Murugesan, Gurunathan; Newton-Cheh, Christopher; O'Connell, Jeffery R; Onland-Moret, N Charlotte; Ouwehand, Willem H; Palmas, Walter; Penninx, Brenda W; Pepine, Carl J; Pettinger, Mary; Polak, Joseph F; Ramachandran, Vasan S; Ranchalis, Jane; Redline, Susan; Ridker, Paul M; Rose, Lynda M; Scharnag, Hubert; Schork, Nicholas J; Shimbo, Daichi; Shuldiner, Alan R; Srinivasan, Sathanur R; Stolk, Ronald P; Taylor, Herman A; Thorand, Barbara; Trip, Mieke D; van Duijn, Cornelia M; Verschuren, W Monique; Wijmenga, Cisca; Winkelmann, Bernhard R; Wyatt, Sharon; Young, J Hunter; Boehm, Bernhard O; Caulfield, Mark J; Chasman, Daniel I; Davidson, Karina W; Doevendans, Pieter A; Fitzgerald, Garret A; Gums, John G; Hakonarson, Hakon; Hillege, Hans L; Illig, Thomas; Jarvik, Gail P; Johnson, Julie A; Kastelein, John J P; Koenig, Wolfgang; März, Winfried; Mitchell, Braxton D; Murray, Sarah S; Oldehinkel, Albertine J; Rader, Daniel J; Reilly, Muredach P; Reiner, Alex P; Schadt, Eric E; Silverstein, Roy L; Snieder, Harold; Stanton, Alice V; Uitterlinden, André G; van der Harst, Pim; van der Schouw, Yvonne T; Samani, Nilesh J; Johnson, Andrew D; Munroe, Patricia B; de Bakker, Paul I W; Zhu, Xiaofeng; Levy, Daniel; Keating, Brendan J; Asselbergs, Folkert W

    2013-04-15

    Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped ∼50 000 single-nucleotide polymorphisms (SNPs) that capture variation in ∼2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P < 2.4 × 10(-6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.

  18. Genetic loci involved in antibody response to Mycobacterium avium ssp. paratuberculosis in cattle.

    Directory of Open Access Journals (Sweden)

    Giulietta Minozzi

    Full Text Available BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP causes chronic enteritis in a wide range of animal species. In cattle, MAP causes a chronic disease called Johne's disease, or paratuberculosis, that is not treatable and the efficacy of vaccine control is controversial. The clinical phase of the disease is characterised by diarrhoea, weight loss, drop in milk production and eventually death. Susceptibility to MAP infection is heritable with heritability estimates ranging from 0.06 to 0.10. There have been several studies over the last few years that have identified genetic loci putatively associated with MAP susceptibility, however, with the availability of genome-wide high density SNP maker panels it is now possible to carry out association studies that have higher precision. METHODOLOGY/PRINCIPAL FINDINGS: The objective of the current study was to localize genes having an impact on Johne's disease susceptibility using the latest bovine genome information and a high density SNP panel (Illumina BovineSNP50 BeadChip to perform a case/control, genome-wide association analysis. Samples from MAP case and negative controls were selected from field samples collected in 2007 and 2008 in the province of Lombardy, Italy. Cases were defined as animals serologically positive for MAP by ELISA. In total 966 samples were genotyped: 483 MAP ELISA positive and 483 ELISA negative. Samples were selected randomly among those collected from 119 farms which had at least one positive animal. CONCLUSION/SIGNIFICANCE: THE ANALYSIS OF THE GENOTYPE DATA IDENTIFIED SEVERAL CHROMOSOMAL REGIONS ASSOCIATED WITH DISEASE STATUS: a region on chromosome 12 with high significance (P<5x10(-6, while regions on chromosome 9, 11, and 12 had moderate significance (P<5x10(-5. These results provide evidence for genetic loci involved in the humoral response to MAP. Knowledge of genetic variations related to susceptibility will facilitate the incorporation of this information

  19. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    DEFF Research Database (Denmark)

    Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J

    2013-01-01

    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24...

  20. Genome-wide association studies identify four ER negative–specific breast cancer risk loci

    Science.gov (United States)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather s; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van’t; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Silva, Isabel dos Santos; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; Mclean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; Van den Ouweland, Ans M W; Van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-01-01

    Estrogen receptor (ER)-negative tumors represent 20–30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry1. The etiology2 and clinical behavior3 of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition4. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10−12 and LGR6, P = 1.4 × 10−8), 2p24.1 (P = 4.6 × 10−8) and 16q12.2 (FTO, P = 4.0 × 10−8), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers. PMID:23535733

  1. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses

    Science.gov (United States)

    Derringer, Jaime; Gratten, Jacob; Lee, James J; Liu, Jimmy Z; de Vlaming, Ronald; Ahluwalia, Tarunveer S; Buchwald, Jadwiga; Cavadino, Alana; Frazier-Wood, Alexis C; Davies, Gail; Furlotte, Nicholas A; Garfield, Victoria; Geisel, Marie Henrike; Gonzalez, Juan R; Haitjema, Saskia; Karlsson, Robert; van der Laan, Sander W; Ladwig, Karl-Heinz; Lahti, Jari; van der Lee, Sven J; Miller, Michael B; Lind, Penelope A; Liu, Tian; Matteson, Lindsay; Mihailov, Evelin; Minica, Camelia C; Nolte, Ilja M; Mook-Kanamori, Dennis O; van der Most, Peter J; Oldmeadow, Christopher; Qian, Yong; Raitakari, Olli; Rawal, Rajesh; Realo, Anu; Rueedi, Rico; Schmidt, Börge; Smith, Albert V; Stergiakouli, Evie; Tanaka, Toshiko; Taylor, Kent; Thorleifsson, Gudmar; Wedenoja, Juho; Wellmann, Juergen; Westra, Harm-Jan; Willems, Sara M; Zhao, Wei; Amin, Najaf; Bakshi, Andrew; Bergmann, Sven; Bjornsdottir, Gyda; Boyle, Patricia A; Cherney, Samantha; Cox, Simon R; Davis, Oliver S P; Ding, Jun; Direk, Nese; Eibich, Peter; Emeny, Rebecca T; Fatemifar, Ghazaleh; Faul, Jessica D; Ferrucci, Luigi; Forstner, Andreas J; Gieger, Christian; Gupta, Richa; Harris, Tamara B; Harris, Juliette M; Holliday, Elizabeth G; Hottenga, Jouke-Jan; De Jager, Philip L; Kaakinen, Marika A; Kajantie, Eero; Karhunen, Ville; Kolcic, Ivana; Kumari, Meena; Launer, Lenore J; Franke, Lude; Li-Gao, Ruifang; Liewald, David C; Koini, Marisa; Loukola, Anu; Marques-Vidal, Pedro; Montgomery, Grant W; Mosing, Miriam A; Paternoster, Lavinia; Pattie, Alison; Petrovic, Katja E; Pulkki-Råback, Laura; Quaye, Lydia; Räikkönen, Katri; Rudan, Igor; Scott, Rodney J; Smith, Jennifer A; Sutin, Angelina R; Trzaskowski, Maciej; Vinkhuyzen, Anna E; Yu, Lei; Zabaneh, Delilah; Attia, John R; Bennett, David A; Berger, Klaus; Bertram, Lars; Boomsma, Dorret I; Snieder, Harold; Chang, Shun-Chiao; Cucca, Francesco; Deary, Ian J; van Duijn, Cornelia M; Eriksson, Johan G; Bültmann, Ute; de Geus, Eco J C; Groenen, Patrick J F; Gudnason, Vilmundur; Hansen, Torben; Hartman, Catharine A; Haworth, Claire M A; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Hyppönen, Elina; Iacono, William G; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L R; Keltikangas-Järvinen, Liisa; Kraft, Peter; Kubzansky, Laura D; Lehtimäki, Terho; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; Metspalu, Andres; Mills, Melinda; de Mutsert, Renée; Oldehinkel, Albertine J; Pasterkamp, Gerard; Pedersen, Nancy L; Plomin, Robert; Polasek, Ozren; Power, Christine; Rich, Stephen S; Rosendaal, Frits R; den Ruijter, Hester M; Schlessinger, David; Schmidt, Helena; Svento, Rauli; Schmidt, Reinhold; Alizadeh, Behrooz Z; Sørensen, Thorkild I A; Spector, Tim D; Starr, John M; Stefansson, Kari; Steptoe, Andrew; Terracciano, Antonio; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tiemeier, Henning; Uitterlinden, André G; Vollenweider, Peter; Wagner, Gert G; Weir, David R; Yang, Jian; Conley, Dalton C; Smith, George Davey; Hofman, Albert; Johannesson, Magnus; Laibson, David I; Medland, Sarah E; Meyer, Michelle N; Pickrell, Joseph K; Esko, Tõnu; Krueger, Robert F; Beauchamp, Jonathan P; Koellinger, Philipp D; Benjamin, Daniel J; Bartels, Meike; Cesarini, David

    2016-01-01

    We conducted genome-wide association studies of three phenotypes: subjective well-being (N = 298,420), depressive symptoms (N = 161,460), and neuroticism (N = 170,910). We identified three variants associated with subjective well-being, two with depressive symptoms, and eleven with neuroticism, including two inversion polymorphisms. The two depressive symptoms loci replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings, and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal/pancreas tissues are strongly enriched for association. PMID:27089181

  2. Biological insights from 108 schizophrenia-associated genetic loci

    DEFF Research Database (Denmark)

    Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden

    2014-01-01

    and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many...

  3. Genetic susceptibility loci, pesticide exposure and prostate cancer risk.

    Directory of Open Access Journals (Sweden)

    Stella Koutros

    Full Text Available Uncovering SNP (single nucleotide polymorphisms-environment interactions can generate new hypotheses about the function of poorly characterized genetic variants and environmental factors, like pesticides. We evaluated SNP-environment interactions between 30 confirmed prostate cancer susceptibility loci and 45 pesticides and prostate cancer risk in 776 cases and 1,444 controls in the Agricultural Health Study. We used unconditional logistic regression to estimate odds ratios (ORs and 95% confidence intervals (CIs. Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. After correction for multiple tests using the False Discovery Rate method, two interactions remained noteworthy. Among men carrying two T alleles at rs2710647 in EH domain binding protein 1 (EHBP1 SNP, the risk of prostate cancer in those with high malathion use was 3.43 times those with no use (95% CI: 1.44-8.15 (P-interaction= 0.003. Among men carrying two A alleles at rs7679673 in TET2, the risk of prostate cancer associated with high aldrin use was 3.67 times those with no use (95% CI: 1.43, 9.41 (P-interaction= 0.006. In contrast, associations were null for other genotypes. Although additional studies are needed and the exact mechanisms are unknown, this study suggests known genetic susceptibility loci may modify the risk between pesticide use and prostate cancer.

  4. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions.

    Science.gov (United States)

    Turner, Leslie M; Harr, Bettina

    2014-12-09

    Mapping hybrid defects in contact zones between incipient species can identify genomic regions contributing to reproductive isolation and reveal genetic mechanisms of speciation. The house mouse features a rare combination of sophisticated genetic tools and natural hybrid zones between subspecies. Male hybrids often show reduced fertility, a common reproductive barrier between incipient species. Laboratory crosses have identified sterility loci, but each encompasses hundreds of genes. We map genetic determinants of testis weight and testis gene expression using offspring of mice captured in a hybrid zone between M. musculus musculus and M. m. domesticus. Many generations of admixture enables high-resolution mapping of loci contributing to these sterility-related phenotypes. We identify complex interactions among sterility loci, suggesting multiple, non-independent genetic incompatibilities contribute to barriers to gene flow in the hybrid zone.

  5. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size.

    Directory of Open Access Journals (Sweden)

    Nicole Soranzo

    2009-04-01

    Full Text Available Recent genome-wide (GW scans have identified several independent loci affecting human stature, but their contribution through the different skeletal components of height is still poorly understood. We carried out a genome-wide scan in 12,611 participants, followed by replication in an additional 7,187 individuals, and identified 17 genomic regions with GW-significant association with height. Of these, two are entirely novel (rs11809207 in CATSPER4, combined P-value = 6.1x10(-8 and rs910316 in TMED10, P-value = 1.4x10(-7 and two had previously been described with weak statistical support (rs10472828 in NPR3, P-value = 3x10(-7 and rs849141 in JAZF1, P-value = 3.2x10(-11. One locus (rs1182188 at GNA12 identifies the first height eQTL. We also assessed the contribution of height loci to the upper- (trunk and lower-body (hip axis and femur skeletal components of height. We find evidence for several loci associated with trunk length (including rs6570507 in GPR126, P-value = 4x10(-5 and rs6817306 in LCORL, P-value = 4x10(-4, hip axis length (including rs6830062 at LCORL, P-value = 4.8x10(-4 and rs4911494 at UQCC, P-value = 1.9x10(-4, and femur length (including rs710841 at PRKG2, P-value = 2.4x10(-5 and rs10946808 at HIST1H1D, P-value = 6.4x10(-6. Finally, we used conditional analyses to explore a possible differential contribution of the height loci to these different skeletal size measurements. In addition to validating four novel loci controlling adult stature, our study represents the first effort to assess the contribution of genetic loci to three skeletal components of height. Further statistical tests in larger numbers of individuals will be required to verify if the height loci affect height preferentially through these subcomponents of height.

  6. Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host.

    Directory of Open Access Journals (Sweden)

    John P Jerome

    2011-01-01

    Full Text Available The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10(-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64 Mb genome to 200-500 X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.

  7. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    DEFF Research Database (Denmark)

    McKay, James D; Hung, Rayjean J; Han, Younghun

    2017-01-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association ...... receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer....

  8. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    Science.gov (United States)

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.

  9. Genetic data for 15 STR loci in a Kadazan-Dusun population from East Malaysia.

    Science.gov (United States)

    Kee, B P; Lian, L H; Lee, P C; Lai, T X; Chua, K H

    2011-04-26

    Allele frequencies of 15 short tandem repeat (STR) loci, namely D5S818, D7S820, D13S317, D16S539, TH01, TPOX, Penta D, Penta E, D3S1358, D8S1179, D18S51, D21S11, CSF1PO, vWA, and FGA, were determined for 154 individuals from the Kadazan-Dusun tribe, an indigenous population of East Malaysia. All loci were amplified by polymerase chain reaction, using the Powerplex 16 system. Alleles were typed using a gene analyzer and the Genemapper ID software. Various statistical parameters were calculated and the combined power of discrimination for the 15 loci in the population was calculated as 0.999999999999999. These loci are thus, informative and can be used effectively in forensic and genetic studies of this indigenous population.

  10. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

    Directory of Open Access Journals (Sweden)

    Rosy Raman

    2017-11-01

    Full Text Available Seed lost due to easy pod dehiscence at maturity (pod shatter is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata and identified quantitative trait loci (QTL for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE. In comparison to B. napus (RE = 2.16 mJ, B. carinata accessions had higher RE values (2.53 to 20.82 mJ. A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE and BC73524 (shatter prone with low RE comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3 that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools.

  11. Meta-Analysis of Genome-Wide Association Studies in Celiac Disease and Rheumatoid Arthritis Identifies Fourteen Non-HLA Shared Loci

    NARCIS (Netherlands)

    Zhernakova, Alexandra; Stahl, Eli A.; Trynka, Gosia; Raychaudhuri, Soumya; Festen, Eleanora A.; Franke, Lude; Westra, Harm-Jan; Fehrmann, Rudolf S. N.; Kurreeman, Fina A. S.; Thomson, Brian; Gupta, Namrata; Romanos, Jihane; McManus, Ross; Ryan, Anthony W.; Turner, Graham; Brouwer, Elisabeth; Posthumus, Marcel D.; Remmers, Elaine F.; Tucci, Francesca; Toes, Rene; Grandone, Elvira; Mazzilli, Maria Cristina; Rybak, Anna; Cukrowska, Bozena; Coenen, Marieke J. H.; Radstake, Timothy R. D. J.; van Riel, Piet L. C. M.; Li, Yonghong; de Bakker, Paul I. W.; Gregersen, Peter K.; Worthington, Jane; Siminovitch, Katherine A.; Klareskog, Lars; Huizinga, Tom W. J.; Wijmenga, Cisca; Plenge, Robert M.

    2011-01-01

    Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD) and rheumatoid arthritis (RA), but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the established non-HLA CD and RA risk loci (out of 26 loci for

  12. Genome-wide meta-analyses identify multiple loci associated with smoking behavior.

    LENUS (Irish Health Repository)

    2010-05-01

    Consistent but indirect evidence has implicated genetic factors in smoking behavior. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n > 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], beta = 1.03, standard error (s.e.) = 0.053, P = 2.8 x 10(-73)). Two 10q25 SNPs (rs1329650[G], beta = 0.367, s.e. = 0.059, P = 5.7 x 10(-10); and rs1028936[A], beta = 0.446, s.e. = 0.074, P = 1.3 x 10(-9)) and one 9q13 SNP in EGLN2 (rs3733829[G], beta = 0.333, s.e. = 0.058, P = 1.0 x 10(-8)) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04-1.08, P = 1.8 x 10(-8)). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08-1.18, P = 3.6 x 10(-8)) was significantly associated with smoking cessation.

  13. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis

    Science.gov (United States)

    Hinks, Anne; Eyre, Steve; Ke, Xiayi; Barton, Anne; Martin, Paul; Flynn, Edward; Packham, Jon; Worthington, Jane; Thomson, Wendy

    2010-01-01

    Background Genome-wide association studies (GWAS) have been extremely successful in the search for susceptibility risk factors for complex genetic autoimmune diseases. As more studies are published, evidence is emerging of considerable overlap of loci between these diseases. In juvenile idiopathic arthritis (JIA), another complex genetic autoimmune disease, the strategy of using information from autoimmune disease GWAS or candidate gene studies to help in the search for novel JIA susceptibility loci has been successful, with confirmed association with two genes, PTPN22 and IL2RA. Rheumatoid arthritis (RA) is an autoimmune disease that shares similar clinical and pathological features with JIA and, therefore, recently identified confirmed RA susceptibility loci are also excellent JIA candidate loci. Objective To determine the overlap of disease susceptibility loci for RA and JIA. Methods Fifteen single nucleotide polymorphisms (SNPs) at nine RA-associated loci were genotyped in Caucasian patients with JIA (n=1054) and controls (n=3531) and tested for association with JIA. Allele and genotype frequencies were compared between cases and controls using the genetic analysis software, PLINK. Results Two JIA susceptibility loci were identified, one of which was a novel JIA association (STAT4) and the second confirmed previously published associations of the TRAF1/C5 locus with JIA. Weak evidence of association of JIA with three additional loci (Chr6q23, KIF5A and PRKCQ) was also obtained, which warrants further investigation. Conclusion All these loci are good candidates in view of the known pathogenesis of JIA, as genes within these regions (TRAF1, STAT4, TNFAIP3, PRKCQ) are known to be involved in T-cell receptor signalling or activation pathways. PMID:19674979

  14. Genetic polymorphisms of nine X-STR loci in four population groups from Inner Mongolia, China.

    Science.gov (United States)

    Hou, Qiao-Fang; Yu, Bin; Li, Sheng-Bin

    2007-02-01

    Nine short tandem repeat (STR) markers on the X chromosome (DXS101, DXS6789, DXS6799, DXS6804, DXS7132, DXS7133, DXS7423, DXS8378, and HPRTB) were analyzed in four population groups (Mongol, Ewenki, Oroqen, and Daur) from Inner Mongolia, China, in order to learn about the genetic diversity, forensic suitability, and possible genetic affinities of the populations. Frequency estimates, Hardy-Weinberg equilibrium, and other parameters of forensic interest were computed. The results revealed that the nine markers have a moderate degree of variability in the population groups. Most heterozygosity values for the nine loci range from 0.480 to 0.891, and there are evident differences of genetic variability among the populations. A UPGMA tree constructed on the basis of the generated data shows very low genetic distance between Mongol and Han (Xi'an) populations. Our results based on genetic distance analysis are consistent with the results of earlier studies based on linguistics and the immigration history and origin of these populations. The minisatellite loci on the X chromosome studied here are not only useful in showing significant genetic variation between the populations, but also are suitable for human identity testing among Inner Mongolian populations.

  15. A genome-wide association study identifies protein quantitative trait loci (pQTLs.

    Directory of Open Access Journals (Sweden)

    David Melzer

    2008-05-01

    Full Text Available There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8x10(-57, CCL4L1 (p = 3.9x10(-21, IL18 (p = 6.8x10(-13, LPA (p = 4.4x10(-10, GGT1 (p = 1.5x10(-7, SHBG (p = 3.1x10(-7, CRP (p = 6.4x10(-6 and IL1RN (p = 7.3x10(-6 genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R, altered secretion rates of different sized proteins (LPA, variation in gene copy number (CCL4L1 and altered transcription (GGT1. We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha levels (p = 6.8x10(-40, but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis

  16. Pollinator choice in Petunia depends on two major genetic Loci for floral scent production.

    Science.gov (United States)

    Klahre, Ulrich; Gurba, Alexandre; Hermann, Katrin; Saxenhofer, Moritz; Bossolini, Eligio; Guerin, Patrick M; Kuhlemeier, Cris

    2011-05-10

    Differences in floral traits, such as petal color, scent, morphology, or nectar quality and quantity, can lead to specific interactions with pollinators and may thereby cause reproductive isolation. Petunia provides an attractive model system to study the role of floral characters in reproductive isolation and speciation. The night-active hawkmoth pollinator Manduca sexta relies on olfactory cues provided by Petunia axillaris. In contrast, Petunia exserta, which displays a typical hummingbird pollination syndrome, is devoid of scent. The two species can easily be crossed in the laboratory, which makes it possible to study the genetic basis of the evolution of scent production and the importance of scent for pollinator behavior. In an F2 population derived from an interspecific cross between P. axillaris and P. exserta, we identified two quantitative trait loci (QTL) that define the difference between the two species' ability to produce benzenoid volatiles. One of these loci was identified as the MYB transcription factor ODORANT1. Reciprocal introgressions of scent QTL were used for choice experiments under controlled conditions. These experiments demonstrated that the hawkmoth M. sexta prefers scented plants and that scent determines choice at a short distance. When exposed to conflicting cues of color versus scent, the insects display no preference, indicating that color and scent are equivalent cues. Our results show that scent is an important flower trait that defines plant-pollinator interactions at the level of individual plants. The genetic basis underlying such a major phenotypic difference appears to be relatively simple and may enable rapid loss or gain of scent through hybridization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.

    Directory of Open Access Journals (Sweden)

    Fergus J Couch

    Full Text Available BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer, with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8, HR = 1.14, 95% CI: 1.09-1.20. In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8, HR = 1.27, 95% CI: 1.17-1.38 and 4q32.3 (rs4691139, P = 3.4 × 10(-8, HR = 1.20, 95% CI: 1.17-1.38. The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4. These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.

  18. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci.

    Science.gov (United States)

    Yang, Luming; Li, Dawei; Li, Yuhong; Gu, Xingfang; Huang, Sanwen; Garcia-Mas, Jordi; Weng, Yiqun

    2013-03-25

    Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of

  19. A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci.

    Directory of Open Access Journals (Sweden)

    Jing Qian

    Full Text Available Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs.We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT, to identify protein-coding gene association with 14 cardiometabolic (CMD related traits across 6 publicly available genome wide association (GWA meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1.We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes.We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and

  20. Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers.

    Directory of Open Access Journals (Sweden)

    Noriko Tonomura

    2015-02-01

    Full Text Available Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6% and hemangiosarcoma (20%. We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers.

  1. Gene interaction at seed-awning loci in the genetic background of wild rice.

    Science.gov (United States)

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  2. Meta-analysis of genome-wide association studies identifies six new Loci for serum calcium concentrations.

    Directory of Open Access Journals (Sweden)

    Conall M O'Seaghdha

    Full Text Available Calcium is vital to the normal functioning of multiple organ systems and its serum concentration is tightly regulated. Apart from CASR, the genes associated with serum calcium are largely unknown. We conducted a genome-wide association meta-analysis of 39,400 individuals from 17 population-based cohorts and investigated the 14 most strongly associated loci in ≤ 21,679 additional individuals. Seven loci (six new regions in association with serum calcium were identified and replicated. Rs1570669 near CYP24A1 (P = 9.1E-12, rs10491003 upstream of GATA3 (P = 4.8E-09 and rs7481584 in CARS (P = 1.2E-10 implicate regions involved in Mendelian calcemic disorders: Rs1550532 in DGKD (P = 8.2E-11, also associated with bone density, and rs7336933 near DGKH/KIAA0564 (P = 9.1E-10 are near genes that encode distinct isoforms of diacylglycerol kinase. Rs780094 is in GCKR. We characterized the expression of these genes in gut, kidney, and bone, and demonstrate modulation of gene expression in bone in response to dietary calcium in mice. Our results shed new light on the genetics of calcium homeostasis.

  3. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47

    DEFF Research Database (Denmark)

    Anderson, Carl A; Boucher, Gabrielle; Lees, Charlie W

    2011-01-01

    Genome-wide association studies and candidate gene studies in ulcerative colitis have identified 18 susceptibility loci. We conducted a meta-analysis of six ulcerative colitis genome-wide association study datasets, comprising 6,687 cases and 19,718 controls, and followed up the top association...... signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci (P associated loci to 47. After annotating associated regions using GRAIL, expression quantitative trait loci data and correlations with non-synonymous SNPs, we...... identified many candidate genes that provide potentially important insights into disease pathogenesis, including IL1R2, IL8RA-IL8RB, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease risk loci is now 99, including a minimum of 28 shared association...

  4. Identification of seventeen microsatellite loci for conservation genetic studies of the endemic wrasse Coris bulbifrons

    KAUST Repository

    Van Der Meer, Martin H.

    2012-11-08

    Coral reefs around the world are in decline, in part due to various anthropogenic factors, including fishing pressure. Coris bulbifrons is a large wrasse endemic to only four oceanic locations off Australia\\'s east coast: Middleton Reef, Elizabeth Reef, Lord Howe Island and Norfolk Island. The species is listed as vulnerable by the IUCN due to the potential threat of overfishing. Although these remote locations, some within Marine protected Areas, experience limited fishing pressure, populations may quickly decline with minimal fishing effort as seen in the overfishing of other large wrasses. We developed primers for 17 microsatellite loci to examine gene flow, population genetic structure, and genetic diversity within and among these four locations. Observed heterozygosities ranged 0. 126-0. 752 in 37 individuals from Lord Howe Island indicating that these loci will be useful in C. bulbifrons population genetic studies. © 2012 Springer Science+Business Media Dordrecht.

  5. A RAD-Based Genetic Map for Anchoring Scaffold Sequences and Identifying QTLs in Bitter Gourd (Momordica charantia)

    Science.gov (United States)

    Cui, Junjie; Luo, Shaobo; Niu, Yu; Huang, Rukui; Wen, Qingfang; Su, Jianwen; Miao, Nansheng; He, Weiming; Dong, Zhensheng; Cheng, Jiaowen; Hu, Kailin

    2018-01-01

    Genetic mapping is a basic tool necessary for anchoring assembled scaffold sequences and for identifying QTLs controlling important traits. Though bitter gourd (Momordica charantia) is both consumed and used as a medicinal, research on its genomics and genetic mapping is severely limited. Here, we report the construction of a restriction site associated DNA (RAD)-based genetic map for bitter gourd using an F2 mapping population comprising 423 individuals derived from two cultivated inbred lines, the gynoecious line ‘K44’ and the monoecious line ‘Dali-11.’ This map comprised 1,009 SNP markers and spanned a total genetic distance of 2,203.95 cM across the 11 linkage groups. It anchored a total of 113 assembled scaffolds that covered about 251.32 Mb (85.48%) of the 294.01 Mb assembled genome. In addition, three horticulturally important traits including sex expression, fruit epidermal structure, and immature fruit color were evaluated using a combination of qualitative and quantitative data. As a result, we identified three QTL/gene loci responsible for these traits in three environments. The QTL/gene gy/fffn/ffn, controlling sex expression involved in gynoecy, first female flower node, and female flower number was detected in the reported region. Particularly, two QTLs/genes, Fwa/Wr and w, were found to be responsible for fruit epidermal structure and white immature fruit color, respectively. This RAD-based genetic map promotes the assembly of the bitter gourd genome and the identified genetic loci will accelerate the cloning of relevant genes in the future. PMID:29706980

  6. A RAD-Based Genetic Map for Anchoring Scaffold Sequences and Identifying QTLs in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2018-04-01

    Full Text Available Genetic mapping is a basic tool necessary for anchoring assembled scaffold sequences and for identifying QTLs controlling important traits. Though bitter gourd (Momordica charantia is both consumed and used as a medicinal, research on its genomics and genetic mapping is severely limited. Here, we report the construction of a restriction site associated DNA (RAD-based genetic map for bitter gourd using an F2 mapping population comprising 423 individuals derived from two cultivated inbred lines, the gynoecious line ‘K44’ and the monoecious line ‘Dali-11.’ This map comprised 1,009 SNP markers and spanned a total genetic distance of 2,203.95 cM across the 11 linkage groups. It anchored a total of 113 assembled scaffolds that covered about 251.32 Mb (85.48% of the 294.01 Mb assembled genome. In addition, three horticulturally important traits including sex expression, fruit epidermal structure, and immature fruit color were evaluated using a combination of qualitative and quantitative data. As a result, we identified three QTL/gene loci responsible for these traits in three environments. The QTL/gene gy/fffn/ffn, controlling sex expression involved in gynoecy, first female flower node, and female flower number was detected in the reported region. Particularly, two QTLs/genes, Fwa/Wr and w, were found to be responsible for fruit epidermal structure and white immature fruit color, respectively. This RAD-based genetic map promotes the assembly of the bitter gourd genome and the identified genetic loci will accelerate the cloning of relevant genes in the future.

  7. Dynamics of genetic variation at gliadin-coding loci in bread wheat cultivars developed in small grains research center (Kragujevac during last 35 years

    Directory of Open Access Journals (Sweden)

    Novosljska-Dragovič Aleksandra

    2005-01-01

    Full Text Available Multiple alleles of gliadin-coding loci are well-known genetic markers of common wheat genotypes. Based on analysis of gliadin patterns in common wheat cultivars developed at the Small Grains Research Center in Kragujevac dynamics of genetic variability at gliadin-coding loci has been surveyed for the period of 35 years. It was shown that long-term breeding of the wheat cultivars involved gradual replacement of ancient alleles for those widely spread in some regions in the world, which belong to well-known cultivars-donor of some important traits. Developing cultivars whose pedigree involved much new foreign genetic material has increased genetic diversity as well as has changed frequency of alleles of gliadin-coding loci. So we can conclude that the genetic profile of modern Serbian cultivars has changed considerably. Genetic formula of gliadin was made for each the cultivar studied. The most frequent alleles of gliadin-coding loci among modern cultivars should be of great interest of breeders because these alleles are probably linked with genes that confer advantage to their carriers at present.

  8. Identification of genetic loci required for Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    Directory of Open Access Journals (Sweden)

    Ky Van Hoang

    2012-03-01

    Full Text Available Antimicrobial peptides (AMPs are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TNTM Transposome in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81-176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis.

  9. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure

    NARCIS (Netherlands)

    L.V. Wain (Louise); G.C. Verwoert (Germaine); P.F. O'Reilly (Paul); G. Shi (Gang); T. Johnson (Toby); M. Bochud (Murielle); K. Rice (Kenneth); P. Henneman (Peter); A.V. Smith (Albert Vernon); G.B. Ehret (Georg); N. Amin (Najaf); M.G. Larson (Martin); V. Mooser (Vincent); D. Hadley (David); M. Dörr (Marcus); J.C. Bis (Joshua); T. Aspelund (Thor); T. Esko (Tõnu); A.C.J.W. Janssens (Cécile); J.H. Zhao (Jing Hua); S.C. Heath (Simon); M. Laan (Maris); J. Fu (Jingyuan); G. Pistis (Giorgio); J. Luan; G. Lucas (Gavin); N. Pirastu (Nicola); I. Pichler (Irene); A.U. Jackson (Anne); R.J. Webster (Rebecca J.); F.F. Zhang; J. Peden (John); R. Schmidt (Reinhold); T. Tanaka (Toshiko); H. Campbell (Harry); W. Igl (Wilmar); Y. Milaneschi (Yuri); J.J. Hottenga (Jouke Jan); V. Vitart (Veronique); D.I. Chasman (Daniel); S. Trompet (Stella); J.L. Bragg-Gresham (Jennifer L.); B.Z. Alizadeh (Behrooz); J.C. Chambers (John); X. Guo (Xiuqing); T. Lehtimäki (Terho); B. Kuhnel (Brigitte); L.M. Lopez; O. Polasek (Ozren); M. Boban (Mladen); C.P. Nelson (Christopher P.); A.C. Morrison (Alanna); V. Pihur (Vasyl); S.K. Ganesh (Santhi); A. Hofman (Albert); S. Kundu (Suman); F.U.S. Mattace Raso (Francesco); F. Rivadeneira Ramirez (Fernando); E.J.G. Sijbrands (Eric); A.G. Uitterlinden (André); S.J. Hwang; R.S. Vasan (Ramachandran Srini); Y.A. Wang (Ying); S.M. Bergmann (Sven); P. Vollenweider (Peter); G. Waeber (Gérard); J. Laitinen (Jaana); A. Pouta (Anneli); P. Zitting (Paavo); W.L. McArdle (Wendy); H.K. Kroemer (Heyo); U. Völker (Uwe); H. Völzke (Henry); N.L. Glazer (Nicole); K.D. Taylor (Kent); T.B. Harris (Tamara); H. Alavere (Helene); T. Haller (Toomas); A. Keis (Aime); M.L. Tammesoo; Y.S. Aulchenko (Yurii); K-T. Khaw (Kay-Tee); P. Galan (Pilar); S. Hercberg (Serge); G.M. Lathrop (Mark); S. Eyheramendy (Susana); E. Org (Elin); S. Sõber (Siim); X. Lu (Xiaowen); I.M. Nolte (Ilja); B.W.J.H. Penninx (Brenda); T. Corre (Tanguy); C. Masciullo (Corrado); C. Sala (Cinzia); L. Groop (Leif); B.F. Voight (Benjamin); O. Melander (Olle); C.J. O'Donnell (Christopher); V. Salomaa (Veikko); P. d' Adamo (Pio); A. Fabretto (Antonella); F. Faletra (Flavio); S. Ulivi (Shelia); F. Del Greco M (Fabiola); M.F. Facheris (Maurizio); F.S. Collins (Francis); R.N. Bergman (Richard); J.P. Beilby (John); J. Hung (Judy); A.W. Musk (Arthur); M. Mangino (Massimo); S.Y. Shin (So Youn); N. Soranzo (Nicole); H. Watkins (Hugh); A. Goel (Anuj); A. Hamsten (Anders); P. Gider (Pierre); M. Loitfelder (Marisa); M. Zeginigg (Marion); D.G. Hernandez (Dena); S.S. Najjar (Samer); P. Navarro (Pau); S.H. Wild (Sarah); A.M. Corsi (Anna Maria); A. Singleton (Andrew); E.J.C. de Geus (Eco); G.A.H.M. Willemsen (Gonneke); A.N. Parker (Alex); L.M. Rose (Lynda); B.M. Buckley (Brendan M.); D.J. Stott (David. J.); M. Orrù (Marco); M. Uda (Manuela); M.M. van der Klauw (Melanie); X. Li (Xiaohui); J. Scott (James); Y.D.I. Chen (Yii-Der Ida); G.L. Burke (Greg); M. Kähönen (Mika); J. Viikari (Jorma); A. Döring (Angela); T. Meitinger (Thomas); G.S. Davis; J.M. Starr (John); V. Emilsson (Valur); A.S. Plump (Andrew); J.H. Lindeman (Jan H.); P.A.C. 't Hoen (Peter); I.R. König (Inke); J.F. Felix (Janine); R. Clarke; J. Hopewell; H. Ongen (Halit); M.M.B. Breteler (Monique); S. Debette (Stéphanie); A.L. DeStefano (Anita); M. Fornage (Myriam); G.F. Mitchell (Gary); H. Holm (Hilma); K. Stefansson (Kari); G. Thorleifsson (Gudmar); U. Thorsteinsdottir (Unnur); N.J. Samani (Nilesh); M. Preuss (Michael); I. Rudan (Igor); C. Hayward (Caroline); I.J. Deary (Ian); H.E. Wichmann (Heinz Erich); O. Raitakari (Olli); W. Palmas (Walter); J.S. Kooner (Jaspal); R.P. Stolk (Ronald); J.W. Jukema (Jan Wouter); A.F. Wright (Alan); D.I. Boomsma (Dorret); S. Bandinelli (Stefania); U. Gyllensten (Ulf); J.F. Wilson (James); L. Ferrucci (Luigi); M. Farrall (Martin); T.D. Spector (Timothy); L.J. Palmer; J. Tuomilehto (Jaakko); A. Pfeufer (Arne); P. Gasparini (Paolo); D.S. Siscovick (David); D. Altshuler (David); R.J.F. Loos (Ruth); D. Toniolo (Daniela); H. Snieder (Harold); C. Gieger (Christian); P. Meneton (Pierre); N.J. Wareham (Nick); B.A. Oostra (Ben); A. Metspalu (Andres); L.J. Launer (Lenore); R. Rettig (Rainer); D.P. Strachan (David); J.S. Beckmann (Jacques); J.C.M. Witteman (Jacqueline); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); M. Boehnke (Michael); P.M. Ridker (Paul); M.R. Järvelin; A. Chakravarti (Aravinda); J. Erdmann (Jeanette); V. Gudnason (Vilmundur); C. Newton-Cheh (Christopher); D. Levy (Daniel); P. Arora (Pankaj); P. Munroe (Patricia); B.M. Psaty (Bruce); M. Caulfield (Mark); D.C. Rao (Dabeeru C.); P. Elliott (Paul); P. Tikka-Kleemola (Päivi); G.R. Abecasis (Gonçalo); I.E. Barroso (Inês)

    2011-01-01

    textabstractNumerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N =

  10. Genetic polymorphism of six DNA loci in six population groups of India.

    Science.gov (United States)

    Ahmad, Shazia; Seshadri, M

    2007-08-01

    The genetic profile based on autosomal markers, four microsatellite DNA markers (D8S315, FES, D8S592, and D2S1328) and two minisatellite DNA markers (TPMT and PDGFA), were analyzed in six endogamous populations to examine the effect of geographic and linguistic affiliation on the genetic affinities among the groups. The six populations are from three different states of India and are linguistically different. Marathas from western India speak Marathi, an Indo-European language. Arayas, Muslims, Ezhavas, and Nairs from Kerala state of South India speak Malayalam, and Iyers from Tamil Nadu state speak Tamil. Genomic DNA was extracted from peripheral blood samples of random, normal, healthy individuals. Locus-specific PCR amplification was carried out, followed by electrophoresis of the amplicons and genotyping. All the loci were highly polymorphic and followed Hardy-Weinberg equilibrium, except for loci D8S315 and PDGFA in Iyers and Marathas, respectively. All six loci had high heterozygosity (average heterozygosity ranged from 0.73 to 0.76) and high polymorphism information content (0.57-0.90). The extent of gene differentiation among the six populations (G(ST) = 0.030) was greater than that for four Kerala populations (G(ST) = 0.011), suggesting proximity between the four Kerala populations. This result conforms with the cultural and linguistic background of the populations. The extent of diversity found among the populations probably resulted from the strict endogamous practices that they follow.

  11. Outlier Loci and Selection Signatures of Simple Sequence Repeats (SSRs) in Flax (Linum usitatissimum L.).

    Science.gov (United States)

    Soto-Cerda, Braulio J; Cloutier, Sylvie

    2013-01-01

    Genomic microsatellites (gSSRs) and expressed sequence tag-derived SSRs (EST-SSRs) have gained wide application for elucidating genetic diversity and population structure in plants. Both marker systems are assumed to be selectively neutral when making demographic inferences, but this assumption is rarely tested. In this study, three neutrality tests were assessed for identifying outlier loci among 150 SSRs (85 gSSRs and 65 EST-SSRs) that likely influence estimates of population structure in three differentiated flax sub-populations ( F ST  = 0.19). Moreover, the utility of gSSRs, EST-SSRs, and the combined sets of SSRs was also evaluated in assessing genetic diversity and population structure in flax. Six outlier loci were identified by at least two neutrality tests showing footprints of balancing selection. After removing the outlier loci, the STRUCTURE analysis and the dendrogram topology of EST-SSRs improved. Conversely, gSSRs and combined SSRs results did not change significantly, possibly as a consequence of the higher number of neutral loci assessed. Taken together, the genetic structure analyses established the superiority of gSSRs to determine the genetic relationships among flax accessions, although the combined SSRs produced the best results. Genetic diversity parameters did not differ statistically ( P  > 0.05) between gSSRs and EST-SSRs, an observation partially explained by the similar number of repeat motifs. Our study provides new insights into the ability of gSSRs and EST-SSRs to measure genetic diversity and structure in flax and confirms the importance of testing for the occurrence of outlier loci to properly assess natural and breeding populations, particularly in studies considering only few loci.

  12. Using case-control designs for genome-wide screening for associations between genetic markers and disease susceptibility loci.

    Science.gov (United States)

    Yang, Q; Khoury, M J; Atkinson, M; Sun, F; Cheng, R; Flanders, W D

    1999-01-01

    We used a case-control design to scan the genome for any associations between genetic markers and disease susceptibility loci using the first two replicates of the Mycenaean population from the GAW11 (Problem 2) data. Using a case-control approach, we constructed a series of 2-by-3 tables for each allele of every marker on all six chromosomes. Odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated for all alleles of every marker. We selected the one allele for which the estimated OR had the minimum p-value to plot in the graph. Among these selected ORs, we calculated 95% CI for those that had a p-value Mycenaean population, the case-control design identified allele number 1 of marker 24 on chromosome 1 to be associated with a disease susceptibility gene, OR = 2.10 (95% CI 1.66-2.62). Our approach failed to show any other significant association between case-control status and genetic markers. Stratified analysis on the environmental risk factor (E1) provided no further evidence of significant association other than allele 1 of marker 24 on chromosome 1. These data indicate the absence of linkage disequilibrium for markers flanking loci A, B, and C. Finally, we examined the effect of gene x environment (G x E) interaction for the identified allele. Our results provided no evidence of G x E interaction, but suggested that the environmental exposure alone was a risk factor for the disease.

  13. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies

    Science.gov (United States)

    Elks, Cathy E.; Perry, John R.B.; Sulem, Patrick; Chasman, Daniel I.; Franceschini, Nora; He, Chunyan; Lunetta, Kathryn L.; Visser, Jenny A.; Byrne, Enda M.; Cousminer, Diana L.; Gudbjartsson, Daniel F.; Esko, Tõnu; Feenstra, Bjarke; Hottenga, Jouke-Jan; Koller, Daniel L.; Kutalik, Zoltán; Lin, Peng; Mangino, Massimo; Marongiu, Mara; McArdle, Patrick F.; Smith, Albert V.; Stolk, Lisette; van Wingerden, Sophie W.; Zhao, Jing Hua; Albrecht, Eva; Corre, Tanguy; Ingelsson, Erik; Hayward, Caroline; Magnusson, Patrik K.E.; Smith, Erin N.; Ulivi, Shelia; Warrington, Nicole M.; Zgaga, Lina; Alavere, Helen; Amin, Najaf; Aspelund, Thor; Bandinelli, Stefania; Barroso, Ines; Berenson, Gerald S.; Bergmann, Sven; Blackburn, Hannah; Boerwinkle, Eric; Buring, Julie E.; Busonero, Fabio; Campbell, Harry; Chanock, Stephen J.; Chen, Wei; Cornelis, Marilyn C.; Couper, David; Coviello, Andrea D.; d’Adamo, Pio; de Faire, Ulf; de Geus, Eco J.C.; Deloukas, Panos; Döring, Angela; Smith, George Davey; Easton, Douglas F.; Eiriksdottir, Gudny; Emilsson, Valur; Eriksson, Johan; Ferrucci, Luigi; Folsom, Aaron R.; Foroud, Tatiana; Garcia, Melissa; Gasparini, Paolo; Geller, Frank; Gieger, Christian; Gudnason, Vilmundur; Hall, Per; Hankinson, Susan E.; Ferreli, Liana; Heath, Andrew C.; Hernandez, Dena G.; Hofman, Albert; Hu, Frank B.; Illig, Thomas; Järvelin, Marjo-Riitta; Johnson, Andrew D.; Karasik, David; Khaw, Kay-Tee; Kiel, Douglas P.; Kilpeläinen, Tuomas O.; Kolcic, Ivana; Kraft, Peter; Launer, Lenore J.; Laven, Joop S.E.; Li, Shengxu; Liu, Jianjun; Levy, Daniel; Martin, Nicholas G.; McArdle, Wendy L.; Melbye, Mads; Mooser, Vincent; Murray, Jeffrey C.; Murray, Sarah S.; Nalls, Michael A.; Navarro, Pau; Nelis, Mari; Ness, Andrew R.; Northstone, Kate; Oostra, Ben A.; Peacock, Munro; Palmer, Lyle J.; Palotie, Aarno; Paré, Guillaume; Parker, Alex N.; Pedersen, Nancy L.; Peltonen, Leena; Pennell, Craig E.; Pharoah, Paul; Polasek, Ozren; Plump, Andrew S.; Pouta, Anneli; Porcu, Eleonora; Rafnar, Thorunn; Rice, John P.; Ring, Susan M.; Rivadeneira, Fernando; Rudan, Igor; Sala, Cinzia; Salomaa, Veikko; Sanna, Serena; Schlessinger, David; Schork, Nicholas J.; Scuteri, Angelo; Segrè, Ayellet V.; Shuldiner, Alan R.; Soranzo, Nicole; Sovio, Ulla; Srinivasan, Sathanur R.; Strachan, David P.; Tammesoo, Mar-Liis; Tikkanen, Emmi; Toniolo, Daniela; Tsui, Kim; Tryggvadottir, Laufey; Tyrer, Jonathon; Uda, Manuela; van Dam, Rob M.; van Meurs, Joyve B.J.; Vollenweider, Peter; Waeber, Gerard; Wareham, Nicholas J.; Waterworth, Dawn M.; Weedon, Michael N.; Wichmann, H. Erich; Willemsen, Gonneke; Wilson, James F.; Wright, Alan F.; Young, Lauren; Zhai, Guangju; Zhuang, Wei Vivian; Bierut, Laura J.; Boomsma, Dorret I.; Boyd, Heather A.; Crisponi, Laura; Demerath, Ellen W.; van Duijn, Cornelia M.; Econs, Michael J.; Harris, Tamara B.; Hunter, David J.; Loos, Ruth J.F.; Metspalu, Andres; Montgomery, Grant W.; Ridker, Paul M.; Spector, Tim D.; Streeten, Elizabeth A.; Stefansson, Kari; Thorsteinsdottir, Unnur; Uitterlinden, André G.; Widen, Elisabeth; Murabito, Joanne M.; Ong, Ken K.; Murray, Anna

    2011-01-01

    To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P=5.4×10−60) and 9q31.2 (P=2.2×10−33), we identified 30 novel menarche loci (all P<5×10−8) and found suggestive evidence for a further 10 loci (P<1.9×10−6). New loci included four previously associated with BMI (in/near FTO, SEC16B, TRA2B and TMEM18), three in/near other genes implicated in energy homeostasis (BSX, CRTC1, and MCHR2), and three in/near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and MAGENTA pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing. PMID:21102462

  14. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis.

    Science.gov (United States)

    Ciofi, C; Bruford, M W

    1999-12-01

    A general concern for the conservation of endangered species is the maintenance of genetic variation within populations, particularly when they become isolated and reduced in size. Estimates of gene flow and effective population size are therefore important for any conservation initiative directed to the long-term persistence of a species in its natural habitat. In the present study, 10 microsatellite loci were used to assess the level of genetic variability among populations of the Komodo dragon Varanus komodoensis. Effective population size was calculated and gene flow estimates were compared with palaeogeographic data in order to assess the degree of vulnerability of four island populations. Rinca and Flores, currently separated by an isthmus of about 200 m, retained a high level of genetic diversity and showed a high degree of genetic similarity, with gene flow values close to one migrant per generation. The island of Komodo showed by far the highest levels of genetic divergence, and its allelic distinctiveness was considered of great importance in the maintenance of genetic variability within the species. A lack of distinct alleles and low levels of gene flow and genetic variability were found for the small population of Gili Motang island, which was identified as vulnerable to stochastic threats. Our results are potentially important for both the short- and long-term management of the Komodo dragon, and are critical in view of future re-introduction or augmentation in areas where the species is now extinct or depleted.

  15. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease.

    Directory of Open Access Journals (Sweden)

    Eleonora A M Festen

    2011-01-01

    Full Text Available Crohn's disease (CD and celiac disease (CelD are chronic intestinal inflammatory diseases, involving genetic and environmental factors in their pathogenesis. The two diseases can co-occur within families, and studies suggest that CelD patients have a higher risk to develop CD than the general population. These observations suggest that CD and CelD may share common genetic risk loci. Two such shared loci, IL18RAP and PTPN2, have already been identified independently in these two diseases. The aim of our study was to explicitly identify shared risk loci for these diseases by combining results from genome-wide association study (GWAS datasets of CD and CelD. Specifically, GWAS results from CelD (768 cases, 1,422 controls and CD (3,230 cases, 4,829 controls were combined in a meta-analysis. Nine independent regions had nominal association p-value <1.0 x 10⁻⁵ in this meta-analysis and showed evidence of association to the individual diseases in the original scans (p-value < 1 x 10⁻² in CelD and < 1 x 10⁻³ in CD. These include the two previously reported shared loci, IL18RAP and PTPN2, with p-values of 3.37 x 10⁻⁸ and 6.39 x 10⁻⁹, respectively, in the meta-analysis. The other seven had not been reported as shared loci and thus were tested in additional CelD (3,149 cases and 4,714 controls and CD (1,835 cases and 1,669 controls cohorts. Two of these loci, TAGAP and PUS10, showed significant evidence of replication (Bonferroni corrected p-values <0.0071 in the combined CelD and CD replication cohorts and were firmly established as shared risk loci of genome-wide significance, with overall combined p-values of 1.55 x 10⁻¹⁰ and 1.38 x 10⁻¹¹ respectively. Through a meta-analysis of GWAS data from CD and CelD, we have identified four shared risk loci: PTPN2, IL18RAP, TAGAP, and PUS10. The combined analysis of the two datasets provided the power, lacking in the individual GWAS for single diseases, to detect shared loci with a

  16. Novel microsatellite loci for studies of Thamnophis Gartersnake genetic identity and hybridization

    Science.gov (United States)

    Sloss, Brian L.; Schuurman, Gregor W.; Paloski, Rori A.; Boyle, Owen D.; Kapfer, Joshua M.

    2012-01-01

    Butler’s Gartersnakes (BGS; Thamnophis butleri) are confined to open and semi-open canopy wetlands and adjacent uplands, habitats under threat of development in Wisconsin. To address issues of species identity and putative hybridization with congeneric snakes, a suite of 18 microsatellite loci capable of cross-species amplification of Plains Gartersnakes (T. radix) and Common Gartersnakes (T. sirtalis) was developed. All loci were polymorphic in BGS with mean number of alleles per locus of 16.11 (range = 3–41) and mean observed heterozygosity of 0.659 (range = 0.311–0.978). Loci amplified efficiently in the congeneric species with high levels of intra- and inter-specific variation. These loci will aid ongoing efforts to effectively identify and manage BGS in Wisconsin.

  17. Population genetic data of the NGM SElect STR loci in Chinese Han population from Zhejiang region, China.

    Science.gov (United States)

    Zhou, Anju; Wu, Weiwei; Liu, Qiuling; Wu, Yeda; Lu, Dejian

    2013-03-01

    Genetic variations of the 17 NGM SElect STR loci in Chinese Han samples from the Zhejiang region were analyzed. The results show that the NGM SElect is a highly genetic informative system in Zhejiang Han, and this population shows quite different genetic data from other major populations in the world with the exception of the Fujian Han.

  18. The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature

    Directory of Open Access Journals (Sweden)

    Frackelton Edward C

    2010-06-01

    Full Text Available Abstract Background Human height is considered highly heritable and correlated with certain disorders, such as type 2 diabetes and cancer. Despite environmental influences, genetic factors are known to play an important role in stature determination. A number of genetic determinants of adult height have already been established through genome wide association studies. Methods To examine 51 single nucleotide polymorphisms (SNPs corresponding to the 46 previously reported genomic loci for height in 8,184 European American children with height measurements. We leveraged genotyping data from our ongoing GWA study of height variation in children in order to query the 51 SNPs in this pediatric cohort. Results Sixteen of these SNPs yielded at least nominally significant association to height, representing fifteen different loci including EFEMP1-PNPT1, GPR126, C6orf173, SPAG17, Histone class 1, HLA class III and GDF5-UQCC. Other loci revealed no evidence for association, including HMGA1 and HMGA2. For the 16 associated variants, the genotype score explained 1.64% of the total variation for height z-score. Conclusion Among 46 loci that have been reported to associate with adult height to date, at least 15 also contribute to the determination of height in childhood.

