WorldWideScience

Sample records for ice surfaces implications

  1. Dissected Mantle Terrain on Mars: Formation Mechanisms and the Implications for Mid- latitude Near-surface Ground Ice

    Science.gov (United States)

    Searls, M. L.; Mellon, M. T.

    2008-12-01

    Determining the present and past distribution of surface and subsurface ice on Mars is critical for understanding the volatile inventory and climatic history of the planet. An analysis of a latitude-dependent layer of surface material known as the dissected mantle terrain can provide valuable insight into the distribution of ice in the recent past. The dissected mantle terrain is a surface unit that occurs globally in the mid-latitude of Mars. This unit is characterized by a smooth mantle of uniform thickness and albedo that is draped over the existing topography. This smooth mantle is disaggregated and dissected in places resulting in a hummocky pitted appearance. We propose that the mid-latitude dissected terrain results from collapse of a dusty mantle into the void left from desiccation of an underlying ice-rich (pure or dirty ice) layer. During period(s) of high obliquity, it is possible for ice to become stable at lower latitudes. Due to lack of direct solar insolation, surface ice deposits will preferentially accumulate on pole-ward facing slopes first. A mantle of dust and dirt is then deposited on top of these ice-rich deposits. As the climate changes, desiccation of the now buried ice leads to collapse of the overlying dusty layer resulting in a hummocky pitted appearance. This theory is supported by the pole-ward preference for the dissection pits as well an increase in dissection with increasing latitude. A study of the global distribution of the mid-latitude dissected terrain can provide invaluable clues towards unlocking the distribution of ice in the recent past. An analysis of HiRISE images and MOLA data indicate that the distribution of dissection pits varies from one region to the next. Knowing the distribution of ice in conjunction with ice stability modeling can provide a global view of the climate and orbital history of Mars at the time these features formed.

  2. Climatic implications of ice microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Liou, K.N. [Univ. of Utah, Salt Lake City, UT (United States)

    1995-09-01

    Based on aircraft measurements of mid-latitude cirrus clouds, ice crystal size distribution and ice water content (IWC) are shown to be dependent on temperature. This dependence is also evident from the theoretical consideration of ice crystal growth. Using simple models of the diffusion and accretion growth of ice particles, the computed mean ice crystal size and IWC compare reasonably well with the measured mean values. The temperature dependence of ice crystal size and IWC has important climatic implications in that the temperature field perturbed by external radiative forcings, such as greenhouse warming, can alter the composition of ice crystal clouds. Through radiative transfer, ice microphysics can in turn affect the temperature field. Higher IWC would increase cloud solar albedo and infrared emissivity, while for a given IWC, larger crystals would reduce cloud albedo and emissivity. The competing effects produced by greenhouse temperature perturbations via ice micro-physics and radiation interactions and feedbacks are assessed by a one-dimensional radiative-convective climate model that includes an advanced radiation parameterization program. 3 figs.

  3. Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities

    OpenAIRE

    P. Reitz; C. Spindler; T. F. Mentel; Poulain, L.; H. Wex; K. Mildenberger; D. Niedermeier; Hartmann, S.; T. Clauss; F. Stratmann; R. C. Sullivan; Demott, P. J.; Petters, M. D.; Sierau, B.; Schneider, J.

    2011-01-01

    The ability of coated mineral dust particles to act as ice nuclei (IN) was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator) during the FROST1- and FROST2-campaigns (Freezing of dust). Sulphuric acid was condensed on the particles which afterwards were optionally humidified, treated with ammonia vapour and/or heat. By means of aerosol mass spectrometry we found evidence that processing of mineral dust particles with su...

  4. Understanding changes in the Arctic basin sea ice mass budget as simulated by CCSM4: Implications from melt season characteristics and the surface albedo feedback

    Science.gov (United States)

    Pollak, D. A.; Holland, M. M.; Bailey, D. A.

    2010-12-01

    Observations reveal alarming drops in Arctic sea ice extent, and climate models project that further changes will occur that could have global repercussions. An important aspect of this change is the surface albedo feedback, driven by the contrast between the albedos of snow/ice and the open ocean. In response to warming, this feedback enhances ice melt and amplifies surface warming in the Arctic. The newly released, fully coupled Community Climate System Model Version 4 (CCSM4) is used to assess long-term changes in the Arctic sea ice mass budget. Analysis of monthly-averaged mass budget time series from the 20th and 21st centuries revealed drastic changes from 1980-2050, the focus years of this study. While numerous factors determine the Arctic sea ice mass budget, we focus on the surface melt terms as they are most closely related to the surface albedo feedback. During the study period, annually averaged difference plots of sea ice thickness and area both revealed substantial decreases across the entire Arctic domain. Helping to clarify these long-term changes, new daily output data from this model allowed for the examination of melt season characteristics such as melt onset and cessation dates as well as season duration. One of the most interesting aspects was the shift to earlier melt onset dates throughout the Arctic Basin. This shift, coupled with the seasonal solar cycle has substantial implications. Earlier onset dates imply an earlier decrease of albedo that overlaps with the seasonal maximum of downward shortwave radiation. This leads to increases in shortwave absorption and results in amplified ice melt that directly impacts the strength of the surface albedo feedback. The strong relationship between earlier melt onset dates and increased absorbed radiation therefore is a key factor influencing Arctic amplification. This figure is created from daily model output and displays changes in melt season duration, end date, and onset date from the first and

  5. Sublimation of Ices Containing Organics and/or Minerals and Implications for Icy Bodies Surface Structure and Spectral Properties

    Science.gov (United States)

    Poch, O.; Pommerol, A.; Jost, B.; Yoldi, Z.; Carrasco, N.; Szopa, C.; Thomas, N.

    2015-12-01

    The surfaces of many objects in the Solar System comprise substantial quantities of water ice either in pure form or mixed with minerals and/or organic molecules. Sublimation is a process responsible for shaping and changing the reflectance properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surfaces made of mixtures of water ice and non-volatile components (complex organic matter and silicates), as they undergo sublimation of the water ice under low temperature and pressure conditions (Poch et al., under review). We prepared icy surfaces which are potential analogues of ices found on comets, icy satellites or trans-neptunian objects (TNOs). The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol et al., 2015a). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit, or sublimation mantle, made of the non-volatiles at the top of the samples. The texture (porosity, internal cohesiveness etc.), the activity (outbursts and ejection of mantle fragments) and the spectro-photometric properties of this mantle are found to differ strongly depending on the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the volatile component and the dust/ice mass ratio. The results also indicate how the band depths of the sub-surface water ice evolve during the build-up of the sublimation mantle. These data provide useful references for interpreting remote-sensing observations of Rosetta (see Pommerol et al., 2015b), and also New Horizons. Poch, O., et al., under review in IcarusPommerol, A., et al., 2015a, Planet. Space Sci. 109-110, 106-122. http://dx.doi.org/10.1016/j.pss.2015.02.004Pommerol, A., et al., 2015b, Astronomy and Astrophysics, in press. http://dx.doi.org/10.1051/0004-6361/201525977

  6. Surface exposure dating of glacial lake shorelines: implications for constraining ice margin positions and meltwater outbursts during the last deglaciation

    Science.gov (United States)

    Dube-Loubert, Hugo; Roy, Martin; Schaefer, Joerg

    2016-04-01

    The Laurentide ice sheet (LIS) played an important role in the climate variability of the last deglaciation, notably through large discharges of meltwater to the North Atlantic that disturbed the ocean's circulation and heat transport. Deglaciation of the northeastern sector of the LIS was complex and included the development of large ice-dammed lakes that were confined within the main river valleys draining northward into Ungava Bay. The history of these lakes is closely related to the temporal evolution of the Labrador ice dome, but large uncertainties regarding the position and dynamic of the ice margin through time currently limit our understanding of these glacial lakes. In the Ungava lowlands, glacial lake Naskaupi invaded the George River valley, leaving a series of well-developed shorelines and deltas. These spectacular raised shorelines are 10 to 20 meters wide and can be followed for several kilometers. Our field investigations and remote sensing analysis indicate that Lake Naskaupi experienced a complex history, as shown by the succession of shorelines that likely reflect the opening of new topographic outlets during ice retreat. Constraining the timing of the different phases of the lake and its drainage has traditionally been challenging, as organic material suitable for radiocarbon dating is scarce or lacking. Recent progress in Surface Exposure Dating (SED) by cosmogenic nuclides now inspires novel approaches to glacial and deglacial geomorphology. Here we apply 10Be SED to boulders that form part of these shorelines and mark the main (high-level) stage of Lake Naskaupi. We sampled 4-6 multi-meter size boulders at 4 different sites. Preliminary results show high internal consistency and, indicate that the main lake phase developed very late in the regional deglaciation, which extends from about 8500 to 6800 cal. yr BP (Dyke and Prest, 1987). We also present SED results from boulders deposited by a substantial outburst flood presumably associated with

  7. Structures of surface and interface of amorphous ice

    Science.gov (United States)

    Kumagai, Yu; Ikeda-Fukazawa, Tomoko

    2017-06-01

    To investigate the surface structure, we performed molecular dynamics calculations of amorphous ice. The result shows that a low density layer, which forms a few hydrogen bonds with weaker strength, exists in the surface. Furthermore, the sintering processes were simulated to investigate the structure of grain boundary formed from the adsorption of two surfaces. The result indicates that a low density region exists in a boundary between amorphous ice grains. The structures of surface and interface of amorphous ice have important implications for adsorption, diffusion, and chemical reaction in ice grains of interstellar molecular clouds.

  8. Microbial abundance in surface ice on the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    Marek eStibal

    2015-03-01

    Full Text Available Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet, using three enumeration methods: epifluorescence microscopy (EFM, flow cytometry (FCM and quantitative polymerase chain reaction (qPCR. In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (10^2 – 10^7 cells ml-1 and mineral particle (0.1 – 100 mg/ml concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ca 2 x 10^3 to ca 2 x 10^6 cells/ml while dust concentrations ranged from 0.01 to 2 mg/ml. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the Greenland Ice Sheet.

  9. A large rock avalanche onto Morsarjökull glacier, south-east Iceland. Its implications for ice-surface evolution and glacier dynamics

    OpenAIRE

    Decaulne, Armelle; Sæmundsson, Þorsteinn; Pétursson, Halldór G.; Jónsson, Helgi Pall; Sigurðsson, Ingvar A.

    2010-01-01

    In spring 2007, a large rock avalanche descended onto the Morsárjökull valley glacier in southeast Iceland, leaving one fifth of the glacier buried. The insulating effect of the deposit on the ice was quickly observed as a difference in the ablation between the exposed ice and that under the deposit. After three melt seasons, the ice surface under the deposit was 29 m above the surrounding glacier surface. A reduced rate of ice melting beneath the area of the deposit would likely alter the lo...

  10. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, K.

    2012-01-01

    that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km(2) (0.5-1m thick) drifting ice floe......, melt reduced the ice floe thickness by 0.2m per week and resulted in an estimated 3.8 ppm decrease of pCO(2) in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m(-2) sea ice d(-1) or to 3.3 ton km(-2) ice floe week(-1). This is markedly higher than the estimated...... primary production within the ice floe of 0.3-1.3 mmol m(-2) sea ice d(-1). Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO(2) uptake...

  11. Ikaite crystals in melting sea iceimplications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-08-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air–sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air–sea CO2 uptake of 10.6 mmol m−2 sea ice d−1 or to 3.3 ton km−2 ice floe week−1. This is markedly higher than the estimated primary production within the ice floe of 0.3–1.3 mmol m−2 sea ice d−1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  12. Ikaite crystals in melting sea iceimplications for pCO2 and pH levels in Arctic surface waters

    Directory of Open Access Journals (Sweden)

    R. J. G. Leakey

    2012-03-01

    Full Text Available A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5–1 m thick drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m−2 sea ice d−1 or to 3.5 ton km−2 ice floe week−1.

  13. Ikaite crystals in melting sea iceimplications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.

    2012-01-01

    chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait...... during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced...... within the ice floe of 0.3-1.3 mmol m -2 sea ice d -1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO 2 uptake. © Author(s) 2012....

  14. Anti-icing performance of superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, S.; Farzaneh, M. [CIGELE/INGIVRE, Department of Applied Sciences, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada); Kulinich, S.A., E-mail: skulinic@uqac.ca [CIGELE/INGIVRE, Department of Applied Sciences, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada)

    2011-05-01

    This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size {approx}80 {mu}m) in a wind tunnel at subzero temperature (-10 deg. C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

  15. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, K.

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3 center dot 6H(2)O) in Arctic and Antarctic sea ice, which indicate...... that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km(2) (0.5-1m thick) drifting ice floe......, melt reduced the ice floe thickness by 0.2m per week and resulted in an estimated 3.8 ppm decrease of pCO(2) in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m(-2) sea ice d(-1) or to 3.3 ton km(-2) ice floe week(-1). This is markedly higher than the estimated...

  16. Superhydrophobic nanocomposite surface topography and ice adhesion.

    Science.gov (United States)

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 μm on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 μm is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum.

  17. Ikaite crystals in melting sea iceimplications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO 2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO 3•6H 2O) in Arctic and Antarctic sea ice, which indicate that multiple...... chemical transformations occur in sea ice with a possible effect on CO 2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km 2 (0.5-1 m thick) drifting ice floe in the Fram Strait...... during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced...

  18. Thin Ice Films at Mineral Surfaces.

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood.

  19. IceTop: The surface component of IceCube

    CERN Document Server

    Abbasi, R; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Caballero-Mora, K S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Elliott, C; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Klepser, S; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McDermott, A; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nießen, P; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Roth, J; Rothmaier, F; Rott, C; Roucelle, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Shulman, L; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Stoyanov, S; Strahler, E A; Ström, R; Sulanke, K-H; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M

    2012-01-01

    IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.

  20. Heterogeneous reactions of N2O5 with H2O and HCl on ice surfaces - Implications for Antarctic ozone depletion

    Science.gov (United States)

    Leu, Ming-Taun

    1988-01-01

    This paper reports on the measurements of reaction probabilities for heterogeneous reaction of N2O5 with H2O and HCl on ice surfaces at 195 K, using a fast-flow reactor coupled with a quadrupole mass spectrometer. The reaction probability for N2O5 on pure-water ice was found to be 0.028 + or - 0.011, with nitric acid in the solid phase as the sole product. In the presence of HCl in ice, the probability of N2O5 reaction was enhanced (to 0.037); the reaction produced, besides solid-phase nitric acid, ClNO2 and ClONO which were released into the gas phase within a few milliseconds. The latter two compounds can be readily photolyzed in the austral spring to form active chlorine which would remove stratospheric ozone. It is suggested that, since the polar stratospheric clouds are believed to contain HCl-ice mixture on the surface, the reactions of N2O5 on H2O/HCl particles is a major factor in the Antarctic springtime ozone depletion.

  1. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  2. Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Momen, G., E-mail: gmomen@uqac.ca; Jafari, R.; Farzaneh, M.

    2015-09-15

    Highlights: • A novel view on ice repellency of superhydrophobic surfaces in terms of contact angle hysteresis, roughness and icing condition has been discussed. • This study is the first to deal with the effect of icing parameters on the ice repellency behaviour of superhydrophobic surfaces. • Two fabricated superhydrophobic surfaces with similar wettability behaviour showed different icephobic behaviour. • Superhydrophobic surfaces are not always icephobic and ice repellency is governed by icing condition parameters like liquid water content and water droplet size. • Lower liquid water content and smaller water droplet size promote ice-repellency behaviour of superhydrophobic surfaces. - Abstract: This paper presents a novel view on ice repellency of superhydrophobic surfaces in terms of contact angle hysteresis, surface roughness and icing condition. Ice repellency performance of two superhydrophobic silicone rubber nanocomposite surfaces prepared via spin coating and spray coating methods were investigated. High contact angle (>150°), low contact angle hysteresis (<6°) and roll-off property were found for both spin and spray coated samples. The results showed a significant reduction of ice adhesion strength on the spin-coated sample while ice adhesion strength on the spray-coated sample was found to be unexpectedly similar to that of the uncoated sample. Indeed, this research study showed that the icephobic properties of a surface are not directly correlated to its superhydrphobicity and that further investigations, like taking icing condition effect into account, are required. It was found that icephobic behaviour of the spray coated sample improved at lower levels of liquid water content (LWC) and under icing conditions characterized by smaller water droplet size.

  3. Theoretical Implications of IceCube Neutrinos

    Science.gov (United States)

    Ahlers, Markus

    2014-03-01

    The IceCube Collaboration has recently found evidence for an astrophysical flux of neutrinos. The flux is consistent with an isotropic and equal-flavor E-2 power-law spectrum from 60 TeV to 2 PeV. There are also indications that the neutrino spectrum beyond 2 PeV requires a spectral break or cutoff. The origin of the IceCube excess is not known, but its multi-messenger context can already provide some theoretical orientation. For instance, the production of PeV neutrinos require hadronic interactions of cosmic rays (CRs) with energies of a few 10 PeV, extending into the poorly understood transition region between Galactic and extra-Galactic CRs. A local contribution to the neutrino flux from Galactic accelerators is hence feasible and could show up as arrival direction clustering towards Galactic structures. In this context, a possible association of the PeV neutrino sources with unidentified TeV gamma-ray sources, peculiar supernovae or the Fermi Bubbles has been speculated. In addition, a local hadronic neutrino production would predict an observable PeV gamma-ray flux. Spectral features of the neutrino flux, in particular a break or cutoff, serve as additional hints for candidate CR sources and astrophysical environments for neutrino production. Possible scenearios include starburst galaxies, low-luminosity gamma-ray bursts and the cores of active galactic nuclei. I will outline general theoretical implications of the IceCube excess and summarize various source candidates.

  4. Thermoluminescence of ice and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Rey, L., E-mail: louis.rey@bluewin.c [Chemin de Verdonnet, 2 CH-1010 Lausanne (Switzerland); Aerial-CRT-Parc d' Innovation, B.P. 40443, F 67412 Illkirch Cedex (France); Gartia, R.K., E-mail: rkgartia02@yahoo.i [Physics Department, Manipur University, Imphal 795003 (India); Bishal Singh, K. [Physics Department, Manipur University, Imphal 795003 (India); Basanta Singh, Th. [Luminescence Dating Laboratory, Manipur University, Imphal 795003 (India)

    2009-12-15

    A set of six glow curves of hexagonal ice irradiated at 77 K with various doses of gamma-rays have been subjected to rigorous analysis. It shows the presence of as many as 11 thermoluminescence (TL) peaks at 108.2 +- 1.7 K, 115.5 +- 1.4 K, 123.4 +- 3.6 K, 131.8 +- 2.5 K, 138.9 +- 2.2 K, 149.8 +- 1.2 K, 161.3 +- 0.9 K, 168.4 +- 0.8 K, 178.0 +- 0.8 K, 194.1 +- 0.8 K and 203.8 +- 3.9 K (for a heating rate of 0.05 K/s) with thermal activation energies of 0.29 +- 0.01 eV, 0.31 +- 0.01 eV, 0.34 +- 0.01 eV, 0.40 +- 0.00 eV, 0.40 +- 0.01 eV, 0.41 +- 0.01 eV, 0.69 +- 0.01 eV, 0.70 +- 0.00 eV, 0.70 +- 0.01 eV, 0.70 +- 0.01 eV and 0.70 +- 0.01 eV, respectively. The lifetime of electrons in the trap giving rise to the most intense TL peak of ice (161.3 +- 0.9 K) estimated from TL data at 273 K is approx55 ns, while that at 77 K is approx2.0 x 10{sup +18} years i.e. ice can be used for TL dating of icy bodies in the solar system. The physical basis of these findings have been provided keeping in mind the formation of H{sup 0}, O{sup -}, OH{sup -}, HO{sub 2}{sup -} and trapped electrons that are known to be produced by irradiation of ice. The implications of these findings have been discussed.

  5. Electron Traps at the Ice Surface

    Science.gov (United States)

    Bockstedte, Michel; Auburger, Philipp; Michl, Anja

    Water, water clusters and ice possess the fascinating ability to solvate electrons. On the surface of water cluster1 and thin crystalline ice structures on a metal substrate2 long-living solvated electron states were observed that evolve from pre-existing surface traps. The identification of such traps provides important insight into the electronic structure of the water or ice surface, and the dissociative interaction of electrons with adsorbates. Models2,3 based on the bilayer terminated Ih-(0001) surface related such traps to orientational defects or vacancies. So far, the understanding of the electronic structure of the ice surface with the electron traps is incomplete. Here we address this issue including also water ad-structures4 within hybrid density functional theory and many-body perturbation theory (G0W0). We identify a hierachy of traps with increasing vertical electron affinity, ranging from hexagon adrows to clusters of orientational defects and vacancies with dangling OH-groups. Siefermann and Abel, Angew. Chem. Int. Ed. 50, 5264 (2011). Bovensiepen et al., J. Chem. Phys. C 113, 979 (2013). Hermann et al., J. Phys.: cond. matter 20, 225003 (2008). Mehlhorn and Morgenstern, Phys. Rev. Lett. 99, 246101 (2007)

  6. Surface decontamination using dry ice snow

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jungdong; Park, Kwangheon [College of Mechnical and Industrial System Engineering, Kyunghee University, Yongin (Korea, Republic of); Lee, Bumsik; Kim Yangeun [Wolsung Nuclear Power Plants, KEPCO (Korea, Republic of)

    1999-07-01

    An adjustable nozzle for controlling the size of dry ice snow was developed. The converging/diverging nozzle can control the size of snows from sub-microns to 10 micron size. Using the nozzle, a surface decontamination device was made. The removal mechanisms of surface contaminants are mechanical impact, partial dissolving and evaporation process, and viscous flow. A heat supply system is added for the prevention of surface ice layer formation. The cleaning power is slightly dependent on the size of snow. Small snows are the better in viscous flow cleaning, while large snows are slightly better in dissolving and sublimation process. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution. (author)

  7. Life in Ice: Implications to Astrobiology

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a

  8. The Surface of Ice in the presence of Antifreeze Proteins studied by Atomic Force Microscopy

    Science.gov (United States)

    Zepeda, Salvador; Orme, Christine; Yeh, Yin

    2002-03-01

    The surface of ice has been a topic of interest for centuries. In particular, the surface structure and properties have been explored with the advent of new surface techniques. Several groups have convincingly shown a surface transition layer to exist between the solid-vapor interface as well as the solid-liquid interface. In addition, the characteristics of this region may be directly correlated with growth morphologies of ice. Certain peptide molecules have the ability to significantly alter the growth morphology of an ice crystal. Do these molecules simply disrupt this transition region? Or do they anchor themselves deep into it reaching the bulk-ice phase? And is there a similar mechanism by which they function? We use AFM to study the morphological changes to the true ice surface due to the presence antifreeze proteins. We will discuss the implications of our results on the longstanding debate to the above questions.

  9. Characterization of an IceTop tank for the IceCube surface extension IceVeto

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Auffenberg, Jan; Hansmann, Bengt; Rongen, Martin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceTop is an air-shower detector located at the South Pole on the surface above the IceCube detector. It consists of 81 detector stations with two Cherenkov tanks each. The tanks are filled with clear ice and instrumented with two photomultipliers. IceTop detects cosmic-ray induced air-showers above an energy threshold of ∝300 TeV. Muons and neutrinos from these air-showers are the main background for astrophysical neutrino searches with IceCube. The usage of IceTop to veto air-showers largely reduces this background in the field of view. To enlarge the field of view an extension of the surface detector, IceVeto, is planned. Therefore, we investigate the properties of an original IceTop tank as a laboratory reference for the development of new detection module designs. First results of these measurements are presented.

  10. High Resolution Ice Surface of the Ross Ice Shelf: Accuracy and Links to Basal Processes

    Science.gov (United States)

    Starke, S. E.

    2015-12-01

    We use airborne laser altimetry data from IcePod and IceBridge to map the surface across the Ross Ice Shelf in Antarctica. Laser altimetry and radar data is analyzed from the IcePod 2014 and 2015 field campaigns as well as IceBridge 2013. Icepod is a multi sensor suite that includes ice penetrating radars, a swath scanning laser, visible and IR cameras as well as GPS mounted on a LC-130. Using shallow ice radar data from both IcePod and IceBridge we identify the base of the ice shelf. Across the shelf we observe distinct areas of high reflectivity in the radar data suggesting basal crevassing. In some regions, the basal reflector is not well defined. Laser altimetry profiles correlate surface morphology with features at the base including basal crevasses and marine ice formed by freezing on to the base of the ice shelf. Building Digital Elevation Models (DEMs) from the laser altimetry data, we investigate the relationship between the surface expressions of these ice shelf dynamics including thickness changes, potential sites of marine ice at the base and basal morphology in regions where a well defined basal reflector does not exist in the radar profiles. We present accuracy of the IcePod laser altimetry dataset using ground control points and GPS grids from Greenland and Antarctica as well as Photogrammetric DEMs. Our laser altimetry analysis resolves sub-meter surface features which, combined with coincident radar, provides a link between basal processes and their surface expressions.

  11. Surface Morphology of Ice and Ice with AFGP studied with Atomic Force Microscopy

    Science.gov (United States)

    Zepeda, Salvador; Orme, Christine A.; Yeh, Yin

    2001-03-01

    Water is earth's only naturally occurring inorganic liquid and as such it is not surprising that the special properties of water and ice are responsible for life. As essential as it is for survival of living organisms, it can also cause death by freezing in cold weather organisms causing cells to burst upon expansion and recrystallization. Many organisms have developed a tolerance to both freezing and recrystallization. In particular, certain polar and near polar fish have done so in the form of antifreeze glycoproteins (AFGPs). These proteins suppress the freezing temperature of water and inhibit recrystallization. The focus of our efforts is to understand the mechanism by which these proteins function. The working hypothesis has been a Gibbs-Thomson model in which the protein binds to an ice plane and physically impedes its growth. Atomic force microscopy offers molecular level resolution and this type of phenomenon has been readily investigated for other systems with this technique. We will discuss the results from AFM measurements on single ice crystals carried out in an octane overlayer for both the pure phase and in the presence of AFGPs. Our results implicate a high surface mobility of water molecules in both cases.

  12. Observations of surface waves interacting with ice using stereo imaging

    Science.gov (United States)

    Campbell, Alexander J.; Bechle, Adam J.; Wu, Chin H.

    2014-06-01

    A powerful Automated Trinocular Stereo Imaging System (ATSIS) is used to remotely measure waves interacting with three distinct ice types: brash, frazil, and pancake. ATSIS is improved with a phase-only correlation matching algorithm and parallel computation to provide high spatial and temporal resolution 3-D profiles of the water/ice surface, from which the wavelength, frequency, and energy flux are calculated. Alongshore spatial frequency distributions show that pancake and frazil ices differentially attenuate at a greater rate for higher-frequency waves, causing a decrease in mean frequency. In contrast, wave propagation through brash ice causes a rapid increase in the dominant wave frequency, which may be caused by nonlinear energy transfer to higher frequencies due to collisions between the brash ice particles. Consistent to the results in frequency, the wavelengths in pancake and frazil ices increase but decrease in brash ice. The total wave energy fluxes decrease exponentially in both pancake and frazil ice, whereas the overall energy flux remain constant in the brash ice due to thin layer thickness. The spatial energy flux distributions also reveal that wave reflection occurs at the boundary of each ice layer, with reflection coefficient decaying exponentially away from the ice interface. Reflection is the strongest at the pancake/ice-free and frazil/brash interfaces and the weakest at the brash/ice-free interface. These high resolution observations measured by ATSIS demonstrate the spatially variable nature of waves propagating through ice.

  13. Simulation of an extended surface detector IceVeto for IceCube-Gen2

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Tim; Auffenberg, Jan; Haack, Christian; Hansmann, Bengt; Kemp, Julian; Konietz, Richard; Leuner, Jakob; Raedel, Leif; Stahlberg, Martin; Schoenen, Sebastian; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a neutrino observatory located at the geographic South Pole. The main backgrounds for IceCube's primary goal, the measurement of astrophysical neutrinos, are muons and neutrinos from cosmic-ray air showers in the Earth's atmosphere. Strong supression of these backgrounds from the Southern hemisphere has been demonstrated by coincident detection of these air showers with the IceTop surface detector. For an extended instrument, IceCube-Gen2, it is considered to build an enlarged surface array, IceVeto, that will improve the detection capabilities of coincident air showers. We will present simulation studies to estimate the IceVeto capabilities to optimize the IceCube-Gen2 design.

  14. Physically-based Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    Science.gov (United States)

    Li, Li; Gaiser, Peter; Allard, Richard; Posey, Pamela; Hebert, David; Richter-Menge, Jacqueline; Polashenski, Christopher; Claffey, Keran

    2016-04-01

    The observations of sea ice thickness and ice surface roughness are critical for our understanding of the state of the changing Arctic. Currently, the Radar and/or LiDAR data of sea ice freeboard are used to infer sea ice thickness via isostasy. The underlying assumption is that the LiDAR signal returns at the air/snow interface and radar signal at the snow/ice interface. The elevations of these interfaces are determined based on LiDAR/Radar return waveforms. However, the commonly used threshold-based surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice 'layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. Both the ice thickness and surface roughness retrievals are validated using in-situ data. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates

  15. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  16. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    Science.gov (United States)

    Katlein, C.; Arndt, S.; Nicolaus, M.; Perovich, D. K.; Jakuba, M.; Suman, S.; Elliott, S.; Whitcomb, L. L.; McFarland, C.; Gerdes, R.; Boetius, A.

    2015-12-01

    The changes in physical properties of sea ice such as decreased thickness and increased melt pond cover observed over the last decades severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role in the amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to undertake challenging research at the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance onboard the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely-piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three-dimensional under-ice topography and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties during summer on the spatial variability of light transmittance. Results show that surface properties dominate the spatial distribution of the under-ice light field on small scales (<1000m²), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we suggest an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  17. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  18. The sea ice in Young Sound: Implications for carbon cycling

    DEFF Research Database (Denmark)

    Glud, Ronnie Nøhr; Rysgaard, Søren; Kühl, Michael

    2007-01-01

    , and 7 of the longest sea-ice-free periods observed in 50 years were recorded after 1990. The snow and sea-ice cover regulates the activity of the light-limited marine ecosystem of Young Sound. As the snow cover melts during late May and June, the irradiance refl ectance decreases, especially for red...... and near infrared light. Differences in snow cover thickness and patchy distribution of dry snow, wet snow and melting ponds on the sea-ice surface result in a very heterogeneous light environment at the underside of the ice. In areas with suffi cient light, sea-ice algae begin to fl ourish......–30 μg Chl a l-1 sea ice at the underside of the ice and with maximum area integrated values of c. 3 mg Chl a m-2. We speculate that the extreme dynamics in sea-ice appearance, structure and brine percolation, which is driven primarily by large but variable freshwater inputs during snow melt...

  19. The sea ice in Young Sound: Implications for carbon cycling

    DEFF Research Database (Denmark)

    Glud, Ronnie Nøhr; Rysgaard, Søren; Kühl, Michael

    2007-01-01

    , and 7 of the longest sea-ice-free periods observed in 50 years were recorded after 1990. The snow and sea-ice cover regulates the activity of the light-limited marine ecosystem of Young Sound. As the snow cover melts during late May and June, the irradiance refl ectance decreases, especially for red...... and near infrared light. Differences in snow cover thickness and patchy distribution of dry snow, wet snow and melting ponds on the sea-ice surface result in a very heterogeneous light environment at the underside of the ice. In areas with suffi cient light, sea-ice algae begin to fl ourish......–30 μg Chl a l-1 sea ice at the underside of the ice and with maximum area integrated values of c. 3 mg Chl a m-2. We speculate that the extreme dynamics in sea-ice appearance, structure and brine percolation, which is driven primarily by large but variable freshwater inputs during snow melt...

  20. Ice Formation via Deposition Mode Nucleation on Bare and Alcohol-covered Graphite Surfaces

    CERN Document Server

    Kong, Xiangrui; Thomson, Erik S; Pettersson, Jan B C

    2013-01-01

    Deposition of water on aerosol particles contributes to ice cloud formation in the atmosphere with implications for the water cycle and climate on Earth. The heterogeneous ice nucleation process is influenced by physico-chemical properties of the substrate, but the mechanisms remain incompletely understood. Here, we report on ice formation on bare and alcohol-covered graphite at temperatures from 175 to 213 K, probed by elastic helium and light scattering. Water has a low wettability on bare and butanol-covered graphite resulting in the growth of rough ice surfaces. In contrast, pre-adsorbed methanol provides hydrophilic surface sites and results in the formation of smooth crystalline ice; an effect that is pronounced also for sub-monolayer methanol coverages. The alcohols primarily reside at the ice surface and at the ice-graphite interface with a minor fraction being incorporated into the growing ice structures. Methanol has no observable effect on gas/solid water vapor exchange whereas butanol acts as a tr...

  1. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  2. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    Science.gov (United States)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  3. Phase Relations and Properties of Salty ices VI and VII: Implications for Solar System Ices

    Science.gov (United States)

    Daniel, I.; Manning, C. E.

    2008-12-01

    Ice VI and ice VII may be important in the interiors of Europa, Ganymede, Callisto and Titan. Oceans and interior pore waters in these bodies likely contain dissolved salts. To address the role of salt on ice VI and ice VII, we investigated phase equilibria in the system H2O -NaCl at 1 molal (5.5 wt%) NaCl in an externally heated diamond-anvil cell. Phase identifications were made by optical microscopy combined with Raman spectroscopy. Experiments were conducted at 22-150°C and up to 5 GPa by allowing the cell to thermally equilibrate at a given temperature and then varying pressure isothermally while observing phase changes. The liquidus curves of ice VI and ice VII in a 5.5 wt% NaCl solution were determined. Melting was observed from 22 to 80°C (ice VI) and from 35 to 150°C (ice VII). Both melting curves are steeper than the respective NaCl-free curves, indicating that the freezing-point depression at this bulk composition increases with pressure. The intersection of the two liquidus curves indicates that VI-VII-liquid triple point is shifted toward lower T and higher P relative to pure H2O. The 5.5 wt% NaCl bulk composition crystallizes into a single solid phase of NaCl-bearing ice VI or ice VII solid solution over the investigated T range (the subscript 'ss' indicates solid solution). Large single crystals of ice VIss or ice VIIss can also be grown by slow compression of the cell from near-liquidus conditions to the solidus. Raman spectra of these crystals clearly show zoning in these crystals. The zoning persists for days at 22°C, indicating relatively slow Na+ and Cl- diffusivity. The large depression of the freezing point in a 1 molal NaCl solution has important implications for the oceans and interiors of the icy satellites of Jupiter and Saturn. Salty fluids may remain stable to much greater depth than expected. This would promote extensive hydrothermal metamorphism of the silicate interiors. If not limited to ice VI and VII, this behavior may suppress

  4. Paint removal and surface cleaning using ice particles

    Science.gov (United States)

    Foster, Terry; Visaisouk, S.

    1995-04-01

    Research into the possibility of using ice particles as a blast medium was first initiated at Defence Research Establishment Pacific (DREP) in an effort to develop a more environmentally acceptable paint removal method. A paint removal process was also required that could be used in areas where normal grit blasting could not be used due to the possibility of the residual blasting grit contaminating machinery and other equipment. As a result of this research a commercial ice blasting system was developed by RETECH. This system is now being used to remove paint from substrates that cannot be easily blasted by conventional techniques and also to clean soiled or contaminated surfaces. The problems involved in the development of an ice blast system and its components and their functions are described. Due to the complexity of paint removal using ice blasting, parameters such as air pressure, ice particle size and ice particle flow rate were studied and adjusted to suit the nature of the particular coating and substrate of interest. The mechanism of paint removal by ice particles has also been investigated. A theoretical model has been developed to explain the different paint removal mechanisms such as erosion by abrasion and erosion by fracture as they relate to ice blasting. Finally, the use of ice blasting to removal paint from a variety of substrates is presented as well as examples of surface cleaning and surface decontamination.

  5. Mass loss of the Greenland Ice Sheet since the Little Ice Age, implications on sea level

    Science.gov (United States)

    Kjeldsen, K. K.; Kjaer, K.; Bjork, A. A.; Khan, S. A.; Korsgaard, N. J.; Larsen, N. K.; Long, A. J.; Woodroffe, S.; Milne, G. A.; Wahr, J. M.; Geruo, A.; Bamber, J. L.; van den Broeke, M. R.

    2013-12-01

    The impact of mass loss from the Greenland Ice Sheet (GrIS) on 20th Century sea level rise (SLR) has long been subject to intense discussions. While globally distributed tide gauges suggest a global mean SLR of 15-20 cm, quantifying the separate components is of great concern - in particular for modeling sea level projections into the 21st Century. Estimates of the past GrIS contribution to SLR have been derived using a number of different approaches, e.g. surface mass balance (SMB) calculations combined with estimates of ice discharge found by in correlating SMB anomalies and calving rates. Here, we adopt a novel geometric approach to determine the post-Little Ice Age (LIA) mass loss of the GrIS. We use high quality aerial stereo photogrammetric imagery recorded between 1978 and 1987 to map morphological features such as trim lines (boundary between freshly eroded and non-eroded bedrock) and end moraines marking the ice extent of the LIA, which thereby enables us to obtain vertical point-based differences associated with changes in ice extent. These point measurements are combined with contemporary ice surface differences derived using NASA's Airborne Topographic Mapper (ATM) from 2002-2010, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) from 2003-2009, and NASA's Land, Vegetation, and Ice Sensor (LVIS) from 2010, to estimate mass loss throughout the 20th and early 21st Century. We present mass balance estimates of the GrIS since retreat commence from the maximum extent of the LIA to 2010 derived for three intervals, LIAmax (1900) - 1978/87, 1978/87 - 2002, and 2002 - 2010. Results suggest that despite highly spatially- and temporally variable post-LIA mass loss, the total mass loss and thus the contribution from the GrIS to global SLR has accelerated significantly during the 20th Century.

  6. Arctic sea ice trends, variability and implications for seasonal ice forecasting.

    Science.gov (United States)

    Serreze, Mark C; Stroeve, Julienne

    2015-07-13

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  8. The floating ices on the surface of Pluto

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    The average temperature of of Pluto surface is about 40 K. Because of the substantial eccentricity of the orbit of Pluto when approaching the Sun - the ice melts on its surface, and this leads to the formation of an atmosphere consisting mainly of nitrogen and methane sublimated. Water ice is not only deep, but there is also on the surface of the planet, forming a mountain range up to 3-4 km altitude, and small unique icebergs.

  9. Heterogeneous ice nucleation controlled by the coupling of surface crystallinity and surface hydrophilicity

    CERN Document Server

    Bi, Yuanfei; Li, Tianshu

    2015-01-01

    The microscopic mechanisms controlling heterogeneous ice nucleation are complex and remain poorly understood. Although good ice nucleators are generally believed to match ice lattice and to bind water, counter examples are often identified. Here we show, by advanced molecular simulations, that the heterogeneous nucleation of ice on graphitic surface is controlled by the coupling of surface crystallinity and surface hydrophilicity. Molecular level analysis reveals that the crystalline graphitic lattice with an appropriate hydrophilicity may indeed template ice basal plane by forming a strained ice layer, thus significantly enhancing its ice nucleation efficiency. Remarkably, the templating effect is found to transit from within the first contact layer of water to the second as the hydrophilicity increases, yielding an oscillating distinction between the crystalline and amorphous graphitic surfaces in their ice nucleation efficiencies. Our study sheds new light on the long-standing question of what constitutes ...

  10. Massive Ice Layer Formed by Refreezing of Ice-shelf Surface Melt Ponds: Larsen C Ice Shelf, Antarctica

    Science.gov (United States)

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Jansen, Daniela; O'Leary, Martin

    2016-04-01

    Surface melt ponds now form frequently on ice shelves across the northern sector of the Antarctic Peninsula in response to regional warming and local föhn winds. A potentially important, but hitherto unknown, consequence of this surface melting and ponding is the formation of high-density near-surface ice from the refreezing of that water. We report the discovery and physical character of a massive subsurface ice layer located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and ground-based radar measurements with remote sensing and firn modelling to investigate the formation and spatial extent of this layer, found to be tens of kilometres across and tens of metres deep. The presence of this ice layer has the effect of raising local ice shelf density by ~190 kg m^-3 and temperature by 5 - 10 degrees C above values found in areas unaffected by ponding and hitherto used in models of ice-shelf fracture and flow.

  11. Surface water hydrology and the Greenland Ice Sheet

    Science.gov (United States)

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Ryan, J.; Hubbard, A.; Tedesco, M.; Behar, A.

    2016-12-01

    Mass loss from the Greenland Ice Sheet now exceeds 260 Gt/year, raising global sea level by >0.7 mm annually. Approximately two-thirds of this total mass loss is now driven by negative ice sheet surface mass balance (SMB), attributed mainly to production and runoff of meltwater from the ice sheet surface. This new dominance of runoff as a driver of GrIS total mass loss will likely persist owing to anticipated further increases in surface melting, reduced meltwater storage in firn, and the waning importance of dynamical mass losses (ice calving) as the ice sheets retreat from their marine-terminating margins. It also creates the need and opportunity for integrative research pairing traditional surface water hydrology approaches with glaciology. As one example, we present a way to measure supraglacial "runoff" (i.e. specific discharge) at the supraglacial catchment scale ( 101-102 km2), using in situ measurements of supraglacial river discharge and high-resolution satellite/drone mapping of upstream catchment area. This approach, which is standard in terrestrial hydrology but novel for ice sheet science, enables independent verification and improvement of modeled SMB runoff estimates used to project sea level rise. Furthermore, because current SMB models do not consider the role of fluvial watershed processes operating on the ice surface, inclusion of even a simple surface routing model materially improves simulations of runoff delivered to moulins, the critical pathways for meltwater entry into the ice sheet. Incorporating principles of surface water hydrology and fluvial geomorphology and into glaciological models will thus aid estimates of Greenland meltwater runoff to the global ocean as well as connections to subglacial hydrology and ice sheet dynamics.

  12. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition

    Science.gov (United States)

    Mao, Yougang; Ba, Yong

    2006-09-01

    This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.

  13. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...... replace double-difference GPS positioning in remote or hostile environments, and be used to retrieve the surface ice flow velocity without any reference station. Furthermore, the solution can be derived epoch-by-epoch with accuracy in the centimeters to decimeter range....

  14. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity...... replace double-difference GPS positioning in remote or hostile environments, and be used to retrieve the surface ice flow velocity without any reference station. Furthermore, the solution can be derived epoch-by-epoch with accuracy in the centimeters to decimeter range....

  15. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    Science.gov (United States)

    2014-09-30

    Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program Year 3 Report PI: Mark A. Tschudi...surface temperature? During summer, melting ice is covered extensively by melt ponds, which exhibit a reflectance considerably lower than the...of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program 5a

  16. Heterogeneous nucleation of ice on model carbon surfaces

    Science.gov (United States)

    Molinero, V.; Lupi, L.; Hudait, A.

    2014-12-01

    Carbonaceous particles account for 10% of the particulate matter in the atmosphere. The experimental investigation of heterogeneous freezing of water droplets by carbonaceous particles reveals widespread ice freezing temperatures. The origin of the soot and its oxidation and aging modulate its ice nucleation ability, however, it is not known which structural and chemical characteristics of soot account for the variability in ice nucleation efficiency. We find that atomically flat carbon surfaces promote heterogeneous nucleation of ice, while molecularly rough surfaces with the same hydrophobicity do not. We investigate a large set of graphitic surfaces of various dimensions and radii of curvature consistent with those of soot in experiments, and find that variations in nanostructures alone could account for the spread in the freezing temperatures of ice on soot in experiments. A characterization of the nanostructure of soot is needed to predict its ice nucleation efficiency. Atmospheric oxidation and aging of soot modulates its ice nucleation ability. It has been suggested that an increase in the ice nucleation ability of aged soot results from an increase in the hydrophilicity of the surfaces upon oxidation. Oxidation, however, also impacts the nanostructure of soot, making it difficult to assess the separate effects of soot nanostructure and hydrophilicity in experiments. We investigate the effect of changes in hydrophilicity of model graphitic surfaces on the freezing temperature of ice. Our results indicate that the hydrophilicity of the surface is not in general a good predictor of ice nucleation ability. We find a correlation between the ability of a surface to promote nucleation of ice and the layering of liquid water at the surface. The results of this work suggest that ordering of liquid water in contact with the surface plays an important role in the heterogeneous ice nucleation mechanism. References: L. Lupi, A. Hudait and V. Molinero, J. Am. Chem. Soc

  17. The effects of surface-coating alcohols on water uptake on ice

    Science.gov (United States)

    Kong, X.; Thomson, E. S.; Markovic, N.; Pettersson, J. B. C.

    2012-04-01

    The efficiency of water uptake by ice particles contributes to ice cloud development in the atmosphere with implications for the water cycle and climate on Earth. Here, we investigate heavy water (D2O) uptake by water ice with and without alcohol coatings. Methanol and n-butanol are used as alcohol surfactants with different carbon numbers. Water interactions with ice are probed using a recently developed environmental molecular beam (EMB) technique that allows for experiments at vapor pressures up to 10-2 mbar. When probing alcohol-coated ice, a micrometer thick water ice is first condensed on a substrate and subsequently covered by an alcohol monolayer. The application of a large range of alcohol partial pressures confirms the stability of the adsorbed monolayer. A mixed molecular beam of D2O and helium is directed at the ice surfaces under different conditions, and the scattered and desorbed D2O is measured and analyzed quantitatively to obtain water uptake coefficients. The results illustrate that sticking of impinging D2O molecules is almost perfect, but uptake in the presence of alcohol surfactants is strongly dependent on carbon chain length. Molecules from butanol-coated ice scatter and thermally desorb more efficiently than from ice coated by methanol. Hydrogen/deuterium exchange is eliminated as a possible sink of D2O because no HDO is detected beyond the 1% noise level. Between 170 K and 190 K temperature does not obviously influence the water uptake coefficient. These results provide a quantitatively constrained demonstration that adsorbed volatile organic compounds fundamentally alter ice surfaces and thus have the potential to be important in cloud processes ranging from formation to gas-phase scavenging.