  19. Development of a multiplex PCR assay for fine-scale population genetic analysis of the Komodo monitor Varanus komodoensis based on 18 polymorphic microsatellite loci.

    Science.gov (United States)

    Ciofi, Claudio; Tzika, Athanasia C; Natali, Chiara; Watts, Phillip C; Sulandari, Sri; Zein, Moch S A; Milinkovitch, Michel C

    2011-05-01

    Multiplex PCR assays for the coamplification of microsatellite loci allow rapid and cost-effective genetic analyses and the production of efficient screening protocols for international breeding programs. We constructed a partial genomic library enriched for di-nucleotide repeats and characterized 14 new microsatellite loci for the Komodo monitor (or Komodo dragon, Varanus komodoensis). Using these novel microsatellites and four previously described loci, we developed multiplex PCR assays that may be loaded on a genetic analyser in three separate panels. We tested the novel set of microsatellites for polymorphism using 69 individuals from three island populations and evaluated the resolving power of the entire panel of 18 loci by conducting (i) a preliminary assignment test to determine population(s) of origin and (ii) a parentage analysis for 43 captive Komodo monitors. This panel of polymorphic loci proved useful for both purposes and thus can be exploited for fine-scale population genetic analyses and as part of international captive breeding programs directed at maintaining genetically viable ex situ populations and reintroductions. © 2011 Blackwell Publishing Ltd.

  20. Immunochip analysis identification of 6 additional susceptibility loci for Crohn's disease in Koreans.

    Science.gov (United States)

    Yang, Suk-Kyun; Hong, Myunghee; Choi, Hyunchul; Zhao, Wanting; Jung, Yusun; Haritunians, Talin; Ye, Byong Duk; Kim, Kyung-Jo; Park, Sang Hyoung; Lee, Inchul; Kim, Won Ho; Cheon, Jae Hee; Kim, Young-Ho; Jang, Byung Ik; Kim, Hyun-Soo; Choi, Jai Hyun; Koo, Ja Seol; Lee, Ji Hyun; Jung, Sung-Ae; Shin, Hyoung Doo; Kang, Daehee; Youn, Hee-Shang; Taylor, Kent D; Rotter, Jerome I; Liu, Jianjun; McGovern, Dermot P B; Song, Kyuyoung

    2015-01-01

    Crohn's disease (CD) is an intractable inflammatory bowel disease of unknown cause. Recent genome-wide association studies of CD in Korean and Japanese populations suggested marginal sharing of susceptibility loci between Caucasian and Asian populations. As the 7 identified loci altogether explain 5.31% of the risk for CD, the objective of this study was to identify additional CD susceptibility loci in the Korean population. Using the ImmunoChip custom single-nucleotide polymorphism array designed for dense genotyping of 186 loci identified through GWAS, we analyzed 722 individuals with CD and 461 controls for 96,048 SNP markers in the discovery stage, followed by validation in an additional 948 affected individuals and 977 controls. We confirmed 6 previously reported loci in Caucasian: GPR35 at 2q37 (rs3749172; P = 5.30 × 10, odds ratio [OR] = 1.45), ZNF365 at 10q21 (rs224143; P = 2.20 × 10, OR = 1.38), ZMIZ1 at 10q22 (rs1250569; P = 3.05 × 10, OR = 1.30), NKX2-3 at 10q24 (rs4409764; P = 7.93 × 10, OR = 1.32), PTPN2 at 18p11 (rs514000; P = 9.00 × 10, OR = 1.33), and USP25 at 21q11 (rs2823256; P = 2.49 × 10, OR = 1.35), bringing the number of known CD loci (including 3 in the HLA) in Koreans to 15. The 6 additional loci increased the total genetic variance for CD risk from 5.31% to 7.27% in Koreans. Although the different genetic backgrounds of CD between Asian and Western countries has been well established for the major susceptibility genes, our findings of overlapping associations offer new insights into the genetic architecture of CD.

  1. Quantitative trait loci mapping for stomatal traits in interspecific ...

    Indian Academy of Sciences (India)

    M. Sumathi

    2018-02-23

    Feb 23, 2018 ... Journal of Genetics, Vol. ... QTL analysis was carried out to identify the chromosomal regions affecting ... Keywords. linkage map; quantitative trait loci; stomata; stress ..... of India for providing financial support for the project.

  2. Human red cell 2,3-diphosphoglycerate mutase and monophosphoglycerate mutase: genetic evidence for two separate loci.

    Science.gov (United States)

    Chen, S H; Anderson, J E; Giblett, E R

    1977-01-01

    Rare genetic variants of human red cell 2,3-diphosphoglycerate mutase (DPGM) and monophosphoglycerate mutase (MPGM) were compared by starch gel electrophoresis. The isozyme patterns showed that genetic variation of the enzymes were independent from each other, thus DPGM and MPGM must be controlled by two separate loci. Images Fig. 1 PMID:195467

  3. Multiple loci associated with renal function in African Americans.

    Directory of Open Access Journals (Sweden)

    Daniel Shriner

    Full Text Available The incidence of chronic kidney disease varies by ethnic group in the USA, with African Americans displaying a two-fold higher rate than European Americans. One of the two defining variables underlying staging of chronic kidney disease is the glomerular filtration rate. Meta-analysis in individuals of European ancestry has identified 23 genetic loci associated with the estimated glomerular filtration rate (eGFR. We conducted a follow-up study of these 23 genetic loci using a population-based sample of 1,018 unrelated admixed African Americans. We included in our follow-up study two variants in APOL1 associated with end-stage kidney disease discovered by admixture mapping in admixed African Americans. To address confounding due to admixture, we estimated local ancestry at each marker and global ancestry. We performed regression analysis stratified by local ancestry and combined the resulting regression estimates across ancestry strata using an inverse variance-weighted fixed effects model. We found that 11 of the 24 loci were significantly associated with eGFR in our sample. The effect size estimates were not significantly different between the subgroups of individuals with two copies of African ancestry vs. two copies of European ancestry for any of the 11 loci. In contrast, allele frequencies were significantly different at 10 of the 11 loci. Collectively, the 11 loci, including four secondary signals revealed by conditional analyses, explained 14.2% of the phenotypic variance in eGFR, in contrast to the 1.4% explained by the 24 loci in individuals of European ancestry. Our findings provide insight into the genetic basis of variation in renal function among admixed African Americans.

  4. Genetic maps of polymorphic DNA loci on rat chromosome 1

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yan-Ping; Remmers, E.F.; Longman, R.E. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-09-01

    Genetic linkage maps of loci defined by polymorphic DNA markers on rat chromosome 1 were constructed by genotyping F2 progeny of F344/N x LEW/N, BN/SsN x LEW/N, and DA/Bkl x F344/Hsd inbred rat strains. In total, 43 markers were mapped, of which 3 were restriction fragment length polymorphisms and the others were simple sequence length polymorphisms. Nineteen of these markers were associated with genes. Six markers for five genes, {gamma}-aminobutyric acid receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}1 (Adrb1), carcinoembryonic antigen gene family member 1 (Cgm1), and lipogenic protein S14 (Lpgp), and 20 anonymous loci were not previously reported. Thirteen gene loci (Myl2, Aldoa, Tnt, Igf2, Prkcg, Cgm4, Calm3, Cgm3, Psbp1, Sa, Hbb, Ins1, and Tcp1) were previously mapped. Comparative mapping analysis indicated that the large portion of rat chromosome 1 is homologous to mouse chromosome 7, although the homologous to mouse chromosome 7, although the homologs of two rat genes are located on mouse chromosomes 17 and 19. Homologs of the rat chromosome 1 genes that we mapped are located on human chromosomes 6, 10, 11, 12, 15, 16, and 19. 38 refs., 1 fig., 3 tabs.

  5. Analysis of genetic polymorphism of nine short tandem repeat loci in ...

    African Journals Online (AJOL)

    This study was carried out to investigate the genetic polymorphism of nine short tandem repeat (STR) loci including D2S1772, D6S1043, D7S3048, D8S1132, D11S2368, D12S391, D13S325, D18S1364 and D22GATA198B05 in Chinese Han population of Henan province and to assess its value in forensic science.

  6. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Science.gov (United States)

    Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Investigators, kConFab; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Ewart Toland, Amanda; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Złowocka-Perłowska, Elżbieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.; Lu, Karen H.; Lejbkowicz, Flavio; James, Paul A.; Hall, Per; Dunning, Alison M.; Tessier, Daniel; Cunningham, Julie; Slager, Susan L.; Wang, Chen; Hart, Steven; Stevens, Kristen; Simard, Jacques; Pastinen, Tomi; Pankratz, Vernon S.; Offit, Kenneth; Antoniou, Antonis C.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  7. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium.

    Science.gov (United States)

    Ng, Maggie C Y; Graff, Mariaelisa; Lu, Yingchang; Justice, Anne E; Mudgal, Poorva; Liu, Ching-Ti; Young, Kristin; Yanek, Lisa R; Feitosa, Mary F; Wojczynski, Mary K; Rand, Kristin; Brody, Jennifer A; Cade, Brian E; Dimitrov, Latchezar; Duan, Qing; Guo, Xiuqing; Lange, Leslie A; Nalls, Michael A; Okut, Hayrettin; Tajuddin, Salman M; Tayo, Bamidele O; Vedantam, Sailaja; Bradfield, Jonathan P; Chen, Guanjie; Chen, Wei-Min; Chesi, Alessandra; Irvin, Marguerite R; Padhukasahasram, Badri; Smith, Jennifer A; Zheng, Wei; Allison, Matthew A; Ambrosone, Christine B; Bandera, Elisa V; Bartz, Traci M; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Bottinger, Erwin P; Carpten, John; Chanock, Stephen J; Chen, Yii-Der Ida; Conti, David V; Cooper, Richard S; Fornage, Myriam; Freedman, Barry I; Garcia, Melissa; Goodman, Phyllis J; Hsu, Yu-Han H; Hu, Jennifer; Huff, Chad D; Ingles, Sue A; John, Esther M; Kittles, Rick; Klein, Eric; Li, Jin; McKnight, Barbara; Nayak, Uma; Nemesure, Barbara; Ogunniyi, Adesola; Olshan, Andrew; Press, Michael F; Rohde, Rebecca; Rybicki, Benjamin A; Salako, Babatunde; Sanderson, Maureen; Shao, Yaming; Siscovick, David S; Stanford, Janet L; Stevens, Victoria L; Stram, Alex; Strom, Sara S; Vaidya, Dhananjay; Witte, John S; Yao, Jie; Zhu, Xiaofeng; Ziegler, Regina G; Zonderman, Alan B; Adeyemo, Adebowale; Ambs, Stefan; Cushman, Mary; Faul, Jessica D; Hakonarson, Hakon; Levin, Albert M; Nathanson, Katherine L; Ware, Erin B; Weir, David R; Zhao, Wei; Zhi, Degui; Arnett, Donna K; Grant, Struan F A; Kardia, Sharon L R; Oloapde, Olufunmilayo I; Rao, D C; Rotimi, Charles N; Sale, Michele M; Williams, L Keoki; Zemel, Babette S; Becker, Diane M; Borecki, Ingrid B; Evans, Michele K; Harris, Tamara B; Hirschhorn, Joel N; Li, Yun; Patel, Sanjay R; Psaty, Bruce M; Rotter, Jerome I; Wilson, James G; Bowden, Donald W; Cupples, L Adrienne; Haiman, Christopher A; Loos, Ruth J F; North, Kari E

    2017-04-01

    Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations.

  8. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS...

  9. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis.

    Science.gov (United States)

    Weidinger, Stephan; Willis-Owen, Saffron A G; Kamatani, Yoichiro; Baurecht, Hansjörg; Morar, Nilesh; Liang, Liming; Edser, Pauline; Street, Teresa; Rodriguez, Elke; O'Regan, Grainne M; Beattie, Paula; Fölster-Holst, Regina; Franke, Andre; Novak, Natalija; Fahy, Caoimhe M; Winge, Mårten C G; Kabesch, Michael; Illig, Thomas; Heath, Simon; Söderhäll, Cilla; Melén, Erik; Pershagen, Göran; Kere, Juha; Bradley, Maria; Lieden, Agne; Nordenskjold, Magnus; Harper, John I; McLean, W H Irwin; Brown, Sara J; Cookson, William O C; Lathrop, G Mark; Irvine, Alan D; Moffatt, Miriam F

    2013-12-01

    Atopic dermatitis (AD) is the most common dermatological disease of childhood. Many children with AD have asthma and AD shares regions of genetic linkage with psoriasis, another chronic inflammatory skin disease. We present here a genome-wide association study (GWAS) of childhood-onset AD in 1563 European cases with known asthma status and 4054 European controls. Using Illumina genotyping followed by imputation, we generated 268 034 consensus genotypes and in excess of 2 million single nucleotide polymorphisms (SNPs) for analysis. Association signals were assessed for replication in a second panel of 2286 European cases and 3160 European controls. Four loci achieved genome-wide significance for AD and replicated consistently across all cohorts. These included the epidermal differentiation complex (EDC) on chromosome 1, the genomic region proximal to LRRC32 on chromosome 11, the RAD50/IL13 locus on chromosome 5 and the major histocompatibility complex (MHC) on chromosome 6; reflecting action of classical HLA alleles. We observed variation in the contribution towards co-morbid asthma for these regions of association. We further explored the genetic relationship between AD, asthma and psoriasis by examining previously identified susceptibility SNPs for these diseases. We found considerable overlap between AD and psoriasis together with variable coincidence between allergic rhinitis (AR) and asthma. Our results indicate that the pathogenesis of AD incorporates immune and epidermal barrier defects with combinations of specific and overlapping effects at individual loci.

  10. Characteristics of Japanese inflammatory bowel disease susceptibility loci.

    Science.gov (United States)

    Arimura, Yoshiaki; Isshiki, Hiroyuki; Onodera, Kei; Nagaishi, Kanna; Yamashita, Kentaro; Sonoda, Tomoko; Matsumoto, Takayuki; Takahashi, Atsushi; Takazoe, Masakazu; Yamazaki, Keiko; Kubo, Michiaki; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-08-01

    There are substantial differences in inflammatory bowel disease (IBD) genetics depending on the populations examined. We aimed to identify Japanese population-specific or true culprit susceptibility genes through a meta-analysis of past genetic studies of Japanese IBD. For this study, we reviewed 2,703 articles. The review process consisted of three screening stages: we initially searched for relevant studies and then relevant single nucleotide polymorphisms (SNPs). Finally, we adjusted them for the meta-analysis. To maximize our chances of analysis, we introduced proxy SNPs during the first stage. To minimize publication bias, no significant SNPs and solitary SNPs without pairs were combined to be reconsidered during the third stage. Additionally, two SNPs were newly genotyped. Finally, we conducted a meta-analysis of 37 published studies in 50 SNPs located at 22 loci corresponding to the total number of 4,853 Crohn's disease (CD), 5,612 ulcerative colitis (UC) patients, and 14,239 healthy controls. We confirmed that the NKX2-3 polymorphism is associated with common susceptibility to IBD and that HLA-DRB1*0450 alleles increase susceptibility to CD but reduce risk for UC while HLA-DRB1*1502 alleles increase susceptibility to UC but reduce CD risk. Moreover, we found individual disease risk loci: TNFSF15 and TNFα to CD and HLA-B*5201, and NFKBIL1 to UC. The genetic risk of HLA was substantially high (odds ratios ranged from 1.54 to 2.69) while that of common susceptibility loci to IBD was modest (odds ratio ranged from 1.13 to 1.24). Results indicate that Japanese IBD susceptibility loci identified by the meta-analysis are closely associated with the HLA regions.

  11. A genome-wide association study identifies five loci influencing facial morphology in Europeans.

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2012-09-01

    Full Text Available Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes--PRDM16, PAX3, TP63, C5orf50, and COL17A1--in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications.

  12. A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans

    Science.gov (United States)

    Liu, Fan; van der Lijn, Fedde; Schurmann, Claudia; Zhu, Gu; Chakravarty, M. Mallar; Hysi, Pirro G.; Wollstein, Andreas; Lao, Oscar; de Bruijne, Marleen; Ikram, M. Arfan; van der Lugt, Aad; Rivadeneira, Fernando; Uitterlinden, André G.; Hofman, Albert; Niessen, Wiro J.; Homuth, Georg; de Zubicaray, Greig; McMahon, Katie L.; Thompson, Paul M.; Daboul, Amro; Puls, Ralf; Hegenscheid, Katrin; Bevan, Liisa; Pausova, Zdenka; Medland, Sarah E.; Montgomery, Grant W.; Wright, Margaret J.; Wicking, Carol; Boehringer, Stefan; Spector, Timothy D.; Paus, Tomáš; Martin, Nicholas G.; Biffar, Reiner; Kayser, Manfred

    2012-01-01

    Inter-individual variation in facial shape is one of the most noticeable phenotypes in humans, and it is clearly under genetic regulation; however, almost nothing is known about the genetic basis of normal human facial morphology. We therefore conducted a genome-wide association study for facial shape phenotypes in multiple discovery and replication cohorts, considering almost ten thousand individuals of European descent from several countries. Phenotyping of facial shape features was based on landmark data obtained from three-dimensional head magnetic resonance images (MRIs) and two-dimensional portrait images. We identified five independent genetic loci associated with different facial phenotypes, suggesting the involvement of five candidate genes—PRDM16, PAX3, TP63, C5orf50, and COL17A1—in the determination of the human face. Three of them have been implicated previously in vertebrate craniofacial development and disease, and the remaining two genes potentially represent novel players in the molecular networks governing facial development. Our finding at PAX3 influencing the position of the nasion replicates a recent GWAS of facial features. In addition to the reported GWA findings, we established links between common DNA variants previously associated with NSCL/P at 2p21, 8q24, 13q31, and 17q22 and normal facial-shape variations based on a candidate gene approach. Overall our study implies that DNA variants in genes essential for craniofacial development contribute with relatively small effect size to the spectrum of normal variation in human facial morphology. This observation has important consequences for future studies aiming to identify more genes involved in the human facial morphology, as well as for potential applications of DNA prediction of facial shape such as in future forensic applications. PMID:23028347

  13. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci.

    Directory of Open Access Journals (Sweden)

    Alexandra Zhernakova

    2011-02-01

    Full Text Available Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD and rheumatoid arthritis (RA, but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the established non-HLA CD and RA risk loci (out of 26 loci for each disease are shared between both diseases. We hypothesized that there are additional shared risk alleles and that combining genome-wide association study (GWAS data from each disease would increase power to identify these shared risk alleles. We performed a meta-analysis of two published GWAS on CD (4,533 cases and 10,750 controls and RA (5,539 cases and 17,231 controls. After genotyping the top associated SNPs in 2,169 CD cases and 2,255 controls, and 2,845 RA cases and 4,944 controls, 8 additional SNPs demonstrated P<5 × 10(-8 in a combined analysis of all 50,266 samples, including four SNPs that have not been previously confirmed in either disease: rs10892279 near the DDX6 gene (P(combined =  1.2 × 10(-12, rs864537 near CD247 (P(combined =  2.2 × 10(-11, rs2298428 near UBE2L3 (P(combined =  2.5 × 10(-10, and rs11203203 near UBASH3A (P(combined =  1.1 × 10(-8. We also confirmed that 4 gene loci previously established in either CD or RA are associated with the other autoimmune disease at combined P<5 × 10(-8 (SH2B3, 8q24, STAT4, and TRAF1-C5. From the 14 shared gene loci, 7 SNPs showed a genome-wide significant effect on expression of one or more transcripts in the linkage disequilibrium (LD block around the SNP. These associations implicate antigen presentation and T-cell activation as a shared mechanism of disease pathogenesis and underscore the utility of cross-disease meta-analysis for identification of genetic risk factors with pleiotropic effects between two clinically distinct diseases.

  14. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Dongling; Hao, Chenyang; Wang, Lanfen; Zhang, Xueyong

    2012-11-01

    Grain number (GN) is one of three major yield-related components in wheat. We used the Chinese wheat mini core collection to undertake a genome-wide association analysis of grain number using 531 SSR markers randomly located on all 21 chromosomes. Grain numbers of all accessions were measured in four trials, i.e. two environments in four growing seasons. Association analysis based on a mixed linear model (MLM) revealed that 27 SSR loci were significantly associated with mean GN (MGN) estimated by the best linear unbiased predictor (BLUP) method. These included numerous breeder favorable alleles with strong positive effects at 23 loci. Significant or extremely significant differences were detected on MGN between varieties conveying favored allele and varieties with other alleles. Moreover, statistical simulation showed that the favored alleles have additive genetic effects. Although modern varieties combined larger numbers of favored alleles, the numbers of favored alleles were not significantly different from those in landraces, especially those alleles contributing mostly to the phenotypic variation. These results indicate that there is still considerable genetic potential for use of markers for genome selection of GN for high yield in wheat.

  15. Novel loci and pathways significantly associated with longevity

    DEFF Research Database (Denmark)

    Zeng, Yi; Nie, Chao; Min, Junxia

    2016-01-01

    Only two genome-wide significant loci associated with longevity have been identified so far, probably because of insufficient sample sizes of centenarians, whose genomes may harbor genetic variants associated with health and longevity. Here we report a genome-wide association study (GWAS) of Han ...

  16. Genetic polymorphisms, forensic efficiency and phylogenetic analysis of 15 autosomal STR loci in the Kazak population of Ili Kazak Autonomous Prefecture, northwestern China.

    Science.gov (United States)

    Feng, Chunmei; Wang, Xin; Wang, Xiaolong; Yu, Hao; Zhang, Guohua

    2018-03-01

    We investigated the frequencies of 15 autosomal STR loci in the Kazak population of the Ili Kazak Autonomous Prefecture with the aim of expanding the available population information in human genetic databases and for forensic DNA analysis. Genetic polymorphisms of 15 autosomal short tandem repeat (STR) loci were analysed in 456 individuals of the Kazak population from Ili Kazakh Autonomous Prefecture, northwestern China. A total of 173 alleles at 15 autosomal STR loci were found; the allele frequencies ranged from 0.5022-0.0011. The combined power of discrimination and exclusion statistics for the 15 STR loci were 0.999 999 999 85 and 0.999 998 800 65, respectively. In addition, phylogenetic analysis involving the Ili Uygur population and other relevant populations was carried out. A neighbour-joining tree and multidimensional scaling plot were generated based on Nei's standard genetic distance. Results of the population comparison indicated that the Ili Uygur population was most closely related genetically to the Uygur populations from other regions in China. These findings are consistent with the historical and geographic backgrounds of these populations.

  17. New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475 000 Individuals

    DEFF Research Database (Denmark)

    Kraja, Aldi T.; Cook, James P.; Warren, Helen R.

    2017-01-01

    Background - Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data...

  18. Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci

    Directory of Open Access Journals (Sweden)

    Caroline E. Dubé

    2017-02-01

    Full Text Available Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla, an important reef-builder of Indo-Pacific reefs. We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2–13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71% and polymorphism (59% of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323–0.496 and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.

  19. Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error

    Science.gov (United States)

    Cheng, Ching-Yu; Schache, Maria; Ikram, M. Kamran; Young, Terri L.; Guggenheim, Jeremy A.; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J.M.; Barathi, Veluchamy A.; Liao, Jiemin; Hysi, Pirro G.; Bailey-Wilson, Joan E.; St. Pourcain, Beate; Kemp, John P.; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Montgomery, Grant W.; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F.; Amin, Najaf; van Leeuwen, Elisabeth M.; Wilson, James F.; Pennell, Craig E.; van Duijn, Cornelia M.; de Jong, Paulus T.V.M.; Vingerling, Johannes R.; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Rahi, Jugnoo S.; Hysi, Pirro G.; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Delcourt, Cécile; Maubaret, Cecilia; Williams, Cathy; Guggenheim, Jeremy A.; Northstone, Kate; Ring, Susan M.; Davey-Smith, George; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Stambolian, Dwight; Wilson, Joan E. Bailey; MacGregor, Stuart; Lu, Yi; Jonas, Jost B.; Xu, Liang; Saw, Seang-Mei; Baird, Paul N.; Rochtchina, Elena; Mitchell, Paul; Wang, Jie Jin; Jonas, Jost B.; Nangia, Vinay; Hayward, Caroline; Wright, Alan F.; Vitart, Veronique; Polasek, Ozren; Campbell, Harry; Vitart, Veronique; Rudan, Igor; Vatavuk, Zoran; Vitart, Veronique; Paterson, Andrew D.; Hosseini, S. Mohsen; Iyengar, Sudha K.; Igo, Robert P.; Fondran, Jeremy R.; Young, Terri L.; Feng, Sheng; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Metspalu, Andres; Haller, Toomas; Mihailov, Evelin; Pärssinen, Olavi; Wedenoja, Juho; Wilson, Joan E. Bailey; Wojciechowski, Robert; Baird, Paul N.; Schache, Maria; Pfeiffer, Norbert; Höhn, René; Pang, Chi Pui; Chen, Peng; Meitinger, Thomas; Oexle, Konrad; Wegner, Aharon; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Pärssinen, Olavi; Yip, Shea Ping; Ho, Daniel W.H.; Pirastu, Mario; Murgia, Federico; Portas, Laura; Biino, Genevra; Wilson, James F.; Fleck, Brian; Vitart, Veronique; Stambolian, Dwight; Wilson, Joan E. Bailey; Hewitt, Alex W.; Ang, Wei; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Tai, E-Shyong; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Mackey, David A.; MacGregor, Stuart; Hammond, Christopher J.; Hysi, Pirro G.; Deangelis, Margaret M.; Morrison, Margaux; Zhou, Xiangtian; Chen, Wei; Paterson, Andrew D.; Hosseini, S. Mohsen; Mizuki, Nobuhisa; Meguro, Akira; Lehtimäki, Terho; Mäkelä, Kari-Matti; Raitakari, Olli; Kähönen, Mika; Burdon, Kathryn P.; Craig, Jamie E.; Iyengar, Sudha K.; Igo, Robert P.; Lass, Jonathan H.; Reinhart, William; Belin, Michael W.; Schultze, Robert L.; Morason, Todd; Sugar, Alan; Mian, Shahzad; Soong, Hunson Kaz; Colby, Kathryn; Jurkunas, Ula; Yee, Richard; Vital, Mark; Alfonso, Eduardo; Karp, Carol; Lee, Yunhee; Yoo, Sonia; Hammersmith, Kristin; Cohen, Elisabeth; Laibson, Peter; Rapuano, Christopher; Ayres, Brandon; Croasdale, Christopher; Caudill, James; Patel, Sanjay; Baratz, Keith; Bourne, William; Maguire, Leo; Sugar, Joel; Tu, Elmer; Djalilian, Ali; Mootha, Vinod; McCulley, James; Bowman, Wayne; Cavanaugh, H. Dwight; Verity, Steven; Verdier, David; Renucci, Ann; Oliva, Matt; Rotkis, Walter; Hardten, David R.; Fahmy, Ahmad; Brown, Marlene; Reeves, Sherman; Davis, Elizabeth A.; Lindstrom, Richard; Hauswirth, Scott; Hamilton, Stephen; Lee, W. Barry; Price, Francis; Price, Marianne; Kelly, Kathleen; Peters, Faye; Shaughnessy, Michael; Steinemann, Thomas; Dupps, B.J.; Meisler, David M.; Mifflin, Mark; Olson, Randal; Aldave, Anthony; Holland, Gary; Mondino, Bartly J.; Rosenwasser, George; Gorovoy, Mark; Dunn, Steven P.; Heidemann, David G.; Terry, Mark; Shamie, Neda; Rosenfeld, Steven I.; Suedekum, Brandon; Hwang, David; Stone, Donald; Chodosh, James; Galentine, Paul G.; Bardenstein, David; Goddard, Katrina; Chin, Hemin; Mannis, Mark; Varma, Rohit; Borecki, Ingrid; Chew, Emily Y.; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L.; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N.A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C.A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; Spencer, Chris C.A.; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M.; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E.; Hosseini, S. Mohsen; Paterson, Andrew D.; Genuth, S.; Nathan, D.M.; Zinman, B.; Crofford, O.; Crandall, J.; Reid, M.; Brown-Friday, J.; Engel, S.; Sheindlin, J.; Martinez, H.; Shamoon, H.; Engel, H.; Phillips, M.; Gubitosi-Klug, R.; Mayer, L.; Pendegast, S.; Zegarra, H.; Miller, D.; Singerman, L.; Smith-Brewer, S.; Novak, M.; Quin, J.; Dahms, W.; Genuth, Saul; Palmert, M.; Brillon, D.; Lackaye, M.E.; Kiss, S.; Chan, R.; Reppucci, V.; Lee, T.; Heinemann, M.; Whitehouse, F.; Kruger, D.; Jones, J.K.; McLellan, M.; Carey, J.D.; Angus, E.; Thomas, A.; Galprin, A.; Bergenstal, R.; Johnson, M.; Spencer, M.; Morgan, K.; Etzwiler, D.; Kendall, D.; Aiello, Lloyd Paul; Golden, E.; Jacobson, A.; Beaser, R.; Ganda, O.; Hamdy, O.; Wolpert, H.; Sharuk, G.; Arrigg, P.; Schlossman, D.; Rosenzwieg, J.; Rand, L.; Nathan, D.M.; Larkin, M.; Ong, M.; Godine, J.; Cagliero, E.; Lou, P.; Folino, K.; Fritz, S.; Crowell, S.; Hansen, K.; Gauthier-Kelly, C.; Service, J.; Ziegler, G.; Luttrell, L.; Caulder, S.; Lopes-Virella, M.; Colwell, J.; Soule, J.; Fernandes, J.; Hermayer, K.; Kwon, S.; Brabham, M.; Blevins, A.; Parker, J.; Lee, D.; Patel, N.; Pittman, C.; Lindsey, P.; Bracey, M.; Lee, K.; Nutaitis, M.; Farr, A.; Elsing, S.; Thompson, T.; Selby, J.; Lyons, T.; Yacoub-Wasef, S.; Szpiech, M.; Wood, D.; Mayfield, R.; Molitch, M.; Schaefer, B.; Jampol, L.; Lyon, A.; Gill, M.; Strugula, Z.; Kaminski, L.; Mirza, R.; Simjanoski, E.; Ryan, D.; Kolterman, O.; Lorenzi, G.; Goldbaum, M.; Sivitz, W.; Bayless, M.; Counts, D.; Johnsonbaugh, S.; Hebdon, M.; Salemi, P.; Liss, R.; Donner, T.; Gordon, J.; Hemady, R.; Kowarski, A.; Ostrowski, D.; Steidl, S.; Jones, B.; Herman, W.H.; Martin, C.L.; Pop-Busui, R.; Sarma, A.; Albers, J.; Feldman, E.; Kim, K.; Elner, S.; Comer, G.; Gardner, T.; Hackel, R.; Prusak, R.; Goings, L.; Smith, A.; Gothrup, J.; Titus, P.; Lee, J.; Brandle, M.; Prosser, L.; Greene, D.A.; Stevens, M.J.; Vine, A.K.; Bantle, J.; Wimmergren, N.; Cochrane, A.; Olsen, T.; Steuer, E.; Rath, P.; Rogness, B.; Hainsworth, D.; Goldstein, D.; Hitt, S.; Giangiacomo, J.; Schade, D.S.; Canady, J.L.; Chapin, J.E.; Ketai, L.H.; Braunstein, C.S.; Bourne, P.A.; Schwartz, S.; Brucker, A.; Maschak-Carey, B.J.; Baker, L.; Orchard, T.; Silvers, N.; Ryan, C.; Songer, T.; Doft, B.; Olson, S.; Bergren, R.L.; Lobes, L.; Rath, P. Paczan; Becker, D.; Rubinstein, D.; Conrad, P.W.; Yalamanchi, S.; Drash, A.; Morrison, A.; Bernal, M.L.; Vaccaro-Kish, J.; Malone, J.; Pavan, P.R.; Grove, N.; Iyer, M.N.; Burrows, A.F.; Tanaka, E.A.; Gstalder, R.; Dagogo-Jack, S.; Wigley, C.; Ricks, H.; Kitabchi, A.; Murphy, M.B.; Moser, S.; Meyer, D.; Iannacone, A.; Chaum, E.; Yoser, S.; Bryer-Ash, M.; Schussler, S.; Lambeth, H.; Raskin, P.; Strowig, S.; Zinman, B.; Barnie, A.; Devenyi, R.; Mandelcorn, M.; Brent, M.; Rogers, S.; Gordon, A.; Palmer, J.; Catton, S.; Brunzell, J.; Wessells, H.; de Boer, I.H.; Hokanson, J.; Purnell, J.; Ginsberg, J.; Kinyoun, J.; Deeb, S.; Weiss, M.; Meekins, G.; Distad, J.; Van Ottingham, L.; Dupre, J.; Harth, J.; Nicolle, D.; Driscoll, M.; Mahon, J.; Canny, C.; May, M.; Lipps, J.; Agarwal, A.; Adkins, T.; Survant, L.; Pate, R.L.; Munn, G.E.; Lorenz, R.; Feman, S.; White, N.; Levandoski, L.; Boniuk, I.; Grand, G.; Thomas, M.; Joseph, D.D.; Blinder, K.; Shah, G.; Boniuk; Burgess; Santiago, J.; Tamborlane, W.; Gatcomb, P.; Stoessel, K.; Taylor, K.; Goldstein, J.; Novella, S.; Mojibian, H.; Cornfeld, D.; Lima, J.; Bluemke, D.; Turkbey, E.; van der Geest, R.J.; Liu, C.; Malayeri, A.; Jain, A.; Miao, C.; Chahal, H.; Jarboe, R.; Maynard, J.; Gubitosi-Klug, R.; Quin, J.; Gaston, P.; Palmert, M.; Trail, R.; Dahms, W.; Lachin, J.; Cleary, P.; Backlund, J.; Sun, W.; Braffett, B.; Klumpp, K.; Chan, K.; Diminick, L.; Rosenberg, D.; Petty, B.; Determan, A.; Kenny, D.; Rutledge, B.; Younes, Naji; Dews, L.; Hawkins, M.; Cowie, C.; Fradkin, J.; Siebert, C.; Eastman, R.; Danis, R.; Gangaputra, S.; Neill, S.; Davis, M.; Hubbard, L.; Wabers, H.; Burger, M.; Dingledine, J.; Gama, V.; Sussman, R.; Steffes, M.; Bucksa, J.; Nowicki, M.; Chavers, B.; O’Leary, D.; Polak, J.; Harrington, A.; Funk, L.; Crow, R.; Gloeb, B.; Thomas, S.; O’Donnell, C.; Soliman, E.; Zhang, Z.M.; Prineas, R.; Campbell, C.; Ryan, C.; Sandstrom, D.; Williams, T.; Geckle, M.; Cupelli, E.; Thoma, F.; Burzuk, B.; Woodfill, T.; Low, P.; Sommer, C.; Nickander, K.; Budoff, M.; Detrano, R.; Wong, N.; Fox, M.; Kim, L.; Oudiz, R.; Weir, G.; Espeland, M.; Manolio, T.; Rand, L.; Singer, D.; Stern, M.; Boulton, A.E.; Clark, C.; D’Agostino, R.; Lopes-Virella, M.; Garvey, W.T.; Lyons, T.J.; Jenkins, A.; Virella, G.; Jaffa, A.; Carter, Rickey; Lackland, D.; Brabham, M.; McGee, D.; Zheng, D.; Mayfield, R.K.; Boright, A.; Bull, S.; Sun, L.; Scherer, S.; Zinman, B.; Natarajan, R.; Miao, F.; Zhang, L.; Chen;, Z.; Nathan, D.M.; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K.H.; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J.; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G.; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W.; Williams, Cathy; Oostra, Ben A.; Teo, Yik-Ying; Hammond, Christopher J.; Stambolian, Dwight; Mackey, David A.; Klaver, Caroline C.W.; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N.

    2013-01-01

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. PMID:24144296

  20. Rheumatoid arthritis: identifying and characterising polymorphisms using rat models

    Science.gov (United States)

    2016-01-01

    ABSTRACT Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans. PMID:27736747

  1. Genome-wide Meta-analyses of Breast, Ovarian and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by At Least Two Cancer Types

    Science.gov (United States)

    Kar, Siddhartha P.; Beesley, Jonathan; Al Olama, Ali Amin; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J.; Thompson, Deborah J.; Kibel, Adam S.; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K.; Gentry-Maharaj, Aleksandra; Whittemore, Alice S.; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H.; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B.; Burwinkel, Barbara; Karlan, Beth Y.; Nordestgaard, Børge G.; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B.; Høgdall, Claus K.; Teerlink, Craig C.; Kang, Daehee; Tessier, Daniel C.; Schaid, Daniel J.; Stram, Daniel O.; Cramer, Daniel W.; Neal, David E.; Eccles, Diana; Flesch-Janys, Dieter; Velez Edwards, Digna R.; Wokozorczyk, Dominika; Levine, Douglas A.; Yannoukakos, Drakoulis; Sawyer, Elinor J.; Bandera, Elisa V.; Poole, Elizabeth M.; Goode, Ellen L.; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C.; Wiklund, Fredrik; Giles, Graham G.; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A.; Darabi, Hatef; Salvesen, Helga B.; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L.; Benítez, Javier; Doherty, Jennifer A.; Permuth, Jennifer B.; Chang-Claude, Jenny; Donovan, Jenny L.; Dennis, Joe; Schildkraut, Joellen M.; Schleutker, Johanna; Hopper, John L.; Kupryjanczyk, Jolanta; Park, Jong Y.; Figueroa, Jonine; Clements, Judith A.; Knight, Julia A.; Peto, Julian; Cunningham, Julie M.; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H.; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B.; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Fitzgerald, Liesel M.; Cook, Linda S.; Cannon-Albright, Lisa; Hooning, Maartje J.; Pike, Malcolm C.; Bolla, Manjeet K.; Luedeke, Manuel; Teixeira, Manuel R.; Goodman, Marc T.; Schmidt, Marjanka K.; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W.; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C.; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A. T.; Hou, Ming-Feng; Schoemaker, Minouk J.; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D.; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M.; Broberg, Per; Fasching, Peter A.; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K.; Stephenson, Robert A.; MacInnis, Robert J.; Hoover, Robert N.; Winqvist, Robert; Ness, Roberta; Milne, Roger L.; Travis, Ruth C.; Benlloch, Sara; Olson, Sara H.; McDonnell, Shannon K.; Tworoger, Shelley S.; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N.; Bojesen, Stig E.; Gapstur, Susan M.; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L.J.; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J.; Edwards, Todd L.; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J.; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L.; Berchuck, Andrew; Dunning, Alison M.; Simard, Jacques; Haiman, Christopher A.; Spurdle, Amanda; Sellers, Thomas A.; Hunter, David J.; Henderson, Brian E.; Kraft, Peter; Chanock, Stephen J.; Couch, Fergus J.; Hall, Per; Gayther, Simon A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D.P.; Lambrechts, Diether

    2016-01-01

    Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P cancer meta-analysis. PMID:27432226

  2. Genetic structure of seven Mexican indigenous populations based on five polymarker loci.

    Science.gov (United States)

    Buentello-Malo, Leonora; Peñaloza-Espinosa, Rosenda I; Loeza, Francisco; Salamanca-Gomez, Fabio; Cerda-Flores, Ricardo M

    2003-01-01

    This descriptive study investigates the genetic structure of seven Mexican indigenous populations (Mixteca Alta, Mixteca Baja, Otomies, Purepecha, Nahuas-Guerrero, Nahuas-Xochimilco, and Tzeltales) on the basis of five PCR-based polymorphic DNA loci: LDLR, GYPA, HBGG, D7S8, and GC. Genetic distance and diversity analyses indicate that these Mexican indigenous are similar and that more than 96% of the total gene diversity (H(T)) can be attributed to individual variation within populations. Mixteca-Alta, Mixteca-Baja, and Nahuas-Xochimilco show indications of higher admixture with European-derived persons. The demonstration of a relative genetic homogeneity of Mexican Indians for the markers studied suggests that this population is suitable for studying disease-marker associations in the search for candidate genes of complex diseases. Copyright 2002 Wiley-Liss, Inc.

  3. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES).

    Science.gov (United States)

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong

    2018-03-05

    BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (PASD (PASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.

  4. Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola.

    Science.gov (United States)

    Goodwin, Stephen B; van der Lee, Theo A J; Cavaletto, Jessica R; Te Lintel Hekkert, Bas; Crane, Charles F; Kema, Gert H J

    2007-05-01

    A database of 30,137 EST sequences from Mycosphaerella graminicola, the septoria tritici blotch fungus of wheat, was scanned with a custom software pipeline for di- and trinucleotide units repeated tandemly six or more times. The bioinformatics analysis identified 109 putative SSR loci, and for 99 of them, flanking primers were developed successfully and tested for amplification and polymorphism by PCR on five field isolates of diverse origin, including the parents of the standard M. graminicola mapping population. Seventy-seven of the 99 primer pairs generated an easily scored banding pattern and 51 were polymorphic, with up to four alleles per locus, among the isolates tested. Among these 51 loci, 23 were polymorphic between the parents of the mapping population. Twenty-one of these as well as two previously published microsatellite loci were positioned on the existing genetic linkage map of M. graminicola on 13 of the 24 linkage groups. Most (66%) of the primer pairs also amplified bands in the closely related barley pathogen Septoria passerinii, but only six were polymorphic among four isolates tested. A subset of the primer pairs also revealed polymorphisms when tested with DNA from the related banana black leaf streak (Black Sigatoka) pathogen, M. fijiensis. The EST database provided an excellent source of new, highly polymorphic microsatellite markers that can be multiplexed for high-throughput genetic analyses of M. graminicola and related species.

  5. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J.M. Collée (Margriet); W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (Guillermo); M.R. Alonso (Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS,

  6. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    DEFF Research Database (Denmark)

    Dupuis, Josée; Langenberg, Claudia; Prokopenko, Inga

    2010-01-01

    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up...... to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA......2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell...

  7. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  8. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa

    2016-01-01

    Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery...... and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P2, rs7107784 near MIR4686 and rs67839313 near INAFM2....... Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P

  9. Genetic polymorphism of 21 non-CODIS STR loci in Chengdu Han population and its interpopulation analysis between 25 populations in China.

    Science.gov (United States)

    Li, Ye; Li, Hepei; He, Guanglin; Liang, Weibo; Luo, Haibo; Liao, Miao; Zhang, Ji; Yan, Jing; Li, Yingbi; Hou, Yiping; Wu, Jin

    2018-03-01

    AGCU 21+1 STR kit contains 21 non-combined DNA index system (non-CODIS) short tandem repeats (STR) loci and a sex-determining locus amelogenin. In this study, we evaluated the genetic diversity and forensically relevant population statistics of 21 non-CODIS loci in 210 Chinese Han individuals from Chengdu city, Sichuan province, Southwest China. No significant deviations from Hardy-Weinberg equilibrium were observed within the 21 non-CODIS STR loci. The combined power of discrimination (CPD) and combined power of exclusion (CPE) were 0.99999999999999999994278, 0.999999355 respectively. To reveal interpopulation differentiations of mainland population of China, a neighbor-joining (N-J) phylogenetic tree was constructed based on Nei's genetic distances among Chengdu Han and 25 published populations. The phylogenetic analyses indicated that Chengdu Han population keeps a close genetic relationship with other Han populations. Copyright © 2017. Published by Elsevier B.V.

  10. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  11. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  12. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw.

    Science.gov (United States)

    Hu, Zhen; Zhang, Guifen; Muhammad, Ali; Samad, Rana Abdul; Wang, Youmei; Walton, Jonathan D; He, Yuqing; Peng, Liangcai; Wang, Lingqiang

    2018-02-26

    Lignin content and composition are crucial factors affecting biomass digestibility. Exploring the genetic loci simultaneously affecting lignin-relevant traits and biomass digestibility is a precondition for lignin genetic manipulation towards energy crop breeding. In this study, a high-throughput platform was employed to assay the lignin content, lignin composition and biomass enzymatic digestibility of a rice recombinant inbred line population. Correlation analysis indicated that the absolute content of lignin monomers rather than lignin content had negative effects on biomass saccharification, whereas the relative content of p-hydroxyphenyl unit and the molar ratio of p-hydroxyphenyl unit to guaiacyl unit exhibited positive roles. Eight QTL clusters were identified and four of them affecting both lignin composition and biomass digestibility. The additive effects of clustered QTL revealed consistent relationships between lignin-relevant traits and biomass digestibility. Pyramiding rice lines containing the above four positive alleles for increasing biomass digestibility were selected and showed comparable lignin content, decreased syringyl or guaiacyl unit and increased molar percentage of p-hydroxyphenyl unit, the molar ratio of p-hydroxyphenyl unit to guaiacyl unit and sugar releases. More importantly, the lodging resistance and eating/cooking quality of pyramiding lines were not sacrificed, indicating the QTL information could be applied to select desirable energy rice lines.

  13. Meta-analysis of loci associated with age at natural menopause in African-American women

    Science.gov (United States)

    Chen, Christina T.L.; Liu, Ching-Ti; Chen, Gary K.; Andrews, Jeanette S.; Arnold, Alice M.; Dreyfus, Jill; Franceschini, Nora; Garcia, Melissa E.; Kerr, Kathleen F.; Li, Guo; Lohman, Kurt K.; Musani, Solomon K.; Nalls, Michael A.; Raffel, Leslie J.; Smith, Jennifer; Ambrosone, Christine B.; Bandera, Elisa V.; Bernstein, Leslie; Britton, Angela; Brzyski, Robert G.; Cappola, Anne; Carlson, Christopher S.; Couper, David; Deming, Sandra L.; Goodarzi, Mark O.; Heiss, Gerardo; John, Esther M.; Lu, Xiaoning; Le Marchand, Loic; Marciante, Kristin; Mcknight, Barbara; Millikan, Robert; Nock, Nora L.; Olshan, Andrew F.; Press, Michael F.; Vaiyda, Dhananjay; Woods, Nancy F.; Taylor, Herman A.; Zhao, Wei; Zheng, Wei; Evans, Michele K.; Harris, Tamara B.; Henderson, Brian E.; Kardia, Sharon L.R.; Kooperberg, Charles; Liu, Yongmei; Mosley, Thomas H.; Psaty, Bruce; Wellons, Melissa; Windham, Beverly G.; Zonderman, Alan B.; Cupples, L. Adrienne; Demerath, Ellen W.; Haiman, Christopher; Murabito, Joanne M.; Rajkovic, Aleksandar

    2014-01-01

    Age at menopause marks the end of a woman's reproductive life and its timing associates with risks for cancer, cardiovascular and bone disorders. GWAS and candidate gene studies conducted in women of European ancestry have identified 27 loci associated with age at menopause. The relevance of these loci to women of African ancestry has not been previously studied. We therefore sought to uncover additional menopause loci and investigate the relevance of European menopause loci by performing a GWAS meta-analysis in 6510 women with African ancestry derived from 11 studies across the USA. We did not identify any additional loci significantly associated with age at menopause in African Americans. We replicated the associations between six loci and age at menopause (P-value < 0.05): AMHR2, RHBLD2, PRIM1, HK3/UMC1, BRSK1/TMEM150B and MCM8. In addition, associations of 14 loci are directionally consistent with previous reports. We provide evidence that genetic variants influencing reproductive traits identified in European populations are also important in women of African ancestry residing in USA. PMID:24493794

  14. PERMANENT GENETIC RESOURCES: Isolation and characterization of polymorphic microsatellite loci in common evening primrose (Oenothera biennis).

    Science.gov (United States)

    Larson, E L; Bogdanowicz, S M; Agrawal, A A; Johnson, M T J; Harrison, R G

    2008-03-01

    We developed nine polymorphic microsatellite loci for evening primrose (Oenothera biennis). These loci have two to 18 alleles per locus and observed heterozygosities ranging from 0 to 0.879 in a sample of 34 individuals. In a pattern consistent with the functionally asexual reproductive system of this species, 17/36 pairs of loci revealed significant linkage disequilibrium and three loci showed significant deviations from Hardy-Weinberg equilibrium. The loci will be informative in identifying genotypes in multigenerational field studies to assess changes in genotype frequencies. © 2007 The Authors.

  15. Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers

    Directory of Open Access Journals (Sweden)

    Xiaoxi Liu

    2017-07-01

    Full Text Available Tomato (Solanum lycopersicum fruit weight (FW, soluble solid content (SSC, fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI, and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19–1.30 × 10−4 associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05 associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.

  16. The loci controlling plasticity in flax

    Directory of Open Access Journals (Sweden)

    Bickel CL

    2012-02-01

    Full Text Available Cory L Bickel, Marshall Lukacs, Christopher A CullisCase Western Reserve University, Cleveland OH, USAAbstract: Flax undergoes heritable genomic changes in response to nutrient stress, including changes in total DNA content, rDNA copy number variation, and the appearance of Linum Insertion Sequence 1 (LIS-1. The nature of the genomic changes suggests a very different mechanism, which is not yet understood, from that of other DNA changes in response to stress, such as the activation of transposable elements. To identify the genes that control genomic changes in response to stress in flax, reciprocal crosses were made between a responsive flax line, Stormont cirrus, and an unresponsive line, Bethune. The ability of the F2 generation (from selfed F1 plants to respond to nutrient stress was assayed using the insertion of LIS-1 as the criteria for responsiveness. Twenty-nine out of 89 F2s responded at 5 weeks, suggesting that 3-4 dominant loci were all necessary for early LIS-1 insertion. Seventy out of 76 responded at 10 weeks, indicating two dominant loci independently capable of initiating LIS-1 insertion under prolonged nutrient stress. F1 plants and their progeny with either P1 or Bethune as the maternal parent were capable of responding with LIS-1 insertion, indicating that LIS-1 insertion is under nuclear genetic control and does not involve maternal factors. Thus, a small number of loci within the genome of Stormont cirrus appear to control the ability to respond to nutrient stress with LIS-1 insertion. A genetic map of the flax genome is currently under construction, and will be used to identify these loci within the genome.Keywords: nutrient stress, genomic plasticity, flax, Linum usitatissimum, LIS-1 

  17. Genetic polymorphisms in 18 autosomal STR loci in the Tibetan population living in Tibet Chamdo, Southwest China.

    Science.gov (United States)

    Li, Zhenghui; Zhang, Jian; Zhang, Hantao; Lin, Ziqing; Ye, Jian

    2018-05-01

    Short tandem repeats (STRs) play a vitally important role in forensics. Population data is needed to improve the field. There is currently no large population data-based data set in Chamdo Tibetan. In our study, the allele frequencies and forensic statistical parameters of 18 autosomal STR loci (D5S818, D21S11, D7S820, CSF1PO, D2S1338, D3S1358, VWA, D8S1179, D16S539, PentaE, TPOX, TH01, D19S433, D18S51, FGA, D6S1043, D13S317, and D12S391) included in the DNATyper™19 kit were investigated in 2249 healthy, unrelated Tibetan subjects living in Tibet Chamdo, Southwest China. The combined power of discrimination and the combined probability of exclusion of all 18 loci were 0.9999999999999999999998174 and 0.99999994704, respectively. Furthermore, the genetic relationship between our Tibetan group and 33 previously published populations was also investigated. Phylogenetic analyses revealed that the Chamdo Tibetan population is more closely related genetically with the Lhasa Tibetan group. Our results suggest that these autosomal STR loci are highly polymorphic in the Tibetan population living in Tibet Chamdo and can be used as a powerful tool in forensics, linguistics, and population genetic analyses.