  18. Ionization dynamics of water dimer on ice surface

    Science.gov (United States)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  19. Spatial heterogeneity of ocean surface boundary conditions under sea ice

    Science.gov (United States)

    Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues

    2016-06-01

    The high heterogeneity of sea ice properties implies that its effects on the ocean are spatially variable at horizontal scales as small as a few meters. Previous studies have shown that taking this variability into account in models could be required to simulate adequately mixed layer processes and the upper ocean temperature and salinity structures. Although many advanced sea ice models include a subgrid-scale ice thickness distribution, potentially providing heterogeneous surface boundary conditions, the information is lost in the coupling with a unique ocean grid cell underneath. The present paper provides a thorough examination of boundary conditions at the ocean surface in the NEMO-LIM model, which can be used as a guideline for studies implementing subgrid-scale ocean vertical mixing schemes. Freshwater, salt, solar heat and non-solar heat fluxes are examined, as well as the norm of the surface stress. All of the thermohaline fluxes vary considerably between the open water and ice fractions of grid cells. To a lesser extent, this is also the case for the surface stress. Moreover, the salt fluxes in both hemispheres and the solar heat fluxes in the Arctic show a dependence on the ice thickness category, with more intense fluxes for thinner ice, which promotes further subgrid-scale heterogeneity. Our analysis also points out biases in the simulated open water fraction and in the ice thickness distribution, which should be investigated in more details in order to ensure that the latter is used to the best advantage.

  20. Mass loss of the Greenland Ice Sheet since the Little Ice Age, implications on sea level

    DEFF Research Database (Denmark)

    Kjeldsen, K. K.; Bjork, A. A.; Khan, Shfaqat Abbas

    The impact of mass loss from the Greenland Ice Sheet (GrIS) on 20th Century sea level rise (SLR) has long been subject to intense discussions. While globally distributed tide gauges suggest a global mean SLR of 15-20 cm, quantifying the separate components is of great concern - in particular...... for modeling sea level projections into the 21st Century. Estimates of the past GrIS contribution to SLR have been derived using a number of different approaches, e.g. surface mass balance (SMB) calculations combined with estimates of ice discharge found by in correlating SMB anomalies and calving rates. Here...

  1. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic.

    Science.gov (United States)

    Krembs, Christopher; Eicken, Hajo; Deming, Jody W

    2011-03-01

    The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11-59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate.

  2. Modeling Heat Transfer to Explain Observed Temperature Anomalies in Near-Surface Ice, Greenland Ice Sheet Ablation Area

    Science.gov (United States)

    Hills, B. H.; Harper, J. T.; Meierbachtol, T. W.; Humphrey, N. F.; Johnson, J. V.

    2016-12-01

    Measured ice temperatures in over 30 boreholes at 6 different field sites within the Greenland Ice Sheet ablation area indicate that the near-surface ice temperature warms toward the margin. The rate of warming is significantly greater than the atmospheric lapse rate, meaning that the mean annual ice temperature is far warmer than the mean annual air temperature near the margin. Theoretically, ice within 15 meters of the surface should oscillate seasonally around the mean air temperature. However, observations of mean ice and air temperatures differ by as much as 5 degrees Celsius. Here we numerically model heat transfer in ice to investigate the physical processes that could drive this discrepancy. Modeling results are compared to measured ice temperatures in the first 20 meters of ice below the surface. First, we model pure conduction to analyze the thermal effect of snow accumulation, a fixed melting temperature, ablation at the ice surface, emergent flow of ice, and long-term changes in the mean air temperature. Next, we consider a secondary process beyond pure conduction with the air - a latent heat flux which adds energy by refreezing meltwater below the surface. While our measurement locations have no open crevasses exposed to the surface, borehole field observations reveal that void spaces exist below the ice surface. These subsurface voids could provide a route for water to move to depth where it then refreezes and adds energy to the surrounding ice, thus warming ice above the mean air temperature. Finally, we use the near-surface results as a boundary condition for heat transfer through the full thickness of the ice column. The subsequent model output is compared to borehole temperature measurements at depth to examine the effect of near-surface heat transfer on the rest of the ice column.

  3. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    Science.gov (United States)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  4. Persistent and Pervasive Basal Freeze-on: Implications for the Preservation of the Oldest Ice

    Science.gov (United States)

    Bell, R. E.; Ferraccioli, F.; Braaten, D. A.; Corr, H. F.; Creyts, T. T.; Das, I.; Frearson, N.; Jordan, T. A.; Studinger, M.; Wolovick, M.

    2010-12-01

    of basal freeze-on over the rugged topography between Ridge B and the shoreline of Lake Vostok. The positive side for ice cores is that basal freeze-on may deflect the oldest ice towards the surface increasing the preservation potential and enabling older ice to be recovered from a relatively shallow ice core. On the negative side, basal freeze-on must be accompanied by basal melting that may have removed the oldest ice from the ice sheet. These basal processes must be considered in targeting old ice records.

  5. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  6. Evolution of the subglacial hydrologic system beneath the rapidly decaying Cordilleran Ice Sheet caused by ice-dammed lake drainage: implications for meltwater-induced ice acceleration

    Science.gov (United States)

    Burke, Matthew J.; Brennand, Tracy A.; Perkins, Andrew J.

    2012-09-01

    A positive correlation between ice-dammed lake drainage and ice acceleration at Antarctic Ice Sheets (AIS) and land-terminating sections of the Greenland Ice Sheet (GrIS) has been implicated in enhanced ice sheet decay. However, the paucity of direct measurements at the ice sheet bed restricts our understanding of subglacial drainage system evolution in response to transient water inputs. We present evidence that two meltwater corridors on the former bed of the thin (˜600 m at Last Glacial Maximum over the interior Plateaus of British Columbia) and rapidly decaying Cordilleran Ice Sheet (CIS) were generated subglacially in response to the drainage of an ice-dammed lake and operated as canals (tunnel channels). Geomorphological, ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) data reveal a simple event sequence that includes initial propagation of a broad (at least 2.5 km wide) floodwave (inefficient drainage) from an ice-dammed lake, over relatively short (3-24 km) zones at the corridor heads that collapsed into efficient canals (large (up to 0.25-2.5 km wide) channels incised down into the sediment bed and up into the ice) downglacier. Canal formation on the southern Fraser Plateau involved synchronous (along the full canal length) system development, including elements of headward erosion and plunge pool formation. Our data suggest that ice-dammed lake drainage beneath a rapidly decaying thin ice mass that has an efficient antecedent drainage network is not conducive to large-scale ice acceleration. These data may aid better assessment of the role of ice-dammed lake drainage on the dynamics of former, as well as contemporary, ice sheets.

  7. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Physics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011 (Japan); Kudo, T.; Terada, H.; Takato, N. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Takatsuki, S.; Nakamoto, T. [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, A. K. [College of General Education, Osaka Sangyo University, Daito, Osaka 574-8530 (Japan); Fukagawa, M.; Tamura, M. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-04-10

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.

  8. Thin Water and Ice Films at Mineral Surfaces

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  9. Ice-dammed lake drainage in west Greenland: Drainage pattern and implications on ice flow and bedrock motion

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Bjørk, Anders

    2017-01-01

    Ice-dammed lakes drain frequently in Greenland, but the impacts of these events differ between sites. Here we study the quasi-cyclic behavior of the ~40 km2 Lake Tininnilik in west Greenland and its impact on ice flow and crustal deformation. Data reveal rapid drainage of 1.83 ± 0.17 km3 of water...... in less than 7 days in 2010, leading to a speedup of the damming glacier, and an instantaneous modeled elastic bedrock uplift of 18.6 ± 0.1 mm confirmed by an independent lakeside GPS record. Since ice-dammed lakes are common on Greenland, our results highlight the importance of including other sources...... of surface loading in addition to ice mass change, when assessing glacial isostatic adjustment or elastic rebound using geodetic data. Moreover, the results illustrates a linkage between subglacial discharge and ice surface velocity, important for assessing ice flux, and thus mass balance, in a future...

  10. Response timescales for martian ice masses and implications for ice flow on Mars

    DEFF Research Database (Denmark)

    Koutnik, Michelle Rebecca; Waddington, E.D.; Winebrener, D.P.;

    2013-01-01

    ice-flow rates were more significant than today. A plausible range of near-basal ice temperatures and ice-flow enhancement factors can generate the characteristic geometry of an ice mass that has been shaped by flow over reasonable volume-response timescales. All plausible ice-flow scenarios require...

  11. Deciphering sub-micron ice particles on Enceladus surface

    Science.gov (United States)

    Scipioni, F.; Schenk, P.; Tosi, F.; D'Aversa, E.; Clark, R.; Combe, J.-Ph.; Ore, C. M. Dalle

    2017-07-01

    The surface of Saturn's moon Enceladus is composed primarily by pure water ice. The Cassini spacecraft has observed present-day geologic activity at the moon's South Polar Region, related with the formation and feeding of Saturn's E-ring. Plumes of micron-sized particles, composed of water ice and other non-ice contaminants (e.g., CO2, NH3, CH4), erupt from four terrain's fractures named Tiger Stripes. Some of this material falls back on Enceladus' surface to form deposits that extend to the North at ∼40°W and ∼220°W, with the highest concentration found at the South Pole. In this work we analyzed VIMS-IR data to identify plumes deposits across Enceladus' surface through the variation in band depth of the main water ice spectral features. To characterize the global variation of water ice band depths across Enceladus, the entire surface was sampled with an angular resolution of 1° in both latitude and longitude, and for each angular bin we averaged the value of all spectral indices as retrieved by VIMS. The position of the plumes' deposits predicted by theoretical models display a good match with water ice band depths' maps on the trailing hemisphere, whereas they diverge significantly on the leading side. Space weathering processes acting on Enceladus' surface ionize and break up water ice molecules, resulting in the formation of particles smaller than one micron. We also mapped the spectral indices for sub-micron particles and we compared the results with the plumes deposits models. Again, a satisfactory match is observed on the trailing hemisphere only. Finally, we investigated the variation of the depth of the water ice absorption bands as a function of the phase angle. In the visible range, some terrains surrounding the Tiger Stripes show a decrease in albedo when the phase angle is smaller than 10°. This unusual effect cannot be confirmed by near infrared data, since observations with a phase angle lower than 10° are not available. For phase angle

  12. Ice Surface Elevation Changes in East Antarctica from Satellite Altimetry

    Science.gov (United States)

    Zwally, H. Jay; Brenner, Anita C.; DiMarzio, John

    1998-01-01

    Estimates of the overall mass balance and seasonal and inter-annual variations in the surface mass balance are obtainable from time-series of ice surface elevations measured by satellite altimetry. Beginning in 2001, NASA's ICESat laser altimeter and lidar mission will significantly improve the range accuracy, the orbit accuracy, and the spatial coverage for measurement of ice sheet elevations (to 86 S) , as compared to previous radar altimeters designed for ocean measurements The radar altimeters on Seasat and Geosat provided ice sheet measurements to 72 S, and on ERS-1 and ERS-2 to 81 S. Although radar altimetry has significant limitations in coverage (due to loss of tracking) and accuracy over sloping surfaces, information on ice-sheet surface-elevation changes has been derived for parts of Antarctica. Recently, the accuracy of the ice measurements by Seasat (3 months of 1978) and Geosat (1985 to 1989) have been improved by new calculations of the satellite orbit heights and other altimeter corrections. Residual orbit errors and inter-satellite biases are evaluated by crossover analysis and by global adjustments to an ocean surface derived from altimeter data. The standard deviation of the orbit error is less than 9 cm, and the long-term trend in the error appears to be less than 1 cm/yr. Orbit errors can be further reduced by adjustment to the ocean surface, but false signals of several cm/yr may be also introduced by the adjustments. These false signals are caused mainly by residual errors in the altimeter corrections over the ocean, and secondary by real changes in the ocean surface elevation. Maps of ice sheet elevation changes north of 72 S are derived from Seasat-Geosat crossovers and from 4.5 years of Geosat crossovers. A notable ice thinning rate of about 50 cm/yr is found at elevations below 2200 meters between 70 and 72 S to the East of the Amery ice shelf, in both the Seasat-Geosat and Geosat-Geosat time intervals Above 2200 meters, to the ridge

  13. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-03-01

    Full Text Available Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-year sea ice and "dry" and "wet" snow types that suggest black carbon is the dominating absorbing impurity. The albedo response of first year and multi-year sea ice to increasing black carbon, from 1–1024 ng g−1, in a top 5 cm layer of a 155 cm thick sea ice was calculated using the radiative transfer model: TUV-snow. Sea ice albedo is surprisingly unresponsive to black carbon additions up to 100 ng g−1 with a decrease in albedo to 98.7% of the original albedo value due to an addition of 8 ng g−1 of black carbon in first year sea ice compared to an albedo decrease to 99.6% for the same black carbon mass ratio increase in multi-year sea ice. The first year sea ice proved more responsive to black carbon additions than the multi-year ice. Comparison with previous modelling of black carbon in sea ice suggests a more scattering sea ice environment will be less responsive to black carbon additions. Snow layers on sea ice may mitigate the effects of black carbon in sea ice. "Wet" and "dry" snow layers of 0.5, 1, 2, 5 and 10 cm were added onto the sea ice surface and the snow surface albedo calculated with the same increase in black carbon in the underlying sea ice. Just a 0.5 cm layer of snow greatly diminishes the effect of black carbon on surface albedo, and a 2–5 cm layer (less than half the e-folding depth of snow is enough to "mask" any change in surface albedo owing to additional black carbon in sea ice, but not thick enough to ignore the underlying sea ice.

  14. Water accommodation on ice and organic surfaces: insights from environmental molecular beam experiments.

    Science.gov (United States)

    Kong, Xiangrui; Thomson, Erik S; Papagiannakopoulos, Panos; Johansson, Sofia M; Pettersson, Jan B C

    2014-11-26

    Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice. n-Hexanol and n-butanol adlayers reduce water uptake by facilitating rapid desorption and function as inefficient barriers for accommodation as well as desorption of water, while the effect of adsorbed methanol is small. Water accommodation is close to unity on nitric-acid- and acetic-acid-covered ice, and accommodation is significantly more efficient than that on the bare ice surface. Water uptake is inefficient on solid alcohols and acetic acid but strongly enhanced on liquid phases including a quasi-liquid layer on solid n-butanol. The EMB method provides unique information on accommodation and rapid kinetics on volatile surfaces, and these studies suggest that adsorbed organic and acidic compounds need to be taken into account when describing water at environmental interfaces.

  15. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto.

    Science.gov (United States)

    Rafkin, Scot; Soto, Alejandro; Michaels, Timothy

    2016-04-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the unexpected and highly heterogeneous distribution of nitrogen surface ice imaged by the New Horizons spacecraft on the surface of Pluto. The GCM is based on the GFDL Flexible Modeling System (FMS) dynamical core, solved on a discretized latitude/longitude horizontal grid and a pressure-based hybrid vertical coordinate. Model physics include a 3-band radiative scheme, molecular thermal conduction within the atmosphere, subsurface thermal conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4, including non-local thermodynamic equilibrium effects. The subsurface conduction model assumes a water ice regolith. In the case of nitrogen surface ice deposition, additional super-surface layers are added above the water ice regolith to properly account for conductive energy flow through the nitrogen ice. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile surface ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient resulting primarily from the slow seasonal variations of radiative-conductive equilibrium. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Furthermore, the circulation, and thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows (so-called "condensation flows") associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over topography of substantial geologic diversity. To maintain such an ice distribution, the atmospheric circulation and

  16. Discovering sub-micron ice particles across Dione' surface

    Science.gov (United States)

    Scipioni, Francesca; Schenk, Pual; Tosi, Federico; Clark, Roger; Dalle Ore, Cristina; Combe, Jean-Philippe

    2015-11-01

    Water ice is the most abundant component of Saturn’s mid-sized moons. However, these moons show an albedo asymmetry - their leading sides are bright while their trailing side exhibits dark terrains. Such differences arise from two surface alteration processes: (i) the bombardment of charged particles from the interplanetary medium and driven by Saturn’s magnetosphere on the trailing side, and (ii) the impact of E-ring water ice particles on the satellites’ leading side. As a result, the trailing hemisphere appears to be darker than the leading side. This effect is particularly evident on Dione's surface. A consequence of these surface alteration processes is the formation or the implantation of sub-micron sized ice particles.The presence of such particles influences and modifies the surfaces' spectrum because of Rayleigh scattering by the particles. In the near infrared range of the spectrum, the main sub-micron ice grains spectral indicators are: (i) asymmetry and (ii) long ward minimum shift of the absorption band at 2.02 μm (iii) a decrease in the ratio between the band depths at 1.50 and 2.02 μm (iv) a decrease in the height of the spectral peak at 2.6 μm (v) the suppression of the Fresnel reflection peak at 3.1 μm and (vi) the decrease of the reflection peak at 5 μm relative to those at 3.6 μm.We present results from our ongoing work mapping the variation of sub-micron ice grains spectral indicators across Dione' surface using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). To characterize the global variations of spectral indicators across Dione' surface, we divided it into a 1°x1° grid and then averaged the band depths and peak values inside each square cell.We will investigate if there exist a correspondence with water ice abundance variations by producing water ice' absorption band depths at 1.25, 1.52 and 2.02 μm, and with surface morphology by comparing the results with ISS color maps in the ultraviolet, visible and infrared

  17. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  18. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2016-10-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  19. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid

    2013-10-04

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day-1. The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established. 2013 The Author(s).

  20. NOTE: Preliminary Measurements of the Cryogenic Dielectric Properties of Water-Ammonia Ices: Implications for Radar Observations of Icy Satellites

    Science.gov (United States)

    Lorenz, Ralph D.

    1998-12-01

    I report preliminary measurements of the complex permittivity of frozen aqueous ammonia solutions at liquid nitrogen temperatures, representative of those in the saturnian system. The real part of the dielectric constant of 30% ammonia ice is around 4.5 at near-DC frequencies and at ∼1 MHz, compared with around 3.1 for pure water ice. The loss tangents of ammonia-rich ices seem somewhat (∼50%) higher than those for water ice, for which the few low-temperature experiments to date indicate values comparable with predictions by Thompson and Squyres (1990,Icarus86, 336-354) and Maetzler (1998, inSolar System Ices(B. Schmitt, C. DeBergh, and M. Festou, Eds.), pp. 241-257, Kluwer Academic, Dordrecht), but considerably higher than models by Chybaet al. (1998,Icarus, in press). Ammonia-rich ice may reconcile the radar and optical appearance of Titan's surface: the detectability of water-ammonia ice on Titan by the Cassini mission and the implications for Titan's origin and evolution are discussed.

  1. Firn densification in a Late Noachian “icy highlands” Mars: Implications for ice sheet evolution and thermal response

    Science.gov (United States)

    Cassanelli, James P.; Head, James W.

    2015-06-01

    Recent modeling of a thicker early CO2 martian atmosphere and Late Noachian climate predicts that for pressures beyond a fraction of a bar, atmosphere-surface thermal coupling occurs, resulting in adiabatic cooling of high areas across Mars. This promotes the transport of water ice from relatively warmer low-lying areas to the highlands, where deposition and accumulation of water ice result in an "icy highlands" Late Noachian Mars. Deposits will remain stable in the highlands under nominal Late Noachian conditions, but the potential exists for punctuated heating by both top-down (e.g. impacts, volcanism) and bottom-up (e.g. elevated geothermal heat flux) processes. Important in understanding melt generation from these processes is the state of the accumulated snow and ice. Through modeling of the firn densification process in the "icy highlands" framework we assess: (1) the nature of snow accumulation and the physical growth and evolution of the predicted ice deposits, and (2) the implications for the thermal properties of the ice sheets and the response to heating events. Analysis of the firn densification process in the "icy highlands" context indicates that: (1) the upper layers of the ice sheet will be more vulnerable to melting from top-down heating processes because they are comprised of the least dense and least thermally conductive ice, and (2) even with a low thermal conductivity firn layer, basal melting is only likely to occur through a combination of top-down and bottom-up heating. This is because at the nominal mean annual surface temperatures and estimated effective thermal conductivities, the predicted ice sheet thicknesses do not produce enough basal warming to initiate melting for plausible geothermal heat fluxes. Variations in spin-axis/orbital parameters alone are not predicted to cause widespread ablation (melting and sublimation) of the icy highlands ice sheets.

  2. High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments

    Directory of Open Access Journals (Sweden)

    K. Junge

    2008-05-01

    Full Text Available Even though studies of Arctic ice forming particles suggest that a bacterial or viral source derived from open leads could be important for ice formation in Arctic clouds (Bigg and Leck, 2001, the ice nucleation potential of most polar marine psychrophiles or viruses has not been examined under conditions more closely resembling those in the atmosphere. In this paper, we examined the ice nucleation activity (INA of several representative Arctic and Antarctic sea-ice bacterial isolates and a polar Colwellia phage virus. High-resolution ice nucleation spectra were obtained for droplets containing bacterial cells or virus particles using a free-fall freezing tube technique. The fraction of frozen droplets at a particular droplet temperature was determined by measuring the depolarized light scattering intensity from solution droplets in free-fall. Our experiments revealed that all sea-ice isolates and the virus nucleated ice at temperatures very close to the homogeneous nucleation temperature for the nucleation medium – which for artificial seawater was –42.2±0.3°C. Our results suggest that immersion freezing of these marine psychro-active bacteria and viruses would not be important for heterogeneous ice nucleation processes in polar clouds or to the formation of sea ice. These results also suggested that avoidance of ice formation in close proximity to cell surfaces might be one of the cold-adaptation and survival strategies for sea-ice bacteria. The fact that INA occurs at such low temperature could constitute one factor that explains the persistence of metabolic activities at temperatures far below the freezing point of seawater.

  3. The Source Of CO2 Ice On Enceladus' Surface

    Science.gov (United States)

    Matson, D.; Davies, A.; Johnson, T. V.; Castillo-Rogez, J. C.; Lunine, J. I.

    2012-12-01

    Brown et al. (2006) identified CO2 ice on the surface of Enceladus within the South Polar Terrain using Cassini VIMS data. Considering the volatility of CO2, they suggested that the CO2 ice deposits resulted from an active replenishment process. Until now the nature of this process has been a mystery. Although there is a relatively small amount of CO2 in the water vapor erupted by the plumes, water-frost will dominate the spectra of the resulting deposits and the CO2 signature will be masked. We point out that CO2 frost deposits are a possible product of the water circulation model proposed by Matson et al. (2012). In this model, buoyant CO2-bubble-rich water rises up from the ocean and into fissures in the icy crust. When a neutral buoyancy level is reached, the water flows horizontally along the fissures under a relatively thin ice cap. Heat lost from the water beneath the ice supplies heat for the thermal anomalies identified on the surface. Even as the water is flowing horizontally, it continues to lose CO2 because bubbles continue to rise. Recesses and other irregularities on the bottom of the surface ice allow the bubble-gas to collect in pockets. When these are fissured by recurring tidal stresses (Hurford et al., 2007), the CO2 gas can escape and condense nearby on surfaces that are cold enough. The pure CO2 ice deposits discussed here are not to be confused with other deposits seen by VIMS in which the CO2 may be trapped in water-ice matrices. These have different spectral signatures and may be in the icy dust-sized grains ejected by the eruptive plumes. References: Brown et al. (2006) Science, 311, 5766; Matson et al. (2012) Icarus, in press, doi 0.1016/j.icarus.2012.05.031; Hurford et al. (2007) Nature 447, 292. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA.

  4. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    Directory of Open Access Journals (Sweden)

    S. Rysgaard

    2013-04-01

    Full Text Available The precipitation of ikaite (CaCO3 ⋅ 6H2O in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700–900 μmol kg−1 ice (~25 × 106 crystals kg−1 to values of 100–200 μmol kg−1 ice (1–7 × 106 crystals kg−1 near the sea ice–water interface, all of which are much higher (4–10 times than those reported in the few previous studies. Direct measurements of total alkalinity (TA in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of 2.

  5. New surface treatment techniques against ice formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Megateli, R. [TechnoCentre eolien Gaspesie-les Iles, Murdochville, PQ (Canada). Centre CORUS

    2007-07-01

    The average wind speed in Murdochville, Quebec is 9 m/s, making it one of Canada's richest wind resource regions. As such, it is the site of a natural laboratory for the CORUS Center to study the North American climate and wind energy extraction. This presentation outlined research initiatives at CORUS, with particular reference to innovative treatments against ice accretion on wind turbine blades. Ice changes the aerodynamic profile of turbine blades, overloads the structure, increases vibrations and causes component wear. This results in loss of energy production, frequent failures, reduced service life and increased operating and maintenance costs. CORUS has been working on reducing ice accretion on blade surfaces without affecting the manufacturing process using ion implantation and UV rays irradiation. The ions used in the process are hydrogen, fluorine and argon. The technique modifies the surface chemical properties at the nano-scale depth level. This presentation provided details of the ion implantation procedure and the UV rays exposure procedure. An evaluation of wetting and water contact angles on blade samples was provided. Preliminary results showed that the high hysteresis of the non-treated samples had favourable conditions to ice adhesion. Argon implantation reduced the water contact angles and particularly hysteresis. Hydrogen implantation slightly increased the water contact angles and reduced the hysteresis. The process was beneficial in terms of service life. UV irradiation increased the hysteresis. figs.

  6. Changes in the modeled ice thickness distribution near the Surface Heat Budget of the Arctic Ocean (SHEBA) drifting ice camp

    Science.gov (United States)

    Lindsay, R. W.

    2003-06-01

    In the polar oceans the ice thickness distribution controls the exchange of heat between the ocean and the atmosphere and determines the strength of the ice. The Surface Heat Budget of the Arctic Ocean (SHEBA) experiment included a year-long field program centered on a drifting ice station in the Beaufort and Chukchi Seas in the Arctic Ocean from October 1997 through October 1998. Here we use camp observations and develop methods to assimilate ice thickness and open water observations into a model in order to estimate the evolution of the thickness distribution in the vicinity of the camp. A thermodynamic model is used to simulate the ice growth and melt, and an ice redistribution model is used to simulate the opening and ridging processes. Data assimilation procedures are developed and then used to assimilate observations of the thickness distribution. Assimilated observations include those of the thin end of the distribution determined by aircraft surveys of the surface temperature and helicopter photographic surveys and aircraft microwave estimates of the open water fraction. The deformation of the ice was determined primarily from buoy and RADARSAT Geophysical Processor System (RGPS) measurements of the ice velocity. Because of the substantial convergence and ridging observed in the spring and summer, the estimated mean ice thickness increases by 59%, from 1.53 to 2.44 m, over the year in spite of a net thermodynamic ice loss for most multiyear ice.

  7. Summer and Fall Sea Ice Processes in the Amundsen Sea: Bottom melting, surface flooding and snow ice formation

    Science.gov (United States)

    Ackley, S. F.; Perovich, D. K.; Weissling, B.; Elder, B. C.

    2011-12-01

    Two ice mass balance buoys were deployed on the Amundsen Sea, Antarctica, ice pack near January 1, 2011. Below freezing air and snow temperatures and sea ice and seawater temperatures at the freezing point at this time indicated that summer melt had not yet commenced. Over the next two months, however, while snow depths changed by less than 0.1m, ice thickness decreased, from bottom melting, by 0.9-1.0m. As snow temperature records did not show temperatures ever reaching the melting point, no surface melt was recorded during the summer period and the small snow depth changes were presumed to occur by consolidation or wind scouring. Water temperatures above the freezing point caused the observed bottom melting from mid January to late February. During the ice loss periods, progressive flooding by sea water at the base of the snow pack was recorded by temperature sensors, showing an increase in the depth of flooded snow pack of 0.4m by the end of the summer period in late February. We hypothesize that progressive flooding of the surface snow pack gives a mechanism for nutrient replenishment in these upper layers, and continuous high algal growth can therefore occur in the flooded snow layer during summer. An underice radiometer recorded light transmission through the ice and snow at selective wavelengths sensitive to chlorophyll. These radiometric results will be presented to examine this algal growth hypothesis. This flooded layer then refroze from the top down into snow ice as air temperatures dropped during March and April, showing that the layer had refrozen as snow ice on the top surface of the ice. Refreezing of the flooded layer gives an ice growth mechanism at the end of summer of 0.2 m to 0.4m of new ice growth over the majority of the ice pack. The snow ice growth in areas covered with pack ice gives salt fluxes commensurate with new ice growth in the autumn expansion of the ice edge over open water. These high salt fluxes therefore represent a marked

  8. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    Science.gov (United States)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  9. Antarctic ice shelf potentially stabilized by export of meltwater in surface river

    Science.gov (United States)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  10. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.

    Science.gov (United States)

    Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip

    2016-04-06

    The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.

  11. Greenland Ice Sheet surface melt:A review

    Institute of Scientific and Technical Information of China (English)

    Kang Yang; ManChun Li

    2014-01-01

    Surface melt has great impacts on the Greenland Ice Sheet (GrIS) mass balance and thereby has become the focus of significant GrIS research in recent years. The production, transport, and release processes of surface meltwater are the keys to understanding the poten-tial impacts of the GrIS surface melt. These hydrological processes can elucidate the following scientific questions:How much melt-water is produced atop the GrIS? What are the characteristics of the meltwater-formed supraglacial hydrological system? How does the meltwater influence the GrIS motion? The GrIS supraglacial hydrology has a number of key roles and yet continues to be poorly understood or documented. This paper summarizes the current understanding of the GrIS surface melt, emphasizing the three essential supraglacial hydrological processes:(1) meltwater production:surface melt modeling is an important approach to acquire surface melt information, and areas, depths, and volumes of supraglacial lakes extracted from remotely sensed imagery can also provide surface melt information;(2) meltwater transport:the spatial distributions of supraglacial lakes, supraglacial streams, moulins, and crevasses demonstrate the characteristics of the supraglacial hydrological system, revealing the meltwater transport process;and (3) meltwater release:the release of meltwater into the englacial and the subglacial ice sheet has important but undetermined impacts on the GrIS motion. The correlation between surface runoff and the GrIS motion speed is employed to understand these influences.

  12. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NARCIS (Netherlands)

    Hubbard, Bryn; Luckman, A.; Ashmore, David; Bevan, S.; Kulessa, Bernd; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; phillipe, morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km acros

  13. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NARCIS (Netherlands)

    Hubbard, Bryn; Luckman, A.; Ashmore, David; Bevan, S.; Kulessa, Bernd; Kuipers Munneke, P.; phillipe, morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km acros

  14. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NARCIS (Netherlands)

    Hubbard, Bryn; Luckman, A.; Ashmore, David; Bevan, S.; Kulessa, Bernd; Kuipers Munneke, P.; phillipe, morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km

  15. High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments

    Directory of Open Access Journals (Sweden)

    K. Junge

    2007-11-01

    Full Text Available Even though studies of Arctic ice forming particles suggest that a bacterial or viral source derived from open leads could be important for cloud formation in the Arctic (Bigg and Leck, 2001, the ice nucleation potential of most polar marine psychrophiles or viruses has not been examined under conditions more closely resembling those in the atmosphere. In this paper, we examined the ice nucleation activity (INA of several representative Arctic and Antarctic sea-ice bacterial isolates and a polar Colwellia phage virus. High-resolution ice nucleation spectra were obtained for droplets containing bacterial cells or virus particles using a free-fall freezing tube technique. The fraction of frozen droplets at a particular droplet temperature was determined by measuring the depolarized light scattering intensity from solution droplets in free-fall. Our experiments revealed that all sea-ice isolates and the virus nucleated ice at temperatures very close to the homogeneous nucleation temperature for the nucleation medium – which for artificial seawater was −42.2±0.3°C. Our results indicated that these marine psychro-active bacteria and viruses are not important for heterogeneous ice nucleation processes in sea ice or polar clouds. These results also suggested that avoidance of ice formation in close proximity to cell surfaces might be one of the cold-adaptation and survival strategies for sea-ice bacteria. The fact that INA occurs at such low temperature could constitute one factor that explains the persistence of metabolic activities at temperatures far below the freezing point of seawater.

  16. Drainage of the ice-dammed Lake Tinninilik, West Greenland; implication on bedrock uplift

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Bjørk, Anders Anker;

    Drainage of ice-dammed lakes is regularly observed along the margin of the Greenland Ice Sheet. However, the speed of the drainage events and implications can vary depending on the size of the lakes and the local settings. Here, we assess the drainage pattern of Lake Tinninilik, dammed...

  17. Ocean-ice interactions with possible implications for Arctic ice shelves

    Science.gov (United States)

    Alley, R. B.

    2015-12-01

    Confined ice shelves restrain flow of non-floating ice, allowing ice sheets to grow larger than they otherwise would. Ice shelves lead a precarious existence, subject to fragmentation if sufficient meltwater fills crevasses, and very sensitive to even slight warming of water beneath. Ice shelves tend to exist in the coldest waters in the world ocean, often overlying warmer, more-saline waters. Changes in water temperature or circulation generally shrink existing ice shelves and raise sea level by unbuttressing the non-floating ice, and this is likely the most important control on marine-ending parts of land ice, exceeding the influence of sea-level or accumulation-rate changes. Advance of an ice-shelf grounding line into warmer, deeper water will increase melting rates, reduce buttressing, and tend to stabilize the grounding line near or above the upper limit of that warmer water. This physical understanding indicates that the oceanographic state, and its interaction with tributary ice streams, must have been central in the extent of Arctic ice shelves once sufficient cooling occurred to allow extensive advance of land ice into the ocean.

  18. SIMULATION OF THE Ku-BAND RADAR ALTIMETER SEA ICE EFFECTIVE SCATTERING SURFACE

    DEFF Research Database (Denmark)

    Tonboe, Rasmus; Andersen, Søren; Pedersen, Leif Toudal

    2006-01-01

    A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model...... is initialised with in situ data collected during the May 2004 GreenIce ice camp in the Lincoln Sea (73ºW; 85ºN). Our results show that the snow cover is important for the effective scattering surface depth in sea ice and thus for the range measurement, ice freeboard and ice thickness estimation....

  19. Surface melt and ponding on Larsen C Ice shelf and the impact of foehn winds

    OpenAIRE

    Luckman, Adrian; Elvidge, Andrew; Jansen, Daniela; Kulessa, Bernd; Kuipers-Munneke, Peter; King, John; Barrand, Nick

    2014-01-01

    A common precursor to ice shelf disintegration, most notably that of Larsen B Ice Shelf, is unusually intense or prolonged surface melt and the presence of surface standing water. However, there has been little research into detailed patterns of melt on ice shelves or the nature of summer melt ponds. We investigated surface melt on Larsen C Ice Shelf at high resolution using Envisat advanced synthetic aperture radar (ASAR) data and explored melt ponds in a range of satellite image...

  20. Storm-induced sea-ice breakup and the implications for ice extent

    Science.gov (United States)

    Kohout, A. L.; Williams, M. J. M.; Dean, S. M.; Meylan, M. H.

    2014-05-01

    The propagation of large, storm-generated waves through sea ice has so far not been measured, limiting our understanding of how ocean waves break sea ice. Without improved knowledge of ice breakup, we are unable to understand recent changes, or predict future changes, in Arctic and Antarctic sea ice. Here we show that storm-generated ocean waves propagating through Antarctic sea ice are able to transport enough energy to break sea ice hundreds of kilometres from the ice edge. Our results, which are based on concurrent observations at multiple locations, establish that large waves break sea ice much farther from the ice edge than would be predicted by the commonly assumed exponential decay. We observed the wave height decay to be almost linear for large waves--those with a significant wave height greater than three metres--and to be exponential only for small waves. This implies a more prominent role for large ocean waves in sea-ice breakup and retreat than previously thought. We examine the wider relevance of this by comparing observed Antarctic sea-ice edge positions with changes in modelled significant wave heights for the Southern Ocean between 1997 and 2009, and find that the retreat and expansion of the sea-ice edge correlate with mean significant wave height increases and decreases, respectively. This includes capturing the spatial variability in sea-ice trends found in the Ross and Amundsen-Bellingshausen seas. Climate models fail to capture recent changes in sea ice in both polar regions. Our results suggest that the incorporation of explicit or parameterized interactions between ocean waves and sea ice may resolve this problem.

  1. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bharathidasan, T. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Kumar, S. Vijay; Bobji, M.S. [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560003 (India); Chakradhar, R.P.S. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Basu, Bharathibai J., E-mail: bharathijbasu@gmail.com [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India)

    2014-09-30

    Highlights: • Anti-icing property is related to wettability and surface roughness. • Silicone based hydrophobic coating showed excellent ice-adhesion strength. • Superhydrophobic surfaces displayed poor anti-icing property. - Abstract: The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness.

  2. Photochemical degradation of hydroxy PAHs in ice: Implications for the polar areas.

    Science.gov (United States)

    Ge, Linke; Li, Jun; Na, Guangshui; Chen, Chang-Er; Huo, Cheng; Zhang, Peng; Yao, Ziwei

    2016-07-01

    Hydroxyl polycyclic aromatic hydrocarbons (OH-PAHs) are derived from hydroxylated PAHs as contaminants of emerging concern. They are ubiquitous in the aqueous and atmospheric environments and may exist in the polar snow and ice, which urges new insights into their environmental transformation, especially in ice. In present study the simulated-solar (λ > 290 nm) photodegradation kinetics, products and pathways of four OH-PAHs (9-Hydroxyfluorene, 2-Hydroxyfluorene, 1-Hydroxypyrene and 9-Hydroxyphenanthrene) in ice were investigated, and the corresponding implications for the polar areas were explored. It was found that the kinetics followed the pseudo-first-order kinetics with the photolysis quantum yields (Φs) ranging from 7.48 × 10(-3) (1-Hydroxypyrene) to 4.16 × 10(-2) (2-Hydroxyfluorene). These 4 OH-PAHs were proposed to undergo photoinduced hydroxylation, resulting in multiple hydroxylated intermediates, particularly for 9-Hydroxyfluorene. Extrapolation of the lab data to the real environment is expected to provide a reasonable estimate of OH-PAH photolytic half-lives (t1/2,E) in mid-summer of the polar areas. The estimated t1/2,E values ranged from 0.08 h for 1-OHPyr in the Arctic to 54.27 h for 9-OHFl in the Antarctic. In consideration of the lower temperature and less microorganisms in polar areas, the photodegradation can be a key factor in determining the fate of OH-PAHs in sunlit surface snow/ice. To the best of our knowledge, this is the first report on the photodegradation of OH-PAHs in polar areas.

  3. Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces

    Science.gov (United States)

    He, Zhiwei; Vågenes, Elisabeth T.; Delabahan, Chrisrosemarie; He, Jianying; Zhang, Zhiliang

    2017-02-01

    Ice adhesion is mainly dictated by surface properties, and water wettability is frequently correlated with ice adhesion strength. However, these established correlations are limited to high ice adhesion and become invalid when the ice adhesion strength is low. Here we carried out an experimental study to explore the relationships between low ice adhesion strength and room temperature surface properties. A variety of room temperature properties of 22 polymer-based hydrophilic and hydrophobic samples consisting of both low and high ice adhesion surfaces were analysed. The properties investigated include water adhesion force, water wettability, roughness, elastic modulus and hardness. Our results show that low ice adhesion strength does not correlate well with water contact angle and its variants, surface roughness and hardness. Low elastic modulus does not guarantee low ice adhesion, however, surfaces with low ice adhesion always show low elastic modulus. Low ice adhesion (below 60 kPa) of tested surfaces may be determinative of small water adhesion force (from 180 to 270 μN). Therefore, measurement of water adhesion force may provide an effective strategy for screening anti-icing or icephobic surfaces, and surfaces within specific values of water adhesion force will possibly lead to a low ice adhesion.

  4. Coherent Surface Clutter Suppression Techniques with Topography Estimation for Multi-Phase-Center Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen; Kristensen, Steen Savstrup;

    2012-01-01

    Radar ice sounding enables measurement of the thickness and internal structures of the large ice sheets on Earth. Surface clutter masking the signal of interest is a major obstacle in ice sounding. Algorithms for surface clutter suppression based on multi-phase-center radars are presented...

  5. Coherent Surface Clutter Suppression Techniques with Topography Estimation for Multi-Phase-Center Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen; Kristensen, Steen Savstrup

    2012-01-01

    Radar ice sounding enables measurement of the thickness and internal structures of the large ice sheets on Earth. Surface clutter masking the signal of interest is a major obstacle in ice sounding. Algorithms for surface clutter suppression based on multi-phase-center radars are presented. These ...

  6. Surface melt and ponding of Larsen C Ice Shelf and the impact of foehn winds

    NARCIS (Netherlands)

    Luckman, Adrian; Elvidge, Andrew; Jansen, Daniela; Kulessa, Bernd; Kuipers Munneke, Peter|info:eu-repo/dai/nl/304831891; King, John; Barrand, Nicholas

    2014-01-01

    A common precursor to ice shelf disintegration, most notably that of Larsen B Ice Shelf, is unusually intense or prolonged surface melt and the presence of surface standing water. However, there has been little research into detailed patterns of melt on ice shelves or the nature of summer melt

  7. Ocean surface waves in an ice-free Arctic Ocean

    Science.gov (United States)

    Li, Jian-Guo

    2016-08-01

    The retreat of the Arctic ice edge implies that global ocean surface wave models have to be extended at high latitudes or even to cover the North Pole in the future. The obstacles for conventional latitude-longitude grid wave models to cover the whole Arctic are the polar problems associated with their Eulerian advection schemes, including the Courant-Friedrichs-Lewy (CFL) restriction on diminishing grid length towards the Pole, the singularity at the Pole and the invalid scalar assumption for vector components defined relative to the local east direction. A spherical multiple-cell (SMC) grid is designed to solve these problems. It relaxes the CFL restriction by merging the longitudinal cells towards the Poles. A round polar cell is used to remove the singularity of the differential equation at the Pole. A fixed reference direction is introduced to define vector components within a limited Arctic part in mitigation of the scalar assumption errors at high latitudes. The SMC grid has been implemented in the WAVEWATCH III model and validated with altimeter and buoy observations, except for the Arctic part, which could not be fully tested due to a lack of observations as the polar region is still covered by sea ice. Here, an idealised ice-free Arctic case is used to test the Arctic part and it is compared with a reference case with real ice coverage. The comparison indicates that swell wave energy will increase near the ice-free Arctic coastlines due to increased fetch. An expanded Arctic part is used for comparisons of the Arctic part with available satellite measurements. It also provides a direct model comparison between the two reference systems in their overlapping zone.

  8. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene

    DEFF Research Database (Denmark)

    Bowman, Jeff S.; Rasmussen, Simon; Blom, Nikolaj

    2011-01-01

    Dramatic decreases in the extent of Arctic multiyear ice (MYI) suggest this environment may disappear as early as 2100, replaced by ecologically different first-year ice. To better understand the implications of this loss on microbial biodiversity, we undertook a detailed census of the microbial...... in underlying surface water, we found diversity to be comparable using the Simpson and Shannon's indices (for Simpson t=0.65, P=0.56; for Shannon t=0.25, P=0.84 for a Student's t-test of mean values). Cyanobacteria, comprising 6.8% of reads obtained from MYI, were observed for the first time in Arctic sea ice....... In addition, several low-abundance clades not previously reported in sea ice were present, including the phylum TM7 and the classes Spartobacteria and Opitutae. Members of Coraliomargarita, a recently described genus of the class Opitutae, were present in sufficient numbers to suggest niche occupation within...

  9. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    Science.gov (United States)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  10. A Mechanism for Near-Surface Water Ice on Mars

    Science.gov (United States)

    Travis, B. J.; Feldman, W. C.; Maurice, S.

    2009-12-01

    Recent findings (e.g., Byrne et al, 2009) indicate that water ice lies very close to the surface at mid-latitudes on Mars. Re-interpretation of neutron and gamma-ray data is consistent with water ice buried less than a meter or two below the surface. Hydrothermal convection of brines provides a mechanism for delivering water to the near-surface. Previous numerical and experimental studies with pure water have indicated that hydrothermal circulation of pore water should be possible, given reasonable estimates of geothermal heat flux and regolith permeability. For pure water convection, the upper limit of the liquid zone would lie at some depth, but in the case of salt solutions, the boundary between liquid and frozen pore water could reach virtually to the surface. The principal drivers for hydrothermal circulation are regolith permeability, geothermal heat flux, surface temperature and salt composition. Both the Clifford and the Hanna-Phillips models of Martian regolith permeability predict sufficiently high permeabilities to sustain hydrothermal convection. Salts in solution will concentrate in upwelling plumes as the cold surface is approached. As water ice is excluded upon freezing, the remaining solution becomes a more concentrated brine, reaching its eutectic concentration before freezing. Numerical simulations considering several salts (NaCl, CaCl2, MgSO4), and a range of heat fluxes (20 - 100 mW/m2) covering the range of estimated present day heat flux (20 to 40 mW/m2) to moderately elevated conditions (60 to 100 mW/m2) such as might exist in the vicinity of volcanoes and craters, all indicate the same qualitative behavior. A completely liquid, convective regime occurs at depth, overlain by a partially frozen "mushy" layer (but still convecting despite the increased viscosity), overlain by a thin frozen layer at the surface. The thicknesses of these layers depend on the heat flux, surface temperature and the salt. As heat flux increases, the mushy region

  11. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  12. Modelling the long-term impact of surface warming on Greenland ice sheet mass loss

    Science.gov (United States)

    Yang, Shuting; Anker Pedersen, Rasmus; Madsen, Marianne S.; Svendsen, Synne H.; Langen, Peter L.

    2017-04-01

    Projections of future sea level changes require understanding of the response of the Greenland ice sheet to future climate change. Numerous feedbacks between the ice sheet and the climate system mean that comprehensive model setups are required to simulate the concurrent ice sheet and climate changes. Here, the ice sheet response to a warming climate has been studied using a model setup consisting of an earth system model (EC-Earth) interactively coupled to an ice sheet model (PISM). The coupled system has been employed for a 1400-year simulation forced by historical radiative forcing from 1850 onward continued along an extended RCP8.5 scenario to beyond year 3200. The simulation reveals that the rate of mass loss from the Greenland ice sheet increases substantially after 2100. The mass loss hereafter continues at a steady rate, even as the warming rate gradually levels off. As the coupled setup does not include the direct impact of oceanic forcing, the mass loss is due to the combination of a negative surface mass balance and a dynamic response to the surface warming. Increased melt exceeds regional precipitation increases in the surface mass balance, while the surface warming increases the enthalpy (per unit volume) of the ice sheet potentially impacting the rheology and thereby the ice flow. The relative roles of the surface mass balance changes and the dynamic response of the ice flow are further investigated using additional ice sheet model sensitivity experiments, where the ice sheet is forced by the time-varying surface mass balance from the coupled model. We aim to quantify the impact of the simulated surface warming on the ice flow by means of a hybrid simulation where the ice sheet is forced by the surface mass balance from the coupled setup while keeping the ice surface temperature constant. This allows for assessment of the impact of the surface mass balance change, isolated from the dynamical response to the warming surface.

  13. Heterogeneous and Evolving Distributions of Pluto's Volatile Surface Ices

    Science.gov (United States)

    Grundy, William M.; Olkin, C. B.; Young, L. A.; Buie, M. W.; Young, E. F.

    2013-10-01

    We report observations of Pluto's 0.8 to 2.4 µm reflectance spectrum with IRTF/SpeX on 70 nights over the 13 years from 2001 to 2013. The spectra show numerous vibrational absorption features of simple molecules CH4, CO, and N2 condensed as ices on Pluto's surface. These absorptions are modulated by the planet's 6.39 day rotation period, enabling us to constrain the longitudinal distributions of the three ices. Absorptions of CO and N2 are concentrated on Pluto's anti-Charon hemisphere, unlike absorptions of less volatile CH4 ice that are offset by roughly 90° from the longitude of maximum CO and N2 absorption. In addition to the diurnal/longitudinal variations, the spectra show longer term trends. On decadal timescales, Pluto's stronger CH4 absorption bands have deepened, while the amplitude of their diurnal variation has diminished, consistent with additional CH4 absorption by high northern latitude regions rotating into view as the sub-Earth latitude moves north (as defined by the system's angular momentum vector). Unlike the CH4 absorptions, Pluto's CO and N2 absorptions are declining over time, suggesting more equatorial or southerly distributions of those species. The authors gratefully thank the staff of IRTF for their tremendous assistance over the dozen+ years of this project. The work was funded in part by NSF grants AST-0407214 and AST-0085614 and NASA grants NAG5-4210 and NAG5-12516.

  14. Ice condensation on sulfuric acid tetrahydrate: Implications for polar stratospheric ice clouds

    Directory of Open Access Journals (Sweden)

    T. J. Fortin

    2003-01-01

    Full Text Available The mechanism of ice nucleation to form Type 2 PSCs is important for controlling the ice particle size and hence the possible dehydration in the polar winter stratosphere. This paper probes heterogeneous ice nucleation on sulfuric acid tetrahydrate (SAT. Laboratory experiments were performed using a thin-film, high-vacuum apparatus in which the condensed phase is monitored via Fourier transform infrared spectroscopy and water pressure is monitored with the combination of an MKS baratron and an ionization gauge. Results show that SAT is an efficient ice nucleus with a critical ice saturation ratio of S*ice = 1.3 to 1.02 over the temperature range 169.8-194.5 K. This corresponds to a necessary supercooling of 0.1-1.3 K below the ice frost point. The laboratory data is used as input for a microphysical/photochemical model to probe the effect that this heterogeneous nucleation mechanism could have on Type 2 PSC formation and stratospheric dehydration. In the model simulations, even a very small number of SAT particles (e.g., 10-3 cm-3 result in ice nucleation on SAT as the dominant mechanism for Type 2 PSC formation. As a result, Type 2 PSC formation is more widespread, leading to larger-scale dehydration. The characteristics of the clouds are controlled by the assumed number of SAT particles present, demonstrating that a proper treatment of SAT is critical for correctly modeling Type 2 PSC formation and stratospheric dehydration.

  15. Surface abundance change in vacuum ultraviolet photodissociation of CO2 and H2O mixture ices.

    Science.gov (United States)

    Kinugawa, Takashi; Yabushita, Akihiro; Kawasaki, Masahiro; Hama, Tetsuya; Watanabe, Naoki

    2011-09-21

    Photodissociation of amorphous ice films of carbon dioxide and water co-adsorbed at 90 K was carried out at 157 nm using oxygen-16 and -18 isotopomers with a time-of-flight photofragment mass spectrometer. O((3)P(J)) atoms, OH (v = 0) radicals, and CO (v = 0,1) molecules were detected as photofragments. CO is produced directly from the photodissociation of CO(2). Two different adsorption states of CO(2), i.e., physisorbed CO(2) on the surface of amorphous solid water and trapped CO(2) in the pores of the film, are clearly distinguished by the translational and internal energy distributions of the CO molecules. The O atom and OH radical are produced from the photodissociation of H(2)O. Since the absorption cross section of CO(2) is smaller than that of H(2)O at 157 nm, the CO(2) surface abundance is relatively increased after prolonged photoirradiation of the mixed ice film, resulting in the formation of a heterogeneously layered structure in the mixed ice at low temperatures. Astrophysical implications are discussed.

  16. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    Science.gov (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  17. Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics

    Science.gov (United States)

    Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten

    2017-04-01

    Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.

  18. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    Science.gov (United States)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of

  19. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    Science.gov (United States)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  20. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, D.H.; Cooper, M.

    2013-01-01

    the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution......The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite...... in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging...

  1. A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nocolo E.; Shuman, Christopher A.

    2011-01-01

    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products.

  2. Change in ice rheology during climate variations – implications for ice flow modelling and dating of the EPICA Dome C core

    Directory of Open Access Journals (Sweden)

    G. Durand

    2007-01-01

    Full Text Available The study of the distribution of crystallographic orientations (i.e., the fabric along ice cores provides information on past and current ice flow in ice-sheets. Besides the usually observed formation of a vertical single maximum fabric, the EPICA Dome C ice core (EDC shows an abrupt and unexpected strengthening of its fabric during termination II around 1750 m depth. Such strengthening has already been observed for sites located on an ice-sheet flank. This suggests that horizontal shear could occur along the EDC core. Moreover, the change in the fabric leads to a modification of the effective viscosity between neighbouring ice layers. Through the use of an anisotropic ice flow model, we quantify the change in effective viscosity and investigate its implication for ice flow and dating.

  3. Delineation of Surface and Near-Surface Melt on the Greenland Ice Sheet Using MODIS and QuikSCAT data

    Science.gov (United States)

    Hall, Dorothy K.; Nghiem, Son V.; DiGirolamo, Nicolo E.; Neumann, Gregory; Schaaf, Crystal B.

    2010-01-01

    This slide presentation reviews the use of MODIS and QuikSCAT data to measure the surface and sub-surface melting on the Greenland Ice Sheet. The project demonstrated the consistence of this technique for measuring the ice melt on the Greenland Ice Sheet. The blending of the two instruments data allows for determination of surface vs subsurface melting. Also, the use of albedo maps can provide information about the intensity of the melting.

  4. Designing icephobic surfaces by passively sustaining liquid film at ice-substrate interface

    Science.gov (United States)

    Zhao, Tom; Jones, Paul; Patankar, Neelesh

    2016-11-01

    Ice formation poses a significant barrier to transportation, energy generation and transport, gas extraction, etc. We propose to design icephobic surfaces that reduce ice formation and lower ice adhesion by sustaining a film of liquid water at the interface between bulk ice and the substrate. The liquid layer is in phase equilibrium with the surrounding bulk ice, and thus exists without constant energy input. Using molecular dynamic simulations, we show this liquid film can be maintained indefinitely by exploiting the phenomena of interfacial premelting and the freezing point depression of ice confined in surface texture due to the Gibbs Thomson effect. We demonstrate the reduction of both the work and strength of ice adhesion as a function of surface wettability and geometric parameters of the surface texture.

  5. Surface melt-induced acceleration of Greenland ice-sheet flow.

    Science.gov (United States)

    Zwally, H Jay; Abdalati, Waleed; Herring, Tom; Larson, Kristine; Saba, Jack; Steffen, Konrad

    2002-07-12

    Ice flow at a location in the equilibrium zone of the west-central Greenland Ice Sheet accelerates above the midwinter average rate during periods of summer melting. The near coincidence of the ice acceleration with the duration of surface melting, followed by deceleration after the melting ceases, indicates that glacial sliding is enhanced by rapid migration of surface meltwater to the ice-bedrock interface. Interannual variations in the ice acceleration are correlated with variations in the intensity of the surface melting, with larger increases accompanying higher amounts of summer melting. The indicated coupling between surface melting and ice-sheet flow provides a mechanism for rapid, large-scale, dynamic responses of ice sheets to climate warming.

  6. Energy Implications of Fragmentation Processes in Europa's Ice Shell

    Science.gov (United States)

    Walker, C. C.; Schmidt, B. E.

    2014-02-01

    We use fragmentation theory, commonly used in weapons/blast analysis, to study Europa's chaos terrain. We constrain the energy required within the ice shell for such features to form, as well as other material properties important for habitability.

  7. Surface roughness due to residual ice in the use of low power deicing systems

    Science.gov (United States)

    Shin, Jaiwon; Bond, Thomas H.

    1993-01-01

    Thicknesses of residual ice are presented to provide information on surface contamination and associated roughness during deicing events. Data was obtained from low power ice protection systems tests conducted in the Icing Research Tunnel at NASA Lewis Research Center (LeRC) with nine different deicing systems. Results show that roughness associated with residual ice is not characterized by uniformly distributed roughness. Results also show that deicing systems require a critical mass of ice to generate a sufficient expelling force to remove the ice.

  8. High variability of climate and surface mass balance induced by Antarctic ice rises

    NARCIS (Netherlands)

    Lenaerts, Jan|info:eu-repo/dai/nl/314850163; Brown, Joel; van den Broeke, Michiel|info:eu-repo/dai/nl/073765643; Matsuoka, Kenichi; Drews, Reinhard; Callens, Denis; Philippe, Morgane; Gorodetskaya, I.V.; van Meijgaard, E.; Tijm - Reijmer, Catharina|info:eu-repo/dai/nl/229345956; Pattyn, F.; van Lipzig, N.P.M.

    2014-01-01

    Ice rises play key roles in buttressing the neighbouring ice shelves and potentially provide palaeoclimate proxies from ice cores drilled near their divides. Little is known, however, about their influence on local climate and surface mass balance (SMB). Here we combine 12 years (2001–12) of regiona

  9. Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

    CERN Document Server

    Greve, Ralf

    2009-01-01

    Simulations of the Greenland Ice Sheet are carried out with a high-resolution version of the ice-sheet model SICOPOLIS for several global-warming scenarios for the period 1990-2350. In particular, the impact of surface-meltwater-induced acceleration of basal sliding on the stability of the ice sheet is investigated. A parameterization for the acceleration effect is developed for which modelled and measured mass losses of the ice sheet in the early 21st century agree well. The main findings of the simulations are: (i) the ice sheet is generally very susceptible to global warming on time-scales of centuries, (ii) surface-meltwater-induced acceleration of basal sliding leads to a pronounced speed-up of ice streams and outlet glaciers, and (iii) this ice-dynamical effect accelerates the decay of the Greenland Ice Sheet as a whole significantly, but not catastrophically, in the 21st century and beyond.

  10. A Newly Updated Database of Elevation-changes of the Greenand Ice Sheet to Study Surface Processes and Ice Dynamics

    Science.gov (United States)

    Schenk, A. F.; Csatho, B. M.; van den Broeke, M.; Kuipers Munneke, P.

    2015-12-01

    This paper reports about important upgrades of the Greenland Ice Sheet (GrIS) surface elevation and elevation-change database obtained with our Surface Elevation And Change detection (SERAC) software suite. We have developed SERAC to derive information from laser altimetry data, particularly time series of elevation changes and their partitioning into changes caused by ice dynamics. This allows direct investigation of ice dynamic processes that is much needed for improving the predictive power of ice sheet models. SERAC is different from most other change detection methods. It is based on detecting changes of surface patches, about 1 km by 1 km in size, rather than deriving elevation changes from individual laser points. The current database consists of ~100,000 time series with satellite laser altimetry data from ICESat, airborne laser observations obtained by NASA's Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS). The upgrade is significant, because not only new observations from 2013 and 2014 have been added but also a number of improvements lead to a more comprehensive and consistent record of elevation-changes. First, we used the model that gives in addition to ice sheet also information about ice caps and glaciers (Rastner et al., 2012) for deciding if a laser point is on the ice sheet or ice cap. Then we added small gaps that exist in the ICESat GLA12 data set because the ice sheet mask is not wide enough. The new database is now more complete and will facilitate more accurate comparisons of mass balance studies obtained from the Gravity Recovery and Climate Experiment system (GRACE). For determining the part of a time series caused by ice dynamics we used the new firn compaction model and Surface Mass Balance (SMB) estimates from RACMO2.3. The new database spans the time period from 1993 to 2014. Adding new observations amounts to a spatial densification of the old record and at the same time extends the time domain by two

  11. Uptake of partially fluorinated alcohols on atmospheric ice surfaces

    Science.gov (United States)

    Moreno, Elena; Aranda, Alfonso; Díaz-de-Mera, Yolanda; Notario, Alberto; Rodríguez, Diana; Bravo, Iván

    2012-12-01

    This work provides uptake results of CF3CF2CH2OH and CF3CF2CF2CH2OH on ice over the range temperature 203-223 K using a coated wall flow tube coupled to mass spectrometric detection. The adsorption was fully reversible and the data could be described in terms of the Langmuir isotherm for the range of concentrations and temperatures studied. For this temperature range, ΔH0ads = -45 ± 11 kJ mol-1 and ΔH0ads = -46 ± 8 kJ mol-1 were obtained for CF3CF2CH2OH and CF3CF2CF2CH2OH respectively (error is 2σ + 5%). Although ice surfaces do not permanently scavenge the studied partially fluorinated compounds, the partitioning between the gas phase and cirrus or snow-pack surfaces may play a role as a reservoir slowing down other permanent atmospheric sinks.

  12. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Søgaard, D. H.; Cooper, M.

    2012-01-01

    concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt......The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite...... in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging...

  13. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    Science.gov (United States)

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  14. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    Science.gov (United States)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  15. Towards a morphogenetic classification of eskers: Implications for modelling ice sheet hydrology

    Science.gov (United States)

    Perkins, Andrew J.; Brennand, Tracy A.; Burke, Matthew J.

    2016-02-01

    Validations of paleo-ice sheet hydrological models have used esker spacing as a proxy for ice tunnel density. Changes in crest type (cross-sectional shape) along esker ridges have typically been attributed to the effect of changing subglacial topography on hydro- and ice-dynamics and hence subglacial ice-tunnel shape. These claims assume that all eskers formed in subglacial ice tunnels and that all major subglacial ice tunnels produced a remnant esker. We identify differences in geomorphic context, sinuosity, cross-sectional shape, and sedimentary architecture by analysing eskers formed at or near the margins of the last Cordilleran Ice Sheet on British Columbia's southern Fraser Plateau, and propose a morphogenetic esker classification. Three morphogenetic types and 2 subtypes of eskers are classified based on differences in geomorphic context, ridge length, sinuosity, cross-sectional shape and sedimentary architecture using geophysical techniques and sedimentary exposures; they largely record seasonal meltwater flows and glacial lake outburst floods (GLOFs) through sub-, en- and supraglacial meltwater channels and ice-walled canyons. General principles extracted from these interpretations are: 1) esker ridge crest type and sinuosity strongly reflect meltwater channel type. Eskers formed in subglacial conduits are likely to be round-crested with low sinuosity (except where controlled by ice structure or modified by surging) and contain faults associated with flank collapse. Eskers formed near or at the ice surface are more likely to be sharp-crested, highly sinuous, and contain numerous faults both under ridge crest-lines and in areas of flank collapse. 2) Esker ridges containing numerous flat-crested reaches formed directly on the land-surface in ice-walled canyons (unroofed ice tunnels) or in ice tunnels at atmospheric pressure, and therefore likely record thin or dead ice. 3) Eskers containing macroforms exhibiting headward and downflow growth likely record

  16. Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorthy K.; Comiso, Josefino C.; Shuman, Christopher A.; DiGirolamo, Nicolo E.; Stock, Larry V.

    2010-01-01

    Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated.

  17. THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, S.; Sasaki, T., E-mail: ueta@geo.titech.ac.jp, E-mail: takanori@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-10-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ⊕} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  18. Numerical simualtions and implications of air inclusions on the microdynamics of ice and firn

    Science.gov (United States)

    Steinbach, Florian; Weikusat, Ilka; Bons, Paul; Griera, Albert; Kerch, Johanna; Kuiper, Ernst-Jan; Llorens-Verde, Maria-Gema

    2016-04-01

    Although ice sheets are valuable paleo-climate archives, they can loose their integrity by ice flow (Faria et al. 2010). Consequently, understanding the dynamic processes that control the flow of ice is essential when investigating the past and future climate. While recent research successfully modelled the microdynamics of pure ice (e.g. Montagnat et al., 2014; Llorens et al., 2015), work taking into account second phases is scarce. Only a few studies also show the microstructural influence of air inclusions (Azuma et al., 2012, Roessiger et al., 2014). Therefore, modelling was performed focussing on the implications of the presence of bubbles on the microdynamical mechanisms and microstructure evolution. The full-field theory crystal plasticity code (FFT) of Lebensohn (2001), was coupled to the 2D multi-process modelling platform Elle (Bons et al., 2008), following the approach by Griera et al. (2013). FFT calculates the viscoplastic response of polycrystalline materials deforming by dislocation glide, taking into account mechanical anisotropy. The models further incorporate surface- and stored strain energy driven grain boundary migration (GBM) and intracrystalline recovery simulating annihilation and rearrangement of dislocations by reduction of internal misorientations. GBM was refined for polyphase materials following Becker et al. (2008) and Roessiger et al. (2014). Additionally, the formation of new high angle grain boundaries by nucleation and polygonisation based on critical internal misorientations has been implemented. Successively running the codes for different processes in very short numerical timesteps effectively enables multi-process modelling of deformation and concurrent recrystallisation. Results show how air inclusions control and increase strain localisation, leading to locally enhanced dynamic recrystallisation. This is in compliance with Faria et al. (2014), who theoretically predicted these localizations based on firn data from EPICA

  19. Ice core reconstruction of Antarctic climate change and implications

    OpenAIRE

    Mayewski,Paul Andrew

    2012-01-01

    Antarctica is the Earth’s largest environmental library for ice cores. Examples of the scientific fin-dings of the 21-nation consortium called the International Trans Antarctic Scientific Expedition (ITASE) under the auspices of the Scientific Committee for Antarctic Research (SCAR) are presented with special emphasis on the value of these records in reconstructing atmospheric circulation over Antarctica and the Southern Ocean.

  20. Impact of surface roughness on L-band emissivity of the sea ice

    Science.gov (United States)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  1. A geomorphic and morphometric analysis of surface ice velocity variation of different valley type glaciers

    Science.gov (United States)

    Tiwari, R. K.; Garg, P. K.; Shukla, A.; Ahluwalia, R. S.; Singh, N.; Chauhan, P.

    2016-05-01

    Glacier surface ice velocity is one of the important parameters which determine the glacier dynamics. If the surface ice velocity is high in upper zone (accumulation zone) of the glacier, more ice is brought to the lower zone (ablation zone) of the glacier where it melts more rapidly. The surface ice velocity depends on multiple factors like geomorphology of a glacier and glacier valley, ice load, orientation of the glacier, slope and debris cover. In this study, we have used latest multi-temporal Landsat-8 satellite images to calculate the surface ice velocity of different glaciers from the Himalayan region and a relationship of velocity and geomorphology and geo-morphometry of the glacier has been studied. The standard procedure has been implied to estimate the glacial velocity using image to image correlation technique. The geo-morphometric parameters of the glacier surface have been derived using SRTM 90 m global DEM. It has been observed that the slope of the glacier is one of the main factors on which the velocity is dependent i.e. higher the slope higher is the velocity and more ice is brought by the glacier to the ablation zone. The debris cover over the glacier and at the terminus also affects the velocity of the glacier by restricting ice flow. Thus, observations suggest that the geomorphology and geo-morphometry of the glacier has a considerable control on the surface ice velocity of the glacier.

  2. Widespread Refreezing of Both Surface and Basal Melt Water Beneath the Greenland Ice Sheet

    Science.gov (United States)

    Bell, R. E.; Tinto, K. J.; Das, I.; Wolovick, M.; Chu, W.; Creyts, T. T.; Frearson, N.

    2013-12-01

    The isotopically and chemically distinct, bubble-free ice observed along the Greenland Ice Sheet margin both in the Russell Glacier and north of Jacobshavn must have formed when water froze from subglacial networks. Where this refreezing occurs and what impact it has on ice sheet processes remain unclear. We use airborne radar data to demonstrate that freeze-on to the ice sheet base and associated deformation produce large ice units up to 700 m thick throughout northern Greenland. Along the ice sheet margin, in the ablation zone, surface meltwater, delivered via moulins, refreezes to the ice sheet base over rugged topography. In the interior, water melted from the ice sheet base is refrozen and surrounded by folded ice. A significant fraction of the ice sheet is modified by basal freeze-on and associated deformation. For the Eqip and Petermann catchments, representing the ice sheet margin and interior respectively, extensive airborne radar datasets show that 10%-13% of the base of the ice sheet and up to a third of the catchment width is modified by basal freeze-on. The interior units develop over relatively subdued topography with modest water flux from basal melt where conductive cooling likely dominates. Steps in the bed topography associated with subglacial valley networks may foster glaciohydraulic supercooling. The ablation zone units develop where both surface melt and crevassing are widespread and large volumes of surface meltwater will reach the base of the ice sheet. The relatively steep topography at the upslope edge of the ablation zone units combined with the larger water flux suggests that supercooling plays a greater role in their formation. The ice qualities of the ablation zone units should reflect the relatively fresh surface melt whereas the chemistry of the interior units should reflect solute-rich basal melt. Changes in basal conditions such as the presence of till patches may contribute to the formation of the large basal units near the

  3. Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2012-03-01

    Full Text Available It is notoriously difficult to couple surface mass balance (SMB results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs. In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS. Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  4. Mechanisms and implications of α-HCH enrichment in melt pond water on Arctic sea ice.

    Science.gov (United States)

    Pućko, M; Stern, G A; Barber, D G; Macdonald, R W; Warner, K-A; Fuchs, C

    2012-11-06

    During the summer of 2009, we sampled 14 partially refrozen melt ponds and the top 1 m of old ice in the pond vicinity for α-hexachlorocyclohexane (α-HCH) concentrations and enantiomer fractions (EFs) in the Beaufort Sea. α-HCH concentrations were 3 - 9 times higher in melt ponds than in the old ice. We identify two routes of α-HCH enrichment in the ice over the summer. First, atmospheric gas deposition results in an increase of α-HCH concentration from 0.07 ± 0.02 ng/L (old ice) to 0.34 ± 0.08 ng/L, or ~20% less than the atmosphere-water equilibrium partitioning concentration (0.43 ng/L). Second, late-season ice permeability and/or complete ice thawing at the bottom of ponds permit α-HCH rich seawater (~0.88 ng/L) to replenish pond water, bringing concentrations up to 0.75 ± 0.06 ng/L. α-HCH pond enrichment may lead to substantial concentration patchiness in old ice floes, and changed exposures to biota as the surface meltwater eventually reaches the ocean through various drainage mechanisms. Melt pond concentrations of α-HCH were relatively high prior to the late 1980-s, with a Melt pond Enrichment Factor >1 (MEF; a ratio of concentration in surface meltwater to surface seawater), providing for the potential of increased biological exposures.

  5. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NARCIS (Netherlands)

    Flores, Hauke; van Franeker, Jan-Andries; Cisewski, Boris; Leach, Harry; Van de Putte, Anton P.; Meesters, Erik (H. W. G.); Bathmann, Ulrich; Wolff, Wirn J.

    2011-01-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0-2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn

  6. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Franeker, van J.A.; Cisewski, B.; Leach, H.; Putte, van de A.P.; Meesters, H.W.G.; Bathmann, U.; Wolff, W.J.

    2011-01-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0–2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn

  7. A potential hidden layer of meteorites below the ice surface of Antarctica.

    Science.gov (United States)

    Evatt, G W; Coughlan, M J; Joy, K H; Smedley, A R D; Connolly, P J; Abrahams, I D

    2016-02-16

    Antarctica contains some of the most productive regions on Earth for collecting meteorites. These small areas of glacial ice are known as meteorite stranding zones, where upward-flowing ice combines with high ablation rates to concentrate large numbers of englacially transported meteorites onto their surface. However, meteorite collection data shows that iron and stony-iron meteorites are significantly under-represented from these regions as compared with all other sites on Earth. Here we explain how this discrepancy may be due to englacial solar warming, whereby meteorites a few tens of centimetres below the ice surface can be warmed up enough to cause melting of their surrounding ice and sink downwards. We show that meteorites with a high-enough thermal conductivity (for example, iron meteorites) can sink at a rate sufficient to offset the total annual upward ice transport, which may therefore permanently trap them below the ice surface and explain their absence from collection data.

  8. Oceanic transport of surface meltwater from the southern Greenland ice sheet

    Science.gov (United States)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-07-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamics and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  9. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    Science.gov (United States)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  10. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; ZHANG Xuehong; YU Rucong; LIU Hailong; LI Wei

    2007-01-01

    A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141 st-150 th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.

  11. Implementation of Combined Feather and Surface-Normal Ice Growth Models in LEWICE/X

    Science.gov (United States)

    Velazquez, M. T.; Hansman, R. J., Jr.

    1995-01-01

    Experimental observations have shown that discrete rime ice growths called feathers, which grow in approximately the direction of water droplet impingement, play an important role in the growth of ice on accreting surfaces for some thermodynamic conditions. An improved physical model of ice accretion has been implemented in the LEWICE 2D panel-based ice accretion code maintained by the NASA Lewis Research Center. The LEWICE/X model of ice accretion explicitly simulates regions of feather growth within the framework of the LEWICE model. Water droplets impinging on an accreting surface are withheld from the normal LEWICE mass/energy balance and handled in a separate routine; ice growth resulting from these droplets is performed with enhanced convective heat transfer approximately along droplet impingement directions. An independent underlying ice shape is grown along surface normals using the unmodified LEWICE method. The resulting dual-surface ice shape models roughness-induced feather growth observed in icing wind tunnel tests. Experiments indicate that the exact direction of feather growth is dependent on external conditions. Data is presented to support a linear variation of growth direction with temperature and cloud water content. Test runs of LEWICE/X indicate that the sizes of surface regions containing feathers are influenced by initial roughness element height. This suggests that a previous argument that feather region size is determined by boundary layer transition may be incorrect. Simulation results for two typical test cases give improved shape agreement over unmodified LEWICE.

  12. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    Science.gov (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  13. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    Science.gov (United States)

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-11-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  14. The deep accumulation of 10Be at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes

    Science.gov (United States)

    Briner, Jason P.; Goehring, Brent M.; Mangerud, Jan; Svendsen, John Inge

    2016-09-01

    Cosmogenic nuclide exposure dating is a widely used method for constraining past ice sheet histories. We scrutinize a recently published data set of cosmogenic 10Be data from erratic boulders in Norway used to constrain the deglaciation of the western Scandinavian Ice Sheet to 20 ka. Our model of the 10Be inventory in glacial surfaces leads us to conclude that the chronology may be afflicted by the deep subsurface accumulation of 10Be during long-lasting ice-free periods that resulted in 10Be ages >10% too old. We suggest that the majority of the dated erratic boulders contain a uniform level of inherited muon-produced 10Be and were derived from bedrock depths >2.5 m and most likely ~4 m. The implication of our finding is that for landscapes that experience long ice-free periods between brief maximum glacial phases, glacial erosion of >5 m is required to remove detectable traces of inherited 10Be.

  15. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    Science.gov (United States)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  16. Surface elevation change artifact at the NEEM ice core drilling site, North Greenland.

    Science.gov (United States)

    Berg Larsen, Lars; Schøtt Hvidberg, Christine; Dahl-Jensen, Dorthe; Lilja Buchardt, Susanne

    2014-05-01

    The NEEM deep drilling site (77.45°N 51.06°W) is located at the main ice divide in North Greenland. For the ice core drilling project, a number of buildings was erected and left on the snow surface during the five-year project period. The structures created snowdrifts that formed accordingly to the predominant wind direction on the lee side on the buildings and the overwintering cargo. To get access to the buildings, the snowdrifts and the accumulated snow were removed and the surface in the camp was leveled with heavy machinery each summer. In the camp a GPS reference pole was placed as a part of the NEEM strain net, 12 poles placed in three diamonds at distances of 2,5 km, 7,5 km and 25 km they were all measured with high precision GPS every year. Around the reference pole, a 1 km x 1 km grid with a spacing of 100 m was measured with differential GPS each year. In this work, we present results from the GPS surface topography measurements in and around the campsite. The mapping of the topography in and around the campsite shows how the snowdrifts evolve and are the reason for the lift of the camp site area. The accumulated snowdrifts are compared to the dominant wind directions from year to year. The annual snow accumulation at the NEEM site is 0.60 m. The reference pole in the camp indicates an additional snow accumulation of 0.50 m per year caused by collected drifting snow. The surface topography mapping shows that this artificially elevated surface extends up to several kilometers out in the terrain. This could have possible implications on other glaciological and geophysical measurements in the area i.e. pit and snow accumulation studies.

  17. Mitigation implications of an ice-free summer in the Arctic Ocean

    Science.gov (United States)

    González-Eguino, Mikel; Neumann, Marc B.; Arto, Iñaki; Capellán-Perez, Iñigo; Faria, Sérgio H.

    2017-01-01

    The rapid loss of sea ice in the Arctic is one of the most striking manifestations of climate change. As sea ice melts, more open water is exposed to solar radiation, absorbing heat and generating a sea-ice-albedo feedback that reinforces Arctic warming. Recent studies stress the significance of this feedback mechanism and suggest that ice-free summer conditions in the Arctic Ocean may occur faster than previously expected, even under low-emissions pathways. Here we use an integrated assessment model to explore the implications of a potentially rapid sea-ice-loss process. We consider a scenario leading to a full month free of sea ice in September 2050, followed by three potential trajectories afterward: partial recovery, stabilization, and continued loss of sea ice. We analyze how these scenarios affect the efforts to keep global temperature increase below 2°C. Our results show that sea-ice melting in the Arctic requires more stringent mitigation efforts globally. We find that global CO2 emissions would need to reach zero levels 5-15 years earlier and that the carbon budget would need to be reduced by 20%-51% to offset this additional source of warming. The extra mitigation effort would imply an 18%-59% higher mitigation cost to society. Our results also show that to achieve the 1.5°C target in the presence of ice-free summers negative emissions would be needed. This study highlights the need for a better understanding of how the rapid changes observed in the Arctic may impact our society.

  18. Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Fitzpatrick, Andrew A. W.; Hubbard, Alun; Joughin, Ian

    2013-01-01

    We present satellite-derived velocity patterns for the two contrasting melt seasons of 2009-10 across Russell Glacier catchment, a western, land-terminating sector of the Greenland ice sheet which encompasses the K(angerlussuaq)-transect. Results highlight great spatial heterogeneity in flow...... system, regulating flow dynamics. Despite this, the cumulative surface flux over the record melt year of 2010 was still greater compared with the perturbation over the average melt year of 2009. This study supports the proposition that local surface meltwater runoff couples to basal hydrology driving ice......, indicating that structural controls such as bedrock geometry govern ice discharge into individual outlet troughs. Results also reveal strong seasonal flow variability extending 57 km up-glacier to 1200 m elevation, with the largest acceleration (100% over 11 days) occurring within 10 km of the margin...

  19. Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface

    Science.gov (United States)

    Zuo, Zhiping; Liao, Ruijin; Guo, Chao; Yuan, Yuan; Zhao, Xuetong; Zhuang, Aoyun; Zhang, YiYi

    2015-03-01

    Aluminum is one of the most widely used metals in transmission lines. Accumulation of ice on aluminum may cause serious consequences such as tower collapse and power failure. Here we develop a method to fabricate a coral-like superhydrophobic surface to improve its anti-icing performance via chemical etching and hot-water treatment. The as-prepared surface exhibited superhydrophobicity with a contact angle (CA) of 164.8 ± 1.1° and the sliding angle smaller than 1°. The static and dynamic anti-icing behaviors of the superhydrophobic surface in different conditions were systematically investigated using a self-made device and artificial climate laboratory. Results show that the coral-like superhydrophobic structure displayed excellent anti-icing property. The water droplet remained unfrozen on the as-prepared surface at -6 °C for over 110 min. 71% of the surface was free of ice when exposed in "glaze ice" for 30 min. This investigation proposed a new way to design an anti-icing surface which may have potential future applications in transmission lines against ice accumulation.

  20. Modeling Pluto's Ice-Rich Surface and Its Interaction with Atmosphere

    Science.gov (United States)

    Wei, Q.; Hu, Y.

    2016-12-01

    Recent discoveries made available through NASA's New Horizon mission revealed a new world on Pluto with a plateau of "young" surface, the Sputnik Planum. It is a gigantic reservoir of volatile ice on top of an impact basin. The reason of such a high level of concentration of volatile ice is yet unknown. We are actively looking into explanations through atmospheric models and ice sheet models. Apart from the quantity of ice on SP, its surface age constrained by impact flux models to under 10Myr is significantly different from other parts of Pluto. Convection of solid nitrogen ice has been proposed as a viable cause. We endeavor to explore other possibilities that may have jointly contributed to this phenomena, including atmospheric condensation, ice sheet evolution, etc. Unique rheological properties of nitrogen ice, which is thought to dominate the Sputnik Planum, may hold the key to answering our questions. They are soft and easy to deform under its own weight even at Pluto's surface temperature of around 40K. Based on our initial simulations with numerical ice sheet models, we propose that once a crater is created on the Sputnik Planum, deformation under internal stress kicks in as a primary mechanism to flatten out craters. This could be done in a time scale of 100,000 years, significantly shorter than the maximum surface age contrained by crater densitiess models. As the surface arpproaches a flat state, such mechanism becomes weaker. The surface feature is then dominated by convection.

  1. Structure of Surface-H2O Layers of Ice-covered Planets with High-pressure Ice

    CERN Document Server

    Ueta, S

    2013-01-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. The existence of bound and unbound terrestrial planets with liquid water is an important question, and of particular importance is the question of their habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structures of the surface-H2O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, 1M$\\oplus$ planet at 1 AU from its central star and with 0.6 to 25 times the H2O mass of Earth could have ...

  2. Salt or ice diapirism origin for the honeycomb terrain in Hellas basin, Mars?: Implications for the early martian climate

    Science.gov (United States)

    Weiss, David K.; Head, James W.

    2017-03-01

    The "honeycomb" terrain is a Noachian-aged cluster of ∼7 km wide linear cell-like depressions located on the northwestern floor of Hellas basin, Mars. A variety of origins have been proposed for the honeycomb terrain, including deformation rings of subglacial sediment, frozen convection cells from a Hellas impact melt sheet, a swarm of igneous batholiths, salt diapirism, and ice diapirism. Recent work has shown that the salt or ice diapirism scenarios appear to be most consistent with the morphology and morphometry of the honeycomb terrain. The salt and ice diapirism scenarios have different implications for the ancient martian climate and hydrological cycle, and so distinguishing between the two scenarios is critical. In this study, we specifically test whether the honeycomb terrain is consistent with a salt or ice diapir origin. We use thermal modeling to assess the stability limits on the thickness of an ice or salt diapir-forming layer at depth within the Hellas basin. We also apply analytical models for diapir formation to evaluate the predicted diapir wavelengths in order to compare with observations. Ice diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ∼100 m to ∼1 km thick ice deposits. Gypsum and kieserite diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ≥ 600-1000 m thick salt deposits, but only with a basaltic overburden. Halite diapirism generally requires approx. ≥ 1 km thick halite deposits in order to reproduce the observed honeycomb wavelengths. Hellas basin is a distinctive environment for diapirism on Mars due to its thin crust (which reduces surface heat flux), low elevation (which allows Hellas to act as a water/ice/sediment sink and increases the surface temperature), and location within the southern highlands (which may provide proximity to inflowing saline water or glacial ice). The plausibility of an ice diapir mechanism generally requires temperatures ≤ 250

  3. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    Science.gov (United States)

    Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2015-07-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re ˜2 ×104- 3 ×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  4. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  5. Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models

    Science.gov (United States)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P. R.; Uotila, P.; Zunz, V.; Kimura, N.

    2016-09-01

    We derive the terms in the Antarctic sea ice concentration budget from the output of three models, and compare them to observations of the same terms. Those models include two climate models from the 5th Coupled Model Intercomparison Project (CMIP5) and one ocean-sea ice coupled model with prescribed atmospheric forcing. Sea ice drift and wind fields from those models, in average over April-October 1992-2005, all exhibit large differences with the available observational or reanalysis datasets. However, the discrepancies between the two distinct ice drift products or the two wind reanalyses used here are sometimes even greater than those differences. Two major findings stand out from the analysis. Firstly, large biases in sea ice drift speed and direction in exterior sectors of the sea ice covered region tend to be systematic and consistent with those in winds. This suggests that sea ice errors in these areas are most likely wind-driven, so as errors in the simulated ice motion vectors. The systematic nature of these biases is less prominent in interior sectors, nearer the coast, where sea ice is mechanically constrained and its motion in response to the wind forcing more depending on the model rheology. Second, the intimate relationship between winds, sea ice drift and the sea ice concentration budget gives insight on ways to categorize models with regard to errors in their ice dynamics. In exterior regions, models with seemingly too weak winds and slow ice drift consistently yield a lack of ice velocity divergence and hence a wrong wintertime sea ice growth rate. In interior sectors, too slow ice drift, presumably originating from issues in the physical representation of sea ice dynamics as much as from errors in surface winds, leads to wrong timing of the late winter ice retreat. Those results illustrate that the applied methodology provides a valuable tool for prioritizing model improvements based on the ice concentration budget-ice drift biases-wind biases

  6. Two-dimensional prognostic experiments for fast-flowing ice streams from the Academy of Sciences Ice Cap: future modeled histories obtained for the reference surface mass balance

    Directory of Open Access Journals (Sweden)

    Y. V. Konovalov

    2015-11-01

    Full Text Available The prognostic experiments for fast-flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago, are implemented in this study. These experiments are based on inversions of basal friction coefficients using a two-dimensional flow-line thermo-coupled model and the Tikhonov's regularization method. The modeled ice temperature distributions in the cross-sections were obtained using the ice surface temperature histories that were inverted previously from the borehole temperature profiles derived at the Academy of Sciences Ice Cap. Input data included InSAR ice surface velocities, ice surface elevations, and ice thicknesses obtained from airborne measurements and the surface mass balance, were adopted from the prior investigations for the implementation of both the forward and inverse problems. The prognostic experiments reveal that both ice mass and ice stream extents decline for the reference time-independent surface mass balance. Specifically, the grounding line retreats (a along the B–B' flow line from ~ 40 to ~ 30 km (the distance from the summit, (b along the C–C' flow line from ~ 43 to ~ 37 km, and (c along the D–D' flow line from ~ 41 to ~ 32 km considering a time period of 500 years and assuming time-independent surface mass balance. Ice flow velocities in the ice streams decrease with time and this trend results in the overall decline of the outgoing ice flux. Generally, the modeled histories are in agreement with observations of sea ice extent and thickness indicating a continual ice decline in the Arctic.

  7. Surface and basal sea ice melt from autonomous buoy arrays during the 2014 sea ice retreat in the Beaufort/Chukchi Seas

    Science.gov (United States)

    Maksym, T. L.; Wilkinson, J.; Hwang, P. B.

    2014-12-01

    As the Arctic continues its transition to a seasonal ice cover, the nature and role of the processes driving sea ice retreat are expected to change. Key questions revolve around how the coupling between dynamics and thermodynamic processes and potential changes in the role of melt ponds contribute to an accelerated seasonal ice retreat. To address these issues, 44 autonomous platforms were deployed in four arrays in the Beaufort Sea in March, 2014, with an additional array deployed in August in the Chukchi Sea to monitor the evolution of ice conditions during the seasonal sea ice retreat. Each "5-dice" array included four or five co-sited ice mass balance buoys (IMB) and wave buoys with digital cameras, and one automatic weather station (AWS) at the array center. The sensors on these buoys, combined with satellite imagery monitoring the large-scale evolution of the ice cover, provide a near-complete history of the processes involved in the seasonal melt of sea ice. We present a preliminary analysis of the contributions of several key processes to the seasonal ice decay. The evolution of surface ponding was observed at several sites with differing ice types and surface morphologies. The records of surface melt and ice thickness demonstrate a key role of ice type in driving the evolution of the ice cover. Analysis of the surface forcing and estimates of solar energy partitioning between the surface and upper ocean is compared to the surface and basal mass balance from the IMBs. The role of ice divergence and deformation in driving sea ice decay - in particular its role in accelerating thermodynamic melt processes - is discussed.

  8. Studies of ice nuclei at the Leipzig Aerosol Cloud Interaction Simulator and their implications

    Science.gov (United States)

    Wex, Heike

    2013-04-01

    Ice containing clouds permanently cover 40% of the earth's surface. Ice formation processes have a large impact on the formation of precipitation, cloud radiative properties, cloud electrification and hence influence both, weather and climate. Our understanding of the physical and chemical processes underlying ice formation is limited. However what we know is that the two main pathways of atmospheric ice formation are homogeneous and heterogeneous ice nucleation. The latter involves aerosol particles that act as ice nuclei inducing cloud droplet freezing at temperatures significantly above the homogeneous freezing threshold temperature. Particles acting as IN are e.g. dust particles, but also biological particles like bacteria, pollen and fungal spores. Different heterogeneous freezing mechanisms do exit, with their relative importance for atmospheric clouds still being debated. However, there are strong indications that immersion freezing is the most important mechanism when considering mixed phase clouds. What we are still lacking is a) the fundamental process understanding on how aerosol particles induce ice nucleation and b) means to quantify ice nucleation in atmospheric models. Concerning a) there most likely is not only one answer, considering the variety of IN found in the atmosphere. With respect to b) different approaches based on either the stochastic or singular hypotheses have been suggested. However it is still being debated which would be a suitable way to parameterize laboratory data for use in atmospheric modeling. In this presentation, both topics will be addressed. Using the Leipzig Aerosol Cloud Interaction Simulator (LACIS) (Hartmann et al., 2011), we examined different types of dust particles with and without coating, and biological particles such as bacteria and pollen, with respect to their immersion freezing behaviour. We will summarize our findings concerning the properties controlling the ice nucleation behaviour of these particles and

  9. Global Changes in the Sea Ice Cover and Associated Surface Temperature Changes

    Science.gov (United States)

    Comiso, Josefino C.

    2016-06-01

    The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at -3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  10. Regional surface melt constrained from exposed strata on the Greenland ice sheet using structural geology, satellite imagery and IcePod data.

    Science.gov (United States)

    Tinto, K. J.; Bell, R. E.; Porter, D. F.; Das, I.; Frearson, N.; Bertinato, C.; Boghosian, A.; Chu, W.; Creyts, T. T.; Dhakal, T.; Dong, L.; Starke, S. E.

    2014-12-01

    Surface melt in the ablation zone of Greenland varies considerably, with increasing rates over the satellite observational period. Prior to airborne and satellite altimetry studies, the record is primarily based on point measurements. Here, we develop an independent method of estimating supraglacial melt from satellite images to produce a broad spatial record of mass balance in west Greenland through three decades. The ablation zone along the margin of the ice sheet in central west Greenland shows a band of dark grey ice approximately 25 km wide traceable over 150 km from 66° 40' N to 68° 20' N, inland from Kangerlussuaq, and visible again to the north of Jakobshavn Isbrae. This grey ice is characterized by large, km-scale zigzags of alternating dark and light ice bands. Ice penetrating radar data show that the outcropping ice throughout this band is strongly stratified, with strata dipping inland towards the centre of the ice sheet. The large zigzags across the ice surface are seen on the surface where these dipping strata undulate, or when the ice surface is incised by meltwater channels. The amplitude of the zigzags is determined by the relative dip of the strata and the surface topography. We focus on data from the Russell Glacier, where surface velocity is on the order of 100 m/yr, and surface melt erodes the bare ice on the order of 1 m/yr. While ice flow moves the exposed strata upwards and towards the margin, surface melt displaces the exposed trace of the stratigraphy down dip, i.e. towards the interior of the ice sheet. By cross-correlating satellite images from a 30 year period we can distinguish the seaward movement of ice surface features, such as crevasses and melt channels that move with ice flow, from the landward apparent displacement of the exposed strata. We combine this with high resolution DEMs, photographs and shallow ice radar from Operation IceBridge and the IcePod instrument suite to constrain the geometry of the ice surface and exposed

  11. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  12. Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2005-01-01

    Full Text Available Recent in situ measurements at tropical tropopause temperatures as low as 187 K indicate supersaturations with respect to ice exceeding 100% with little or no ice present. In contrast, models used to simulate cloud formation near the tropopause assume a supersaturation threshold for ice nucleation of about 65% based on laboratory measurements of aqueous aerosol freezing. The high supersaturations reported here, along with cloud simulations assuming a plausible range of temperature histories in the sampled air mass, indicate that the vast majority of aerosols in the air sampled on this flight must have had supersaturation thresholds for ice nucleation exceeding 100% (i.e. near liquid water saturation at these temperatures. Possible explanations for this high threshold are that (1 the expressions used for calculating vapor pressure over supercooled water at low temperatures give values are at least 20% too low, (2 organic films on the aerosol surfaces reduce their accommodation coefficient for uptake of water, resulting in aerosols with more concentrated solutions when moderate-rapid cooling occurs and correspondingly inhibited homogeneous freezing, and (3 if surface freezing dominates, organic coatings may increase the surface energy of the ice embryo/vapor interface resulting in suppressed ice nucleation. Simulations of in situ cloud formation in the tropical tropopause layer (TTL throughout the tropics indicate that if decreased accommodation coefficients and resulting high thresholds for ice nucleation prevailed throughout the tropics, then the calculated occurrence frequency and areal coverage of TTL cirrus would be significantly suppressed. However, the simulations also show that even if in situ TTL cirrus form only over a very small fraction of the tropics in the western Pacific, enough air passes through them due to rapid horizontal transport such that they can still effectively freeze-dry air entering the stratosphere. The TTL cirrus

  13. Surface Geophysical Measurements for Locating and Mapping Ice-Wedges

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Larsen, S.H.