  18. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies

    NARCIS (Netherlands)

    C.E. Elks (Cathy); J.R.B. Perry (John); P. Sulem (Patrick); D.I. Chasman (Daniel); N. Franceschini (Nora); C. He (Chunyan); K.L. Lunetta (Kathryn); J.A. Visser (Jenny); E.M. Byrne (Enda); D.L. Cousminer (Diana); D.F. Gudbjartsson (Daniel); T. Esko (Tõnu); B. Feenstra (Bjarke); J.J. Hottenga (Jouke Jan); D.L. Koller (Daniel); Z. Kutalik (Zoltán); P. Lin (Peng); M. Mangino (Massimo); M. Marongiu (Mara); P.F. McArdle (Patrick); A.V. Smith (Albert Vernon); L. Stolk (Lisette); S. van Wingerden (Sophie); J.H. Zhao (Jing Hua); E. Albrecht (Eva); T. Corre (Tanguy); E. Ingelsson (Erik); C. Hayward (Caroline); P.K. Magnusson (Patrik); S. Ulivi (Shelia); N.M. Warrington (Nicole); L. Zgaga (Lina); H. Alavere (Helene); N. Amin (Najaf); T. Aspelund (Thor); S. Bandinelli (Stefania); I.E. Barroso (Inês); G. Berenson (Gerald); S.M. Bergmann (Sven); H. Blackburn (Hannah); E.A. Boerwinkle (Eric); J.E. Buring (Julie); F. Busonero; H. Campbell (Harry); S.J. Chanock (Stephen); W. Chen (Wei); M. Cornelis (Marilyn); D.J. Couper (David); A.D. Coviello (Andrea); P. d' Adamo (Pio); U. de Faire (Ulf); E.J.C. de Geus (Eco); P. Deloukas (Panagiotis); A. Döring (Angela); D.F. Easton (Douglas); G. Eiriksdottir (Gudny); V. Emilsson (Valur); J.G. Eriksson (Johan); L. Ferrucci (Luigi); A.R. Folsom (Aaron); T. Foroud (Tatiana); M. Garcia (Melissa); P. Gasparini (Paolo); F. Geller (Frank); C. Gieger (Christian); V. Gudnason (Vilmundur); A.S. Hall (Alistair); S.E. Hankinson (Susan); L. Ferreli (Liana); A.C. Heath (Andrew); D.G. Hernandez (Dena); A. Hofman (Albert); F.B. Hu (Frank); T. Illig (Thomas); M.R. Järvelin; A.D. Johnson (Andrew); D. Karasik (David); K-T. Khaw (Kay-Tee); D.P. Kiel (Douglas); T.O. Kilpelänen (Tuomas); I. Kolcic (Ivana); P. Kraft (Peter); L.J. Launer (Lenore); J.S.E. Laven (Joop); S. Li (Shengxu); J. Liu (Jianjun); D. Levy (Daniel); N.G. Martin (Nicholas); M. Melbye (Mads); V. Mooser (Vincent); J.C. Murray (Jeffrey); M.A. Nalls (Michael); P. Navarro (Pau); M. Nelis (Mari); A.R. Ness (Andrew); K. Northstone (Kate); B.A. Oostra (Ben); M. Peacock (Munro); C. Palmer (Cameron); A. Palotie (Aarno); G. Paré (Guillaume); A.N. Parker (Alex); N.L. Pedersen (Nancy); L. Peltonen (Leena Johanna); C.E. Pennell (Craig); P.D.P. Pharoah (Paul); O. Polasek (Ozren); A.S. Plump (Andrew); A. Pouta (Anneli); E. Porcu (Eleonora); T. Rafnar (Thorunn); J.P. Rice (John); S.M. Ring (Susan); F. Rivadeneira Ramirez (Fernando); I. Rudan (Igor); C. Sala (Cinzia); V. Salomaa (Veikko); S. Sanna (Serena); D. Schlessinger; N.J. Schork (Nicholas); A. Scuteri (Angelo); A.V. Segrè (Ayellet); A.R. Shuldiner (Alan); N. Soranzo (Nicole); U. Sovio (Ulla); S.R. Srinivasan (Sathanur); D.P. Strachan (David); M.L. Tammesoo; E. Tikkanen (Emmi); D. Toniolo (Daniela); K. Tsui (Kim); L. Tryggvadottir (Laufey); J.P. Tyrer (Jonathan); M. Uda (Manuela); R.M. van Dam (Rob); J.B.J. van Meurs (Joyce); P. Vollenweider (Peter); G. Waeber (Gérard); N.J. Wareham (Nick); D. Waterworth (Dawn); H.E. Wichmann (Heinz Erich); G.A.H.M. Willemsen (Gonneke); J.F. Wilson (James); A.F. Wright (Alan); L. Young (Lauren); G. Zhai (Guangju); W.V. Zhuang; L.J. Bierut (Laura); D.I. Boomsma (Dorret); H.A. Boyd (Heather); L. Crisponi (Laura); E.W. Demerath (Ellen); P. Tikka-Kleemola (Päivi); M.J. Econs (Michael); T.B. Harris (Tamara); D. Hunter (David); R.J.F. Loos (Ruth); A. Metspalu (Andres); G.W. Montgomery (Grant); P.M. Ridker (Paul); T.D. Spector (Tim); E.A. Streeten (Elizabeth); K. Stefansson (Kari); U. Thorsteinsdottir (Unnur); A.G. Uitterlinden (André); E. Widen (Elisabeth); J. Murabito (Joanne); K. Ong (Ken); M.N. Weedon (Michael)

    2010-01-01

    textabstractTo identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10 -60) and 9q31.2 (P = 2.2 × 10 -33), we identified 30

  19. High genetic diversity and fine-scale spatial structure in the marine flagellate Oxyrrhis marina (Dinophyceae uncovered by microsatellite loci.

    Directory of Open Access Journals (Sweden)

    Chris D Lowe

    2010-12-01

    Full Text Available Free-living marine protists are often assumed to be broadly distributed and genetically homogeneous on large spatial scales. However, an increasing application of highly polymorphic genetic markers (e.g., microsatellites has provided evidence for high genetic diversity and population structuring on small spatial scales in many free-living protists. Here we characterise a panel of new microsatellite markers for the common marine flagellate Oxyrrhis marina. Nine microsatellite loci were used to assess genotypic diversity at two spatial scales by genotyping 200 isolates of O. marina from 6 broad geographic regions around Great Britain and Ireland; in one region, a single 2 km shore line was sampled intensively to assess fine-scale genetic diversity. Microsatellite loci resolved between 1-6 and 7-23 distinct alleles per region in the least and most variable loci respectively, with corresponding variation in expected heterozygosities (H(e of 0.00-0.30 and 0.81-0.93. Across the dataset, genotypic diversity was high with 183 genotypes detected from 200 isolates. Bayesian analysis of population structure supported two model populations. One population was distributed across all sampled regions; the other was confined to the intensively sampled shore, and thus two distinct populations co-occurred at this site. Whilst model-based analysis inferred a single UK-wide population, pairwise regional F(ST values indicated weak to moderate population sub-division (0.01-0.12, but no clear correlation between spatial and genetic distance was evident. Data presented in this study highlight extensive genetic diversity for O. marina; however, it remains a substantial challenge to uncover the mechanisms that drive genetic diversity in free-living microorganisms.

  20. Fine-mapping and initial characterization of QT interval loci in African Americans.

    Directory of Open Access Journals (Sweden)

    Christy L Avery

    Full Text Available The QT interval (QT is heritable and its prolongation is a risk factor for ventricular tachyarrhythmias and sudden death. Most genetic studies of QT have examined European ancestral populations; however, the increased genetic diversity in African Americans provides opportunities to narrow association signals and identify population-specific variants. We therefore evaluated 6,670 SNPs spanning eleven previously identified QT loci in 8,644 African American participants from two Population Architecture using Genomics and Epidemiology (PAGE studies: the Atherosclerosis Risk in Communities study and Women's Health Initiative Clinical Trial. Of the fifteen known independent QT variants at the eleven previously identified loci, six were significantly associated with QT in African American populations (P≤1.20×10(-4: ATP1B1, PLN1, KCNQ1, NDRG4, and two NOS1AP independent signals. We also identified three population-specific signals significantly associated with QT in African Americans (P≤1.37×10(-5: one at NOS1AP and two at ATP1B1. Linkage disequilibrium (LD patterns in African Americans assisted in narrowing the region likely to contain the functional variants for several loci. For example, African American LD patterns showed that 0 SNPs were in LD with NOS1AP signal rs12143842, compared with European LD patterns that indicated 87 SNPs, which spanned 114.2 Kb, were in LD with rs12143842. Finally, bioinformatic-based characterization of the nine African American signals pointed to functional candidates located exclusively within non-coding regions, including predicted binding sites for transcription factors such as TBX5, which has been implicated in cardiac structure and conductance. In this detailed evaluation of QT loci, we identified several African Americans SNPs that better define the association with QT and successfully narrowed intervals surrounding established loci. These results demonstrate that the same loci influence variation in QT

  1. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    Science.gov (United States)

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.

  2. Large-scale genotyping identifies 41 new loci associated with breast cancer risk.

    Science.gov (United States)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L; Schmidt, Marjanka K; Chang-Claude, Jenny; Bojesen, Stig E; Bolla, Manjeet K; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; Dos Santos Silva, Isabel; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L; Southey, Melissa C; Makalic, Enes; Schmidt, Daniel F; Uitterlinden, Andre G; Hofman, Albert; Hunter, David J; Chanock, Stephen J; Vincent, Daniel; Bacot, François; Tessier, Daniel C; Canisius, Sander; Wessels, Lodewyk F A; Haiman, Christopher A; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; Veer, Laura J Van't; van der Schoot, C Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M Rosario; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W R; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Jager, Agnes; Bui, Quang M; Stone, Jennifer; Dite, Gillian S; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A E M; Seynaeve, Caroline; van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Kristensen, Vessela N; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J; Signorello, Lisa B; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D P; Chenevix-Trench, Georgia; Dunning, Alison M; Benitez, Javier; Easton, Douglas F

    2013-04-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborative Oncological Gene-environment Study, COGS) and used a custom Illumina iSelect genotyping array, iCOGS, comprising more than 200,000 SNPs. We identified SNPs at 41 new breast cancer susceptibility loci at genome-wide significance (P breast cancer susceptibility.

  3. Confirmation of novel type 1 diabetes risk loci in families

    DEFF Research Database (Denmark)

    Cooper, J D; Howson, J M M; Smyth, D

    2012-01-01

    Over 50 regions of the genome have been associated with type 1 diabetes risk, mainly using large case/control collections. In a recent genome-wide association (GWA) study, 18 novel susceptibility loci were identified and replicated, including replication evidence from 2,319 families. Here, we......, the Type 1 Diabetes Genetics Consortium (T1DGC), aimed to exclude the possibility that any of the 18 loci were false-positives due to population stratification by significantly increasing the statistical power of our family study....

  4. Genome-Wide Association Study Identifies Two Novel Loci with Sex-Specific Effects for Type 2 Diabetes Mellitus and Glycemic Traits in a Korean Population

    Directory of Open Access Journals (Sweden)

    Min Jin Go

    2014-10-01

    Full Text Available BackgroundUntil recently, genome-wide association study (GWAS-based findings have provided a substantial genetic contribution to type 2 diabetes mellitus (T2DM or related glycemic traits. However, identification of allelic heterogeneity and population-specific genetic variants under consideration of potential confounding factors will be very valuable for clinical applicability. To identify novel susceptibility loci for T2DM and glycemic traits, we performed a two-stage genetic association study in a Korean population.MethodsWe performed a logistic analysis for T2DM, and the first discovery GWAS was analyzed for 1,042 cases and 2,943 controls recruited from a population-based cohort (KARE, n=8,842. The second stage, de novo replication analysis, was performed in 1,216 cases and 1,352 controls selected from an independent population-based cohort (Health 2, n=8,500. A multiple linear regression analysis for glycemic traits was further performed in a total of 14,232 nondiabetic individuals consisting of 7,696 GWAS and 6,536 replication study participants. A meta-analysis was performed on the combined results using effect size and standard errors estimated for stage 1 and 2, respectively.ResultsA combined meta-analysis for T2DM identified two new (rs11065756 and rs2074356 loci reaching genome-wide significance in CCDC63 and C12orf51 on the 12q24 region. In addition, these variants were significantly associated with fasting plasma glucose and homeostasis model assessment of β-cell function. Interestingly, two independent single nucleotide polymorphisms were associated with sex-specific stratification in this study.ConclusionOur study showed a strong association between T2DM and glycemic traits. We further observed that two novel loci with multiple diverse effects were highly specific to males. Taken together, these findings may provide additional insights into the clinical assessment or subclassification of disease risk in a Korean population.

  5. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    Science.gov (United States)

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  6. Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study

    Science.gov (United States)

    Weisskopf, Marc G.; Sparrow, David; Schwartz, Joel; Hu, Howard; Park, Sung Kyun

    2016-01-01

    Background Cumulative exposure to lead is associated with cardiovascular outcomes. Polymorphisms in the δ-aminolevulinic acid dehydratase (ALAD), hemochromatosis (HFE), heme oxygenase-1 (HMOX1), vitamin D receptor (VDR), glutathione S-transferase (GST) supergene family (GSTP1, GSTT1, GSTM1), apolipoprotein E (APOE),angiotensin II receptor-1 (AGTR1) and angiotensinogen (AGT) genes, are believed to alter toxicokinetics and/or toxicodynamics of lead. Objectives We assessed possible effect modification by genetic polymorphisms in ALAD, HFE, HMOX1, VDR, GSTP1, GSTT1, GSTM1, APOE, AGTR1 and AGT individually and as the genetic risk score (GRS) on the association between cumulative lead exposure and incident coronary heart disease (CHD) events. Methods We used K-shell-X-ray fluorescence to measure bone lead levels. GRS was calculated on the basis of 22 lead-related loci. We constructed Cox proportional hazard models to compute adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for incident CHD. We applied inverse probability weighting to account for potential selection bias due to recruitment into the bone lead sub-study. Results Significant effect modification was found by VDR, HMOX1, GSTP1, APOE, and AGT genetic polymorphisms when evaluated individually. Further, the bone lead-CHD associations became larger as GRS increases. After adjusting for potential confounders, a HR of CHD was 2.27 (95%CI: 1.50–3.42) with 2-fold increase in patella lead levels, among participants in the top tertile of GRS. We also detected an increasing trend in HRs across tertiles of GRS (p-trend = 0.0063). Conclusions Our findings suggest that lead-related loci as a whole may play an important role in susceptibility to lead-related CHD risk. These findings need to be validated in a separate cohort containing bone lead, lead-related genetic loci and incident CHD data. PMID:27584680

  7. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants

    Science.gov (United States)

    Juran, Brian D.; Hirschfield, Gideon M.; Invernizzi, Pietro; Atkinson, Elizabeth J.; Li, Yafang; Xie, Gang; Kosoy, Roman; Ransom, Michael; Sun, Ye; Bianchi, Ilaria; Schlicht, Erik M.; Lleo, Ana; Coltescu, Catalina; Bernuzzi, Francesca; Podda, Mauro; Lammert, Craig; Shigeta, Russell; Chan, Landon L.; Balschun, Tobias; Marconi, Maurizio; Cusi, Daniele; Heathcote, E. Jenny; Mason, Andrew L.; Myers, Robert P.; Milkiewicz, Piotr; Odin, Joseph A.; Luketic, Velimir A.; Bacon, Bruce R.; Bodenheimer, Henry C.; Liakina, Valentina; Vincent, Catherine; Levy, Cynthia; Franke, Andre; Gregersen, Peter K.; Bossa, Fabrizio; Gershwin, M. Eric; deAndrade, Mariza; Amos, Christopher I.; Lazaridis, Konstantinos N.; Seldin, Michael F.; Siminovitch, Katherine A.

    2012-01-01

    To further characterize the genetic basis of primary biliary cirrhosis (PBC), we genotyped 2426 PBC patients and 5731 unaffected controls from three independent cohorts using a single nucleotide polymorphism (SNP) array (Immunochip) enriched for autoimmune disease risk loci. Meta-analysis of the genotype data sets identified a novel disease-associated locus near the TNFSF11 gene at 13q14, provided evidence for association at six additional immune-related loci not previously implicated in PBC and confirmed associations at 19 of 22 established risk loci. Results of conditional analyses also provided evidence for multiple independent association signals at four risk loci, with haplotype analyses suggesting independent SNP effects at the 2q32 and 16p13 loci, but complex haplotype driven effects at the 3q25 and 6p21 loci. By imputing classical HLA alleles from this data set, four class II alleles independently contributing to the association signal from this region were identified. Imputation of genotypes at the non-HLA loci also provided additional associations, but none with stronger effects than the genotyped variants. An epistatic interaction between the IL12RB2 risk locus at 1p31and the IRF5 risk locus at 7q32 was also identified and suggests a complementary effect of these loci in predisposing to disease. These data expand the repertoire of genes with potential roles in PBC pathogenesis that need to be explored by follow-up biological studies. PMID:22936693

  8. Meta-analysis identifies seven susceptibility loci involved in the atopic march.

    Science.gov (United States)

    Marenholz, Ingo; Esparza-Gordillo, Jorge; Rüschendorf, Franz; Bauerfeind, Anja; Strachan, David P; Spycher, Ben D; Baurecht, Hansjörg; Margaritte-Jeannin, Patricia; Sääf, Annika; Kerkhof, Marjan; Ege, Markus; Baltic, Svetlana; Matheson, Melanie C; Li, Jin; Michel, Sven; Ang, Wei Q; McArdle, Wendy; Arnold, Andreas; Homuth, Georg; Demenais, Florence; Bouzigon, Emmanuelle; Söderhäll, Cilla; Pershagen, Göran; de Jongste, Johan C; Postma, Dirkje S; Braun-Fahrländer, Charlotte; Horak, Elisabeth; Ogorodova, Ludmila M; Puzyrev, Valery P; Bragina, Elena Yu; Hudson, Thomas J; Morin, Charles; Duffy, David L; Marks, Guy B; Robertson, Colin F; Montgomery, Grant W; Musk, Bill; Thompson, Philip J; Martin, Nicholas G; James, Alan; Sleiman, Patrick; Toskala, Elina; Rodriguez, Elke; Fölster-Holst, Regina; Franke, Andre; Lieb, Wolfgang; Gieger, Christian; Heinzmann, Andrea; Rietschel, Ernst; Keil, Thomas; Cichon, Sven; Nöthen, Markus M; Pennell, Craig E; Sly, Peter D; Schmidt, Carsten O; Matanovic, Anja; Schneider, Valentin; Heinig, Matthias; Hübner, Norbert; Holt, Patrick G; Lau, Susanne; Kabesch, Michael; Weidinger, Stefan; Hakonarson, Hakon; Ferreira, Manuel A R; Laprise, Catherine; Freidin, Maxim B; Genuneit, Jon; Koppelman, Gerard H; Melén, Erik; Dizier, Marie-Hélène; Henderson, A John; Lee, Young Ae

    2015-11-06

    Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.

  9. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder.

    Science.gov (United States)

    Chen, D T; Jiang, X; Akula, N; Shugart, Y Y; Wendland, J R; Steele, C J M; Kassem, L; Park, J-H; Chatterjee, N; Jamain, S; Cheng, A; Leboyer, M; Muglia, P; Schulze, T G; Cichon, S; Nöthen, M M; Rietschel, M; McMahon, F J; Farmer, A; McGuffin, P; Craig, I; Lewis, C; Hosang, G; Cohen-Woods, S; Vincent, J B; Kennedy, J L; Strauss, J

    2013-02-01

    Meta-analyses of bipolar disorder (BD) genome-wide association studies (GWAS) have identified several genome-wide significant signals in European-ancestry samples, but so far account for little of the inherited risk. We performed a meta-analysis of ∼750,000 high-quality genetic markers on a combined sample of ∼14,000 subjects of European and Asian-ancestry (phase I). The most significant findings were further tested in an extended sample of ∼17,700 cases and controls (phase II). The results suggest novel association findings near the genes TRANK1 (LBA1), LMAN2L and PTGFR. In phase I, the most significant single nucleotide polymorphism (SNP), rs9834970 near TRANK1, was significant at the P=2.4 × 10(-11) level, with no heterogeneity. Supportive evidence for prior association findings near ANK3 and a locus on chromosome 3p21.1 was also observed. The phase II results were similar, although the heterogeneity test became significant for several SNPs. On the basis of these results and other established risk loci, we used the method developed by Park et al. to estimate the number, and the effect size distribution, of BD risk loci that could still be found by GWAS methods. We estimate that >63,000 case-control samples would be needed to identify the ∼105 BD risk loci discoverable by GWAS, and that these will together explain <6% of the inherited risk. These results support previous GWAS findings and identify three new candidate genes for BD. Further studies are needed to replicate these findings and may potentially lead to identification of functional variants. Sample size will remain a limiting factor in the discovery of common alleles associated with BD.

  10. Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Sundekilde, Ulrik; Poulsen, Nina Aagaard

    2013-01-01

    Small components and metabolites in milk are significant for the utilization of milk, not only in dairy food production but also as disease predictors in dairy cattle. This study focused on estimation of genetic parameters and detection of quantitative trait loci for metabolites in bovine milk. F...... for lactic acid to >0.8 for orotic acid and β-hydroxybutyrate. A single SNP association analysis revealed 7 genome-wide significant quantitative trait loci [malonate: Bos taurus autosome (BTA)2 and BTA7; galactose-1-phosphate: BTA2; cis-aconitate: BTA11; urea: BTA12; carnitine: BTA25...

  11. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10...

  12. Large-scale genotyping identifies 41 new loci associated with breast cancer risk

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Hall, Per; Gonzalez-Neira, Anna; Ghoussaini, Maya; Dennis, Joe; Milne, Roger L.; Schmidt, Marjanka K.; Chang-Claude, Jenny; Bojesen, Stig E.; Bolla, Manjeet K.; Wang, Qin; Dicks, Ed; Lee, Andrew; Turnbull, Clare; Rahman, Nazneen; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos Santos Silva, Isabel; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel; van der Luijt, Rob B.; Hein, Rebecca; Dahmen, Norbert; Beckman, Lars; Meindl, Alfons; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Lichtner, Peter; Hopper, John L.; Southey, Melissa C.; Makalic, Enes; Schmidt, Daniel F.; Uitterlinden, Andre G.; Hofman, Albert; Hunter, David J.; Chanock, Stephen J.; Vincent, Daniel; Bacot, François; Tessier, Daniel C.; Canisius, Sander; Wessels, Lodewyk F. A.; Haiman, Christopher A.; Shah, Mitul; Luben, Robert; Brown, Judith; Luccarini, Craig; Schoof, Nils; Humphreys, Keith; Li, Jingmei; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Couch, Fergus J.; Wang, Xianshu; Vachon, Celine; Stevens, Kristen N.; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Johnson, Nichola; Aitken, Zoe; Aaltonen, Kirsimari; Heikkinen, Tuomas; Broeks, Annegien; van 't Veer, Laura J.; van der Schoot, C. Ellen; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Zamora, M. Pilar; Perez, Jose Ignacio Arias; Pita, Guillermo; Alonso, M. Rosario; Cox, Angela; Brock, Ian W.; Cross, Simon S.; Reed, Malcolm W. R.; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Lindblom, Annika; Margolin, Sara; Hooning, Maartje J.; Hollestelle, Antoinette; van den Ouweland, Ans M. W.; Jager, Agnes; Bui, Quang M.; Stone, Jennifer; Dite, Gillian S.; Apicella, Carmel; Tsimiklis, Helen; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Fasching, Peter A.; Haeberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bonanni, Bernardo; Devilee, Peter; Tollenaar, Rob A. E. M.; Seynaeve, Caroline; van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Kristensen, Vessela N.; Anton-Culver, Hoda; Slager, Susan; Toland, Amanda E.; Edge, Stephen; Fostira, Florentia; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Wu, Anna H.; Tseng, Chiu-Chen; van den Berg, David; Stram, Daniel O.; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; teo, Soo Hwang; Yip, Cheng Har; Phuah, Sze Yee; Cornes, Belinda K.; Hartman, Mikael; Miao, Hui; Lim, Wei Yen; Sng, Jen-Hwei; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Ding, Shian-Ling; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Blot, William J.; Signorello, Lisa B.; Cai, Qiuyin; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Simard, Jacques; Garcia-Closas, Montse; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Dunning, Alison M.; Benitez, Javier; Easton, Douglas F.

    2013-01-01

    Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ∼9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including

  13. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Liu, Xueying; Teng, Zhonghua; Wang, Jinxia; Wu, Tiantian; Zhang, Zhiqin; Deng, Xianping; Fang, Xiaomei; Tan, Zhaoyun; Ali, Iftikhar; Liu, Dexin; Zhang, Jian; Liu, Dajun; Liu, Fang; Zhang, Zhengsheng

    2017-12-01

    Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

  14. Genome-Wide Association Study Identifies Four Loci Associated with Eruption of Permanent Teeth

    Science.gov (United States)

    Zhang, Hao; Shaffer, John R.; Hansen, Thomas; Esserlind, Ann-Louise; Boyd, Heather A.; Nohr, Ellen A.; Timpson, Nicholas J.; Fatemifar, Ghazaleh; Paternoster, Lavinia; Evans, David M.; Weyant, Robert J.; Levy, Steven M.; Lathrop, Mark; Smith, George Davey; Murray, Jeffrey C.; Olesen, Jes; Werge, Thomas; Marazita, Mary L.; Sørensen, Thorkild I. A.; Melbye, Mads

    2011-01-01

    The sequence and timing of permanent tooth eruption is thought to be highly heritable and can have important implications for the risk of malocclusion, crowding, and periodontal disease. We conducted a genome-wide association study of number of permanent teeth erupted between age 6 and 14 years, analyzed as age-adjusted standard deviation score averaged over multiple time points, based on childhood records for 5,104 women from the Danish National Birth Cohort. Four loci showed association at Peruption and were also known to influence height and breast cancer, respectively. The two other loci pointed to genomic regions without any previous significant genome-wide association study results. The intronic SNP rs7924176 in ADK could be linked to gene expression in monocytes. The combined effect of the four genetic variants was most pronounced between age 10 and 12 years, where children with 6 to 8 delayed tooth eruption alleles had on average 3.5 (95% confidence interval: 2.9–4.1) fewer permanent teeth than children with 0 or 1 of these alleles. PMID:21931568

  15. Evaluation of shared genetic susceptibility loci between autoimmune diseases and schizophrenia based on genome-wide association studies

    DEFF Research Database (Denmark)

    Hoeffding, Louise K E; Rosengren, Anders; Thygesen, Johan H

    2017-01-01

    Background: Epidemiological studies have documented higher than expected comorbidity (or, in some cases, inverse comorbidity) between schizophrenia and several autoimmune disorders. It remains unknown whether this comorbidity reflects shared genetic susceptibility loci.  Aims: The present study a...

  16. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

    NARCIS (Netherlands)

    Nalls, Mike A.; Pankratz, Nathan; Lill, Christina M.; Do, Chuong B.; Hernandez, Dena G.; Saad, Mohamad; DeStefano, Anita L.; Kara, Eleanna; Bras, Jose; Sharma, Manu; Schulte, Claudia; Keller, Margaux F.; Arepalli, Sampath; Letson, Christopher; Edsall, Connor; Stefansson, Hreinn; Liu, Xinmin; Pliner, Hannah; Lee, Joseph H.; Cheng, Rong; Ikram, M. Arfan; Ioannidis, John P. A.; Hadjigeorgiou, Georgios M.; Bis, Joshua C.; Martinez, Maria; Perlmutter, Joel S.; Goate, Alison; Marder, Karen; Fiske, Brian; Sutherland, Margaret; Xiromerisiou, Georgia; Myers, Richard H.; Clark, Lorraine N.; Stefansson, Kari; Hardy, John A.; Heutink, Peter; Chen, Honglei; Wood, Nicholas W.; Houlden, Henry; Payami, Haydeh; Brice, Alexis; Scott, William K.; Gasser, Thomas; Bertram, Lars; Eriksson, Nicholas; Foroud, Tatiana; Singleton, Andrew B.; Plagnol, Vincent; Sheerin, Una-Marie; Simón-Sánchez, Javier; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; Mudanohwo, Ese; O'Sullivan, Sean S.; Pearson, Justin; Pétursson, Hjörvar; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Hardy, John; Factor, S.; Higgins, D.; Evans, S.; Shill, H.; Stacy, M.; Danielson, J.; Marlor, L.; Williamson, K.; Jankovic, J.; Hunter, C.; Simon, D.; Ryan, P.; Scollins, L.; Saunders-Pullman, R.; Boyar, K.; Costan-Toth, C.; Ohmann, E.; Sudarsky, L.; Joubert, C.; Friedman, J.; Chou, K.; Fernandez, H.; Lannon, M.; Galvez-Jimenez, N.; Podichetty, A.; Thompson, K.; Lewitt, P.; Deangelis, M.; O'Brien, C.; Seeberger, L.; Dingmann, C.; Judd, D.; Marder, K.; Fraser, J.; Harris, J.; Bertoni, J.; Peterson, C.; Rezak, M.; Medalle, G.; Chouinard, S.; Panisset, M.; Hall, J.; Poiffaut, H.; Calabrese, V.; Roberge, P.; Wojcieszek, J.; Belden, J.; Jennings, D.; Marek, K.; Mendick, S.; Reich, S.; Dunlop, B.; Jog, M.; Horn, C.; Uitti, R.; Turk, M.; Ajax, T.; Mannetter, J.; Sethi, K.; Carpenter, J.; Dill, B.; Hatch, L.; Ligon, K.; Narayan, S.; Blindauer, K.; Abou-Samra, K.; Petit, J.; Elmer, L.; Aiken, E.; Davis, K.; Schell, C.; Wilson, S.; Velickovic, M.; Koller, W.; Phipps, S.; Feigin, A.; Gordon, M.; Hamann, J.; Licari, E.; Marotta-Kollarus, M.; Shannon, B.; Winnick, R.; Simuni, T.; Videnovic, A.; Kaczmarek, A.; Williams, K.; Wolff, M.; Rao, J.; Cook, M.; Fernandez, M.; Kostyk, S.; Hubble, J.; Campbell, A.; Reider, C.; Seward, A.; Camicioli, R.; Carter, J.; Nutt, J.; Andrews, P.; Morehouse, S.; Stone, C.; Mendis, T.; Grimes, D.; Alcorn-Costa, C.; Gray, P.; Haas, K.; Vendette, J.; Sutton, J.; Hutchinson, B.; Young, J.; Rajput, A.; Klassen, L.; Shirley, T.; Manyam, B.; Simpson, P.; Whetteckey, J.; Wulbrecht, B.; Truong, D.; Pathak, M.; Frei, K.; Luong, N.; Tra, T.; Tran, A.; Vo, J.; Lang, A.; Kleiner- Fisman, G.; Nieves, A.; Johnston, L.; So, J.; Podskalny, G.; Giffin, L.; Atchison, P.; Allen, C.; Martin, W.; Wieler, M.; Suchowersky, O.; Furtado, S.; Klimek, M.; Hermanowicz, N.; Niswonger, S.; Shults, C.; Fontaine, D.; Aminoff, M.; Christine, C.; Diminno, M.; Hevezi, J.; Dalvi, A.; Kang, U.; Richman, J.; Uy, S.; Sahay, A.; Gartner, M.; Schwieterman, D.; Hall, D.; Leehey, M.; Culver, S.; Derian, T.; Demarcaida, T.; Thurlow, S.; Rodnitzky, R.; Dobson, J.; Lyons, K.; Pahwa, R.; Gales, T.; Thomas, S.; Shulman, L.; Weiner, W.; Dustin, K.; Singer, C.; Zelaya, L.; Tuite, P.; Hagen, V.; Rolandelli, S.; Schacherer, R.; Kosowicz, J.; Gordon, P.; Werner, J.; Serrano, C.; Roque, S.; Kurlan, R.; Berry, D.; Gardiner, I.; Hauser, R.; Sanchez-Ramos, J.; Zesiewicz, T.; Delgado, H.; Price, K.; Rodriguez, P.; Wolfrath, S.; Pfeiffer, R.; Davis, L.; Pfeiffer, B.; Dewey, R.; Hayward, B.; Johnson, A.; Meacham, M.; Estes, B.; Walker, F.; Hunt, V.; O'Neill, C.; Racette, B.; Swisher, L.; Dijamco, Cheri; Conley, Emily Drabant; Dorfman, Elizabeth; Tung, Joyce Y.; Hinds, David A.; Mountain, Joanna L.; Wojcicki, Anne; Lew, M.; Klein, C.; Golbe, L.; Growdon, J.; Wooten, G. F.; Watts, R.; Guttman, M.; Goldwurm, S.; Saint-Hilaire, M. H.; Baker, K.; Litvan, I.; Nicholson, G.; Nance, M.; Drasby, E.; Isaacson, S.; Burn, D.; Pramstaller, P.; Al-hinti, J.; Moller, A.; Sherman, S.; Roxburgh, R.; Slevin, J.; Perlmutter, J.; Mark, M. H.; Huggins, N.; Pezzoli, G.; Massood, T.; Itin, I.; Corbett, A.; Chinnery, P.; Ostergaard, K.; Snow, B.; Cambi, F.; Kay, D.; Samii, A.; Agarwal, P.; Roberts, J. W.; Higgins, D. S.; Molho, Eric; Rosen, Ami; Montimurro, J.; Martinez, E.; Griffith, A.; Kusel, V.; Yearout, D.; Zabetian, C.; Clark, L. N.; Liu, X.; Lee, J. H.; Taub, R. Cheng; Louis, E. D.; Cote, L. J.; Waters, C.; Ford, B.; Fahn, S.; Vance, Jeffery M.; Beecham, Gary W.; Martin, Eden R.; Nuytemans, Karen; Pericak-Vance, Margaret A.; Haines, Jonathan L.; DeStefano, Anita; Seshadri, Sudha; Choi, Seung Hoan; Frank, Samuel; Psaty, Bruce M.; Rice, Kenneth; Longstreth, W. T.; Ton, Thanh G. N.; Jain, Samay; van Duijn, Cornelia M.; Verlinden, Vincent J.; Koudstaal, Peter J.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Dardiotis, Efthimios; Tsimourtou, Vana; Spanaki, Cleanthe; Plaitakis, Andreas; Bozi, Maria; Stefanis, Leonidas; Vassilatis, Dimitris; Koutsis, Georgios; Panas, Marios; Lunnon, Katie; Lupton, Michelle; Powell, John; Parkkinen, Laura; Ansorge, Olaf

    2014-01-01

    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were

  17. Effects of multiple genetic loci on the pathogenesis from serum urate to gout.

    Science.gov (United States)

    Dong, Zheng; Zhou, Jingru; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Yang, Yajun; Wang, Xiaofeng; Xu, Xia; Pang, Yafei; Zou, Hejian; Jin, Li; Wang, Jiucun

    2017-03-02

    Gout is a common arthritis resulting from increased serum urate, and many loci have been identified that are associated with serum urate and gout. However, their influence on the progression from elevated serum urate levels to gout is unclear. This study aims to explore systematically the effects of genetic variants on the pathogenesis in approximately 5,000 Chinese individuals. Six genes (PDZK1, GCKR, TRIM46, HNF4G, SLC17A1, LRRC16A) were determined to be associated with serum urate (P FDR  gene, SLC17A4, contributed to the development of gout from hyperuricemia (OR = 1.56, P FDR  = 3.68E-09; OR = 1.27, P FDR  = 0.013, respectively). Also, HNF4G is a novel gene associated with susceptibility to gout (OR = 1.28, P FDR  = 1.08E-03). In addition, A1CF and TRIM46 were identified as associated with gout in the Chinese population for the first time (P FDR  gout and suggests that urate-associated genes functioning as urate transporters may play a specific role in the pathogenesis of gout. Furthermore, two novel gout-associated genes (HNF4G and SLC17A4) were identified.

  18. Genome-wide association study identifies genetic loci associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Christine E McLaren

    2011-03-01

    Full Text Available The existence of multiple inherited disorders of iron metabolism in man, rodents and other vertebrates suggests genetic contributions to iron deficiency. To identify new genomic locations associated with iron deficiency, a genome-wide association study (GWAS was performed using DNA collected from white men aged≥25 y and women≥50 y in the Hemochromatosis and Iron Overload Screening (HEIRS Study with serum ferritin (SF≤12 µg/L (cases and iron replete controls (SF>100 µg/L in men, SF>50 µg/L in women. Regression analysis was used to examine the association between case-control status (336 cases, 343 controls and quantitative serum iron measures and 331,060 single nucleotide polymorphism (SNP genotypes, with replication analyses performed in a sample of 71 cases and 161 controls from a population of white male and female veterans screened at a US Veterans Affairs (VA medical center. Five SNPs identified in the GWAS met genome-wide statistical significance for association with at least one iron measure, rs2698530 on chr. 2p14; rs3811647 on chr. 3q22, a known SNP in the transferrin (TF gene region; rs1800562 on chr. 6p22, the C282Y mutation in the HFE gene; rs7787204 on chr. 7p21; and rs987710 on chr. 22q11 (GWAS observed P<1.51×10(-7 for all. An association between total iron binding capacity and SNP rs3811647 in the TF gene (GWAS observed P=7.0×10(-9, corrected P=0.012 was replicated within the VA samples (observed P=0.012. Associations with the C282Y mutation in the HFE gene also were replicated. The joint analysis of the HEIRS and VA samples revealed strong associations between rs2698530 on chr. 2p14 and iron status outcomes. These results confirm a previously-described TF polymorphism and implicate one potential new locus as a target for gene identification.

  19. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    K. Gaulton (Kyle); T. Ferreira (Teresa); Y. Lee (Yeji); A. Raimondo (Anne); R. Mägi (Reedik); M.E. Reschen (Michael E.); A. Mahajan (Anubha); A. Locke (Adam); N.W. Rayner (Nigel William); N.R. Robertson (Neil); R.A. Scott (Robert); I. Prokopenko (Inga); L.J. Scott (Laura); T. Green (Todd); T. Sparsø (Thomas); D. Thuillier (Dorothee); L. Yengo (Loic); H. Grallert (Harald); S. Wahl (Simone); M. Frånberg (Mattias); R.J. Strawbridge (Rona); H. Kestler (Hans); H. Chheda (Himanshu); L. Eisele (Lewin); S. Gustafsson (Stefan); V. Steinthorsdottir (Valgerdur); G. Thorleifsson (Gudmar); L. Qi (Lu); L.C. Karssen (Lennart); E.M. van Leeuwen (Elisa); S.M. Willems (Sara); M. Li (Man); H. Chen (Han); C. Fuchsberger (Christian); P. Kwan (Phoenix); C. Ma (Clement); M. Linderman (Michael); Y. Lu (Yingchang); S.K. Thomsen (Soren K.); J.K. Rundle (Jana K.); N.L. Beer (Nicola L.); M. van de Bunt (Martijn); A. Chalisey (Anil); H.M. Kang (Hyun Min); B.F. Voight (Benjamin); G.R. Abecasis (Gonçalo); P. Almgren (Peter); D. Baldassarre (Damiano); B. Balkau (Beverley); R. Benediktsson (Rafn); M. Blüher (Matthias); H. Boeing (Heiner); L.L. Bonnycastle (Lori); E.P. Bottinger (Erwin P.); N.P. Burtt (Noël); J. Carey (Jason); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David J.); A. Crenshaw (Andrew); R.M. van Dam (Rob); A.S.F. Doney (Alex); M. Dorkhan (Mozhgan); T. Edkins (Ted); J.G. Eriksson (Johan G.); T. Esko (Tõnu); E. Eury (Elodie); J. Fadista (João); J. Flannick (Jason); P. Fontanillas (Pierre); C.S. Fox (Caroline); P.W. Franks (Paul W.); K. Gertow (Karl); C. Gieger (Christian); B. Gigante (Bruna); R.F. Gottesman (Rebecca); G.B. Grant (George); N. Grarup (Niels); C.J. Groves (Christopher J.); M. Hassinen (Maija); C.T. Have (Christian T.); C. Herder (Christian); O.L. Holmen (Oddgeir); A.B. Hreidarsson (Astradur); S.E. Humphries (Steve E.); D.J. Hunter (David J.); A.U. Jackson (Anne); A. Jonsson (Anna); M.E. Jørgensen (Marit E.); T. Jørgensen (Torben); W.H.L. Kao (Wen); N.D. Kerrison (Nicola D.); L. Kinnunen (Leena); N. Klopp (Norman); A. Kong (Augustine); P. Kovacs (Peter); P. Kraft (Peter); J. Kravic (Jasmina); C. Langford (Cordelia); K. Leander (Karin); L. Liang (Liming); P. Lichtner (Peter); C.M. Lindgren (Cecilia M.); B. Lindholm (Bengt); A. Linneberg (Allan); C.-T. Liu (Ching-Ti); S. Lobbens (Stéphane); J. Luan (Jian'fan); V. Lyssenko (Valeriya); S. Männistö (Satu); O. McLeod (Olga); J. Meyer (Jobst); E. Mihailov (Evelin); G. Mirza (Ghazala); T.W. Mühleisen (Thomas); M. Müller-Nurasyid (Martina); C. Navarro (Carmen); M.M. Nöthen (Markus); N.N. Oskolkov (Nikolay N.); K.R. Owen (Katharine); D. Palli (Domenico); S. Pechlivanis (Sonali); L. Peltonen (Leena Johanna); J.R.B. Perry (John); C.P. Platou (Carl); M. Roden (Michael); D. Ruderfer (Douglas); D. Rybin (Denis); Y.T. Van Der Schouw (Yvonne T.); B. Sennblad (Bengt); G. Sigurosson (Gunnar); A. Stancáková (Alena); D. Steinbach; P. Storm (Petter); K. Strauch (Konstantin); H.M. Stringham (Heather); Q. Sun; B. Thorand (Barbara); E. Tikkanen (Emmi); A. Tönjes (Anke); J. Trakalo (Joseph); E. Tremoli (Elena); T. Tuomi (Tiinamaija); R. Wennauer (Roman); S. Wiltshire (Steven); A.R. Wood (Andrew); E. Zeggini (Eleftheria); I. Dunham (Ian); E. Birney (Ewan); L. Pasquali (Lorenzo); J. Ferrer (Jorge); R.J.F. Loos (Ruth); J. Dupuis (Josée); J.C. Florez (Jose); E.A. Boerwinkle (Eric); J.S. Pankow (James); C.M. van Duijn (Cornelia); E.J.G. Sijbrands (Eric); J.B. Meigs (James B.); F.B. Hu (Frank B.); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); T.A. Lakka (Timo); R. Rauramaa (Rainer); M. Stumvoll (Michael); N.L. Pedersen (Nancy L.); L. Lind (Lars); S. Keinanen-Kiukaanniemi (Sirkka); E. Korpi-Hyövälti (Eeva); T. Saaristo (Timo); J. Saltevo (Juha); J. Kuusisto (Johanna); M. Laakso (Markku); A. Metspalu (Andres); R. Erbel (Raimund); K.-H. Jöckel (Karl-Heinz); S. Moebus (Susanne); S. Ripatti (Samuli); V. Salomaa (Veikko); E. Ingelsson (Erik); B.O. Boehm (Bernhard); R.N. Bergman (Richard N.); F.S. Collins (Francis S.); K.L. Mohlke (Karen L.); H. Koistinen (Heikki); J. Tuomilehto (Jaakko); K. Hveem (Kristian); I. Njølstad (Inger); P. Deloukas (Panagiotis); P.J. Donnelly (Peter J.); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. de Faire (Ulf); A. Hamsten (Anders); T. Illig (Thomas); A. Peters (Annette); S. Cauchi (Stephane); R. Sladek (Rob); P. Froguel (Philippe); T. Hansen (Torben); O. Pedersen (Oluf); A.D. Morris (Andrew); C.N.A. Palmer (Collin N. A.); S. Kathiresan (Sekar); O. Melander (Olle); P.M. Nilsson (Peter M.); L. Groop (Leif); I.E. Barroso (Inês); C. Langenberg (Claudia); N.J. Wareham (Nicholas J.); C.A. O'Callaghan (Christopher A.); A.L. Gloyn (Anna); D. Altshuler (David); M. Boehnke (Michael); T.M. Teslovich (Tanya M.); M.I. McCarthy (Mark); A.P. Morris (Andrew)

    2015-01-01

    textabstractWe performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each

  20. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; William Rayner, N; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct

  1. Development of polymorphic microsatellite loci for the tomato leaf ...

    Indian Academy of Sciences (India)

    lite loci for the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae). J. Genet. 92, e110–e112. Online only ... idae) is a devastating pest of tomato originating from South. America (García and Espul 1982). .... ture of Aphis spiraecola (Hemiptera: Aphididae) on pear trees in. China identified using microsatellites.

  2. Shared genetic origins of allergy and autoimmune diseases

    DEFF Research Database (Denmark)

    Waage, J. E.; Kreiner-Møller, E.; Standl, M.

    2015-01-01

    Parallel increases in allergy and autoimmune disease prevalence in recent time suggest shared, but yet unknown, etiologies. Here, we investigated shared genetic loci and molecular pathways to identify possible shared disease mechanisms between allergy and autoimmune diseases.......Parallel increases in allergy and autoimmune disease prevalence in recent time suggest shared, but yet unknown, etiologies. Here, we investigated shared genetic loci and molecular pathways to identify possible shared disease mechanisms between allergy and autoimmune diseases....

  3. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch

    Directory of Open Access Journals (Sweden)

    Cristian Araneda

    2012-01-01

    Full Text Available Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss, various quantitative trait loci (QTL that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch. The four loci were identified in females from two populations (early and late spawners produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC that were strongly associated with spawning time in coho salmon (p < 0.0002 were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10 with a suggestive association (p = 0.00035 mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map.

  4. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    DEFF Research Database (Denmark)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I

    2014-01-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer...

  5. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants.

    Directory of Open Access Journals (Sweden)

    Mengmeng Du

    Full Text Available Genome-wide association studies (GWAS have identified many common single nucleotide polymorphisms (SNPs associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs. We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33. We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s.

  6. Discovery and fine mapping of serum protein loci through transethnic meta-analysis.

    Science.gov (United States)

    Franceschini, Nora; van Rooij, Frank J A; Prins, Bram P; Feitosa, Mary F; Karakas, Mahir; Eckfeldt, John H; Folsom, Aaron R; Kopp, Jeffrey; Vaez, Ahmad; Andrews, Jeanette S; Baumert, Jens; Boraska, Vesna; Broer, Linda; Hayward, Caroline; Ngwa, Julius S; Okada, Yukinori; Polasek, Ozren; Westra, Harm-Jan; Wang, Ying A; Del Greco M, Fabiola; Glazer, Nicole L; Kapur, Karen; Kema, Ido P; Lopez, Lorna M; Schillert, Arne; Smith, Albert V; Winkler, Cheryl A; Zgaga, Lina; Bandinelli, Stefania; Bergmann, Sven; Boban, Mladen; Bochud, Murielle; Chen, Y D; Davies, Gail; Dehghan, Abbas; Ding, Jingzhong; Doering, Angela; Durda, J Peter; Ferrucci, Luigi; Franco, Oscar H; Franke, Lude; Gunjaca, Grog; Hofman, Albert; Hsu, Fang-Chi; Kolcic, Ivana; Kraja, Aldi; Kubo, Michiaki; Lackner, Karl J; Launer, Lenore; Loehr, Laura R; Li, Guo; Meisinger, Christa; Nakamura, Yusuke; Schwienbacher, Christine; Starr, John M; Takahashi, Atsushi; Torlak, Vesela; Uitterlinden, André G; Vitart, Veronique; Waldenberger, Melanie; Wild, Philipp S; Kirin, Mirna; Zeller, Tanja; Zemunik, Tatijana; Zhang, Qunyuan; Ziegler, Andreas; Blankenberg, Stefan; Boerwinkle, Eric; Borecki, Ingrid B; Campbell, Harry; Deary, Ian J; Frayling, Timothy M; Gieger, Christian; Harris, Tamara B; Hicks, Andrew A; Koenig, Wolfgang; O' Donnell, Christopher J; Fox, Caroline S; Pramstaller, Peter P; Psaty, Bruce M; Reiner, Alex P; Rotter, Jerome I; Rudan, Igor; Snieder, Harold; Tanaka, Toshihiro; van Duijn, Cornelia M; Vollenweider, Peter; Waeber, Gerard; Wilson, James F; Witteman, Jacqueline C M; Wolffenbuttel, Bruce H R; Wright, Alan F; Wu, Qingyu; Liu, Yongmei; Jenny, Nancy S; North, Kari E; Felix, Janine F; Alizadeh, Behrooz Z; Cupples, L Adrienne; Perry, John R B; Morris, Andrew P

    2012-10-05

    Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean cattle.

    Directory of Open Access Journals (Sweden)

    Seung Hwan Lee

    Full Text Available This genome-wide association study (GWAS was conducted to identify major loci that are significantly associated with carcass weight, and their effects, in order to provide increased understanding of the genetic architecture of carcass weight in Hanwoo. This genome-wide association study identified one major chromosome region ranging from 23 Mb to 25 Mb on chromosome 14 as being associated with carcass weight in Hanwoo. Significant Bonferroni-corrected genome-wide associations (P<1.52×10(-6 were detected for 6 Single Nucleotide Polymorphic (SNP loci for carcass weight on chromosome 14. The most significant SNP was BTB-01280026 (P = 4.02×10(-11, located in the 25 Mb region on Bos taurus autosome 14 (BTA14. The other 5 significant SNPs were Hapmap27934-BTC-065223 (P = 4.04×10(-11 in 25.2 Mb, BTB-01143580 (P = 6.35×10(-11 in 24.3 Mb, Hapmap30932-BTC-011225 (P = 5.92×10(-10 in 24.8 Mb, Hapmap27112-BTC-063342 (P = 5.18×10(-9 in 25.4 Mb, and Hapmap24414-BTC-073009 (P = 7.38×10(-8 in 25.4 Mb, all on BTA 14. One SNP (BTB-01143580; P = 6.35×10(-11 lies independently from the other 5 SNPs. The 5 SNPs that lie together showed a large Linkage disequilibrium (LD block (block size of 553 kb with LD coefficients ranging from 0.53 to 0.89 within the block. The most significant SNPs accounted for 6.73% to 10.55% of additive genetic variance, which is quite a large proportion of the total additive genetic variance. The most significant SNP (BTB-01280026; P = 4.02×10(-11 had 16.96 kg of allele substitution effect, and the second most significant SNP (Hapmap27934-BTC-065223; P = 4.04×10(-11 had 18.06 kg of effect on carcass weight, which correspond to 44% and 47%, respectively, of the phenotypic standard deviation for carcass weight in Hanwoo cattle. Our results demonstrated that carcass weight was affected by a major Quantitative Trait Locus (QTL with a large effect and by many SNPs with small effects that are normally

  8. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    NARCIS (Netherlands)

    Speliotes, Elizabeth K.; Willer, Cristen J.; Berndt, Sonja I.; Monda, Keri L.; Thorleifsson, Gudmar; Jackson, Anne U.; Allen, Hana Lango; Lindgren, Cecilia M.; Luan, Jian'an; Maegi, Reedik; Randall, Joshua C.; Vedantam, Sailaja; Winkler, Thomas W.; Qi, Lu; Workalemahu, Tsegaselassie; Heid, Iris M.; Steinthorsdottir, Valgerdur; Stringham, Heather M.; Weedon, Michael N.; Wheeler, Eleanor; Wood, Andrew R.; Ferreira, Teresa; Weyant, Robert J.; Segre, Ayellet V.; Estrada, Karol; Liang, Liming; Nemesh, James; Park, Ju-Hyun; Gustafsson, Stefan; Kilpelaenen, Tuomas O.; Yang, Jian; Bouatia-Naji, Nabila; Esko, Tonu; Feitosa, Mary F.; Kutalik, Zoltan; Mangino, Massimo; Raychaudhuri, Soumya; Scherag, Andre; Smith, Albert Vernon; Welch, Ryan; Zhao, Jing Hua; Aben, Katja K.; Absher, Devin M.; Amin, Najaf; Dixon, Anna L.; Fisher, Eva; Glazer, Nicole L.; Goddard, Michael E.; Heard-Costa, Nancy L.; van Meurs, Joyce B. J.

    2010-01-01

    Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of

  9. lociNGS: a lightweight alternative for assessing suitability of next-generation loci for evolutionary analysis.

    Directory of Open Access Journals (Sweden)

    Sarah M Hird

    Full Text Available Genomic enrichment methods and next-generation sequencing produce uneven coverage for the portions of the genome (the loci they target; this information is essential for ascertaining the suitability of each locus for further analysis. lociNGS is a user-friendly accessory program that takes multi-FASTA formatted loci, next-generation sequence alignments and demographic data as input and collates, displays and outputs information about the data. Summary information includes the parameters coverage per locus, coverage per individual and number of polymorphic sites, among others. The program can output the raw sequences used to call loci from next-generation sequencing data. lociNGS also reformats subsets of loci in three commonly used formats for multi-locus phylogeographic and population genetics analyses - NEXUS, IMa2 and Migrate. lociNGS is available at https://github.com/SHird/lociNGS and is dependent on installation of MongoDB (freely available at http://www.mongodb.org/downloads. lociNGS is written in Python and is supported on MacOSX and Unix; it is distributed under a GNU General Public License.