    2012-01-01

    With the presently observed trend of permafrost warming and degradation, the development and availability of effective tools to locate and map ice-rich soils and massive ground ice is of increasing importance. This paper presents a geophysical study of an area with polygonal landforms in order...... to test the applicability of DC electrical resistivity tomography (ERT) and Ground Penetrating Radar (GPR) to identifying and mapping ice-wedge occurrences. The site is located in Central West Greenland, and the ice-wedges are found in a permafrozen peat soil with an active layer of about 30 cm. ERT...... and GPR measurements give a coherent interpretation of possible ice-wedge locations, and active layer probing show a tendency for larger thaw depth in the major trench systems consistent with a significant temperature (at 10 cm depth) increase in these trenches identified by thermal profiling. Three...

  14. Albedo evolution of seasonal Arctic sea ice

    Science.gov (United States)

    Perovich, Donald K.; Polashenski, Christopher

    2012-04-01

    There is an ongoing shift in the Arctic sea ice cover from multiyear ice to seasonal ice. Here we examine the impact of this shift on sea ice albedo. Our analysis of observations from four years of field experiments indicates that seasonal ice undergoes an albedo evolution with seven phases; cold snow, melting snow, pond formation, pond drainage, pond evolution, open water, and freezeup. Once surface ice melt begins, seasonal ice albedos are consistently less than albedos for multiyear ice resulting in more solar heat absorbed in the ice and transmitted to the ocean. The shift from a multiyear to seasonal ice cover has significant implications for the heat and mass budget of the ice and for primary productivity in the upper ocean. There will be enhanced melting of the ice cover and an increase in the amount of sunlight available in the upper ocean.

  15. Winter precipitation types and icing at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, J.; Stewart, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Atmospheric and Oceanic Sciences

    2005-07-01

    An understanding of the physics of winter precipitation formation mechanisms is important for the forecasting of winter storms and associated icing. Empirical techniques are generally used to account for many types of precipitation. This paper proposed a microphysics scheme able to predict liquid particles, solid particles and those with a mixture of solid and liquid particles within varying environmental conditions. A revised 1-D cloud model utilizing a double-moment microphysics scheme was presented. The basic physics of liquid and semi-liquid particles formation and their interaction with the environment were outlined. A detailed evolution of precipitation types and environmental conditions was examined using typical temperature profiles and a study of other atmospheric conditions. The double microphysics scheme predicted the total concentration and mixing of various hydrometeor categories which were divided into 2 different branches: frozen and liquid. Characteristics for the categories were presented. A comparison of temperature, moisture and precipitation profiles was presented, as well as a comparison of surface precipitation types. The relationship between sounding parameters and precipitation types was examined, and ranges of temperature and depth were outlined. The study showed that the occurrence of a particular precipitation type or combinations of types can be associated with a range of atmospheric profiles. Melting and refreezing parameters exhibited variations for the same precipitation types and their combinations were not produced within a single profile. It was concluded that profiles must be very precise to simulate certain combinations. 10 refs., 1 tab., 8 figs.

  16. Future climate warming increases Greenland ice sheet surface mass balance variability

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.; Price, S.

    2014-01-01

    The integrated surface mass balance (SMB) of the Greenland ice sheet (GrIS) has large interannual variability. Long-term future changes to this variability will affect GrIS dynamics, freshwater fluxes, regional oceanography, and detection of changes in ice volume trends. Here we analyze a simulated

  17. Unusual surface morphology from digital elevation models of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Ekholm, Simon; Keller, K.; Bamber, J.L.

    1998-01-01

    In this study of the North Greenland ice sheet, we have used digital elevation models to investigate the topographic signatures of a large ice flow feature discovered in 1993 and a unique surface anomaly which we believe has not been observed previously. The small scale topography of the flow...

  18. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.

    Science.gov (United States)

    Mishchenko, Lidiya; Hatton, Benjamin; Bahadur, Vaibhav; Taylor, J Ashley; Krupenkin, Tom; Aizenberg, Joanna

    2010-12-28

    Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much attention has been given recently to freezing of static water droplets resting on supercooled surfaces. Ice accretion, however, begins with the droplet/substrate collision followed by freezing. Here we focus on the behavior of dynamic droplets impacting supercooled nano- and microstructured surfaces. Detailed experimental analysis of the temperature-dependent droplet/surface interaction shows that highly ordered superhydrophobic materials can be designed to remain entirely ice-free down to ca. -25 to -30 °C, due to their ability to repel impacting water before ice nucleation occurs. Ice accumulated below these temperatures can be easily removed. Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials. In particular, we emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface microstructures for their improved mechanical and pressure stability, amenability to facile replication and large-scale fabrication, and opportunities for greater tuning of their material and chemical properties.

  19. Direction-of-Arrival Estimation for Radar Ice Sounding Surface Clutter Suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    Ice sounding radars are able to measure ice sheets by profiling their glaciological features from the surface to the bedrock. The current airborne and, in particular, future space-based systems are suffering from off-nadir surface clutter, which can mask the depth signal of interest. The most...... estimation for surface clutter signals, which includes a formulation of the mathematical foundation of spatial aliasing. DOA estimation is applied to data acquired with the P-band POLarimetric Airborne Radar Ice Sounder at the Jutulstraumen Glacier, Antarctica. The effects of spatial aliasing related...

  20. Persistent Surface River on Nansen Ice Shelf Drains Meltwater Preventing Collapse for Decades

    Science.gov (United States)

    Bell, R. E.; Chu, W.; Kingslake, J.; Das, I.; Tedesco, M.; Tinto, K. J.; Zappa, C. J.; Frezzotti, M.

    2016-12-01

    Meltwater ponding on the surface of Antarctic ice shelves has been advanced as the trigger for their collapse through loading and hydrofracturing. While ponding was associated with the Larsen B Ice Shelf collapse, draining meltwater off an ice shelf could limit the destructive role of increasing surface melt in the future. In this regard, we present the first evidence of the presence and evolution of a persistent active network of streams, ponds, and rivers on the Nansen Ice Shelf, Antarctica. This active drainage system has delivered meltwater into the Ross Sea since at least 1908, reducing the volume of water seasonally stored on the ice surface and protecting the ice shelf from collapsing. We integrated early 20th century observations with modern airborne and satellite imagery to identify three distinct surface hydrology systems on the Nansen Ice Shelf. Near the calving front, surface meltwater coalesces into surface streams and ponds that grow over days to weeks, eventually connecting to a shear margin river that drains at a large waterfall into the Ross Sea. Between 1989 and 2016, the shear margin river drained into a rift associated with a large calving event in 2016. The second system forms close to the grounding line where surface meltwater drains into regions of rifted mélange, possibly explaining the low salinity of the ice drilled in these regions. This surface meltwater is injected into the ice shelf cavity through the mélange and may foster basal melting beneath the shear margins. The third system develops on the steeper Priestly Glacier flow where surface melt is produced adjacent to exposed bedrock and moraines and then is transported by surface streams that terminate in firn-covered regions. Ice shelf hydrology is spatially complex, sensitive to glaciological and climatic conditions, and evolves seasonally. Surface streams that coalesce melt and rivers that export water off the ice shelf will limit the damage from ponding-induced hydrofracturing

  1. Influence of color coatings on aircraft surface ice detection based on multi-wavelength imaging

    Science.gov (United States)

    Zhuge, Jing-chang; Yu, Zhi-jing; Gao, Jian-shu; Zheng, Da-chuan

    2016-03-01

    In this paper, a simple aircraft surface ice detection system is proposed based on multi-wavelength imaging. Its feasibility is proved by the experimental results. The influence of color coatings of aircraft surface is investigated. The results show that the ice area can be clearly distinguished from the red, white, gray and blue coatings painted aluminum plates. Due to the strong absorption, not enough signals can be detected for the black coatings. Thus, a deep research is needed. Even though, the results of this paper are helpful to the development of aircraft surface ice detection.

  2. Unusual surface morphology from digital elevation models of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Ekholm, Simon; Keller, K.; Bamber, J.L.

    1998-01-01

    In this study of the North Greenland ice sheet, we have used digital elevation models to investigate the topographic signatures of a large ice flow feature discovered in 1993 and a unique surface anomaly which we believe has not been observed previously. The small scale topography of the flow...... feature is revealed in striking detail in a high-pass filtered elevation model. Furthermore, ice penetrating radar show that the sub-stream bed is rough with undulation amplitude increasing downstream. The new feature consists of two large depressions in the ice sheet connected by a long curving trench...

  3. Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

    OpenAIRE

    Greve, Ralf; SUGIYAMA, SHIN

    2009-01-01

    Simulations of the Greenland Ice Sheet are carried out with a high-resolution version of the ice-sheet model SICOPOLIS for several global-warming scenarios for the period 1990-2350. In particular, the impact of surface-meltwater-induced acceleration of basal sliding on the stability of the ice sheet is investigated. A parameterization for the acceleration effect is developed for which modelled and measured mass losses of the ice sheet in the early 21st century agree well. The main findings of...

  4. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013

    Directory of Open Access Journals (Sweden)

    J. Wuite

    2014-12-01

    Full Text Available We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B ice shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a−1 in 2007 to 1.72 Gt a−1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased two- to three fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38%, respectively 45%, higher than in 1995.

  5. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013

    Science.gov (United States)

    Wuite, J.; Rott, H.; Hetzenecker, M.; Floricioiu, D.; De Rydt, J.; Gudmundsson, G. H.; Nagler, T.; Kern, M.

    2015-05-01

    We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B Ice Shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of most of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a-1 in 2007 to 1.72 Gt a-1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased 2-3-fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38% and 46% higher than in 1995.

  6. Basal drainage system response to increasing surface melt on the Greenland ice sheet.

    Science.gov (United States)

    Meierbachtol, T; Harper, J; Humphrey, N

    2013-08-16

    Surface meltwater reaching the bed of the Greenland ice sheet imparts a fundamental control on basal motion. Sliding speed depends on ice/bed coupling, dictated by the configuration and pressure of the hydrologic drainage system. In situ observations in a four-site transect containing 23 boreholes drilled to Greenland's bed reveal basal water pressures unfavorable to water-draining conduit development extending inland beneath deep ice. This finding is supported by numerical analysis based on realistic ice sheet geometry. Slow meltback of ice walls limits conduit growth, inhibiting their capacity to transport increased discharge. Key aspects of current conceptual models for Greenland basal hydrology, derived primarily from the study of mountain glaciers, appear to be limited to a portion of the ablation zone near the ice sheet margin.

  7. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    Science.gov (United States)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  8. Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed.

    Science.gov (United States)

    Bougamont, M; Christoffersen, P; Hubbard, A L; Fitzpatrick, A A; Doyle, S H; Carter, S P

    2014-09-29

    The dynamic response of the Greenland Ice Sheet (GrIS) depends on feedbacks between surface meltwater delivery to the subglacial environment and ice flow. Recent work has highlighted an important role of hydrological processes in regulating the ice flow, but models have so far overlooked the mechanical effect of soft basal sediment. Here we use a three-dimensional model to investigate hydrological controls on a GrIS soft-bedded region. Our results demonstrate that weakening and strengthening of subglacial sediment, associated with the seasonal delivery of surface meltwater to the bed, modulates ice flow consistent with observations. We propose that sedimentary control on ice flow is a viable alternative to existing models of evolving hydrological systems, and find a strong link between the annual flow stability, and the frequency of high meltwater discharge events. Consequently, the observed GrIS resilience to enhanced melt could be compromised if runoff variability increases further with future climate warming.

  9. Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating

    Science.gov (United States)

    Liu, Qi; Yang, Ying; Huang, Meng; Zhou, Yuanxiang; Liu, Yingyan; Liang, Xidong

    2015-08-01

    Slippery liquid-infused porous surfaces (SLIPS) are attracting great interest as anti-icing coatings. However, the most challenging point for SLIPS is their durability. A heptadecafluorodecyl trimethoxysilane-fluorinated hierarchically micro-structured silicone rubber surface was prepared by electrospray method coupled with phase separation which had a contact angle of the lubricant θls(a) = 0°. This study investigated the effects of the surface chemistry, length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant during repetitive icing/deicing, water washout and ice-shedding treatments. This study compares the lubricant retention rate, ice formation time and ice adhesion strength. The result demonstrated that SLIPS with a fluorinated hierarchical micro/nano scale substrate maintains the best anti-icing capability. Lubricant in the microscale pores can easily creep up to the surface with nano-scale pores providing stronger capillary forces to hold the lubricant in the pores only if θls(a) = 0° with a rolling hill pattern lubricant surface morphology formed during the loss of lubricant. Such fluorinated hierarchically nano/micro structured substrate will enable the lubricant to completely cover the surface which reduces heterogeneous nucleation and frost propagation velocity.

  10. Parameterization of atmosphere–surface exchange of CO2 over sea ice

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Jensen, Bjarne; Glud, Ronnie;

    2014-01-01

    are discussed. We found the flux to be small during the late winter with fluxes in both directions. Not surprisingly we find that the resistance across the surface controls the fluxes and detailed knowledge of the brine volume and carbon chemistry within the brines as well as knowledge of snow cover and carbon...... chemistry in the ice are essential to estimate the partial pressure of pCO2 and CO2 flux. Further investigations of surface structure and snow cover and driving parameters such as heat flux, radiation, ice temperature and brine processes are required to adequately parameterize the surface resistance.......We suggest the application of a flux parameterization commonly used over terrestrial areas for calculation of CO2 fluxes over sea ice surfaces. The parameterization is based on resistance analogy.We present a concept for parameterization of the CO2 fluxes over sea ice suggesting to use properties...

  11. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    Science.gov (United States)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  12. Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM

    NARCIS (Netherlands)

    Weikusat, I.; Winter, D.A.M. de; Pennock, G.M.; Hayles, M.; Schneijdenberg, C.T.W.M.; Drury, M.R.

    2011-01-01

    Naturally deformed ice contains subgrains with characteristic geometries that have recently been identified in etched surfaces using high-resolution light microscopy (LM). The probable slip systems responsible for these subgrain boundary types can be determined using electron backscattered diffracti

  13. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...... summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled...

  14. Improving the WRF model's (version 3.6.1) simulation over sea ice surface through coupling with a complex thermodynamic sea ice model (HIGHTSI)

    Science.gov (United States)

    Yao, Yao; Huang, Jianbin; Luo, Yong; Zhao, Zongci

    2016-06-01

    Sea ice plays an important role in the air-ice-ocean interaction, but it is often represented simply in many regional atmospheric models. The Noah sea ice scheme, which is the only option in the current Weather Research and Forecasting (WRF) model (version 3.6.1), has a problem of energy imbalance due to its simplification in snow processes and lack of ablation and accretion processes in ice. Validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) in situ observations, Noah underestimates the sea ice temperature which can reach -10 °C in winter. Sensitivity tests show that this bias is mainly attributed to the simulation within the ice when a time-dependent ice thickness is specified. Compared with the Noah sea ice model, the high-resolution thermodynamic snow and ice model (HIGHTSI) uses more realistic thermodynamics for snow and ice. Most importantly, HIGHTSI includes the ablation and accretion processes of sea ice and uses an interpolation method which can ensure the heat conservation during its integration. These allow the HIGHTSI to better resolve the energy balance in the sea ice, and the bias in sea ice temperature is reduced considerably. When HIGHTSI is coupled with the WRF model, the simulation of sea ice temperature by the original Polar WRF is greatly improved. Considering the bias with reference to SHEBA observations, WRF-HIGHTSI improves the simulation of surface temperature, 2 m air temperature and surface upward long-wave radiation flux in winter by 6, 5 °C and 20 W m-2, respectively. A discussion on the impact of specifying sea ice thickness in the WRF model is presented. Consistent with previous research, prescribing the sea ice thickness with observational information results in the best simulation among the available methods. If no observational information is available, we present a new method in which the sea ice thickness is initialized from empirical estimation and its further change is predicted by a complex thermodynamic

  15. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes

    OpenAIRE

    Knight, C A; Cheng, C C; DeVries, A.L.

    1991-01-01

    The noncolligative peptide and glycopeptide antifreezes found in some cold-water fish act by binding to the ice surface and preventing crystal growth, not by altering the equilibrium freezing point of the water. A simple crystal growth and etching technique allows determination of the crystallographic planes where the binding occurs. In the case of elongated molecules, such as the alpha-helical peptides in this report, it also allows a deduction of the molecular alignment on the ice surface. ...

  16. Impact ejecta-induced melting of surface ice deposits on Mars

    Science.gov (United States)

    Weiss, David K.; Head, James W.

    2016-12-01

    Fluvial features present around impact craters on Mars can offer insight into the ancient martian climate and its relationship to the impact cratering process. The widespread spatial and temporal distribution of surface ice on Mars suggests that the interaction between impact cratering and surface ice could have been a relatively frequent occurrence. We explore the thermal and melting effects on regional surface ice sheets in this case, where an impact event occurs in regional surface ice deposits overlying a regolith/bedrock target. We provide an estimate for the post-impact temperature of martian ejecta as a function of crater diameter, and conduct thermal modeling to assess the degree to which contact melting of hot ejecta superposed on surface ice deposits can produce meltwater and carve fluvial features. We also evaluate whether fluvial features could form as a result of basal melting of the ice deposits in response to the thermal insulation provided by the overlying impact ejecta. Contact melting is predicted to occur immediately following ejecta emplacement over the course of hundreds of years to tens of kyr. Basal melting initiates when the 273 K isotherm rises through the crust and reaches the base of the ice sheet ∼0.1 to ∼1 Myr following the impact. We assess the range of crater diameters predicted to produce contact and basal melting of surface ice sheets, as well as the melt fluxes, volumes, timescales, predicted locations of melting (relative to the crater), and the associated hydraulic and hydrologic consequences. We find that the heat flux and surface temperature conditions required to produce contact melting are met throughout martian history, whereas the heat flux and surface temperature conditions to produce basal melting are met only under currently understood ancient martian thermal conditions. For an impact into a regional ice sheet, the contact and basal melting mechanisms are predicted to generate melt volumes between ∼10-1 and 105 km3

  17. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene.

    Science.gov (United States)

    Bowman, Jeff S; Rasmussen, Simon; Blom, Nikolaj; Deming, Jody W; Rysgaard, Søren; Sicheritz-Ponten, Thomas

    2012-01-01

    Dramatic decreases in the extent of Arctic multiyear ice (MYI) suggest this environment may disappear as early as 2100, replaced by ecologically different first-year ice. To better understand the implications of this loss on microbial biodiversity, we undertook a detailed census of the microbial community in MYI at two sites near the geographic North Pole using parallel tag sequencing of the 16S rRNA gene. Although the composition of the MYI microbial community has been characterized by previous studies, microbial community structure has not been. Although richness was lower in MYI than in underlying surface water, we found diversity to be comparable using the Simpson and Shannon's indices (for Simpson t=0.65, P=0.56; for Shannon t=0.25, P=0.84 for a Student's t-test of mean values). Cyanobacteria, comprising 6.8% of reads obtained from MYI, were observed for the first time in Arctic sea ice. In addition, several low-abundance clades not previously reported in sea ice were present, including the phylum TM7 and the classes Spartobacteria and Opitutae. Members of Coraliomargarita, a recently described genus of the class Opitutae, were present in sufficient numbers to suggest niche occupation within MYI.

  18. The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity

    CERN Document Server

    Fitzner, Martin; Cox, Stephen J; Michaelides, Angelos

    2016-01-01

    What makes a material a good ice nucleating agent? Despite the importance of heterogeneous ice nucleation to a variety of fields, from cloud science to microbiology, major gaps in our understanding of this ubiquitous process still prevent us from answering this question. In this work, we have examined the ability of generic crystalline substrates to promote ice nucleation as a function of the hydrophobicity and the morphology of the surface. Nucleation rates have been obtained by brute-force molecular dynamics simulations of coarse-grained water on top of different surfaces of a model fcc crystal, varying the water-surface interaction and the surface lattice parameter. It turns out that the lattice mismatch of the surface with respect to ice, customarily regarded as the most important requirement for a good ice nucleating agent, is at most desirable but not a requirement. On the other hand, the balance between the morphology of the surface and its hydrophobicity can significantly alter the ice nucleation rate...

  19. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  20. How Surface Ice and Topography Affects the Atmospheric Circulation on Pluto

    Science.gov (United States)

    Soto, A.; Rafkin, S. C.; Michaels, T. I.

    2016-12-01

    We developed a new general circulation model (GCM) for Pluto in order to investigate how the heterogeneous distribution of nitrogen surface ice and large-scale topography affects Pluto's atmospheric circulation. Our Pluto GCM is built on the GFDL Flexible Modeling System finite volume dynamical core. The GCM physics routines include a gray model radiative-conductive scheme, a subsurface conduction scheme, and a nitrogen volatile cycle. The radiative-conductive scheme accounts for the CH4 and CO absorption bands at 2.3, 3.3, and 7.8 microns, including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle assumes vapor pressure equilibrium between the atmosphere and the surface. Images from the New Horizon mission to Pluto showed an extremely complex, heterogeneous distribution of surface ice, some of which was draped over substantial and variable topography. To produce such a complicated ice distribution, the atmospheric dynamics and the volatile transport must be more complex than expected prior to the New Horizons fly-by of Pluto. We use simulations where topography and surface ice distributions were added individually and in various combinations to individually quantify the contribution of topography, volatile cycle, and surface ice distributions to Pluto's atmospheric circulation. We show that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and the distribution of surface ice. As well, we demonstrate that explaining the expression of Pluto's volatile cycle on the surface ice distribution requires the consideration of atmospheric processes beyond the simple vapor pressure equilibrium arguments.

  1. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Science.gov (United States)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  2. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover

    Science.gov (United States)

    Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.

    2016-11-01

    Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.

  3. Measuring temperature of the ice surface during its formation by using infrared instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Karev, Anatolij R.; Farzaneh, Masoud; Kollar, Laszlo E. [NSERC/Hydro-Quebec/UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, Chicoutimi, Que. (Canada)

    2007-02-15

    A non-destructive remote sensing technique was used to measure the surface temperature of a thin macroscopic water film flowing on a growing asymmetric ice accretion during its formation inside an icing research wind tunnel. Given the underlying thermodynamic conditions of this experimental series, the recorded surface temperature was always below the temperature of water fusion, T{sub m}=273.15K, even when water shedding from growing ice accretions was observed visually. The surface temperature of ice accretions, T{sub s}, ranged from -1{sup o}C, for angular positions near the stagnation line, down to a certain minimum above the ambient temperature, T{sub a}, for the greater angular positions, i.e. T{sub m}>T{sub s}>T{sub a}. (author)

  4. Structure of Callisto and Ice Holes on Its Surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Hui; CHEN Chu-Xin

    2003-01-01

    The discovery of the induced magnetic field of Callisto that is a satellite of Jupiter has been interpreted as evidence for a subsurface salty liquid-water ocean, so we consider a layered structure of Callisto, i.e., a rock-metal core, an outer layer of ice and a middle layer of ocean. For the rock-metal core we try to indicate how the temperature, pressure and mass density depend on the depth. Due to motion across the magnetic Geld of Jupiter in a plasma environment, the ice sheJI of Callisto must be broken down by electric current.

  5. Evidence for stabilization of the ice-cemented cryosphere in earlier martian history: Implications for the current abundance of groundwater at depth on Mars

    Science.gov (United States)

    Weiss, David K.; Head, James W.

    2017-05-01

    The present-day martian mean annual surface temperature is well below freezing at all latitudes; this produces a near-surface portion of the crust that is below the freezing point of water for > 2 consecutive years (defined as permafrost). This permafrost layer (i.e., the cryosphere) is a few to tens of km thick depending on latitude. Below the base of the permafrost (i.e., the cryosphere), groundwater is stable if it exists, and can increase and decrease in abundance as the freezing isotherm rises and falls. Where water is available, ice fills the pore space within the cryosphere; this region is known as the ice-cemented cryosphere (ICC). The potential for a large reservoir of pore ice beneath the surface has been the subject of much discussion: previous studies have demonstrated that the theoretical thickness of the martian cryosphere in the Amazonian period ranges from up to ∼9 km at the equator to ∼10-22 km at the poles. The total thickness of ice that might fill the pore space within the cryosphere (the ICC), however, remains unknown. A class of martian crater, the Hesperian-Amazonian-aged single-layered ejecta crater, is widely accepted as having formed by impact into an ice-cemented target. Although the target structure related to the larger multiple-layered ejecta craters remains uncertain, they have recently been interpreted to be formed by impact crater excavation below the ice-cemented target, and here we tentatively adopt this interpretation in order to infer the thickness of the ice-cemented cryosphere. Our global examination of the excavation depths of these crater populations points to a Hesperian-Amazonian-aged ice-cemented cryosphere that is ∼1.3 km thick at the equator, and ∼2.3 km thick at the poles (corresponding to a global equivalent water layer of ∼200 m assuming ∼20% pore ice at the surface). To explore the implications of this result on the martian climatic and hydrologic evolution, we then assess the surface temperature

  6. Surface transition on ice induced by the formation of a grain boundary.

    Directory of Open Access Journals (Sweden)

    Christian Pedersen

    Full Text Available Interfaces between individual ice crystals, usually referred to as grain boundaries, play an important part in many processes in nature. Grain boundary properties are, for example, governing the sintering processes in snow and ice which transform a snowpack into a glacier. In the case of snow sintering, it has been assumed that there are no variations in surface roughness and surface melting, when considering the ice-air interface of an individual crystal. In contrast to that assumption, the present work suggests that there is an increased probability of molecular surface disorder in the vicinity of a grain boundary. The conclusion is based on the first detailed visualization of the formation of an ice grain boundary. The visualization is enabled by studying ice crystals growing into contact, at temperatures between -20°C and -15°C and pressures of 1-2 Torr, using Environmental Scanning Electron Microscopy. It is observed that the formation of a grain boundary induces a surface transition on the facets in contact. The transition does not propagate across facet edges. The surface transition is interpreted as the spreading of crystal dislocations away from the grain boundary. The observation constitutes a qualitatively new finding, and can potentially increase the understanding of specific processes in nature where ice grain boundaries are involved.

  7. Keeping a surface ice/frost free with electro-conducting water-repellent coatings

    Science.gov (United States)

    Das, Arindam; Kapatral, Shreyas; Megaridis, Constantine M.

    2013-11-01

    Ice/frost formation on aircraft, wind turbines, power grids, marine vessels, telecommunication devices, etc. has propelled scientific research on surfaces that facilitate the removal of the water solid phase or retard its formation. Superhydrophobic, self-cleaning surfaces have been investigated recently (Jung et al., Langmuir 2011) for their passive anti-icing properties. Although superhydrophobic surfaces have been shown to delay the onset of frosting and icing, they cannot prevent it entirely. Hence active deicing/defrosting approaches are required to keep surfaces free of ice/frost. Defrosting experiments have been carried out on glass substrates coated with textured polymeric nanocomposite films of different surface wettability, porosity and roughness. A strong influence of these parameters on condensation, condensation frosting and defrosting was observed. The coatings are electro-conducting, thus allowing skin heating at the interface between ice and the substrate. Sustained ice- and frost-free operation is demonstrated at substrate temperatures well below the freezing point and in humid ambient atmospheres. Supported by NSF Grant CBET-1066426.

  8. What makes a good descriptor for heterogeneous ice nucleation on OH-patterned surfaces

    Science.gov (United States)

    Pedevilla, Philipp; Fitzner, Martin; Michaelides, Angelos

    2017-09-01

    Freezing of water is arguably one of the most common phase transitions on Earth and almost always happens heterogeneously. Despite its importance, we lack a fundamental understanding of what makes substrates efficient ice nucleators. Here we address this by computing the ice nucleation (IN) ability of numerous model hydroxylated substrates with diverse surface hydroxyl (OH) group arrangements. Overall, for the substrates considered, we find that neither the symmetry of the OH patterns nor the similarity between a substrate and ice correlate well with the IN ability. Instead, we find that the OH density and the substrate-water interaction strength are useful descriptors of a material's IN ability. This insight allows the rationalization of ice nucleation ability across a wide range of materials and can aid the search and design of novel potent ice nucleators in the future.

  9. Last Glacial Maximum cirque glaciation in Ireland and implications for reconstructions of the Irish Ice Sheet

    Science.gov (United States)

    Barth, Aaron M.; Clark, Peter U.; Clark, Jorie; McCabe, A. Marshall; Caffee, Marc

    2016-06-01

    Reconstructions of the extent and height of the Irish Ice Sheet (IIS) during the Last Glacial Maximum (LGM, ∼19-26 ka) are widely debated, in large part due to limited age constraints on former ice margins and due to uncertainties in the origin of the trimlines. A key area is southwestern Ireland, where various LGM reconstructions range from complete coverage by a contiguous IIS that extends to the continental shelf edge to a separate, more restricted southern-sourced Kerry-Cork Ice Cap (KCIC). We present new 10Be surface exposure ages from two moraines in a cirque basin in the Macgillycuddy's Reeks that provide a unique and unequivocal constraint on ice thickness for this region. Nine 10Be ages from an outer moraine yield a mean age of 24.5 ± 1.4 ka while six ages from an inner moraine yield a mean age of 20.4 ± 1.2 ka. These ages show that the northern flanks of the Macgillycuddy's Reeks were not covered by the IIS or a KCIC since at least 24.5 ± 1.4 ka. If there was more extensive ice coverage over the Macgillycuddy's Reeks during the LGM, it occurred prior to our oldest ages.

  10. Assessment of Sea Surface Temperature and Sea Ice Initial Conditions on Coupled Model Forecasts

    Science.gov (United States)

    Intrieri, J. M.; Solomon, A.; Persson, O. P. G.; Capotondi, A.; LaFontaine, F.; Jedlovec, G.

    2016-12-01

    We present weather-scale (0-10 day) sea ice forecast validation and skill results from an experimental coupled ice-ocean-atmosphere model during the fall freeze-up periods for 2015 and 2016. The model is a mesoscale, coupled atmosphere-ice-ocean mixed-layer model, termed RASM-ESRL, that was developed from the larger-scale Regional Arctic System Model (RASM) architecture. The atmospheric component of RASM-ESRL consists of the Weather Research and Forecasting (WRF) model, the sea-ice component is the Los Alamos CICE model, and the ocean model is POP. Experimental 5-day forecasts were run daily with RASM-ESRL from July through mid-November in 2015 and 2016. Our project focuses on how the modeled sea ice evolution compares to observed physical processes including atmospheric forcing of sea ice movement, melt, and freeze-up through energy fluxes. Model hindcast output is validated against buoy observations, satellite measurements, and concurrent in situ flux observations made from the R/V Sikuliaq in the fall of 2015. Model skill in predicting atmospheric state variables, wind and boundary layer structures, synoptic features, cloud microphysical and ocean properties will be discussed. We will show results of using different initializations of ocean sea surface temperature and sea ice extent and the impacts on sea ice edge prediction.

  11. Experiment of near surface layer parameters in ice camp over Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Estimates of near surface layer parameters over (78.) N drifting ice in ice camp over the Arctic ocean are made using bulk transfer methods with the data from the experiments operated by the Chinese Arctic Scientific Expedition in August 22 September 3, 2003.The results show that the net radiation received by the snow surface is only 3.6 W/m2, among which the main part transported into atmosphere in term of sensible heat and latent heat, which account for 52% and 31% respectively,and less part being transported to deep ice in the conductive process.The bulk transfer coefficient of momentum is about 1.16 x 10-3 in the near neutral layer, which is a little smaller than that obtained over (75.)N drifting ice.However, to compare with the results observed over 75°N drifting ice over the Arctic Ocean in 1999, it can be found that the thermodynamic and momentum of interactions between sea and air are significant different with latitudes, concentration and the scale of sea ice.It is very important on considering the effect of sea-air-ice interaction over the Arctic Ocean when studying climate modeling.

  12. Surface Temperature and Melt on the Greenland Ice Sheet, 2000 - 2011

    Science.gov (United States)

    Hall, Dorothy K.; Comiso, Josefino C.; Shuman, Christopher A.; Koeing, Lora S.; Box, Jason E.; DiGirolamo, Nicolo E.

    2012-01-01

    Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) IST product -- http://modis-snow-ice.gsfc.nasa.gov.Using daily and mean-monthly MODIS IST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approx 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions in different drainage basins of the ice sheet.

  13. Variability of Surface Temperature and Melt on the Greenland Ice Sheet, 2000-2011

    Science.gov (United States)

    Hall, Dorothy K.; Comiso, Josefino, C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.

    2012-01-01

    Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) 1ST product -- http://modis-snow-ice.gsfc.nasa.gov. Using daily and mean monthly MODIS 1ST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approximately 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions indifferent drainage basins of the ice sheet.

  14. Geologic Evidence for Late-Stage Equatorial Surface and Ground Ice on Mars

    Science.gov (United States)

    Chapman, M. G.

    2003-12-01

    New imagery data from the Mars Observer Camera suggest that the equatorial canyon of Valles Marineris contained surface and ground ice relatively late in Martian history. Some troughs (or chasmata) of Valles Marineris contain large mounds and mesas of interior layered deposits (ILDs) that formed in the Late Hesperian to Early Amazonian. Although the origin of the ILDs remains controversial, their characteristics suggest that the strongest hypotheses origin are lacustrine or volcanic processes; some workers have suggested a compromise origin, noting that many MOC observations of ILDs are similar to those of terrestrial sub-ice volcanoes that erupt in meltwater lakes. Lacustrine deposition and sub-ice volcanism require that chamata water or ice would have had to remain stable on the surface long enough to form either (1) extremely thick (1 km to > 4 km) deposits of fine-grained suspended lacustrine materials or (2) numerous sub-ice volcanic edifices with heights that compare to those of Hawaiian oceanic volcanoes. However, a dust cover on top of ice or an ice-covered lake could aid in preventing rapid sublimation. If the ILDs are sub-ice volcanoes than new MOLA topographic data can be used to (1) measure the heights of their subaerial caprock and (2) estimate corresponding volumes of ice. For example, the largest ILD mound in the 113,275 km3 void of Juventae Chasma resembles a capped sub-ice volcanic ridge. The mound is about 2 km high; with the highest point of the cap reaching an elevation of about +80 m. GIS measurement indicate that the maximum volume of ice below the elevation of +80 m is 56,423 km3, so roughly half of the Chasma could have been filled with ice. If the ILDs are lacustrine, then the heights of some other mounds that rival the surrounding plateau elevation would have required a volume of water almost equal to their enclosing chasma. Later in the Amazonian, after sublimation of any putative surface water or ice, MOC imagery attests to ground ice

  15. A Climate-Data Record (CDR) of the "Clear Sky" Surface Temperature of the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.

    2011-01-01

    To quantify the ice-surface temperature (IST) we are developing a climate-data record (CDR) of monthly IST of the Greenland ice sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data at 5-km resolution. "Clear-sky" surface temperature increases have been measured from the early 1980s to the early 2000s in the Arctic using AVHRR data, showing increases ranging from 0.57-0.02 (Wang and Key, 2005) to 0.72 0.10 deg C per decade (Comiso, 2006). Arctic warming has implications for ice-sheet mass balance because much of the periphery of the ice sheet is near 0 deg C in the melt season and is thus vulnerable to more extensive melting (Hanna et al., 2008). The algorithm used for this work has a long history of measuring IST in the Arctic with AVHRR (Key and Haefliger, 1992). The data are currently available from 1981 to 2004 in the AVHRR Polar Pathfinder (APP) dataset (Fowler et al., 2000). J. Key1NOAA modified the AVHRR algorithm for use with MODIS (Hall et al., 2004). The MODIS algorithm is now being processed over Greenland. Issues being addressed in the production of the CDR are: time-series bias caused by cloud cover, and cross-calibration between AVHRR and MODIS instruments. Because of uncertainties, time series of satellite ISTs do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with in-situ (see Koenig and Hall, in press) and automatic-weather station data (e.g., Shuman et al., 2001).

  16. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation

    Directory of Open Access Journals (Sweden)

    G. H. Gudmundsson

    2008-07-01

    Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.

  17. Crevasse Extent and Lateral Shearing of the McMurdo Shear Zone, Antarctica: Implications of Ice Shelf Stability

    Science.gov (United States)

    Kaluzienski, L. M.; Hamilton, G. S.; Koons, P. O.; Enderlin, E. M.; Arcone, S. A.; Borstad, C.; Walker, B.

    2016-12-01

    Antarctica's ice shelves modulate the flow of inland ice towards the ocean. Understanding the controls on ice-shelf stability is critical for predicting the future evolution of the ice sheet. For the western sector of the Ross Ice Shelf (RIS), a potentially important region of lateral resistance is the McMurdo Shear Zone (MSZ) just downstream of Minna Bluff. Here the fast-moving Ross Ice Shelf ( 450 m/yr) shears past the slower-moving McMurdo Ice Shelf ( 200 m/yr) creating a zone of intense crevassing. An analysis of several satellite image datasets including a high-resolution digital elevation model (DEM) extracted from stereo Worldview imagery suggests that many of these flow features originate as the RIS flows past Minna Bluff. Here we present a sensitivity analysis of RIS ice flow using the Ice Sheet System Model (ISSM) (Larour et al. 2012) and the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). In this analysis we assess the sensitivity of model flow of RIS tributary glaciers to boundary condition perturbations within the Minna Bluff/MSZ region. Perturbations include ice shelf thickness variations as well as a scalar damage variable that quantifies the loss of load-bearing surface area due to ice shelf fracture. Field observations of surface flow and strain (GPS) and crevasse distribution and geometry (GPR)in the MSZ help constrain the model simulations. Initial results point to the importance of sub-ice shelf topography and its interaction with features such as Minna Bluff in determining stress distribution on the western RIS. Larour, E.; Seroussi, H.; Morlighem, M.; Rignot, E. 2012. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM), Journal of Geophysical Research

  18. Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR

    Science.gov (United States)

    Noël, B.; Fettweis, X.; van de Berg, W. J.; van den Broeke, M. R.; Erpicum, M.

    2014-10-01

    During recent summers (2007-2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007-2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.

  19. Phase behavior and thermodynamic modeling of ices - implications for the geophysics of icy satellites. (Invited)

    Science.gov (United States)

    Choukroun, M.

    2010-12-01

    Ground-based observations and space missions to the outer Solar System (Voyager, Galileo, Cassini-Huygens) have evidenced recent geologic activity on many satellites of the giant planets. The diversity in surface expression of these icy moons’ activity is striking: from a scarred and young surface on Europa,1 with hydrated salts that may originate from a liquid layer buried at depth,2 to the South Polar plumes of Enceladus,3 where water ice particles are expelled along with a myriad of more complex molecules,4 to Titan, largest satellite of Saturn, with a dense atmosphere and a hydrocarbon cycle similar to the hydrological cycle on Earth.5 Large icy moons, i.e. with a radius greater than 500 km, share two particularities: a high content in water (on the order of a 30-70% bulk composition), and an interior segregated between a water-dominated mantle and a silicate-dominated core. The many forms water may have beneath the surface (ice polymorphs, liquid, hydrated compounds) bear a crucial role in the detected or alleged activity, and in the potential for astrobiological relevance. Indeed, any endogenic activity can only be approached through geophysical modelling of the internal structure and the thermal evolution. Current internal structure models for the icy moonse.g.,6 rely mainly on the contribution of each internal layer to the moment of inertia, generating non-unique solutions due to the large variability in density of H2O-bearing phases. Thermal evolution models,e.g.,7 can help constrain further the internal structure and geophysical activity, by starting with a given initial composition and state and investigating the thickening of icy layers through time. However, such models require both observational datasets and a precise description, as a function of pressure, temperature, and composition, of the thermophysical properties of the individual layers. Over the past century, experimental studies have provided a comprehensive view of the phase diagram of

  20. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

    DEFF Research Database (Denmark)

    Chu, Vena W.; Smith, Laurence C; Rennermalm, Asa K.

    2009-01-01

    Increased mass losses from the Greenland ice sheet and inferred contributions to sea-level rise have heightened the need for hydrologic observations of meltwater exiting the ice sheet. We explore whether temporal variations in ice-sheet surface hydrology can be linked to the development of a down...... area. We conclude that remote sensing of sediment plume behavior offers a novel tool for detecting the presence, timing and interannual variability of meltwater release from the ice sheet....... of a downstream sediment plume in Kangerlussuaq Fjord by comparing: (1) plume area and suspended sediment concentration from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and field data; (2) ice-sheet melt extent from Special Sensor Microwave/Imager (SSM/I) passive microwave data; and (3......) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided...

  1. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.

    Science.gov (United States)

    Midya, Uday Sankar; Bandyopadhyay, Sanjoy

    2014-05-08

    Molecular dynamics (MD) simulations have been carried out at two different temperatures (300 and 220 K) to study the conformational rigidity of the hyperactive Tenebrio molitor antifreeze protein (TmAFP) in aqueous medium and the structural arrangements of water molecules hydrating its surface. It is found that irrespective of the temperature the ice-binding surface (IBS) of the protein is relatively more rigid than its nonice-binding surface (NIBS). The presence of a set of regularly arranged internally bound water molecules is found to play an important role in maintaining the flat rigid nature of the IBS. Importantly, the calculations reveal that the strategically located hydroxyl oxygens of the threonine (Thr) residues in the IBS influence the arrangements of five sets of ordered waters around it on two parallel planes that closely resemble the basal plane of ice. As a result, these waters can register well with the ice basal plane, thereby allowing the IBS to preferentially bind at the ice interface and inhibit its growth. This provides a possible molecular reason behind the ice-binding activity of TmAFP at the basal plane of ice.

  2. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    in glacier melt independently from model output. Here, we present a comprehensive database of Greenland glacier surface mass-balance observations from the ablation area of the ice sheet and local glaciers. The database spans the 123 a from 1892 to 2015, contains a total of similar to 3000 measurements from......Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes...

  3. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker;

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes...... in glacier melt independently from model output. Here, we present a comprehensive database of Greenland glacier surface mass-balance observations from the ablation area of the ice sheet and local glaciers. The database spans the 123 a from 1892 to 2015, contains a total of similar to 3000 measurements from...

  4. The impact of a seasonally ice free Arctic Ocean on the climate and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2011-07-01

    Full Text Available General circulation models (GCMs predict a rapid decrease in Arctic sea ice extent in the 21st century. The decline of September sea ice is expected to continue until the Arctic Ocean is seasonally ice free, leading to a much perturbed Arctic climate with large changes in surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers which are extremely sensitive to changes in climate. Records of past accumulation indicate that the surface mass balance (SMB of Svalbard is also sensitive to changes in the position of the sea ice edge.

    To investigate the impact of 21st Century sea ice decline on the climate and surface mass balance of Svalbard a high resolution (25 km regional climate model (RCM was forced with a repeating cycle of sea surface temperatures (SSTs and sea ice conditions for the periods 1961–1990 and 2061–2090. By prescribing 20th Century SSTs and 21st Century sea ice for one simulation, the impact of sea ice decline is isolated. This study shows that the coupled impact of sea ice decline and SST increase results in a decrease in SMB, whereas the impact of sea ice decline alone causes an increase in SMB of similar magnitude.

  5. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    Science.gov (United States)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when

  6. Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration

    Directory of Open Access Journals (Sweden)

    E. Jensen

    2004-11-01

    Full Text Available Recent in situ measurements at tropical tropopause temperatures as low as 187 K indicate supersaturations with respect to ice exceeding 100% with little or no ice present. In contrast, models used to simulate cloud formation near the tropopause assume a supersaturation threshold for ice nucleation of about 65% based on laboratory measurements of sulfate aerosol freezing. The high supersaturations reported here, along with cloud simulations assuming a plausible range of temperature histories in the sampled air mass, indicate that the vast majority of aerosols in the air sampled on this flight must have had supersaturation thresholds for ice nucleation exceeding 100% (i.e. near liquid water saturation at these temperatures. Possible explanations for this high threshold are that (1 the expressions used for calculating vapor pressure over supercooled water at low temperatures give values at least 20% too low, (2 most of the available aerosols had a composition that makes them much more resistant to ice nucleation than aerosols used in laboratory experiments, and (3 organic films on the aerosol surfaces reduce their accommodation coefficient for uptake of water, resulting in aerosols with more concentrated solutions when moderate-rapid cooling occurs and correspondingly inhibited homogeneous freezing. Simulations of in situ cloud formation in the tropical tropopause layer (TTL throughout the tropics indicate that if these decreased accommodation coefficients and resulting high thresholds for ice nucleation prevailed throughout the tropics, then the calculated occurrence frequency and areal coverage of TTL cirrus would be significantly suppressed. However, the simulations also show that even if in situ TTL cirrus form only over a very small fraction of the tropics in the western Pacific, enough air passes through them due to rapid horizontal transport such that they can still effectively freeze-dry air entering the stratosphere.

  7. Large surface radiative forcing from surface-based ice crystal events measured in the High Arctic at Eureka

    Directory of Open Access Journals (Sweden)

    G. Lesins

    2008-09-01

    Full Text Available Ice crystals, also known as diamond dust, are suspended in the boundary layer air under clear sky conditions during most of the Arctic winter in Northern Canada. Occasionally ice crystal events can produce significantly thick layers with optical depths in excess of 2.0 even in the absence of liquid water clouds. Four case studies of high optical depth ice crystal events at Eureka in the Nunavut Territory of Canada during the winter of 2006–2007 are presented. They show that the measured ice crystal surface infrared downward radiative forcing ranged from 8 to 36 W m−2 in the wavelength band from 5.6 to 20 μm for visible optical depths ranging from 0.2 to 1.7. MODIS infrared and visible images and the operational radiosonde wind profile were used to show that these high optical depth events were caused by surface snow being blown off 600 to 800 m high mountain ridges about 20 to 30 km North-West of Eureka and advected by the winds towards Eureka as they settled towards the ground within the highly stable boundary layer. This work presents the first study that demonstrates the important role that surrounding topography plays in determining the occurrence of high optical depth ice crystal events and points to a new source of boundary layer ice crystal events distinct from the classical diamond dust phenomenon.

  8. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation

  9. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation unde

  10. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    NARCIS (Netherlands)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker; Ahlstrøm, Andreas P.; Abermann, Jakob; Andersen, Morten L.; Andersen, Signe B.; Bjørk, Anders A.; Box, Jason E.; Braithwaite, Roger J.; Bøggild, Carl E.; Citterio, Michele; Clement, Poul; Colgan, William; Fausto, Robert S.; Gleie, Karin; Gubler, Stefanie; Hasholt, Bent; Hynek, Bernhard; Knudsen, Niels T.; Larsen, Signe H.; Mernild, Sebastian H.; Oerlemans, Johannes; Oerter, Hans; Olesen, Ole B.; Smeets, C. J P Paul; Steffen, Konrad; Stober, Manfred; Sugiyama, Shin; Van As, Dirk; Van Den Broeke, Michiel R.; Van De Wal, Roderik S W

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in glac

  11. Mass balance and surface movement of the Greenland Ice Sheet at Summit, Central Greenland

    DEFF Research Database (Denmark)

    Hvidberg, C.S.; Keller, K.; Gundestrup, N.S.;

    1997-01-01

    During the GRIP deep drilling in Central Greenland, the ice sheet topography and surface movement at Summit has been mapped with GPS. Measurements of the surface velocity are presented for a strain net consisting of 13 poles at distances of 25-60 km from the GRIP site. Some results are: The GRIP...

  12. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik; Weidick, Anker;

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in g...

  13. Water and Carbon Dioxide Ices-Rich Areas on Comet 67P/CG Nucleus Surface

    Science.gov (United States)

    Filacchione, G.; Capaccioni, F.; Raponi, A.; De Sanctis, M. C.; Ciarniello, M.; Barucci, M. A.; Tosi, F.; Migliorini, A.; Capria, M. T.; Erard, S.; Bockelée-Morvan, D.; Leyrat, C.; Arnold, G.; Kappel, D.; McCord, T. B.

    2017-01-01

    So far, only two ice species have been identified by Rosetta/VIRTIS-M [1] on the surface of 67P/Churyumov-Gerasimenko during the pre-perihelion time: crystalline water and carbon dioxide ice. Water ice has been spectroscopically identified in three distinct modalities: 1) On the active areas of Hapi region where water ice changes its abundance with local time and illumination conditions, condensing during the night hours and sublimating during daytime [2]; 2) On recent debris fields collapsed from two elevated structures in the Imhotep region where more fresh and pristine material is exposed [3]; 3) On eight bright areas located in Khonsu, Imhotep, Anhur, Atum and Khepry regions [4] where single or multiple grouped icy patches with sizes ranging between few meters to about 60 m are observed. Carbon dioxide ice has been detected only in a 60-80 m area in Anhur region while it was exiting from a four year-long winter-night season [5]. This ice deposit underwent a rapid sublimation, disappearing in about one month after its initial detection. While water and carbon dioxide ice appear always mixed with the ubiquitous dark material [6,7], there are no evidences of the presence of water and carbon dioxide ices mixed together in the same area. If observed, ices always account for very small fraction (few percent) with respect to the dark material. Moreover, the surface ice deposits are preferentially located on the large lobe and the neck while they are absent on the small lobe. Apart from these differences in the spatial distribution of ices on the surface, a large variability is observed the mixing modalities and in the grain size distributions, as retrieved from spectral modeling [8]: 1) very small μm-sized water ice grains in intimate mixing with the dark terrain are detected on Hapi active regions [2]; 2) two monodispersed distributions with maxima at 56 μm and at 2 mm, corresponding to the intimate and areal mixing classes, are observedon the Imhotep debris

  14. Subsurface Thermal Erosion Of Ice-Wedge Polygon Terrains: Implications For Arctic Geosystem In Transition

    Science.gov (United States)

    Fortier, D.; Godin, E.; Lévesque, E.; Veillette, A.

    2014-12-01

    /laboratory-based empirical thermal erosion model to evaluate the potential response of ice-wedge polygon terrains to changes in snow, permafrost thermal regime and hydrological conditions over the coming decades and its implication for the short and long term dynamics of arctic permafrost geosystems.

  15. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  16. Geochronology and paleoclimatic implications of the last deglaciation of the Mauna Kea Ice Cap, Hawaii

    Science.gov (United States)

    Anslow, Faron S.; Clark, P.U.; Kurz, M.D.; Hostetler, S.W.

    2010-01-01

    We present new 3He surface exposure ages on moraines and bedrock near the summit of Mauna Kea, Hawaii, which refine the age of the Mauna Kea Ice Cap during the Local Last Glacial Maximum (LLGM) and identify a subsequent fluctuation of the ice margin. The 3He ages, when combined with those reported previously, indicate that the local ice-cap margin began to retreat from its LLGM extent at 20.5??2.5ka, in agreement with the age of deglaciation determined from LLGM moraines elsewhere in the tropics. The ice-cap margin receded to a position at least 3km upslope for ~4.5-5.0kyr before readvancing nearly to its LLGM extent. The timing of this readvance at ~15.4ka corresponds to a large reduction of the Atlantic meridional overturning circulation (AMOC) following Heinrich Event 1. Subsequent ice-margin retreat began at 14.6??1.9ka, corresponding to a rapid resumption of the AMOC and onset of the B??lling warm interval, with the ice cap melting rapidly to complete deglaciation. Additional 3He ages obtained from a flood deposit date the catastrophic outburst of a moraine-dammed lake roughly coeval with the Younger Dryas cold interval, suggesting a more active hydrological cycle on Mauna Kea at this time. A coupled mass balance and ice dynamics model is used to constrain the climate required to generate ice caps of LLGM and readvance sizes. The depression of the LLGM equilibrium line altitude requires atmospheric cooling of 4.5??1??C, whereas the mass balance modeling indicates an accompanying increase in precipitation of as much as three times that of present. We hypothesize (1) that the LLGM temperature depression was associated with global cooling, (2) that the temperature depression that contributed to the readvance occurred in response to an atmospheric teleconnection to the North Atlantic, and (3) that the precipitation enhancement associated with both events occurred in response to a southward shift in the position of the inter-tropical convergence zone (ITCZ). Such a

  17. Long-Term High-Latitude Sea and Ice Surface Temperature Record from AVHRR GAC Data

    Science.gov (United States)

    Luis, C. S.; Dybkjær, G.; Eastwood, S.; Tonboe, R. T.; Høyer, J. L.

    2014-12-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 μm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  18. Greenland ice sheet surface temperature, melt and mass loss: 2000-06

    Science.gov (United States)

    Hall, D.K.; Williams, R.S.; Luthcke, S.B.; DiGirolamo, N.E.

    2008-01-01

    A daily time series of 'clear-sky' surface temperature has been compiled of the Greenland ice sheet (GIS) using 1 km resolution moderate-resolution imaging spectroradiometer (MODIS) land-surface temperature (LST) maps from 2000 to 2006. We also used mass-concentration data from the Gravity Recovery and Climate Experiment (GRACE) to study mass change in relationship to surface melt from 2003 to 2006. The mean LST of the GIS increased during the study period by ???0.27??Ca-1. The increase was especially notable in the northern half of the ice sheet during the winter months. Melt-season length and timing were also studied in each of the six major drainage basins. Rapid (meltwater is flowing rapidly to the base of the ice sheet, causing acceleration of outlet glaciers, thus highlighting the metastability of parts of the GIS and the vulnerability of the ice sheet to air-temperature increases. If air temperatures continue to rise over Greenland, increased surface melt will play a large role in ice-sheet mass loss.

  19. High friction on ice provided by elastomeric fiber composites with textured surfaces

    Science.gov (United States)

    Rizvi, R.; Naguib, H.; Fernie, G.; Dutta, T.

    2015-03-01

    Two main applications requiring high friction on ice are automobile tires and footwear. The main motivation behind the use of soft rubbers in these applications is the relatively high friction force generated between a smooth rubber contacting smooth ice. Unfortunately, the friction force between rubber and ice is very low at temperatures near the melting point of ice and as a result we still experience automobile accidents and pedestrian slips and falls in the winter. Here, we report on a class of compliant fiber-composite materials with textured surfaces that provide outstanding coefficients of friction on wet ice. The fibrous composites consist of a hard glass-fiber phase reinforcing a compliant thermoplastic polyurethane matrix. The glass-fiber phase is textured such that it is aligned transversally and protruding out of the elastomer surface. Our analysis indicates that the exposed fiber phase exhibits a "micro-cleat" effect, allowing for it to fracture the ice and increase the interfacial contact area thereby requiring a high force to shear the interface.

  20. Concentration and environmental significance of lead in surface snow of Antarctic ice sheet (III)

    Institute of Scientific and Technical Information of China (English)

    秦大河; 任贾文; 孙俊英; 陈瓞延; 文克玲; 李良权

    1995-01-01

    Lead as an ultra-trace heavy metal becomes one of popular topics in glaciochemistry of the Antarctic ice sheet, because of its very low concertration (pg·g-1) and background and its sensitivity to the quality of the environment. The lead concentration of surface snow of the Antarctic ice sheet (corresponding to modern precipitation) applying LEAF technique by Chinese scholars has systematically been studied for the first time in the world. The distribution principle of lead concentration of surface snow of the Antarctic ice sheet is "low in the west and high in the east" along the route of 1990 International Trans-Antarctic Expedition (ITAE). The concentration of lead in East Antarctica is 2 - 3 fold higher than that in Larsen ice shelf and Antarctic Peninsula, which majorly results from the activity of pre-Soviet Antarctic Expedition The concentration of lead in Larsen ice shelf and Antarctic Peninsula can be regarded as the background value of modern precipitation of the Antarctic ice sheet in the en

  1. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    Science.gov (United States)

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya; van Zadel, Marc-Jan; Mezger, Markus; Jochum, Mara N.; Cyran, Jenée D.; Smit, Wilbert J.; Bakker, Huib J.; Shultz, Mary Jane; Morita, Akihiro; Donadio, Davide; Nagata, Yuki; Bonn, Mischa; Backus, Ellen H. G.

    2017-01-01

    On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature. PMID:27956637

  2. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey;

    2017-01-01

    that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable......In order to establish a baseline for proxy-based reconstructions for the Young Sound-Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...... Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...

  3. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey

    2017-01-01

    In order to establish a baseline for proxy-based reconstructions for the Young Sound–Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...... Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...... that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable...

  4. Rotation of a melting ice at the surface of a pool

    CERN Document Server

    Dorbolo, S; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2015-01-01

    Large circular ice blocks up to 80 m of diameter have been observed on frozen river around the world. This rare event has been reported in a publication in 1993. This fascinating self-fashioned object slowly rotates at about 1$^o$ per second. In this paper, we report a model experiment consisting in a 85 mm of diameter ice disc at the surface of a thermalised pool. The rotation speed has been found to increase with the bath temperature. Using particle image velocimetry technique, we evidence the presence of a vortex below the ice block. This vortex results from the descending flow of high density water at 4$^o$C. The vorticity of the vortex induces the rotation of the ice block. This mechanism is generic of any vertical flow that generates a vortex which induces the rotation of a floating object.

  5. Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture

    Directory of Open Access Journals (Sweden)

    Homayun Mehrabani

    2014-09-01

    Full Text Available Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g., Antarctic anchor ice, or in environments with moisture and cold air (e.g., plants, intertidal begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We examined sub-polar marine organisms to develop sample textures and screened them for ice formation and accretion in submerged conditions using previous methods for comparison to data for Antarctic organisms. The sub-polar organisms tested were all found to form ice readily. We also screened artificial 3-D printed samples using the same previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. Despite limitations inherent to our techniques, it appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels, Mytilus edulis, or on the spines of the Antarctic sea urchin Sterechinus neumayeri slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams, Saxidomas nuttalli. The geometric dimensions of the features have only a small (∼6% effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and surface coatings, and their

  6. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Directory of Open Access Journals (Sweden)

    P. Fretwell

    2013-02-01

    Full Text Available We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1 in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3 and its potential contribution to sea-level rise (58 m are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.

  7. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Directory of Open Access Journals (Sweden)

    P. Fretwell

    2012-10-01

    Full Text Available We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1 in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved coverage of data has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3 and its potential contribution to sea-level rise (58 m are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6 % greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.

  8. An investigation into the dispersion of ocean surface waves in sea ice

    Science.gov (United States)

    Collins, Clarence Olin; Rogers, William Erick; Lund, Björn

    2017-02-01

    This investigation considers theoretical models and empirical studies related to the dispersion of ocean surface gravity waves propagating in ice covered seas. In theory, wave dispersion is related to the mechanical nature of the ice. The change of normalized wavenumber is shown for four different dispersion models: the mass-loading model, an elastic plate model, an elastic plate model extended to include dissipation, and a viscous-layer model. For each dispersion model, model parameters are varied showing the dependence of deviation from open water dispersion on ice thickness, elasticity, and viscosity. In all cases, the deviation of wavenumber from the open water relation is more pronounced for higher frequencies. The effect of mass loading, a component of all dispersion models, tends to shorten the wavelength. The Voigt model of dissipation in an elastic plate model does not change the wavelength. Elasticity in the elastic plate model and viscosity in the viscous-layer model tend to increase the wavelength. The net effect, lengthening or shortening, is a function of the particular combination of ice parameters and wave frequency. Empirical results were compiled and interpreted in the context of these theoretical models of dispersion. A synopsis of previous measurements is as follows: observations in a loose pancake ice in the marginal ice zone, often, though not always, showed shortened wavelengths. Both lengthening and shortening have been observed in compact pancakes and pancakes in brash ice. Quantitative matches to the flexural-gravity model have been found in Arctic interior pack ice and sheets of fast ice.

  9. Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic).

    Science.gov (United States)

    Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta

    2016-12-01

    The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.

  10. Local effects of ice floes and leads on skin sea surface temperature, mixing and gas transfer in the marginal ice zone

    Science.gov (United States)

    Zappa, Christopher; Brumer, Sophia; Brown, Scott; LeBel, Deborah; McGillis, Wade; Schlosser, Peter; Loose, Brice

    2014-05-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. We capture a melting and mixing event that explains the changing pattern observed in skin SST and is substantiated using laboratory experiments. The Gas Transfer through Polar Sea Ice experiment was performed at the US Army Cold Regions Research and Engineering Laboratory (Hanover, NH) under varying ice coverage, winds speed, fetch and currents. Supporting measurements were made of air and water temperature, humidity, salinity and wave height. Air-side profiling provided momentum, heat, and CO2 fluxes. Transfer velocities are also

  11. Adsorption of benzaldehyde at the surface of ice, studied by experimental method and computer simulation.

    Science.gov (United States)

    Petitjean, Mélanie; Hantal, György; Chauvin, Coline; Mirabel, Philippe; Le Calvé, Stéphane; Hoang, Paul N M; Picaud, Sylvain; Jedlovszky, Pál

    2010-06-15

    Adsorption study of benzaldehyde on ice surfaces is performed by combining experimental and theoretical approaches. The experiments are conducted over the temperature range 233-253 K using a coated wall flow tube coupled to a mass spectrometric detector. Besides the experimental way, the adsorption isotherm is also determined by performing a set of grand canonical Monte Carlo simulations at 233 K. The experimental and calculated adsorption isotherms show a very good agreement within the corresponding errors. Besides, both experimental and theoretical studies permit us to derive the enthalpy of adsorption of benzaldehyde on ice surfaces DeltaH(ads), which are in excellent agreement: DeltaH(ads) = -61.4 +/- 9.7 kJ/mol (experimental) and DeltaH(ads) = -59.4 +/- 5.1 kJ/mol (simulation). The obtained results indicate a much stronger ability of benzaldehyde of being adsorbed at the surface of ice than that of small aliphatic aldehydes, such as formaldehyde or acetaldehyde. At low surface coverages the adsorbed molecules exclusively lie parallel with the ice surface. With increasing surface coverage, however, the increasing competition of the adsorbed molecules for the surface area to be occupied leads to the appearance of two different perpendicular orientations relative to the surface. In the first orientation, the benzaldehyde molecule turns its aldehyde group toward the ice phase, and, similarly to the molecules in the lying orientation, forms a hydrogen bond with a surface water molecule. In the other perpendicular orientation the aldehyde group turns to the vapor phase, and its O atom interacts with the delocalized pi system of the benzene ring of a nearby lying benzaldehyde molecule of the second molecular layer. In accordance with this observed scenario, the saturated adsorption layer, being stable in a roughly 1 kJ/mol broad range of chemical potentials, contains, besides the first molecular layer, also traces of the second molecular layer of adsorbed

  12. Sliding of temperate basal ice on a rough, hard bed: creep mechanisms, pressure melting, and implications for ice streaming

    Science.gov (United States)

    Krabbendam, Maarten

    2016-09-01

    Basal ice motion is crucial to ice dynamics of ice sheets. The classic Weertman model for basal sliding over bedrock obstacles proposes that sliding velocity is controlled by pressure melting and/or ductile flow, whichever is the fastest; it further assumes that pressure melting is limited by heat flow through the obstacle and ductile flow is controlled by standard power-law creep. These last two assumptions, however, are not applicable if a substantial basal layer of temperate (T ˜ Tmelt) ice is present. In that case, frictional melting can produce excess basal meltwater and efficient water flow, leading to near-thermal equilibrium. High-temperature ice creep experiments have shown a sharp weakening of a factor 5-10 close to Tmelt, suggesting standard power-law creep does not operate due to a switch to melt-assisted creep with a possible component of grain boundary melting. Pressure melting is controlled by meltwater production, heat advection by flowing meltwater to the next obstacle and heat conduction through ice/rock over half the obstacle height. No heat flow through the obstacle is required. Ice streaming over a rough, hard bed, as possibly in the Northeast Greenland Ice Stream, may be explained by enhanced basal motion in a thick temperate ice layer.

  13. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    Science.gov (United States)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  14. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels

    Science.gov (United States)

    Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine

    2016-08-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These

  15. Water ice and organics on the surface of the asteroid 24 Themis.

    Science.gov (United States)

    Campins, Humberto; Hargrove, Kelsey; Pinilla-Alonso, Noemi; Howell, Ellen S; Kelley, Michael S; Licandro, Javier; Mothé-Diniz, T; Fernández, Y; Ziffer, Julie

    2010-04-29

    It has been suggested that Earth's current supply of water was delivered by asteroids, some time after the collision that produced the Moon (which would have vaporized any of the pre-existing water). So far, no measurements of water ice on asteroids have been made, but its presence has been inferred from the comet-like activity of several small asteroids, including two members of the Themis dynamical family. Here we report infrared spectra of the asteroid 24 Themis which show that ice and organic compounds are not only present on its surface but also prevalent. Infrared spectral differences between it and other asteroids make 24 Themis unique so far, and our identification of ice and organics agrees with independent results that rule out other compounds as possible sources of the observed spectral structure. The widespread presence of surface ice on 24 Themis is somewhat unexpected because of the relatively short lifetime of exposed ice at this distance ( approximately 3.2 au) from the Sun. Nevertheless, there are several plausible sources, such as a subsurface reservoir that brings water to the surface through 'impact gardening' and/or sublimation.

  16. Surface Ice Velocity Retrieval From MOA Based On NCC Feature Tracking

    Science.gov (United States)

    Li, T.; Liu, Y.; Cheng, X.

    2016-12-01

    The velocity of glacier in Antarctica is a fundamental parameter to ice dynamics and projection of sea level rise, and it is as well the key indicator of global climate change. COSI-Corr, an extension of ENVI software, was employed to acquire the horizontal velocity of ice flows throughout the whole Antarctica continent from 2003-2004 and 2008-2009 MOA (MODIS Mosaic of Antarctica) compiled by NSIDC. However, conventional tracking methods severely suffer from spurious matching resulting from ice surface's variation, illumination condition, inappropriate window size etc. So it is indispensable to correct the initial output field contaminated by noises before extracting valuable information. Usually, the low-SNR areas, which denote quite poor quality, are filtered out directly based on some roles of thumb. Here we have some experiments to test performance of FFT (Fast Fourier Transform) and SVD (Singularity Value Decomposition) of optimizing the estimation by cutting image into overlapped tiles. Validation was conducted by comparing the final result with respect to MEaSUREs in typical flow areas including inland stream and ice shelves. The primitive results shows that both methods can reduce RMSE to an extent of 20% 40% but FFT performs more robust. Our result shows that MOA datasets, which highlight true surface morphology, have potential for continental ice surface velocity's retrieval.

  17. Seafloor Control on Sea Ice

    Science.gov (United States)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  18. Gas properties of winter lake ice in Northern Sweden: implication for carbon gas release

    Directory of Open Access Journals (Sweden)

    T. Boereboom

    2012-02-01

    Full Text Available This paper describes gas composition, total gas content and bubbles characteristics in winter lake ice for four adjacent lakes in a discontinuous permafrost area. Our gas mixing ratios for O2, N2, CO2, and CH4 suggest that gas exchange occurs between the bubbles and the water before entrapment in the ice. Comparison between lakes enabled us to identify 2 major "bubbling events" shown to be related to a regional drop of atmospheric pressure. Further comparison demonstrates that winter lake gas content is strongly dependent on hydrological connections: according to their closed/open status with regards to water exchange, lakes build up more or less greenhouse gases (GHG in their water and ice cover during the winter, and release it during spring melt. These discrepancies between lakes need to be taken into account when establishing a budget for permafrost regions. Our analysis allows us to present a new classification of bubbles, according to their gas properties. Our methane emission budgets (from 6.52 10−5 to 12.7 mg CH4 m−2 d−1 at 4 different lakes for the three months of winter ice cover is complementary to other budget estimates, as our approach encompasses inter- and intra-lake variability.

    Most available studies on boreal lakes have focused on quantifying GHG emissions from sediment by means of various systems collecting gases at the lake surface, and this mainly during the summer "open water" period. Only few of these have looked at the gas enclosed in the winter ice-cover itself. Our approach enables us to integrate, for the first time, the history of winter gas emission for this type of lakes.

  19. Boosted dark matter and its implications for the features in IceCube HESE data

    Science.gov (United States)

    Bhattacharya, Atri; Gandhi, Raj; Gupta, Aritra; Mukhopadhyay, Satyanarayan

    2017-05-01

    We study the implications of the premise that any new, relativistic, highly energetic neutral particle that interacts with quarks and gluons would create cascade-like events in the IceCube (IC) detector. Such events would be observationally indistinguishable from neutral current deep-inelastic (DIS) scattering events due to neutrinos. Consequently, one reason for deviations, breaks or excesses in the expected astrophysical power-law neutrino spectrum could be the flux of such a particle. Motivated by features in the recent 1347-day IceCube high energy starting event (HESE) data, we focus on particular boosted dark matter (χ) related realizations of this premise. Here, χ is assumed to be much lighter than, and the result of, the slow decay of a massive scalar (phi ) which constitutes a major fraction of the Universe's dark matter (DM) . We show that this hypothesis, coupled with a standard power-law astrophysical neutrino flux is capable of providing very good fits to the present data, along with a possible explanation of other features in the HESE sample. These features include a) the paucity of events beyond ~ 2 PeV b) a spectral feature resembling a dip or a spectral change in the 400 TeV-1 PeV region and c) an excess in the 50-100 TeV region. We consider two different boosted DM scenarios, and determine the allowed mass ranges and couplings for four different types of mediators (scalar, pseudoscalar, vector and axial-vector) which could connect the standard and dark sectors.We consider constraints from gamma-ray observations and collider searches. We find that the gamma-ray observations provide the most restrictive constraints, disfavouring the 1σ allowed parameter space from IC fits, while still being consistent with the 3σ allowed region. We also test our proposal and its implications against the (statistically independent) sample of six year through-going muon track data recently released by IceCube.

  20. Changes in snow distribution and surface topography following a snowstorm on Antarctic sea ice

    Science.gov (United States)

    Trujillo, Ernesto; Leonard, Katherine; Maksym, Ted; Lehning, Michael

    2016-11-01

    Snow distribution over sea ice is an important control on sea ice physical and biological processes. We combine measurements of the atmospheric boundary layer and blowing snow on an Antarctic sea ice floe with terrestrial laser scanning to characterize a typical storm and its influence on the spatial patterns of snow distribution at resolutions of 1-10 cm over an area of 100 m × 100 m. The pre-storm surface exhibits multidirectional elongated snow dunes formed behind aerodynamic obstacles. Newly deposited dunes are elongated parallel to the predominant wind direction during the storm. Snow erosion and deposition occur over 62% and 38% of the area, respectively. Snow deposition volume is more than twice that of erosion (351 m3 versus 158 m3), resulting in a modest increase of 2 ± 1 cm in mean snow depth, indicating a small net mass gain despite large mass relocation. Despite significant local snow depth changes due to deposition and erosion, the statistical distributions of elevation and the two-dimensional correlation functions remain similar to those of the pre-storm surface. Pre-storm and post-storm surfaces also exhibit spectral power law relationships with little change in spectral exponents. These observations suggest that for sea ice floes with mature snow cover features under conditions similar to those observed in this study, spatial statistics and scaling properties of snow surface morphology may be relatively invariant. Such an observation, if confirmed for other ice types and conditions, may be a useful tool for model parameterizations of the subgrid variability of sea ice surfaces.

  1. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    Science.gov (United States)

    Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.

    2016-10-01

    Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general

  2. Analog modeling of pressurized subglacial water flow: Implications for tunnel valley formation and ice flow dynamics

    Science.gov (United States)

    Lelandais, Thomas; Ravier, Edouard; Mourgues, Régis; Pochat, Stéphane; Strzerzynski, Pierre; Bourgeois, Olivier

    2017-04-01

    Tunnel valleys are elongated and overdeepened depressions up to hundreds of kilometers long, several kilometers wide and hundreds of meters deep, found in formerly glaciated areas. These drainage features are interpreted as the result of subglacial meltwater erosion beneath ice sheets and constitute a major component of the subglacial drainage system. Although tunnel valleys have been described worldwide in the past decades, their formation is still a matter of debate. Here, we present an innovative experimental approach simulating pressurized water flow in a subglacial environment in order to study the erosional processes occurring at the ice-bed interface. We use a sandbox partially covered by a circular, viscous and transparent lid (silicon putty), simulating an impermeable ice cap. Punctual injection of pressurized water in the substratum at the center of the lid simulates meltwater production beneath the ice cap. Surface images collected by six synchronized cameras allow to monitor the evolution of the experiment through time, using photogrammetry methods and DEM generation. UV markers placed in the silicon are used to follow the silicon flow during the drainage of water at the substratum-lid interface, and give the unique opportunity to simultaneously follow the formation of tunnel valleys and the evolution of ice dynamics. When the water pressure is low, groundwater circulates within the substratum only and no drainage landforms appear at the lid-substratum interface. By contrast, when the water pressure exceeds a threshold that is larger than the sum of glaciostatic and lithostatic pressures, additional water circulation occurs at the lid-substratum interface and drainage landforms develop from the lid margin. These landforms share numerous morphological criteria with tunnel valleys such as undulating longitudinal profiles, U-shaped cross-sectional profiles with flat floors, constant widths and abrupt flanks. Continuous generation of DEMs and flow velocity

  3. Divergent trajectories of Antarctic ice shelf surface melt under 21st century climate scenarios

    Science.gov (United States)

    Trusel, L. D.; Frey, K. E.; Das, S. B.; Kuipers Munneke, P.; van Meijgaard, E.

    2014-12-01

    Antarctic ice shelves represent a critical interface between continental ice masses and the surrounding ocean. Breakup events of several ice shelves in recent decades have been linked to an increase in intense surface melting, and have in turn lead to cascading effects including accelerated glacier discharge into the ocean. In this study, we utilized sophisticated regional and global climate models (GCMs) to assess potential future surface melt trajectories across Antarctica under two climate scenarios (RCP4.5 and RCP8.5). RACMO2.1, a polar-adapted regional atmospheric climate model, was forced by the ERA-Interim reanalysis (1980-2010) and by two GCMs, EC-EARTH and HadGEM2-ES (2007-2100). Using RACMO2.1, we observed an exponential growth function well represents the relationship between ice shelf surface meltwater production and mean summer (DJF) 2-meter air temperature (t2m). We employed this melt-t2m relationship to project melt using t2m output from an ensemble of five CMIP5-based GCMs incorporating the NCAR Community Land Model 4 (CLM4), following spatial downscaling and bias correction using t2m from ERA-Interim-forced RACMO2.1. Our resulting GCM-derived melt projections provide an independent and methodologically unique perspective into potential future melt pathways, complementary to those derived from RACMO2.1. Most notably, both RACMO2.1 and the CMIP5 ensemble reveal divergent trajectories of meltwater production beyond 2050 under the two climate scenarios. For many ice shelves in RCP4.5, meltwater production through 2100 remains at levels comparable to present. Conversely, under RCP8.5 all methods indicate non-linear melt intensification, resulting in a four-fold increase in the Antarctic-wide meltwater volume by the end of the 21st century. For some ice shelves, including Larsen C and Wilkins (Antarctic Peninsula), and Shackleton and West (Wilkes Land), spatially averaged end-of-century meltwater production within RCP8.5 approaches or surpasses levels

  4. A New Source of CO2 in the Universe: A Photoactivated Eley-Rideal Surface Reaction on Water Ices

    Science.gov (United States)

    Yuan, Chunqing; Cooke, Ilsa R.; Yates, John T., Jr.

    2014-08-01

    CO2 is one of the most abundant components of ices in the interstellar medium; however, its formation mechanism has not been clearly identified. Here we report an experimental observation of an Eley-Rideal-type reaction on a water ice surface, where CO gas molecules react by direct collisions with surface OH radicals, made by photodissociation of H2O molecules, to produce CO2 ice on the surface. The discovery of this source of CO2 provides a new mechanism to explain the high relative abundance of CO2 ice in space.

  5. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    NARCIS (Netherlands)

    van Angelen, J.H.; Lenaerts, J.T.M.; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.; van den Broeke, M.R.; van Meijgaard, E.; Smeets, C.J.P.P.

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover,

  6. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

    DEFF Research Database (Denmark)

    Chu, Vena W.; Smith, Laurence C; Rennermalm, Asa K.

    2009-01-01

    of a downstream sediment plume in Kangerlussuaq Fjord by comparing: (1) plume area and suspended sediment concentration from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and field data; (2) ice-sheet melt extent from Special Sensor Microwave/Imager (SSM/I) passive microwave data; and (3......) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided...... the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume...

  7. Snow melt on sea ice surfaces as determined from passive microwave satellite data

    Science.gov (United States)

    Anderson, Mark R.

    1987-01-01

    SMMR data for the year 1979, 1980 and 1984 have been analyzed to determine the variability in the onset of melt for the Arctic seasonal sea ice zone. The results show melt commencing in either the Kara/Barents Seas or Chukchi Sea and progressing zonally towards the central Asian coast (Laptev Sea). Individual regions had interannual variations in melt onset in the 10-20 day range. To determine whether daily changes occur in the sea ice surface melt, the SMMR 18 and 37 GHz brightness temperature data are analyzed at day/night/twilight periods. Brightness temperatures illustrate diurnal variations in most regions during melt. In the East Siberian Sea, however, daily variations are observed in 1979, throughout the analysis period, well before any melt would usually have commenced. Understanding microwave responses to changing surface conditions during melt will perhaps give additional information about energy budgets during the winter to summer transition of sea ice.

  8. Sound wave scattering by a spherical scatterer located near an ice surface

    Science.gov (United States)

    Grigorieva, N. S.; Kupriyanov, M. S.; Mikhailova, D. A.; Ostrovskiy, D. B.

    2016-01-01

    An echo signal is simulated, which is reflected from a spherical scatterer located near an ice surface. The homogeneous water medium in which the scatterer is located is assumed semi-infinite. For the scattering coefficients of the sphere, asymptotic formulas are obtained by the saddle point method, which can be used for sufficiently large distances between the source emitting a spherical wave and the scatterer. For the occurring branch cut integrals using the steepest descent method, asymptotic expressions are also obtained. Numerical results are obtained for an acoustically rigid sphere and an ice sphere. The density of the ice medium and speed of longitudinal waves in it coincide with the analogous parameters of the ice cover. In a wide frequency range of 8-12 kHz, echo signals are compared that have been calculated for two models of media: a water half-space bordering an ice half-space and an ice-covered homogeneous waveguide with a fluid bottom under the assumption that the source placed in the water layer is directional. It is shown that in a large distance interval between the source and the spherical scatterer, the half-space model sufficiently accurately describes the echo signal while substantially reducing calculation time (by approximately a factor of 10 for the waveguide with a depth of 200 m and a sandy bottom considered in the paper).

  9. Surface mass balance and water stable isotopes derived from firn cores on three ice rises, Fimbul Ice Shelf, Antarctica

    Science.gov (United States)

    Vega, Carmen P.; Schlosser, Elisabeth; Divine, Dmitry V.; Kohler, Jack; Martma, Tõnu; Eichler, Anja; Schwikowski, Margit; Isaksson, Elisabeth

    2016-11-01

    Three shallow firn cores were retrieved in the austral summers of 2011/12 and 2013/14 on the ice rises Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), all part of Fimbul Ice Shelf (FIS) in western Dronning Maud Land (DML), Antarctica. The cores were dated back to 1958 (KC), 1995 (KM), and 1996 (BI) by annual layer counting using high-resolution oxygen isotope (δ18O) data, and by identifying volcanic horizons using non-sea-salt sulfate (nssSO42-) data. The water stable isotope records show that the atmospheric signature of the annual snow accumulation cycle is well preserved in the firn column, especially at KM and BI. We are able to determine the annual surface mass balance (SMB), as well as the mean SMB values between identified volcanic horizons. Average SMB at the KM and BI sites (0.68 and 0.70 mw. e. yr-1) was higher than at the KC site (0.24 mw. e. yr-1), and there was greater temporal variability as well. Trends in the SMB and δ18O records from the KC core over the period of 1958-2012 agree well with other previously investigated cores in the area, thus the KC site could be considered the most representative of the climate of the region. Cores from KM and BI appear to be more affected by local meteorological conditions and surface topography. Our results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores, but that BI has the best preserved seasonal cycles of the three records and is thus the most optimal site for high-resolution studies of temporal variability of the climate signal. Deuterium excess data suggest a possible effect of seasonal moisture transport changes on the annual isotopic signal. In agreement with previous studies, large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios preserved at the core sites.

  10. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    Science.gov (United States)

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-06-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ~10 °C warmer and ~170 kg m-3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades.

  11. Rapid ice-rock avalanches versus gradual glacial processes? Implications for the natural hazard potential in the Karakoram Mountains (Pakistan)

    Science.gov (United States)

    Iturrizaga, Lasafam

    2016-04-01

    There is a growing concern about extreme mass movements from combined ice-rock avalanches in glaciated environments areas in the light of increasing settlement activities in mountains and their forelands. Recent devastating events, such as those from Huascaran (Peru) in 1970 or Kolka (Caucasus) in 2002, have been an eye-opener in terms of the large run-out-distances and their hazard potential. At the same time there is a variety of topographic settings and distinct triggers of ice and rock failures, which leads in turn to a broad spectrum of multi-phase processes, such as the possible propagation of rock-ice-masses onto glacial surfaces with subsequent debris flows. These events are often not directly observable, and a sound interpretation of the sedimentary record is needed. However, the origin and process dynamics of giant debris accumulations in different mountain regions of the world is discussed increasingly controversially. In the last decade a lot of debris accumulations, which were classified formerly as moraines, were reinterpreted as products of mass movements. In this context, the study presented here, focuses on a case example from the upper Chapursan Valley at the Afghan-Pakistan border (Karakoram Range, Pakistan). The Chapursan Valley floor and the adjacent sediment cones are covered with an outstanding hummocky debris landscape over a length of about 10 km and a width of up to 1 km with individual hummocks reaching about 10 m in height. These landforms overlap with the zone of permanent settlement. According to local legends and reports of early travelers in this region, one of the largest settlement concentrations formerly occurred in the upper Chapursan Valley and was destroyed by a natural disaster. Geomorphological field investigations, sedimentological studies, a comparison of satellite images, an analysis of historical data and interviews with the local inhabitants were carried out to unravel the origin of the hummocky terrain. The results show

  12. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960-2014

    NARCIS (Netherlands)

    Kuipers Munneke, P.; Ligtenberg, S. R M; Noël, B. P Y; Howat, I. M.; Box, J. E.; Mosley-Thompson, E.; McConnell, J. R.; Steffen, K.; Harper, J. T.; Das, S. B.; Van Den Broeke, M. R.

    2015-01-01

    Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compac

  13. Surface elevation change on ice caps in the Qaanaaq region, northwestern Greenland

    Science.gov (United States)

    Saito, Jun; Sugiyama, Shin; Tsutaki, Shun; Sawagaki, Takanobu

    2016-09-01

    A large number of glaciers and ice caps (GICs) are distributed along the Greenland coast, physically separated from the ice sheet. The total area of these GICs accounts for 5% of Greenland's ice cover. Melt water input from the GICs to the ocean substantially contributed to sea-level rise over the last century. Here, we report surface elevation changes of six ice caps near Qaanaaq (77°28‧N, 69°13‧W) in northwestern Greenland based on photogrammetric analysis of stereo pair satellite images. We processed the images with a digital map plotting instrument to generate digital elevation models (DEMs) in 2006 and 2010 with a grid resolution of 500 m. Generated DEMs were compared to measure surface elevation changes between 2006 and 2010. Over the study area of the six ice caps, covering 1215 km2, the mean rate of elevation change was -1.1 ± 0.1 m a-1. This rate is significantly greater than that previously reported for the 2003-2008 period (-0.6 ± 0.1 m a-1) for GICs all of northwestern Greenland. This increased mass loss is consistent with the rise in summer temperatures in this region at a rate of 0.12 °C a-1 for the 1997-2013 period.

  14. Aerodynamic roughness of glacial ice surfaces derived from high-resolution topographic data

    Science.gov (United States)

    Smith, Mark W.; Quincey, Duncan J.; Dixon, Timothy; Bingham, Robert G.; Carrivick, Jonathan L.; Irvine-Fynn, Tristram D. L.; Rippin, David M.

    2016-04-01

    This paper presents new methods of estimating the aerodynamic roughness (z0) of glacier ice directly from three-dimensional point clouds and digital elevation models (DEMs), examines temporal variability of z0, and presents the first fully distributed map of z0 estimates across the ablation zone of an Arctic glacier. The aerodynamic roughness of glacier ice surfaces is an important component of energy balance models and meltwater runoff estimates through its influence on turbulent fluxes of latent and sensible heat. In a warming climate these fluxes are predicted to become more significant in contributing to overall melt volumes. Ice z0 is commonly estimated from measurements of ice surface microtopography, typically from topographic profiles taken perpendicular to the prevailing wind direction. Recent advances in surveying permit rapid acquisition of high-resolution topographic data allowing revision of assumptions underlying conventional z0 measurement. Using Structure from Motion (SfM) photogrammetry with Multi-View Stereo (MVS) to survey ice surfaces with millimeter-scale accuracy, z0 variation over 3 orders of magnitude was observed. Different surface types demonstrated different temporal trajectories in z0 through 3 days of intense melt. A glacier-scale 2 m resolution DEM was obtained through terrestrial laser scanning (TLS), and subgrid roughness was significantly related to plot-scale z0. Thus, we show for the first time that glacier-scale TLS or SfM-MVS surveys can characterize z0 variability over a glacier surface potentially leading to distributed representations of z0 in surface energy balance models.

  15. Quantifying Surface Characteristics of Ice Crystals using High-Resolution Imagery and Wavelet-based Image Processing Techniques

    Science.gov (United States)

    Brown, T.

    2015-12-01

    The surface characteristics of ice crystals have a considerable impact on the bulk scattering properties of ice clouds. Here, 2.3 μm-resolution silhouettes of crystals imaged by a Cloud Particle Imager (CPI) obtained from the Tropical Warm Pool - International Cloud and Mixed Phase Arctic Cloud Experiments are combined with wavelet analysis to characterize crystal surfaces. Wavelet analysis is a multiresolution tool that is applied to reveal underlying textural details of crystal images on several spatial scales. Images are defined as matrices in which each pixel corresponds to a gray level intensity value. Wavelet functions are used to decompose crystal images into a set of approximation and detail components by applying high and low-pass filters to the rows and columns of the image matrix. Following each level of decomposition, gray level intensity histograms are produced by calculating the frequency distribution of pixel intensities from the detailed coefficients, which contain artifacts, but also important textural information. First-order statistics are calculated from gray level histograms of the detailed coefficients to estimate variability across crystal surfaces, but lack information on the spatial distribution of pixel intensities. Thus, a second-order statistical measure, the gray level co-occurrence matrix (GLCM), is also extracted from the detailed coefficients to provide a more precise measure of surface texture. GLCMs are calculated by how often pairs of pixels with specific values and in certain spatial relationships occur in an image. Several degrees of texture are defined by first and second-order statistics to investigate how the surface texture of crystals varies with environmental conditions. Estimations of surface roughness using the proposed methods may have implications for improving bulk scattering calculations used in satellite retrieval algorithms and global climate model parameterizations.

  16. The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

    NARCIS (Netherlands)

    Linden, van der E.C.; Bintanja, R.; Hazeleger, W.; Katsman, C.A.

    2014-01-01

    Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread:

  17. Anti-Icing Superhydrophobic Surfaces: Controlling Entropic Molecular Interactions to Design Novel Icephobic Concrete

    Directory of Open Access Journals (Sweden)

    Rahul Ramachandran

    2016-04-01

    Full Text Available Tribology involves the study of friction, wear, lubrication, and adhesion, including biomimetic superhydrophobic and icephobic surfaces. The three aspects of icephobicity are the low ice adhesion, repulsion of incoming water droplets prior to freezing, and delayed frost formation. Although superhydrophobic surfaces are not always icephobic, the theoretical mechanisms behind icephobicity are similar to the entropically driven hydrophobic interactions. The growth of ice crystals in saturated vapor is partially governed by entropically driven diffusion of water molecules to definite locations similarly to hydrophobic interactions. The ice crystal formation can be compared to protein folding controlled by hydrophobic forces. Surface topography and surface energy can affect both the icephobicity and hydrophobicity. By controlling these properties, micro/nanostructured icephobic concrete was developed. The concrete showed ice adhesion strength one order of magnitude lower than regular concrete and could repel incoming water droplets at −5 °C. The icephobic performance of the concrete can be optimized by controlling the sand and polyvinyl alcohol fiber content.

  18. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    Science.gov (United States)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  19. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    NARCIS (Netherlands)

    Rae, J.G.L.; Aðalgeirsdóttir, G.; Edwards, T.L.; Fettweis, X.; Gregory, J.M.; Hewitt, H.T.; Lowe, J.A.; Lucas-Picher, P.; Mottram, R.H.; Payne, A.J.; Ridley, J.K.; Shannon, S.R.; van de Berg, W.J.; van de Wal, R.S.W.; van den Broeke, M.R.

    2012-01-01

    Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution gener

  20. The 1958-2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation

    NARCIS (Netherlands)

    Fettweis, X.; Mabille, G.; Erpicum, M.; Nicolay, S.; van den Broeke, M.R.

    2010-01-01

    In order to assess the impact of the mid-tropospheric circulation over the Greenland ice sheet (GrIS) on surface melt, as simulated by the regional climate model MAR, an automatic Circulation type classification (CTC) based on 500 hPa geopotential height from reanalyses is developed. General circula

  1. The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

    NARCIS (Netherlands)

    Linden, van der E.C.; Bintanja, R.; Hazeleger, W.; Katsman, C.A.

    2014-01-01

    Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread: 1

  2. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    Science.gov (United States)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    , which point to specific scenarios involving e.g. changes in the food web that can be related to warmer surface water temperatures. Such warming of shelf waters may be related with an overshooting Atlantic Meridional Overturning Circulation (AMOC) and strong injection of warmer North Atlantic Deep Water into the Southern Ocean water masses at Termination I as reported by [2]. Such finding may highlight the effects of AMOC changes on Antarctic ice shelf extent and coastal ecosystems. [1] Hillenbrand et al., 2010. J. Quat. Sci. 25 (3), 280-295. [2] Barker et al., 2010. Nature Geosci. 3, 567-571.

  3. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  4. Calculation of surface enthalpy of solids from an ab initio electronegativity based model: case of ice.

    Science.gov (United States)

    Douillard, J M; Henry, M

    2003-07-15

    A very simple route to calculation of the surface energy of solids is proposed because this value is very difficult to determine experimentally. The first step is the calculation of the attractive part of the electrostatic energy of crystals. The partial charges used in this calculation are obtained by using electronegativity equalization and scales of electronegativity and hardness deduced from physical characteristics of the atom. The lattice energies of the infinite crystal and of semi-infinite layers are then compared. The difference is related to the energy of cohesion and then to the surface energy. Very good results are obtained with ice, if one compares with the surface energy of liquid water, which is generally considered a good approximation of the surface energy of ice.

  5. Trapping of xenon in ice - Implications for the origin of the earth's noble gases

    Science.gov (United States)

    Wacker, J. F.; Anders, E.

    1984-01-01

    Although the earth's atmosphere contains Ne, Ar, and Kr in about C1,2-chondrite proportions, Xe is depleted about 20-fold. To test the suggestion that the 'missing' Xe is trapped in Antarctic ice, distribution coefficients for Xe in artifically formed frost at -20 to -60 C were measured, using Xe-127 tracer. The values are 0.098 + or - 0.004 cc STP/g atm for trapping and less than 5 cc STP/g atm for trapping plus adsorption. If these results are representative of natural ice, then the Antarctic ice cap contains less than 1 percent of the atmospheric Xe inventory, or not greater than about 0.001 the amount needed for a C1,2-chondrite pattern. Two possibilities remain for the 'missing' Xe, both on the premise that the earth's noble gases, along with other volatiles, came from chondritic material: (1) xenon is preferentially retained in the mantle and lower crust, due to the strong affinity of Xe for clean silicate surfaces and amorphous carbon; and (2) the source material of the earth's volatiles had high, relatively unfractionated, Ar/Xe and Kr/Xe ratios, like the non-carbonaceous noble gas carriers in C3O and E-chondrites.