  10. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    NARCIS (Netherlands)

    Beaumont, R.N. (Robin N.); N.M. Warrington (Nicole); A. Cavadino (Alana); A.W.R. Tyrrell; M. Nodzenski (Michael); M. Horikoshi (Momoko); F. Geller (Frank); R. Myhre (Ronny); R.C. Richmond (Rebecca C.); Paternoster, L. (Lavinia); J.P. Bradfield (Jonathan); E. Kreiner-Møller (Eskil); V. Huikari (Ville); S. Metrustry (Sarah); K.L. Lunetta (Kathryn); J.N. Painter (Jodie N.); J.J. Hottenga (Jouke Jan); C. Allard (Catherine); S.J. Barton (Sheila J.); Espinosa, A. (Ana); J.A. Marsh (Julie); C. Potter (Catherine); Zhang, G. (Ge); W.Q. Ang (Wei); D. Berry (Diane); L. Bouchard (Luigi); S. Das (Shikta); H. Hakonarson (Hakon); J. Heikkinen (Jani); Helgeland, Ø. (Øyvind); B. Hocher (Berthold); A. Hofman (Albert); H.M. Inskip (Hazel); S.E. Jones (Samuel E.); M. Kogevinas (Manolis); P.A. Lind (Penelope); L. Marullo (Letizia); S.E. Medland (Sarah Elizabeth); Murray, A. (Anna); Murray, J.C. (Jeffrey C.); Njølstad, P.R. (Pa l R.); C. Nohr (Christian); C. Reichetzeder (Christoph); S.M. Ring (Susan); K.S. Ruth (Katherine S.); L. Santa-Marina (Loreto); D.M. Scholtens (Denise M.); Sebert, S. (Sylvain); V. Sengpiel (Verena); Tuke, M.A. (Marcus A.); Vaudel, M. (Marc); M.N. Weedon (Michael); G.A.H.M. Willemsen (Gonneke); Wood, A.R. (Andrew R.); Yaghootkar, H. (Hanieh); Muglia, L.J. (Louis J.); M. Bartels (Meike); C.L. Relton (Caroline); C.E. Pennell (Craig); L. Chatzi (Leda); Estivill, X. (Xavier); Holloway, J.W. (John W.); D.I. Boomsma (Dorret); Montgomery, G.W. (Grant W.); J. Murabito (Joanne); T.D. Spector (Timothy); Power, C. (Christine); Järvelin, M.-R. (Marjo-Ritta); Bisgaard, H. (Hans); Grant, S.F.A. (Struan F.A.); Sørensen, T.I.A. (Thorkild I.A.); Jaddoe, V.W. (Vincent W.); B. Jacobsson (Bo); Melbye, M. (Mads); McCarthy, M.I. (Mark I.); A.T. Hattersley (Andrew); Hayes, M.G. (M. Geoffrey); T.M. Frayling (Timothy); M.-F. Hivert (Marie-France); J.F. Felix (Janine); Hyppönen, E. (Elina); Lowe, W.L. (William L.); Evans, D.M. (David M.); Lawlor, D.A. (Debbie A.); B. Feenstra (Bjarke); R.M. Freathy (Rachel)

    2018-01-01

    textabstractGenome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal

  11. Genome-wide Association Study Identifies Five Susceptibility Loci for Follicular Lymphoma outside the HLA Region

    NARCIS (Netherlands)

    Skibola, Christine F.; Berndt, Sonja I.; Vijai, Joseph; Conde, Lucia; Wang, Zhaoming; Yeager, Meredith; de Bakker, Paul I. W.; Birmann, Brenda M.; Vajdic, Claire M.; Foo, Jia-Nee; Bracci, Paige M.; Vermeulen, Roel C. H.; Slager, Susan L.; de Sanjose, Silvia; Wang, Sophia S.; Linet, Martha S.; Salles, Gilles; Lan, Qing; Severi, Gianluca; Hjalgrim, Henrik; Lightfoot, Tracy; Melbye, Mads; Gu, Jian; Ghesquieres, Herve; Link, Brian K.; Morton, Lindsay M.; Holly, Elizabeth A.; Smith, Alex; Tinker, Lesley F.; Teras, Lauren R.; Kricker, Anne; Becker, Nikolaus; Purdue, Mark P.; Spinelli, John J.; Zhang, Yawei; Giles, Graham G.; Vineis, Paolo; Monnereau, Alain; Bertrand, Kimberly A.; Albanes, Demetrius; Zeleniuch-Jacquotte, Anne; Gabbas, Attilio; Chung, Charles C.; Burdett, Laurie; Hutchinson, Amy; Lawrence, Charles; Montalvan, Rebecca; Liang, Liming; Huang, Jinyan; Ma, Baoshan; Liu, Jianjun; Adami, Hans-Olov; Glimelius, Bengt; Ye, Yuanqing; Nowakowski, Grzegorz S.; Dogan, Ahmet; Thompson, Carrie A.; Habermann, Thomas M.; Novak, Anne J.; Liebow, Mark; Witzig, Thomas E.; Weiner, George J.; Schenk, Maryjean; Hartge, Patricia; De Roos, Anneclaire J.; Cozen, Wendy; Zhi, Degui; Akers, Nicholas K.; Riby, Jacques; Smith, Martyn T.; Lacher, Mortimer; Villano, Danylo J.; Maria, Ann; Roman, Eve; Kane, Eleanor; Jackson, Rebecca D.; North, Kari E.; Diver, W. Ryan; Turner, Jenny; Armstrong, Bruce K.; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; McKay, James; Brooks-Wilson, Angela R.; Zheng, Tongzhang; Holford, Theodore R.; Chamosa, Saioa; Kaaks, Rudolph; Kelly, Rachel S.; Ohlsson, Bodil; Travis, Ruth C.; Weiderpass, Elisabete; Clave, Jacqueline; Giovannucci, Edward; Kraft, Peter; Virtamo, Jarmo; Mazza, Patrizio; Cocco, Pierluigi; Ennas, Maria Grazia; Chiu, Brian C. H.; Fraumeni, Joseph R.; Nieters, Alexandra; Offit, Kenneth; Wu, Xifeng; Cerhan, James R.; Smedby, Karin E.; Chanock, Stephen J.; Rothman, Nathaniel

    2014-01-01

    Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European

  12. Genetic Screens in Yeast to Identify BRCA1 Modifiers

    National Research Council Canada - National Science Library

    Plon, Sharon E

    2004-01-01

    .... The yeast RAD9 protein has similar functions and sequence motifs as BRCA1 and we proposed to identify candidate modifier loci by identifying haploinsufficient mutations at a second locus that alters...

  13. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes.

    Science.gov (United States)

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi; Shimizu, Seiko; Higashino, Toshihide; Kawamura, Yusuke; Ogata, Hiraku; Kawaguchi, Makoto; Ohkawa, Yasuyuki; Danjoh, Inaho; Tokumasu, Atsumi; Ooyama, Keiko; Ito, Toshimitsu; Kondo, Takaaki; Wakai, Kenji; Stiburkova, Blanka; Pavelka, Karel; Stamp, Lisa K; Dalbeth, Nicola; Sakurai, Yutaka; Suzuki, Hiroshi; Hosoyamada, Makoto; Fujimori, Shin; Yokoo, Takashi; Hosoya, Tatsuo; Inoue, Ituro; Takahashi, Atsushi; Kubo, Michiaki; Ooyama, Hiroshi; Shimizu, Toru; Ichida, Kimiyoshi; Shinomiya, Nariyoshi; Merriman, Tony R; Matsuo, Hirotaka

    2017-05-01

    A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (pgout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10 -8 ). Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Adaptive genetic variation at three loci in South African vervet monkeys (Chlorocebus pygerythrus and the role of selection within primates

    Directory of Open Access Journals (Sweden)

    Willem G. Coetzer

    2018-06-01

    Full Text Available Vervet monkeys (Chlorocebus pygerythrus are one of the most widely distributed non-human primate species found in South Africa. They occur across all the South African provinces, inhabiting a large variety of habitats. These habitats vary sufficiently that it can be assumed that various factors such as pathogen diversity could influence populations in different ways. In turn, these factors could lead to varied levels of selection at specific fitness linked loci. The Toll-like receptor (TLR gene family, which play an integral role in vertebrate innate immunity, is a group of fitness linked loci which has been the focus of much research. In this study, we assessed the level of genetic variation at partial sequences of two TLR loci (TLR4 and 7 and a reproductively linked gene, acrosin (ACR, across the different habitat types within the vervet monkey distribution range. Gene variation and selection estimates were also made among 11–21 primate species. Low levels of genetic variation for all three gene regions were observed within vervet monkeys, with only two polymorphic sites identified for TLR4, three sites for TLR7 and one site for ACR. TLR7 variation was positively correlated with high mean annual rainfall, which was linked to increased pathogen abundance. The observed genetic variation at TLR4 might have been influenced by numerous factors including pathogens and climatic conditions. The ACR exonic regions showed no variation in vervet monkeys, which could point to the occurrence of a selective sweep. The TLR4 and TLR7 results for the among primate analyses was mostly in line with previous studies, indicating a higher rate of evolution for TLR4. Within primates, ACR coding regions also showed signs of positive selection, which was congruent with previous reports on mammals. Important additional information to the already existing vervet monkey knowledge base was gained from this study, which can guide future research projects on this highly

  15. Four loci explain 83% of size variation in the horse.

    Directory of Open Access Journals (Sweden)

    Shokouh Makvandi-Nejad

    Full Text Available Horse body size varies greatly due to intense selection within each breed. American Miniatures are less than one meter tall at the withers while Shires and Percherons can exceed two meters. The genetic basis for this variation is not known. We hypothesize that the breed population structure of the horse should simplify efforts to identify genes controlling size. In support of this, here we show with genome-wide association scans (GWAS that genetic variation at just four loci can explain the great majority of horse size variation. Unlike humans, which are naturally reproducing and possess many genetic variants with weak effects on size, we show that horses, like other domestic mammals, carry just a small number of size loci with alleles of large effect. Furthermore, three of our horse size loci contain the LCORL, HMGA2 and ZFAT genes that have previously been found to control human height. The LCORL/NCAPG locus is also implicated in cattle growth and HMGA2 is associated with dog size. Extreme size diversification is a hallmark of domestication. Our results in the horse, complemented by the prior work in cattle and dog, serve to pinpoint those very few genes that have played major roles in the rapid evolution of size during domestication.

  16. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera).

    Science.gov (United States)

    Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P

    2010-04-01

    Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.

  17. Essential loci in centromeric heterochromatin of Drosophila melanogaster. I: the right arm of chromosome 2.

    Science.gov (United States)

    Coulthard, Alistair B; Alm, Christina; Cealiac, Iulia; Sinclair, Don A; Honda, Barry M; Rossi, Fabrizio; Dimitri, Patrizio; Hilliker, Arthur J

    2010-06-01

    With the most recent releases of the Drosophila melanogaster genome sequences, much of the previously absent heterochromatic sequences have now been annotated. We undertook an extensive genetic analysis of existing lethal mutations, as well as molecular mapping and sequence analysis (using a candidate gene approach) to identify as many essential genes as possible in the centromeric heterochromatin on the right arm of the second chromosome (2Rh) of D. melanogaster. We also utilized available RNA interference lines to knock down the expression of genes in 2Rh as another approach to identifying essential genes. In total, we verified the existence of eight novel essential loci in 2Rh: CG17665, CG17683, CG17684, CG17883, CG40127, CG41265, CG42595, and Atf6. Two of these essential loci, CG41265 and CG42595, are synonymous with the previously characterized loci l(2)41Ab and unextended, respectively. The genetic and molecular analysis of the previously reported locus, l(2)41Ae, revealed that this is not a single locus, but rather it is a large region of 2Rh that extends from unextended (CG42595) to CG17665 and includes four of the novel loci uncovered here.

  18. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    Science.gov (United States)

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  19. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix.

    Science.gov (United States)

    Friedman, Lisa; Kolter, Roberto

    2004-07-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. Copyright 2004 American Society for Microbiology

  20. Population genetic analysis of the GlobalFiler STR loci in 748 individuals from the Kazakh population of Xinjiang in northwest China.

    Science.gov (United States)

    Zhang, Honghua; Yang, Shuping; Guo, Wei; Ren, Bo; Pu, Liwen; Ma, Teng; Xia, Mingying; Jin, Li; Li, Liming; Li, Shilin

    2016-09-01

    The six-dye GlobalFiler™ Express PCR amplification kit incorporates 21 commonly used autosomal short tandem repeat (STR) loci and three gender determination loci. In this study, we analyzed the GlobalFiler STR loci on 748 unrelated individuals from a Chinese Kazakh population of Xinjiang, China. No significant deviations from Hardy-Weinberg equilibrium and linkage disequilibrium were observed within and between 21 autosomal STR loci. SE33 showed the greatest power of discrimination in Kazakh population. The combined power of discrimination of Kazakh was 99.999999999999999999999996797 %. No significant differences of allele frequencies were observed between Kazakh and Uyghur at all 15 tested STR loci, as well as Mongolian. Significant differences were only observed between Kazakh and the other Chinese populations at TH01. Multiple STR loci showed significant differences between Kazakh and Arab, as well as South Portuguese. The multidimensional scaling plot (MDS) plot and neighbor-joining tree also showed Kazakh is genetically close to Uyghur.

  1. Genetic variation at minisatellite loci D1S7, D4S139, D5S110 and D17S79 among three population groups of eastern India.

    Science.gov (United States)

    Dutta, R; Kashyap, V K

    2001-04-01

    Genetic variation at four minisatellite loci D1S7, D4S139, D5S110 and D17S79 in three predominant population groups of eastern India, namely Brahmin, Kayastha and Garo, are reported in this study. The Brahmin and Kayastha are of Indo-Caucasoid origin while the Garo community represents the Indo-Mongoloid ethnic group. The methodology employed comprised generation of HaeIII-restricted fragments of isolated DNA, Southern blotting, and hybridization using chemiluminescent probes MS1, pH30, LH1 and V1 for the four loci. All four loci were highly polymorphic in the population groups. Heterozygosity values for the four loci ranged between 0.68 and 0.95. Neither departure from Hardy Weinberg expectations nor evidence of any association across alleles among the selected loci was observed. The gene differentiation value among the loci is moderate (GST = 0.027). A neighbour-joining tree constructed on the basis of the generated data shows very low genetic distance between the Brahmin and Kayastha communities in relation to the Garo. Our results based on genetic distance analysis are consistent with results of earlier studies based on serological markers and linguistic as well as morphological affiliations of these populations and their Indo-Caucasoid and Indo-Mongoloid origin. The minisatellite loci studied here were found to be not only useful in showing significant genetic variation between the populations but also to be suitable for human identity testing among eastern Indian populations.

  2. Linkage of DNA Methylation Quantitative Trait Loci to Human Cancer Risk

    Directory of Open Access Journals (Sweden)

    Holger Heyn

    2014-04-01

    Full Text Available Epigenetic regulation and, in particular, DNA methylation have been linked to the underlying genetic sequence. DNA methylation quantitative trait loci (meQTL have been identified through significant associations between the genetic and epigenetic codes in physiological and pathological contexts. We propose that interrogating the interplay between polymorphic alleles and DNA methylation is a powerful method for improving our interpretation of risk alleles identified in genome-wide association studies that otherwise lack mechanistic explanation. We integrated patient cancer risk genotype data and genome-scale DNA methylation profiles of 3,649 primary human tumors, representing 13 solid cancer types. We provide a comprehensive meQTL catalog containing DNA methylation associations for 21% of interrogated cancer risk polymorphisms. Differentially methylated loci harbor previously reported and as-yet-unidentified cancer genes. We suggest that such regulation at the DNA level can provide a considerable amount of new information about the biology of cancer-risk alleles.

  3. Genetic Loci Governing Androgenic Capacity in Perennial Ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Rachel F. Begheyn

    2018-06-01

    Full Text Available Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful for species where inbreeding is hampered by effective self-incompatibility systems. Therefore, increasing the generally low androgenic capacity of perennial ryegrass (Lolium perenne L. germplasm would enable the efficient production of homozygous plant material, so that a more effective exploitation of heterosis through hybrid breeding schemes can be realized. Here, we present the results of a genome-wide association study in a heterozygous, multiparental population of perennial ryegrass (n = 391 segregating for androgenic capacity. Genotyping-by-sequencing was used to interrogate gene- dense genomic regions and revealed over 1,100 polymorphic sites. Between one and 10 quantitative trait loci (QTL were identified for anther response, embryo and total plant production, green and albino plant production and regeneration. Most traits were under polygenic control, although a major QTL on linkage group 5 was associated with green plant regeneration. Distinct genetic factors seem to affect green and albino plant recovery. Two intriguing candidate genes, encoding chromatin binding domains of the developmental phase transition regulator, Polycomb Repressive Complex 2, were identified. Our results shed the first light on the molecular mechanisms behind perennial ryegrass microspore embryogenesis and enable marker-assisted introgression of androgenic capacity into recalcitrant germplasm of this forage crop of global significance.

  4. Incorporation of covariates in simultaneous localization of two linked loci using affected relative pairs

    Directory of Open Access Journals (Sweden)

    Liang Kung-Yee

    2010-07-01

    Full Text Available Abstract Background Many dichotomous traits for complex diseases are often involved more than one locus and/or associated with quantitative biomarkers or environmental factors. Incorporating these quantitative variables into linkage analysis as well as localizing two linked disease loci simultaneously could therefore improve the efficiency in mapping genes. We extended the robust multipoint Identity-by-Descent (IBD approach with incorporation of covariates developed previously to simultaneously estimate two linked loci using different types of affected relative pairs (ARPs. Results We showed that the efficiency was enhanced by incorporating a quantitative covariate parametrically or non-parametrically while localizing two disease loci using ARPs. In addition to its help in identifying factors associated with the disease and in improving the efficiency in estimating disease loci, this extension also allows investigators to account for heterogeneity in risk-ratios for different ARPs. Data released from the collaborative study on the genetics of alcoholism (COGA for Genetic Analysis Workshop 14 (GAW 14 were used to illustrate the application of this extended method. Conclusions The simulation studies and example illustrated that the efficiency in estimating disease loci was demonstratively enhanced by incorporating a quantitative covariate and by using all relative pairs while mapping two linked loci simultaneously.

  5. Genetic Variation of 25 Y-Chromosomal and 15 Autosomal STR Loci in the Han Chinese Population of Liaoning Province, Northeast China.

    Directory of Open Access Journals (Sweden)

    Jun Yao

    Full Text Available In the present study, we investigated the genetic characteristics of 25 Y-chromosomal and 15 autosomal short tandem repeat (STR loci in 305 unrelated Han Chinese male individuals from Liaoning Province using AmpFISTR® Yfiler® Plus and IdentifilerTM PCR amplification kits. Population comparison was performed between Liaoning Han population and different ethnic groups to better understand the genetic background of the Liaoning Han population. For Y-STR loci, the overall haplotype diversity was 0.9997 and the discrimination capacity was 0.9607. Gene diversity values ranged from 0.4525 (DYS391 to 0.9617 (DYS385. Rst and two multi-dimensional scaling plots showed that minor differences were observed when the Liaoning Han population was compared to the Jilin Han Chinese, Beijing Han Chinese, Liaoning Manchu, Liaoning Mongolian, Liaoning Xibe, Shandong Han Chinese, Jiangsu Han Chinese, Anhui Han Chinese, Guizhou Han Chinese and Liaoning Hui populations; by contrast, major differences were observed when the Shanxi Han Chinese, Yunnan Bai, Jiangxi Han Chinese, Guangdong Han Chinese, Liaoning Korean, Hunan Tujia, Guangxi Zhuang, Gansu Tibetan, Xishuangbanna Dai, South Korean, Japanese and Hunan Miao populations. For autosomal STR loci, DP ranged from 0.9621 (D2S1338 to 0.8177 (TPOX, with PE distributing from 0.7521 (D18S51 to 0.2988 (TH01. A population comparison was performed and no statistically significant differences were detected at any STR loci between Liaoning Han, China Dong, and Shaanxi Han populations. The results showed that the 25 Y-STR and 15 autosomal STR loci in the Liaoning Han population were valuable for forensic applications and human genetics, and Liaoning Han was an independent endogenous ethnicity with a unique subpopulation structure.

  6. Genetic Variation of 25 Y-Chromosomal and 15 Autosomal STR Loci in the Han Chinese Population of Liaoning Province, Northeast China.

    Science.gov (United States)

    Yao, Jun; Wang, Bao-Jie

    2016-01-01

    In the present study, we investigated the genetic characteristics of 25 Y-chromosomal and 15 autosomal short tandem repeat (STR) loci in 305 unrelated Han Chinese male individuals from Liaoning Province using AmpFISTR® Yfiler® Plus and IdentifilerTM PCR amplification kits. Population comparison was performed between Liaoning Han population and different ethnic groups to better understand the genetic background of the Liaoning Han population. For Y-STR loci, the overall haplotype diversity was 0.9997 and the discrimination capacity was 0.9607. Gene diversity values ranged from 0.4525 (DYS391) to 0.9617 (DYS385). Rst and two multi-dimensional scaling plots showed that minor differences were observed when the Liaoning Han population was compared to the Jilin Han Chinese, Beijing Han Chinese, Liaoning Manchu, Liaoning Mongolian, Liaoning Xibe, Shandong Han Chinese, Jiangsu Han Chinese, Anhui Han Chinese, Guizhou Han Chinese and Liaoning Hui populations; by contrast, major differences were observed when the Shanxi Han Chinese, Yunnan Bai, Jiangxi Han Chinese, Guangdong Han Chinese, Liaoning Korean, Hunan Tujia, Guangxi Zhuang, Gansu Tibetan, Xishuangbanna Dai, South Korean, Japanese and Hunan Miao populations. For autosomal STR loci, DP ranged from 0.9621 (D2S1338) to 0.8177 (TPOX), with PE distributing from 0.7521 (D18S51) to 0.2988 (TH01). A population comparison was performed and no statistically significant differences were detected at any STR loci between Liaoning Han, China Dong, and Shaanxi Han populations. The results showed that the 25 Y-STR and 15 autosomal STR loci in the Liaoning Han population were valuable for forensic applications and human genetics, and Liaoning Han was an independent endogenous ethnicity with a unique subpopulation structure.

  7. Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    DEFF Research Database (Denmark)

    Medici, Marco; Porcu, Eleonora; Pistis, Giorgio

    2014-01-01

    , goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68-2.81, P = 8.1×10(-8)), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26-1.82, P = 2.9×10(-6)), as well......Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease.......12-1.39, P = 6.2×10(-5)). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18-2.10, P = 1.9×10(-3)). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease...

  8. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitulkumar Nandlal; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of Europea...

  9. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Stephen; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Melanie; Bolla, Manjeet; Wang, Qing; Shah, Mitul; Perkins, Barbara; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to wome...

  10. Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Science.gov (United States)

    Jackson, Anne U.; Monda, Keri L.; Kilpeläinen, Tuomas O.; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F.; Croteau-Chonka, Damien C.; Day, Felix R.; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E.; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R.; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T.; Dimas, Antigone S.; Karpe, Fredrik; Min, Josine L.; Nicholson, George; Clegg, Deborah J.; Person, Thomas; Krohn, Jon P.; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Hottenga, Jouke-Jan; Prokopenko, Inga; Waite, Lindsay L.; Harris, Tamara B.; Smith, Albert Vernon; Shuldiner, Alan R.; McArdle, Wendy L.; Caulfield, Mark J.; Munroe, Patricia B.; Grönberg, Henrik; Chen, Yii-Der Ida; Li, Guo; Beckmann, Jacques S.; Johnson, Toby; Thorsteinsdottir, Unnur; Teder-Laving, Maris; Khaw, Kay-Tee; Wareham, Nicholas J.; Zhao, Jing Hua; Amin, Najaf; Oostra, Ben A.; Kraja, Aldi T.; Province, Michael A.; Cupples, L. Adrienne; Heard-Costa, Nancy L.; Kaprio, Jaakko; Ripatti, Samuli; Surakka, Ida; Collins, Francis S.; Saramies, Jouko; Tuomilehto, Jaakko; Jula, Antti; Salomaa, Veikko; Erdmann, Jeanette; Hengstenberg, Christian; Loley, Christina; Schunkert, Heribert; Lamina, Claudia; Wichmann, H. Erich; Albrecht, Eva; Gieger, Christian; Hicks, Andrew A.; Johansson, Åsa; Pramstaller, Peter P.; Kathiresan, Sekar; Speliotes, Elizabeth K.; Penninx, Brenda; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Gyllensten, Ulf; Boomsma, Dorret I.; Campbell, Harry; Wilson, James F.; Chanock, Stephen J.; Farrall, Martin; Goel, Anuj; Medina-Gomez, Carolina; Rivadeneira, Fernando; Estrada, Karol; Uitterlinden, André G.; Hofman, Albert; Zillikens, M. Carola; den Heijer, Martin; Kiemeney, Lambertus A.; Maschio, Andrea; Hall, Per; Tyrer, Jonathan; Teumer, Alexander; Völzke, Henry; Kovacs, Peter; Tönjes, Anke; Mangino, Massimo; Spector, Tim D.; Hayward, Caroline; Rudan, Igor; Hall, Alistair S.; Samani, Nilesh J.; Attwood, Antony Paul; Sambrook, Jennifer G.; Hung, Joseph; Palmer, Lyle J.; Lokki, Marja-Liisa; Sinisalo, Juha; Boucher, Gabrielle; Huikuri, Heikki; Lorentzon, Mattias; Ohlsson, Claes; Eklund, Niina; Eriksson, Johan G.; Barlassina, Cristina; Rivolta, Carlo; Nolte, Ilja M.; Snieder, Harold; Van der Klauw, Melanie M.; Van Vliet-Ostaptchouk, Jana V.; Gejman, Pablo V.; Shi, Jianxin; Jacobs, Kevin B.; Wang, Zhaoming; Bakker, Stephan J. L.; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Martin, Nicholas G.; Medland, Sarah E.; Montgomery, Grant W.; Yang, Jian; Chasman, Daniel I.; Ridker, Paul M.; Rose, Lynda M.; Lehtimäki, Terho; Raitakari, Olli; Absher, Devin; Iribarren, Carlos; Basart, Hanneke; Hovingh, Kees G.; Hyppönen, Elina; Power, Chris; Anderson, Denise; Beilby, John P.; Hui, Jennie; Jolley, Jennifer; Sager, Hendrik; Bornstein, Stefan R.; Schwarz, Peter E. H.; Kristiansson, Kati; Perola, Markus; Lindström, Jaana; Swift, Amy J.; Uusitupa, Matti; Atalay, Mustafa; Lakka, Timo A.; Rauramaa, Rainer; Bolton, Jennifer L.; Fowkes, Gerry; Fraser, Ross M.; Price, Jackie F.; Fischer, Krista; KrjutÅ¡kov, Kaarel; Metspalu, Andres; Mihailov, Evelin; Langenberg, Claudia; Luan, Jian'an; Ong, Ken K.; Chines, Peter S.; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Edkins, Sarah; Franks, Paul W.; Hallmans, Göran; Shungin, Dmitry; Morris, Andrew David; Palmer, Colin N. A.; Erbel, Raimund; Moebus, Susanne; Nöthen, Markus M.; Pechlivanis, Sonali; Hveem, Kristian; Narisu, Narisu; Hamsten, Anders; Humphries, Steve E.; Strawbridge, Rona J.; Tremoli, Elena; Grallert, Harald; Thorand, Barbara; Illig, Thomas; Koenig, Wolfgang; Müller-Nurasyid, Martina; Peters, Annette; Boehm, Bernhard O.; Kleber, Marcus E.; März, Winfried; Winkelmann, Bernhard R.; Kuusisto, Johanna; Laakso, Markku; Arveiler, Dominique; Cesana, Giancarlo; Kuulasmaa, Kari; Virtamo, Jarmo; Yarnell, John W. G.; Kuh, Diana; Wong, Andrew; Lind, Lars; de Faire, Ulf; Gigante, Bruna; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Dedoussis, George; Dimitriou, Maria; Kolovou, Genovefa; Kanoni, Stavroula; Stirrups, Kathleen; Bonnycastle, Lori L.; Njølstad, Inger; Wilsgaard, Tom; Ganna, Andrea; Rehnberg, Emil; Hingorani, Aroon; Kivimaki, Mika; Kumari, Meena; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunians, Talin; Hunter, David; Ingelsson, Erik; Kaplan, Robert; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Abecasis, Gonçalo R.; McCarthy, Mark I.; Hirschhorn, Joel N.; Qi, Lu; Loos, Ruth J. F.; Lindgren, Cecilia M.; North, Kari E.; Heid, Iris M.

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits. PMID:23754948

  11. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.

    Directory of Open Access Journals (Sweden)

    Joshua C Randall

    2013-06-01

    Full Text Available Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals and took forward 348 SNPs into follow-up (additional 137,052 individuals in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%, including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9 and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG, all of which were genome-wide significant in women (P<5×10(-8, but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.

  12. Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species.

    Science.gov (United States)

    Grueber, Catherine E; Wallis, Graham P; Jamieson, Ian G

    2013-09-01

    During population establishment, genetic drift can be the key driver of changes in genetic diversity, particularly while the population is small. However, natural selection can also play a role in shaping diversity at functionally important loci. We used a well-studied, re-introduced population of the threatened Stewart Island robin (N = 722 pedigreed individuals) to determine whether selection shaped genetic diversity at innate immunity toll-like receptor (TLR) genes, over a 9-year period of population growth following establishment with 12 genetic founders. We found no evidence for selection operating with respect to TLR diversity on first-year overwinter survival for the majority of loci, genotypes and alleles studied. However, survival of individuals with TLR4BE genotype was significantly improved: these birds were less than half as likely to die prior to maturity compared with all other TLR4 genotypes. Furthermore, the population frequency of this genotype, at a two-fold excess over Hardy-Weinberg expectation, was increased by nonrandom mating. Near-complete sampling and full pedigree and reproductive data enabled us to eliminate other potential causes of these patterns including inbreeding, year effects, density dependence, selection on animals at earlier life history stages or genome-level association of the TLR4E allele with 'good genes'. However, comparison of observed levels of gene diversity to predictions under simulated genetic drift revealed results consistent with neutral expectations for all loci, including TLR4. Although selection favoured TLR4BE heterozygotes in this population, these effects were insufficient to outweigh genetic drift. This is the first empirical study to show that genetic drift can overwhelm natural selection in a wild population immediately following establishment. © 2013 John Wiley & Sons Ltd.

  13. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  14. Estimation of loci involved in non-shattering of seeds in early rice domestication.

    Science.gov (United States)

    Ishikawa, Ryo; Nishimura, Akinori; Htun, Than Myint; Nishioka, Ryo; Oka, Yumi; Tsujimura, Yuki; Inoue, Chizuru; Ishii, Takashige

    2017-04-01

    Rice (Oryza sativa L.) is widely cultivated around the world and is known to be domesticated from its wild form, O. rufipogon. A loss of seed shattering is one of the most obvious phenotypic changes selected for during rice domestication. Previously, three seed-shattering loci, qSH1, sh4, and qSH3 were reported to be involved in non-shattering of seeds of Japonica-type cultivated rice, O. sativa cv. Nipponbare. In this study, we focused on non-shattering characteristics of O. sativa Indica cv. IR36 having functional allele at qSH1. We produced backcross recombinant inbred lines having chromosomal segments from IR36 in the genetic background of wild rice, O. rufipogon W630. Histological and quantitative trait loci analyses of abscission layer formation were conducted. In the analysis of quantitative trait loci, a strong peak was observed close to sh4. We, nevertheless, found that some lines showed complete abscission layer formation despite carrying the IR36 allele at sh4, implying that non-shattering of seeds of IR36 could be regulated by the combination of mutations at sh4 and other seed-shattering loci. We also genotyped qSH3, a recently identified seed-shattering locus. Lines that have the IR36 alleles at sh4 and qSH3 showed inhibition of abscission layer formation but the degree of seed shattering was different from that of IR36. On the basis of these results, we estimated that non-shattering of seeds in early rice domestication involved mutations in at least three loci, and these genetic materials produced in this study may help to identify novel seed-shattering loci.

  15. Comparative Mapping of Seed Dormancy Loci Between Tropical and Temperate Ecotypes of Weedy Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Lihua Zhang

    2017-08-01

    Full Text Available Genotypic variation at multiple loci for seed dormancy (SD contributes to plant adaptation to diverse ecosystems. Weedy rice (Oryza sativa was used as a model to address the similarity of SD genes between distinct ecotypes. A total of 12 quantitative trait loci (QTL for SD were identified in one primary and two advanced backcross (BC populations derived from a temperate ecotype of weedy rice (34.3°N Lat.. Nine (75% of the 12 loci were mapped to the same positions as those identified from a tropical ecotype of weedy rice (7.1°N Lat.. The high similarity suggested that the majority of SD genes were conserved during the ecotype differentiation. These common loci are largely those collocated/linked with the awn, hull color, pericarp color, or plant height loci. Phenotypic correlations observed in the populations support the notion that indirect selections for the wild-type morphological characteristics, together with direct selections for germination time, were major factors influencing allelic distributions of SD genes across ecotypes. Indirect selections for crop-mimic traits (e.g., plant height and flowering time could also alter allelic frequencies for some SD genes in agroecosystems. In addition, 3 of the 12 loci were collocated with segregation distortion loci, indicating that some gametophyte development genes could also influence the genetic equilibria of SD loci in hybrid populations. The SD genes with a major effect on germination across ecotypes could be used as silencing targets to develop transgene mitigation (TM strategies to reduce the risk of gene flow from genetically modified crops into weed/wild relatives.

  16. Identification of Gene Loci That Overlap Between Schizophrenia and Educational Attainment

    DEFF Research Database (Denmark)

    Le Hellard, Stéphanie; Wang, Yunpeng; Witoelar, Aree

    2017-01-01

    . Here we investigated the shared genetic architecture between SCZ and educational attainment, which is regarded as a "proxy phenotype" for cognitive abilities, but may also reflect other traits. We applied a conditional false discovery rate (condFDR) method to GWAS of SCZ (n = 82 315), college...... completion ("College," n = 95 427), and years of education ("EduYears," n = 101 069). Variants associated with College or EduYears showed enrichment of association with SCZ, demonstrating polygenic overlap. This was confirmed by an increased replication rate in SCZ. By applying a condFDR threshold ... of these loci had effects in opposite directions. Our results provide evidence for polygenic overlap between SCZ and educational attainment, and identify novel pleiotropic loci. Other studies have reported genetic overlap between SCZ and cognition, or SCZ and educational attainment, with negative correlation...

  17. Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population

    Directory of Open Access Journals (Sweden)

    Sébastien Tisné

    2017-06-01

    Full Text Available Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma, and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease.

  18. Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population

    Science.gov (United States)

    Tisné, Sébastien; Pomiès, Virginie; Riou, Virginie; Syahputra, Indra; Cochard, Benoît; Denis, Marie

    2017-01-01

    Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma, and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease. PMID:28592650

  19. Multicenter dizygotic twin cohort study confirms two linkage susceptibility loci for body mass index at 3q29 and 7q36 and identifies three further potential novel loci

    DEFF Research Database (Denmark)

    Kettunen, J; Perola, M; Martin, N G

    2009-01-01

    OBJECTIVE: To identify common loci and potential genetic variants affecting body mass index (BMI, kg m(-2)) in study populations originating from Europe. DESIGN: We combined genome-wide linkage scans of six cohorts from Australia, Denmark, Finland, the Netherlands, Sweden and the United Kingdom...... with an approximately 10-cM microsatellite marker map. Variance components linkage analysis was carried out with age, sex and country of origin as covariates. SUBJECTS: The GenomEUtwin consortium consists of twin cohorts from eight countries (Australia, Denmark, the Netherlands, Finland, Italy, Norway, Sweden...... and the United Kingdom) with a total data collection of more than 500,000 monozygotic and dizygotic (DZ) twin pairs. Variance due to early-life events and the environment is reduced within twin pairs, which makes DZ pairs highly valuable for linkage studies of complex traits. This study totaled 4401 European-originated...

  20. Genome-Wide Search for Quantitative Trait Loci Controlling Important Plant and Flower Traits in Petunia Using an Interspecific Recombinant Inbred Population of Petunia axillaris and Petunia exserta.

    Science.gov (United States)

    Cao, Zhe; Guo, Yufang; Yang, Qian; He, Yanhong; Fetouh, Mohammed; Warner, Ryan M; Deng, Zhanao

    2018-05-15

    A major bottleneck in plant breeding has been the much limited genetic base and much reduced genetic diversity in domesticated, cultivated germplasm. Identification and utilization of favorable gene loci or alleles from wild or progenitor species can serve as an effective approach to increasing genetic diversity and breaking this bottleneck in plant breeding. This study was conducted to identify quantitative trait loci (QTL) in wild or progenitor petunia species that can be used to improve important horticultural traits in garden petunia. An F 7 recombinant inbred population derived between Petunia axillaris and P. exserta was phenotyped for plant height, plant spread, plant size, flower counts, flower diameter, flower length, and days to anthesis, in Florida in two consecutive years. Transgressive segregation was observed for all seven traits in both years. The broad-sense heritability estimates for the traits ranged from 0.20 (days to anthesis) to 0.62 (flower length). A genome-wide genetic linkage map consisting 368 single nucleotide polymorphism bins and extending over 277 cM was searched to identify QTL for these traits. Nineteen QTL were identified and localized to five linkage groups. Eleven of the loci were identified consistently in both years; several loci explained up to 34.0% and 24.1% of the phenotypic variance for flower length and flower diameter, respectively. Multiple loci controlling different traits are co-localized in four intervals in four linkage groups. These intervals contain desirable alleles that can be introgressed into commercial petunia germplasm to expand the genetic base and improve plant performance and flower characteristics in petunia. Copyright © 2018, G3: Genes, Genomes, Genetics.

  1. GWAS identifies four novel eosinophilic esophagitis loci

    NARCIS (Netherlands)

    Sleiman, Patrick M. A.; Wang, Mei-Lun; Cianferoni, Antonella; Aceves, Seema; Gonsalves, Nirmala; Nadeau, Kari; Bredenoord, Albert J.; Furuta, Glenn T.; Spergel, Jonathan M.; Hakonarson, Hakon

    2014-01-01

    Eosinophilic esophagitis (EoE) is an allergic disorder characterized by infiltration of the oesophagus with eosinophils. We had previously reported association of the TSLP/WDR36 locus with EoE. Here we report genome-wide significant associations at four additional loci; c11orf30 and STAT6, which

  2. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    Science.gov (United States)

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  3. Lifestyle may modify the glucose-raising effect of genetic loci. A study in the Greek population.

    Science.gov (United States)

    Marouli, E; Kanoni, S; Dimitriou, M; Kolovou, G; Deloukas, P; Dedoussis, G

    2016-03-01

    Lifestyle habits including dietary intake and physical activity are closely associated with multiple body processes including glucose metabolism and are known to affect human health. Recent genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) associated with glucose levels. The hypothesis tested here is whether a healthy lifestyle assessed via a score is associated with glycaemic traits and whether there is an interaction between the lifestyle and known glucose-raising genetic variants in association with glycaemic traits. Participants of Greek descent from the THISEAS study were included in this analysis. We developed a glucose preventive score (GPS) including dietary and physical activity characteristics. We also modelled a weighted genetic risk score (wGRS), based on 20 known glucose-raising loci, in order to investigate the impact of lifestyle-gene interaction on glucose levels. The GPS was observed to be significantly associated with lower glucose concentrations (β ± SE: -0.083 ± 0.021 mmol/L, P = 1.6 × 10(-04)) and the wGRS, as expected, with increased glucose levels (β ± SE: 0.020 ± 0.007 mmol/L, P = 8.4 × 10(-3)). The association of the wGRS with glucose levels was attenuated after interaction with the GPS. A higher GPS indicated decreasing glucose levels in the presence of an increasing wGRS (β interaction ± SE: -0.019 ± 0.007 mmol/L, P = 0.014). Our results indicate that lower glucose levels underlie a healthier lifestyle and also support an interaction between the wGRS for known glycaemic loci and GPS associated with lower glucose levels. These scores could be useful tools for monitoring glucose metabolism. Copyright © 2016. Published by Elsevier B.V.

  4. Method of detecting genetic deletions identified with chromosomal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  5. Chromosomal localization of microsatellite loci in Drosophila mediopunctata

    Directory of Open Access Journals (Sweden)

    Renato Cavasini

    2015-03-01

    Full Text Available Drosophila mediopunctata has been used as a model organism for genetics and evolutionary studies in the last three decades. A linkage map with 48 microsatellite loci recently published for this species showed five syntenic groups, which had their homology determined to Drosophila melanogaster chromosomes. Then, by inference, each of the groups was associated with one of the five major chromosomes of D. mediopunctata. Our objective was to carry out a genetic (chromosomal analysis to increase the number of available loci with known chromosomal location. We made a simultaneous analysis of visible mutant phenotypes and microsatellite genotypes in a backcross of a standard strain and a mutant strain, which had each major autosome marked. Hence, we could establish the chromosomal location of seventeen loci; including one from each of the five major linkage groups previously published, and twelve new loci. Our results were congruent with the previous location and they open new possibilities to future work integrating microsatellites, chromosomal inversions, and genetic determinants of physiological and morphological variation.

  6. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    NARCIS (Netherlands)

    E.K. Speliotes (Elizabeth); C.J. Willer (Cristen); S.I. Berndt (Sonja); K.L. Monda (Keri); G. Thorleifsson (Gudmar); A.U. Jackson (Anne); H.L. Allen; C.M. Lindgren (Cecilia); J. Luan; R. Mägi (Reedik); J.C. Randall (Joshua); S. Vedantam (Sailaja); T.W. Winkler (Thomas); L. Qi (Lu); T. Workalemahu (Tsegaselassie); I.M. Heid (Iris); V. Steinthorsdottir (Valgerdur); H.M. Stringham (Heather); E. Wheeler (Eleanor); A.R. Wood (Andrew); T. Ferreira (Teresa); R.J. Weyant (Robert); A.V. Segrè (Ayellet); K. Eestrada (Karol); L. Liang (Liming); J. Nemesh (James); J.H. Park; S. Gustafsson (Stefan); T.O. Kilpeläinen (Tuomas); J. Yang (Joanna); N. Bouatia-Naji (Nabila); T. Eesko (Tõnu); M.F. Feitosa (Mary Furlan); Z. Kutalik (Zoltán); M. Mangino (Massimo); S. Raychaudhuri (Soumya); A. Scherag (Andre); A.V. Smith (Albert Vernon); R.P. Welch (Ryan); J.H. Zhao (Jing Hua); K.K.H. Aben (Katja); D. Absher (Devin); N. Amin (Najaf); A.L. Dixon (Anna); E. Fisher (Eeva); N.L. Glazer (Nicole); M.E. Goddard (Michael); N.L. Heard-Costa (Nancy); V. Hoesel (Volker); J.J. Hottenga (Jouke Jan); A. Johansson (Åsa); T. Johnson (Toby); S. Ketkar (Shamika); C. Lamina (Claudia); S. Li (Shengxu); M.F. Moffatt (Miriam); R.H. Myers (Richard); N. Narisu (Narisu); J.R.B. Perry (John); M.J. Peters (Marjolein); M. Preuss (Michael); S. Ripatti (Samuli); F. Rivadeneira Ramirez (Fernando); C. Sandholt (Camilla); L.J. Scott (Laura); N.J. Timpson (Nicholas); J.P. Tyrer (Jonathan); S. van Wingerden (Sophie); C.C. White (Charles); F. Wiklund (Fredrik); C. Barlassina (Christina); D.I. Chasman (Daniel); M.N. Cooper (Matthew); J.O. Jansson; R.W. Lawrence (Robert); N. Pellikka (Niina); I. Prokopenko (Inga); J. Shi (Jianxin); E. Thiering (Eelisabeth); H. Alavere (Helene); M.T.S. Alibrandi (Maria); P. Almgren (Peter); A.M. Arnold (Alice); T. Aspelund (Thor); L.D. Atwood (Larry); B. Balkau (Beverley); A.J. Balmforth (Anthony); A.J. Bennett (Amanda); Y. Ben-Shlomo; R.N. Bergman (Richard); S.M. Bergmann (Sven); H. Biebermann (Heike); A.I.F. Blakemore (Alexandra); T. Boes (Tanja); L.L. Bonnycastle (Lori); S.R. Bornstein (Stefan); M.J. Brown (Morris); T.A. Buchanan (Thomas); F. Busonero; H. Campbell (Harry); F.P. Cappuccio (Francesco); C. Cavalcanti-Proença (Christine); Y.D.I. Chen (Yii-Der Ida); C.-M. Chen (Chih-Mei); P.S. Chines (Peter); R. Clarke; L. Coin (Lachlan); J. Connell (John); I.N.M. Day (Ian); M. den Heijer (Martin); J. Duan (Jubao); S. Eebrahim (Shah); P. Eelliott (Paul); R. Eelosua (Roberto); G. Eeiriksdottir (Gudny); M.R. Eerdos (Micheal); J.G. Eeriksson (Johan); M.F. Facheris (Maurizio); S.B. Felix (Stephan); P. Fischer-Posovszky (Pamela); A.R. Folsom (Aaron); N. Friedrich (Nele); N.B. Freimer (Nelson); M. Fu (Mao); S. Gaget (Stefan); P.V. Gejman (Pablo); E.J.C. de Geus (Eco); C. Gieger (Christian); A.P. Gjesing (Anette); A. Goel (Anuj); P. Goyette (Philippe); H. Grallert (Harald); J. Gräßler (Jürgen); D. Greenawalt (Danielle); C.J. Groves (Christopher); V. Gudnason (Vilmundur); C. Guiducci (Candace); A.L. Hartikainen; N. Hassanali (Neelam); A.S. Hall (Alistair); A.S. Havulinna (Aki); C. Hayward (Caroline); A.C. Heath (Andrew); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hinney (Anke); A. Hofman (Albert); G. Homuth (Georg); J. Hui (Jennie); W. Igl (Wilmar); C. Iribarren (Carlos); B. Isomaa (Bo); K.B. Jacobs (Kevin); I. Jarick (Ivonne); E. Jewell (Eelizabeth); U. John (Ulrich); T. Jørgensen (Torben); P. Jousilahti (Pekka); A. Jula (Antti); M. Kaakinen (Marika); E. Kajantie (Eero); R.C. Kaplan (Robert); S. Kathiresan (Sekar); J. Kettunen (Johannes); L. Kinnunen (Leena); J.W. Knowles (Joshua); I. Kolcic (Ivana); I.R. König (Inke); S. Koskinen (Seppo); P. Kovacs (Peter); J. Kusisto (Johanna); P. Kraft (Peter); K. Kvaløy (Kirsti); J. Laitinen (Jaana); O. Lantieri (Olivier); C. Lanzani (Chiara); L.J. Launer (Lenore); C. Lecoeur (Cécile); T. Lehtimäki (Terho); G. Lettre (Guillaume); J. Liu (Jianjun); M.L. Lokki; M. Lorentzon (Mattias); R.N. Luben (Robert); B. Ludwig (Barbara); P. Manunta (Paolo); D. Marek (Diana); M. Marre (Michel); N.G. Martin (Nicholas); W.L. McArdle (Wendy); M.I. McCarthy (Mark); B. McKnight (Barbara); T. Meitinger (Thomas); O. Melander (Olle); D. Meyre (David); K. Midthjell (Kristian); G.W. Montgomery (Grant); M.A. Morken (Mario); A.D. Morris (Andrew); R. Mulic (Rosanda); J.S. Ngwa; M. Nelis (Mari); M.J. Neville (Matthew); D.R. Nyholt (Dale); C.J. O'Ddonnell (Christopher); S. O'Rahilly (Stephen); K. Ong (Ken); B.A. Oostra (Ben); G. Paré (Guillaume); A.N. Parker (Alex); M. Perola (Markus); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); C.P. Platou (Carl); O. Polasek (Ozren); A. Pouta (Anneli); S. Rafelt (Suzanne); O. Raitakari (Olli); N.W. Rayner (Nigel William); M. Ridderstråle (Martin); W. Rief (Winfried); A. Ruokonen (Aimo); N.R. Robertson (Neil); P. Rzehak (Peter); V. Salomaa (Veikko); A.R. Sanders (Alan); M.S. Sandhu (Manjinder); S. Sanna (Serena); J. Saramies (Jouko); M.J. Savolainen (Markku); S. Schipf (Sabine); S. Schreiber (Stefan); H. Schunkert (Heribert); K. Silander (Kaisa); J. Sinisalo (Juha); D.S. Siscovick (David); J.H. Smit (Jan); N. Soranzo (Nicole); U. Sovio (Ulla); J. Stephens (Jonathan); I. Surakka (Ida); A.J. Swift (Amy); M.L. Tammesoo; J.-C. Tardif (Jean-Claude); M. Teder-Laving (Maris); T.M. Teslovich (Tanya); J.R. Thompson (John); B. Thomson (Brian); A. Tönjes (Anke); T. Tuomi (Tiinamaija); J.B.J. van Meurs (Joyce); G.J. van OMen; V. Vatin (Vincent); J. Viikari (Jorma); S. Visvikis-Siest (Sophie); V. Vitart (Veronique); C.I. Vogel (Carla); B.F. Voight (Benjamin); L. Waite (Lindsay); H. Wallaschofski (Henri); G.B. Walters (Bragi); E. Widen (Elisabeth); S. Wiegand (Susanna); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); D.R. Witte (Deniel); J.C.M. Witteman (Jacqueline); J. Xu (Jianfeng); Q. Zhang (Qunyuan); L. Zgaga (Lina); A. Ziegler (Andreas); P. Zitting (Paavo); J.P. Beilby (John); I.S. FarOqi (Ssadaf); J. Hebebrand (Johannes); H.V. Huikuri (Heikki); A. James (Alan); M. Kähönen (Mika); D.F. Levinson (Douglas); F. MacCiardi (Fabio); M.S. Nieminen (Markku); C. Ohlsson (Claes); C. Palmer (Cameron); P.M. Ridker (Paul); M. Stumvoll (Michael); J.S. Beckmann (Jacques); H. Boeing (Heiner); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); S.J. Chanock (Stephen); F.S. Collins (Francis); L.A. Cupples (Adrienne); J. Eerdmann (Jeanette); P. Frogue (Philippe); H. Grönberg (Henrik); U. Gyllensten (Ulf); T. Hansen (Torben); T.B. Harris (Tamara); A.T. Hattersley (Andrew); R.B. Hayes (Richard); J. Heinrich (Joachim); F.B. Hu (Frank); K. Hveem (Kristian); T. Illig (Thomas); M.R. Järvelin; J. Kaprio (Jaakko); F. Karpe (Fredrik); K-T. Khaw (Kay-Tee); L.A.L.M. Kiemeney (Bart); H. Krude; M. Laakso (Markku); D.A. Lawlor (Debbie); A. Metspalu (Andres); P. Munroe (Patricia); W.H. Ouwehand (Willem); O. Pedersen (Oluf); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); T. Quertermous (Thomas); T. Reinehr (Thomas); A. Rissanen (Aila); I. Rudan (Igor); N.J. Samani (Nilesh); P.E.H. Schwarz (Peter); A.R. Shuldiner (Alan); T.D. Spector (Timothy); J. Tuomilehto (Jaakko); M. Uda (Manuela); A.G. Uitterlinden (André); T.T. Valle (Timo); M. Wabitsch (Martin); G. Waeber (Gérard); N.J. Wareham (Nick); H. Watkins (Hugh); J.F. Wilson (James); A.F. Wright (Alan); M.C. Zillikens (Carola); N. ChatterjE (Nilanjan); S.A. McCarroll (Steve); S. Purcell (Shaun); E.E. Schadt (Eric); P.M. Visscher (Peter); T.L. Assimes (Themistocles); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); C.S. Fox (Caroline); L. Groop (Leif); T. Haritunians (Talin); D.J. Hunter (David); K.L. Mohlke (Karen); J.R. O'ConneL (Jeffrey); L. Peltonen (Leena Johanna); D. SchleSinger (David); D.P. Strachan (David); R.M. Watanabe (Richard); C.M. van Duijn (Cornelia); H.E. Wichmann (Heinz Erich); T.M. Frayling (Timothy); U. Thorsteinsdottir (Unnur); G.R. Abecasis (Gonçalo); M. Boehnke (Michael); K. StefanSon (Kari); K.E. North (Kari); M.I. McArthy (Mark); J.N. Hirschhorn (Joel); E. IngelSon (Erik); R.J.F. Loos (Ruth); M.N. Weedon (Michael)

    2010-01-01

    textabstractObesity is globaLy prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined aSociations betwEn body maS index and ĝ̂1/42.8 miLion SNPs in up to 123,865 individuals with targeted foLow up of

  7. Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift.

    Science.gov (United States)

    Johnson, Norman A; Porter, Adam H

    2007-01-01

    Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.

  8. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    DEFF Research Database (Denmark)

    Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions...

  9. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    Science.gov (United States)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindström, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomäki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Françoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Müller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; dos Santos Silva, Isabel; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, JoEllen; Schulz-Wendtland, Rüdiger; Wilkens, Lynne R.; Van Den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of ER-negative disease to date, comprising 4754 ER-negative cases and 31 663 controls from three GWAS: NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2188 ER-negative cases; 25 519 controls of European ancestry), Triple Negative Breast Cancer Consortium (TNBCC) (1562 triple negative cases; 3399 controls of European ancestry) and African American Breast Cancer Consortium (AABC) (1004 ER-negative cases; 2745 controls). We performed in silico replication of 86 SNPs at P ≤ 1 × 10-5 in an additional 11 209 breast cancer cases (946 with ER-negative disease) and 16 057 controls of Japanese, Latino and European ancestry. We identified two novel loci for breast cancer at 20q11 and 6q14. SNP rs2284378 at 20q11 was associated with ER-negative breast cancer (combined two-stage OR = 1.16; P = 1.1 × 10−8) but showed a weaker association with overall breast cancer (OR = 1.08, P = 1.3 × 10–6) based on 17 869 cases and 43 745 controls and no association with ER-positive disease (OR = 1.01, P = 0.67) based on 9965 cases and 22 902 controls. Similarly, rs17530068 at 6q14 was associated with breast cancer (OR = 1.12; P = 1.1 × 10−9), and with both ER-positive (OR = 1.09; P = 1.5 × 10−5) and ER-negative (OR = 1.16, P = 2.5 × 10−7) disease. We also confirmed three known loci associated with ER-negative (19p13) and both ER-negative and ER-positive breast cancer (6q25 and 12p11). Our results highlight the value of large-scale collaborative studies to identify novel breast cancer risk loci. PMID:22976474

  10. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.