  6. Geochemical characteristics and zones of surface snow on east Antarctic Ice Sheet

    Institute of Scientific and Technical Information of China (English)

    KANG Jiancheng; LIU Leibao; QIN Dahe; WANG Dali; WEN Jiahong; TAN Dejun; LI Zhongqin; LI Jun; ZHANG Xiaowei

    2004-01-01

    The surface-snow geochemical characteristics are discussed on the East Antarctic Ice Sheet, depending on the stable isotopes ratios of oxygen and hydrogen, concentration of impurities (soluble-ions and insoluble micro-particle) in surface snow collected on the ice sheet. The purpose is to study geochemical zones on the East Antarctic Ice Sheet and to research sources and transportation route of the water vapor and the impurities in surface snow. It has been found that the ratio coefficients, as S1, d1 in the equation δD = S1δ18O + d1, are changed near the elevation 2000 m on the ice sheet. The weight ratio of Cl(-)/Na+ at the area below the elevation of 2000 m is close to the ratio in the sea salt; but it is about 2 times that of the sea salt, at the inland area up to the elevation of 2000 m. The concentrations of non-sea-salt Ca2+ ion (nssCa2+) and fine-particle increase at the interior up to the elevation 2000 m. At the region below the elevation of 2000 m, the impurity concentration is decreasing with the elevation increasing. Near coastal region, the surface snow has a high concentration of impurity, where the elevation is below 800 m. Combining the translating processes of water-vapor and impurities, it suggests that the region up to the elevation 2000 m is affected by large-scale circulation with longitude-direction, and that water-vapor and impurities in surface snow come from long sources. The region below the elevation 2000 m is affected by some strong cyclones acting at peripheral region of the ice sheet, and the sources of water and impurities could be at high latitude sea and coast. The area below elevation 800 m is affected by local coastal cyclones.

  7. Development of nanostructured coatings for protecting the surface of aluminum alloys against corrosion and ice accretion

    Science.gov (United States)

    Farhadi, Shahram

    Ice and wet snow accretion on outdoor structures is a severe challenge for cold climate countries. A variety of de-icing and anti-icing techniques have been developed so far to counter this problem. Passive approaches such as anti-icing or icephobic coatings that inhibit or retard ice accumulation on the surfaces are gaining in popularity. Metal corrosion should also be taken into account as metallic substrates are subject to corrosion problems when placed in humid or aggressive environments. Development of any ice-releasing coatings on aluminum structures, as they must be durable enough, is therefore closely related to anti-corrosive protection of that metal. Accordingly, series of experiments have been carried out to combine reduced ice adhesion and improved corrosion resistance on flat AA2024 substrates via thin films of single and double layer alkyl-terminated SAMs coatings. More precisely, alkyl-terminated aluminum substrates were prepared by depositing layer(s) of 18C-SAMs on BTSE-grafted AA2024 or mirror-polished AA2024 surfaces. This alloy is among the most widely used aluminum alloys in transportation systems (including aircraft), the military, etc. The stability of the coatings in an aggressive environment, their overall ice-repellent performance as well as their corrosion resistance was systematically studied. The stability of one-layer and two-layer coatings in different media was tested by means of CA measurements, demonstrating gradual loss of the hydrophobic property after ~1100-h-long immersion in water, associated by decrease in water CA. Surface corrosion was observed in all cases, except that the double-layer coating system provided improved anti-corrosive protection. All single layer coatings showed initial shear stress of ice detachment values of ~1.68 to 2 times lower than as-received aluminum surfaces and about ~1.22 to 1.5 times lower than those observed on mirror-polished surfaces. These values gradually increased after as many as 5 to 9

  8. A minimal, statistical model for the surface albedo of Vestfonna ice cap, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Möller

    2012-03-01

    Full Text Available The ice cap Vestfonna is located in Northeastern Svalbard and forms one of the largest ice bodies of the Eurasian Arctic. Its surface albedo plays a key role in understanding and modelling of its energy and mass balance. The principle governing factors for albedo evolution, i.e. precipitation and air temperature and therewith snowdepth and melt duration, were found to vary almost exclusively with terrain elevation throughout the ice cap. Hence, surface albedo can be expected to develop a comparable pattern. A new statistical model is presented that estimates this mean altitudinal albedo profile of the ice cap on the basis of a minimal set of meteorological variables on a monthly resolution. Model calculations are based on a logistic function of the artificial quantity rain-snow ratio and a linear function of cumulative snowfall and cumulative positive degree days. Surface albedo fields of the MODIS snow product MOD10A1 of the period March to October of the years 2001–2008 serve as a basis for both calibration and cross-validation of the model. The meteorological model input covers the period September 2000 until October 2008 and is based on ERA-Interim data of a grid point located close to the ice cap. The albedo model shows a good performance. The root mean square error between observed and modelled albedo values along the altitudinal profile is 0.057 ± 0.028 (mean ± one standard deviation. The area weighted mean even reduces to a value of 0.053. Distinctly higher deviations (0.07–0.09 are only present throughout the very lowest and uppermost parts of the ice cap that are either small in area or hardly affected by surface melt. Thus, the new, minimal, statistical albedo model presented in this study is found to reproduce the albedo evolution on Vestfonna ice cap on a high level of accuracy and is thus suggested to be fully suitable for further application in broader energy or mass-balance studies of the ice cap.

  9. A minimal, statistical model for the surface albedo of Vestfonna ice cap, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Möller

    2012-09-01

    Full Text Available The ice cap Vestfonna is located in northeastern Svalbard and forms one of the largest ice bodies of the Eurasian Arctic. Its surface albedo plays a key role in the understanding and modelling of its energy and mass balance. The principle governing factors for albedo evolution, i.e. precipitation and air temperature and therewith snow depth and melt duration, were found to vary almost exclusively with terrain elevation throughout the ice cap. Hence, surface albedo can be expected to develop a comparable pattern. A new statistical model is presented that estimates this mean altitudinal albedo profile of the ice cap on the basis of a minimal set of meteorological variables on a monthly resolution. Model calculations are based on a sigmoid function of the artificial quantity rain-snow ratio and a linear function of cumulative snowfall and cumulative positive degree days. Surface albedo fields of the MODIS snow product MOD10A1 from the period March to October in the years 2001–2008 serve as a basis for both calibration and cross-validation of the model. The meteorological model input covers the period September 2000 until October 2008 and is based on ERA-Interim data of a grid point located close to the ice cap. The albedo model shows a good performance. The root mean square error between observed and modelled albedo values along the altitudinal profile is 0.057±0.028 (mean ± one standard deviation. The area weighted mean even reduces to a value of 0.054. Distinctly higher deviations (0.07–0.09 are only present throughout the very lowest and uppermost parts of the ice cap that are either small in area or hardly affected by surface melt. Thus, the new, minimal, statistical albedo model presented in this study is found to reproduce the albedo evolution on Vestfonna ice cap on a high level of accuracy and is thus suggested to be fully suitable for further application in broader energy or mass-balance studies of the ice cap.

  10. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    Science.gov (United States)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  11. IcePick: a flexible surface-based system for molecular diversity.

    Science.gov (United States)

    Mount, J; Ruppert, J; Welch, W; Jain, A N

    1999-01-14

    IcePick is a system for computationally selecting diverse sets of molecules. It computes the dissimilarity of the surface-accessible features of two molecules, taking into account conformational flexibility. Then, the intrinsic diversity of an entire set of molecules is calculated from a spanning tree over the pairwise dissimilarities. IcePick's dissimilarity measure is compared against traditional 2D topological approaches, and the spanning tree diversity measure is compared against commonly used variance techniques. The method has proven easy to implement and is fast enough to be used in selection of reactants for numerous production-sized combinatorial libraries.

  12. Ice surface temperatures: seasonal cycle and daily variability from in-situ and satellite observations

    Science.gov (United States)

    Madsen, Kristine S.; Dybkjær, Gorm; Høyer, Jacob L.; Nielsen-Englyst, Pia; Rasmussen, Till A. S.; Tonboe, Rasmus T.

    2016-04-01

    Surface temperature is an important parameter for understanding the climate system, including the Polar Regions. Yet, in-situ temperature measurements over ice- and snow covered regions are sparse and unevenly distributed, and atmospheric circulation models estimating surface temperature may have large biases. To change this picture, we will analyse the seasonal cycle and daily variability of in-situ and satellite observations, and give an example of how to utilize the data in a sea ice model. We have compiled a data set of in-situ surface and 2 m air temperature observations over land ice, snow, sea ice, and from the marginal ice zone. 2523 time series of varying length from 14 data providers, with a total of more than 13 million observations, have been quality controlled and gathered in a uniform format. An overview of this data set will be presented. In addition, IST satellite observations have been processed from the Metop/AVHRR sensor and a merged analysis product has been constructed based upon the Metop/AVHRR, IASI and Modis IST observations. The satellite and in-situ observations of IST are analysed in parallel, to characterize the IST variability on diurnal and seasonal scales and its spatial patterns. The in-situ data are used to estimate sampling effects within the satellite observations and the good coverage of the satellite observations are used to complete the geographical variability. As an example of the application of satellite IST data, results will be shown from a coupled HYCOM-CICE ocean and sea ice model run, where the IST products have been ingested. The impact of using IST in models will be assessed. This work is a part of the EUSTACE project under Horizon 2020, where the ice surface temperatures form an important piece of the puzzle of creating an observationally based record of surface temperatures for all corners of the Earth, and of the ESA GlobTemperature project which aims at applying surface temperatures in models in order to

  13. Small impact of surrounding oceanic conditions on 2007-2012 Greenland Ice Sheet surface mass balance

    Science.gov (United States)

    Noël, B.; Fettweis, X.; van de Berg, W. J.; van den Broeke, M. R.; Erpicum, M.

    2014-03-01

    During recent summers (2007-2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North-Atlantic Oscillation (NAO), favouring warmer than normal conditions over the GrIS. In addition, it has been suggested that significant anomalies in sea ice cover (SIC) and sea surface temperature (SST) may partially explain recent anomalous GrIS surface melt. To assess the impact of 2007-2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR. These simulations suggest that changes in SST and SIC in the seas surrounding Greenland do not significantly impact GrIS SMB, due to the katabatic winds blocking effect. These winds are strong enough to prevent oceanic near-surface air, influenced by SIC and SST variability, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds are weaker. However, anomalies in SIC and SST could have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, favouring more frequent warm air advection to the GrIS.

  14. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes.

    Science.gov (United States)

    Knight, C A; Cheng, C C; DeVries, A L

    1991-02-01

    The noncolligative peptide and glycopeptide antifreezes found in some cold-water fish act by binding to the ice surface and preventing crystal growth, not by altering the equilibrium freezing point of the water. A simple crystal growth and etching technique allows determination of the crystallographic planes where the binding occurs. In the case of elongated molecules, such as the alpha-helical peptides in this report, it also allows a deduction of the molecular alignment on the ice surface. The structurally similar antifreeze peptides from winter flounder (Pseudopleuronectes americanus) and Alaskan plaice (Pleuronectes quadritaberulatus) adsorb onto the (2021) pyramidal planes of ice, whereas the sculpin (Myoxocephalus scorpius) peptide adsorbs on (2110), the secondary prism planes. All three are probably aligned along (0112). These antifreeze peptides have 11-amino acid sequence repeats ending with a polar residue, and each repeat constitutes a distance of 16.5 A along the helix, which nearly matches the 16.7 A repeat spacing along (0112) in ice. This structural match is undoubtedly important, but the mechanism of binding is not yet clear. The suggested mechanism of growth inhibition operates through the influence of local surface curvature upon melting point and results in complete inhibition of the crystal growth even though individual antifreeze molecules bind at only one interface orientation.

  15. Pegasus Airfield Repair and Protection: Laboratory Trials of White Ice Paint to Improve the Energy Reflectance Properties of the Glacial-Ice Runway Surface

    Science.gov (United States)

    2015-01-01

    Laboratory Trials of White Ice Paint to Improve the Energy Reflectance Properties of the Glacial-Ice Runway Surface Co ld R eg io ns R es ea rc h...Division, and Kevin Knut was Technical Director for Earth Sciences and Engineering. The Deputy Director of ERDC-CRREL was Dr. Lance Hansen , and the...Director was Dr. Robert Davis. The author thanks Dr. Don Perovich for his assistance in collecting and interpreting the spectroradiograph data and

  16. Sensitivity of the Greenland Ice Sheet to Pliocene sea surface temperatures

    Science.gov (United States)

    Hill, Daniel J.; Dolan, Aisling M.; Haywood, Alan M.; Hunter, Stephen J.; Stoll, Danielle K.

    2010-01-01

    The history of theGrIS (Greenland Ice Sheet), particularly in warm climates of the pre-Quaternary, is poorly known. IRD (ice-rafted debris) records suggest that the ice sheet has existed, at least transiently, since theMiocene and potentially since as long ago as the Eocene. As melting of the GrIS is a key uncertainty in future predictions of climate and sea-level, understanding its behaviour and role within the climate system during pastwarm periods could provide important constraints. The Pliocene has been identified as a key period for understanding warmer than modern climates. Detailed micropalaeontological analyses of the mid-Piacenzian Warm Period (3.264-3.025 Ma) have produced a series of SST (sea-surface temperature) reconstructions (PRISM2-AVE, PRISM2-MAX, PRISM2-MIN and

  17. Future projections of the Greenland ice sheet energy balance driving the surface melt

    Directory of Open Access Journals (Sweden)

    B. Franco

    2013-01-01

    Full Text Available In this study, simulations at 25 km resolution are performed over the Greenland ice sheet (GrIS throughout the 20th and 21st centuries, using the regional climate model MAR forced by four RCP scenarios from three CMIP5 global circulation models (GCMs, in order to investigate the projected changes of the surface energy balance (SEB components driving the surface melt. Analysis of 2000–2100 melt anomalies compared to melt results over 1980–1999 reveals an exponential relationship of the GrIS surface melt rate simulated by MAR to the near-surface air temperature (TAS anomalies, mainly due to the surface albedo positive feedback associated with the extension of bare ice areas in summer. On the GrIS margins, the future melt anomalies are preferentially driven by stronger sensible heat fluxes, induced by enhanced warm air advection over the ice sheet. Over the central dry snow zone, the surface albedo positive feedback induced by the increase in summer melt exceeds the negative feedback of heavier snowfall for TAS anomalies higher than 4 °C. In addition to the incoming longwave flux increase associated with the atmosphere warming, GCM-forced MAR simulations project an increase of the cloud cover decreasing the ratio of the incoming shortwave versus longwave radiation and dampening the albedo feedback. However, it should be noted that this trend in the cloud cover is contrary to that simulated by ERA-Interim–forced MAR for recent climate conditions, where the observed melt increase since the 1990s seems mainly to be a consequence of more anticyclonic atmospheric conditions. Finally, no significant change is projected in the length of the melt season, which highlights the importance of solar radiation absorbed by the ice sheet surface in the melt SEB.

  18. Surface energy, CO2 fluxes and sea ice

    CSIR Research Space (South Africa)

    Gulev, SK

    2009-09-01

    Full Text Available , there are serious concerns about the recent decline in the number of VOS observations. Closure of global and regional energy balances still cannot be achieved without adjustments to the flux fields and/or the underlying surface meteorological variables. The impact...

  19. Haumea, an intriguing Water Ice Surface in the transNeptunian Belt

    Science.gov (United States)

    Pinilla-Alonso, N.

    2010-12-01

    Discovered in 2005 by Santos-Sanz in 2005, (136108) Haumea is one of the four Dwarf Planets in the trans-Neptunian belt and the only one that shows water ice on its surface (Pinilla-Alonso et al. 2006, Brown et al. 2006). Its spectrum in the visible and near-infrared is dominated by absorptions of water ice and does not show any feature due to other constituents previously suggested (Trujillo et al. 2007). These (e.g HCN, CH4, pyroxenes, hydrated ammonia) are completely discarded by modeling of the reflectance (Pinilla-Alonso et al. 2009) in the visible and near-infrared range. Other characteristic of it spectrum is the absence of color in the visible wavelengths (S'(vis) = 0.0±2 [%/1000 Å]) which is indicative of the lack of complex organics. Rotationally resolved models of its reflectance at 5 different phases covering an 80% of the surface (Pinilla-Alonso et al. 2009) reveal a fairly homogeneous surface covered with water ice up to a 92%, with a upper limit of 8% for all the other studied materials. This composition is in agreement with the high albedo estimated for this object ( ~70%, Rabinowitz et al. 2007) Surprisingly, this characteristic is shared by a small group of TNOs, Haumea's cohort, that shows very similar orbital parameters (Brown et al. 2007, Pinilla-Alonso et al. 2007) A signature around 1.65 microns, in the spectrum of Haumea, indicates the presence of crystalline water ice. This was first interpreted by Rabinowitz et al. (2008) as a proof of the youth of its surface. But later, it was showed that this band is compatible with the presence of a 50% of amorphous ice indicative of a moderately old surface (> 100 Myr) (Pinilla-Alonso et al. 2009) I will present here simulations of how the irradiation and collisional resurfacing affect the surface of this TNO. As Gil-Hutton (2009) explains, a collisional event releases energy that could be partially converted into heat that would produce the crystallization of water ice, but the eroded material

  20. Automatic estimation of lake ice cover and lake surface temperature using ENVISAT MERIS and AATSR

    Science.gov (United States)

    Rudjord, Ø.; Due Trier, Ø.; Solberg, R.

    2012-04-01

    Lake ice plays an important role in the understanding of the processes of cold region freshwater. On northern latitudes lakes form a major part of atmospheric and hydrologic systems, and a proper understanding of the water and energy budget of lakes is necessary to be able to forecast weather, climate and river flows. We will here present two algorithms for automatic estimation of lake ice cover and lake surface temperature using optical and thermal data, well suited for evaluating large time series of data. The method for estimating the lake surface temperature (LST) from measurements of thermal radiation is based on the well-known algorithm developed by Key (1997). We make use of the thermal (11μm and 12 μm) bands of the Advanced Along Track Scanning Radiometer (AATSR) sensor on board ENVISAT. AATSR consists of two identical sensors, one pointing towards nadir and one pointing slightly forward. Both sensors are used for temperature retrieval. For estimating lake ice cover (LIC) we make use of the Medium Resolution Imaging Spectrometer (MERIS) sensor, also carried by ENVISAT. The method for estimating the lake ice cover is based on linear spectral unmixing, allowing estimation of endmember contribution at sub-pixel resolution. Open water, snow and ice all have distinct spectra, which makes them well suited for spectral unmixing methods. The ice cover within a pixel is based on the estimated presence of ice and snow on the lake surface. Both algorithms are integrated in a common software framework, with geo-correction, mosaicking and mask generation. Simultaneous AATSR images are used for cloud detection for both products. Since the spectral unmixing algorithm is sensitive to spectral variation, atmospheric correction is applied to the MERIS data. For this purpose we use the SMAC processor in the BEAM software. Both algorithms are compared to in situ point measurements. Additionally, visual interpretation of MERIS image data is done for further evaluation of the

  1. The sensitivity of the Late Saalian (140 ka) and LGM (21 ka) Eurasian ice sheets to sea surface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Florence [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); UJF, CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres Cedex (France); Stockholm University, Department of Geological Sciences, Stockhlom (Sweden); Liakka, Johan [Stockholm University, Department of Meteorology, Stockholm (Sweden); Krinner, Gerhard; Peyaud, Vincent [UJF, CNRS, Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres Cedex (France); Jakobsson, Martin [Stockholm University, Department of Geological Sciences, Stockhlom (Sweden); Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-08-15

    This work focuses on the Late Saalian (140 ka) Eurasian ice sheets' surface mass balance (SMB) sensitivity to changes in sea surface temperatures (SST). An Atmospheric General Circulation Model (AGCM), forced with two preexisting Last Glacial Maximum (LGM, 21 ka) SST reconstructions, is used to compute climate at 140 and 21 ka (reference glaciation). Contrary to the LGM, the ablation almost stopped at 140 ka due to the climatic cooling effect from the large ice sheet topography. Late Saalian SST are simulated using an AGCM coupled with a mixed layer ocean. Compared to the LGM, these 140 ka SST show an inter-hemispheric asymmetry caused by the larger ice-albedo feedback, cooling climate. The resulting Late Saalian ice sheet SMB is smaller due to the extensive simulated sea ice reducing the precipitation. In conclusion, SST are important for the stability and growth of the Late Saalian Eurasian ice sheet. (orig.)

  2. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    Results from two years of the CryoSat Validation Experiment (CryoVEx) over sea ice in the western Arctic Ocean are presented. The estimation of freeboard, the height of sea ice floating above the water level, is one the main goals of the CryoSat-2 mission of the European Space Agency (ESA) in order...... to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using...... of the airborne validation dataset, since the radar overestimates the amount of open water and thin ice as well the freeboard of heavy ice deformation zones....

  3. The condensation and vaporization behavior of ices containing SO2, H2S, and CO2: Implications for Io

    Science.gov (United States)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing CO, CO2, H2O, CH3OH, NH3, and H2, measurements of the physical and infrared spectral properties of ices containing molecules relevant to Jupiter's moon Io are presented. These include studies on ice systems containing SO2, H2S, and CO2. The condensation and sublimation behaviors of each ice system and surface binding energies of their components are discussed. The surface binding energies can be used to calculate the residence times of the molecules on a surface as a function of temperature and thus represent important parameters for any calculation that attempts to model the transport of these molecules on Io's surface. The derived values indicate that SO2 frosts on Io are likely to anneal rapidly, resulting in less fluffy, 'glassy' ices and that H2S can be trapped in the SO2 ices of Io during night-time hours provided that SO2 deposition rates are on the order of 5 micrometers/hr or larger.

  4. Control and Prevention of Ice Formation on the Surface of an Aluminum Alloy

    DEFF Research Database (Denmark)

    Rahimi, Maral

    In cold climates, mechanical ventilation systems with heat recovery, e.g. air-to-air exchangers, are often used to reduce energy demand for heating by recovering the heat from the exhausted air. This, however, creates a risk of ice accretion on the fins of the heat exchanger as warm and humid...... modified with (3-aminopropyl) triethoxy silane (APTES) exhibited longer freezing delays as compared to both more hydrophilic and more hydrophobic substrates. This is attributed to a particular surface chemistry of the APTES modification that prevents ice formation at the interface of the substrate due...... to presence of high local ion concentration (amino groups), hence leading to significant freezing point suppression. Furthermore, the results suggest that surface topography and wettability determine the freezing kinetics of a droplet placed on a precooled sample. Therefore, surface chemistry which may change...

  5. Proposed Ice Flow, Given 200m and 400m Additional Ice in the Allan Hills Region, Antarctica: Implications for Meteorite Concentration

    Science.gov (United States)

    Traub-Metlay, S.; Cassidy, W. A.

    1992-07-01

    The Allan Hills-David Glacier region contains some of the most highly populated meteorite stranding surfaces in Antarctica. Nearly 2000 meteorites have to date been collected from the icefields associated with the Allan Hills, and nearly 1500 from areas around Elephant Moraine. While much attention has been focused on the current geological and glaciological conditions of these stranding surfaces, less work has been done concerning what they may have looked like in the past, when ice thicknesses may have been greater. In this study, conjectural maps of the current Allan Hills area with 200 meters and 400 meters of additional ice cover each are analyzed for probable regional and local ice flow patterns. A dramatic decrease in ice thickness over a relatively brief period of time could result either from climatic change or a geologically rapid regional uplift. Delisle and Sievers (1991) noted that the valley between the Allan Hills Main Icefield and the Allan Hills resembles a half-graben resulting from east-west extensional tectonics, and that the mesa-like bedrock features associated with the Near Western and Mid Western Icefields resemble fault blocks. They concluded that the Allan Hills area icefields may have become active stranding surfaces as a result of a regional uplift within the past 1-2 million years, assuming a current rate of uplift in the Allan Hills region of ~100 meters/million years. Whether the cause was climatic or tectonic, generalized maps of current ice contours plus 400 and 200 meters ice may provide views of what the Allan Hills region looked like just before activation of the modern meteorite stranding surfaces (Figs. 1 and 2). At an ice thickness greater by 400 meters, ice could flow smoothly over the Allan Hills and would drain down to the Mawson Glacier via the Odell Glacier, east of the Allan Hills; down the Manhaul Bay depression between the east and west arms of Allan Hills; and down the half-graben discovered by Delisle and Sievers

  6. Energetic neutral atoms emitted from ice by ion bombardment under Ganymede surface conditions

    Science.gov (United States)

    Wieser, Martin; Barabash, Stas; Futaana, Yoshifumi; Wurz, Peter

    2013-04-01

    Magnetospheric or solar wind ions directly interacting with a planetary surface result in backscattering or sputtering of energetic neutral atoms. One example is the solar wind interaction with the surface of the Moon, where the produced energetic neutral atoms were observed by the Sub-keV Atom Reflecting Analyzer instrument (SARA) on Chandrayaan-1. At Jupiter, magnetospheric plasma interacts in a similar way with the surface of the Galilean moons. However, the emission of energetic neutral atoms from "dirty" ices as found e.g. on Ganymede's surface is poorly understood. We set up an experiment to study the ion to surface interaction under Ganymede surface environment conditions using the unique capabilities of the MEFISTO test facility at University of Bern. Ions of various species and energies up to 33 keV/q were impacted on a block of ice made from a mixture of water, NaCl and dry ice. The energetic neutral atoms produced by the interaction were detected with the prototype of the Jovian Neutrals Analyzer instrument (JNA.) JNA is proposed as part of the Particle Environment Package (PEP) for ESA's JUICE mission to Jupiter and instrument is based on the Energetic Energetic Neutral Atom instrument (ENA) built for the BepiColombo Magnetospheric Orbiter. We present energy spectra for different ion beam species and energetic neutral atom species combinations. The data show high yields for energetic neutral atoms up to the upper end of the instrument energy range of 3.3 keV. The energy spectra of the neutral atom flux emitted from the ice could only partially be fitted by the Sigmund-Thompson formula. In some cases, but not all, a Maxwellian distribution provides a reasonable description of the data.

  7. Improved identification of clouds and ice/snow covered surfaces in SCIAMACHY observations

    Directory of Open Access Journals (Sweden)

    J. M. Krijger

    2011-10-01

    Full Text Available In the ultra-violet, visible and near infra-red wavelength range the presence of clouds can strongly affect the satellite-based passive remote sensing observation of constituents in the troposphere, because clouds effectively shield the lower part of the atmosphere. Therefore, cloud detection algorithms are of crucial importance in satellite remote sensing. However, the detection of clouds over snow/ice surfaces is particularly difficult in the visible wavelengths as both clouds an snow/ice are both white and highly reflective. The SCIAMACHY Polarisation Measurement Devices (PMD Identification of Clouds and Ice/snow method (SPICI uses the SCIAMACHY measurements in the wavelength range between 450 nm and 1.6 μm to make a distinction between clouds and ice/snow covered surfaces, specifically developed to identify cloud-free SCIAMACHY observations. For this purpose the on-board SCIAMACHY PMDs are used because they provide higher spatial resolution compared to the main spectrometer measurements. In this paper we expand on the original SPICI algorithm (Krijger et al., 2005a to also adequately detect clouds over snow-covered forests which is inherently difficult because of the similar spectral characteristics. Furthermore the SCIAMACHY measurements suffer from degradation with time. This must be corrected for adequate performance of SPICI over the full SCIAMACHY time range. Such a correction is described here. Finally the performance of the new SPICI algorithm is compared with various other datasets, such as from FRESCO, MICROS and AATSR, focusing on the algorithm improvements.

  8. Sublimation of Exposed Snow Queen Surface Water Ice as Observed by the Phoenix Mars Lander

    Science.gov (United States)

    Markiewicz, W. J.; Keller, H. U.; Kossacki, K. J.; Mellon, M. T.; Stubbe, H. F.; Bos, B. J.; Woida, R.; Drube, L.; Leer, K.; Madsen, M. B.; Goetz, W.; El Maarry, M. R.; Smith, P.

    2008-12-01

    One of the first images obtained by the Robotic Arm Camera on the Mars Phoenix Lander was that of the surface beneath the spacecraft. This image, taken on sol 4 (Martian day) of the mission, was intended to check the stability of the footpads of the lander and to document the effect the retro-rockets had on the Martian surface. Not completely unexpected the image revealed an oval shaped, relatively bright and apparently smooth object, later named Snow Queen, surrounded by the regolith similar to that already seen throughout the landscape of the landing site. The object was suspected to be the surface of the ice table uncovered by the blast of the retro-rockets during touchdown. High resolution HiRISE images of the landing site from orbit, show a roughly circular dark region of about 40 m diameter with the lander in the center. A plausible explanation for this region being darker than the rest of the visible Martian Northern Planes (here polygonal patterns) is that a thin layer of the material ejected by the retro-rockets covered the original surface. Alternatively the thrusters may have removed the fine surface dust during the last stages of the descent. A simple estimate requires that about 10 cm of the surface material underneath the lander is needed to be ejected and redistributed to create the observed dark circular region. 10 cm is comparable to 4-5 cm predicted depth at which the ice table was expected to be found at the latitude of the Phoenix landing site. The models also predicted that exposed water ice should sublimate at a rate not faster but probably close to 1 mm per sol. Snow Queen was further documented on sols 5, 6 and 21 with no obvious changes detected. The following time it was imaged was on sol 45, 24 sols after the previous observation. This time some clear changes were obvious. Several small cracks, most likely due to thermal cycling and sublimation of water ice appeared. Nevertheless, the bulk of Snow Queen surface remained smooth. The next

  9. Comparing Geophysical Methods for Determining the Thickness of Arctic Sea Ice: Is There a Correlation Between Thickness and Surface Temperature?

    Science.gov (United States)

    Robertson, R.; Bowman, T.; Eagle, J. L.; Fisher, L.; Mankowski, K.; McGrady, N.; Schrecongost, N.; Voll, H.; Zulfiqar, A.; Herman, R. B.

    2016-12-01

    Several small geophysical surveys were conducted on the Chukchi Sea ice just offshore from the Naval Arctic Research Laboratory near Barrow, Alaska, in March, 2016. The goal was to investigate a possible correlation between the surface temperature and the thickness of the sea ice, as well as to test a potential new method for more accurately determining ice thickness. Surveys were conducted using a capacitively coupled resistivity array, a custom built thermal sensor array sled, ground penetrating radar (GPR), and an ice drill. The thermal sensor array was based on an Arduino microcontroller. It used an infrared (IR) sensor to determine surface temperature, and thermistor-based sensors to determine vertical air temperatures at 6 evenly spaced heights up to a maximum of 1.5 meters. Surface temperature (IR) data show possible correlations with ice drill, resistivity, and GPR data. The vertical air sensors showed almost no variation for any survey line which we postulate is due to the constant wind during each survey. Ice drill data show ice thickness along one 200 meter line varied from 79-95 cm, with an average of 87 cm. The thickness appears to be inversely correlated to surface temperatures. Resistivity and IR data both showed abrupt changes when crossing from the shore to the sea ice along a 400 meter line. GPR and IR data showed similar changes along a separate 900 meter line, suggesting that surface temperature and subsurface composition are related. Resistivity data were obtained in two locations by using the array in an expanding dipole-dipole configuration with 2.5 meter dipoles. The depth to the ice/water boundary was calculated using a "cumulative resistivity" plot and matched the depths obtained via the ice drill to within 2%. This has initiated work to develop a microcontroller-based resistivity array specialized for thickness measurements of thin ice.

  10. Illumination Conditions at the Asteroid 4 Vesta: Implications for the Presence of Water Ice

    Science.gov (United States)

    Stubbs, Timothy J.; Wang, Yongli

    2011-01-01

    The mean illumination conditions and surface temperatures over one orbital period are calculated for the Asteroid 4 Vesta using a coarse digital elevation model produced from Hubble Space Telescope images. Even with the anticipated effects of finer-scale topography taken into account, it is unlikely that any significant permanently shadowed regions currently exist on Vesta due to its large axial tilt (approx. = 27deg). However, under present day conditions, it is predicted that about half of Vesta's surface has an average temperature of less than 145 K, which, based on previous thermal modeling of main belt asteroids, suggests that water ice could survive in the top few meters of the vestal regolith on billion-year timescales.

  11. Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Materer, N.F.

    1995-09-01

    We investigated the surface bonding of various adsorbates (0, S, C{sub 2}H{sub 3} and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

  12. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014

    OpenAIRE

    2015-01-01

    Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960–2014. The model results...

  13. Validation of the Suomi NPP VIIRS Ice Surface Temperature Environmental Data Record

    Directory of Open Access Journals (Sweden)

    Yinghui Liu

    2015-12-01

    Full Text Available Continuous monitoring of the surface temperature is critical to understanding and forecasting Arctic climate change; as surface temperature integrates changes in the surface energy budget. The sea-ice surface temperature (IST has been measured with optical and thermal infrared sensors for many years. With the IST Environmental Data Record (EDR available from the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar-orbiting Partnership (NPP and future Joint Polar Satellite System (JPSS satellites; we can continue to monitor and investigate Arctic climate change. This work examines the quality of the VIIRS IST EDR. Validation is performed through comparisons with multiple datasets; including NASA IceBridge measurements; air temperature from Arctic drifting ice buoys; Moderate Resolution Imaging Spectroradiometer (MODIS IST; MODIS IST simultaneous nadir overpass (SNO; and surface air temperature from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR reanalysis. Results show biases of −0.34; −0.12; 0.16; −3.20; and −3.41 K compared to an aircraft-mounted downward-looking pyrometer; MODIS; MODIS SNO; drifting buoy; and NCEP/NCAR reanalysis; respectively; root-mean-square errors of 0.98; 1.02; 0.95; 4.89; and 6.94 K; and root-mean-square errors with the bias removed of 0.92; 1.01; 0.94; 3.70; and 6.04 K. Based on the IceBridge and MODIS results; the VIIRS IST uncertainty (RMSE meets or exceeds the JPSS system requirement of 1.0 K. The product can therefore be considered useful for meteorological and climatological applications.

  14. Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs

    Science.gov (United States)

    Westoby, Matthew J.; Dunning, Stuart A.; Woodward, John; Hein, Andrew S.; Marrero, Shasta M.; Winter, Kate; Sugden, David E.

    2016-06-01

    Multi-temporal and fine-resolution topographic data products are increasingly used to quantify surface elevation change in glacial environments. In this study, we employ 3-D digital elevation model (DEM) differencing to quantify the topographic evolution of a blue-ice moraine complex in front of Patriot Hills, Heritage Range, Antarctica. Terrestrial laser scanning (TLS) was used to acquire multiple topographic datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey field campaign in 2014. A complementary topographic dataset was acquired at the end of season 1 through the application of structure from motion with multi-view stereo (SfM-MVS) photogrammetry to a set of aerial photographs acquired from an unmanned aerial vehicle (UAV). Three-dimensional cloud-to-cloud differencing was undertaken using the Multiscale Model to Model Cloud Comparison (M3C2) algorithm. DEM differencing revealed net uplift and lateral movement of the moraine crests within season 1 (mean uplift ~ 0.10 m) and surface lowering of a similar magnitude in some inter-moraine depressions and close to the current ice margin, although we are unable to validate the latter. Our results indicate net uplift across the site between seasons 1 and 2 (mean 0.07 m). This research demonstrates that it is possible to detect dynamic surface topographical change across glacial moraines over short (annual to intra-annual) timescales through the acquisition and differencing of fine-resolution topographic datasets. Such data offer new opportunities to understand the process linkages between surface ablation, ice flow and debris supply within moraine ice.

  15. Quasi-parabolic reflecting bottom surfaces of the Drygalski Antarctic floating ice tongue

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C.; Chiappini, M.; Zirizzotti, A.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Tabacco, I. E. [Milan Univ., Milan (Italy). Sez. Geofisica

    2001-06-01

    Very high frequency deep radio sounding systems for ice thickness measurements are practically the only useful apparatuses for large scale radar flight surveys in polar regions. The morphology of the bottom surface of a n Antarctic floating ice tongue, in the Ross Sea area, East Antarctica, was studied using the arrival times of signal echoes of the radio sounding system. The amplitude variations of radar signals from the reflecting surface were analyzed to determine the gain or the loss of the reflectors. Such surfaces show quasi-parabolic geometrical shapes at the ice/water interface with both concave and convex faces towards the sounding system. Electromagnetic analysis performed on radar echoes indicates that amplitude variations detected by the antenna are focusing or defocusing effects only due to the reflector's shape. A factor in the radar equation that represents the surface shape when coherent reflectors are involved is introduced. This factor allows everyone to determine more precisely the morphology and electromagnetic characteristics of the interface between the media investigated by means of radio echo sounding.

  16. Quasi-parabolic reflecting bottom surfaces of the Drygalski Antarctic floating ice tongue

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    2001-06-01

    Full Text Available Very high frequency deep radio sounding systems for ice thickness measurements are practically the only useful apparatuses for large scale radar flight surveys in polar regions. The morphology of the bottom surface of an Antarctic floating ice tongue, in the Ross Sea area, East Antarctica, was studied using the arrival times of signal echoes of the radio sounding system. The amplitude variations of radar signals from the reflecting surface were analyzed to determine the gain or the loss of the reflectors. Such surfaces show quasi-parabolic geometrical shapes at the ice/water interface with both concave and convex faces towards the sounding system. Electromagnetic analysis performed on radar echoes indicates that amplitude variations detected by the antenna are focusing or defocusing effects only due to the reflector's shape. A factor in the radar equation that represents the surface shape when coherent reflectors are involved is introduced. This factor allows us to determine more precisely the morphology and electromagnetic characteristics of the interface between the media investigated by means of radio echo sounding.

  17. Ice-Atmosphere Interactions on the Devon Ice Cap, Canada: The Effects of Climate Warming on Surface Energy Balance, Melting, and Firn Stratigraphy

    Science.gov (United States)

    Gascon, Gabrielle

    In order to better constrain the magnitude of projected sea-level rise from Canadian Arctic glaciers during the 21st century warming, it is critical to understand the environmental mechanisms that enhance surface warming and melt, and how the projected increase in surface melt will translate into increased runoff. Between 2004 and 2010, a 4 °C increase in mean air summer temperature, and a 6.1 day yr-1 increase in melt season duration were observed on the Devon Ice Cap, Nunavut. At the same time, a combination of strengthening of the 500 hPa ridge over the Arctic in June-July, and more frequent south-westerly low-pressure systems in August after 2005 created atmospheric conditions that contributed to an increase in the surface energy balance of the ice cap. At 1400m elevation, these changes led to a doubling of the available melt energy and surface melt between 2007 and 2010. Currently, refreezing of meltwater in firn buffers the relationship between increased surface melt and runoff. Between 2007 and 2012, increased meltwater percolation and infiltration ice formation associated with high surface melt rates modified the stratigraphy of firn in the ice cap's accumulation area very substantially. Growth of a 0.5-4.5 m thick ice layer that filled much of the pore volume of the upper part of the firn reduced vertical percolation of meltwater into deeper parts of the firn. This progressively limited the water storage potential of the firn reservoir, and likely caused a significant increase in surface runoff. An evaluation of the snowpack model Crocus against ground observations for the period 2004-2012 showed that, although the model simulated observed density/depth profiles relatively well at all sites, its representation of heterogeneous percolation as a homogeneous process created conditions that favoured excessive near-surface freezing. At the same time, Crocus's parameterization of the permeability of ice layers forced meltwater to percolate through them

  18. Southern Ocean Surface Temperature and Sea Ice Fields during the Last Interglacial

    Science.gov (United States)

    Esper, O.; Gersonde, R.; Lohmann, G.

    2014-12-01

    Diatom assemblages preserved in 18 sediment cores recovered in the eastern Indian, Atlantic and Pacific sectors of the Southern Ocean are used for the reconstruction of the variability of summer sea surface temperature (SSST) and sea ice concentration during the Last Interglacial (LIG) or Marine Isotope Stage 5 (MIS 5). The large coverage of the core sites allows for reconstructions on latitudinal and longitudinal transects across the Southern Ocean and thus for the comparison of the environmental signal evolution in different sedimentary basins of the Southern Ocean. Such information is crucial for the understanding of climate signal propagation in the Southern Ocean and on inter-hemispheric scale. The quantitative temperature and sea ice records are derived with newly established diatom-based transfer functions at millennial to centennial resolution. Stratigraphic age assignment relies on a combination of oxygen isotope stratigraphy, biostratigraphy, core-core correlation using physical, geochemical and microfossil abundance pattern together with a tuning of sediment core signals with climate records in Antarctic ice cores. All records display a rapid transition from glacial (MIS 6) to MIS 5 conditions to reach maximum temperatures in the latest MIS 6/MIS 5 transition (Termination II) and the early LIG attributed to MIS 5.5. The amplitude of the SSST change is up to 5°C, with generally smaller values in the Pacific sector. During this period Southern Ocean temperature may exceed modern surface temperatures by up to 3°C and the winter sea ice edge is located south of the modern ice edge. Higher resolution cores display short-term temperature rebounds during the Termination II warming. Such cold rebounds are not discerned in the ice core records. The Southern Ocean warming could be triggered by precessional changes influencing high latitude summer insolation and potentially be accelerated by feedback mechanisms such as the reduction of surface albedo (sea ice

  19. A Solar Reflectance Method for Retrieving Cloud Optical Thickness and Droplet Size Over Snow and Ice Surfaces

    Science.gov (United States)

    Platnick, S.; Li, J. Y.; King, M. D.; Gerber, H.; Hobbs, P. V.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.

  20. Thermal conductivity of ice VII using the time-domain thermo-reflectance method in the diamond anvil cell: Implications for the icy planetary bodies

    Science.gov (United States)

    Chen, B.; Cahill, D. G.; Bartov, G.; Li, J.

    2008-12-01

    As a planetary body ages, the heat trapped and generated in its interior escapes to the surface. Thermal conductivity is a fundamental parameter that governs the thermal evolution and internal dynamics of the planetary body. Due to exceedingly small sample size under high pressure, measuring the thermal conductivity of compressed solids is challenging. Here we report new experimental data on the thermal conductivity of liquid H2O and ice VII up to 11 GPa and at 300 K, using the time-domain thermo- reflectance technique (TDTR) and the diamond anvil cell. The measurements were carried out at the Material Research Laboratory, University of Illinois. We load ruby balls as the pressure marker and a mica sheet as a thermal insulating layer. A thin film of aluminum (Al) is coated on the mica sheet and served as a transducer (Antonelli et al., 2006). A short optical pump pulse with duration ~ 100 fs and energy ~ 1 nJ is focused to a ~10 micron-diameter spot on the Al film, raising its temperature by several degrees Kelvin, which in turn causes a slight change in reflectivity. Over the next few nanoseconds following the absorption of the pulse, the Al film cools via heat conduction through the film itself, across the interface, and into the sample. From time-dependent measurement of reflectivity, we can extract the value of the thermal conductivity of the sample by modeling one-dimensional heat flow. With increasing pressure, liquid H2O crystallized into multiple grains of tetragonal ice VI. Upon further compression to ~ 3.3 GPa, the grain boundaries disappeared due to the formation of the cubic ice VII. We have determined the effect of pressure on the thermal conductivity of ice VII between 3 and 11 GPa. We will discuss the implications of our data for the thermal evolution of icy planetary bodies where ice VII may be a significant component.

  1. A 1700-year Record of Tropical Sea Surface Temperatures and High-altitude Andean Climate Derived from the Quelccaya Ice Cap, Peru (Invited)

    Science.gov (United States)

    Thompson, L. G.; Mosley-Thompson, E. S.; Davis, M. E.; Lin, P.

    2010-12-01

    Stable isotopic, aerosol, and physical stratigraphy provided by new ice-core records from the Quelccaya ice cap (5670 masl) in Peru provide annual time series of tropical climatic and environmental variations extending back to 315 AD. These records present an opportunity to extract new information about links between rising temperatures on Andean tropical glaciers and sea surface temperatures (SSTs) in El Niño-Southern Oscillation (ENSO) indicator regions and in the Intertropical Convergence Zone (ITCZ) in the eastern Pacific and western Atlantic Oceans. ENSO is a dominant force for tropical climate variability on interannual time scales. It is linked with the position of the ITCZ and the associated teleconnections affect the strength and direction of air masses and storm tracks, variations in convective activity that control flooding and drought, and modulation of tropical storm intensities. The Quelccaya ice core record may be considered as the “Rosetta Stone” for high resolution climate records extracted from tropical glaciers, relating stable isotopic variations with tropical SSTs and freezing level heights. The ice core histories from Quelccaya also provide the longer term context needed to assess the significance of the magnitude and rate of its current ice loss. The cores provide a detailed description of climate conditions in the tropical Andes during the "Little Ice Age" and "Medieval Climate Anomaly” periods. They show that the recent acceleration of ice retreat in this Andean region is not driven solely by precipitation changes and that over decadal and longer time scales stable isotopic ratios are not significantly correlated with precipitation. The well-documented accelerating ice loss on Quelccaya in the Andes, as well as that on Naimona’nyi in the Himalayas, on Kilimanjaro in eastern Africa, and on ice fields near Puncak Jaya, Papua, Indonesia point to an overarching, larger scale driver. The ongoing melting of these ice fields is consistent

  2. Surface topography of the Greenland Ice Sheet from satellite radar altimetry

    Science.gov (United States)

    Bindschadler, Robert A.; Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.

    1989-01-01

    Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.

  3. Non-thermal processes on ice and liquid micro-jet surfaces

    Science.gov (United States)

    Olanrewaju, Babajide O.

    The primary focus of this research is to investigate non-thermal processes occurring on ice surfaces and the photo-ejection of ions from liquid surfaces. Processes at the air-water/ice interface are known to play a very important role in the release of reactive halogen species with atmospheric aerosols serving as catalysts. The ability to make different types of ice with various morphologies, hence, different adsorption and surface properties in vacuum, provide a useful way to probe the catalytic effect of ice in atmospheric reactions. Also, the use of the liquid jet technique provides the rare opportunity to probe liquid samples at the interface; hitherto impossible to investigate with traditional surface science techniques. In Chapter 2, the effect of ice morphology on the release of reactive halogen species from photodissociation of adsorbed organic halides on ice will be presented. Quantum state resolved measurements of neutral atomic iodine from the photon irradiation of submonolayer coverages of methyl iodide adsorbed on low temperature water ice were conducted. Temperature programmed desorption (TPD) studies of methyl iodide adsorbed on ice were performed to provide information on the effect of ice morphology on the adsorption of submonolayer methyl iodide. The interaction and autoionization of HCl on low-temperature (80{140 K) water ice surfaces has been studied using low-energy (5-250 eV) electron-stimulated desorption (ESD) and temperature programmed desorption (TPD). A detailed ESD study of the interactions of low concentrations of HCl with low-temperature porous amorphous solid water (PASW), amorphous solid water (ASW) and crystalline ice (CI) surfaces will be presented in Chapter 3. The ESD cation yields from HCl adsorbed on ice, as well as the coverage dependence, kinetic energy distributions and TPD measurements were all monitored. Probing liquid surface using traditional surface science technique is usually difficult because of the problem of

  4. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.