    Science.gov (United States)

    Dehghan, Abbas; Köttgen, Anna; Yang, Qiong; Hwang, Shih-Jen; Kao, Wh Linda; Rivadeneira, Fernando; Boerwinkle, Eric; Levy, Daniel; Hofman, Albert; Astor, Brad C; Benjamin, Emelia J; van Duijn, Cornelia M; Witteman, Jacqueline C; Coresh, Josef; Fox, Caroline S

    2008-12-06

    Hyperuricaemia, a highly heritable trait, is a key risk factor for gout. We aimed to identify novel genes associated with serum uric acid concentration and gout. Genome-wide association studies were done for serum uric acid in 7699 participants in the Framingham cohort and in 4148 participants in the Rotterdam cohort. Genome-wide significant single nucleotide polymorphisms (SNPs) were replicated in white (n=11 024) and black (n=3843) individuals who took part in the study of Atherosclerosis Risk in Communities (ARIC). The SNPs that reached genome-wide significant association with uric acid in either the Framingham cohort (pgout. The results obtained in white participants were combined using meta-analysis. Three loci in the Framingham cohort and two in the Rotterdam cohort showed genome-wide association with uric acid. Top SNPs in each locus were: missense rs16890979 in SLC2A9 (p=7.0 x 10(-168) and 2.9 x 10(-18) for white and black participants, respectively); missense rs2231142 in ABCG2 (p=2.5 x 10(-60) and 9.8 x 10(-4)), and rs1165205 in SLC17A3 (p=3.3 x 10(-26) and 0.33). All SNPs were direction-consistent with gout in white participants: rs16890979 (OR 0.59 per T allele, 95% CI 0.52-0.68, p=7.0 x 10(-14)), rs2231142 (1.74, 1.51-1.99, p=3.3 x 10(-15)), and rs1165205 (0.85, 0.77-0.94, p=0.002). In black participants of the ARIC study, rs2231142 was direction-consistent with gout (1.71, 1.06-2.77, p=0.028). An additive genetic risk score of high-risk alleles at the three loci showed graded associations with uric acid (272-351 mumol/L in the Framingham cohort, 269-386 mumol/L in the Rotterdam cohort, and 303-426 mumol/L in white participants of the ARIC study) and gout (frequency 2-13% in the Framingham cohort, 2-8% in the Rotterdam cohort, and 1-18% in white participants in the ARIC study). We identified three genetic loci associated with uric acid concentration and gout. A score based on genes with a putative role in renal urate handling showed a substantial risk

  11. Androgenetic Alopecia: Identification of Four Genetic Risk Loci and Evidence for the Contribution of WNT Signaling to Its Etiology

    NARCIS (Netherlands)

    Heilmann, S.; Kiefer, A.K.; Fricker, N.; Drichel, D.; Hillmer, A.M.; Herold, C.; Tung, J.Y.; Eriksson, N.; Redler, S.; Betz, R.C.; Li, R.; Karason, A.; Nyholt, D.R.; Song, K.; Vermeulen, S.; Kanoni, S.; Dedoussis, G.; Martin, N.G.; Kiemeney, L.A.L.M.; Mooser, V.; Stefansson, K.; Richards, J.B.; Becker, T.; Brockschmidt, F.F.; Hinds, D.A.; Nothen, M.M.

    2013-01-01

    The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are

  12. Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci

    DEFF Research Database (Denmark)

    Mirza, Aashiq H; Kaur, Simranjeet; Brorsson, Caroline A

    2014-01-01

    -nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here......, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs...... within and in close proximity (+/-5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable...

  13. Genetic variation observed at three tetrameric short tandem repeat loci HumTHO1, TPOX, and CSF1PO--in five ethnic population groups of northeastern India.

    Science.gov (United States)

    Ranjan, D; Kashyap, V K

    2001-01-01

    This paper portrays the genetic variation observed at three tetrameric short tandem repeat (STR) loci HumTHO1, TPOX, and CSF1PO in five ethnic population groups from northeastern India. The study also specifies the suitability of use of these markers for forensic testing. The populations studied included three tribal groups (Kuki, Naga and Hmar), one Mongoloid caste group (Meitei), and a religious caste group (Manipuri Muslims). The loci were highly polymorphic in the populations, and all loci met Hardy-Weinberg expectations. No evidence for association of alleles among the loci was detected. The probability of match for the three loci of the most frequent genotype in the five population groups ranged between 2.6 x 10(-4) and 6.6 x 10(-5). The average heterozygosity among the population groups was approximately 70% with the overall extent of gene differentiation among the five groups being high (Gst = 0.046). Genetic affinity among the populations reveal very close association between the Kuki, Hmar, Naga, and Meitei. The Manipuri Muslims, despite being found in the same region, have had no admixture with these populations and maintain a substantial distance with the other groups. The genetic polymorphism data suggest that the studied systems can be used for human identity testing to estimate the frequency of a multiple locus STR DNA profile in population groups of northeastern India.

  14. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    H.L. Allen; K. Estrada Gil (Karol); G. Lettre (Guillaume); S.I. Berndt (Sonja); F. Rivadeneira Ramirez (Fernando); C.J. Willer (Cristen); A.U. Jackson (Anne); S. Vedantam (Sailaja); S. Raychaudhuri (Soumya); T. Ferreira (Teresa); A.R. Wood (Andrew); R.J. Weyant (Robert); A.V. Segrè (Ayellet); E.K. Speliotes (Elizabeth); E. Wheeler (Eleanor); N. Soranzo (Nicole); J.H. Park; J. Yang (Joanna); D.F. Gudbjartsson (Daniel); N.L. Heard-Costa (Nancy); J.C. Randall (Joshua); L. Qi (Lu); A.V. Smith (Albert Vernon); R. Mägi (Reedik); T. Pastinen (Tomi); L. Liang (Liming); I.M. Heid (Iris); J. Luan; G. Thorleifsson (Gudmar); T.W. Winkler (Thomas); M.E. Goddard (Michael); K.S. Lo; C. Palmer (Cameron); T. Workalemahu (Tsegaselassie); Y.S. Aulchenko (Yurii); A. Johansson (Åsa); M.C. Zillikens (Carola); M.F. Feitosa (Mary Furlan); T. Esko (Tõnu); T. Johnson (Toby); S. Ketkar (Shamika); P. Kraft (Peter); M. Mangino (Massimo); I. Prokopenko (Inga); D. Absher (Devin); E. Albrecht (Eva); F.D.J. Ernst (Florian); N.L. Glazer (Nicole); C. Hayward (Caroline); J.J. Hottenga (Jouke Jan); K.B. Jacobs (Kevin); J.W. Knowles (Joshua); Z. Kutalik (Zoltán); K.L. Monda (Keri); O. Polasek (Ozren); M. Preuss (Michael); N.W. Rayner (Nigel William); N.R. Robertson (Neil); V. Steinthorsdottir (Valgerdur); J.P. Tyrer (Jonathan); B.F. Voight (Benjamin); F. Wiklund (Fredrik); J. Xu (Jianfeng); J.H. Zhao (Jing Hua); D.R. Nyholt (Dale); N. Pellikka (Niina); M. Perola (Markus); J.R.B. Perry (John); I. Surakka (Ida); M.L. Tammesoo; E.L. Altmaier (Elizabeth); N. Amin (Najaf); T. Aspelund (Thor); T. Bhangale (Tushar); G. Boucher (Gabrielle); D.I. Chasman (Daniel); C. Chen (Constance); L. Coin (Lachlan); M.N. Cooper (Matthew); A.L. Dixon (Anna); Q. Gibson (Quince); E. Grundberg (Elin); K. Hao (Ke); M.J. Junttila (Juhani); R.C. Kaplan (Robert); J. Kettunen (Johannes); I.R. König (Inke); T. Kwan (Tony); R.W. Lawrence (Robert); D.F. Levinson (Douglas); M. Lorentzon (Mattias); B. McKnight (Barbara); A.D. Morris (Andrew); M. Müller (Martina); J.S. Ngwa; S. Purcell (Shaun); S. Rafelt (Suzanne); R.M. Salem (Rany); E. Salvi (Erika); S. Sanna (Serena); J. Shi (Jianxin); U. Sovio (Ulla); J.R. Thompson (John); M.C. Turchin (Michael); L. Vandenput (Liesbeth); D.J. Verlaan (Dominique); V. Vitart (Veronique); C.C. White (Charles); A. Ziegler (Andreas); P. Almgren (Peter); A.J. Balmforth (Anthony); H. Campbell (Harry); L. Citterio (Lorena); A. de Grandi (Alessandro); A. Dominiczak (Anna); J. Duan (Jubao); P. Elliott (Paul); R. Elosua (Roberto); J.G. Eriksson (Johan); N.B. Freimer (Nelson); E.J.C. de Geus (Eco); N. Glorioso (Nicola); S. Haiqing (Shen); A.L. Hartikainen; A.S. Havulinna (Aki); A.A. Hicks (Andrew); J. Hui (Jennie); W. Igl (Wilmar); T. Illig (Thomas); A. Jula (Antti); E. Kajantie (Eero); T.O. Kilpeläinen (Tuomas); M. Koiranen (Markku); I. Kolcic (Ivana); S. Koskinen (Seppo); P. Kovacs (Peter); J. Laitinen (Jaana); J. Liu (Jianjun); M.L. Lokki; A. Marusic (Ana); A. Maschio; T. Meitinger (Thomas); A. Mulas (Antonella); G. Paré (Guillaume); A.N. Parker (Alex); J. Peden (John); A. Petersmann (Astrid); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); A. Pouta (Anneli); M. Ridderstråle (Martin); J.I. Rotter (Jerome); J.G. Sambrook (Jennifer); A.R. Sanders (Alan); C.O. Schmidt (Carsten Oliver); J. Sinisalo (Juha); J.H. Smit (Jan); H.M. Stringham (Heather); G.B. Walters (Bragi); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); L. Zagato (Laura); L. Zgaga (Lina); P. Zitting (Paavo); H. Alavere (Helene); M. Farrall (Martin); W.L. McArdle (Wendy); M. Nelis (Mari); M.J. Peters (Marjolein); S. Ripatti (Samuli); J.B.J. van Meurs (Joyce); K.K.H. Aben (Katja); J.S. Beckmann (Jacques); J.P. Beilby (John); R.N. Bergman (Richard); S.M. Bergmann (Sven); F.S. Collins (Francis); D. Cusi (Daniele); M. den Heijer (Martin); G. Eiriksdottir (Gudny); P.V. Gejman (Pablo); A.S. Hall (Alistair); A. Hamsten (Anders); H.V. Huikuri (Heikki); C. Iribarren (Carlos); M. Kähönen (Mika); J. Kaprio (Jaakko); S. Kathiresan (Sekar); L.A.L.M. Kiemeney (Bart); T. Kocher (Thomas); L.J. Launer (Lenore); T. Lehtimäki (Terho); O. Melander (Olle); T.H. Mosley (Thomas); A.W. Musk (Arthur); M.S. Nieminen (Markku); C.J. O'Donnell (Christopher); C. Ohlsson (Claes); B.A. Oostra (Ben); O. Raitakari (Olli); P.M. Ridker (Paul); J.D. Rioux (John); A. Rissanen (Aila); C. Rivolta (Carlo); H. Schunkert (Heribert); A.R. Shuldiner (Alan); D.S. Siscovick (David); M. Stumvoll (Michael); A. Tönjes (Anke); J. Tuomilehto (Jaakko); G.J. van Ommen (Gert); J. Viikari (Jorma); A.C. Heath (Andrew); N.G. Martin (Nicholas); G.W. Montgomery (Grant); M.A. Province (Mike); M.H. Kayser (Manfred); A.M. Arnold (Alice); L.D. Atwood (Larry); E.A. Boerwinkle (Eric); S.J. Chanock (Stephen); P. Deloukas (Panagiotis); C. Gieger (Christian); H. Grönberg (Henrik); A.T. Hattersley (Andrew); C. Hengstenberg (Christian); W. Hoffman (Wolfgang); G.M. Lathrop (Mark); V. Salomaa (Veikko); S. Schreiber (Stefan); M. Uda (Manuela); D. Waterworth (Dawn); A.F. Wright (Alan); T.L. Assimes (Themistocles); I.E. Barroso (Inês); A. Hofman (Albert); K.L. Mohlke (Karen); D.I. Boomsma (Dorret); M. Caulfield (Mark); L.A. Cupples (Adrienne); C.S. Fox (Caroline); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); T.B. Harris (Tamara); R.B. Hayes (Richard); M.R. Järvelin; V. Mooser (Vincent); P. Munroe (Patricia); W.H. Ouwehand (Willem); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); T. Quertermous (Thomas); I. Rudan (Igor); N.J. Samani (Nilesh); T.D. Spector (Timothy); H. Völzke (Henry); H. Watkins (Hugh); J.F. Wilson (James); L. Groop (Leif); T. Haritunians (Talin); F.B. Hu (Frank); A. Metspalu (Andres); K.E. North (Kari); D. Schlessinger; N.J. Wareham (Nick); D.J. Hunter (David); J.R. O´Connell; D.P. Strachan (David); H.E. Wichmann (Heinz Erich); I.B. Borecki (Ingrid); C.M. van Duijn (Cornelia); E.E. Schadt (Eric); U. Thorsteinsdottir (Unnur); L. Peltonen (Leena Johanna); A.G. Uitterlinden (André); P.M. Visscher (Peter); N. Chatterjee (Nilanjan); J. Erdmann (Jeanette); R.J.F. Loos (Ruth); M. Boehnke (Michael); M.I. McCarthy (Mark); E. Ingelsson (Erik); C.M. Lindgren (Cecilia); G.R. Abecasis (Gonçalo); K. Stefansson (Kari); T.M. Frayling (Timothy); J.N. Hirschhorn (Joel); K.G. Ardlie (Kristin); M.N. Weedon (Michael)

    2010-01-01

    textabstractMost common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits1, but these typically explain small

  15. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    Allen, Hana Lango; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segre, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Maegi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Asa; Zillikens, M. Carola; Feitosa, Mary F.; Esko, Tonu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Zhao, Jing Hua; Chen, Constance

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions

  16. Trans-ethnic fine-mapping of lipid loci identifies population-specific signals and allelic heterogeneity that increases the trait variance explained.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2013-03-01

    Full Text Available Genome-wide association studies (GWAS have identified ~100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG, high-density lipoprotein cholesterol (HDL-C, and low-density lipoprotein cholesterol (LDL-C, respectively, in individuals of African American (n = 6,832, East Asian (n = 9,449, and European (n = 10,829 ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1 × 10(-4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies.

  17. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  18. An update on the genetic architecture of hyperuricemia and gout.

    Science.gov (United States)

    Merriman, Tony R

    2015-04-10

    Genome-wide association studies that scan the genome for common genetic variants associated with phenotype have greatly advanced medical knowledge. Hyperuricemia is no exception, with 28 loci identified. However, genetic control of pathways determining gout in the presence of hyperuricemia is still poorly understood. Two important pathways determining hyperuricemia have been confirmed (renal and gut excretion of uric acid with glycolysis now firmly implicated). Major urate loci are SLC2A9 and ABCG2. Recent studies show that SLC2A9 is involved in renal and gut excretion of uric acid and is implicated in antioxidant defense. Although etiological variants at SLC2A9 are yet to be identified, it is clear that considerable genetic complexity exists at the SLC2A9 locus, with multiple statistically independent genetic variants and local epistatic interactions. The positions of implicated genetic variants within or near chromatin regions involved in transcriptional control suggest that this mechanism (rather than structural changes in SLC2A9) is important in regulating the activity of SLC2A9. ABCG2 is involved primarily in extra-renal uric acid under-excretion with the etiological variant influencing expression. At the other 26 loci, probable causal genes can be identified at three (PDZK1, SLC22A11, and INHBB) with strong candidates at a further 10 loci. Confirmation of the causal gene will require a combination of re-sequencing, trans-ancestral mapping, and correlation of genetic association data with expression data. As expected, the urate loci associate with gout, although inconsistent effect sizes for gout require investigation. Finally, there has been no genome-wide association study using clinically ascertained cases to investigate the causes of gout in the presence of hyperuricemia. In such a study, use of asymptomatic hyperurcemic controls would be expected to increase the ability to detect genetic associations with gout.

  19. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation

    OpenAIRE

    Bramon, Elvira; Pirinen, Matti; Strange, Amy; Lin, Kuang; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Band, Gavin; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge

    2014-01-01

    Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories.

  20. Genome scan for nonadditive heterotic trait loci reveals mainly underdominant effects in Saccharomyces cerevisiae.

    Science.gov (United States)

    Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal

    2016-04-01

    The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.

  1. Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population.

    Science.gov (United States)

    Tisné, Sébastien; Pomiès, Virginie; Riou, Virginie; Syahputra, Indra; Cochard, Benoît; Denis, Marie

    2017-06-07

    Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma , and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease. Copyright © 2017 Tisné et al.

  2. [A population genetic study of 22 autosomal loci of single nucleotide polymorphisms].

    Science.gov (United States)

    Tang, Jian-pin; Jiang, Feng-hui; Shi, Mei-sen; Xu, Chuan-chao; Chen, Rui; Lai, Xiao-pin

    2012-12-01

    To evaluate polymorphisms and forensic efficiency of 22 non-binary single nucleotide polymorphism (SNP) loci. One hundred ethnic Han Chinese individuals were recruited from Dongguan, Guangdong. The 22 loci were genotyped with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Nine loci were found with a single allele, 4 loci were found to be biallelic, whilst 9 loci were found to have 3 alleles. For 13 polymorphic loci, the combined discrimination power and power of exclusion were 0.999 98 and 0.9330, respectively. For the 9 non-biallelic loci, the combined discrimination power and power of exclusion were 0.9998 and 0.8956, respectively. For motherless cases, the combined power of exclusion was 0.6405 for 13 polymorphic SNPs and 0.6405 for 9 non-binary SNPs. Non-binary loci have a greater discrimination power and exclusion power per SNP.

  3. Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Yagi, Masafumi; Yamamoto, Toshiya; Isobe, Sachiko; Hirakawa, Hideki; Tabata, Satoshi; Tanase, Koji; Yamaguchi, Hiroyasu; Onozaki, Takashi

    2013-10-26

    Genetic linkage maps are important tools for many genetic applications including mapping of quantitative trait loci (QTLs), identifying DNA markers for fingerprinting, and map-based gene cloning. Carnation (Dianthus caryophyllus L.) is an important ornamental flower worldwide. We previously reported a random amplified polymorphic DNA (RAPD)-based genetic linkage map derived from Dianthus capitatus ssp. andrezejowskianus and a simple sequence repeat (SSR)-based genetic linkage map constructed using data from intraspecific F2 populations; however, the number of markers was insufficient, and so the number of linkage groups (LGs) did not coincide with the number of chromosomes (x = 15). Therefore, we aimed to produce a high-density genetic map to improve its usefulness for breeding purposes and genetic research. We improved the SSR-based genetic linkage map using SSR markers derived from a genomic library, expression sequence tags, and RNA-seq data. Linkage analysis revealed that 412 SSR loci (including 234 newly developed SSR loci) could be mapped to 17 linkage groups (LGs) covering 969.6 cM. Comparison of five minor LGs covering less than 50 cM with LGs in our previous RAPD-based genetic map suggested that four LGs could be integrated into two LGs by anchoring common SSR loci. Consequently, the number of LGs corresponded to the number of chromosomes (x = 15). We added 192 new SSRs, eight RAPD, and two sequence-tagged site loci to refine the RAPD-based genetic linkage map, which comprised 15 LGs consisting of 348 loci covering 978.3 cM. The two maps had 125 SSR loci in common, and most of the positions of markers were conserved between them. We identified 635 loci in carnation using the two linkage maps. We also mapped QTLs for two traits (bacterial wilt resistance and anthocyanin pigmentation in the flower) and a phenotypic locus for flower-type by analyzing previously reported genotype and phenotype data. The improved genetic linkage maps and SSR markers developed

  4. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    Science.gov (United States)

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  5. Association mapping of partitioning loci in barley

    Directory of Open Access Journals (Sweden)

    Mackay Ian J

    2008-02-01

    Full Text Available Abstract Background Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2 have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC. Conclusion We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping

  6. Multiple Genetic Associations with Irish Wolfhound Dilated Cardiomyopathy.

    Science.gov (United States)

    Simpson, Siobhan; Dunning, Mark D; Brownlie, Serena; Patel, Janika; Godden, Megan; Cobb, Malcolm; Mongan, Nigel P; Rutland, Catrin S

    2016-01-01

    Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH) is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM), yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH.

  7. Multiple Genetic Associations with Irish Wolfhound Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Siobhan Simpson

    2016-01-01

    Full Text Available Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM, yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH.

  8. Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping.

    Directory of Open Access Journals (Sweden)

    Carolina Font i Forcada

    Full Text Available To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain, and 40 microsatellite markers. Population structure analysis performed in 'Structure' grouped the accessions into two principal groups; the Mediterranean (Western-Europe and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM approach using co-ancestry values from population structure and kinship estimates (K model as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value.

  9. Promoter Hypermethylation Profiling Identifies Subtypes of Head and Neck Cancer with Distinct Viral, Environmental, Genetic and Survival Characteristics.

    Directory of Open Access Journals (Sweden)

    Javed Hussain Choudhury

    Full Text Available Epigenetic and genetic alteration plays a major role to the development of head and neck squamous cell carcinoma (HNSCC. Consumption of tobacco (smoking/chewing and human papilloma virus (HPV are also associated with an increase the risk of HNSCC. Promoter hypermethylation of the tumor suppression genes is related with transcriptional inactivation and loss of gene expression. We investigated epigenetic alteration (promoter methylation of tumor-related genes/loci in tumor tissues in the context of genetic alteration, viral infection, and tobacco exposure and survival status.The study included 116 tissue samples (71 tumor and 45 normal tissues from the Northeast Indian population. Methylation specific polymerase chain reaction (MSP was used to determine the methylation status of 10 tumor-related genes/loci (p16, DAPK, RASSF1, BRAC1, GSTP1, ECAD, MLH1, MINT1, MINT2 and MINT31. Polymorphisms of CYP1A1, GST (M1 & T1, XRCC1and XRCC2 genes were studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP and multiplex-PCR respectively.Unsupervised hierarchical clustering analysis based on methylation pattern had identified two tumor clusters, which significantly differ by CpG island methylator phenotype (CIMP, tobacco, GSTM1, CYP1A1, HPV and survival status. Analyzing methylation of genes/loci individually, we have found significant higher methylation of DAPK, RASSF1, p16 and MINT31 genes (P = 0.031, 0.013, 0.031 and 0.015 respectively in HPV (+ cases compared to HPV (-. Furthermore, a CIMP-high and Cluster-1 characteristic was also associated with poor survival.Promoter methylation profiles reflecting a correlation with tobacco, HPV, survival status and genetic alteration and may act as a marker to determine subtypes and patient outcome in HNSCC.

  10. Promoter Hypermethylation Profiling Identifies Subtypes of Head and Neck Cancer with Distinct Viral, Environmental, Genetic and Survival Characteristics

    Science.gov (United States)

    Choudhury, Javed Hussain; Ghosh, Sankar Kumar

    2015-01-01

    Background Epigenetic and genetic alteration plays a major role to the development of head and neck squamous cell carcinoma (HNSCC). Consumption of tobacco (smoking/chewing) and human papilloma virus (HPV) are also associated with an increase the risk of HNSCC. Promoter hypermethylation of the tumor suppression genes is related with transcriptional inactivation and loss of gene expression. We investigated epigenetic alteration (promoter methylation of tumor-related genes/loci) in tumor tissues in the context of genetic alteration, viral infection, and tobacco exposure and survival status. Methodology The study included 116 tissue samples (71 tumor and 45 normal tissues) from the Northeast Indian population. Methylation specific polymerase chain reaction (MSP) was used to determine the methylation status of 10 tumor-related genes/loci (p16, DAPK, RASSF1, BRAC1, GSTP1, ECAD, MLH1, MINT1, MINT2 and MINT31). Polymorphisms of CYP1A1, GST (M1 & T1), XRCC1and XRCC2 genes were studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiplex-PCR respectively. Principal Findings Unsupervised hierarchical clustering analysis based on methylation pattern had identified two tumor clusters, which significantly differ by CpG island methylator phenotype (CIMP), tobacco, GSTM1, CYP1A1, HPV and survival status. Analyzing methylation of genes/loci individually, we have found significant higher methylation of DAPK, RASSF1, p16 and MINT31genes (P = 0.031, 0.013, 0.031 and 0.015 respectively) in HPV (+) cases compared to HPV (-). Furthermore, a CIMP-high and Cluster-1 characteristic was also associated with poor survival. Conclusions Promoter methylation profiles reflecting a correlation with tobacco, HPV, survival status and genetic alteration and may act as a marker to determine subtypes and patient outcome in HNSCC. PMID:26098903

  11. Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Science.gov (United States)

    Scherag, André; Dina, Christian; Hinney, Anke; Vatin, Vincent; Scherag, Susann; Vogel, Carla I. G.; Müller, Timo D.; Grallert, Harald; Wichmann, H.-Erich; Balkau, Beverley; Heude, Barbara; Jarvelin, Marjo-Riitta; Hartikainen, Anna-Liisa; Levy-Marchal, Claire; Weill, Jacques; Delplanque, Jérôme; Körner, Antje; Kiess, Wieland; Kovacs, Peter; Rayner, Nigel W.; Prokopenko, Inga; McCarthy, Mark I.; Schäfer, Helmut; Jarick, Ivonne; Boeing, Heiner; Fisher, Eva; Reinehr, Thomas; Heinrich, Joachim; Rzehak, Peter; Berdel, Dietrich; Borte, Michael; Biebermann, Heike; Krude, Heiko; Rosskopf, Dieter; Rimmbach, Christian; Rief, Winfried; Fromme, Tobias; Klingenspor, Martin; Schürmann, Annette; Schulz, Nadja; Nöthen, Markus M.; Mühleisen, Thomas W.; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Boes, Tanja; Illig, Thomas; Froguel, Philippe; Hebebrand, Johannes; Meyre, David

    2010-01-01

    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85×10−8 in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84×10−7), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at ∼1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between

  12. Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups.

    Directory of Open Access Journals (Sweden)

    André Scherag

    2010-04-01

    Full Text Available Meta-analyses of population-based genome-wide association studies (GWAS in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions generalized to (i the population level and (ii to adults by genotyping another 31,182 individuals (GENERALIZATION step. Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85x10(-8 in the DISCOVERY step and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene and MSRA (methionine sulfoxide reductase A gene; p = 4.84x10(-7, the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at approximately 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial

  13. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    Science.gov (United States)

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  14. A genome-wide association study identifies candidate loci associated to syringomyelia secondary to Chiari-like malformation in Cavalier King Charles Spaniels.

    Science.gov (United States)

    Ancot, Frédéric; Lemay, Philippe; Knowler, Susan P; Kennedy, Karen; Griffiths, Sandra; Cherubini, Giunio Bruto; Sykes, Jane; Mandigers, Paul J J; Rouleau, Guy A; Rusbridge, Clare; Kibar, Zoha

    2018-03-22

    Syringomyelia (SM) is a common condition affecting brachycephalic toy breed dogs and is characterized by the development of fluid-filled cavities within the spinal cord. It is often concurrent with a complex developmental malformation of the skull and craniocervical vertebrae called Chiari-like malformation (CM) characterized by a conformational change and overcrowding of the brain and cervical spinal cord particularly at the craniocervical junction. CM and SM have a polygenic mode of inheritance with variable penetrance. We identified six cranial T1-weighted sagittal MRI measurements that were associated to maximum transverse diameter of the syrinx cavity. Increased syrinx transverse diameter has been correlated previously with increased likelihood of behavioral signs of pain. We next conducted a whole genome association study of these traits in 65 Cavalier King Charles Spaniel (CKCS) dogs (33 controls, 32 with extreme phenotypes). Two loci on CFA22 and CFA26 were found to be significantly associated to two traits associated with a reduced volume and altered orientation of the caudal cranial fossa. Their reconstructed haplotypes defined two associated regions that harbor only two genes: PCDH17 on CFA22 and ZWINT on CFA26. PCDH17 codes for a cell adhesion molecule expressed specifically in the brain and spinal cord. ZWINT plays a role in chromosome segregation and its expression is increased with the onset of neuropathic pain. Targeted genomic sequencing of these regions identified respectively 37 and 339 SNPs with significantly associated P values. Genotyping of tagSNPs selected from these 2 candidate loci in an extended cohort of 461 CKCS (187 unaffected, 274 SM affected) identified 2 SNPs on CFA22 that were significantly associated to SM strengthening the candidacy of this locus in SM development. We identified 2 loci on CFA22 and CFA26 that contained only 2 genes, PCDH17 and ZWINT, significantly associated to two traits associated with syrinx transverse

  15. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks

    DEFF Research Database (Denmark)

    Demenais, Florence; Margaritte-Jeannin, Patricia; Barnes, Kathleen C

    2018-01-01

    We examined common variation in asthma risk by conducting a meta-analysis of worldwide asthma genome-wide association studies (23,948 asthma cases, 118,538 controls) of individuals from ethnically diverse populations. We identified five new asthma loci, found two new associations at two known...

  16. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); L.T. Strike (Lachlan); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  17. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.

    Science.gov (United States)

    Wray, Naomi R; Ripke, Stephan; Mattheisen, Manuel; Trzaskowski, Maciej; Byrne, Enda M; Abdellaoui, Abdel; Adams, Mark J; Agerbo, Esben; Air, Tracy M; Andlauer, Till M F; Bacanu, Silviu-Alin; Bækvad-Hansen, Marie; Beekman, Aartjan F T; Bigdeli, Tim B; Binder, Elisabeth B; Blackwood, Douglas R H; Bryois, Julien; Buttenschøn, Henriette N; Bybjerg-Grauholm, Jonas; Cai, Na; Castelao, Enrique; Christensen, Jane Hvarregaard; Clarke, Toni-Kim; Coleman, Jonathan I R; Colodro-Conde, Lucía; Couvy-Duchesne, Baptiste; Craddock, Nick; Crawford, Gregory E; Crowley, Cheynna A; Dashti, Hassan S; Davies, Gail; Deary, Ian J; Degenhardt, Franziska; Derks, Eske M; Direk, Nese; Dolan, Conor V; Dunn, Erin C; Eley, Thalia C; Eriksson, Nicholas; Escott-Price, Valentina; Kiadeh, Farnush Hassan Farhadi; Finucane, Hilary K; Forstner, Andreas J; Frank, Josef; Gaspar, Héléna A; Gill, Michael; Giusti-Rodríguez, Paola; Goes, Fernando S; Gordon, Scott D; Grove, Jakob; Hall, Lynsey S; Hannon, Eilis; Hansen, Christine Søholm; Hansen, Thomas F; Herms, Stefan; Hickie, Ian B; Hoffmann, Per; Homuth, Georg; Horn, Carsten; Hottenga, Jouke-Jan; Hougaard, David M; Hu, Ming; Hyde, Craig L; Ising, Marcus; Jansen, Rick; Jin, Fulai; Jorgenson, Eric; Knowles, James A; Kohane, Isaac S; Kraft, Julia; Kretzschmar, Warren W; Krogh, Jesper; Kutalik, Zoltán; Lane, Jacqueline M; Li, Yihan; Li, Yun; Lind, Penelope A; Liu, Xiaoxiao; Lu, Leina; MacIntyre, Donald J; MacKinnon, Dean F; Maier, Robert M; Maier, Wolfgang; Marchini, Jonathan; Mbarek, Hamdi; McGrath, Patrick; McGuffin, Peter; Medland, Sarah E; Mehta, Divya; Middeldorp, Christel M; Mihailov, Evelin; Milaneschi, Yuri; Milani, Lili; Mill, Jonathan; Mondimore, Francis M; Montgomery, Grant W; Mostafavi, Sara; Mullins, Niamh; Nauck, Matthias; Ng, Bernard; Nivard, Michel G; Nyholt, Dale R; O'Reilly, Paul F; Oskarsson, Hogni; Owen, Michael J; Painter, Jodie N; Pedersen, Carsten Bøcker; Pedersen, Marianne Giørtz; Peterson, Roseann E; Pettersson, Erik; Peyrot, Wouter J; Pistis, Giorgio; Posthuma, Danielle; Purcell, Shaun M; Quiroz, Jorge A; Qvist, Per; Rice, John P; Riley, Brien P; Rivera, Margarita; Saeed Mirza, Saira; Saxena, Richa; Schoevers, Robert; Schulte, Eva C; Shen, Ling; Shi, Jianxin; Shyn, Stanley I; Sigurdsson, Engilbert; Sinnamon, Grant B C; Smit, Johannes H; Smith, Daniel J; Stefansson, Hreinn; Steinberg, Stacy; Stockmeier, Craig A; Streit, Fabian; Strohmaier, Jana; Tansey, Katherine E; Teismann, Henning; Teumer, Alexander; Thompson, Wesley; Thomson, Pippa A; Thorgeirsson, Thorgeir E; Tian, Chao; Traylor, Matthew; Treutlein, Jens; Trubetskoy, Vassily; Uitterlinden, André G; Umbricht, Daniel; Van der Auwera, Sandra; van Hemert, Albert M; Viktorin, Alexander; Visscher, Peter M; Wang, Yunpeng; Webb, Bradley T; Weinsheimer, Shantel Marie; Wellmann, Jürgen; Willemsen, Gonneke; Witt, Stephanie H; Wu, Yang; Xi, Hualin S; Yang, Jian; Zhang, Futao; Arolt, Volker; Baune, Bernhard T; Berger, Klaus; Boomsma, Dorret I; Cichon, Sven; Dannlowski, Udo; de Geus, E C J; DePaulo, J Raymond; Domenici, Enrico; Domschke, Katharina; Esko, Tõnu; Grabe, Hans J; Hamilton, Steven P; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Kendler, Kenneth S; Kloiber, Stefan; Lewis, Glyn; Li, Qingqin S; Lucae, Susanne; Madden, Pamela F A; Magnusson, Patrik K; Martin, Nicholas G; McIntosh, Andrew M; Metspalu, Andres; Mors, Ole; Mortensen, Preben Bo; Müller-Myhsok, Bertram; Nordentoft, Merete; Nöthen, Markus M; O'Donovan, Michael C; Paciga, Sara A; Pedersen, Nancy L; Penninx, Brenda W J H; Perlis, Roy H; Porteous, David J; Potash, James B; Preisig, Martin; Rietschel, Marcella; Schaefer, Catherine; Schulze, Thomas G; Smoller, Jordan W; Stefansson, Kari; Tiemeier, Henning; Uher, Rudolf; Völzke, Henry; Weissman, Myrna M; Werge, Thomas; Winslow, Ashley R; Lewis, Cathryn M; Levinson, Douglas F; Breen, Gerome; Børglum, Anders D; Sullivan, Patrick F

    2018-05-01

    Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.

  18. Impact of genetic risk loci for multiple sclerosis on expression of proximal genes in patients

    KAUST Repository

    James, Tojo

    2018-01-06

    Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-associated genetic variants, especially in the context of a complex multifactorial disease such as Multiple Sclerosis (MS). Since a large proportion of expression quantitative trait loci (eQTLs) are context-specific, we performed RNA-Seq in peripheral blood mononuclear cells (PBMCs) from MS patients (n=145) to identify eQTLs in regions centered on 109 MS risk SNPs and seven associated HLA variants. We identified 77 statistically significant eQTL associations, including pseudogenes and non-coding RNAs. Thirty-eight out of 40 testable eQTL effects were colocalised with the disease association signal. Since many eQTLs are tissue specific, we aimed to detail their significance in different cell types. Approximately 70% of the eQTLs were replicated and characterized in at least one major PBMC derived cell type. Furthermore, 40% of eQTLs were found to be more pronounced in MS patients compared to noninflammatory neurological diseases patients. In addition, we found two SNPs to be significantly associated with the proportions of three different cell types. Mapping to enhancer histone marks and predicted transcription factor binding sites added additional functional evidence for eight eQTL regions. As an example, we found that rs71624119, shared with three other autoimmune diseases and located in a primed enhancer (H3K4me1) with potential binding for STAT transcription factors, significantly associates with ANKRD55 expression. This study provides many novel and validated targets for future functional characterization of MS and other diseases.

  19. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  20. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers

    DEFF Research Database (Denmark)

    Onengut-Gumuscu, Suna; Chen, Wei-Min; Burren, Oliver

    2015-01-01

    Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array...... and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter......, the Immunochip, was developed, from which we identified four new T1D-associated regions (P comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis...

  1. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip

    DEFF Research Database (Denmark)

    Evangelou, Evangelos; Kerkhof, Hanneke J; Styrkarsdottir, Unnur

    2014-01-01

    Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects.......Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects....

  2. [Analysis of genetic polymorphisms and mutations of 20 frequently used STR loci among ethnic Hans from Henan].

    Science.gov (United States)

    Wang, Hongdan; Kang, Bing; Gao, Yue; Huo, Xiaodong; Li, Tao; Guo, Qiannan; Zhu, Bofeng; Liao, Shixiu

    2017-04-10

    To study the genetic polymorphisms and mutations of 20 frequently used autosomal microsatellites among ethnic Hans from Henan. Peripheral blood samples of 2604 individuals were collected. DNA was amplified and genotyped using a PowerPlex(TM) 21 system. The frequencies, forensic parameters and mutation rates of the 20 short tandem repeat (STR) loci were analyzed. A total of 323 alleles were found in this population and the allelic frequencies have ranged from 0.0003 to 0.5144. Except for D3S1358, TH01 and TPOX, mutations have been found in all of the remaining 17 STR loci, which totaled 47, with mutation rates ranging from 0 to 3.46 × 10 -3 . The 20 STR loci selected by the PowerPlex(TM) 21 system are highly polymorphic among ethnic Hans from Henan, and may be of great value in forensic and human population studies. As no similar study has been carried out previously, above results may be of great value for individual discrimination and paternal testing.

  3. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity

    NARCIS (Netherlands)

    Tsoi, Lam C.; Spain, Sarah L.; Knight, Jo; Ellinghaus, Eva; Stuart, Philip E.; Capon, Francesca; Ding, Jun; Li, Yanming; Tejasvi, Trilokraj; Gudjonsson, Johann E.; Kang, Hyun M.; Allen, Michael H.; McManus, Ross; Novelli, Giuseppe; Samuelsson, Lena; Schalkwijk, Joost; Stahle, Mona; Burden, A. David; Smith, Catherine H.; Cork, Michael J.; Estivill, Xavier; Bowcock, Anne M.; Krueger, Gerald G.; Weger, Wolfgang; Worthington, Jane; Tazi-Ahnini, Rachid; Nestle, Frank O.; Hayday, Adrian; Hoffmann, Per; Winkelmann, Juliane; Wijmenga, Cisca; Langford, Cordelia; Edkins, Sarah; Andrews, Robert; Blackburn, Hannah; Strange, Amy; Band, Gavin; Pearson, Richard D.; Vukcevic, Damjan; Spencer, Chris C. A.; Deloukas, Panos; Mrowietz, Ulrich; Schreiber, Stefan; Weidinger, Stephan; Koks, Sulev; Kingo, Kuelli; Esko, Tonu; Metspalu, Andres; Ricaño Ponce, Isis; Trynka, Gosia

    2012-01-01

    To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36

  4. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and

  5. Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle

    Science.gov (United States)

    Infertility and subfertility negatively impact the economics and reproductive performance of cattle. Of note, significant pregnancy loss occurs in cattle during the first month of pregnancy, yet little is known about the genetic loci influencing pregnancy success and loss in cattle. To identify quan...

  6. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease

    DEFF Research Database (Denmark)

    Zhao, Wei; Rasheed, Asif; Tikkanen, Emmi

    2017-01-01

    To evaluate the shared genetic etiology of type 2 diabetes (T2D) and coronary heart disease (CHD), we conducted a genome-wide, multi-ancestry study of genetic variation for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for ...

  7. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks

    NARCIS (Netherlands)

    Demenais, Florence; Margaritte-Jeannin, Patricia; Barnes, Kathleen C; Cookson, William O C; Altmüller, Janine; Ang, Wei; Barr, R Graham; Beaty, Terri H; Becker, Allan B; Beilby, John; Bisgaard, Hans; Bjornsdottir, Unnur Steina; Bleecker, Eugene; Bønnelykke, Klaus; Boomsma, Dorret I; Bouzigon, Emmanuelle; Brightling, Christopher E; Brossard, Myriam; Brusselle, Guy G; Burchard, Esteban; Burkart, Kristin M; Bush, Andrew; Chan-Yeung, Moira; Chung, Kian Fan; Couto Alves, Alexessander; Curtin, John A; Custovic, Adnan; Daley, Denise; de Jongste, Johan C; Del-Rio-Navarro, Blanca E; Donohue, Kathleen M; Duijts, Liesbeth; Eng, Celeste; Eriksson, Johan G; Farrall, Martin; Fedorova, Yuliya; Feenstra, Bjarke; Ferreira, Manuel A; Freidin, Maxim B; Gajdos, Zofia; Gauderman, Jim; Gehring, Ulrike; Geller, Frank; Genuneit, Jon; Gharib, Sina A; Gilliland, Frank; Granell, Raquel; Graves, Penelope E; Gudbjartsson, Daniel F; Haahtela, Tari; Heckbert, Susan R; Heederik, Dick; Heinrich, Joachim; Heliövaara, Markku; Henderson, John; Himes, Blanca E; Hirose, Hiroshi; Hirschhorn, Joel N; Hofman, Albert; Holt, Patrick; Hottenga, Jouke; Hudson, Thomas J; Hui, Jennie; Imboden, Medea; Ivanov, Vladimir; Jaddoe, Vincent W V; James, Alan; Janson, Christer; Jarvelin, Marjo-Riitta; Jarvis, Deborah; Jones, Graham; Jonsdottir, Ingileif; Jousilahti, Pekka; Kabesch, Michael; Kähönen, Mika; Kantor, David B; Karunas, Alexandra S; Khusnutdinova, Elza; Koppelman, Gerard H; Kozyrskyj, Anita L; Kreiner, Eskil; Kubo, Michiaki; Kumar, Rajesh; Kumar, Ashish; Kuokkanen, Mikko; Lahousse, Lies; Laitinen, Tarja; Laprise, Catherine; Lathrop, Mark; Lau, Susanne; Lee, Young-Ae; Lehtimäki, Terho; Letort, Sébastien; Levin, Albert M; Li, Guo; Liang, Liming; Loehr, Laura R; London, Stephanie J; Loth, Daan W; Manichaikul, Ani; Marenholz, Ingo; Martinez, Fernando J; Matheson, Melanie C; Mathias, Rasika A; Matsumoto, Kenji; Mbarek, Hamdi; McArdle, Wendy L; Melbye, Mads; Melén, Erik; Meyers, Deborah; Michel, Sven; Mohamdi, Hamida; Musk, Arthur W; Myers, Rachel A; Nieuwenhuis, Maartje A E; Noguchi, Emiko; O'Connor, George T; Ogorodova, Ludmila M; Palmer, Cameron D; Palotie, Aarno; Park, Julie E; Pennell, Craig E; Pershagen, Göran; Polonikov, Alexey; Postma, Dirkje S; Probst-Hensch, Nicole; Puzyrev, Valery P; Raby, Benjamin A; Raitakari, Olli T; Ramasamy, Adaikalavan; Rich, Stephen S; Robertson, Colin F; Romieu, Isabelle; Salam, Muhammad T; Salomaa, Veikko; Schlünssen, Vivi; Scott, Robert; Selivanova, Polina A; Sigsgaard, Torben; Simpson, Angela; Siroux, Valérie; Smith, Lewis J; Solodilova, Maria; Standl, Marie; Stefansson, Kari; Strachan, David P; Stricker, Bruno H; Takahashi, Atsushi; Thompson, Philip J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tiesler, Carla M T; Torgerson, Dara G; Tsunoda, Tatsuhiko; Uitterlinden, André G; van der Valk, Ralf J P; Vaysse, Amaury; Vedantam, Sailaja; von Berg, Andrea; von Mutius, Erika; Vonk, Judith M; Waage, Johannes; Wareham, Nick J; Weiss, Scott T; White, Wendy B; Wickman, Magnus; Widén, Elisabeth; Willemsen, Gonneke; Williams, L Keoki; Wouters, Inge M; Yang, James J; Zhao, Jing Hua; Moffatt, Miriam F; Ober, Carole; Nicolae, Dan L

    We examined common variation in asthma risk by conducting a meta-analysis of worldwide asthma genome-wide association studies (23,948 asthma cases, 118,538 controls) of individuals from ethnically diverse populations. We identified five new asthma loci, found two new associations at two known asthma

  8. Identification of two novel mammographic density loci at 6Q25.1.

    Science.gov (United States)

    Brand, Judith S; Li, Jingmei; Humphreys, Keith; Karlsson, Robert; Eriksson, Mikael; Ivansson, Emma; Hall, Per; Czene, Kamila

    2015-06-03

    Mammographic density (MD) is a strong heritable and intermediate phenotype for breast cancer, but much of its genetic variation remains unexplained. We performed a large-scale genetic association study including 8,419 women of European ancestry to identify MD loci. Participants of three Swedish studies were genotyped on a custom Illumina iSelect genotyping array and percent and absolute mammographic density were ascertained using semiautomated and fully automated methods from film and digital mammograms. Linear regression analysis was used to test for SNP-MD associations, adjusting for age, body mass index, menopausal status and six principal components. Meta-analyses were performed by combining P values taking sample size, study-specific inflation factor and direction of effect into account. Genome-wide significant associations were observed for two previously identified loci: ZNF365 (rs10995194, P = 2.3 × 10(-8) for percent MD and P = 8.7 × 10(-9) for absolute MD) and AREG (rs10034692, P = 6.7 × 10(-9) for absolute MD). In addition, we found evidence of association for two variants at 6q25.1, both of which are known breast cancer susceptibility loci: rs9485370 in the TAB2 gene (P = 4.8 × 10(-9) for percent MD and P = 2.5 × 10(-8) for absolute MD) and rs60705924 in the CCDC170/ESR1 region (P = 2.2 × 10(-8) for absolute MD). Both regions have been implicated in estrogen receptor signaling with TAB2 being a potential regulator of tamoxifen response. We identified two novel MD loci at 6q25.1. These findings underscore the importance of 6q25.1 as a susceptibility region and provide more insight into the mechanisms through which MD influences breast cancer risk.

  9. Population data for 12 Y-chromosome STR loci in a sample from Honduras.

    Science.gov (United States)

    Matamoros, Mireya; Yurrebaso, Iñaki; Gusmão, Leonor; García, Oscar

    2009-09-01

    Haplotype, allele frequencies and population data of 12 Y-chromosome STR loci DYS19, DYS385, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 were determined from a sample of 128 unrelated male individuals from Honduras, Central America. A total of 112 haplotypes were identified by the 12 Y-STR loci of which 98 were unique. The haplotype diversity (98.99%) and the proportion of different haplotypes (87.50%) were estimated. Genetic distances were calculated between Honduras and other populations from Southern and Central America, Europe and Africa. The analysis of a Multi Dimensional Scaling (MDS) plot, based on pairwise R(ST) genetic distances, allowed to conclude that Honduras is highly differentiated from the African samples (0.343Honduras showed a lower genetic distance to the European cluster (composed by European and South American general population samples from Brazil, Argentina, Colombia and Venezuela) than to the Central American cluster (Mexico and El Salvador).

  10. A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius.

    Science.gov (United States)

    Chesi, Alessandra; Mitchell, Jonathan A; Kalkwarf, Heidi J; Bradfield, Jonathan P; Lappe, Joan M; McCormack, Shana E; Gilsanz, Vicente; Oberfield, Sharon E; Hakonarson, Hakon; Shepherd, John A; Kelly, Andrea; Zemel, Babette S; Grant, Struan F A

    2015-09-01

    Childhood fractures are common, with the forearm being the most common site. Genome-wide association studies (GWAS) have identified more than 60 loci associated with bone mineral density (BMD) in adults but less is known about genetic influences specific to bone in childhood. To identify novel genetic factors that influence pediatric bone strength at a common site for childhood fractures, we performed a sex-stratified trans-ethnic genome-wide association study of areal BMD (aBMD) and bone mineral content (BMC) Z-scores measured by dual energy X-ray absorptiometry at the one-third distal radius, in a cohort of 1399 children without clinical abnormalities in bone health. We tested signals with P BMC-Z). Signals at the CPED1-WNT16-FAM3C locus have been previously associated with BMD at other skeletal sites in adults and children. Our result at the distal radius underscores the importance of this locus at multiple skeletal sites. The 9p21.3 locus is within a gene desert, with the nearest gene flanking each side being MIR31HG and MTAP, neither of which has been implicated in BMD or BMC previously. These findings suggest that genetic determinants of childhood bone accretion at the radius, a skeletal site that is primarily cortical bone, exist and also differ by sex. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Genetic polymorphism of 23 Y-STR loci in the Zhuang minority population in Guangxi of China.

    Science.gov (United States)

    Luo, Haibo; Song, Feng; Zhang, Lushun; Hou, Yiping

    2015-07-01

    In the present study, 23 Y-STR loci (DYS576, DYS389I, DYS389 II, DYS448, DYS19, DYS391, DYS481, DYS549, DYS533, DYS438, DYS437, DYS570, DYS635, DYS390, DYS439, DYS392, DYS393, DYS458 DYS456, DYS643, YGATAH4, and DYS385ab) were investigated in 266 unrelated, healthy autochthonous individuals from the Zhuang minority population residing in the Guangxi Zhuang Autonomous Region, China. One hundred and eighty-nine alleles and 245 haplotypes were found in the Zhuang group. Two hundred and twenty-four haplotypes among them were unique, and the remaining 21 haplotypes were found in two individuals. Discrimination capacity was 0.9211. Haplotype diversity was 0.9993 and gene diversity ranged from 0.4173 (DYS437) to 0.9678 (DYS385ab). Populations' differentia was calculated and compared with Tibetan, Bai, Dai, Minnan Han, Beijing Han, Chengdu Han, Xuanwei Han, and Southern Han ethnic groups in China, the Singapore Han population, and the Kinh group from Ho Chi Minh City, Vietnam, in the same 23 Y-STR loci. Our results showed that these 23 Y-STRs are highly genetically polymorphic in the Zhuang group and can also enrich Chinese ethnic genetic information.

  12. A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation

    NARCIS (Netherlands)

    Bramon, Elvira; Pirinen, Matti; Strange, Amy; Lin, Kuang; Freeman, Colin; Bellenguez, Celine; Su, Zhan; Band, Gavin; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C.; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J.; Arranz, Maria J.; Bakker, Steven; Bender, Stephan; Bruggeman, Richard; Cahn, Wiepke; Chandler, David; Collier, David A.; Crespo-Facorro, Benedicto; Dazzan, Paola; de Haan, Lieuwe; di Forti, Marta; Dragovic, Milan; Giegling, Ina; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S.; Kalaydjieva, Luba; Kravariti, Eugenia; Lawrie, Stephen; Lins-Zen, Don H.; Mata, Ignacio; McDonald, Colm; McIntosh, Andrew; Myin-Germeys, Inez; Ophoff, Roel A.; Pariante, Carmine M.; Paunio, Tiina; Picchioni, Marco; Ripke, Stephan; Wiersma, Durk

    2014-01-01

    Background: Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. Methods: 1239 cases with schizophrenia, schizoaffective

  13. Genetic conservation and paddlefish propagation

    Science.gov (United States)

    Sloss, Brian L.; Klumb, Robert A.; Heist, Edward J.

    2009-01-01

    The conservation of genetic diversity of our natural resources is overwhelmingly one of the central foci of 21st century management practices. Three recommendations related to the conservation of paddlefish Polyodon spathula genetic diversity are to (1) identify genetic diversity at both nuclear and mitochondrial DNA loci using a suggested list of 20 sampling locations, (2) use genetic diversity estimates to develop genetic management units, and (3) identify broodstock sources to minimize effects of supplemental stocking on the genetic integrity of native paddlefish populations. We review previous genetic work on paddlefish and described key principles and concepts associated with maintaining genetic diversity within and among paddlefish populations and also present a genetic case study of current paddlefish propagation at the U.S. Fish and Wildlife Service Gavins Point National Fish Hatchery. This study confirmed that three potential sources of broodfish were genetically indistinguishable at the loci examined, allowing the management agencies cooperating on this program flexibility in sampling gametes. This study also showed significant bias in the hatchery occurred in terms of male reproductive contribution, which resulted in a shift in the genetic diversity of progeny compared to the broodfish. This shift was shown to result from differential male contributions, partially attributed to the mode of egg fertilization. Genetic insights enable implementation of a paddlefish propagation program within an adaptive management strategy that conserves inherent genetic diversity while achieving demographic goals.

  14. Isolation and characterization of eight novel microsatellite loci in the double-crested cormorant (Phalacrocorax auritus)

    Science.gov (United States)

    Mercer, Dacey; Haig, Susan; Mullins, Thomas

    2010-01-01

    We describe the isolation and characterization of eight microsatellite loci from the double-crested cormorant (Phalacrocorax auritus). Genetic variability was assessed using 60 individuals from three populations. All loci were variable with the number of alleles ranging from two to 17 per locus, and observed heterozygosity varying from 0.05 to 0.89. No loci showed signs of linkage disequilibrium and all loci conformed to Hardy–Weinberg equilibrium frequencies. Further, all loci amplified and were polymorphic in two related Phalacrocorax species. These loci should prove useful for population genetic studies of the double-crested cormorant and other pelecaniform species.

  15. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13

    DEFF Research Database (Denmark)

    Cho, Michael H; Castaldi, Peter J; Wan, Emily S

    2012-01-01

    The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through...

  16. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis

    Science.gov (United States)

    Beecham, Ashley H; Patsopoulos, Nikolaos A; Xifara, Dionysia K; Davis, Mary F; Kemppinen, Anu; Cotsapas, Chris; Shahi, Tejas S; Spencer, Chris; Booth, David; Goris, An; Oturai, Annette; Saarela, Janna; Fontaine, Bertrand; Hemmer, Bernhard; Martin, Claes; Zipp, Frauke; D’alfonso, Sandra; Martinelli-Boneschi, Filippo; Taylor, Bruce; Harbo, Hanne F; Kockum, Ingrid; Hillert, Jan; Olsson, Tomas; Ban, Maria; Oksenberg, Jorge R; Hintzen, Rogier; Barcellos, Lisa F; Agliardi, Cristina; Alfredsson, Lars; Alizadeh, Mehdi; Anderson, Carl; Andrews, Robert; Søndergaard, Helle Bach; Baker, Amie; Band, Gavin; Baranzini, Sergio E; Barizzone, Nadia; Barrett, Jeffrey; Bellenguez, Céline; Bergamaschi, Laura; Bernardinelli, Luisa; Berthele, Achim; Biberacher, Viola; Binder, Thomas M C; Blackburn, Hannah; Bomfim, Izaura L; Brambilla, Paola; Broadley, Simon; Brochet, Bruno; Brundin, Lou; Buck, Dorothea; Butzkueven, Helmut; Caillier, Stacy J; Camu, William; Carpentier, Wassila; Cavalla, Paola; Celius, Elisabeth G; Coman, Irène; Comi, Giancarlo; Corrado, Lucia; Cosemans, Leentje; Cournu-Rebeix, Isabelle; Cree, Bruce A C; Cusi, Daniele; Damotte, Vincent; Defer, Gilles; Delgado, Silvia R; Deloukas, Panos; di Sapio, Alessia; Dilthey, Alexander T; Donnelly, Peter; Dubois, Bénédicte; Duddy, Martin; Edkins, Sarah; Elovaara, Irina; Esposito, Federica; Evangelou, Nikos; Fiddes, Barnaby; Field, Judith; Franke, Andre; Freeman, Colin; Frohlich, Irene Y; Galimberti, Daniela; Gieger, Christian; Gourraud, Pierre-Antoine; Graetz, Christiane; Graham, Andrew; Grummel, Verena; Guaschino, Clara; Hadjixenofontos, Athena; Hakonarson, Hakon; Halfpenny, Christopher; Hall, Gillian; Hall, Per; Hamsten, Anders; Harley, James; Harrower, Timothy; Hawkins, Clive; Hellenthal, Garrett; Hillier, Charles; Hobart, Jeremy; Hoshi, Muni; Hunt, Sarah E; Jagodic, Maja; Jelčić, Ilijas; Jochim, Angela; Kendall, Brian; Kermode, Allan; Kilpatrick, Trevor; Koivisto, Keijo; Konidari, Ioanna; Korn, Thomas; Kronsbein, Helena; Langford, Cordelia; Larsson, Malin; Lathrop, Mark; Lebrun-Frenay, Christine; Lechner-Scott, Jeannette; Lee, Michelle H; Leone, Maurizio A; Leppä, Virpi; Liberatore, Giuseppe; Lie, Benedicte A; Lill, Christina M; Lindén, Magdalena; Link, Jenny; Luessi, Felix; Lycke, Jan; Macciardi, Fabio; Männistö, Satu; Manrique, Clara P; Martin, Roland; Martinelli, Vittorio; Mason, Deborah; Mazibrada, Gordon; McCabe, Cristin; Mero, Inger-Lise; Mescheriakova, Julia; Moutsianas, Loukas; Myhr, Kjell-Morten; Nagels, Guy; Nicholas, Richard; Nilsson, Petra; Piehl, Fredrik; Pirinen, Matti; Price, Siân E; Quach, Hong; Reunanen, Mauri; Robberecht, Wim; Robertson, Neil P; Rodegher, Mariaemma; Rog, David; Salvetti, Marco; Schnetz-Boutaud, Nathalie C; Sellebjerg, Finn; Selter, Rebecca C; Schaefer, Catherine; Shaunak, Sandip; Shen, Ling; Shields, Simon; Siffrin, Volker; Slee, Mark; Sorensen, Per Soelberg; Sorosina, Melissa; Sospedra, Mireia; Spurkland, Anne; Strange, Amy; Sundqvist, Emilie; Thijs, Vincent; Thorpe, John; Ticca, Anna; Tienari, Pentti; van Duijn, Cornelia; Visser, Elizabeth M; Vucic, Steve; Westerlind, Helga; Wiley, James S; Wilkins, Alastair; Wilson, James F; Winkelmann, Juliane; Zajicek, John; Zindler, Eva; Haines, Jonathan L; Pericak-Vance, Margaret A; Ivinson, Adrian J; Stewart, Graeme; Hafler, David; Hauser, Stephen L; Compston, Alastair; McVean, Gil; De Jager, Philip; Sawcer, Stephen; McCauley, Jacob L

    2013-01-01

    Using the ImmunoChip custom genotyping array, we analysed 14,498 multiple sclerosis subjects and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (p-value multiple sclerosis subjects and 26,703 healthy controls. In these 80,094 individuals of European ancestry we identified 48 new susceptibility variants (p-value multiple sclerosis risk variants in 103 discrete loci outside of the Major Histocompatibility Complex. With high resolution Bayesian fine-mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalogue of multiple sclerosis risk variants and illustrates the value of fine-mapping in the resolution of GWAS signals. PMID:24076602

  17. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation

    NARCIS (Netherlands)

    Bramon, Elvira; Pirinen, Matti; Strange, Amy; Lin, Kuang; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Band, Gavin; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C.; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J.; Arranz, Maria J.; Bakker, Steven; Bender, Stephan; Bruggeman, Richard; Cahn, Wiepke; Chandler, David; Collier, David A.; Crespo-Facorro, Benedicto; Dazzan, Paola; de Haan, Lieuwe; Di Forti, Marta; Dragović, Milan; Giegling, Ina; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, René S.; Kalaydjieva, Luba; Kravariti, Eugenia; Lawrie, Stephen; Linszen, Don H.; Mata, Ignacio; McDonald, Colm; McIntosh, Andrew; Myin-Germeys, Inez; Ophoff, Roel A.; Pariante, Carmine M.; Paunio, Tiina; Picchioni, Marco; Ripke, Stephan; Rujescu, Dan

    2014-01-01

    Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. 1239 cases with schizophrenia, schizoaffective disorder, or psychotic

  18. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Partha Talukdar

    Full Text Available Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population and a genome wide association (GWA study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity. However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  19. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains.

    Science.gov (United States)

    Kozak, C A; Rowe, W P

    1980-07-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction.

  20. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  1. Metabolomic Quantitative Trait Loci (mQTL Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.

    Directory of Open Access Journals (Sweden)

    William E Kraus

    2015-11-01

    Full Text Available Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA, long-chain dicarboxylacylcarnitine (LCDA and medium chain acylcarnitine (MCA metabolites are heritable and predict cardiovascular disease (CVD events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490, we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1 These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10. Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2. Expression quantitative trait loci (eQTL pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.

  2. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    Science.gov (United States)

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  3. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes.

    Science.gov (United States)

    Matsuo, Hirotaka; Yamamoto, Ken; Nakaoka, Hirofumi; Nakayama, Akiyoshi; Sakiyama, Masayuki; Chiba, Toshinori; Takahashi, Atsushi; Nakamura, Takahiro; Nakashima, Hiroshi; Takada, Yuzo; Danjoh, Inaho; Shimizu, Seiko; Abe, Junko; Kawamura, Yusuke; Terashige, Sho; Ogata, Hiraku; Tatsukawa, Seishiro; Yin, Guang; Okada, Rieko; Morita, Emi; Naito, Mariko; Tokumasu, Atsumi; Onoue, Hiroyuki; Iwaya, Keiichi; Ito, Toshimitsu; Takada, Tappei; Inoue, Katsuhisa; Kato, Yukio; Nakamura, Yukio; Sakurai, Yutaka; Suzuki, Hiroshi; Kanai, Yoshikatsu; Hosoya, Tatsuo; Hamajima, Nobuyuki; Inoue, Ituro; Kubo, Michiaki; Ichida, Kimiyoshi; Ooyama, Hiroshi; Shimizu, Toru; Shinomiya, Nariyoshi

    2016-04-01

    Gout, caused by hyperuricaemia, is a multifactorial disease. Although genome-wide association studies (GWASs) of gout have been reported, they included self-reported gout cases in which clinical information was insufficient. Therefore, the relationship between genetic variation and clinical subtypes of gout remains unclear. Here, we first performed a GWAS of clinically defined gout cases only. A GWAS was conducted with 945 patients with clinically defined gout and 1213 controls in a Japanese male population, followed by replication study of 1048 clinically defined cases and 1334 controls. Five gout susceptibility loci were identified at the genome-wide significance level (pgenes (ABCG2 and SLC2A9) and additional genes: rs1260326 (p=1.9×10(-12); OR=1.36) of GCKR (a gene for glucose and lipid metabolism), rs2188380 (p=1.6×10(-23); OR=1.75) of MYL2-CUX2 (genes associated with cholesterol and diabetes mellitus) and rs4073582 (p=6.4×10(-9); OR=1.66) of CNIH-2 (a gene for regulation of glutamate signalling). The latter two are identified as novel gout loci. Furthermore, among the identified single-nucleotide polymorphisms (SNPs), we demonstrated that the SNPs of ABCG2 and SLC2A9 were differentially associated with types of gout and clinical parameters underlying specific subtypes (renal underexcretion type and renal overload type). The effect of the risk allele of each SNP on clinical parameters showed significant linear relationships with the ratio of the case-control ORs for two distinct types of gout (r=0.96 [p=4.8×10(-4)] for urate clearance and r=0.96 [p=5.0×10(-4)] for urinary urate excretion). Our findings provide clues to better understand the pathogenesis of gout and will be useful for development of companion diagnostics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Nonrandom Distribution of miRNAs Genes and Single Nucleotide Variants in Keratoconus Loci.

    Directory of Open Access Journals (Sweden)

    Dorota M Nowak

    Full Text Available Despite numerous studies, the causes of both development and progression of keratoconus remain elusive. Previous studies of this disorder focused mainly on one or two genetic factors only. However, in the analysis of such complex diseases all potential factors should be taken into consideration. The purpose of this study was a comprehensive analysis of known keratoconus loci to uncover genetic factors involved in this disease causation in the general population, which could be omitted in the original studies. In this investigation genomic data available in various databases and experimental own data were assessed. The lists of single nucleotide variants and miRNA genes localized in reported keratoconus loci were obtained from Ensembl and miRBase, respectively. The potential impact of nonsynonymous amino acid substitutions on protein structure and function was assessed with PolyPhen-2 and SIFT. For selected protein genes the ranking was made to choose those most promising for keratoconus development. Ranking results were based on topological features in the protein-protein interaction network. High specificity for the populations in which the causative sequence variants have been identified was found. In addition, the possibility of links between previously analyzed keratoconus loci was confirmed including miRNA-gene interactions. Identified number of genes associated with oxidative stress and inflammatory agents corroborated the hypothesis of their effect on the disease etiology. Distribution of the numerous sequences variants within both exons and mature miRNA which forces you to search for a broader look at the determinants of keratoconus. Our findings highlight the complexity of the keratoconus genetics.

  5. Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree

    NARCIS (Netherlands)

    DeWoody, J.; Viger, M.; Lakatos, F.; Tuba, K.; Taylor, G.; Smulders, M.J.M.

    2013-01-01

    Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common

  6. Identifying genetic relatives without compromising privacy.

    Science.gov (United States)

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  7. VAV1 and BAFF, via NFκB pathway, are genetic risk factors for myasthenia gravis

    DEFF Research Database (Denmark)

    Avidan, Nili; Le Panse, Rozen; Harbo, Hanne F

    2014-01-01

    OBJECTIVE: To identify novel genetic loci that predispose to early-onset myasthenia gravis (EOMG) applying a two-stage association study, exploration, and replication strategy. METHODS: Thirty-four loci and one confirmation loci, human leukocyte antigen (HLA)-DRA, were selected as candidate genes...

  8. Genetics of eosinophilic esophagitis.

    Science.gov (United States)

    Kottyan, L C; Rothenberg, M E

    2017-05-01

    Eosinophilic esophagitis (EoE) is a chronic, allergic disease associated with marked mucosal eosinophil accumulation. EoE disease risk is multifactorial and includes environmental and genetic factors. This review will focus on the contribution of genetic variation to EoE risk, as well as the experimental tools and statistical methodology used to identify EoE risk loci. Specific disease-risk loci that are shared between EoE and other allergic diseases (TSLP, LRRC32) or unique to EoE (CAPN14), as well as Mendellian Disorders associated with EoE, will be reviewed in the context of the insight that they provide into the molecular pathoetiology of EoE. We will also discuss the clinical opportunities that genetic analyses provide in the form of decision support tools, molecular diagnostics, and novel therapeutic approaches.

  9. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    DEFF Research Database (Denmark)

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang

    2017-01-01

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorpt...... a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.......-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p 

  10. The genetics of diabetes

    Directory of Open Access Journals (Sweden)

    Barjaktarović Nada

    2007-01-01

    Full Text Available Pathogenesis of diabetes is still a mystery for medicine, the real challenge currently being the identification of genetic factors and specific mutations that cause the disease. Heterogeneity of diabetes hampers research, only a few loci inside the human genome being correlated with predisposition for disease till now. Insulin-dependent diabetes - IDDM (T1DM develops through autoimmune destruction of pancreatic beta cells. HLA complex on the short arm of chromosome 6 (6p21, where very important genes responsible for immunological condition of the person are located, plays a very important role in genetic predisposition for T1DM. Beside this region, there are also other loci in the human genome (on chromosomes 1, 2 and 11 where a correlation with T1DM has been shown. Correlation between HLA systems and T1DM was first described for class I alleles, but recently attention has been drawn to class II loci which seem to be the cause of primary predisposition for T1DM. In the case of non-insulin-dependent diabetes - NIDDM (T2DM, the situation proved to be even more complex. Only a few genetic loci on chromosomes 11, 13 and 20 and MODY variant on chromosomes 7 and 12 have been identified by now. There are two theories about genetic basis of T2DM: the first stipulates that the genetic predisposition is determined through numerous loci, each individually responsible for a small part of predisposition; the second claims that there are a limited number of "major" genes probably functioning on a polygenic basis. Further research in this area is definitely needed to enable an accurate calculation of the risks of the disease and possible consequences during a lifetime of a person.

  11. Population genetics for 23 Y-STR loci in Tibetan in China and confirmation of DYS448 null allele.

    Science.gov (United States)

    Ye, Yi; Gao, Jingshang; Fan, Guangyao; Liao, Linchuan; Hou, Yiping

    2015-05-01

    Tibetan is one of 56 ethnic groups in China, where a level of genetic sub-structure might be expected. Although a global analysis of Y-chromosomal haplotype diversity for 23 STR loci and Y-STR databases with PPY23 kit were created with collaborative effort, there was a lack of data for Tibetan population. In this study we evaluated 248 unrelated male individuals of Chinese Tibetan living in the Tibet Autonomous Region to explore the underlying genetic structure of Tibetan populations. These samples were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) by using PPY23 kit. A total of 224 different haplotypes were found. Haplotype diversity was 0.9990. Both Rst pairwise analyses and multidimensional scaling plot showed the genetic structure of Tibetan population was significantly different from some of Chinese ethnic groups and neighboring populations. There were few interesting null features at DYS448 observed by PPY23 that deserved some comment. It revealed that PPY23 marker set provided substantially stronger discriminatory power in Tibetan population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors

    DEFF Research Database (Denmark)

    Nickels, Stefan; Truong, Thérèse; Hein, Rebecca

    2013-01-01

    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cance...

  13. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors

    NARCIS (Netherlands)

    Nickels, S.; Truong, T.; Hein, R.; Stevens, K.; Buck, K.; Behrens, S.; Eilber, U.; Schmidt, M.; Haberle, L.; Vrieling, A.; Gaudet, M.; Figueroa, J.; Schoof, N.; Spurdle, A.B.; Rudolph, A.; Fasching, P.A.; Hopper, J.L.; Makalic, E.; Schmidt, D.F.; Southey, M.C.; Beckmann, M.W.; Ekici, A.B.; Fletcher, O.; Gibson, L.; Idos, S. Silva; Peto, J.; Humphreys, M.K.; Wang, J; Cordina-Duverger, E.; Menegaux, F.; Nordestgaard, B.G.; Bojesen, S.E.; Lanng, C.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Clarke, C.A.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Brauch, H.; Bruning, T.; Harth, V.; Genica, N.; Mannermaa, A.; Kataja, V.; Kosma, V.M.; Hartikainen, J.M.; Lambrechts, D.; Smeets, D.; Neven, P.; Paridaens, R.; Flesch-Janys, D.; Obi, N.; Wang-Gohrke, S.; Couch, F.J.; Olson, J.E.; Vachon, C.M.; Giles, G.G.; Severi, G.; Baglietto, L.; Offit, K.; John, E.M.; Miron, A.; Andrulis, I.L.; Knight, J.A.; Glendon, G.; Mulligan, A.M.; Chanock, S.J.; Lissowska, J.; Liu, J.; Cox, A; Cramp, H.; Connley, D.; Balasubramanian, S.; Dunning, A.M.; Shah, M.; Trentham-Dietz, A.; Newcomb, P.; Titus, L.; Egan, K.; Cahoon, E.K.; Rajaraman, P.; Sigurdson, A.J.; Doody, M.M.; Guenel, P.; Pharoah, P.D.; Schmidt, M.K.; Hall, P.; Easton, D.F.; Garcia-Closas, M.; Milne, R.L.; Chang-Claude, J.; et al.,

    2013-01-01

    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer.

  14. Blind to morphology: Genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia)

    KAUST Repository

    Pinzón, Jorge H C

    2013-04-05

    Aim: Using high-resolution genetic markers on samples gathered from across their wide distributional range, we endeavoured to delimit species diversity in reef-building Pocillopora corals. They are common, ecologically important, and widespread throughout the Indo-Pacific, but their phenotypic plasticity in response to environmental conditions and their nearly featureless microskeletal structures confound taxonomic assignments and limit an understanding of their ecology and evolution. Location: Indo-Pacific, Red Sea, Arabian/Persian Gulf. Methods: Sequence analysis of nuclear ribosomal (internal transcribed spacer 2, ITS2) and mitochondrial (open reading frame) loci were combined with population genetic data (seven microsatellite loci) for Pocillopora samples collected throughout the Indo-Pacific, Red Sea and Arabian Gulf, in order to assess the evolutionary divergence, reproductive isolation, frequency of hybridization and geographical distributions of the genus. Results: Between five and eight genetically distinct lineages comparable to species were identified with minimal or no hybridization between them. Colony morphology was generally incongruent with genetics across the full range of sampling, and the total number of species is apparently consistent with lower estimates from competing morphologically based hypotheses (about seven or eight taxa). The most commonly occurring genetic lineages were widely distributed and exhibited high dispersal and gene flow, factors that have probably minimized allopatric speciation. Uniquely among scleractinian genera, this genus contains a monophyletic group of broadcast spawners that evolved recently from an ancestral brooder. Main conclusions: The delineation of species diversity guided by genetics fundamentally advances our understanding of Pocillopora geographical distributions, ecology and evolution. Because traditional diagnostic features of colony and branch morphology are proving to be of limited utility, the

  15. Blind to morphology: Genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia)

    KAUST Repository

    Pinzó n, Jorge H C; Sampayo, Eugenia M.; Cox, Evelyn F.; Chauka, Leonard J.; Chen, Chaolun Allen; Voolstra, Christian R.; LaJeunesse, Todd C.

    2013-01-01

    Aim: Using high-resolution genetic markers on samples gathered from across their wide distributional range, we endeavoured to delimit species diversity in reef-building Pocillopora corals. They are common, ecologically important, and widespread throughout the Indo-Pacific, but their phenotypic plasticity in response to environmental conditions and their nearly featureless microskeletal structures confound taxonomic assignments and limit an understanding of their ecology and evolution. Location: Indo-Pacific, Red Sea, Arabian/Persian Gulf. Methods: Sequence analysis of nuclear ribosomal (internal transcribed spacer 2, ITS2) and mitochondrial (open reading frame) loci were combined with population genetic data (seven microsatellite loci) for Pocillopora samples collected throughout the Indo-Pacific, Red Sea and Arabian Gulf, in order to assess the evolutionary divergence, reproductive isolation, frequency of hybridization and geographical distributions of the genus. Results: Between five and eight genetically distinct lineages comparable to species were identified with minimal or no hybridization between them. Colony morphology was generally incongruent with genetics across the full range of sampling, and the total number of species is apparently consistent with lower estimates from competing morphologically based hypotheses (about seven or eight taxa). The most commonly occurring genetic lineages were widely distributed and exhibited high dispersal and gene flow, factors that have probably minimized allopatric speciation. Uniquely among scleractinian genera, this genus contains a monophyletic group of broadcast spawners that evolved recently from an ancestral brooder. Main conclusions: The delineation of species diversity guided by genetics fundamentally advances our understanding of Pocillopora geographical distributions, ecology and evolution. Because traditional diagnostic features of colony and branch morphology are proving to be of limited utility, the

  16. Characterization of genetic diversity and linkage disequilibrium of ZmLOX4 and ZmLOX5 loci in maize.

    Directory of Open Access Journals (Sweden)

    Gerald N De La Fuente

    Full Text Available Maize (Zea mays L. lipoxygenases (ZmLOXs are well recognized as important players in plant defense against pathogens, especially in cross kingdom lipid communication with pathogenic fungi. This study is among the first to investigate genetic diversity at important gene paralogs ZmLOX4 and ZmLOX5. Sequencing of these genes in 400 diverse maize lines showed little genetic diversity and low linkage disequilibrium in the two genes. Importantly, we identified one inbred line in which ZmLOX5 has a disrupted open reading frame, a line missing ZmLOX5, and five lines with a duplication of ZmLOX5. Tajima's D test suggests that both ZmLOX4 and ZmLOX5 have been under neutral selection. Further investigation of haplotype data revealed that within the ZmLOX family members only ZmLOX12, a monocot specific ZmLOX, showed strong linkage disequilibrium that extends further than expected in maize. Linkage disequilibrium patterns at these loci of interest are crucial for future candidate gene association mapping studies. ZmLOX4 and ZmLOX5 mutations and copy number variants are under further investigation for crop improvement.

  17. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

    DEFF Research Database (Denmark)

    Heid, Iris M; Jackson, Anne U; Randall, Joshua C

    2010-01-01

    and CPEB4 (P = 1.9 × 10¿¿ to P = 1.8 × 10¿4°) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10¿³ to P = 1.2 × 10¿¹³). These findings provide evidence for multiple loci that modulate...... body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions....

  18. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Defaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Merilä, Juha

    2013-09-01

    Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes. © 2013 John Wiley & Sons Ltd.

  19. Polymorphic microsatellites in the human bloodfluke, Schistosoma japonicum, identified using a genomic resource

    Directory of Open Access Journals (Sweden)

    Spear Robert

    2011-02-01

    Full Text Available Abstract Re-emergence of schistosomiasis in regions of China where control programs have ceased requires development of molecular-genetic tools to track gene flow and assess genetic diversity of Schistosoma populations. We identified many microsatellite loci in the draft genome of Schistosoma japonicum using defined search criteria and selected a subset for further analysis. From an initial panel of 50 loci, 20 new microsatellites were selected for eventual optimization and application to a panel of worms from endemic areas. All but one of the selected microsatellites contain simple tri-nucleotide repeats. Moderate to high levels of polymorphism were detected. Numbers of alleles ranged from 6 to 14 and observed heterozygosity was always >0.6. The loci reported here will facilitate high resolution population-genetic studies on schistosomes in re-emergent foci.

  20. Genetic variability and forensic efficiency of 39 microsatellite loci in the Li ethnic group from Hainan Island in the South China Sea.

    Science.gov (United States)

    Chen, Jing; Xie, Bingbing; Yang, Yaran; Yang, Meng; Liu, Chao; Lv, Yuexin; Chen, Chuguang; Liu, Xu; Fang, Xiangdong; Wu, Huijuan; Yan, Jiangwei

    2017-08-01

    Investigation of allele and genotype frequencies of microsatellite loci in various populations is an essential pre-requisite in forensic application. The present study obtained population genetic data and forensic parameters of 39 autosomal Short Tandem Repeats (STRs) loci from a Chinese Li ethnic group and estimated the genetic relationships between Li and other reference populations. Thirty-nine STR loci, which include D19S433, D5S818, D21S11, D18S51, D6S1043, D3S1358, D13S317, D7S820, D16S539, CSF1PO, Penta D, D2S441, vWA, D8S1179, TPOX, Penta E, TH01, D12S391, D2S1338, FGA, D6S477, D18S535, D19S253, D15S659, D11S2368, D20S470, D1S1656, D22-GATA198B05, D8S1132, D4S2366, D21S1270, D13S325, D9S925, D3S3045, D14S608, D10S1435, D7S3048, D17S1290 and D5S2500, were amplified in two multiplex DNA-STR fluorescence detection systems for 189 unrelated healthy individuals of the Chinese Li ethnic group. The allele frequency distribution and several parameters commonly used in forensic science were statistically analysed. A total of 378 alleles were observed with corresponding allelic frequencies ranging from 0.0026-0.5899. The power of discrimination and power of exclusion ranged from 0.7569-0.9672 and 0.2513-0.7355, respectively. The power of exclusion (PE) ranged from 0.2580-0.7943 for trio paternity cases and 0.1693-0.5940 for duo paternity cases. The polymorphism information content (PIC) ranged from 0.5001-0.8611. The cumulative match probability across these 39 loci was 2.4242 × 10 -38 . The results indicate that 39 STR loci are polymorphic among the Li ethnic group in Hainan Island in the South China Sea. This set of polymorphic STR loci provide highly polymorphic information and forensic efficiency for forensic individual identification and paternity testing, as well as basic population data for population genetics and anthropological research.

  1. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    NARCIS (Netherlands)

    Nakayama, A.; Nakaoka, H.; Yamamoto, K.; Sakiyama, M.; Shaukat, A.; Toyoda, Y.; Okada, Y.; Kamatani, Y.; Nakamura, T.; Takada, T.; Inoue, K.; Yasujima, T.; Yuasa, H.; Shirahama, Y.; Nakashima, H.; Shimizu, S.; Higashino, T.; Kawamura, Y.; Ogata, H.; Kawaguchi, M.; Ohkawa, Y.; Danjoh, I.; Tokumasu, A.; Ooyama, K.; Ito, T.; Kondo, T.; Wakai, K.; Stiburkova, B.; Pavelka, K.; Stamp, L.K.; Dalbeth, N.; Sakurai, Y.; Suzuki, H; Hosoyamada, M.; Fujimori, S.; Yokoo, T.; Hosoya, T.; Inoue, I.; Takahashi, A.; Kubo, M.; Ooyama, H.; Shimizu, T.; Ichida, K.; Shinomiya, N.; Merriman, T.R.; Matsuo, H.; Andres, M; Joosten, L.A.; Janssen, M.C.H.; Jansen, T.L.; Liote, F.; Radstake, T.R.; Riches, P.L.; So, A.; Tauches, A.K.

    2017-01-01

    OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were

  2. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci

    NARCIS (Netherlands)

    Liu, C. (Chunyu); A. Kraja (Aldi); J.A. Smith (Jennifer A); J. Brody (Jennifer); N. Franceschini (Nora); J.C. Bis (Joshua); K.M. Rice (Kenneth); A.C. Morrison (Alanna); Y. Lu (Yingchang); Weiss, S. (Stefan); X. Guo (Xiuqing); W. Palmas (Walter); L.W. Martin (Lisa); Y.D. Chen (Y.); Surendran, P. (Praveen); F. Drenos (Fotios); Cook, J.P. (James P.); P. Auer (Paul); A.Y. Chu (Audrey); Giri, A. (Ayush); Zhao, W. (Wei); M. Jakobsdottir (Margret); Lin, L.-A. (Li-An); J.M. Stafford (Jeanette M.); N. Amin (Najaf); Mei, H. (Hao); J. Yao (Jiefen); J.M. Voorman (Jeanine); M.G. Larson (Martin); M.L. Grove (Megan); A.V. Smith (Albert Vernon); S.J. Hwang; H. Chen (Han); T. Huan (Tianxiao); Kosova, G. (Gulum); N.O. Stitziel (Nathan); S. Kathiresan (Sekar); N.J. Samani (Nilesh); H. Schunkert (Heribert); P. Deloukas (Panagiotis); M. Li (Man); C. Fuchsberger (Christian); C. Pattaro (Cristian); M. Gorski (Mathias); C. Kooperberg (Charles); G. Papanicolaou (George); Rossouw, J.E. (Jacques E.); J.D. Faul (Jessica D.); S.L.R. Kardia (Sharon); C. Bouchard (Claude); L.J. Raffel (Leslie); Uitterlinden, A.G. (André G.); O.H. Franco (Oscar); R. Vasan (Ramachandran); C.J. O'Donnell (Christopher); K.D. Taylor (Kent); K.Y. Liu; E.P. Bottinger (Erwin); R.F. Gottesman (Rebecca); E.W. Daw (E. Warwick); F. Giulianini (Franco); S.K. Ganesh (Santhi); E. Salfati (Elias); T.B. Harris (Tamara); Launer, L.J. (Lenore J.); M. Dörr (Marcus); S.B. Felix (Stephan); R. Rettig (Rainer); H. Völzke (Henry); E. Kim (Eric); W.-J. Lee (Wen-Jane); I.T. Lee; Sheu, W.H.-H. (Wayne H.-H.); Tsosie, K.S. (Krystal S.); Edwards, D.R.V. (Digna R. Velez); Y. Liu (YongMei); Correa, A. (Adolfo); D.R. Weir (David); U. Völker (Uwe); P.M. Ridker (Paul); E.A. Boerwinkle (Eric); V. Gudnason (Vilmundur); A. Reiner (Alexander); Van Duijn, C.M. (Cornelia M.); I.B. Borecki (Ingrid); T.L. Edwards (Todd L.); A. Chakravarti (Aravinda); Rotter, J.I. (Jerome I.); B.M. Psaty (Bruce); R.J.F. Loos (Ruth); M. Fornage (Myriam); G.B. Ehret (Georg); C. Newton-Cheh (Christopher); D. Levy (Daniel); D.I. Chasman (Daniel)

    2016-01-01

    textabstractMeta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood

  3. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Directory of Open Access Journals (Sweden)

    Merok Marianne A

    2010-05-01

    Full Text Available Abstract Background Estimates suggest that up to 30% of colorectal cancers (CRC may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV (Roche NimbleGen, 385 000 oligo CGH array in microsatellite stable (MSS tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53 and 17 elderly patients with median age 79 years (range: 69-87. Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late

  4. Identification and characterization of microsatellite loci in two socially complex old world tropical babblers (Family Timaliidae).

    Science.gov (United States)

    Kaiser, Sara A; Danner, J E; Bergner, Laura; Fleischer, Robert C

    2015-11-24

    Although the highest diversity of birds occurs in tropical regions, little is known about the genetic mating systems of most tropical species. We describe microsatellite markers isolated in the chestnut-crested yuhina (Staphida everetti), endemic to the island of Borneo, and the grey-throated babbler (Stachyris nigriceps), widely distributed across Southeast Asia. Both species belong to the avian family Timaliidae and are highly social, putatively cooperatively breeding birds in which helpers attend the nests of members of their social group. We obtained DNA from individuals in social groups breeding in Kinabalu Park, Malaysian Borneo. We used a shotgun sequencing approach and 454-technology to identify 36 microsatellite loci in the yuhina and 40 in the babbler. We tested 13 primer pairs in yuhinas and 20 in babblers and characterized eight polymorphic loci in 20 unrelated female yuhinas and 21 unrelated female babblers. Polymorphism at the yuhina loci ranged from 3 to 9 alleles, observed heterozygosities from 0.58 to 1.00, and expected heterozygosities from 0.64 to 0.81. Polymorphism at the babbler loci ranged from 3 to 12 alleles, observed heterozygosities from 0.14 to 0.90 and expected heterozygosities from 0.14 to 0.87. One locus in the yuhina deviated significantly from Hardy-Weinberg equilibrium. We detected nonrandom allele associations between two pairs of microsatellite loci in each species. Microsatellite markers will be used to describe the genetic mating system of these socially complex species and to measure genetic parentage and relatedness within social groups.

  5. Evaluation of Genetic Pattern of Non-Tuberculosis Mycobacterium Using VNTR Method

    Directory of Open Access Journals (Sweden)

    Noorozi J

    2011-06-01

    Full Text Available Background and Objectives: Epidemiological studies of Non-tuberculosis Mycobacterium is important because of the drug resistance pattern and worldwide dissemination of these organisms. One of genetic fingerprinting methods for epidemiological studies is VNTR (Variable Number Tandem Repeat. In this study genetic pattern of atypical Mycobacterium was evaluated by VNTR method for epidemiologic studies. Methods: 48 pulmonary and non pulmonary specimens separated from patients with the symptoms of pulmonary tuberculosis (PTB and identified as Non-tuberculosis Mycobacteriumby phenotypic and PCR-RFLP methods were selected for this study. Clinical samples and their standard strains were evaluated according to VNTR pattern using the 7 genetic loci including ETR-B. ETR-F. ETR-C. MPTR-A. ETR-A. ETR-E. ETR-D.Results: The results of VNTR method showed that none of the 7 loci had any polymorphism in the standard strains of atypical mycobacterium. Some of these variable number tandem repeat in 42 clinical samples of non-tuberculosis Mycobacterium were polymorphic while the PCR product (for any loci was not found in the remaining 6 specimens. Conclusion: Although the used genetic loci of this study were suitable for epidemiological studies of Mycobacterium tuberculosis, these loci were not able to determine the diversity of genetics of non-tuberculosis Mycobacterium Therefore, it seems necessary that other loci be studied using VNTR method.

  6. SMAD7 loci contribute to risk of hepatocellular carcinoma and clinicopathologic development among Chinese Han population.

    Science.gov (United States)

    Ji, Jiansong; Xu, Min; Zhao, Zhongwei; Tu, Jianfei; Gao, Jun; Lu, Chenying; Song, Jingjing; Chen, Weiqian; Chen, Minjiang; Fan, Xiaoxi; Cheng, Xingyao; Lan, Xilin; Li, Jie

    2016-04-19

    Genome-wide association studies (GWAS) have identified three loci at 18q21 (rs4939827, rs7240004, and rs7229639), which maps to SMAD7 loci, were associated with risk of diseases of the digestive system. However, their associations with hepatocellular carcinoma (HCC) risk remain unknown. A case-control study was conducted to assess genetic associations with HCC risk and clinicopathologic development among Chinese Han population. Three SNPs were genotyped among 1,000 HCC cases and 1,000 controls using Sequenom Mass-ARRAY technology. We observed statistically significant associations for the three SMAD7 loci and HCC risk. Each copy of minor allele was associated with a 1.24-1.36 fold increased risk of HCC. We also found that significant differences were observed between rs4939827 and clinical TNM stage and vascular invasion, as well as rs7240004 and vascular invasion. We also established a genetic risk score (GRS) by summing the risk alleles. The GRS was significantly associated with increased risk of HCC and vascular invasion. Our data revealed the SMAD7 loci is associated with HCC susceptibility and its clinicopathologic development.

  7. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci

    DEFF Research Database (Denmark)

    Jones, Gregory T; Tromp, Gerard; Kuivaniemi, Helena

    2017-01-01

    studies (GWAS). Through a meta-analysis of 6 GWAS datasets and a validation study totalling 10,204 cases and 107,766 controls we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches we observed no new...... associations between the lead AAA SNPs and coronary artery disease, blood pressure, lipids or diabetes. Network analyses identified ERG, IL6R and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. The 4 new risk loci for AAA appear to be specific for AAA compared with other...

  8. A Genome-Wide Association Study Identifies Risk Loci to Equine Recurrent Uveitis in German Warmblood Horses

    Science.gov (United States)

    Kulbrock, Maike; Lehner, Stefanie; Metzger, Julia; Ohnesorge, Bernhard; Distl, Ottmar

    2013-01-01

    Equine recurrent uveitis (ERU) is a common eye disease affecting up to 3–15% of the horse population. A genome-wide association study (GWAS) using the Illumina equine SNP50 bead chip was performed to identify loci conferring risk to ERU. The sample included a total of 144 German warmblood horses. A GWAS showed a significant single nucleotide polymorphism (SNP) on horse chromosome (ECA) 20 at 49.3 Mb, with IL-17A and IL-17F being the closest genes. This locus explained a fraction of 23% of the phenotypic variance for ERU. A GWAS taking into account the severity of ERU, revealed a SNP on ECA18 nearby to the crystalline gene cluster CRYGA-CRYGF. For both genomic regions on ECA18 and 20, significantly associated haplotypes containing the genome-wide significant SNPs could be demonstrated. In conclusion, our results are indicative for a genetic component regulating the possible critical role of IL-17A and IL-17F in the pathogenesis of ERU. The associated SNP on ECA18 may be indicative for cataract formation in the course of ERU. PMID:23977091

  9. Evolution, revolution and heresy in the genetics of infectious disease susceptibility

    Science.gov (United States)

    Hill, Adrian V. S.

    2012-01-01

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case–control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference. PMID:22312051

  10. Evolution, revolution and heresy in the genetics of infectious disease susceptibility.

    Science.gov (United States)

    Hill, Adrian V S

    2012-03-19

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case-control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference.

  11. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    DEFF Research Database (Denmark)

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire

    2016-01-01

    to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B, and rs13387838 near ADAM23. Per additional risk allele, body mass index...

  12. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum.

    Science.gov (United States)

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-03-19

    Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.

  13. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    Directory of Open Access Journals (Sweden)

    Twine Susan M

    2009-03-01

    Full Text Available Abstract Background Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Results Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes, and the flagellar glycosylation island (FGI. These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5 has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Conclusion Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism

  14. Genetic determinants of common epilepsies

    DEFF Research Database (Denmark)

    2014-01-01

    and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). METHODS: We combined genome-wide association data from 12 cohorts of individuals with epilepsy...... not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the ultimate aim of assisting in disease classification and prognosis. The data suggest that specific loci can act pleiotropically raising risk for epilepsy broadly, or can have effects...... and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different...

  15. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis.

    Science.gov (United States)

    Peters, Ulrike; Jiao, Shuo; Schumacher, Fredrick R; Hutter, Carolyn M; Aragaki, Aaron K; Baron, John A; Berndt, Sonja I; Bézieau, Stéphane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J; Campbell, Peter T; Carlson, Christopher S; Casey, Graham; Chan, Andrew T; Chang-Claude, Jenny; Chanock, Stephen J; Chen, Lin S; Coetzee, Gerhard A; Coetzee, Simon G; Conti, David V; Curtis, Keith R; Duggan, David; Edwards, Todd; Fuchs, Charles S; Gallinger, Steven; Giovannucci, Edward L; Gogarten, Stephanie M; Gruber, Stephen B; Haile, Robert W; Harrison, Tabitha A; Hayes, Richard B; Henderson, Brian E; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Hunter, David J; Jackson, Rebecca D; Jee, Sun Ha; Jenkins, Mark A; Jia, Wei-Hua; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Lacroix, Andrea Z; Laurie, Cathy C; Laurie, Cecelia A; Le Marchand, Loic; Lemire, Mathieu; Levine, David; Lindor, Noralane M; Liu, Yan; Ma, Jing; Makar, Karen W; Matsuo, Keitaro; Newcomb, Polly A; Potter, John D; Prentice, Ross L; Qu, Conghui; Rohan, Thomas; Rosse, Stephanie A; Schoen, Robert E; Seminara, Daniela; Shrubsole, Martha; Shu, Xiao-Ou; Slattery, Martha L; Taverna, Darin; Thibodeau, Stephen N; Ulrich, Cornelia M; White, Emily; Xiang, Yongbing; Zanke, Brent W; Zeng, Yi-Xin; Zhang, Ben; Zheng, Wei; Hsu, Li

    2013-04-01

    Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis. We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent. Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10(-8): an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10(-8)). We also found evidence for 3 additional loci with P values less than 5.0 × 10(-7): a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10(-8)), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10(-8)), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10(-7)). In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to β-catenin). The roles of these genes and their products in cancer pathogenesis warrant further

  16. Characterization of Microsatellite Loci in Castilleja sessiliflora and Transferability to 24 Castilleja Species (Orobanchaceae

    Directory of Open Access Journals (Sweden)

    Jeremie B. Fant

    2013-06-01

    Full Text Available Premise of the study: Microsatellite primers were developed in the hemiparasitic perennial forb Castilleja sessiliflora to investigate patterns of gene flow and genetic diversity within and among populations. Methods and Results: Twelve polymorphic loci were identified in C. sessiliflora and tested on three populations (32 individuals each sampled across the range of the species. The loci amplified di- and trinucleotide repeats with 3–14 alleles per locus. To assess cross-amplification, primer pairs were also tested on 24 additional Castilleja species that represent the morphological and geographic diversity of the genus. We provide reports of their effectiveness in all 25 taxa. Conclusions: These results indicate the utility of these primers in C. sessiliflora for future studies of genetic structure and gene flow, as well as their widespread applicability in other members of the diverse and complex genus Castilleja.

  17. Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum

    Directory of Open Access Journals (Sweden)

    Claudio Hidalgo-Cantabrana

    2017-09-01

    Full Text Available Diverse CRISPR-Cas systems provide adaptive immunity in many bacteria and most archaea, via a DNA-encoded, RNA-mediated, nucleic-acid targeting mechanism. Over time, CRISPR loci expand via iterative uptake of invasive DNA sequences into the CRISPR array during the adaptation process. These genetic vaccination cards thus provide insights into the exposure of strains to phages and plasmids in space and time, revealing the historical predatory exposure of a strain. These genetic loci thus constitute a unique basis for genotyping of strains, with potential of resolution at the strain-level. Here, we investigate the occurrence and diversity of CRISPR-Cas systems in the genomes of various Bifidobacterium longum strains across three sub-species. Specifically, we analyzed the genomic content of 66 genomes belonging to B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis, and identified 25 strains that carry 29 total CRISPR-Cas systems. We identify various Type I and Type II CRISPR-Cas systems that are widespread in this species, notably I-C, I-E, and II-C. Noteworthy, Type I-C systems showed extended CRISPR arrays, with extensive spacer diversity. We show how these hypervariable loci can be used to gain insights into strain origin, evolution and phylogeny, and can provide discriminatory sequences to distinguish even clonal isolates. By investigating CRISPR spacer sequences, we reveal their origin and implicate phages and prophages as drivers of CRISPR immunity expansion in this species, with redundant targeting of select prophages. Analysis of CRISPR spacer origin also revealed novel PAM sequences. Our results suggest that CRISPR-Cas immune systems are instrumental in mounting diversified viral resistance in B. longum, and show that these sequences are useful for typing across three subspecies.

  18. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    2011-05-01

    Full Text Available GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls, we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05 with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10(-4 that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17 over the alleles reported in the original GWAS (OR = 1.08. In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry.

  19. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements.

    Science.gov (United States)

    Coyne, Michael J; Roelofs, Kevin G; Comstock, Laurie E

    2016-01-15

    Type VI secretion systems (T6SSs) are contact-dependent antagonistic systems employed by Gram negative bacteria to intoxicate other bacteria or eukaryotic cells. T6SSs were recently discovered in a few Bacteroidetes strains, thereby extending the presence of these systems beyond Proteobacteria. The present study was designed to analyze in a global nature the diversity, abundance, and properties of T6SSs in the Bacteroidales, the most predominant Gram negative bacterial order of the human gut. By performing extensive bioinformatics analyses and creating hidden Markov models for Bacteroidales Tss proteins, we identified 130 T6SS loci in 205 human gut Bacteroidales genomes. Of the 13 core T6SS proteins of Proteobacteria, human gut Bacteroidales T6SS loci encode orthologs of nine, and an additional five other core proteins not present in Proteobacterial T6SSs. The Bacteroidales T6SS loci segregate into three distinct genetic architectures with extensive DNA identity between loci of a given genetic architecture. We found that divergent DNA regions of a genetic architecture encode numerous types of effector and immunity proteins and likely include new classes of these proteins. TheT6SS loci of genetic architecture 1 are contained on highly similar integrative conjugative elements (ICEs), as are the T6SS loci of genetic architecture 2, whereas the T6SS loci of genetic architecture 3 are not and are confined to Bacteroides fragilis. Using collections of co-resident Bacteroidales strains from human subjects, we provide evidence for the transfer of genetic architecture 1 T6SS loci among co-resident Bacteroidales species in the human gut. However, we also found that established ecosystems can harbor strains with distinct T6SS of all genetic architectures. This is the first study to comprehensively analyze of the presence and diversity of T6SS loci within an order of bacteria and to analyze T6SSs of bacteria from a natural community. These studies demonstrate that more than

  20. Signature of genetic associations in oral cancer.

    Science.gov (United States)

    Sharma, Vishwas; Nandan, Amrita; Sharma, Amitesh Kumar; Singh, Harpreet; Bharadwaj, Mausumi; Sinha, Dhirendra Narain; Mehrotra, Ravi

    2017-10-01

    Oral cancer etiology is complex and controlled by multi-factorial events including genetic events. Candidate gene studies, genome-wide association studies, and next-generation sequencing identified various chromosomal loci to be associated with oral cancer. There is no available review that could give us the comprehensive picture of genetic loci identified to be associated with oral cancer by candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based approaches. A systematic literature search was performed in the PubMed database to identify the loci associated with oral cancer by exclusive candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based study approaches. The information of loci associated with oral cancer is made online through the resource "ORNATE." Next, screening of the loci validated by candidate gene studies and next-generation sequencing approach or by two independent studies within candidate gene studies or next-generation sequencing approaches were performed. A total of 264 loci were identified to be associated with oral cancer by candidate gene studies, genome-wide association studies, and next-generation sequencing approaches. In total, 28 loci, that is, 14q32.33 (AKT1), 5q22.2 (APC), 11q22.3 (ATM), 2q33.1 (CASP8), 11q13.3 (CCND1), 16q22.1 (CDH1), 9p21.3 (CDKN2A), 1q31.1 (COX-2), 7p11.2 (EGFR), 22q13.2 (EP300), 4q35.2 (FAT1), 4q31.3 (FBXW7), 4p16.3 (FGFR3), 1p13.3 (GSTM1-GSTT1), 11q13.2 (GSTP1), 11p15.5 (H-RAS), 3p25.3 (hOGG1), 1q32.1 (IL-10), 4q13.3 (IL-8), 12p12.1 (KRAS), 12q15 (MDM2), 12q13.12 (MLL2), 9q34.3 (NOTCH1), 17p13.1 (p53), 3q26.32 (PIK3CA), 10q23.31 (PTEN), 13q14.2 (RB1), and 5q14.2 (XRCC4), were validated to be associated with oral cancer. "ORNATE" gives a snapshot of genetic loci associated with oral cancer. All 28 loci were validated to be linked to oral cancer for which further fine-mapping followed by gene-by-gene and gene

  1. Biology and applications of human minisatellite loci.

    Science.gov (United States)

    Armour, J A; Jeffreys, A J

    1992-12-01

    Highly repetitive minisatellites' include the most variable human loci described to date. They have proved invaluable in a wide variety of genetic analyses, and despite some controversies surrounding their practical implementation, have been extensively adopted in civil and forensic casework. Molecular analysis of internal allelic structure has provided detailed insights into the repeat-unit turnover mechanisms operating in germline mutations, which are ultimately responsible for the extreme variability seen at these loci.

  2. Genetic Diversity and Sequence Variations at Growth Hormone Loci among Composite and Hereford Populations of Beef Cattle

    Directory of Open Access Journals (Sweden)

    ALAN J. LYMBERY

    2000-07-01

    Full Text Available A total of 194 Hereford and 235 composite breed cattle from Wokalup Research Station were used in this study. The aims of the study were to: Investigate polymorphisms in the growth hormone gene in the composite and purebred Hereford herds from the Wokalup selection experiment, compare genetic diversity in the growth hormone gene of the breeds, sequencing and compare the sequences of growth hormone loci between composite and purebred Hereford herds with published sequence from Genebank. The genomic DNA was extracted using Wizard genomic DNA purification system from Promega. Two fragments of growth hormone gene were amplified using PCR and continued with RFLP. Each genotype in both loci was sequenced. PCR products of each genotypes were cloned into PCR II, transformed, colonies selection, plasmid DNA extraction continued with cycle sequencing. Polymorphisms were found in both breeds of cattle in both loci of GH-L1 and GH-L2 of the growth hormone gene by PCR-RFLP analysis. Sequencing analysis confirmed the RFLPs data, polymorphism detected using AluI at GH-L1 is due to substitution between leusin/ valine at position 127, while polymorphism at the MspI restriction site was caused by transition of C to T at +837 position.

  3. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes

    DEFF Research Database (Denmark)

    Imamura, Minako; Takahashi, Atsushi; Yamauchi, Toshimasa

    2016-01-01

    Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery and ...

  4. Large scale association analysis identifies three susceptibility loci for coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Stephanie Saade

    Full Text Available Genome wide association studies (GWAS and their replications that have associated DNA variants with myocardial infarction (MI and/or coronary artery disease (CAD are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3, and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (OR=0.68, p=0.0035, while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (OR=1.33, p=0.0086. Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology.

  5. Characterisation of 12 microsatellite loci in the Vietnamese commercial clam Lutraria rhynchaena Jonas 1844 (Heterodonta: Bivalvia: Mactridae) through next-generation sequencing.

    Science.gov (United States)

    Thai, Binh Thanh; Tan, Mun Hua; Lee, Yin Peng; Gan, Han Ming; Tran, Trang Thi; Austin, Christopher M

    2016-05-01

    The marine clam Lutraria rhynchaena is gaining popularity as an aquaculture species in Asia. Lutraria populations are present in the wild throughout Vietnam and several stocks have been established and translocated for breeding and aquaculture grow-out purposes. In this study, we demonstrate the feasibility of utilising Illumina next-generation sequencing technology to streamline the identification and genotyping of microsatellite loci from this clam species. Based on an initial partial genome scan, 48 microsatellite markers with similar melting temperatures were identified and characterised. The 12 most suitable polymorphic loci were then genotyped using 51 individuals from a population in Quang Ninh Province, North Vietnam. Genetic variation was low (mean number of alleles per locus = 2.6; mean expected heterozygosity = 0.41). Two loci showed significant deviation from Hardy-Weinberg equilibrium (HWE) and the presence of null alleles, but there was no evidence of linkage disequilibrium among loci. Three additional populations were screened (n = 7-36) to test the geographic utility of the 12 loci, which revealed 100 % successful genotyping in two populations from central Vietnam (Nha Trang). However, a second population from north Vietnam (Co To) could not be successfully genotyped and morphological evidence and mitochondrial variation suggests that this population represents a cryptic species of Lutraria. Comparisons of the Qang Ninh and Nha Trang populations, excluding the 2 loci out of HWE, revealed statistically significant allelic variation at 4 loci. We reported the first microsatellite loci set for the marine clam Lutraria rhynchaena and demonstrated its potential in differentiating clam populations. Additionally, a cryptic species population of Lutraria rhynchaena was identified during initial loci development, underscoring the overlooked diversity of marine clam species in Vietnam and the need to genetically characterise population representatives prior

  6. Application of computational methods in genetic study of inflammatory bowel disease.

    Science.gov (United States)

    Li, Jin; Wei, Zhi; Hakonarson, Hakon

    2016-01-21

    Genetic factors play an important role in the etiology of inflammatory bowel disease (IBD). The launch of genome-wide association study (GWAS) represents a landmark in the genetic study of human complex disease. Concurrently, computational methods have undergone rapid development during the past a few years, which led to the identification of numerous disease susceptibility loci. IBD is one of the successful examples of GWAS and related analyses. A total of 163 genetic loci and multiple signaling pathways have been identified to be associated with IBD. Pleiotropic effects were found for many of these loci; and risk prediction models were built based on a broad spectrum of genetic variants. Important gene-gene, gene-environment interactions and key contributions of gut microbiome are being discovered. Here we will review the different types of analyses that have been applied to IBD genetic study, discuss the computational methods for each type of analysis, and summarize the discoveries made in IBD research with the application of these methods.

  7. Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies.