    Science.gov (United States)

    Boinovich, Ludmila; Emelyanenko, Alexandre M

    2014-10-28

    The study of the adhesion of solid and liquid aqueous phases to superhydrophobic surfaces has become an attractive topic for researchers in various fields as a vital step in the design of icephobic coatings. The analysis of the available results shows that the experimentally measured values of adhesion strength for superhydrophobic substrates, which in some cases are quite small, are still essentially higher than might be expected from the portion of the actual wetted area. In this study we have considered the peculiarities of the three-phase contact zone between sessile supercooled water or ice droplets and a superhydrophobic coating at negative temperatures (below 0 °C) and during the water-ice phase transition. Two types of superhydrophobic coatings with very different textures were used to analyze the evolution of shape parameters of a sessile water droplet during droplet cooling and freezing. It was shown that the evolution of the contact angle and droplet contact diameter of a water droplet deposited on a superhydrophobic surface does not undergo essential changes when the droplet is cooled simultaneously with the substrate and the surrounding environment, and the humidity is maintained close to 100% during the cooling process. However, the phase transition from supercooled water to ice droplets leads to the growth of a metastable iced meniscus and a frost halo in the vicinity of the three-phase contact zone. The meniscus effectively increases the area of adhesive contact between the droplet and the substrate. This phenomenon is intrinsically related to the release of the heat of crystallization and is responsible for the enhancement of adhesion to a superhydrophobic substrate upon droplet transition from supercooled water to ice. At the same time, it was shown that the metastable state of the above meniscus leads to its spontaneous sublimation during exposure at negative temperatures.

  5. Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet

    Directory of Open Access Journals (Sweden)

    M. J. Siegert

    2013-06-01

    Full Text Available Repeat-pass IceSat altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering and inputs (surface uplift. Few of these active lakes have been confirmed by radio-echo sounding (RES despite several attempts (notable exceptions are Lake Whillans and three in the Adventure Subglacial Trench. Here we present targeted RES and radar altimeter data from an "active lake" location within the upstream Institute Ice Stream, into which 0.12 km3 of water is calculated to have flowed between October 2003 and February 2008. We use a series of transects to establish an accurate appreciation of the influences of bed topography and ice-surface elevation on water storage potential. The location of surface height change is over the downslope flank of a distinct topographic hollow, where RES reveals no obvious evidence for deep (> 10 m water. The regional hydropotential reveals a sink coincident with the surface change, however. Governed by the location of the hydrological sink, basal water will likely "drape" over existing topography in a manner dissimilar to subglacial lakes where flat strong specular RES reflections are measured. The inability of RES to detect the active lake means that more of the Antarctic ice sheet bed may contain stored water than is currently appreciated. Variation in ice surface elevation datasets leads to significant alteration in calculations of the local flow of basal water indicating the value of, and need for, high resolution RES datasets in both space and time to establish and characterise subglacial hydrological processes.

  6. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    Science.gov (United States)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared

  7. Satellite Detection of Smoke Aerosols Over a Snow/Ice Surface by TOMS

    Science.gov (United States)

    Hsu, N. Christina; Herman, Jay R.; Gleason, J. F.; Torres, O.; Seftor, C. J.

    1998-01-01

    The use of TOMS (Total Ozone Mapping Spectrometer) satellite data demonstrates the recently developed technique of using satellite UV radiance measurements to detect absorbing tropospheric aerosols is effective over snow/ice surfaces. Instead of the traditional single wavelength (visible or infrared) method of measuring tropospheric aerosols, this method takes advantage of the wavelength dependent reduction in the backscattered radiance due to the presence of absorbing aerosols over snow/ice surfaces. An example of the resulting aerosol distribution derived from TOMS data is shown for an August 1998 event in which smoke generated by Canadian forest fires drifts over and across Greenland. As the smoke plume moved over Greenland, the TOMS observed 380 nm reflectivity over the snow/ice surface dropped drastically from 90-100% down to 30-40%. To study the effects of this smoke plume in both the UV and visible regions of the spectrum, we compared a smoke-laden spectrum taken over Greenland by the high spectral resolution (300 to 800 nm) GOME instrument with one that is aerosol-free. We also discuss the results of modeling the darkening effects of various types of absorbing aerosols over snow/ice surfaces using a radiative transfer code. Finally, we investigated the history of such events by looking at the nearly twenty year record of TOMS aerosol index measurements and found that there is a large interannual variability in the amount of smoke aerosols observed over Greenland. This information will be available for studies of radiation and transport properties in the Arctic.

  8. Adsorption and desorption of mixed molecular ices from a cosmic dust grain analogue surface

    Science.gov (United States)

    Wolff, Angela Jean

    Surface science is playing an ever more prominent role in the field of astronomy. More than 220 different molecules have so far been observed in the interstellar medium (ISM), and for several of these molecules, the observed abundance is such that the molecules cannot be formed by gas phase reactions alone. Astronomers have proposed that they are instead formed by heterogeneous reactions that take place on the surface of dust grains. The two alcohols methanol and ethanol are just two of the molecules typically observed in both the gas and solid phase in the ISM. In the solid phase, they are found frozen out with the more abundant water, as molecular ices on the surface of dust grains. Both alcohols can be viewed as evolutionary indicators in the vicinity of hot cores. Hot cores are compact objects found in close to newly formed massive stars they are dense and relatively warm and show atypical gas-phase molecular compositions. The gas-phase composition, and therefore the evolutionary stage of the hot core, can be understood by considering the sublimation behaviour of molecular ices on the dust grains within the molecular cloud. This thesis presents the results of investigations on the adsorption and desorption of methanol and ethanol in both the pure state and in combination with water. In each case the deposition occurs on a highly oriented pyrolytic graphite (HOPG) surface. HOPG is considered to be a suitable interstellar dust grain analogue, as dust grains in the ISM are composed of mainly carbonaceous and silicaceous material. Temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) studies of methanol and ethanol ices, mixed with water, are presented. The adsorption and desorption of each species deposited on a layer of amorphous solid water ice is compared to those of codeposited ice layers. In all systems, there is evidence for molecular adsorption in a physisorbed state and for interactions between the investigated

  9. Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg

    2017-01-01

    Long-term observations of surface elevation change of the Greenland ice sheet (GrIS) is of utmost importance when assessing the state of the ice sheet. Satellite radar altimetry offers a long time series of data over the GrIS, starting with ERS-1 in 1991. ESA's Cryosat-2 mission, launched in 2010...... waveform parameters to be applicable for correcting for changes in volume scattering. The best results in the Synthetic Aperture Radar Interferometric mode area of the GrIS are found when applying only the backscatter correction, whereas the best result in the Low Resolution Mode area is obtained by only...... applying a leading edge width correction. Using this approach to correct for the scattering properties, a volume loss of −292±38 km3 yr −1 is found for the GrIS for the time span November 2010 until November 2014. The inclusion of waveform parameter corrections and improved relocation for the GrIS, helps...

  10. Ice Lines, Planetesimal Composition and Solid Surface Density in the Solar Nebula

    CERN Document Server

    Robinson, Sarah E; Bodenheimer, Peter; Laughlin, Gregory; Turner, Neal J; Beichman, C A

    2008-01-01

    To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2-3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, we calculate the solid surface density in the solar nebula as a function of heliocentric distance and time. We find three effects that strongly favor giant planet formation: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) recent lab results (Collings et al. 2004) showing that the ammonia and water ice lines should coincide, and (3) the presence of a substantial amount of methane ice in the trans-Saturnian region. Our results show higher solid surface densitie...

  11. Impact of MODIS Sensor Calibration Updates on Greenland Ice Sheet Surface Reflectance and Albedo Trends

    Science.gov (United States)

    Casey, Kimberly A.; Polashenski, Chris M.; Chen, Justin; Tedesco, Marco

    2017-01-01

    We evaluate Greenland Ice Sheet (GrIS) surface reflectance and albedo trends using the newly released Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) products over the period 2001-2016. We find that the correction of MODIS sensor degradation provided in the new C6 data products reduces the magnitude of the surface reflectance and albedo decline trends obtained from previous MODIS data (i.e., Collection 5, C5). Collection 5 and 6 data product analysis over GrIS is characterized by surface (i.e., wet vs. dry) and elevation (i.e., 500-2000 m, 2000 m and greater) conditions over the summer season from 1 June to 31 August. Notably, the visible-wavelength declining reflectance trends identified in several bands of MODIS C5 data from previous studies are only slightly detected at reduced magnitude in the C6 versions over the dry snow area. Declining albedo in the wet snow and ice area remains over the MODIS record in the C6 product, albeit at a lower magnitude than obtained using C5 data. Further analyses of C6 spectral reflectance trends show both reflectance increases and decreases in select bands and regions, suggesting that several competing processes are contributing to Greenland Ice Sheet albedo change. Investigators using MODIS data for other ocean, atmosphere and/or land analyses are urged to consider similar re-examinations of trends previously established using C5 data.

  12. Electrical Capacitance Tomography Measurement of the Migration of Ice Frontal Surface in Freezing Soil

    Science.gov (United States)

    Liu, J.; Suo, X. M.; Zhou, S. S.; Meng, S. Q.; Chen, S. S.; Mu, H. P.

    2016-12-01

    The tracking of the migration of ice frontal surface is crucial for the understanding of the underlying physical mechanisms in freezing soil. Owing to the distinct advantages, including non-invasive sensing, high safety, low cost and high data acquisition speed, the electrical capacitance tomography (ECT) is considered to be a promising visualization measurement method. In this paper, the ECT method is used to visualize the migration of ice frontal surface in freezing soil. With the main motivation of the improvement of imaging quality, a loss function with multiple regularizers that incorporate the prior formation related to the imaging objects is proposed to cast the ECT image reconstruction task into an optimization problem. An iteration scheme that integrates the superiority of the split Bregman iteration (SBI) method is developed for searching for the optimal solution of the proposed loss function. An unclosed electrodes sensor is designed for satisfying the requirements of practical measurements. An experimental system of one dimensional freezing in frozen soil is constructed, and the ice frontal surface migration in the freezing process of the wet soil sample containing five percent of moisture is measured. The visualization measurement results validate the feasibility and effectiveness of the ECT visualization method

  13. Surface return direction-of-arrival analysis for radar ice sounding surface clutter suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    with coherent signal processing techniques can improve the suppression, in particular if the direction of arrival (DOA) of the clutter signal is estimated accurately. This paper deals with data-driven DOA estimation. By using P-band data from the ice shelf in Antarctica it is demonstrated that a varying...... penetration depth influences the DOA....

  14. The effect of surface modification on initial ice formation on aluminum surfaces

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza; Fojan, Peter;

    2015-01-01

    One of the most promising energy saving methods in cold climate areas is heat recovery in ventilation system by using air-to-air heat exchangers. However, due to a higher humidity in the exhaust air, there is a risk of ice formation on the heat exchanger fins at subzero temperatures. Since the ma...

  15. Surface Water-Ice Deposits in the Northern Shadowed Regions of Ceres

    Science.gov (United States)

    Platz, T.; Nathues, A.; Schorghofer, N.; Preusker, F.; Mazarico, E.; Schroeder, S. E.; Byrne, S.; Kneissl, T.; Schmedemann, N.; Combe, J.-P.; Schaefer, M.; Thangjam, G. S.; Hoffmann, M.; Gutierrez-Marques, P.; Landis, M. E.; Dietrich, W.; Ripken, J.; Matz, K. D.; Russell, C. T.

    2016-01-01

    Ceres, a dwarf planet located in the main asteroid belt, has a low bulk density, and models predict that a substantial amount of water ice is present in its mantle and outer shell. The Herschel telescope and the Dawn spacecraft have observed the release of water vapor from Ceres, and exposed water ice has been detected by Dawn on its surface at mid-latitudes. Water molecules from endogenic and exogenic sources can also be cold-trapped in permanent shadows at high latitudes, as happens on the Moon and Mercury. Here we present the first image-based survey of Ceres's northern permanent shadows and report the discovery of bright deposits in cold traps. We identify a minimum of 634 permanently shadowed craters. Bright deposits are detected on the floors of just 10 of these craters in multiscattered light. We spectroscopically identify one of the bright deposits as water ice. This detection strengthens the evidence that permanently shadowed areas have preserved water ice on airless planetary bodies.

  16. Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture

    CERN Document Server

    Mehrabani, Homayun; Tse, Kyle; Evangelista, Dennis

    2014-01-01

    Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g. Antarctic anchor ice), or in environments with moisture and cold air (e.g. plants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of surface texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We screened biological and artifical samples for ice formation and accretion in submerged conditions using previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. It appears surface texture plays only a small role in delaying the onset of ice formation: a stripe featur...

  17. Mapping Craters Depths in Terra Cimmeria, Mars: Implications for Spatial Distribution of Ground Ice

    Science.gov (United States)

    Stepinski, T. F.; Urbach, E. R.

    2007-07-01

    Spatial distribution of ground ice is derived from maps of depth/diameter ratio obtained using 7845 craters in the T. Cimmeria region. The result supports models predictions, and indicates spatial variability of depth to ice in the equatorial zone.

  18. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-02-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  19. Temperature dependent halogen activation by N2O5 reactions on halide-doped ice surfaces

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2012-06-01

    Full Text Available We examined the reaction of N2O5 on frozen halide salt solutions as a function of temperature and composition using a coated wall flow tube technique coupled to a chemical ionization mass spectrometer (CIMS. The molar yield of photo-labile halogen compounds was near unity for almost all conditions studied, with the observed reaction products being nitryl chloride (ClNO2 and/or molecular bromine (Br2. The relative yield of ClNO2 and Br2 depended on the ratio of bromide to chloride ions in the solutions used to form the ice. At a bromide to chloride ion molar ratio greater than 1/30 in the starting solution, Br2 was the dominant product otherwise ClNO2 was primarily produced on these near pH-neutral brines. We demonstrate that the competition between chlorine and bromine activation is a function of the ice/brine temperature presumably due to the preferential precipitation of NaCl hydrates from the brine below 250 K. Our results provide new experimental confirmation that the chemical environment of the brine layer changes with temperature and that these changes can directly affect multiphase chemistry. These findings have implications for modeling air-snow-ice interactions in polar regions and likely in polluted mid-latitude regions during winter as well.

  20. The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2012-01-01

    Full Text Available The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m.

    The purpose of this study is to quantify the impact of climate change on Svalbard's surface mass balance (SMB and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard's SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard's glaciers due to future Arctic warming.

  1. Implications of a electroweak triplet scalar leptoquark on the ultra-high energy neutrino events at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Mileo, Nicolas [IFLP, CONICET - Departamento de Física, Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina); Puente, Alejandro de la [Ottawa-Carleton Institute for Physics, Carleton University,1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Szynkman, Alejandro [IFLP, CONICET - Departamento de Física, Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina)

    2016-11-22

    We study the production of scalar leptoquarks at IceCube, in particular, a particle transforming as a triplet under the weak interaction. The existence of electroweak-triplet scalars is highly motivated by models of grand unification and also within radiative seesaw models for neutrino mass generation. In our framework, we extend the Standard Model by a single colored electroweak-triplet scalar leptoquark and analyze its implications on the excess of ultra-high energy neutrino events observed by the IceCube collaboration. We consider only couplings between the leptoquark to first generation of quarks and first and second generations of leptons, and carry out a statistical analysis to determine the parameters that best describe the IceCube data as well as set 95% CL upper bounds. We analyze whether this study is still consistent with most up-to-date LHC data and various low energy observables.

  2. Implications of a Electroweak Triplet Scalar Leptoquark on the Ultra-High Energy Neutrino Events at IceCube

    CERN Document Server

    Mileo, Nicolas; Szynkman, Alejandro

    2016-01-01

    We study the production of scalar leptoquarks at IceCube, in particular, a particle transforming as a triplet under the weak interaction. The existence of electroweak-triplet scalars is highly motivated by models of grand unification and also within radiative seesaw models for neutrino mass generation. In our framework, we extend the Standard Model by a single colored electroweak-triplet scalar leptoquark and analyze its implications on the excess of ultra-high energy neutrino events observed by the IceCube collaboration. We consider only couplings between the leptoquark to first generation leptons and quarks and carry out a statistical analysis to determine the parameters that best describe the IceCube data as well as set $95\\%$ CL upper bounds. We analyze whether this study is still consistent with most up-to-date LHC data and various low energy observables.

  3. Combining Modis and Quikscat Data to Delineate Surface and Near-Surface Melt on the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Nghiem, Son V.; DiGirolamo, Nicolo E.; Neumann, Gregory

    2010-01-01

    Over the last two decades, increasing melt has been measured on the Greenland Ice Sheet, along with mass loss as determined from satellite data, Monitoring the state of the Greenland Ice Sheet becomes critical especially because it is actively losing mass, and the ice sheet has a sea-level rise potential of 7 in. However measurement of the extent of surface melt varies depending on the sensor used, whether it is passive or active microwave or visible or thermal infrared. We have used remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet. We present a blended MODIS-QS melt daily product for 2007 [1]. The products, including Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST) and a special daily melt product derived from the QuikSCAT (QS) scatterometer [2,3] show consistency in delineating the melt boundaries on a daily basis in the 2007 melt season [I], though some differences are identified. An assessment of maximum melt area for the 2007 melt shows that the QSCAT product detects a greater amount of melt (862,769 square kilometers) than is detected by the MODIS LST product (766,184 square kilometers). The discrepancy is largely because the QS product can detect both surface and near-surface melt and the QS product captures melt if it occurred anytime during the day while the MODIS product is obtained from a point in time on a given day. However on a daily bases, other factors influence the measurement of melt extent. In this work we employ the digital-elevation model of Bamber et al. [4] along with the National Centers for Environmental Prediction (NCEP) data to study some areas and time periods in detail during the 2007 melt season. We focus on times in which the QS and MODIS LST products do not agree exactly. We use NCEP and elevation data to analyze the atmospheric factors forcing the melt process, to gain an improved understanding of the conditions that lead to melt

  4. Molecular reordering processes on ice (0001) surfaces from long timescale simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Andreas, E-mail: andped10@gmail.com [Faculty of Physical Sciences and Science Institute, University of Iceland, VR-III, 107 Reykjavík (Iceland); Integrated Systems Laboratory, ETH Zurich, 8092 Zurich (Switzerland); Wikfeldt, Kjartan T. [Science Institute, University of Iceland, VR-III, 107 Reykjavík (Iceland); NORDITA, AlbaNova University Center, S-10691 Stockholm (Sweden); Karssemeijer, Leendertjan; Cuppen, Herma [Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Jónsson, Hannes [Faculty of Physical Sciences and Science Institute, University of Iceland, VR-III, 107 Reykjavík (Iceland); Department of Applied Physics, Aalto University, Espoo FI-00076 (Finland)

    2014-12-21

    We report results of long timescale adaptive kinetic Monte Carlo simulations aimed at identifying possible molecular reordering processes on both proton-disordered and ordered (Fletcher) basal plane (0001) surfaces of hexagonal ice. The simulations are based on a force field for flexible molecules and span a time interval of up to 50 μs at a temperature of 100 K, which represents a lower bound to the temperature range of earth's atmosphere. Additional calculations using both density functional theory and an ab initio based polarizable potential function are performed to test and refine the force field predictions. Several distinct processes are found to occur readily even at this low temperature, including concerted reorientation (flipping) of neighboring surface molecules, which changes the pattern of dangling H-atoms, and the formation of interstitial defects by the downwards motion of upper-bilayer molecules. On the proton-disordered surface, one major surface roughening process is observed that significantly disrupts the crystalline structure. Despite much longer simulation time, such roughening processes are not observed on the highly ordered Fletcher surface which is energetically more stable because of smaller repulsive interaction between neighboring dangling H-atoms. However, a more localized process takes place on the Fletcher surface involving a surface molecule transiently leaving its lattice site. The flipping process provides a facile pathway of increasing proton-order and stabilizing the surface, supporting a predominantly Fletcher-like ordering of low-temperature ice surfaces. Our simulations also show that eventual proton-disordered patches on the surface may induce significant local reconstructions. Further, a subset of the molecules on the Fletcher surface are susceptible to forming interstitial defects which might provide active sites for various chemical reactions in the atmosphere.

  5. Influence of Surface and Bulk Water Ice on the Reactivity of a Water-forming Reaction

    Science.gov (United States)

    Lamberts, Thanja; Kästner, Johannes

    2017-09-01

    On the surface of icy dust grains in the dense regions of the interstellar medium, a rich chemistry can take place. Due to the low temperature, reactions that proceed via a barrier can only take place through tunneling. The reaction {{H}}+{{{H}}}2{{{O}}}2\\longrightarrow {{{H}}}2{{O}}+{OH} is such a case with a gas-phase barrier of ∼26.5 kJ mol‑1. Still, the reaction is known to be involved in water formation on interstellar grains. Here, we investigate the influence of a water ice surface and of bulk ice on the reaction rate constant. Rate constants are calculated using instanton theory down to 74 K. The ice is taken into account via multiscale modeling, describing the reactants and the direct surrounding at the quantum mechanical level with density functional theory (DFT), while the rest of the ice is modeled on the molecular mechanical level with a force field. We find that H2O2 binding energies cannot be captured by a single value, but rather they depend on the number of hydrogen bonds with surface molecules. In highly amorphous surroundings, the binding site can block the routes of attack and impede the reaction. Furthermore, the activation energies do not correlate with the binding energies of the same sites. The unimolecular rate constants related to the Langmuir–Hinshelwood mechanism increase as the activation energy decreases. Thus, we provide a lower limit for the rate constant and argue that rate constants can have values up to two order of magnitude larger than this limit.

  6. The Formation of Complex Organic Compounds in Astrophysical Ices and their Implications for Astrobiology

    Science.gov (United States)

    Sandford, Scott A.

    2015-01-01

    Ices in astrophysical environments are generally dominated by very simple molecules like H2O, CH3OH, CH4, NH3, CO, CO2, etc, although they likely contain PAHs as well. These molecules, particularly H2O, are of direct interest to astrobiology in-and-of themselves since they represent some of the main carriers of the biogenic elements C, H, O, and N. In addition, these compounds are present in the dense interstellar clouds in which new stars and planetary systems are formed and may play a large role in the delivery of volatiles and organics to the surfaces of new planets. However, these molecules are all far simpler than the more complex organic compounds found in living systems.

  7. Geostatistical approaches to interpolation and classification of remote-sensing data from ice surfaces

    Science.gov (United States)

    Herzfeld, Ute Christina; Mayer, Helmut; Higginson, Chris A.; Matassa, Michael

    1996-01-01

    Geostatistical methods for interpolation and extrapolation techniques are used in glaciological data analysis. The results of a program involving the mapping of the Antarctica from satellite radar altimeter data are discussed. A combination of high and low resolution techniques was applied in the analysis of the Bering Glacier (Alaska). The global positioning system (GPS) located video data collected from small aircraft and the ERS-1 synthetic aperture radar (SAR) images were used. From the perspective of SAR data analysis, the Bering Glacier surge was the opportunity to characterize the surface of fast flowing ice and the rapid changes in the surface roughness.

  8. Surface osteosarcoma: Clinical features and therapeutic implications

    Directory of Open Access Journals (Sweden)

    H. Nouri

    2015-12-01

    Conclusion: Histological grade of malignancy is the main point to assess in surface osteosarcoma since it determines treatment and prognosis. Low grade lesions should be treated by wide resection, while high grade lesions need more aggressive surgical approach associated to post operative chemotherapy.

  9. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during NICE2015:salty surface mixed layer and active basal melt

    Science.gov (United States)

    Provost, C.; Koenig, Z.; Villacieros-Robineau, N.; Sennechael, N.; Meyer, A.; Lellouche, J. M.; Garric, G.

    2016-12-01

    IAOOS platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by 0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shedded eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 Wm-2 (mean of 150 Wm-2 over the continentalslope). Sea-ice melt events were associated with near 12-hour fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments.

  10. The Glacier and Land Ice Surface Topography Interferometer: An Airborne Proof-of-concept Mapping Sensor

    Science.gov (United States)

    Moller, D.; Hensley, S.; Chuang, C.; Fisher, C.; Muellerschoen, R.; Milligan, L.; Sadowy, G.; Rignot, E. J.

    2009-12-01

    In May 2009 a new radar technique for mapping ice surface topography was demonstrated in a Greenland campaign as part of the NASA International Polar Year activities. This was achieved by integrating a Ka-band single-pass interferometric synthetic radar on the NASA Dryden Gulfstream III for a coordinated deployment. Although the technique of using radar interferometry for mapping terrain has been demonstrated before, this is the first such application at millimeter-wave frequencies. This proof-of-concept demonstration was motivated by the Glacier and Land Ice Surface Topography Interferometer (GLISTIN) Instrument Incubator Program and furthermore, highly leveraged existing ESTO hardware and software assets (the Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) and processor and the PR2 (precipitation radar 2) RF assembly and power amplifier). Initial Ka-band test flights occurred in March and April of 2009 followed by the Greenland deployment. Instrument performance indicates swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a posting of 3m x 3m. However, for this application the electromagnetic wave will penetrate an unknown amount into the snow cover thus producing an effective bias that must be calibrated. This penetration will be characterized as part of this program and is expected to vary as a function of snow wetness and radar incidence angle. To evaluate this, we flew a coordinated collection with the NASA Wallops Airborne Topographic Mapper on a transect from Greenland’s Summit its West coast. This flight included two field calibration sites at Colorado Institute for Research in Environmental Science’s Swiss Camp and the National Science Foundation’s Summit station. Additional collections entailed flying a grid over Jakobshavn glacier which were repeated after 6 days to reveal surface dynamics. In this time frame we were able to observe horizontal motion of over 1km on the glacier. While developed for

  11. Ice sublimation and rheology - Implications for the Martian polar layered deposits

    Science.gov (United States)

    Hofstadter, Mark D.; Murray, Bruce C.

    1990-01-01

    If the sublimation and creep of water ice are important processes in the Martian polar layered deposits, ice-rich scenario formation and evolution schemes must invoke a mechanism for the inhibition of sublimation, such as a dust layer derived from the residue of the sublimating deposits. This layer could be of the order of 1 m in thickness. If the deposits are ice-rich, flows of more than 1 km should have occurred. It is noted that the dust particles in question may be cemented by such ice that may be present, but that impurities may also have served to cement dust particles together even in the absence of ice.

  12. Volume changes of Vatnajökull ice cap, Iceland, due to surface mass balance, ice flow, and subglacial melting at geothermal areas

    DEFF Research Database (Denmark)

    Magnússon, Eyjólfur; Björnson, Helgi; Dall, Jørgen

    2005-01-01

    We present observed changes in the geometry of western Vatnajökull over a period of about ten years which are caused by the surface mass balance, ice flow (both during surges and quiescent periods), and basal melting due to geothermal and volcanic activity. Comparison of two digital elevation...

  13. Accurate determination of surface reference data in digital photographs in ice-free surfaces of Maritime Antarctica.

    Science.gov (United States)

    Pina, Pedro; Vieira, Gonçalo; Bandeira, Lourenço; Mora, Carla

    2016-12-15

    The ice-free areas of Maritime Antarctica show complex mosaics of surface covers, with wide patches of diverse bare soils and rock, together with various vegetation communities dominated by lichens and mosses. The microscale variability is difficult to characterize and quantify, but is essential for ground-truthing and for defining classifiers for large areas using, for example high resolution satellite imagery, or even ultra-high resolution unmanned aerial vehicle (UAV) imagery. The main objective of this paper is to verify the ability and robustness of an automated approach to discriminate the variety of surface types in digital photographs acquired at ground level in ice-free regions of Maritime Antarctica. The proposed method is based on an object-based classification procedure built in two main steps: first, on the automated delineation of homogeneous regions (the objects) of the images through the watershed transform with adequate filtering to avoid an over-segmentation, and second, on labelling each identified object with a supervised decision classifier trained with samples of representative objects of ice-free surface types (bare rock, bare soil, moss and lichen formations). The method is evaluated with images acquired in summer campaigns in Fildes and Barton peninsulas (King George Island, South Shetlands). The best performances for the datasets of the two peninsulas are achieved with a SVM classifier with overall accuracies of about 92% and kappa values around 0.89. The excellent performances allow validating the adequacy of the approach for obtaining accurate surface reference data at the complete pixel scale (sub-metric) of current very high resolution (VHR) satellite images, instead of a common single point sampling. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Greenland meltwater storage in firn limited by near-surface ice formation

    Science.gov (United States)

    Machguth, Horst; Macferrin, Mike; van As, Dirk; Box, Jason E.; Charalampidis, Charalampos; Colgan, William; Fausto, Robert S.; Meijer, Harro A. J.; Mosley-Thompson, Ellen; van de Wal, Roderik S. W.

    2016-04-01

    Approximately half of Greenland’s current annual mass loss is attributed to runoff from surface melt. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn. Two recent studies suggest that all or most of Greenland’s firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs ,), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than ~1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient surface discharge system and intensifying ice sheet mass loss earlier than previously suggested.

  15. Ice Nucleation on Carbon Surface Supports the Classical Theory for Heterogeneous Nucleation

    CERN Document Server

    Cabriolu, Raffaela

    2015-01-01

    The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model mW, we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the ...

  16. Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year

    Science.gov (United States)

    Mayo, L.R.; Trabant, D.C.; March, Rod; Haeberli, Wilfried

    1979-01-01

    A 1 year data-collection program on Columbia Glacier, Alaska has produced a data set consisting of near-surface ice kinematics, mass balance, and altitude change at 57 points and 34 ice radar soundings. These data presented in two tables, are part of the basic data required for glacier dynamic analysis, computer models, and predictions of the number and size of icebergs which Columbia Glacier will calve into shipping lanes of eastern Prince William Sound. A metric, sea-level coordinate system was developed for use in surveying throughout the basin. Its use is explained and monument coordinates listed. A series of seven integrated programs for calculators were used in both the field and office to reduce the surveying data. These programs are thoroughly documented and explained in the report. (Kosco-USGS)

  17. Arctic Low Cloud Changes as Observed by MISR and CALIOP: Implication for the Enhanced Autumnal Warming and Sea Ice Loss

    Science.gov (United States)

    Wu, Dong L.; Lee, Jae N.

    2012-01-01

    Retreat of Arctic sea ice extent has led to more evaporation over open water in summer and subsequent cloud changes in autumn. Studying recent satellite cloud data over the Arctic Ocean, we find that low (0.5-2 km) cloud cover in October has been increasing significantly during 2000-2010 over the Beaufort and East Siberian Sea (BESS). This change is consistent with the expected boundary-layer cloud response to the increasing Arctic evaporation accumulated during summer. Because low clouds have a net warming effect at the surface, October cloud increases may be responsible for the enhanced autumnal warming in surface air temperature, which effectively prolong the melt season and lead to a positive feedback to Arctic sea ice loss. Thus, the new satellite observations provide a critical support for the hypothesized positive feedback involving interactions between boundary-layer cloud, water vapor, temperature and sea ice in the Arctic Ocean.

  18. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    Science.gov (United States)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound

  19. Ice nucleation of bare and sulfuric acid-coated mineral dust particles and implication for cloud properties

    Science.gov (United States)

    Kulkarni, Gourihar; Sanders, Cassandra; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-01

    Ice nucleation properties of atmospherically relevant dust minerals coated with soluble materials are not yet well understood. We determined ice nucleation ability of bare and sulfuric acid-coated mineral dust particles as a function of temperature (-25 to -35°C) and relative humidity with respect to water (RHw; 75 to 110%) for five different mineral dust types: (1) Arizona test dust, (2) illite, (3) montmorillonite, (4) K-feldspar, and (5) quartz. The particles were dry dispersed and size selected at 200 nm, and we determined the fraction of dust particles nucleating ice at various temperatures and RHw. Under water-subsaturated conditions, compared to bare dust particles, we found that coated particles showed a reduction in their ice nucleation ability. Under water-supersaturated conditions, however, we did not observe a significant coating effect (i.e., the bare and coated dust particles had nearly similar nucleating properties). X-ray diffraction patterns of the coated particles indicated that acid treatment altered the crystalline nature of the surface and caused structural disorder; thus, we concluded that the lack of such structured order reduced the ice nucleation efficiency of the coated particles in deposition ice nucleation mode. In addition, our single column model results show that coated particles significantly modify cloud properties such as ice crystal number concentration and ice water content compared to bare particles in water-subsaturated conditions. However, in water-supersaturated conditions, cloud properties differ only at warmer temperatures. These modeling results imply that future aged dust particle simulations should implement coating parameterizations to accurately predict cloud properties.

  20. Validation of the MODIS "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    Science.gov (United States)

    Hall, Dorothy K.; Koenig, L. S.; DiGirolamo, N. E.; Comiso, J.; Shuman, C. A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites

  1. Snow Radar Derived Surface Elevations and Snow Depths Multi-Year Time Series over Greenland Sea-Ice During IceBridge Campaigns

    Science.gov (United States)

    Perkovic-Martin, D.; Johnson, M. P.; Holt, B.; Panzer, B.; Leuschen, C.

    2012-12-01

    This paper presents estimates of snow depth over sea ice from the 2009 through 2011 NASA Operation IceBridge [1] spring campaigns over Greenland and the Arctic Ocean, derived from Kansas University's wideband Snow Radar [2] over annually repeated sea-ice transects. We compare the estimates of the top surface interface heights between NASA's Atmospheric Topographic Mapper (ATM) [3] and the Snow Radar. We follow this by comparison of multi-year snow depth records over repeated sea-ice transects to derive snow depth changes over the area. For the purpose of this paper our analysis will concentrate on flights over North/South basin transects off Greenland, which are the closest overlapping tracks over this time period. The Snow Radar backscatter returns allow for surface and interface layer types to be differentiated between snow, ice, land and water using a tracking and classification algorithm developed and discussed in the paper. The classification is possible due to different scattering properties of surfaces and volumes at the radar's operating frequencies (2-6.5 GHz), as well as the geometries in which they are viewed by the radar. These properties allow the returns to be classified by a set of features that can be used to identify the type of the surface or interfaces preset in each vertical profile. We applied a Support Vector Machine (SVM) learning algorithm [4] to the Snow Radar data to classify each detected interface into one of four types. The SVM algorithm was trained on radar echograms whose interfaces were visually classified and verified against coincident aircraft data obtained by CAMBOT [5] and DMS [6] imaging sensors as well as the scanning ATM lidar. Once the interface locations were detected for each vertical profile we derived a range to each interface that was used to estimate the heights above the WGS84 ellipsoid for direct comparisons with ATM. Snow Radar measurements were calibrated against ATM data over areas free of snow cover and over GPS

  2. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    Directory of Open Access Journals (Sweden)

    J. H. van Angelen

    2012-04-01

    Full Text Available We present a sensitivity study of the surface mass balance (SMB of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo parameterization. The snow albedo parameterization uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6 % at the K-transect (West Greenland for the period 2004–2009 is considerably reduced compared to the previous density-dependent albedo parameterization (+22 %. To simulate realistic snow albedo values, a small concentration of black carbon is needed. A background ice albedo field derived from MODIS imagery improves the agreement between the modeled and observed SMB gradient along the K-transect. The effect of enhanced retention and refreezing is a decrease of the albedo due to an increase in snow grain size. As a secondary effect of refreezing the snowpack is heated, enhancing melt and further lowering the albedo. Especially in a warmer climate this process is important, since it reduces the refreezing potential of the firn layer covering the Greenland Ice Sheet.

  3. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    Directory of Open Access Journals (Sweden)

    J. H. van Angelen

    2012-10-01

    Full Text Available We present a sensitivity study of the surface mass balance (SMB of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6% at the K-transect (west Greenland for the period 2004–2009 is considerably reduced compared to the previous density-dependent albedo scheme (+22%. To simulate realistic snow albedo values, a small concentration of black carbon is needed, which has strongest impact on melt in the accumulation area. A background ice albedo field derived from MODIS imagery improves the agreement between the modeled and observed SMB gradient along the K-transect. The effect of enhanced meltwater retention and refreezing is a decrease of the albedo due to an increase in snow grain size. As a secondary effect of refreezing the snowpack is heated, enhancing melt and further lowering the albedo. Especially in a warmer climate this process is important, since it reduces the refreezing potential of the firn layer that covers the Greenland Ice Sheet.

  4. Molecular reordering processes on ice (0001) surfaces from long timescale simulations

    CERN Document Server

    Pedersen, Andreas; Karssemeijer, Leendertjan; Cuppen, Herma; Jónsson, Hannes

    2014-01-01

    We report results of long timescale adaptive kinetic Monte Carlo simulations aimed at identifying possible molecular reordering processes on both proton-disordered and ordered (Fletcher) basal plane (0001) surfaces of hexagonal ice. The simulations are based on a force field for flexible molecules and span a time interval of up to 50 {\\mu}s at a temperature of 100 K, which represents a lower bound to the temperature range of Earth's atmosphere. Additional calculations using both density functional theory and an ab initio based polarizable potential function are performed to test and refine the force field predictions. Several distinct processes are found to occur readily even at this low temperature, including concerted reorientation (flipping) of neighboring surface molecules, which changes the pattern of dangling H-atoms, and the formation of interstitial defects by the downwards motion of upper-bilayer molecules. On the proton-disordered surface, one major surface roughening process is observed that signif...

  5. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960-2014

    Science.gov (United States)

    Kuipers Munneke, P.; Ligtenberg, S. R. M.; Noël, B. P. Y.; Howat, I. M.; Box, J. E.; Mosley-Thompson, E.; McConnell, J. R.; Steffen, K.; Harper, J. T.; Das, S. B.; van den Broeke, M. R.

    2015-11-01

    Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960-2014. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. In areas with strong surface melt, the firn model overestimates density. We find that the firn layer in the high interior is generally thickening slowly (1-5 cm yr-1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20-50 cm yr-1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2014 is estimated at -3295 ± 1030 km3 due to firn and SMB changes, corresponding to an ice-sheet average thinning of 1.96 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.

  6. A connectionist-geostatistical approach for classification of deformation types in ice surfaces

    Science.gov (United States)

    Goetz-Weiss, L. R.; Herzfeld, U. C.; Hale, R. G.; Hunke, E. C.; Bobeck, J.

    2014-12-01

    Deformation is a class of highly non-linear geophysical processes from which one can infer other geophysical variables in a dynamical system. For example, in an ice-dynamic model, deformation is related to velocity, basal sliding, surface elevation changes, and the stress field at the surface as well as internal to a glacier. While many of these variables cannot be observed, deformation state can be an observable variable, because deformation in glaciers (once a viscosity threshold is exceeded) manifests itself in crevasses.Given the amount of information that can be inferred from observing surface deformation, an automated method for classifying surface imagery becomes increasingly desirable. In this paper a Neural Network is used to recognize classes of crevasse types over the Bering Bagley Glacier System (BBGS) during a surge (2011-2013-?). A surge is a spatially and temporally highly variable and rapid acceleration of the glacier. Therefore, many different crevasse types occur in a short time frame and in close proximity, and these crevasse fields hold information on the geophysical processes of the surge.The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network can recognize. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we have developed a semi-automated pre-training software to adapt the Neural Net to chaining conditions.The method is applied to airborne and satellite imagery to classify surge crevasses from the BBGS surge. This method works well for classifying spatially repetitive images such as the crevasses over Bering Glacier. We expand the network for less repetitive images in order to analyze imagery collected over the Arctic sea ice, to assess the percentage of deformed ice for model calibration.

  7. McMurdo Ice Shelf Sounding and Radar Statistical Reconnaissance at 60-MHz: Brine Infiltration Extent and Surface Properties

    Science.gov (United States)

    Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.

    2014-12-01

    McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert

  8. Simulation studies of an air Cherenkov telescope, IceACT, for future IceCube surface extensions

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Bengt; Auffenberg, Jan; Bekman, Ilja; Kemp, Julian; Roegen, Martin; Schaufel, Merlin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen, Aachen (Germany); Bretz, Thomas; Hebbeker, Thomas; Middendorf, Lukas; Niggemann, Tim; Schumacher, Johannes [III. Physikalisches Institut A, RWTH Aachen, Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceACT is a compact air Cherenkov telescope using silicon photomultipliers. The Fresnel lens based design has been adopted from the fluorescence telescope FAMOUS. The goal of IceACT is the efficient detection of cosmic ray induced air showers above the IceCube Neutrino Observatory at the geographic South Pole. This allows to distinguish cosmic ray induced muons and neutrinos in the southern sky from astrophysical neutrinos in the deep ice detector. This leads to an increase in low-background astrophysical neutrinos of several dozen events per year for a detection threshold of several 100 TeV cosmic ray primary energy. To determine the actual telescope performance, dedicated CORSIKA air shower simulations incorporating the full Cherenkov light information are performed.

  9. Ice growth and interface oscillation of water droplets impinged on a cooling surface

    Science.gov (United States)

    Hagiwara, Yoshimichi; Ishikawa, Shoji; Kimura, Ryota; Toyohara, Kazumasa

    2017-06-01

    We focused on the attenuation of air-water interface oscillation for impinged water droplets freezing on a cooling surface. We carried out not only experiments but also two-dimensional numerical simulation on the droplets using a Phase-field method and an immersed boundary method. The Reynolds number and Weber number were in the range of 35-129 and 1.6-22, respectively. The experimental and computational results showed that the height of the impinged droplets on the symmetrical axis started to oscillate as a result of the impact of the collision of droplets with the surfaces in all the cases that we investigated. The measured frequency of the oscillations in the case of the adiabatic droplets was equal to the frequency estimated from the equation for the capillary-gravity waves on sessile droplets (Temperton, 2013) [30]. The oscillations converged rapidly in all impinged water droplets that froze on the cooling surface. This is due partly to the growth of ice shells along the air-water interface and partly to decreases in water volume as a result of the ice growth mainly on the cooling surface. In addition, the thermal field was disturbed not only by the latent heat transfer but also by the upward component of recirculating flow induced by the droplet impingement.

  10. A spongy icing model for aircraft icing

    Institute of Scientific and Technical Information of China (English)

    Li Xin; Bai Junqiang; Hua Jun; Wang Kun; Zhang Yang

    2014-01-01

    Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when enter-ing clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes:rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  11. A spongy icing model for aircraft icing

    Directory of Open Access Journals (Sweden)

    Li Xin

    2014-02-01

    Full Text Available Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when entering clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes: rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  12. Laboratory Determination of the Infrared Band Strengths of Pyrene Frozen in Water Ice: Implications for the Composition of Interstellar Ices

    CERN Document Server

    Hardegree-Ullman, E E; Boogert, A C A; Lignell, H; Allamandola, L J; Stapelfeldt, K R; Werner, M

    2014-01-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 microns) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H2O and D2O ices. The D2O mixtures are used to measure pyrene bands that are masked by the strong bands of H2O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 microns. Our infrared band str...

  13. Obtaining 3d models of surface snow and ice features (penitentes) with a Xbox Kinect

    Science.gov (United States)

    Nicholson, Lindsey; Partan, Benjamin; Pętlicki, Michał; MacDonell, Shelley

    2014-05-01

    Penitentes are snow or ice spikes that can reach several metres in height. They are a common feature of snow and ice surfaces in the semi-arid Andes as their formation is favoured by very low humidity, persistently low temperatures and sustained high solar radiation. While the conditions of their formation are relatively well constrained it is not yet clear how their presence influences the rate of mass loss and meltwater production from the mountain cryosphere and there is a need for accurate measurements of ablation within penitente fields through time in order to evaluate how well existing energy balance models perform for surfaces with penitentes. The complex surface morphology poses a challenge to measuring the mass loss at snow or glacier surfaces as (i) the spatial distribution of surface lowering within a penitente field is very heterogeneous, and (ii) the steep walls and sharp edges of the penitentes limit the line of sight view for surveying from fixed positions. In this work we explored whether these problems can be solved by using the Xbox Kinect sensor to generate small scale digital terrain models (DTMs) of sample areas of snow and ice penitentes. The study site was Glaciar Tapado in Chile (30°08'S; 69°55'W) where three sample sites were monitored from November 2013 to January 2014. The range of the Kinect sensor was found to be restricted to about 1 m over snow and ice, and scanning was only possible after dusk. Moving the sensor around the penitente field was challenging and often resulted in fragmented scans. However, despite these challenges, the scans obtained could be successfully combined in MeshLab software to produce good surface representations of the penitentes. GPS locations of target stakes in the sample plots allow the DTMs to be orientated correctly in space so the morphology of the penitente field and the volume loss through time can be fully described. At the study site in snow penitentes the Kinect DTM was compared with the quality

  14. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the Pacific sector of Arctic Ocean during 1982-2009

    Science.gov (United States)

    Lei, Ruibo; Tian-Kunze, Xiangshan; Leppäranta, Matti; Wang, Jia; Kaleschke, Lars; Zhang, Zhanhai

    2016-08-01

    SSM/I sea ice concentration and CLARA black-sky composite albedo were used to estimate sea ice albedo in the region 70°N-82°N, 130°W-180°W. The long-term trends and seasonal evolutions of ice concentration, composite albedo, and ice albedo were then obtained. In July-August 1982-2009, the linear trend of the composite albedo and the ice albedo was -0.069 and -0.046 units per decade, respectively. During 1 June to 19 August, melting of sea ice resulted in an increase of solar heat input to the ice-ocean system by 282 MJ·m-2 from 1982 to 2009. However, because of the counter-balancing effects of the loss of sea ice area and the enhanced ice surface melting, the trend of solar heat input to the ice was insignificant. The summer evolution of ice albedo matched the ice surface melting and ponding well at basin scale. The ice albedo showed a large difference between the multiyear and first-year ice because the latter melted completely by the end of a melt season. At the SHEBA geolocations, a distinct change in the ice albedo has occurred since 2007, because most of the multiyear ice has been replaced by first-year ice. A positive polarity in the Arctic Dipole Anomaly could be partly responsible for the rapid loss of summer ice within the study region in the recent years by bringing warmer air masses from the south and advecting more ice toward the north. Both these effects would enhance ice-albedo feedback.

  15. Elevation change of the Greenland ice sheet due to surface mass balance and firn processes, 1960-2013

    Science.gov (United States)

    Kuipers Munneke, P.; Ligtenberg, S. R. M.; Noël, B. P. Y.; Howat, I. M.; Box, J. E.; Mosley-Thompson, E.; McConnell, J. R.; Steffen, K.; Harper, J. T.; Das, S. B.; van den Broeke, M. R.