    Science.gov (United States)

    Nettleton, Jennifer A; McKeown, Nicola M; Kanoni, Stavroula; Lemaitre, Rozenn N; Hivert, Marie-France; Ngwa, Julius; van Rooij, Frank J A; Sonestedt, Emily; Wojczynski, Mary K; Ye, Zheng; Tanaka, Tosh; Garcia, Melissa; Anderson, Jennifer S; Follis, Jack L; Djousse, Luc; Mukamal, Kenneth; Papoutsakis, Constantina; Mozaffarian, Dariush; Zillikens, M Carola; Bandinelli, Stefania; Bennett, Amanda J; Borecki, Ingrid B; Feitosa, Mary F; Ferrucci, Luigi; Forouhi, Nita G; Groves, Christopher J; Hallmans, Goran; Harris, Tamara; Hofman, Albert; Houston, Denise K; Hu, Frank B; Johansson, Ingegerd; Kritchevsky, Stephen B; Langenberg, Claudia; Launer, Lenore; Liu, Yongmei; Loos, Ruth J; Nalls, Michael; Orho-Melander, Marju; Renstrom, Frida; Rice, Kenneth; Riserus, Ulf; Rolandsson, Olov; Rotter, Jerome I; Saylor, Georgia; Sijbrands, Eric J G; Sjogren, Per; Smith, Albert; Steingrímsdóttir, Laufey; Uitterlinden, André G; Wareham, Nicholas J; Prokopenko, Inga; Pankow, James S; van Duijn, Cornelia M; Florez, Jose C; Witteman, Jacqueline C M; Dupuis, Josée; Dedoussis, George V; Ordovas, Jose M; Ingelsson, Erik; Cupples, L Adrienne; Siscovick, David S; Franks, Paul W; Meigs, James B

    2010-12-01

    Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.

  8. Isolation and characterization of polymorphic microsatellite loci in the green leafhopper Empoasca vitis Goethe (Homoptera).

    Science.gov (United States)

    Papura, D; Giresse, X; Chauvin, B; Caron, H; Delmotte, F; VAN Helden, M

    2009-05-01

    Eight dinucleotide microsatellite loci were isolated and characterized within the green leafhopper Empoasca vitis (Goethe) using an enrichment cloning procedure. Primers were tested on 171 individuals collected in the southwest of France from the vine plants. The identified loci were polymorphic, with allelic diversity ranging from two to 18 alleles per locus. Observed heterozygosities were from 0.021 to 0.760. These microsatellite markers should prove to be a useful tool for estimating the population genetic structure, host-plant specialization and migration capacity of this insect. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  9. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    DEFF Research Database (Denmark)

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A

    2012-01-01

    pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci...... associated with fasting insulin at P triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci...

  10. Comparative radiobiology of genetic loci of eukaryots as the basis of the general theory of mutations

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.

    1983-01-01

    One of the fundamental problems of modern molecular cellular radiobiology is to reveal general and peculiar processes of the formation of gene mutations and chromosome aberrations in each stage of their formation in the irradiated genome of the higher eukaryots. The solution of the problems depends on the development of research within the framework of comparative radiobiology of genetic loci of the higher eukaryots that makes it possible to study quantitative regularities in the formation of gene (point) mutations and chromosome aberrations in one object and in the same experiment

  11. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers

    NARCIS (Netherlands)

    Lauc, G.; Huffman, J.E.; Pucic, M.; Zgaga, L.; Adamczyk, B.; Muzinic, A.; Novokmet, M.; Polasek, O.; Gornik, O.; Kristic, J.; Keser, T.; Vitart, V.; Scheijen, B.; Uh, H.W.; Molokhia, M.; Patrick, A.L.; McKeigue, P.; Kolcic, I.; Lukic, I.K.; Swann, O.; Leeuwen, F.N. van; Ruhaak, L.R.; Houwing-Duistermaat, J.J.; Slagboom, P.E.; Beekman, M.; Craen, A.J. de; Deelder, A.M.; Zeng, Q.; Wang, W.; Hastie, N.D.; Gyllensten, U.; Wilson, J.F.; Wuhrer, M.; Wright, A.F.; Rudd, P.M.; Hayward, C.; Aulchenko, Y.; Campbell, H.; Rudan, I.

    2013-01-01

    Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative

  12. Utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Baker, B.S.; Carpenter, A.T.C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by uv and x rays. Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells

  13. iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Piriyapongsa Jittima

    2012-12-01

    Full Text Available Abstract Background Genome-wide association studies (GWAS do not provide a full account of the heritability of genetic diseases since gene-gene interactions, also known as epistasis are not considered in single locus GWAS. To address this problem, a considerable number of methods have been developed for identifying disease-associated gene-gene interactions. However, these methods typically fail to identify interacting markers explaining more of the disease heritability over single locus GWAS, since many of the interactions significant for disease are obscured by uninformative marker interactions e.g., linkage disequilibrium (LD. Results In this study, we present a novel SNP interaction prioritization algorithm, named iLOCi (Interacting Loci. This algorithm accounts for marker dependencies separately in case and control groups. Disease-associated interactions are then prioritized according to a novel ranking score calculated from the difference in marker dependencies for every possible pair between case and control groups. The analysis of a typical GWAS dataset can be completed in less than a day on a standard workstation with parallel processing capability. The proposed framework was validated using simulated data and applied to real GWAS datasets using the Wellcome Trust Case Control Consortium (WTCCC data. The results from simulated data showed the ability of iLOCi to identify various types of gene-gene interactions, especially for high-order interaction. From the WTCCC data, we found that among the top ranked interacting SNP pairs, several mapped to genes previously known to be associated with disease, and interestingly, other previously unreported genes with biologically related roles. Conclusion iLOCi is a powerful tool for uncovering true disease interacting markers and thus can provide a more complete understanding of the genetic basis underlying complex disease. The program is available for download at http://www4a.biotec.or.th/GI/tools/iloci.

  14. Genetic polymorphism study on 12 X STR loci of investigator Argus X STR kit in Bhil tribal population of Madhya Pradesh, India.

    Science.gov (United States)

    Shrivastava, Pankaj; Jain, Toshi; Gupta, Umang; Trivedi, Veena Ben

    2015-05-01

    The analysis of 12 X STR loci (DXS10103, DXS8378, DXS7132, DXS10134, DXS10074, DXS10101, DXS10135, DXS7423, DXS10146, DXS10079, HPRTB and DXS10148) belonging to four linkage group was done in 183 (100 males and 83 females) unrelated members of Bhil population. Heterozygosity among the studied 12 X STR loci showed a distribution of from 59.7% to 92.8%. No significant difference was recorded in the allele frequencies of males and females. The loci DXS10135 and DXS10101 were found to be most polymorphic. Haplotype diversity was found to be higher than 0.990 for all the four linkage groups. A total of 86, 69, 71 and 71 haplotypes were observed for linkage group I, II, III and IV, respectively. The results showed departure from Hardy-Weinberg equilibrium with respect to three loci DXS10079, DXS10135 and DXS10101. This is first report on these 12 X STR markers from India. All the loci in the Argus X 12 kit were fairly informative in the Bhil population and the population showed significant genetic variation with all the compared populations from other parts of the world. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. The genetics of muscle atrophy and growth: the impact and implications of polymorphisms in animals and humans.

    Science.gov (United States)

    Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P

    2005-10-01

    Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.

  16. Species delimitation in lemurs: multiple genetic loci reveal low levels of species diversity in the genus Cheirogaleus

    Directory of Open Access Journals (Sweden)

    Rasoloarison Rodin M

    2009-02-01

    Full Text Available Abstract Background Species are viewed as the fundamental unit in most subdisciplines of biology. To conservationists this unit represents the currency for global biodiversity assessments. Even though Madagascar belongs to one of the top eight biodiversity hotspots of the world, the taxonomy of its charismatic lemuriform primates is not stable. Within the last 25 years, the number of described lemur species has more than doubled, with many newly described species identified among the nocturnal and small-bodied cheirogaleids. Here, we characterize the diversity of the dwarf lemurs (genus Cheirogaleus and assess the status of the seven described species, based on phylogenetic and population genetic analysis of mtDNA (cytb + cox2 and three nuclear markers (adora3, fiba and vWF. Results This study identified three distinct evolutionary lineages within the genus Cheirogaleus. Population genetic cluster analyses revealed a further layer of population divergence with six distinct genotypic clusters. Conclusion Based on the general metapopulation lineage concept and multiple concordant data sets, we identify three exclusive groups of dwarf lemur populations that correspond to three of the seven named species: C. major, C. medius and C. crossleyi. These three species were found to be genealogically exclusive in both mtDNA and nDNA loci and are morphologically distinguishable. The molecular and morphometric data indicate that C. adipicaudatus and C. ravus are synonymous with C. medius and C. major, respectively. Cheirogaleus sibreei falls into the C. medius mtDNA clade, but in morphological analyses the membership is not clearly resolved. We do not have sufficient data to assess the status of C. minusculus. Although additional patterns of population differentiation are evident, there are no clear subdivisions that would warrant additional specific status. We propose that ecological and more geographic data should be collected to confirm these results.

  17. Patterns of genetic diversity at the nine forensically approved STR loci in the Indian populations.

    Science.gov (United States)

    Dutta, Ranjan; Reddy, B Mohan; Chattopadhyay, P; Kashyap, V K; Sun, Guangyun; Deka, Ranjan

    2002-02-01

    Genetic diversity at the nine short tandem repeat (STR) loci, which are universally approved and widely used for forensic investigations, has been studied among nine Indian populations with diverse ethnic, linguistic, and geographic backgrounds. The nine STR loci were profiled on 902 individuals using fluorescent detection methods on an ABI377 System, with the aid of an Amp-F1 Profiler Plus Kit. The studied populations include two upper castes, Brahmin and Kayastha; a tribe, Garo, from West Bengal; a Hindu caste, Meitei, with historical links to Bengal Brahmins; a migrant group of Muslims; three tribal groups, Naga, Kuki and Hmar, from Manipur in northeast India; and a middle-ranking caste, Golla, who are seminomadic herders from Andhra Pradesh. Gene diversity analysis suggests that the average heterozygosity is uniformly high (>0.8) in the studied populations, with the coefficient of gene differentiation at 0.050 +/- 0.0054. Both neighbor-joining (NJ) and unweighted pair group method with arithmetic mean (UPGMA) trees based on DA distances bring out distinct clusters that are consistent with ethnic, linguistic, and/or geographic backgrounds of the populations. The fit of the Harpending and Ward model of regression of average heterozygosity on the gene frequency centroid is found to be good, and the observed outliers are consistent with the population structure and history of the studied populations. Our study suggests that the nine STR loci, used so far mostly for forensic investigations, can be used fruitfully for microevolutionary studies as well, and for reconstructing the phylogenetic history of human populations, at least at the local level.

  18. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti

    Directory of Open Access Journals (Sweden)

    Streit Thomas G

    2009-12-01

    Full Text Available Abstract Background Microsatellite markers have proven useful in genetic studies in many organisms, yet microsatellite-based studies of the dengue and yellow fever vector mosquito Aedes aegypti have been limited by the number of assayable and polymorphic loci available, despite multiple independent efforts to identify them. Here we present strategies for efficient identification and development of useful microsatellites with broad coverage across the Aedes aegypti genome, development of multiplex-ready PCR groups of microsatellite loci, and validation of their utility for population analysis with field collections from Haiti. Results From 79 putative microsatellite loci representing 31 motifs identified in 42 whole genome sequence supercontig assemblies in the Aedes aegypti genome, 33 microsatellites providing genome-wide coverage amplified as single copy sequences in four lab strains, with a range of 2-6 alleles per locus. The tri-nucleotide motifs represented the majority (51% of the polymorphic single copy loci, and none of these was located within a putative open reading frame. Seven groups of 4-5 microsatellite loci each were developed for multiplex-ready PCR. Four multiplex-ready groups were used to investigate population genetics of Aedes aegypti populations sampled in Haiti. Of the 23 loci represented in these groups, 20 were polymorphic with a range of 3-24 alleles per locus (mean = 8.75. Allelic polymorphic information content varied from 0.171 to 0.867 (mean = 0.545. Most loci met Hardy-Weinberg expectations across populations and pairwise FST comparisons identified significant genetic differentiation between some populations. No evidence for genetic isolation by distance was observed. Conclusion Despite limited success in previous reports, we demonstrate that the Aedes aegypti genome is well-populated with single copy, polymorphic microsatellite loci that can be uncovered using the strategy developed here for rapid and efficient

  19. Genetic polymorphisms of 18 short tandem repeat loci in 3550 individuals from the Han population of Changchun, Northeast China.

    Science.gov (United States)

    Feng, Zhen; Xia, Mingying; Bao, Helai; Wang, Linlin; Jin, Li; Li, Liming; Li, Shilin

    2016-11-01

    In this study, we analyzed 18 autosomal STRs on 3550 unrelated individuals collected from the Han population of Changchun. No significant deviation from Hardy-Weinberg equilibrium was observed at all STR loci, and the expected heterozygosity ranged from 0.6275 to 0.9207. The combined match probability (CMP) was 2.42 × 10 - 22 , and the combined power of discrimination (CPD) was 99.9999999999999999999758 %. Changchun Han showed no significant difference between northern and eastern Han populations at nearly all STR loci, but had significant differences between southern Han at multiple STRs, as well as other Chinese ethnic populations. The phylogenetic analysis also showed that Changchun Han is genetically close to northern Hans, suggesting that the Han population of Changchun could mainly come from northern China.

  20. Population genetic structure of the blue-fronted Amazon (Amazona aestiva, Psittacidae: Aves) based on nuclear microsatellite loci: implications for conservation.

    Science.gov (United States)

    Leite, K C E; Seixas, G H F; Berkunsky, I; Collevatti, R G; Caparroz, R

    2008-09-09

    The blue-fronted Amazon (Amazona aestiva) is a widely distributed Neotropical parrot and one of the most captured parrots in nature to supply the illegal trade of wild animals. The objectives of the present study were to analyze the genetic structure of A. aestiva to identify management units and support conservation planning and to verified if A. aestiva populations have undergone a recent bottleneck due to habitat loss and capture for the pet trade. The genetic structure was accessed by analyzing six microsatellite loci in 74 individuals of A. aestiva, including samples from the two subspecies (A. a. aestiva and A. a. xanthopteryx), from five populations: four in Brazil and one in Argentina. A significant genetic differentiation (theta = 0.007, p = 0.005) could be detected only between the most distant populations, Tocantins and Argentina, localized at the northeast and southwest limits of the sample sites, respectively. There was no evidence of inbreeding within or between populations, suggesting random mating among individuals. These results suggest a clinal distribution of genetic variability, as observed for variation in plumage color of the two A. aestiva subspecies. Bottleneck analysis did not show a recent reduction in population size. Thus, for the management and conservation of the species, the populations from Argentina and Tocantins should be considered as different management units, and the other populations from the center of the geographical distribution as another management unit.

  1. Genetics of Human and Canine Dilated Cardiomyopathy.

    Science.gov (United States)

    Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F N; Cobb, Malcolm; Mongan, Nigel P; Rutland, Catrin S

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed.

  2. A comparison of genetic map distance and linkage disequilibrium between 15 polymorphic dinucleotide repeat loci in two populations

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, M.; Goldman, D.; Long, J.C. [Lab. of Neurogenetics, Rockville, MD (United States)

    1994-09-01

    Linkage disequilibrium has recently been used to map the diastrophic dysplasia gene in a Finnish sample. One advantage of this method is that the large pedigrees required by some other methods are unnecessary. Another advantage is that linkage disequilibrium mapping capitalizes on the cumulative history of recombination events, rather than those occurring within the sampled individuals. A potential limitation of linkage disequilibrium mapping is that linkage equilibrium is likely to prevail in all but the most isolated populations, e.g., those which have recently experienced founder effects or severe population bottlenecks. In order to test the method`s generality, we examined patterns of linkage disequilibrium between pairs of loci within a known genetic map. Two populations were analyzed. The first population, Navajo Indians (N=45), is an isolate that experienced a severe bottleneck in the 1860`s. The second population, Maryland Caucasians (N=45), is cosmopolitan. We expected the Navajo sample to display more linkage disequilibrium than the Caucasian sample, and possibly that the Navajo disequilibrium pattern would reflect the genetic map. Linkage disequilibrium coefficients were estimated between pairs of alleles at different loci using maximum likelihood. The genetic isolate structure of Navajo Indians is confirmed by the DNA typings. Heterozygosity is lower than in the Caucasians, and fewer different alleles are observed. However, a relationship between genetic map distance and linkage disequilibrium could be discerned in neither the Navajo nor the Maryland samples. Slightly more linkage disequilibrium was observed in the Navajos, but both data sets were characterized by very low disequilibrium levels. We tentatively conclude that linkage disequilibrium mapping with dinucleotide repeats will only be useful with close linkage between markers and diseases, even in very isolated populations.

  3. Genetic diversity of 21 autosomal STR loci in the Han population from Sichuan province, Southwest China.

    Science.gov (United States)

    He, Guanglin; Li, Ye; Wang, Zheng; Liang, Weibo; Luo, Haibo; Liao, Miao; Zhang, Ji; Yan, Jing; Li, Yingbi; Hou, Yiping; Wu, Jin

    2017-11-01

    Exploration of the ethnic origin and genetic differentiation of 56 Chinese officially recognized nationalities populations played a fundamental role in the research field of population genetics, forensic science, linguistics, anthropology, and archaeology. In the present study, population data of 21 autosomal STR loci (CSF1PO, D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, D2S1338, D2S441, D3S1358, D5S818, D6S1043, D7S820, D8S1179, FGA, Penta D, Penta E, TH01, TPOX, and vWA) included in the AGCU EX22 kit in 2793 Southwest Han Chinese individuals was obtained and population genetic relationships among 28 Chinese populations were investigated. Our study indicated that the twenty-one autosomal STRs are highly polymorphic in the Sichuan Han population and can be used as a powerful tool in the routine forensic usage. MDS and phylogenetic analysis suggested that the Sichuan Han population kept a close genetic relationship with the southwest populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali

    2016-01-01

    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112...... (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell......-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P cancer meta-analysis. SIGNIFICANCE...

  5. Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity.

    Science.gov (United States)

    Thabuis, A; Palloix, A; Pflieger, S; Daubèze, A-M; Caranta, C; Lefebvre, V

    2003-05-01

    Phytophthora capsici Leonian, known as the causal agent of the stem, collar and root rot, is one of the most serious problems limiting the pepper crop in many areas in the world. Genetic resistance to the parasite displays complex inheritance. Quantitative trait locus (QTL) analysis was performed in three intraspecific pepper populations, each involving an unrelated resistant accession. Resistance was evaluated by artificial inoculations of roots and stems, allowing the measurement of four components involved in different steps of the plant-pathogen interaction. The three genetic maps were aligned using common markers, which enabled the detection of QTLs involved in each resistance component and the comparison of resistance factors existing among the three resistant accessions. The major resistance factor was found to be common to the three populations. Another resistance factor was found conserved between two populations, the others being specific to a single cross. This comparison across intraspecific germplasm revealed a large variability for quantitative resistance loci to P. capsici. It also provided insights both into the allelic relationships between QTLs across pepper germplasm and for the comparative mapping of resistance factors across the Solanaceae.

  6. Isolation and Characterization of Eleven Polymorphic Microsatellite Loci for the Valuable Medicinal Plant Dendrobium huoshanense and Cross-Species Amplification

    Science.gov (United States)

    Wang, Hui; Chen, Nai-Fu; Zheng, Ji-Yang; Wang, Wen-Cai; Pei, Yun-Yun; Zhu, Guo-Ping

    2012-01-01

    Dendrobium huoshanense (Orchidaceae) is a perennial herb and a widely used medicinal plant in Traditional Chinese medicine (TCM) endemic to Huoshan County town in Anhui province in Southeast China. A microsatellite-enriched genomic DNA library of D. huoshanense was developed and screened to identify marker loci. Eleven polymorphic loci were isolated and analyzed by screening 25 individuals collected from a natural population. The number of alleles per locus ranged from 2 to 5. The observed and expected heterozygosities ranged from 0.227 to 0.818 and from 0.317 to 0.757, respectively. Two loci showed significant deviations from Hardy-Weinberg equilibrium and four of the pairwise comparisons of loci revealed linkage disequilibrium (p < 0.05). These microsatellite loci were cross-amplified for five congeneric species and seven loci can be amplified in all species. These simple sequence repeats (SSR) markers are useful in genetic studies of D. huoshanense and other related species and in conservation decision-making. PMID:23222682

  7. Population genetics of 26 Y-STR loci for the Han ethnic in Hunan province, China.

    Science.gov (United States)

    Jiang, Weibo; Gong, Zheng; Rong, Haibo; Guan, Hua; Zhang, Tao; Zhao, Yihe; Fu, Xiaoliang; Zha, Lagabaiyila; Jin, Chuan; Ding, Yanjun

    2017-01-01

    To study the population data of Y-chromosome STRs (Y-STRs) of Han population resided in Hunan province, we analyzed haplotypes of 26 Y-STRs (DYS19, DYS385a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS481, DYS533, DYS549, DYS570, DYS576, DYS635, DYS643, DYS388, DYS449, DYS460, and YGATAH4) in 310 unrelated male individuals using a commercially available Goldeneye® DNA ID 26Y system. The calculated average gene diversity values ranged from 0.4211 to 0.9590 for DYS438 and DYS385a/b loci, respectively. The discriminatory capacity was 96.77 % with 300 observed haplotypes. Population relationships between Hunan Han and eight other populations available from Y-chromosome haplotype reference database (YHRD) were compared. The results showed that the Han population resided in the Hunan district is significantly different from other populations. Our results also indicated that these 26 Y-STR loci were highly genetically polymorphic in the Hunan Han population and of great value in forensic application.

  8. Expression quantitative trait loci and genetic regulatory network analysis reveals that Gabra2 is involved in stress responses in the mouse.

    Science.gov (United States)

    Dai, Jiajuan; Wang, Xusheng; Chen, Ying; Wang, Xiaodong; Zhu, Jun; Lu, Lu

    2009-11-01

    Previous studies have revealed that the subunit alpha 2 (Gabra2) of the gamma-aminobutyric acid receptor plays a critical role in the stress response. However, little is known about the gentetic regulatory network for Gabra2 and the stress response. We combined gene expression microarray analysis and quantitative trait loci (QTL) mapping to characterize the genetic regulatory network for Gabra2 expression in the hippocampus of BXD recombinant inbred (RI) mice. Our analysis found that the expression level of Gabra2 exhibited much variation in the hippocampus across the BXD RI strains and between the parental strains, C57BL/6J, and DBA/2J. Expression QTL (eQTL) mapping showed three microarray probe sets of Gabra2 to have highly significant linkage likelihood ratio statistic (LRS) scores. Gene co-regulatory network analysis showed that 10 genes, including Gria3, Chka, Drd3, Homer1, Grik2, Odz4, Prkag2, Grm5, Gabrb1, and Nlgn1 are directly or indirectly associated with stress responses. Eleven genes were implicated as Gabra2 downstream genes through mapping joint modulation. The genetical genomics approach demonstrates the importance and the potential power of the eQTL studies in identifying genetic regulatory networks that contribute to complex traits, such as stress responses.

  9. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M; McLaughlin, Russell L; Diekstra, Frank P; Pulit, Sara L; van der Spek, Rick A A; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R; Yang, Jian; Fogh, Isabella; van Doormaal, Perry Tc; Tazelaar, Gijs H P; Koppers, Max; Blokhuis, Anna M; Sproviero, William; Jones, Ashley R; Kenna, Kevin P; van Eijk, Kristel R; Harschnitz, Oliver; Schellevis, Raymond D; Brands, William J; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E; Shaw, Pamela J; Hardy, John; Orrell, Richard W; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A.; Staats, Kim A; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; Van Deerlin, Vivianna M; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Basak, A Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A M; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M; van der Kooi, Anneke J; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E; Smith, Bradley N; Pansarasa, Orietta; Cereda, Cristina; Del Bo, Roberto; Comi, Giacomo P; D'Alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P; Fifita, Jennifer A; Nicholson, Garth A; Rowe, Dominic B; Pamphlett, Roger; Kiernan, Matthew C; Grosskreutz, Julian; Witte, Otto W; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A; Leigh, P Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C; Weishaupt, Jochen H; Robberecht, Wim; Van Damme, Philip; Franke, Lude; Pers, Tune H; Brown, Robert H; Glass, Jonathan D; Landers, John E; Hardiman, Orla; Andersen, Peter M; Corcia, Philippe; Vourc'h, Patrick; Silani, Vincenzo; Wray, Naomi R; Visscher, Peter M; de Bakker, Paul I W; van Es, Michael A; Pasterkamp, R Jeroen; Lewis, Cathryn M; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan H

    To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577

  10. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M.; McLaughlin, Russell L.; Diekstra, Frank P.; Pulit, Sara L.; van der Spek, Rick A. A.; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R.; Yang, Jian; Fogh, Isabella; van Doormaal, Perry Tc; Tazelaar, Gijs H. P.; Koppers, Max; Blokhuis, Anna M.; Sproviero, William; Jones, Ashley R.; Kenna, Kevin P.; van Eijk, Kristel R.; Harschnitz, Oliver; Schellevis, Raymond D.; Brands, William J.; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S.; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E.; Shaw, Pamela J.; Hardy, John; Orrell, Richard W.; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A.; Staats, Kim A.; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; van Deerlin, Vivianna M.; Trojanowski, John Q.; Elman, Lauren; McCluskey, Leo; Basak, A. Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R.; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A. M.; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W.; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M.; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G.; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M.; van der Kooi, Anneke J.; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E.; Smith, Bradley N.; Pansarasa, Orietta; Cereda, Cristina; del Bo, Roberto; Comi, Giacomo P.; D'alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P.; Fifita, Jennifer A.; Nicholson, Garth A.; Rowe, Dominic B.; Pamphlett, Roger; Kiernan, Matthew C.; Grosskreutz, Julian; Witte, Otto W.; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A.; Leigh, P. Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C.; Weishaupt, Jochen H.; Robberecht, Wim; van Damme, Philip; Franke, Lude; Pers, Tune H.; Brown, Robert H.; Glass, Jonathan D.; Landers, John E.; Hardiman, Orla; Andersen, Peter M.; Corcia, Philippe; Vourc'h, Patrick; Silani, Vincenzo; Wray, Naomi R.; Visscher, Peter M.; de Bakker, Paul I. W.; van Es, Michael A.; Pasterkamp, R. Jeroen; Lewis, Cathryn M.; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H.; Veldink, Jan H.

    2016-01-01

    To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577

  11. Microsatellite loci discovery from next-generation sequencing data and loci characterization in the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Christine Ewers-Saucedo

    2016-05-01

    Full Text Available Microsatellite markers remain an important tool for ecological and evolutionary research, but are unavailable for many non-model organisms. One such organism with rare ecological and evolutionary features is the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1758. Chelonibia testudinaria appears to be a host generalist, and has an unusual sexual system, androdioecy. Genetic studies on host specificity and mating behavior are impeded by the lack of fine-scale, highly variable markers, such as microsatellite markers. In the present study, we discovered thousands of new microsatellite loci from next-generation sequencing data, and characterized 12 loci thoroughly. We conclude that 11 of these loci will be useful markers in future ecological and evolutionary studies on C. testudinaria.

  12. Microsatellite loci discovery from next-generation sequencing data and loci characterization in the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1758)

    Science.gov (United States)

    Zardus, John D.; Wares, John P.

    2016-01-01

    Microsatellite markers remain an important tool for ecological and evolutionary research, but are unavailable for many non-model organisms. One such organism with rare ecological and evolutionary features is the epizoic barnacle Chelonibia testudinaria (Linnaeus, 1758). Chelonibia testudinaria appears to be a host generalist, and has an unusual sexual system, androdioecy. Genetic studies on host specificity and mating behavior are impeded by the lack of fine-scale, highly variable markers, such as microsatellite markers. In the present study, we discovered thousands of new microsatellite loci from next-generation sequencing data, and characterized 12 loci thoroughly. We conclude that 11 of these loci will be useful markers in future ecological and evolutionary studies on C. testudinaria. PMID:27231653

  13. Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers

    NARCIS (Netherlands)

    Plant, Darren; Flynn, Edward; Mbarek, Hamdi; Dieudé, Philippe; Cornelis, François; Arlestig, Lisbeth; Dahlqvist, Solbritt Rantapää; Goulielmos, George; Boumpas, Dimitrios T; Sidiropoulos, Prodromos; Johansen, Julia S; Ørnbjerg, Lykke M; Hetland, Merete Lund; Klareskog, Lars; Filer, Andrew; Buckley, Christopher D; Raza, Karim; Witte, Torsten; Schmidt, Reinhold E; Worthington, Jane

    BACKGROUND: Genetic factors have a substantial role in determining development of rheumatoid arthritis (RA), and are likely to account for 50-60% of disease susceptibility. Genome-wide association studies have identified non-human leucocyte antigen RA susceptibility loci which associate with RA with

  14. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1

    Science.gov (United States)

    Cai, Qiuyin; Zhang, Ben; Sung, Hyuna; Low, Siew-Kee; Kweon, Sun-Seog; Lu, Wei; Shi, Jiajun; Long, Jirong; Wen, Wanqing; Choi, Ji-Yeob; Noh, Dong-Young; Shen, Chen-Yang; Matsuo, Keitaro; Teo, Soo-Hwang; Kim, Mi Kyung; Khoo, Ui Soon; Iwasaki, Motoki; Hartman, Mikael; Takahashi, Atsushi; Ashikawa, Kyota; Matsuda, Koichi; Shin, Min-Ho; Park, Min Ho; Zheng, Ying; Xiang, Yong-Bing; Ji, Bu-Tian; Park, Sue K.; Wu, Pei-Ei; Hsiung, Chia-Ni; Ito, Hidemi; Kasuga, Yoshio; Kang, Peter; Mariapun, Shivaani; Ahn, Sei Hyun; Kang, Han Sung; Chan, Kelvin Y. K.; Man, Ellen P. S.; Iwata, Hiroji; Tsugane, Shoichiro; Miao, Hui; Liao, Jiemin; Nakamura, Yusuke; Kubo, Michiaki; Delahanty, Ryan J.; Zhang, Yanfeng; Li, Bingshan; Li, Chun; Gao, Yu-Tang; Shu, Xiao-Ou; Kang, Daehee; Zheng, Wei

    2014-01-01

    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified three novel genetic loci associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene, P = 8.82 × 10−9), rs10474352 at 5q14.3 (near the ARRDC3 gene, P = 1.67 × 10−9), and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene, P = 4.25 × 10−8). These associations were replicated in European-ancestry populations including 16,003 cases and 41,335 controls (P = 0.030, 0.004, and 0.010, respectively). Data from the ENCODE project suggest that variants rs4951011 and rs10474352 may be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer. PMID:25038754

  15. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease

    Science.gov (United States)

    Zhao, Wei; Rasheed, Asif; Tikkanen, Emmi; Lee, Jung-Jin; Butterworth, Adam S; Howson, Joanna MM; Assimes, Themistocles L; Chowdhury, Rajiv; Orho-Melander, Marju; Damrauer, Scott; Small, Aeron; Asma, Senay; Imamura, Minako; Yamauch, Toshimasa; Chambers, John C; Chen, Peng; Sapkota, Bishwa R; Shah, Nabi; Jabeen, Sehrish; Surendran, Praveen; Lu, Yingchang; Zhang, Weihua; Imran, Atif; Abbas, Shahid; Majeed, Faisal; Trindade, Kevin; Qamar, Nadeem; Mallick, Nadeem Hayyat; Yaqoob, Zia; Saghir, Tahir; Rizvi, Syed Nadeem Hasan; Memon, Anis; Rasheed, Syed Zahed; Memon, Fazal-ur-Rehman; Mehmood, Khalid; Ahmed, Naveeduddin; Qureshi, Irshad Hussain; Tanveer-us-Salam; Iqbal, Wasim; Malik, Uzma; Mehra, Narinder; Kuo, Jane Z; Sheu, Wayne H-H; Guo, Xiuqing; Hsiung, Chao A; Juang, Jyh-Ming J; Taylor, Kent D; Hung, Yi-Jen; Lee, Wen-Jane; Quertermous, Thomas; Lee, I-Te; Hsu, Chih-Cheng; Bottinger, Erwin P.; Ralhan, Sarju; Teo, Yik Ying; Wang, Tzung-Dau; Alam, Dewan S; Di Angelantonio, Emanuele; Epstein, Steve; Nielsen, Sune F; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Young, Robin; Benn, Marianne; Frikke-Schmidt, Ruth; Kamstrup, Pia R; Biobank, Michigan; Jukema, J Wouter; Sattar, Naveed; Smit, Roelof; Chung, Ren-Hua; Liang, Kae-Woei; Anand, Sonia; Sanghera, Dharambir K; Ripatti, Samuli; Loos, Ruth J.F.; Kooner, Jaspal S; Tai, E Shyong; Rotter, Jerome I; Chen, Yii-Der Ida; Frossard, Philippe; Maeda, Shiro; Kadowaki, Takashi; Reilly, Muredach; Pare, Guillaume; Melander, Olle; Salomaa, Veikko; Rader, Daniel J; Danesh, John; Voight, Benjamin F; Saleheen, Danish

    2018-01-01

    To evaluate the shared genetic etiology of type-2 diabetes (T2D) and coronary heart disease (CHD), we conducted a multi-ethnic study of genetic variation genome-wide for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for T2D and one for CHD, including a novel T2D association at a missense variant in HLA-DRB5 (OR=1.29). We show that genetically mediated increase in T2D risk also confers higher CHD risk. Joint analysis of T2D loci demonstrated that 24% are associated with CHD, highlighting eight variants - two of which are coding - where T2D and CHD associations appear to co-localize, and a novel joint T2D/CHD association which also replicated for T2D. Variants associated with both outcomes implicate several novel pathways including cellular proliferation and cardiovascular development. PMID:28869590

  16. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor

    DEFF Research Database (Denmark)

    Wang, Zhaoming; McGlynn, Katherine A.; Rajpert-De Meyts, Ewa

    2017-01-01

    The international Testicular Cancer Consortium (TECAC) combined five published genome-wide association studies of testicular germ cell tumor (TGCT; 3,558 cases and 13,970 controls) to identify new susceptibility loci. We conducted a fixed-effects meta-analysis, including, to our knowledge, the fi...

  17. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    NARCIS (Netherlands)

    Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; Lindgren, C.M.; Mägi, R.; Morris, A.P.; Randall, J.; Johnson, T.; Hottenga, J.J.; de Geus, E.J.C.; Kaprio, J.; Kyvik, K.O.; Pedersen, N.L.; Perola, M.; Posthuma, D.; Rivadeneira, F.; Uitterlinden, A.G.; Willems van Dijk, K.; van Hoek, M.; Vogelzangs, N.; Willemsen, G.; Witteman, J.C.M.; Zillikens, M.C.; Penninx, B.W.J.H.; Boomsma, D.I.; van Duijn, C.M.; Aulchenko, Y.S.; Waterworth, D.; Vollenweider, P.; Peltonen, L.; Mooser, V.; Abecasis, G.R.; Wareham, N.J.; Sladek, R.; Froguel, P.; Watanabe, R.M.; Meigs, J.B.; Groop, L.C.; Boehnke, M.; McCarthy, M.I.; Florez, J.C.; Barroso, I.

    2010-01-01

    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up

  18. Development and Characterization of 10 Microsatellite Loci in the Giant Cardon Cactus, Pachycereus pringlei (Cactaceae

    Directory of Open Access Journals (Sweden)

    Carina Gutiérrez Flores

    2014-01-01

    Full Text Available Premise of the study: Microsatellite primers were developed for the cardon, a giant columnar cactus (Pachycereus pringlei of the Sonoran Desert, to investigate intraspecific genetic patterns of diversity and population structure. Methods and Results: Using 454 GS-FLX technology and bioinformatics tools, microsatellite primers were successfully identified on 282 reads, including di-, tri-, tetra-, penta-, and hexanucleotides. A set of 10 primers were characterized on 80 individuals collected in two areas of the Baja California peninsula, Mexico. All 10 loci were polymorphic, with a mean of 6.3 alleles per locus and overall levels of observed and expected heterozygosities ranging from 0.41 to 0.59 and from 0.40 to 0.57, respectively. Alleles per individual plant ranged from one to four, suggesting a polyploidal genome. Conclusions: These loci should be useful for future investigations of population structure, genetic diversity, and gene flow in the cardon cactus.

  19. The relationship between the number of loci and the statistical support for the topology of UPGMA trees obtained from genetic distance data.

    Science.gov (United States)

    Highton, R

    1993-12-01

    An analysis of the relationship between the number of loci utilized in an electrophoretic study of genetic relationships and the statistical support for the topology of UPGMA trees is reported for two published data sets. These are Highton and Larson (Syst. Zool.28:579-599, 1979), an analysis of the relationships of 28 species of plethodonine salamanders, and Hedges (Syst. Zool., 35:1-21, 1986), a similar study of 30 taxa of Holarctic hylid frogs. As the number of loci increases, the statistical support for the topology at each node in UPGMA trees was determined by both the bootstrap and jackknife methods. The results show that the bootstrap and jackknife probabilities supporting the topology at some nodes of UPGMA trees increase as the number of loci utilized in a study is increased, as expected for nodes that have groupings that reflect phylogenetic relationships. The pattern of increase varies and is especially rapid in the case of groups with no close relatives. At nodes that likely do not represent correct phylogenetic relationships, the bootstrap probabilities do not increase and often decline with the addition of more loci.

  20. Genetics of Human and Canine Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Siobhan Simpson

    2015-01-01

    Full Text Available Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed.

  1. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    Science.gov (United States)

    Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T

    2016-06-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  2. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    Directory of Open Access Journals (Sweden)

    Andreas Wallberg

    2016-06-01

    Full Text Available In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis, worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  3. The Red Queen lives: Epistasis between linked resistance loci.

    Science.gov (United States)

    Metzger, César M J A; Luijckx, Pepijn; Bento, Gilberto; Mariadassou, Mahendra; Ebert, Dieter

    2016-02-01

    A popular theory explaining the maintenance of genetic recombination (sex) is the Red Queen Theory. This theory revolves around the idea that time-lagged negative frequency-dependent selection by parasites favors rare host genotypes generated through recombination. Although the Red Queen has been studied for decades, one of its key assumptions has remained unsupported. The signature host-parasite specificity underlying the Red Queen, where infection depends on a match between host and parasite genotypes, relies on epistasis between linked resistance loci for which no empirical evidence exists. We performed 13 genetic crosses and tested over 7000 Daphnia magna genotypes for resistance to two strains of the bacterial pathogen Pasteuria ramosa. Results reveal the presence of strong epistasis between three closely linked resistance loci. One locus masks the expression of the other two, while these two interact to produce a single resistance phenotype. Changing a single allele on one of these interacting loci can reverse resistance against the tested parasites. Such a genetic mechanism is consistent with host and parasite specificity assumed by the Red Queen Theory. These results thus provide evidence for a fundamental assumption of this theory and provide a genetic basis for understanding the Red Queen dynamics in the Daphnia-Pasteuria system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Multiple susceptibility loci for radiation-induced mammary tumorigenesis in F2[Dahl S x R]-intercross rats.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available Although two major breast cancer susceptibility genes, BRCA1 and BRCA2, have been identified accounting for 20% of breast cancer genetic risk, identification of other susceptibility genes accounting for 80% risk remains a challenge due to the complex, multi-factorial nature of breast cancer. Complexity derives from multiple genetic determinants, permutations of gene-environment interactions, along with presumptive low-penetrance of breast cancer predisposing genes, and genetic heterogeneity of human populations. As with other complex diseases, dissection of genetic determinants in animal models provides key insight since genetic heterogeneity and environmental factors can be experimentally controlled, thus facilitating the detection of quantitative trait loci (QTL. We therefore, performed the first genome-wide scan for loci contributing to radiation-induced mammary tumorigenesis in female F2-(Dahl S x R-intercross rats. Tumorigenesis was measured as tumor burden index (TBI after induction of rat mammary tumors at forty days of age via ¹²⁷Cs-radiation. We observed a spectrum of tumor latency, size-progression, and pathology from poorly differentiated ductal adenocarcinoma to fibroadenoma, indicating major effects of gene-environment interactions. We identified two mammary tumorigenesis susceptibility quantitative trait loci (Mts-QTLs with significant linkage: Mts-1 on chromosome-9 (LOD-2.98 and Mts-2 on chromosome-1 (LOD-2.61, as well as two Mts-QTLs with suggestive linkage: Mts-3 on chromosome-5 (LOD-1.93 and Mts-4 on chromosome-18 (LOD-1.54. Interestingly, Chr9-Mts-1, Chr5-Mts-3 and Chr18-Mts-4 QTLs are unique to irradiation-induced mammary tumorigenesis, while Chr1-Mts-2 QTL overlaps with a mammary cancer susceptibility QTL (Mcs 3 reported for 7,12-dimethylbenz-[α]antracene (DMBA-induced mammary tumorigenesis in F2[COP x Wistar-Furth]-intercross rats. Altogether, our results suggest at least three distinct susceptibility QTLs for

  5. Population genetic study of 10 short tandem repeat loci from 600 domestic dogs in Korea.

    Science.gov (United States)

    Moon, Seo Hyun; Jang, Yoon-Jeong; Han, Myun Soo; Cho, Myung-Haing

    2016-09-30

    Dogs have long shared close relationships with many humans. Due to the large number of dogs in human populations, they are often involved in crimes. Occasionally, canine biological evidence such as saliva, bloodstains and hairs can be found at crime scenes. Accordingly, canine DNA can be used as forensic evidence. The use of short tandem repeat (STR) loci from biological evidence is valuable for forensic investigations. In Korea, canine STR profiling-related crimes are being successfully analyzed, leading to diverse crimes such as animal cruelty, dog-attacks, murder, robbery, and missing and abandoned dogs being solved. However, the probability of random DNA profile matches cannot be analyzed because of a lack of canine STR data. Therefore, in this study, 10 STR loci were analyzed in 600 dogs in Korea (344 dogs belonging to 30 different purebreds and 256 crossbred dogs) to estimate canine forensic genetic parameters. Among purebred dogs, a separate statistical analysis was conducted for five major subgroups, 97 Maltese, 47 Poodles, 31 Shih Tzus, 32 Yorkshire Terriers, and 25 Pomeranians. Allele frequencies, expected (Hexp) and observed heterozygosity (Hobs), fixation index (F), probability of identity (P(ID)), probability of sibling identity (P(ID)sib) and probability of exclusion (PE) were then calculated. The Hexp values ranged from 0.901 (PEZ12) to 0.634 (FHC2079), while the P(ID)sib values were between 0.481 (FHC2079) and 0.304 (PEZ12) and the P(ID)sib was about 3.35 × 10(-)⁵ for the combination of all 10 loci. The results presented herein will strengthen the value of canine DNA to solving dog-related crimes.

  6. Genetic variability and population structure in loci related to milk production traits in native Argentine Creole and commercial Argentine Holstein cattle

    Directory of Open Access Journals (Sweden)

    Golijow C.D.

    1999-01-01

    Full Text Available Many cattle breeds have been subjected to high selection pressure for production traits. Consequently, population genetic structure and allelic distribution could differ in breeds under high selection pressure compared to unselected breeds. Analysis of k-casein, aS1-casein and prolactin gene frequencies was made for Argentine Creole (AC and Argentine Holstein (AH cattle herds. The calculated FST values measured the degree of genetic differentiation of subpopulations, depending on the variances of gene frequencies.The AC breed had considerably more variation among herds at the aS1-casein and k-casein loci. Conservation strategies should consider the entire AC population in order to maintain the genetic variability found in this native breed.

  7. Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation.

    Science.gov (United States)

    Horikoshi, Momoko; Mӓgi, Reedik; van de Bunt, Martijn; Surakka, Ida; Sarin, Antti-Pekka; Mahajan, Anubha; Marullo, Letizia; Thorleifsson, Gudmar; Hӓgg, Sara; Hottenga, Jouke-Jan; Ladenvall, Claes; Ried, Janina S; Winkler, Thomas W; Willems, Sara M; Pervjakova, Natalia; Esko, Tõnu; Beekman, Marian; Nelson, Christopher P; Willenborg, Christina; Wiltshire, Steven; Ferreira, Teresa; Fernandez, Juan; Gaulton, Kyle J; Steinthorsdottir, Valgerdur; Hamsten, Anders; Magnusson, Patrik K E; Willemsen, Gonneke; Milaneschi, Yuri; Robertson, Neil R; Groves, Christopher J; Bennett, Amanda J; Lehtimӓki, Terho; Viikari, Jorma S; Rung, Johan; Lyssenko, Valeriya; Perola, Markus; Heid, Iris M; Herder, Christian; Grallert, Harald; Müller-Nurasyid, Martina; Roden, Michael; Hypponen, Elina; Isaacs, Aaron; van Leeuwen, Elisabeth M; Karssen, Lennart C; Mihailov, Evelin; Houwing-Duistermaat, Jeanine J; de Craen, Anton J M; Deelen, Joris; Havulinna, Aki S; Blades, Matthew; Hengstenberg, Christian; Erdmann, Jeanette; Schunkert, Heribert; Kaprio, Jaakko; Tobin, Martin D; Samani, Nilesh J; Lind, Lars; Salomaa, Veikko; Lindgren, Cecilia M; Slagboom, P Eline; Metspalu, Andres; van Duijn, Cornelia M; Eriksson, Johan G; Peters, Annette; Gieger, Christian; Jula, Antti; Groop, Leif; Raitakari, Olli T; Power, Chris; Penninx, Brenda W J H; de Geus, Eco; Smit, Johannes H; Boomsma, Dorret I; Pedersen, Nancy L; Ingelsson, Erik; Thorsteinsdottir, Unnur; Stefansson, Kari; Ripatti, Samuli; Prokopenko, Inga; McCarthy, Mark I; Morris, Andrew P

    2015-07-01

    Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.

  8. Functional mapping imprinted quantitative trait loci underlying developmental characteristics

    Directory of Open Access Journals (Sweden)

    Li Gengxin

    2008-03-01

    Full Text Available Abstract Background Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology. Results Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight. Conclusion The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.

  9. Genes and quality trait loci (QTLs) associated with firmness in Malus x domestica

    KAUST Repository

    Marondedze, Claudius; Thomas, Ludivine

    2013-01-01

    , crunchiness and crispness. Fruit firmness is affected by the inheritance of alleles at multiple loci and their possible interactions with the environment. Identification of these loci is key for the determination of genetic candidate markers that can

  10. Efficient genome-wide association in biobanks using topic modeling identifies multiple novel disease loci.

    Science.gov (United States)

    McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H

    2017-08-31

    Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that may be unreliable and fail to capture the relationship between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records (EHR) for 10845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes are included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p<1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than for single phenome-wide diagnostic codes, and incorporation of less strongly-loading diagnostic codes enhanced association. This strategy provides a more efficient means of phenome-wide association in biobanks with coded clinical data.

  11. Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2

    NARCIS (Netherlands)

    Y.-C. Cheng (Yu-Ching); T.M. Stanne (Tara M.); A.-K. Giese (Anne-Katrin); W.K. Ho (Weang K.); M. Traylor (Matthew); P. Amouyel (Philippe); E.G. Holliday (Elizabeth); R. Malik (Rainer); H. Xu (Huichun); T. Kittner (Thomas); J.W. Cole (John W.); J.R. O´Connell; J. Danesh (John); A. Rasheed (Asif); W. Zhao (Wei); S.T. Engelter (Stefan); C. Grond-Ginsbach (Caspar); Y. Kamatani (Yoichiro); M. Lathrop (Mark); D. Leys (Didier); V. Thijs (Vincent); T.M. Metso (Tiina M.); T. Tatlisumak (Turgut); A. Pezzini (Alessandro); E.A. Parati (Eugenio A.); B. Norrving (Bo); S. Bevan (Steve); P.M. Rothwell (Peter); C. Sudlow (Cathie); A. Slowik (Agnieszka); A.G. Lindgren (Arne G.); M. Walters (Matthew); J. Jannes (Jim); J. Shen (Jess); D.R. Crosslin (David); K.F. Doheny (Kimberly); C.C. Laurie (Cathy); S.M. Kanse (Sandip ); J.C. Bis (Joshua); M. Fornage (Myriam); T.H. Mosley (Thomas H.); J. Hopewell; K. Strauch (Konstantin); M. Müller-Nurasyid (Martina); C. Gieger (Christian); M. Waldenberger (Melanie); A. Peters (Annette); C. Meisinger (Christine); M.A. Ikram (Arfan); W.T. Longstreth Jr; J.F. Meschia (James F.); S. Seshadri (Sudha); P. Sharma (Pankaj); B.B. Worrall (Bradford B.); C. Jern (Christina); C. Levi (Christopher); C. Kubisch (Christian); G. Boncoraglio (Giorgio Battista); H.S. Markus (Hugh); S. Debette (Stéphanie); A. Rolfs (Arndt); D. Saleheen; B.D. Mitchell (Braxton)

    2016-01-01

    textabstractBackground and Purpose - Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early-versus late-onset stroke,

  12. Genetics of Type 2 Diabetes: Insights into the Pathogenesis and Its Clinical Application

    Directory of Open Access Journals (Sweden)

    Xue Sun

    2014-01-01

    Full Text Available With rapidly increasing prevalence, diabetes has become one of the major causes of mortality worldwide. According to the latest studies, genetic information makes substantial contributions towards the prediction of diabetes risk and individualized antidiabetic treatment. To date, approximately 70 susceptibility genes have been identified as being associated with type 2 diabetes (T2D at a genome-wide significant level (P<5×10-8. However, all the genetic loci identified so far account for only about 10% of the overall heritability of T2D. In addition, how these novel susceptibility loci correlate with the pathophysiology of the disease remains largely unknown. This review covers the major genetic studies on the risk of T2D based on ethnicity and briefly discusses the potential mechanisms and clinical utility of the genetic information underlying T2D.

  13. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

    NARCIS (Netherlands)

    I.M. Heid (Iris); A.U. Jackson (Anne); J.C. Randall (Joshua); T.W. Winkler (Thomas); L. Qi (Lu); V. Ssteinthorsdottir (Valgerdur); G. Tthorleifsson (Ggudmar); M.C. Zillikens (Carola); E.K. Sspeliotes (Eelizabeth); R. Mägi (Reedik); T. Workalemahu (Tsegaselassie); C.C. White (Charles); N. Bouatia-Naji (Nabila); T.B. Harris (Tamara); S.I. Berndt (Sonja); E. Ingelsson (Erik); C.J. Willer (Cristen); J. Luan; S. Vedantam (Sailaja); T. Eesko (Tõnu); T.O. Kilpeläinen (Tuomas); Z. Kutalik (Zoltán); S. Li (Shengxu); K.L. Monda (Keri); A.L. Dixon (Anna); C. Holmes (Christopher); R.C. Kaplan (Robert); L. Liang (Liming); J. Min (Josine); M.F. Moffatt (Miriam); C. Molony (Cliona); G. Nicholson (Ggeorge); E.E. Sschadt (Eeric); K.T. Zondervan (Krina); M.F. Feitosa (Mary Furlan); T. Ferreira (Teresa); H.L. Allen; R.J. Weyant (Robert); E. Wheeler (Eleanor); A.R. Wood (Andrew); K. Eestrada (Karol); M.E. Goddard (Michael); G. Lettre (Guillaume); M. Mangino (Massimo); D.R. Nyholt (Dale); S. Purcell (Shaun); A.V. Ssmith; P.M. Visscher (Peter); J. Yang (Joanna); S.A. McCcarroll (Ssteven); J. Nemesh (James); B.F. Voight (Benjamin); D. Absher (Devin); N. Amin (Najaf); T. Aspelund (Thor); L. Coin (Lachlan); N.L. Glazer (Nicole); C. Hayward (Caroline); N. Heard-Ccosta (Nancy); J.J. Hottenga (Jouke Jan); A. Johansson (Åsa); T. Johnson (Toby); M. Kaakinen (Marika); K. Kapur (Karen); S. Ketkar (Shamika); J.W. Knowles (Joshua); P. Kraft (Peter); A. Kraja (Aldi); C. Lamina (Claudia); M.F. Leitzmann (Michael); B. McKknight (Barbara); A.D. Morris (Andrew); K. Oong (Ken); J.R.B. Perry (John); M.J. Peters (Marjolein); O. Polasek (Ozren); I. Prokopenko (Inga); N.W. Rayner (Nigel William); S. Ripatti (Samuli); F. Rivadeneira Ramirez (Fernando); N.R. Robertson (Neil); S. Sanna (Serena); U. Sovio (Ulla); I. Surakka (Ida); A. Teumer (Alexander); S. van Wingerden (Sophie); V. Vitart (Veronique); J.H. Zhao (Jing Hua); C. Cavalcanti-Proença (Christine); P.S. Chines (Peter); E. Fisher (Eeva); J.R. Kulzer (Jennifer); C. Lecoeur (Cécile); N. Narisu (Narisu); C. Sandholt (Camilla); L.J. Scott (Laura); K. Silander (Kaisa); K. Stark (Klaus); M.L. Tammesoo; T.M. Teslovich (Tanya); N.J. Timpson (Nicholas); R.P. Welch (Ryan); D.I. Chasman (Daniel); M.N. Cooper (Matthew); J.O. Jansson; J. Kettunen (Johannes); R. Wlawrence (Robert); N. Pellikka (Niina); M. Perola (Markus); L. Vandenput (Liesbeth); H. Alavere (Helene); P. Almgren (Peter); L.D. Atwood (Larry); A.J. Bennett (Amanda); R. Biffar (Reiner); L.L. Bonnycastle (Lori); S.R. Bornstein (Stefan); T.A. Buchanan (Thomas); H. Campbell (Harry); I.N.M. Day (Ian); M. Dei (Mariano); M. Dörr (Marcus); P. Eelliott (Paul); M.R. Eerdos (Micheal); J.G. Eeriksson (Johan); N.B. Freimer (Nelson); M. Fu (Mao); S. Gaget (Stefan); E.J.C. de Geus (Eco); A.P. Gjesing (Anette); H. Grallert (Harald); J. Gräßler (Jürgen); C.J. Groves (Christopher); C. Guiducci (Candace); A.L. Hartikainen; N. Hassanali (Neelam); A.S. Havulinna (Aki); K.H. Herzig; A.A. Hicks (Andrew); J. Hui (Jennie); W. Igl (Wilmar); P. Jousilahti (Pekka); A. Jula (Antti); E. Kajantie (Eero); L. Kinnunen (Leena); I. Kolcic (Ivana); S. Koskinen (Seppo); P. Kovacs (Peter); H.K. Kroemer (Heyo); V. Krzelj (Vjekoslav); J. Kuusisto (Johanna); K. Kvaløy (Kirsti); J. Laitinen (Jaana); O. Lantieri (Olivier); G.M. Lathrop (Mark); M.L. Lokki; R.N. Luben (Robert); B. Ludwig (Barbara); W.L. McArdle (Wendy); A. McCcarthy (Anne); M.A. Morken (Mario); M. Nelis (Mari); M.J. Neville (Matthew); G. Paré (Guillaume); A.N. Parker (Alex); J. Peden (John); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); C.P. Platou (Carl); A. Pouta (Anneli); M. Ridderstråle (Martin); N.J. Samani (Nilesh); J. Saramies (Jouko); J. Sinisalo (Juha); J.H. Smit (Jan); R.J. Strawbridge (Rona); H.M. Stringham (Heather); A.J. Swift (Amy); M. Teder-Llaving (Maris); B. Thomson (Brian); G. Usala; J.B.J. van Meurs (Joyce); G.J. van Ommen (Gert); V. Vatin (Vincent); C.B. Volpato; H. Wallaschofski (Henri); G.B. Walters (Bragi); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); D.R. Witte (Deniel); L. Zgaga (Lina); P. Zitting (Paavo); J.P. Beilby (John); A. James (Alan); M. Kähönen (Mika); T. Lehtimäki (Terho); M.S. Nieminen (Markku); C. Ohlsson (Claes); C. Palmer (Cameron); O. Raitakari (Olli); P.M. Ridker (Paul); M. Stumvoll (Michael); A. Tönjes (Anke); J. Viikari (Jorma); B. Balkau (Beverley); Y. Ben-Shlomo; R.N. Bergman (Richard); H. Boeing (Heiner); A.V. Smith (Albert Vernon); S. Eebrahim (Shah); P. Froguel (Philippe); T. Hansen (Torben); C. Hengstenberg (Christian); K. Hveem (Kristian); B. Isomaa (Bo); T. Jørgensen (Torben); F. Karpe (Fredrik); K-T. Khaw (Kay-Tee); M. Laakso (Markku); D.A. Lawlor (Debbie); M. Marre (Michel); T. Meitinger (Thomas); A. Metspalu (Andres); K. Midthjell (Kristian); O. Pedersen (Oluf); V. Salomaa (Veikko); P.E.H. Schwarz (Peter); T. Tuomi (Tiinamaija); J. Tuomilehto (Jaakko); T.T. Valle (Timo); N.J. Wareham (Nick); A.M. Arnold (Alice); J.S. Beckmann (Jacques); S.M. Bergmann (Sven); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); F.S. Collins (Francis); G. Eeiriksdottir (Gudny); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); A. Hamsten (Anders); A.T. Hattersley (Andrew); A. Hofman (Albert); F.B. Hu (Frank); T. Illig (Thomas); C. Iribarren (Carlos); M.R. Järvelin; W.H.L. Kao (Wen); J. Kaprio (Jaakko); L.J. Launer (Lenore); P. Munroe (Patricia); B.A. Oostra (Ben); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); B.M. Psaty (Bruce); T. Quertermous (Thomas); A. Rissanen (Aila); I. Rudan (Igor); A.R. Shuldiner (Alan); N. Soranzo (Nicole); T.D. Spector (Timothy); A.C. Syvanen; M. Uda (Manuela); A.G. Uitterlinden (André); H. Völzke (Henry); P. Vollenweider (Peter); J.F. Wilson (James); J.C.M. Witteman (Jacqueline); A.F. Wright (Alan); G.R. Abecasis (Gonçalo); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); T.M. Frayling (Timothy); L. Groop (Leif); T. Haritunians (Talin); D.J. Hunter (David); K.E. North (Kari); J.R. O'Cconnell (Jeffrey); L. Peltonen (Leena Johanna); D. Schlessinger; D.P. Strachan (David); J.N. Hirschhorn (Joel); T.L. Assimes (Themistocles); H.E. Wichmann (Heinz Erich); U. Thorsteinsdottir (Unnur); C.M. van Duijn (Cornelia); K. Stefansson (Kari); L.A. Cupples (Adrienne); R.J.F. Loos (Ruth); I.E. Barroso (Inês); C.S. Fox (Caroline); K.L. Mohlke (Karen); C.M. Lindgren (Cecilia); R.M. Watanabe (Richard); M.N. Weedon (Michael)

    2010-01-01

    textabstractWaist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association

  14. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    Science.gov (United States)

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  15. Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum.

    Science.gov (United States)

    Page, Robert B; Monaghan, James R; Samuels, Amy K; Smith, Jeramiah J; Beachy, Christopher K; Voss, S Randal

    2007-02-01

    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a >2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma.

  16. Isolation and characterization of macaroni penguin (Eudyptes chrysolophus) microsatellite loci and their utility in other penguin species (Spheniscidae, AVES).

    Science.gov (United States)

    Ahmed, Sophia; Hart, Tom; Dawson, Deborah A; Horsburgh, Gavin J; Trathan, Philip N; Rogers, Alex D

    2009-11-01

    We report the characterization of 25 microsatellite loci isolated from the macaroni penguin (Eudyptes chrysolophus). Thirteen loci were arranged into four multiplex sets for future genetic studies of macaroni penguin populations. All 25 loci were tested separately in each of four other penguin species [Adélie penguin (Pygoscelis adeliae), chinstrap penguin (Pygoscelis antarctica), gentoo penguin (Pygoscelis papua) and king penguin (Aptenodytes patagonicus)]. Between eight and 12 loci were polymorphic per species. These loci are expected to be useful for studies of population genetic structure in a range of penguin species. © 2009 Blackwell Publishing Ltd.

  17. New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae).

    Science.gov (United States)

    Bessega, Cecilia F; Pometti, Carolina L; Miller, Joe T; Watts, Richard; Saidman, Beatriz O; Vilardi, Juan C

    2013-05-01

    As only six useful microsatellite loci that exhibit broad cross-amplification are so far available for Prosopis species, it is necessary to develop a larger number of codominant markers for population genetic studies. Simple sequence repeat (SSR) markers obtained for Prosopis species from a 454 pyrosequencing run were optimized and characterized for studies in P. alba and P. chilensis. • Twelve markers that were successfully amplified showed polymorphism in P. alba and P. chilensis. The number of alleles per locus ranged between two and seven and heterozygosity estimates ranged from 0.2 to 0.8. Most of these loci cross-amplify in P. ruscifolia, P. flexuosa, P. kuntzei, P. glandulosa, and P. pallida. • These loci will enable genetic diversity studies of P. alba and P. chilensis and contribute to fine-scale population structure, indirect estimation of relatedness among individuals, and marker-assisted selection.

  18. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  19. Efficient Differentiation of Mycobacterium tuberculosis Strains of the W-Beijing Family from Russia using Highly Polymorphic VNTR Loci

    International Nuclear Information System (INIS)

    Surikova, O. V.; Voitech, D. S.; Kuzmicheva, G.; Tatkov, S. I.; Mokrousov, I. V.; Narvskaya, O. V.; Rot, M. A.; Soolingen, D. van; Filipenko, M. L.

    2005-01-01

    The W-Beijing family is a widespread Mycobacterium tuberculosis clonal lineage that frequently causes epidemic outbreaks. This family is genetically homogeneous and conserved, so ETR-VNTR (exact tandem repeat-variable number of tandem repeats) typing is insufficient for strain differentiation, due to a common ETR-A to E profile (42435). This leads to the false clustering in molecular epidemiological studies, especially in the regions of predominance of the W-Beijing family. In this study, we searched for VNTR loci with a high evolutionary rate of polymorphism in the W-Beijing genome. Here we further evaluated VNTR typing on a set of 99 Mycobacterium tuberculosis clinical isolates and reference strains. These isolates were characterized and classified into several genotype families based on three ETR loci (A, C, E) and eight additional loci [previously described as QUB (Queen's University Belfast) or MIRU (Mycobacterial Interspersed Repetitive Units) or Mtubs]. Ninety-nine strains were divided into 74 VNTR-types, 51 isolates of the W-Beijing family identified by IS6110 RFLP-typing (the restriction fragment length polymorphism-typing) and/or spoligotyping were subdivided into 30 VNTR-types. HGDI (the Hunter-Gaston discriminatory index) for all studied loci was close to that of IS6110 RFLP typing, a 'gold standard' method for subtyping M. tuberculosis complex strains. The QUB 26 and QUB 18 loci located in the PPE genes were highly polymorphic and more discriminative than other loci (HGDI is 0.8). Statistically significant increase of tandem repeats number in loci ETR-A, -E, QUB 26, QUB 18, QUB 11B, Mtub21 was revealed in the W-Beijing group compared to genetically divergent non-W-Beijing strains. Thirty-six isolates were subjected to IS6110 RFLP typing. The congruence between results of the IS6110 RFLP typing and 11-loci VNTR typing was estimated on 23 isolates of the W-Beijing family. These isolates were subdivided into 9 IS6110-RFLP types and 13 VNTR types. The poor

  20. Isolation and characterization of microsatellite loci from the Australasian sea snake, Aipysurus laevis

    DEFF Research Database (Denmark)

    Lukoschek, Vimoksalehi; Waycott, Michelle; Dunshea, Glenn

    2005-01-01

    We developed 13 microsatellite loci for the olive sea snake, Aipysurus laevis, using both enriched and unenriched genomic DNA libraries. Eleven codominant loci, that reliably amplified, were used to screen 32 individuals across the geographic range of A. laevis. Four loci had four or more alleles...... (maximum 12), whereas the other seven had either two or three. All but one locus was in Hardy-Weinberg equilibrium. These loci will provide useful markers to investigate population genetic structure for the olive sea snake....

  1. Genetics of allergy and allergic sensitization

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Sparks, Rachel; Waage, Johannes

    2015-01-01

    information about shared genetics between allergy, related phenotypes and autoimmunity. Studies of monogenic diseases have elucidated critical cellular pathways and protein functions responsible for allergy. These complementary approaches imply genetic mechanisms involved in Th2 immunity, T......Our understanding of the specific genetic lesions in allergy has improved in recent years due to identification of common risk variants from genome-wide association studies (GWAS) and studies of rare, monogenic diseases. Large-scale GWAS have identified novel susceptibility loci and provided...

  2. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation

    OpenAIRE

    Psychosis Endophenotypes International Consortium; Wellcome Trust Case-Control Consortium; Bramon, E.; Pirinen, M.; Strange, A.; Lin, K.; Freeman, C.; Bellenguez, C.; Su, Z.; Band, G.; Pearson, R.; Vukcevic, D.; Langford, C.; Deloukas, P.; Hunt, S.

    2014-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. METHODS: 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 69...

  3. A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation

    OpenAIRE

    Tosato, Sarah; Myin-germeys, Inez; Barroso, Ines; Bender, Stephan; Giegling, Ina; Arranz, Maria J.; Donnelly, Peter; Bellenguez, Celine; Brown, Matthew A.; Lawrie, Stephen; Kalaydjieva, Luba; Vukcevic, Damjan; Kahn, Rene S.; Dronov, Serge; Walshe, Muriel

    2014-01-01

    Background: Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories.Methods: 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,19...

  4. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    NARCIS (Netherlands)

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M.; Ben, Songtao; Brownson, Kelly M.; Holland, Paulene J.; Birlea, Stanca A.; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M.; Wolkerstorfer, Albert; Wietze van der Veen, J. P.; Bennett, Dorothy C.; Taïeb, Alain; Ezzedine, Khaled; Kemp, E. Helen; Gawkrodger, David J.; Weetman, Anthony P.; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R.; McCormack, Wayne T.; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B.; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W.; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R.; Santorico, Stephanie A.; Spritz, Richard A.

    2016-01-01

    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in

  5. Assessment of genetic diversity in the critically endangered Australian corroboree frogs, Pseudophryne corroboree and Pseudophryne pengilleyi, identifies four evolutionarily significant units for conservation.

    Science.gov (United States)

    Morgan, Matthew J; Hunter, David; Pietsch, Rod; Osborne, William; Keogh, J Scott

    2008-08-01

    The iconic and brightly coloured Australian northern corroboree frog, Pseudophryne pengilleyi, and the southern corroboree frog, Pseudophryne corroboree are critically endangered and may be extinct in the wild within 3 years. We have assembled samples that cover the current range of both species and applied hypervariable microsatellite markers and mitochondrial DNA sequences to assess the levels and patterns of genetic variation. The four loci used in the study were highly variable, the total number of alleles observed ranged from 13 to 30 and the average number of alleles per locus was 19. Expected heterozygosity of the four microsatellite loci across all populations was high and varied between 0.830 and 0.935. Bayesian clustering analyses in STRUCTURE strongly supported four genetically distinct populations, which correspond exactly to the four main allopatric geographical regions in which the frogs are currently found. Individual analyses performed on the separate regions showed that breeding sites within these four regions could not be separated into distinct populations. Twelve mtND2 haplotypes were identified from 66 individuals from throughout the four geographical regions. A statistical parsimony network of mtDNA haplotypes shows two distinct groups, which correspond to the two species of corroboree frog, but with most of the haplotype diversity distributed in P. pengilleyi. These results demonstrate an unexpectedly high level of genetic diversity in both species. Our data have important implications for how the genetic diversity is managed in the future. The four evolutionarily significant units must be protected and maintained in captive breeding programmes for as long as it is possible to do.

  6. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    Science.gov (United States)

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  7. An integrative genetic study of rice metabolism, growth and stochastic variation reveals potential C/N partitioning loci

    DEFF Research Database (Denmark)

    Li, Baohua; Zhang, Yuanyuan; Mohammadi, Seyed Abolghasem

    2016-01-01

    metabolites suggesting that they may influence carbon and nitrogen partitioning, with one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci controlling stochastic...

  8. Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese.

    Science.gov (United States)

    Lubitz, Steven A; Lunetta, Kathryn L; Lin, Honghuang; Arking, Dan E; Trompet, Stella; Li, Guo; Krijthe, Bouwe P; Chasman, Daniel I; Barnard, John; Kleber, Marcus E; Dörr, Marcus; Ozaki, Kouichi; Smith, Albert V; Müller-Nurasyid, Martina; Walter, Stefan; Agarwal, Sunil K; Bis, Joshua C; Brody, Jennifer A; Chen, Lin Y; Everett, Brendan M; Ford, Ian; Franco, Oscar H; Harris, Tamara B; Hofman, Albert; Kääb, Stefan; Mahida, Saagar; Kathiresan, Sekar; Kubo, Michiaki; Launer, Lenore J; MacFarlane, Peter W; Magnani, Jared W; McKnight, Barbara; McManus, David D; Peters, Annette; Psaty, Bruce M; Rose, Lynda M; Rotter, Jerome I; Silbernagel, Guenther; Smith, Jonathan D; Sotoodehnia, Nona; Stott, David J; Taylor, Kent D; Tomaschitz, Andreas; Tsunoda, Tatsuhiko; Uitterlinden, Andre G; Van Wagoner, David R; Völker, Uwe; Völzke, Henry; Murabito, Joanne M; Sinner, Moritz F; Gudnason, Vilmundur; Felix, Stephan B; März, Winfried; Chung, Mina; Albert, Christine M; Stricker, Bruno H; Tanaka, Toshihiro; Heckbert, Susan R; Jukema, J Wouter; Alonso, Alvaro; Benjamin, Emelia J; Ellinor, Patrick T

    2014-04-01

    This study sought to identify nonredundant atrial fibrillation (AF) genetic susceptibility signals and examine their cumulative relations with AF risk. AF-associated loci span broad genomic regions that may contain multiple susceptibility signals. Whether multiple signals exist at AF loci has not been systematically explored. We performed association testing conditioned on the most significant, independently associated genetic markers at 9 established AF loci using 2 complementary techniques in 64,683 individuals of European ancestry (3,869 incident and 3,302 prevalent AF cases). Genetic risk scores were created and tested for association with AF in Europeans and an independent sample of 11,309 individuals of Japanese ancestry (7,916 prevalent AF cases). We observed at least 4 distinct AF susceptibility signals on chromosome 4q25 upstream of PITX2, but not at the remaining 8 AF loci. A multilocus score comprised 12 genetic markers demonstrated an estimated 5-fold gradient in AF risk. We observed a similar spectrum of risk associated with these markers in Japanese. Regions containing AF signals on chromosome 4q25 displayed a greater degree of evolutionary conservation than the remainder of the locus, suggesting that they may tag regulatory elements. The chromosome 4q25 AF locus is architecturally complex and harbors at least 4 AF susceptibility signals in individuals of European ancestry. Similar polygenic AF susceptibility exists between Europeans and Japanese. Future work is necessary to identify causal variants, determine mechanisms by which associated loci predispose to AF, and explore whether AF susceptibility signals classify individuals at risk for AF and related morbidity. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis

    DEFF Research Database (Denmark)

    Wu, Yili; Duan, Haiping; Tian, Xiaocao

    2018-01-01

    Previous genome-wide association studies on anthropometric measurements have identified more than 100 related loci, but only a small portion of heritability in obesity was explained. Here we present a bivariate twin study to look for the genetic variants associated with body mass index and waist......-hip ratio, and to explore the obesity-related pathways in Northern Han Chinese. Cholesky decompositionmodel for 242monozygotic and 140 dizygotic twin pairs indicated a moderate genetic correlation (r = 0.53, 95%CI: 0.42–0.64) between body mass index and waist-hip ratio. Bivariate genome-wide association.......05. Expression quantitative trait loci analysis identified rs2242044 as a significant cis-eQTL in both the normal adipose-subcutaneous (P = 1.7 × 10−9) and adipose-visceral (P = 4.4 × 10−15) tissue. These findings may provide an important entry point to unravel genetic pleiotropy in obesity traits....

  10. A molecular phylogenetic study on South Korean Tettigonia species (Orthoptera: Tettigoniidae) using five genetic loci: The possibility of multiple allopatric speciation.

    Science.gov (United States)

    Kim, Tae-Kyu; Han, Taeman; Kim, Tae-Woo; Park, In Gyun; Kim, Seonghyun; Park, Haechul

    2016-03-15

    In Korea, members of the genus Tettigonia have been known as two species, T. ussuriana and T. dolichoptera dolichoptera. However, the taxonomic status of the Jeju Island population of T. ussuriana (JJ-TU) is in question, relative to the mainland population (ML-TU), because of their different body sizes and ratios of wing length. To clarify the relatedness of JJ-TU and ML-TU, we examined the genetic variation and phylogenetic relationships within and between T. ussuriana and related species collected in South Korea, using five genetic loci: three mitochondrial genes (cytochrome c oxidase subunit 1 [CO1], cytochrome c oxidase subunit 2 [CO2], NADH dehydrogenase 1 [ND1]) and two nuclear loci (second internal transcribed spacer [ITS2], and tubulin alpha-1 [TA1]). Unexpectedly, the JJ-TU population is explicitly sister to T. d. dolichoptera, with low genetic distance (0.76-1.22% in CO1), indicating no direct connection with the ML-TU population; this finding suggests a recent divergence involving rapid morphological change without gene flow between JJ-TU and mainland T. d. dolichoptera. The separation of these populations from their common ancestor was caused by geographical isolation during last glacial age. This finding indicates that the JJ-TU population should be elevated to the rank of subspecies, at the very least. Furthermore, the ML-TU population was also revealed to have four genetically divided groups (group A-D) from four localized populations, but no significant morphological differences exist among them. The genetic difference (range 3.19-4.10% in CO1) between group A + B and C + D was especially large, suggesting that cryptic speciation has widely occurred within the mainland areas, caused by allopatric isolations resulting from mountain barriers.

  11. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    Science.gov (United States)

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, Pstructure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both neutral and adaptive loci across India. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Isolation and characterization of 21 polymorphic microsatellite loci in the Japanese dace (Tribolodon hakonensis)

    Science.gov (United States)

    Koizumi, Noriyuki; Quinn, Thomas W.; Park, Myeongsoo; Fike, Jennifer A.; Nishida, Kazuya; Takemura, Takeshi; Watabe, Keiji; Mori, Atsushi

    2011-01-01

    Twenty one polymorphic microsatellite loci for the Japanese dace (Tribolodon hakonensis) were isolated and characterized. The number of observed alleles per locus in 32 individuals ranged from 3 to 30. The observed and expected heterozygosities ranged from 0.125 to 0.969 and from 0.175 to 0.973, respectively. All loci conformed to Hardy–Weinberg equilibrium, no linkage disequilibrium was observed between pairs of loci and no loci showed evidence of null alleles. These microsatellite loci will be useful for investigating the intraspecific genetic variation and population structure of this species.

  13. A Meta-Analysis Identifies New Loci Associated with Body Mass index in Individuals of African Ancestry

    Science.gov (United States)

    Monda, Keri L.; Chen, Gary K.; Taylor, Kira C.; Palmer, Cameron; Edwards, Todd L.; Lange, Leslie A.; Ng, Maggie C.Y.; Adeyemo, Adebowale A.; Allison, Matthew A.; Bielak, Lawrence F.; Chen, Guanji; Graff, Mariaelisa; Irvin, Marguerite R.; Rhie, Suhn K.; Li, Guo; Liu, Yongmei; Liu, Youfang; Lu, Yingchang; Nalls, Michael A.; Sun, Yan V.; Wojczynski, Mary K.; Yanek, Lisa R.; Aldrich, Melinda C.; Ademola, Adeyinka; Amos, Christopher I.; Bandera, Elisa V.; Bock, Cathryn H.; Britton, Angela; Broeckel, Ulrich; Cai, Quiyin; Caporaso, Neil E.; Carlson, Chris; Carpten, John; Casey, Graham; Chen, Wei-Min; Chen, Fang; Chen, Yii-Der I.; Chiang, Charleston W.K.; Coetzee, Gerhard A.; Demerath, Ellen; Deming-Halverson, Sandra L.; Driver, Ryan W.; Dubbert, Patricia; Feitosa, Mary F.; Freedman, Barry I.; Gillanders, Elizabeth M.; Gottesman, Omri; Guo, Xiuqing; Haritunians, Talin; Harris, Tamara; Harris, Curtis C.; Hennis, Anselm JM; Hernandez, Dena G.; McNeill, Lorna H.; Howard, Timothy D.; Howard, Barbara V.; Howard, Virginia J.; Johnson, Karen C.; Kang, Sun J.; Keating, Brendan J.; Kolb, Suzanne; Kuller, Lewis H.; Kutlar, Abdullah; Langefeld, Carl D.; Lettre, Guillaume; Lohman, Kurt; Lotay, Vaneet; Lyon, Helen; Manson, JoAnn E.; Maixner, William; Meng, Yan A.; Monroe, Kristine R.; Morhason-Bello, Imran; Murphy, Adam B.; Mychaleckyj, Josyf C.; Nadukuru, Rajiv; Nathanson, Katherine L.; Nayak, Uma; N’Diaye, Amidou; Nemesure, Barbara; Wu, Suh-Yuh; Leske, M. Cristina; Neslund-Dudas, Christine; Neuhouser, Marian; Nyante, Sarah; Ochs-Balcom, Heather; Ogunniyi, Adesola; Ogundiran, Temidayo O.; Ojengbede, Oladosu; Olopade, Olufunmilayo I.; Palmer, Julie R.; Ruiz-Narvaez, Edward A.; Palmer, Nicholette D.; Press, Michael F.; Rampersaud, Evandine; Rasmussen-Torvik, Laura J.; Rodriguez-Gil, Jorge L.; Salako, Babatunde; Schadt, Eric E.; Schwartz, Ann G.; Shriner, Daniel A.; Siscovick, David; Smith, Shad B.; Wassertheil-Smoller, Sylvia; Speliotes, Elizabeth K.; Spitz, Margaret R.; Sucheston, Lara; Taylor, Herman; Tayo, Bamidele O.; Tucker, Margaret A.; Van Den Berg, David J.; Velez Edwards, Digna R.; Wang, Zhaoming; Wiencke, John K.; Winkler, Thomas W.; Witte, John S.; Wrensch, Margaret; Wu, Xifeng; Yang, James J.; Levin, Albert M.; Young, Taylor R.; Zakai, Neil A.; Cushman, Mary; Zanetti, Krista A.; Zhao, Jing Hua; Zhao, Wei; Zheng, Yonglan; Zhou, Jie; Ziegler, Regina G.; Zmuda, Joseph M.; Fernandes, Jyotika K.; Gilkeson, Gary S.; Kamen, Diane L.; Hunt, Kelly J.; Spruill, Ida J.; Ambrosone, Christine B.; Ambs, Stefan; Arnett, Donna K.; Atwood, Larry; Becker, Diane M.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Borecki, Ingrid B.; Bottinger, Erwin P.; Bowden, Donald W.; Burke, Gregory; Chanock, Stephen J.; Cooper, Richard S.; Ding, Jingzhong; Duggan, David; Evans, Michele K.; Fox, Caroline; Garvey, W. Timothy; Bradfield, Jonathan P.; Hakonarson, Hakon; Grant, Struan F.A.; Hsing, Ann; Chu, Lisa; Hu, Jennifer J.; Huo, Dezheng; Ingles, Sue A.; John, Esther M.; Jordan, Joanne M.; Kabagambe, Edmond K.; Kardia, Sharon L.R.; Kittles, Rick A.; Goodman, Phyllis J.; Klein, Eric A.; Kolonel, Laurence N.; Le Marchand, Loic; Liu, Simin; McKnight, Barbara; Millikan, Robert C.; Mosley, Thomas H.; Padhukasahasram, Badri; Williams, L. Keoki; Patel, Sanjay R.; Peters, Ulrike; Pettaway, Curtis A.; Peyser, Patricia A.; Psaty, Bruce M.; Redline, Susan; Rotimi, Charles N.; Rybicki, Benjamin A.; Sale, Michèle M.; Schreiner, Pamela J.; Signorello, Lisa B.; Singleton, Andrew B.; Stanford, Janet L.; Strom, Sara S.; Thun, Michael J.; Vitolins, Mara; Zheng, Wei; Moore, Jason H.; Williams, Scott M.; Zhu, Xiaofeng; Zonderman, Alan B.; Kooperberg, Charles; Papanicolaou, George; Henderson, Brian E.; Reiner, Alex P.; Hirschhorn, Joel N.; Loos, Ruth JF; North, Kari E.; Haiman, Christopher A.

    2013-01-01

    Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry, and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one novel locus at 5q33 (GALNT10, rs7708584, p=3.4×10−11) and another at 7p15 when combined with data from the Giant consortium (MIR148A/NFE2L3, rs10261878, p=1.2×10−10). We also found suggestive evidence of an association at a third locus at 6q16 in the African ancestry sample (KLHL32, rs974417, p=6.9×10−8). Thirty-two of the 36 previously established BMI variants displayed directionally consistent effect estimates in our GWAS (binomial p=9.7×10−7), of which five reached genome-wide significance. These findings provide strong support for shared BMI loci across populations as well as for the utility of studying ancestrally diverse populations. PMID:23583978

  14. Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris.

    Science.gov (United States)

    Mayrhofer, G; Andrews, R H; Ey, P L; Chilton, N B

    1995-07-01

    Giardia that infect humans are known to be heterogeneous but they are assigned currently to a single species, Giardia intestinalis (syn. G. lamblia). The genetic differences that exist within G. intestinalis have not yet been assessed quantitatively and neither have they been compared in magnitude with those that exist between G. intestinalis and species that are morphologically similar (G. duodenalis) or morphologically distinct (e.g. G. muris). In this study, 60 Australian isolates of G. intestinalis were analysed electrophoretically at 27 enzyme loci and compared with G. muris and a feline isolate of G. duodenalis. Isolates of G. intestinalis were distinct genetically from both G. muris (approximately 80% fixed allelic differences) and the feline G. duodenalis isolate (approximately 75% fixed allelic differences). The G. intestinalis isolates were extremely heterogeneous but they fell into 2 major genetic assemblages, separated by fixed allelic differences at approximately 60% of loci examined. The magnitude of the genetic differences between the G. intestinalis assemblages approached the level that distinguished the G. duodenalis isolate from the morphologically distinct G. muris. This raises important questions about the evolutionary relationships of the assemblages with Homo sapiens, the possibility of ancient or contemporary transmission from animal hosts to humans and the biogeographical origins of the two clusters.

  15. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass.

    Science.gov (United States)

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang; Yerges-Armstrong, Laura M; Chou, Wen-Chi; Stolk, Lisette; Livshits, Gregory; Broer, Linda; Johnson, Toby; Koller, Daniel L; Kutalik, Zoltán; Luan, Jian'an; Malkin, Ida; Ried, Janina S; Smith, Albert V; Thorleifsson, Gudmar; Vandenput, Liesbeth; Hua Zhao, Jing; Zhang, Weihua; Aghdassi, Ali; Åkesson, Kristina; Amin, Najaf; Baier, Leslie J; Barroso, Inês; Bennett, David A; Bertram, Lars; Biffar, Rainer; Bochud, Murielle; Boehnke, Michael; Borecki, Ingrid B; Buchman, Aron S; Byberg, Liisa; Campbell, Harry; Campos Obanda, Natalia; Cauley, Jane A; Cawthon, Peggy M; Cederberg, Henna; Chen, Zhao; Cho, Nam H; Jin Choi, Hyung; Claussnitzer, Melina; Collins, Francis; Cummings, Steven R; De Jager, Philip L; Demuth, Ilja; Dhonukshe-Rutten, Rosalie A M; Diatchenko, Luda; Eiriksdottir, Gudny; Enneman, Anke W; Erdos, Mike; Eriksson, Johan G; Eriksson, Joel; Estrada, Karol; Evans, Daniel S; Feitosa, Mary F; Fu, Mao; Garcia, Melissa; Gieger, Christian; Girke, Thomas; Glazer, Nicole L; Grallert, Harald; Grewal, Jagvir; Han, Bok-Ghee; Hanson, Robert L; Hayward, Caroline; Hofman, Albert; Hoffman, Eric P; Homuth, Georg; Hsueh, Wen-Chi; Hubal, Monica J; Hubbard, Alan; Huffman, Kim M; Husted, Lise B; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Jordan, Joanne M; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O; Klopp, Norman; Kloth, Jacqueline S L; Koistinen, Heikki A; Kraus, William E; Kritchevsky, Stephen; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L; Launer, Lenore J; Lee, Jong-Young; Lerch, Markus M; Lewis, Joshua R; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Liu, Tian; Liu, Youfang; Ljunggren, Östen; Lorentzon, Mattias; Luben, Robert N; Maixner, William; McGuigan, Fiona E; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Melov, Simon; Michaëlsson, Karl; Mitchell, Braxton D; Morris, Andrew P; Mosekilde, Leif; Newman, Anne; Nielson, Carrie M; O'Connell, Jeffrey R; Oostra, Ben A; Orwoll, Eric S; Palotie, Aarno; Parker, Stephen C J; Peacock, Munro; Perola, Markus; Peters, Annette; Polasek, Ozren; Prince, Richard L; Räikkönen, Katri; Ralston, Stuart H; Ripatti, Samuli; Robbins, John A; Rotter, Jerome I; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schadt, Eric E; Schipf, Sabine; Scott, Laura; Sehmi, Joban; Shen, Jian; Soo Shin, Chan; Sigurdsson, Gunnar; Smith, Shad; Soranzo, Nicole; Stančáková, Alena; Steinhagen-Thiessen, Elisabeth; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Swart, Karin M A; Tan, Sian-Tsung; Tarnopolsky, Mark A; Thompson, Patricia; Thomson, Cynthia A; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J; Tuomilehto, Jaakko; van Schoor, Natasja M; Verma, Arjun; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Weedon, Michael N; Welch, Ryan; Wichmann, H-Erich; Widen, Elisabeth; Williams, Frances M K; Wilson, James F; Wright, Nicole C; Xie, Weijia; Yu, Lei; Zhou, Yanhua; Chambers, John C; Döring, Angela; van Duijn, Cornelia M; Econs, Michael J; Gudnason, Vilmundur; Kooner, Jaspal S; Psaty, Bruce M; Spector, Timothy D; Stefansson, Kari; Rivadeneira, Fernando; Uitterlinden, André G; Wareham, Nicholas J; Ossowski, Vicky; Waterworth, Dawn; Loos, Ruth J F; Karasik, David; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P

    2017-07-19

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.

  16. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana.

    Science.gov (United States)

    Dickman, Christopher T D; Moehring, Amanda J

    2013-01-01

    When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.

  17. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana.

    Directory of Open Access Journals (Sweden)

    Christopher T D Dickman

    Full Text Available When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56% of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.

  18. Cross-genus amplification and characterisation of microsatellite loci ...

    African Journals Online (AJOL)

    Jennifer Lamb

    School of Biological and Conservation Sciences, New Biology Building, University of KwaZulu-Natal, University ... These six loci were informative in studies of population genetic structure of C. pumilus ..... The Human Genome Project and the.

  19. Migraine genetics : from monogenic to complex forms

    NARCIS (Netherlands)

    Vanmolkot, Kaate Raymond Josepha

    2008-01-01

    Migraine has a strong genetic component, but the identification of these factors has proven difficult mainly because of the complex interaction of multiple loci and environmental factors. Unraveling its molecular basis and deciphering pathways leading to migraine attacks will help identifying novel

  20. Genetic Diversity of Three Spotted Seahorse, Hippocampus trimaculatus (Leach, 1814 in India Using Four Microsatellite Loci

    Directory of Open Access Journals (Sweden)

    Muthusamy THANGARAJ

    2012-11-01

    Full Text Available Seahorse populations are declining year by year not only in India but also throughout the world, because of over-fishing and increasing demand in Chinese market. The three spotted seahorse, Hippocampus trimaculatus is one of the dominant species and distributed all along the Indian coast. To study the genetic structure is very essential to conserve these species effectively. Hippocampus trimaculatus samples (n = 60/population were collected from Mullimunai in Palk Bay, Tuticorin in Gulf of Mannar and Vizhinjam in south Malabar in India as by-catch in small trawlnets. Microsatellites are being widely applied in animal genome mapping and phylogenetic analysis because of their co-dominant inheritance and high degree of polymorphism. The molecular polymorphism of microsatellite DNA has proved to be a potent tool in the analysis of several aspects of population genetics. In the present study, four microsatellite primers were used to investigate the genetic difference and structure of three selected populations of H. trimaculatus. The result showed the overall FST value (0.0989 of the microsatellite loci between Mullimunai and Vizhinjam was significantly different. The genetic distance between Mullimunai and Tuticorin was 0.183; between Tuticorin and Vizhinjam was 0.461; and Mullimunai and Vizhinjam was 0.837. There was no statistical evidence of recent severe bottlenecks in any of the three populations. Continuous monitoring of microsatellite variations within the populations of all the three locations was suggested to determine whether genetic variation within the populations is stabilized between year classes.

  1. Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation.

    Directory of Open Access Journals (Sweden)

    Momoko Horikoshi

    2015-07-01

    Full Text Available Reference panels from the 1000 Genomes (1000G Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS, supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI at genome-wide significance, and two for fasting glucose (FG, none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3 and FG (GCK and G6PC2. The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.

  2. Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).

    Science.gov (United States)

    Momigliano, P; Harcourt, R; Robbins, W D; Jaiteh, V; Mahardika, G N; Sembiring, A; Stow, A

    2017-09-01

    With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.

  3. New Microsatellite Loci for Prosopis alba and P. chilensis (Fabaceae

    Directory of Open Access Journals (Sweden)

    Cecilia F. Bessega

    2013-05-01

    Full Text Available Premise of the study: As only six useful microsatellite loci that exhibit broad cross-amplification are so far available for Prosopis species, it is necessary to develop a larger number of codominant markers for population genetic studies. Simple sequence repeat (SSR markers obtained for Prosopis species from a 454 pyrosequencing run were optimized and characterized for studies in P. alba and P. chilensis. Methods and Results: Twelve markers that were successfully amplified showed polymorphism in P. alba and P. chilensis. The number of alleles per locus ranged between two and seven and heterozygosity estimates ranged from 0.2 to 0.8. Most of these loci cross-amplify in P. ruscifolia, P. flexuosa, P. kuntzei, P. glandulosa, and P. pallida. Conclusions: These loci will enable genetic diversity studies of P. alba and P. chilensis and contribute to fine-scale population structure, indirect estimation of relatedness among individuals, and marker-assisted selection.

  4. Genetic, Maternal, and Environmental Risk Factors for Cryptorchidism

    DEFF Research Database (Denmark)

    Barthold, Julia Spencer; Reinhardt, Susanne; Thorup, Jorgen

    2016-01-01

    genetic risk, multiple susceptibility loci, and a role for the maternal environment. Epidemiologic studies have identified low birth weight or intrauterine growth retardation as factors most strongly associated with cryptorchidism, with additional evidence suggesting that maternal smoking and gestational...

  5. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  6. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes.

    Directory of Open Access Journals (Sweden)

    Michelle E White

    Full Text Available Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests. After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10-13 was evident between a region of canine chromosome 13 (CFA13 and alanine aminotransferase (ALT, explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.

  7. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes.

    Science.gov (United States)

    White, Michelle E; Hayward, Jessica J; Stokol, Tracy; Boyko, Adam R

    2015-01-01

    Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS) at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests). After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10-13) was evident between a region of canine chromosome 13 (CFA13) and alanine aminotransferase (ALT), explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.

  8. A second generation genetic map for rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Gahr Scott A

    2008-11-01

    Full Text Available Abstract Background Genetic maps characterizing the inheritance patterns of traits and markers have been developed for a wide range of species and used to study questions in biomedicine, agriculture, ecology and evolutionary biology. The status of rainbow trout genetic maps has progressed significantly over the last decade due to interest in this species in aquaculture and sport fisheries, and as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. We constructed a second generation genetic map for rainbow trout using microsatellite markers to facilitate the identification of quantitative trait loci for traits affecting aquaculture production efficiency and the extraction of comparative information from the genome sequences of model fish species. Results A genetic map ordering 1124 microsatellite loci spanning a sex-averaged distance of 2927.10 cM (Kosambi and having 2.6 cM resolution was constructed by genotyping 10 parents and 150 offspring from the National Center for Cool and Cold Water Aquaculture (NCCCWA reference family mapping panel. Microsatellite markers, representing pairs of loci resulting from an evolutionarily recent whole genome duplication event, identified 180 duplicated regions within the rainbow trout genome. Microsatellites associated with genes through expressed sequence tags or bacterial artificial chromosomes produced comparative assignments with tetraodon, zebrafish, fugu, and medaka resulting in assignments of homology for 199 loci. Conclusion The second generation NCCCWA genetic map provides an increased microsatellite marker density and quantifies differences in recombination rate between the sexes in outbred populations. It has the potential to integrate with cytogenetic and other physical maps, identifying paralogous regions of the rainbow trout genome arising from the evolutionarily recent genome duplication event, and

  9. A Follow-up Association Study of Genetic Variants for Bone Mineral Density in a Korean Population

    Directory of Open Access Journals (Sweden)

    Seokjin Ham

    2014-09-01

    Full Text Available Bone mineral density (BMD is one of the quantitative traits that are genetically inherited and affected by various factors. Over the past years, genome-wide association studies (GWASs have searched for many genetic loci that influence BMD. A recent meta-analysis of 17 GWASs for BMD of the femoral neck and lumbar spine is the largest GWAS for BMD to date and offers 64 single-nucleotide polymorphisms (SNPs in 56 associated loci. We investigated these BMD loci in a Korean population called Korea Association REsource (KARE to identify their validity in an independent study. The KARE population contains genotypes from 8,842 individuals, and their BMD levels were measured at the distal radius (BMD-RT and midshaft tibia (BMD-TT. Thirteen genomic loci among 56 loci were significantly associated with BMD variations, and 3 loci were involved in known biological pathways related to BMD. In order to find putative functional variants, nearby SNPs in relation to linkage equilibrium were annotated, and their possible functional effects were predicted. These findings reveal that tens of variants, not a single factor, may contribute to the genetic architecture of BMD; have an important role regardless of ethnic group; and may highlight the importance of a replication study in GWASs to validate genuine loci for BMD variation.

  10. Ancient conservation of trinucleotide microsatellite loci in polistine wasps

    DEFF Research Database (Denmark)

    Ezenwa, V O; Peters, J M; Zhu, Y

    1998-01-01

    Microsatellites have proven to be very useful genetic markers for studies of kinship, parentage, and gene mapping. If microsatellites are conserved among species, then those developed for one species can be used on related species, which would save the time and effort of developing new loci. We...... evaluated conservation of 27 trinucleotide loci that were derived from 2 species of Polistes wasps in cross-species applications on 27 species chosen from the major lineages of the Vespidae, which diverged as much as 144 million years ago. We further investigated cross-species polymorphism levels for 18...... of the loci. There was a clear relationship between cladistic distance and both conservation of the priming sites and heterozygosity. However the loci derived from P. bellicosus were much more widely conserved and polymorphic than were those derived from P. annularis. The disparity in cross-species utility...

  11. Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions

    Directory of Open Access Journals (Sweden)

    Margaret Catolos

    2017-10-01

    Full Text Available Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant and IR64-21 (drought susceptible was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3, and qDTY8.1 under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number. The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0–22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3+qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1+qDTY8.1 and qDTY1.1+qDTY8.1+qDTY1.3, across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.

  12. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    OpenAIRE

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi

    2016-01-01

    Objective A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Methods Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zeala...

  13. Identification of novel mazEF/pemIK family toxin-antitoxin loci and their distribution in the Staphylococcus genus.

    Science.gov (United States)

    Bukowski, Michal; Hyz, Karolina; Janczak, Monika; Hydzik, Marcin; Dubin, Grzegorz; Wladyka, Benedykt

    2017-10-18

    The versatile roles of toxin-antitoxin (TA) systems in bacterial physiology and pathogenesis have been investigated for more than three decades. Diverse TA loci in Bacteria and Archaea have been identified in genome-wide studies. The advent of massive parallel sequencing has substantially expanded the number of known bacterial genomic sequences over the last 5 years. In staphylococci, this has translated into an impressive increase from a few tens to a several thousands of available genomes, which has allowed us for the re-evalution of prior conclusions. In this study, we analysed the distribution of mazEF/pemIK family TA system operons in available staphylococcal genomes and their prevalence in mobile genetic elements. 10 novel m azEF/pemIK homologues were identified, each with a corresponding toxin that plays a potentially different and undetermined physiological role. A detailed characterisation of these TA systems would be exceptionally useful. Of particular interest are those associated with an SCCmec mobile genetic element (responsible for multidrug resistance transmission) or representing the joint horizontal transfer of TA systems and determinants of vancomycin resistance from enterococci. The involvement of TA systems in maintaining mobile genetic elements and the associations between novel mazEF/pemIK loci and those which carry drug resistance genes highlight their potential medical importance.

  14. Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci.

    Directory of Open Access Journals (Sweden)

    Samuel E Jones

    2016-08-01

    Full Text Available Disrupted circadian rhythms and reduced sleep duration are associated with several human diseases, particularly obesity and type 2 diabetes, but until recently, little was known about the genetic factors influencing these heritable traits. We performed genome-wide association studies of self-reported chronotype (morning/evening person and self-reported sleep duration in 128,266 white British individuals from the UK Biobank study. Sixteen variants were associated with chronotype (P<5x10-8, including variants near the known circadian rhythm genes RGS16 (1.21 odds of morningness, 95% CI [1.15, 1.27], P = 3x10-12 and PER2 (1.09 odds of morningness, 95% CI [1.06, 1.12], P = 4x10-10. The PER2 signal has previously been associated with iris function. We sought replication using self-reported data from 89,283 23andMe participants; thirteen of the chronotype signals remained associated at P<5x10-8 on meta-analysis and eleven of these reached P<0.05 in the same direction in the 23andMe study. We also replicated 9 additional variants identified when the 23andMe study was used as a discovery GWAS of chronotype (all P<0.05 and meta-analysis P<5x10-8. For sleep duration, we replicated one known signal in PAX8 (2.6 minutes per allele, 95% CI [1.9, 3.2], P = 5.7x10-16 and identified and replicated two novel associations at VRK2 (2.0 minutes per allele, 95% CI [1.3, 2.7], P = 1.2x10-9; and 1.6 minutes per allele, 95% CI [1.1, 2.2], P = 7.6x10-9. Although we found genetic correlation between chronotype and BMI (rG = 0.056, P = 0.05; undersleeping and BMI (rG = 0.147, P = 1x10-5 and oversleeping and BMI (rG = 0.097, P = 0.04, Mendelian Randomisation analyses, with limited power, provided no consistent evidence of causal associations between BMI or type 2 diabetes and chronotype or sleep duration. Our study brings the total number of loci associated with chronotype to 22 and with sleep duration to three, and provides new insights into the biology of sleep and

  15. Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross.

    Directory of Open Access Journals (Sweden)

    Lisa E Gralinski

    2015-10-01

    Full Text Available New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations.

  16. Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients

    DEFF Research Database (Denmark)

    Brorsson, Caroline A; Nielsen, Lotte B; Andersen, Marie-Louise

    2016-01-01

    Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on β-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic control and residual β-cell function in type...... 1 diabetes (T1D). As gene expression may represent an intermediate phenotype between genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally regulated by proinflammatory cytokines would be the best predictors of disease...... constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and gene ontology (GO) analyses revealed that several...

  17. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  18. The African Genome Variation Project shapes medical genetics in Africa.

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  19. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes

    Science.gov (United States)

    Morris, Andrew P; Voight, Benjamin F; Teslovich, Tanya M; Ferreira, Teresa; Segrè, Ayellet V; Steinthorsdottir, Valgerdur; Strawbridge, Rona J; Khan, Hassan; Grallert, Harald; Mahajan, Anubha; Prokopenko, Inga; Kang, Hyun Min; Dina, Christian; Esko, Tonu; Fraser, Ross M; Kanoni, Stavroula; Kumar, Ashish; Lagou, Vasiliki; Langenberg, Claudia; Luan, Jian'an; Lindgren, Cecilia M; Müller-Nurasyid, Martina; Pechlivanis, Sonali; Rayner, N William; Scott, Laura J; Wiltshire, Steven; Yengo, Loic; Kinnunen, Leena; Rossin, Elizabeth J; Raychaudhuri, Soumya; Johnson, Andrew D; Dimas, Antigone S; Loos, Ruth J F; Vedantam, Sailaja; Chen, Han; Florez, Jose C; Fox, Caroline; Liu, Ching-Ti; Rybin, Denis; Couper, David J; Kao, Wen Hong L; Li, Man; Cornelis, Marilyn C; Kraft, Peter; Sun, Qi; van Dam, Rob M; Stringham, Heather M; Chines, Peter S; Fischer, Krista; Fontanillas, Pierre; Holmen, Oddgeir L; Hunt, Sarah E; Jackson, Anne U; Kong, Augustine; Lawrence, Robert; Meyer, Julia; Perry, John RB; Platou, Carl GP; Potter, Simon; Rehnberg, Emil; Robertson, Neil; Sivapalaratnam, Suthesh; Stančáková, Alena; Stirrups, Kathleen; Thorleifsson, Gudmar; Tikkanen, Emmi; Wood, Andrew R; Almgren, Peter; Atalay, Mustafa; Benediktsson, Rafn; Bonnycastle, Lori L; Burtt, Noël; Carey, Jason; Charpentier, Guillaume; Crenshaw, Andrew T; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Emilsson, Valur; Eury, Elodie; Forsen, Tom; Gertow, Karl; Gigante, Bruna; Grant, George B; Groves, Christopher J; Guiducci, Candace; Herder, Christian; Hreidarsson, Astradur B; Hui, Jennie; James, Alan; Jonsson, Anna; Rathmann, Wolfgang; Klopp, Norman; Kravic, Jasmina; Krjutškov, Kaarel; Langford, Cordelia; Leander, Karin; Lindholm, Eero; Lobbens, Stéphane; Männistö, Satu; Mirza, Ghazala; Mühleisen, Thomas W; Musk, Bill; Parkin, Melissa; Rallidis, Loukianos; Saramies, Jouko; Sennblad, Bengt; Shah, Sonia; Sigurðsson, Gunnar; Silveira, Angela; Steinbach, Gerald; Thorand, Barbara; Trakalo, Joseph; Veglia, Fabrizio; Wennauer, Roman; Winckler, Wendy; Zabaneh, Delilah; Campbell, Harry; van Duijn, Cornelia; Uitterlinden89-, Andre G; Hofman, Albert; Sijbrands, Eric; Abecasis, Goncalo R; Owen, Katharine R; Zeggini, Eleftheria; Trip, Mieke D; Forouhi, Nita G; Syvänen, Ann-Christine; Eriksson, Johan G; Peltonen, Leena; Nöthen, Markus M; Balkau, Beverley; Palmer, Colin N A; Lyssenko, Valeriya; Tuomi, Tiinamaija; Isomaa, Bo; Hunter, David J; Qi, Lu; Shuldiner, Alan R; Roden, Michael; Barroso, Ines; Wilsgaard, Tom; Beilby, John; Hovingh, Kees; Price, Jackie F; Wilson, James F; Rauramaa, Rainer; Lakka, Timo A; Lind, Lars; Dedoussis, George; Njølstad, Inger; Pedersen, Nancy L; Khaw, Kay-Tee; Wareham, Nicholas J; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Korpi-Hyövälti, Eeva; Saltevo, Juha; Laakso, Markku; Kuusisto, Johanna; Metspalu, Andres; Collins, Francis S; Mohlke, Karen L; Bergman, Richard N; Tuomilehto, Jaakko; Boehm, Bernhard O; Gieger, Christian; Hveem, Kristian; Cauchi, Stephane; Froguel, Philippe; Baldassarre, Damiano; Tremoli, Elena; Humphries, Steve E; Saleheen, Danish; Danesh, John; Ingelsson, Erik; Ripatti, Samuli; Salomaa, Veikko; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Peters, Annette; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Morris, Andrew D; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; Boerwinkle, Eric; Melander, Olle; Kathiresan, Sekar; Nilsson, Peter M; Deloukas, Panos; Thorsteinsdottir, Unnur; Groop, Leif C; Stefansson, Kari; Hu, Frank; Pankow, James S; Dupuis, Josée; Meigs, James B; Altshuler, David; Boehnke, Michael; McCarthy, Mark I

    2012-01-01

    To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis. PMID:22885922

  20. Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions.

    Science.gov (United States)

    Muleta, Kebede T; Rouse, Matthew N; Rynearson, Sheri; Chen, Xianming; Buta, Bedada G; Pumphrey, Michael O

    2017-08-04

    The narrow genetic basis of resistance in modern wheat cultivars and the strong selection response of pathogen populations have been responsible for periodic and devastating epidemics of the wheat rust diseases. Characterizing new sources of resistance and incorporating multiple genes into elite cultivars is the most widely accepted current mechanism to achieve durable varietal performance against changes in pathogen virulence. Here, we report a high-density molecular characterization and genome-wide association study (GWAS) of stripe rust and stem rust resistance in 190 Ethiopian bread wheat lines based on phenotypic data from multi-environment field trials and seedling resistance screening experiments. A total of 24,281 single nucleotide polymorphism (SNP) markers filtered from the wheat 90 K iSelect genotyping assay was used to survey Ethiopian germplasm for population structure, genetic diversity and marker-trait associations. Upon screening for field resistance to stripe rust in the Pacific Northwest of the United States and Ethiopia over multiple growing seasons, and against multiple races of stripe rust and stem rust at seedling stage, eight accessions displayed resistance to all tested races of stem rust and field resistance to stripe rust in all environments. Our GWAS results show 15 loci were significantly associated with seedling and adult plant resistance to stripe rust at false discovery rate (FDR)-adjusted probability (P) rust in the Ethiopian wheat accessions. Many of the identified resistance loci were mapped close to previously identified rust resistance genes; however, three loci on the short arms of chromosomes 5A and 7B for stripe rust resistance and two on chromosomes 3B and 7B for stem rust resistance may be novel. Our results demonstrate that considerable genetic variation resides within the landrace accessions that can be utilized to broaden the genetic base of rust resistance in wheat breeding germplasm. The molecular markers identified in