    2015-06-01

    Observed changes in the surface elevation of the Greenland ice sheet are caused by ice dynamics, basal elevation change, surface mass balance (SMB) variability, and by compaction of the overlying firn. The latter two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960-2013. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. We find that the firn layer in the high interior is generally thickening slowly (1-5 cm yr-1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20-50 cm yr-1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s, and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2013 is estimated at -3900 ± 1030 km3 due to firn and SMB, corresponding to an ice-sheet average thinning of 2.32 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.

  16. Soliton-like structures on a liquid surface under an ice cover

    Science.gov (United States)

    Il'ichev, A. T.; Tomashpolskii, V. Ya.

    2015-02-01

    For a complete system of equations describing wave propagation in a fluid of finite depth under an ice cover, we prove the existence of soliton-like solutions corresponding to a family of solitary waves of surface level depression. The ice cover is modeled as a Kirchhoff-Love elastic plate and has a significant thickness such that the plate inertia is taken into account in the model formulation. The family of solitary waves is parameterized by the wave propagation velocity, and its existence is proved for velocities that bifurcate from the characteristic velocity of linear waves and are rather close to this velocity. In turn, the solitary waves bifurcate from the rest state and are located in its neighborhood. In other words, we prove the existence of small-amplitude solitary waves of water-ice interface level depression. The proof uses the projection of the sought system of equations onto the center manifold (whose dimensionality is two in this case) and a further analysis of a finite-dimensional reduced dynamical system on the center manifold.

  17. Slowdown of global surface air temperature increase and acceleration of ice melting

    Science.gov (United States)

    Berger, André; Yin, Qiuzhen; Nifenecker, Hervé; Poitou, Jean

    2017-07-01

    Although recent decades have been the warmest since 1850, and global mean temperatures during 2015 and 2016 beat all instrumental records, the rate of increase in global surface air temperature (GSAT) significantly decreased at the beginning of the 21st Century. In this context, we examine the roles of ice melting and associated increase in sea-water mass, both of which significantly increased at the same time as GSAT decreased. Specifically, we show that (1) the slowdown of the rate of increase in GSAT between the specific periods 1992-2001 and 2002-2011 exists in all three climate records analyzed and is statistically significant at the 5% level amounting between 0.029 and 0. 036°C/yr and leaving an energy of 14.8-18.4 1019 J/yr available; (2) the increase of the atmosphere-related ice melt between these two periods amounts to 316 Gt/yr which requires 10.5 1019 J/yr, that is, between 57% and 71% of the energy left by the slowdown; and (3) the energy budget shows, therefore, that the heat required to melt this additional 316 Gt/yr of ice is of the same order as the energy needed to warm the atmosphere during the decade 2002-2011 as much as during the previous one, suggesting a redistribution of heat within the atmosphere-cryosphere system.

  18. Acquisition of Ice Thickness and Ice Surface Characteristics In the Seasonal Ice Zone by CULPIS-X During the US Coast Guards Arctic Domain Awareness Program

    Science.gov (United States)

    2015-09-30

    Characteristics In the Seasonal Ice Zone by CULPIS-X During the US Coast Guard’s Arctic Domain Awareness Program PI: Mark A. Tschudi University of...1-0233 LONG-TERM GOALS • Teaming with the Seasonal Ice Zone Reconnaissance Surveys (SIZRS) campaign (J. Morrison, Univ . Washington; PI) to... University of Colorado-Boulder student team, led by PI M. Tschudi, to fit into a USCG C-130 flare tube and operate in an autonomous mode. The package

  19. Evidence of N2-Ice On the Surface of the Icy Dwarf Planet 136472 (2005 FY9)

    CERN Document Server

    Tegler, S C; Vilas, F; Romanishin, W; Cornelison, D; Consolmagno, G J

    2008-01-01

    We present high signal precision optical reflectance spectra of 2005 FY9 taken with the Red Channel Spectrograph and the 6.5-m MMT telescope on 2006 March 4 UT (5000 - 9500 A; 6.33 A pixel-1) and 2007 February 12 UT (6600 - 8500 A; 1.93 A pixel-1). From cross correlation experiments between the 2006 March 4 spectrum and a pure CH4-ice Hapke model, we find the CH4-ice bands in the MMT spectrum are blueshifted by 3 +/- 4 A relative to bands in the pure CH4-ice Hapke spectrum. The higher resolution MMT spectrum of 2007 February 12 UT enabled us to measure shifts of individual CH4-ice bands. We find the 7296 A, 7862 A, and 7993 A CH4-ice bands are blueshifted by 4 +/- 2 A, 4 +/- 4 A, and 6 +/- 5 A. From four measurements we report here and one of our previously published measurements, we find the CH4-ice bands are shifted by 4 +/- 1 A. This small shift is important because it suggest the presence of another ice component on the surface of 2005 FY9. Laboratory experiments show that CH4-ice bands in spectra of CH4 ...

  20. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    Science.gov (United States)

    Han, Dukki; Kang, Ilnam; Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  1. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    Directory of Open Access Journals (Sweden)

    Dukki Han

    Full Text Available From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1 surface seawater, (2 ice core, and (3 melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  2. Optical Thickness and Effective Radius Retrievals of Liquid Water Clouds over Ice and Snow Surface

    Science.gov (United States)

    Platnick, S.; King, M. D.; Tsay, S.-C.; Arnold, G. T.; Gerber, H.; Hobbs, P. V.; Rangno, A.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements traditionally depend on a combination of spectral channels that are absorbing and non-absorbing for liquid water droplets. Reflectances in non-absorbing channels (e.g., 0.67, 0.86 micrometer bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2.1, and 3.7 micrometer window bands) provide cloud particle size information. Retrievals are complicated by the presence of an underlying ice/snow surface. At the shorter wavelengths, sea ice is both bright and highly variable, significantly increasing cloud retrieval uncertainty. However, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. Sea ice spectral albedos derived from Cloud Absorption Radiometer (CAR) measurements during April 1992 and June 1995 Arctic field deployments are used to illustrate these statements. A modification to the traditional retrieval technique is devised. The new algorithm uses a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, preliminary retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 during FIRE-ACE. Data from coordinated ER-2 and University of Washington CV-580 aircraft observations of liquid water stratus clouds on June 3 and June 6, 1998 have been examined. Size retrievals are compared with in situ cloud profile measurements of effective radius made with the CV-580 PMS FSSP probe, and optical thickness retrievals are compared with extinction profiles derived from the Gerber Scientific "g-meter" probe. MAS retrievals are shown to be in good agreement with the in situ measurements.

  3. Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice.

    Science.gov (United States)

    Gladich, Ivan; Pfalzgraff, William; Maršálek, Ondřej; Jungwirth, Pavel; Roeselová, Martina; Neshyba, Steven

    2011-11-28

    We present an Arrhenius analysis of self-diffusion on the prismatic surface of ice calculated from molecular dynamics simulations. The six-site water model of Nada and van der Eerden was used in combination with a structure-based criterion for determining the number of liquid-like molecules in the quasi-liquid layer. Simulated temperatures range from 230 K-287 K, the latter being just below the melting temperature of the model, 289 K. Calculated surface diffusion coefficients agree with available experimental data to within quoted precision. Our results indicate a positive Arrhenius curvature, implying a change in the mechanism of self-diffusion from low to high temperature, with a concomitant increase in energy of activation from 29.1 kJ mol(-1) at low temperature to 53.8 kJ mol(-1) close to the melting point. In addition, we find that the surface self-diffusion is anisotropic at lower temperatures, transitioning to isotropic in the temperature range of 240-250 K. We also present a framework for self-diffusion in the quasi-liquid layer on ice that aims to explain these observations.

  4. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  5. Greenland meltwater storage in firn limited by near-surface ice formation

    DEFF Research Database (Denmark)

    Machguth, Horst; MacFerrin, Mike; van As, Dirk

    2016-01-01

    above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter......Approximately half of Greenland's current annual mass loss is attributed to runoff from surface melt(1). At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn2. Two recent studies suggest that all(3) or most(3...... before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs 5,6), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than similar to 1,900m...

  6. Surface abundance change in vacuum ultraviolet photodissociation of CO2 and H2O mixture ices.

    OpenAIRE

    Kinugawa, Takashi; Yabushita, Akihiro; Kawasaki, Masahiro; Hama, Tetsuya; Watanabe, Naoki

    2011-01-01

    Photodissociation of amorphous ice films of carbon dioxide and water co-adsorbed at 90 K was carried out at 157 nm using oxygen-16 and -18 isotopomers with a time-of-flight photofragment mass spectrometer. O((3)P(J)) atoms, OH (v = 0) radicals, and CO (v = 0, 1) molecules were detected as photofragments. CO is produced directly from the photodissociation of CO(2). Two different adsorption states of CO(2), i.e., physisorbed CO(2) on the surface of amorphous solid water and trapped CO(2) in the...

  7. The effect of polarity on dc arc development over an ice surface

    Energy Technology Data Exchange (ETDEWEB)

    Farokhi, S; Farzaneh, M; Fofana, I [NSERC/Hydro-Quebec/UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, Quebec (Canada)

    2010-05-12

    Electrical/optical measurements have been carried out to study the dynamic behaviour of discharge on an ice surface. Significant differences in behaviour between positive and negative arcs have been revealed during discharge propagation. Also, its root structure, shape and velocity were found to be strongly polarity dependent. High-speed photography of the decays observed during discharge propagation showed two different patterns for dc positive and negative. Using simultaneous analysis of the captured pictures along with the current measurements at anode and cathode a mechanism describing the observed patterns is proposed. The effect of space charge regions observed around the main discharge channel is also discussed.

  8. Laboratory determination of the infrared band strengths of pyrene frozen in water ice: Implications for the composition of interstellar ices

    Energy Technology Data Exchange (ETDEWEB)

    Hardegree-Ullman, E. E. [New York Center for Astrobiology and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Gudipati, M. S.; Werner, M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Boogert, A. C. A. [Infrared Processing and Analysis Center, Mail Code 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Lignell, H. [Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025 (United States); Allamandola, L. J. [Space Science Division, Mail Stop 245-6, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Stapelfeldt, K. R., E-mail: hardee@rpi.edu, E-mail: gudipati@jpl.nasa.gov [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States)

    2014-04-01

    Broad infrared emission features (e.g., at 3.3, 6.2, 7.7, 8.6, and 11.3 μm) from the gas phase interstellar medium have long been attributed to polycyclic aromatic hydrocarbons (PAHs). A significant portion (10%-20%) of the Milky Way's carbon reservoir is locked in PAH molecules, which makes their characterization integral to our understanding of astrochemistry. In molecular clouds and the dense envelopes and disks of young stellar objects (YSOs), PAHs are expected to be frozen in the icy mantles of dust grains where they should reveal themselves through infrared absorption. To facilitate the search for frozen interstellar PAHs, laboratory experiments were conducted to determine the positions and strengths of the bands of pyrene mixed with H{sub 2}O and D{sub 2}O ices. The D{sub 2}O mixtures are used to measure pyrene bands that are masked by the strong bands of H{sub 2}O, leading to the first laboratory determination of the band strength for the CH stretching mode of pyrene in water ice near 3.25 μm. Our infrared band strengths were normalized to experimentally determined ultraviolet band strengths, and we find that they are generally ∼50% larger than those reported by Bouwman et al. based on theoretical strengths. These improved band strengths were used to reexamine YSO spectra published by Boogert et al. to estimate the contribution of frozen PAHs to absorption in the 5-8 μm spectral region, taking into account the strength of the 3.25 μm CH stretching mode. It is found that frozen neutral PAHs contain 5%-9% of the cosmic carbon budget and account for 2%-9% of the unidentified absorption in the 5-8 μm region.

  9. ICE-HEART Study of Survival of Organics in Ice Analogs under simulated Europa's Surface MeV-Electron Radiation on the Trailing Hemisphere

    Science.gov (United States)

    Gudipati, Murthy; Henderson, Bryana; Bateman, Fred; Kang, Shawn; Garrett, Henrey

    2016-10-01

    Europa's surface receives high-energy radiation from Jovian magnetosphere that consists of MeV electrons, protons, and ions. This radiation environment is on one hand a source for energetic oxidants that can support life's energy/oxidant needs, but on the other hand, could be harmful for the potential life or tracers of life such as organic biomolecules. With a planned Europa orbiter and lander mission concept on the horizon, it is critical to understand and quantify the role of Europa's radiation environment on potential life, if existed close to the surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa's surface.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL's internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. The telescopic chamber can accommodate ice cores up to 110 cm in length and diameters of ~ 6 cm.We have also devised a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice. Preliminary results from these studies will be presented and the relevance to the Europa lander mission concept will be discussed.This work has been carried out at Jet

  10. Ice interaction with the Arctic shelf and coast: Constraints on and implication for petroleum development

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.W.; Reimnitz, E. (Geological Survey, Menlo Park, CA (USA))

    1990-05-01

    Along the Arctic coast of Alaska sea ice affects structures placed on and under the sea bed and influences the erosion and dispersal patterns of sedimentary particulates and pollutants. Most directly, ice gouges the sea floor to depths of a few meters, with return periods on the inner shelf of tens of years and, in places, annually, primarily during freezeup and breakup. These sea-floor ice-gouge patterns provide information on the motion and characteristics of the local ice canopy. The design and alignment of pipelines and coast structures should consider that ice gouging extends to the coast and onto the beaches; however, ice gouging is less apparent on beaches owing to lower gouge intensities and vigorous wave reworking. In the long term, gouging contributes to high rates of coastal and shelf erosion. Protruding ice keels extending downward from the sea-ice canopy divert and focus currents causing increased sea-floor scour to depths of a few meters below the sea floor. Sea-ice freezing during the commonly turbulent fall storms causes large volumes of sediment and pollutants to be sorted, resuspended, and, ultimately, incorporated into the ice canopy. Most entrained material is re-released to the nearshore the following open-water season however, some material may be transported offshore to become part of the Arctic pack. During freezeup and breakup (4-5 months/yr) when these processes are most active, trafficability in the Arctic nearshore is nil owing to the instability of the ice canopy, and so our comprehension of this processes is limited.

  11. Temperature profile for glacial ice at the South Pole: implications for life in a nearby subglacial lake.

    Science.gov (United States)

    Price, P Buford; Nagornov, Oleg V; Bay, Ryan; Chirkin, Dmitry; He, Yudong; Miocinovic, Predrag; Richards, Austin; Woschnagg, Kurt; Koci, Bruce; Zagorodnov, Victor

    2002-06-11

    Airborne radar has detected approximately 100 lakes under the Antarctic ice cap, the largest of which is Lake Vostok. International planning is underway to search in Lake Vostok for microbial life that may have evolved in isolation from surface life for millions of years. It is thought, however, that the lakes may be hydraulically interconnected. If so, unsterile drilling would contaminate not just one but many of them. Here we report measurements of temperature vs. depth down to 2,345 m in ice at the South Pole, within 10 km from a subglacial lake seen by airborne radar profiling. We infer a temperature at the 2,810-m deep base of the South Pole ice and at the lake of -9 degrees C, which is 7 degrees C below the pressure-induced melting temperature of freshwater ice. To produce the strong radar signal, the frozen lake must consist of a mix of sediment and ice in a flat bed, formed before permanent Antarctic glaciation. It may, like Siberian and Antarctic permafrost, be rich in microbial life. Because of its hydraulic isolation, proximity to South Pole Station infrastructure, and analog to a Martian polar cap, it is an ideal place to test a sterile drill before risking contamination of Lake Vostok. From the semiempirical expression for strain rate vs. shear stress, we estimate shear vs. depth and show that the IceCube neutrino observatory will be able to map the three-dimensional ice-flow field within a larger volume (0.5 km(3)) and at lower temperatures (-20 degrees C to -35 degrees C) than has heretofore been possible.

  12. Light absorption and partitioning in Arctic Ocean surface waters: impact of multi year ice melting

    Directory of Open Access Journals (Sweden)

    S. Bélanger

    2013-03-01

    Full Text Available Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie river-influenced waters and polar mixed layer waters. We found that melting multi-year ice released significant amount of non-algal particulates (NAP near the sea surface relative to sub-surface waters. NAP absorption coefficients at 440 nm (aNAP(440 immediately below the sea surface (0- were on average 3-fold (up to 10-fold higher compared to sub-surface values measured at 2–3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR by ~6% and ~8%, respectively, relative to a fully homogenous water column with low particles concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400–550 nm. These results highlight the impact of melt water on the concentration of particles at sea surface, and the need for considering nonuniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM photobleaching.

  13. Evaluation of the Surface Representation of the Greenland Ice Sheet in a General Circulation Model

    Science.gov (United States)

    Cullather, Richard I.; Nowicki, Sophie M. J.; Zhao, Bin; Suarez, Max J.

    2014-01-01

    Simulated surface conditions of the Goddard Earth Observing System model, version 5 (GEOS 5) atmospheric general circulation model (AGCM) are examined for the contemporary Greenland Ice Sheet (GrIS). A surface parameterization that explicitly models surface processes including snow compaction, meltwater percolation and refreezing, and surface albedo is found to remedy an erroneous deficit in the annual net surface energy flux and provide an adequate representation of surface mass balance (SMB) in an evaluation using simulations at two spatial resolutions. The simulated 1980-2008 GrIS SMB average is 24.7+/-4.5 cm yr(- 1) water-equivalent (w.e.) at.5 degree model grid spacing, and 18.2+/-3.3 cm yr(- 1) w.e. for 2 degree grid spacing. The spatial variability and seasonal cycle of the simulation compare favorably to recent studies using regional climate models, while results from 2 degree integrations reproduce the primary features of the SMB field. In comparison to historical glaciological observations, the coarser resolution model overestimates accumulation in the southern areas of the GrIS, while the overall SMB is underestimated. These changes relate to the sensitivity of accumulation and melt to the resolution of topography. The GEOS-5 SMB fields contrast with available corresponding atmospheric models simulations from the Coupled Model Intercomparison Project (CMIP5). It is found that only a few of the CMIP5 AGCMs examined provide significant summertime runoff, a dominant feature of the GrIS seasonal cycle. This is a condition that will need to be remedied if potential contributions to future eustatic change from polar ice sheets are to be examined with GCMs.

  14. Warm, salty surface water incursions and destabilization of the Cordilleran Ice Sheet

    Science.gov (United States)

    Taylor, M.; Hendy, I. L.; Pak, D. K.

    2012-12-01

    Ocean temperature change has the potential to destabilize tide-water glaciers and ice shelves. Here we investigate the potential impact of changing North Pacific sea surface temperatures (SST) on the stability of the Cordilleran Ice Sheet during the last deglaciation. Stable isotope values and trace metal ratios were generated on the planktonic foraminifera Neogloboquadrina pachyderma and Globigerina bulloides from core MD02-2496, (1243 m water depth; 48°58N, 127°02W), British Columbia. The site is located where the North Pacific Current bifurcates in the modern climate system, transporting water northward into the Alaskan Gyre and southward to the California Current system. In addition as the site is ~35 km from the coast of Vancouver Island, it is ideally located to detect changes in Cordilleran Ice Sheet behavior. The region is also affected by plumes from the Columbia River deflected north by the Coriolis effect, making it possible to monitor Glacial Lake Missoula Outburst Flooding. The high-resolution (50-200cm kyr-1) reconstruction of SST and δ18Oseawater (salinity) reveals cool (4-7°C), relatively fresh and stratified surface waters occupied the region between 20 and 16.5 ka. Frequent incursions of warm (>10°C), relatively saline water on decadal to centennial timescales began ~18.8 kyr, persisting until ~14.7 kyr. Reconstructed warm and salty waters from 18.5-17.9 kyr are associated with cyclic (~80 year) sedimentation of terrigenous organic carbon-rich, >300 Ma shale-like sediments, which may be evidence of Lake Missoula outburst floodwaters. These sediments contrast with the typical ~100 Ma volcanic sediments typically deposited during deglaciation. A step-wise warming of ~2-4°C occurs at ~16.6 ka and both planktonic foraminiferal species record identical SSTs until ~14.7 ka. During this interval the Vancouver Margin surface waters were relatively more saline and very well mixed. The warmest (14.5-16°C) incursion of saline water occurs at ~16.5 ka

  15. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.

    Science.gov (United States)

    Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L

    2016-06-01

    Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions.

  16. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model

    OpenAIRE

    Tsamados, Michel; Feltham, Danny; Petty, Alex; Schroeder, David; Flocco, Dani

    2015-01-01

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice–atmosphere and ice–ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice–ocean interface; and (iii) a new lateral m...

  17. Sensitivity Analysis of Grain Surface Chemistry to Binding Energies of Ice Species

    Science.gov (United States)

    Penteado, E. M.; Walsh, C.; Cuppen, H. M.

    2017-07-01

    Advanced telescopes, such as ALMA and the James Webb Space Telescope, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essential input information for gas-grain models, such as binding energies of molecules to the surface, have been derived experimentally only for a handful of species, leaving hundreds of species with highly uncertain estimates. We present in this paper a systematic study of the effect of uncertainties in the binding energies on an astrochemical two-phase model of a dark molecular cloud, using the rate equations approach. A list of recommended binding energy values based on a literature search of published data is presented. Thousands of simulations of dark cloud models were run, and in each simulation a value for the binding energy of hundreds of species was randomly chosen from a normal distribution. Our results show that the binding energy of H2 is critical for the surface chemistry. For high binding energies, H2 freezes out on the grain forming an H2 ice. This is not physically realistic, and we suggest a change in the rate equations. The abundance ranges found are in reasonable agreement with astronomical ice observations. Pearson correlation coefficients revealed that the binding energy of HCO, HNO, CH2, and C correlate most strongly with the abundance of dominant ice species. Finally, the formation route of complex organic molecules was found to be sensitive to the branching ratios of H2CO hydrogenation.

  18. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model

    Science.gov (United States)

    Lenaerts, Jan T. M.; Vizcaino, Miren; Fyke, Jeremy; van Kampenhout, Leo; van den Broeke, Michiel R.

    2016-09-01

    We present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean-atmosphere-land Community Earth System Model (CESM) with a horizontal resolution of {˜ }1° in the past, present and future (1850-2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals 2280 ± 131 {Gt year^{-1}}, which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenario RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 {Gt year^{-1}} per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet's edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content.

  19. Changes in Arctic melt season and implications for sea ice loss

    Science.gov (United States)

    Stroeve, J. C.; Markus, T.; Boisvert, L.; Miller, J.; Barrett, A.

    2014-02-01

    The Arctic-wide melt season has lengthened at a rate of 5 days decade-1 from 1979 to 2013, dominated by later autumn freezeup within the Kara, Laptev, East Siberian, Chukchi, and Beaufort seas between 6 and 11 days decade-1. While melt onset trends are generally smaller, the timing of melt onset has a large influence on the total amount of solar energy absorbed during summer. The additional heat stored in the upper ocean of approximately 752 MJ m-2 during the last decade increases sea surface temperatures by 0.5 to 1.5 °C and largely explains the observed delays in autumn freezeup within the Arctic Ocean's adjacent seas. Cumulative anomalies in total absorbed solar radiation from May through September for the most recent pentad locally exceed 300-400 MJ m-2 in the Beaufort, Chukchi, and East Siberian seas. This extra solar energy is equivalent to melting 0.97 to 1.3 m of ice during the summer.

  20. Changes in Arctic Melt Season and Implications for Sea Ice Loss

    Science.gov (United States)

    Stroeve, J. C.; Markus, T.; Boisvert, L.; Miller, J.; Barrett, A.

    2014-01-01

    The Arctic-wide melt season has lengthened at a rate of 5 days dec-1 from 1979 to 2013, dominated by later autumn freeze-up within the Kara, Laptev, East Siberian, Chukchi and Beaufort seas between 6 and 11 days dec(exp -1). While melt onset trends are generally smaller, the timing of melt onset has a large influence on the total amount of solar energy absorbed during summer. The additional heat stored in the upper ocean of approximately 752MJ m(exp -2) during the last decade, increases sea surface temperatures by 0.5 to 1.5 C and largely explains the observed delays in autumn freeze-up within the Arctic Ocean's adjacent seas. Cumulative anomalies in total absorbed solar radiation from May through September for the most recent pentad locally exceed 300-400 MJ m(exp -2) in the Beaufort, Chukchi and East Siberian seas. This extra solar energy is equivalent to melting 0.97 to 1.3 m of ice during the summer.

  1. An Experimental Investigation on the Impingement of Water Droplets onto Superhydrophobic Surfaces Pertinent to Aircraft Icing Phenomena

    Science.gov (United States)

    Li, Haixing; Waldman, Rye; Hu, Hui

    2015-11-01

    Superhydrophobic surfaces have self-cleaning properties that make them promising candidates as anti-icing solutions for various engineering applications, including aircraft anti-/de-icing. However, under sufficient external pressure, the liquid water on the surface can transition to a wetted state, defeating the self-cleaning properties of superhydrpphobic surfaces. In the present study, an experimental investigation was conducted to quantify the transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties under different environmental icing conditions. The experiments were performed in the Icing Research Tunnel of Iowa State University (IRT-ISU) with a NACA0012 airfoil. In addition to using a high-speed imaging system to reveal transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties, an IR thermometry was also used to quantify the unsteady heat transfer and dynamic phase changing process within the water droplets after impingement onto the test plates with different frozen cold temperatures. The high-speed imaging results were correlated with the quantitatively temperature measurements to elucidate underlying physics in order to gain further insight into the underlying physics pertinent to aircraft icing phenomena. The research work is partially supported by NASA with grant number NNX12AC21A and National Science Foundation under award numbers of CBET-1064196 and CBET-1435590.

  2. Short-term variability over the surface of (1) Ceres. A changing amount of water ice?

    CERN Document Server

    Perna, D; Ieva, S; Fornasier, S; Barucci, M A; Lantz, C; Dotto, E; Strazzulla, G

    2014-01-01

    Context: The dwarf planet (1) Ceres - next target of the NASA Dawn mission - is the largest body in the asteroid main belt; although several observations of this body have been performed so far, the presence of surface water ice is still questioned. Aims: Our goal is to better understand the surface composition of Ceres, and to constrain the presence of exposed water ice. Methods: We acquired new visible and near-infrared spectra at the Telescopio Nazionale Galileo (TNG, La Palma, Spain), and reanalyzed literature spectra in the 3-$\\mu$m region. Results: We obtained the first rotationally-resolved spectroscopic observations of Ceres at visible wavelengths. Visible spectra taken one month apart at almost the same planetocentric coordinates show a significant slope variation (up to 3 %/10$^3\\AA$). A faint absorption centered at 0.67 $\\mu$m, possibly due to aqueous alteration, is detected in a subset of our spectra. The various explanations in the literature for the 3.06-$\\mu$m feature can be interpreted as due ...

  3. Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland

    NARCIS (Netherlands)

    Poinar, Kristin; Joughin, Ian; Das, Sarah B.; Behn, Mark D.; Lenaerts, Jan T M; Van Den Broeke, Michiel R.

    2015-01-01

    Moulins are important conduits for surface meltwater to reach the bed of the Greenland Ice Sheet. It has been proposed that in a warming climate, newly formed moulins associated with the inland migration of supraglacial lakes could introduce surface melt to new regions of the bed, introducing or

  4. Surface history of Mercury - Implications for terrestrial planets

    Science.gov (United States)

    Murray, B. C.; Strom, R. G.; Trask, N. J.; Gault, D. E.

    1975-01-01

    A plausible surface history of Mercury is presented which is suggested by Mariner 10 television pictures. Five periods are postulated which are delineated by successive variations in the modification of the surface by external and internal processes: accretion and differentiation, terminal heavy bombardment, formation of the Caloris basin, flooding of that basin and other areas, and light cratering accumulated on the smooth plains. Each period is described in detail; the overall history is compared with the surface histories of Venus, Mars, and the moon; and the implications of this history for earth are discussed. It is tentatively concluded that: Mercury is a differentiated planet most likely composed of a large iron core enclosed by a relatively thin silicate layer; heavy surface bombardment occurred about four billion years ago, which probably affected all the inner planets, and was followed by a period of volcanic activity; no surface modifications caused by tectonic, volcanic, or atmospheric processes took place after the volcanic period.

  5. Surface history of Mercury - Implications for terrestrial planets

    Science.gov (United States)

    Murray, B. C.; Strom, R. G.; Trask, N. J.; Gault, D. E.

    1975-01-01

    A plausible surface history of Mercury is presented which is suggested by Mariner 10 television pictures. Five periods are postulated which are delineated by successive variations in the modification of the surface by external and internal processes: accretion and differentiation, terminal heavy bombardment, formation of the Caloris basin, flooding of that basin and other areas, and light cratering accumulated on the smooth plains. Each period is described in detail; the overall history is compared with the surface histories of Venus, Mars, and the moon; and the implications of this history for earth are discussed. It is tentatively concluded that: Mercury is a differentiated planet most likely composed of a large iron core enclosed by a relatively thin silicate layer; heavy surface bombardment occurred about four billion years ago, which probably affected all the inner planets, and was followed by a period of volcanic activity; no surface modifications caused by tectonic, volcanic, or atmospheric processes took place after the volcanic period.

  6. Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012)

    DEFF Research Database (Denmark)

    van As, Dirk; Langer Andersen, Morten; Petersen, Dorthe

    2014-01-01

    We assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region encompasses six glaciers that drain into Godthåbsfjord. RCM data (1960-2012) are resampled to a hi...... of the marine-terminating glaciers, the region lost 10-20km3w.e. a-1 in 2010-12. If 2010 melting prevails during the remainder of this century, a low-end estimate of sea-level rise of 5mm is expected by 2100 from this relatively small section (2.6%) of the ice sheet alone.......We assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region encompasses six glaciers that drain into Godthåbsfjord. RCM data (1960-2012) are resampled to a high...... spatial resolution to include the narrow (relative to the native grid spacing) glacier trunks in the ice mask. Comparing RCM gridded results with automaticweather station (AWS) point measurements reveals that locally models can underestimate ablation andoverestimate accumulation by up to tens of per cent...

  7. Processing of Enceladus' surface ice by energetic electrons, soft X-ray and VUV photons

    Science.gov (United States)

    Souza Bergantini, Alexandre; Pilling, Sergio; Jones, Brant; Kaiser, Ralf

    Enceladus is a tiny, yet extremely interesting, moon of Saturn. It presents unique features in the Solar system, such as the chemically rich icy surface and the interior driven by intense geological activity, revealed by hot spots in the Enceladus’ south pole, a region dubbed the “Tiger Stripes” (Porco et al. 2006 Science). Enceladus’ frozen surface is dominated by H_2O (both in crystalline and amorphous form) and small amounts of carbon dioxide, methane, and ammonia, among other molecules in minor concentration. These molecules held the most important single elements for life as we know (i.e. CHON). In this work we present the results from several experiments on the processing of analogue of Enceladus ice surface by energetic electrons (5 keV) and vacuum ultraviolet (VUV) photons in extreme-ultra-high vacuum regime (base pressure: 4x10(-11) mbar) in the W.M. Keck Astrochemistry laboratory in the University of Hawaii at Manoa, and the processing of the same ice by soft X-ray photons, using a high-vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator (SGM) beamline, in the Brazilian Synchrotron Light Source (LNLS). The experiments consist in the irradiation of a mixture, analogue to the Enceladus' ice surface (H_2O:CO_2:CH_4:NH_3 - 10:1:1:1), in different temperatures (5.5 K, 35 K, and 72 K). The samples were produced by the adsorption of the mixture in very low temperatures (5.5 K and 12 K), and the results were analyzed by FTIR spectroscopy in the mid-infrared region (4000-400 cm(-1) or 2.5-25.0 mum range), as well as by time-of-flight mass-spectrometry (1 to 200 amu). The absolute dissociation cross sections of the parent molecules and the formation cross section of the daughter species were determined. Among the produced species, CO, OCN(-) , H_2CO, and HCONH_2 were easily detected, and the time-of-flight data shows the production of species with molecular masses up to

  8. Volume changes of Vatnajökull ice cap, Iceland, due to surface mass balance, ice flow, and subglacial melting at geothermal areas

    DEFF Research Database (Denmark)

    Magnússon, Eyjólfur; Björnson, Helgi; Dall, Jørgen

    2005-01-01

    We present observed changes in the geometry of western Vatnajökull over a period of about ten years which are caused by the surface mass balance, ice flow (both during surges and quiescent periods), and basal melting due to geothermal and volcanic activity. Comparison of two digital elevation...... models shows that from 1985 to 1998 the outlet glaciers have lost 14 ± 5 km3, on the average 1 m/yr...

  9. An idealised experimental model of ocean surface wave transmission by an ice floe

    CERN Document Server

    Bennetts, Luke; Meylan, Michael; Cavaliere, Claudio; Babanin, Alexander; Toffoli, Alessandro

    2015-01-01

    An experimental model of transmission of ocean waves by an ice floe is presented. Thin plastic plates with different material properties and thicknesses are used to model the floe. Regular incident waves with different periods and steepnesses are used, ranging from gently-sloping to storm-like conditions. A wave gauge is used to measure the water surface elevation in the lee of the floe. The depth of wave overwash on the floe is measured by a gauge in the centre of the floe's upper surface. Results show transmitted waves are regular for gently-sloping incident waves but irregular for storm-like incident waves. The proportion of the incident wave transmitted is shown to decrease as incident wave steepness increases, and to be at its minimum for an incident wavelength equal to the floe length. Further, a trend is noted for transmission to decrease as the mean wave height in the overwash region increases.

  10. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change.

    Science.gov (United States)

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-11-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.

  11. Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting

    Directory of Open Access Journals (Sweden)

    S. Bélanger

    2013-10-01

    Full Text Available Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie River-influenced waters and polar mixed layer waters. We found that melting multiyear ice released significant amount of non-algal particulates (NAP near the sea surface relative to subsurface waters. NAP absorption coefficients at 440 nm (aNAP(440 immediately below the sea surface were on average 3-fold (up to 10-fold higher compared to subsurface values measured at 2–3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR by ∼6 and ∼8%, respectively, relative to a fully homogenous water column with low particle concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400–550 nm. These results highlight the impact of meltwater on the concentration of particles at sea surface, and the need for considering non-uniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV (ultraviolet domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM (particulate organic matter photobleaching.

  12. Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes

    DEFF Research Database (Denmark)

    Nilsson, Johan; Sørensen, Louise Sandberg; Barletta, Valentina Roberta

    2015-01-01

    of the regional mass balance of Arctic ice caps and glaciers to different regionalization schemes. The sensitivity analysis is based on studying the spread of mass changes and their associated errors, and the suitability of the different regionalization techniques is assessed through cross validation.The cross......The mass balance of glaciers and ice caps is sensitive to changing climate conditions. The mass changes derived n this study are determined from elevation changes derived measured by the Ice, Cloud, and land Elevation Satellite (ICESat) for the time period 2003–2009. Four methods, based...

  13. Impact of Solvent on Photocatalytic Mechanisms: Reactions of Photodesorption Products with Ice Overlayers on the TiO2(110) Surface

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Mingmin; Henderson, Michael A.

    2011-04-07

    The effects of water and methanol ice overlayers on the photodecomposition of acetone on rutile TiO2(110) were evaluated in ultrahigh vacuum (UHV) using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). In the absence of ice overlayers, acetone photodecomposed on TiO2(110) at 95 K by ejection of a methyl radical into the gas phase and formation of acetate on the surface. With ice overlayers, the methyl radicals are trapped at the interface between TiO2(110) and the ice. When water ice was present, these trapped methyl radicals reacted either with each other to form ethane or with other molecules in the ice (e.g., water or displaced acetone) to form methane (CH4), ethane (CH3CH3) and other products (e.g., methanol), with all of these products trapped in the ice. The new products were free to revisit the surface or depart during desorption of the ice. When methanol ice was present, methane formation came about only from reaction of trapped methyl radicals with the methanol ice. Methane and ethane slowly leaked through methanol ice overlayers into vacuum at 95 K, but not through water ice overlayers. Different degrees of site competition between water and acetone, and between methanol and acetone led to different hydrogen abstraction pathways in the two ices. These results provide new insights into product formation routes and solution-phase radical formation mechanisms that are important in heterogeneous photocatalysis.

  14. Long-Term Record of Arctic and Antarctic Sea and Ice Surface Temperatures from Thermal Infrared Satellite Sensors

    Science.gov (United States)

    Luis, Cristina; Dybkjær, Gorm; Eastwood, Steinar; Tonboe, Rasmus; Høyer, Jacob

    2015-04-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 µm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  15. Gas properties of winter lake ice in Northern Sweden: biogeochemical processes and implication for carbon gas release

    Directory of Open Access Journals (Sweden)

    T. Boereboom

    2011-09-01

    Full Text Available This paper describes gas composition, total gas content and bubbles characteristics in winter lake ice for four adjacent lakes in a discontinuous permafrost area. Our gas mixing ratios suggest that gas exchange occurs between the bubbles and the water before entrapment in the ice. Comparison between lakes enabled us to identify 2 major "bubbling events" shown to be related to a regional drop of atmospheric pressure. Further comparison demonstrates that winter lake gas content is strongly dependent on hydrological connections: according to their closed/open status with regards to water exchange, lakes build up more or less greenhouse gases (GHG in their water and ice cover during the winter, and release it during spring melt. These discrepancies between lakes need to be taken into account when establishing a budget for permafrost regions. Our analysis allows us to present a new classification of bubbles, according to their gas properties. Our methane emission budget (from 6.52 10−5 to 12.7 mg CH4 m−2 d−1 for the three months of winter ice cover is complementary to the other budget estimates, taking into account the variability of the gas distribution in the ice and between the various types of lakes.

    Most available studies on boreal lakes have focused on quantifying GHG emissions from sediment by means of various systems collecting gases at the lake surface, and this mainly during the summer "open water" period. Only few of these have looked at the gas enclosed in the winter ice-cover itself. Our approach enables us to integrate, for the first time, the history of winter gas emission for this type of lakes.

  16. Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry

    Science.gov (United States)

    Foresta, L.; Gourmelen, N.; Pálsson, F.; Nienow, P.; Björnsson, H.; Shepherd, A.

    2016-12-01

    We apply swath processing to CryoSat-2 interferometric mode data acquired over the Icelandic ice caps to generate maps of rates of surface elevation change at 0.5 km postings. This high-resolution mapping reveals complex surface elevation changes in the region, related to climate, ice dynamics, and subglacial geothermal and magmatic processes. We estimate rates of volume and mass change independently for the six major Icelandic ice caps, 90% of Iceland's permanent ice cover, for five glaciological years between October 2010 and September 2015. Annual mass balance is highly variable; during the 2014/2015 glaciological year, the Vatnajökull ice cap ( 70% of the glaciated area) experienced positive mass balance for the first time since 1992/1993. Our results indicate that between glaciological years 2010/2011and 2014/2015 Icelandic ice caps have lost 5.8 ± 0.7 Gt a-1 on average, 40% less than the preceding 15 years, contributing 0.016 ± 0.002 mm a-1 to sea level rise.

  17. Modeling of the effect of freezer conditions on the hardness of ice cream using response surface methodology.

    Science.gov (United States)

    Inoue, K; Ochi, H; Habara, K; Taketsuka, M; Saito, H; Ichihashi, N; Iwatsuki, K

    2009-12-01

    The effect of conventional continuous freezer parameters [mix flow (L/h), overrun (%), drawing temperature ( degrees C), cylinder pressure (kPa), and dasher speed (rpm)] on the hardness of ice cream under varying measured temperatures (-5, -10, and -15 degrees C) was investigated systematically using response surface methodology (central composite face-centered design), and the relationships were expressed as statistical models. The range (maximum and minimum values) of each freezer parameter was set according to the actual capability of the conventional freezer and applicability to the manufacturing process. Hardness was measured using a penetrometer. These models showed that overrun and drawing temperature had significant effects on hardness. The models can be used to optimize freezer conditions to make ice cream of the least possible hardness under the highest overrun (120%) and a drawing temperature of approximately -5.5 degrees C (slightly warmer than the lowest drawing temperature of -6.5 degrees C) within the range of this study. With reference to the structural elements of the ice cream, we suggest that the volume of overrun and ice crystal content, ice crystal size, and fat globule destabilization affect the hardness of ice cream. In addition, the combination of a simple instrumental parameter and response surface methodology allows us to show the relation between freezer conditions and one of the most important properties-hardness-visually and quantitatively on the practical level.

  18. Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn compaction modelling

    DEFF Research Database (Denmark)

    Sørensen, L. S.; Simonsen, Sebastian Bjerregaard; Nielsen, K.;

    2010-01-01

    in estimating the mass balance of the Greenland ice sheet. We find firn dynamics and surface densities to be important factors in deriving the mass loss from remote sensing altimetry. The volume change derived from ICESat data is corrected for firn compaction, vertical bedrock movement and an intercampaign...... elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by surface density modelling. The firn compaction and density models are driven by a dynamically downscaled simulation of the HIRHAM5 regional climate model using ERA-Interim reanalysis lateral......ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat...

  19. Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn compaction modelling

    DEFF Research Database (Denmark)

    Sørensen, L. S.; Simonsen, Sebastian Bjerregaard; Nielsen, K.;

    2010-01-01

    boundary conditions. We find an annual mass loss of the Greenland ice sheet of 210 ± 21 Gt yr-1 in the period from October 2003 to March 2008. This result is in good agreement with other studies of the Greenland ice sheet mass balance, based on different remote sensing techniques.......ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat...... altimetry data. Four different methods for deriving the elevation changes from the ICESat altimetry data set are used. This multi method approach gives an understanding of the complexity associated with deriving elevation changes from the ICESat altimetry data set. The altimetry can not stand alone...

  20. Nitrate records of a shallow ice core from East Antarctica: Atmospheric processes, preservation and climatic implications

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Thamban, M.; Naik, S.S.; Redkar, B.L.; Chaturvedi, A.; Ravindra, R.

    the influence of environmental variability on accumulation of NO sub(3) sup(-) over the past 450 years. The results confirmed that multiple processes were responsible for the production and preservation of NO sub(3) sup(-) in Antarctic ice. Correlation between...

  1. Probing Pluto's underworld: Ice temperatures from microwave radiometry decoupled from surface conditions

    Science.gov (United States)

    Leyrat, Cedric; Lorenz, Ralph D.; Le Gall, Alice

    2016-04-01

    Present models admit a wide range of 2015 surface conditions at Pluto and Charon, where the atmospheric pressure may undergo dramatic seasonal variation and for which measurements are imminent from the New Horizons mission. One anticipated observation is the microwave brightness temperature, heretofore anticipated as indicating surface conditions relevant to surface-atmosphere equilibrium. However, drawing on recent experience with Cassini observations at Iapetus and Titan, we call attention to the large electrical skin depth of outer Solar System materials such as methane, nitrogen or water ice, such that this observation may indicate temperatures averaged over depths of several or tens of meters beneath the surface. Using a seasonally-forced thermal model to determine microwave emission we predict that the southern hemisphere observations (in polar night) of New Horizons in July 2015 will suggest effective temperatures of ∼40 K, reflecting deep heat buried over the last century of summer, even if the atmospheric pressure suggests that the surface nitrogen frost point may be much lower.

  2. Large, omega-3 rich, pelagic diatoms under Arctic sea ice: sources and implications for food webs.

    Science.gov (United States)

    Duerksen, Steven W; Thiemann, Gregory W; Budge, Suzanne M; Poulin, Michel; Niemi, Andrea; Michel, Christine

    2014-01-01

    Pelagic primary production in Arctic seas has traditionally been viewed as biologically insignificant until after the ice breakup. There is growing evidence however, that under-ice blooms of pelagic phytoplankton may be a recurrent occurrence. During the springs of 2011 and 2012, we found substantial numbers (201-5713 cells m-3) of the large centric diatom (diameter >250 µm) Coscinodiscus centralis under the sea ice in the Canadian Arctic Archipelago near Resolute Bay, Nunavut. The highest numbers of these pelagic diatoms were observed in Barrow Strait. Spatial patterns of fatty acid profiles and stable isotopes indicated two source populations for C. centralis: a western origin with low light conditions and high nutrients, and a northern origin with lower nutrient levels and higher irradiances. Fatty acid analysis revealed that pelagic diatoms had significantly higher levels of polyunsaturated fatty acids (mean ± SD: 50.3 ± 8.9%) compared to ice-associated producers (30.6 ± 10.3%) in our study area. In particular, C. centralis had significantly greater proportions of the long chain omega-3 fatty acid, eicosapentaenoic acid (EPA), than ice algae (24.4 ± 5.1% versus 13.7 ± 5.1%, respectively). Thus, C. centralis represented a significantly higher quality food source for local herbivores than ice algae, although feeding experiments did not show clear evidence of copepod grazing on C. centralis. Our results suggest that C. centralis are able to initiate growth under pack ice in this area and provide further evidence that biological productivity in ice-covered seas may be substantially higher than previously recognized.

  3. Numerical investigation of the Arctic ice-ocean boundary layer and implications for air-sea gas fluxes

    Science.gov (United States)

    Bigdeli, Arash; Loose, Brice; Nguyen, An T.; Cole, Sylvia T.

    2017-01-01

    In ice-covered regions it is challenging to determine constituent budgets - for heat and momentum, but also for biologically and climatically active gases like carbon dioxide and methane. The harsh environment and relative data scarcity make it difficult to characterize even the physical properties of the ocean surface. Here, we sought to evaluate if numerical model output helps us to better estimate the physical forcing that drives the air-sea gas exchange rate (k) in sea ice zones. We used the budget of radioactive 222Rn in the mixed layer to illustrate the effect that sea ice forcing has on gas budgets and air-sea gas exchange. Appropriate constraint of the 222Rn budget requires estimates of sea ice velocity, concentration, mixed-layer depth, and water velocities, as well as their evolution in time and space along the Lagrangian drift track of a mixed-layer water parcel. We used 36, 9 and 2 km horizontal resolution of regional Massachusetts Institute of Technology general circulation model (MITgcm) configuration with fine vertical spacing to evaluate the capability of the model to reproduce these parameters. We then compared the model results to existing field data including satellite, moorings and ice-tethered profilers. We found that mode sea ice coverage agrees with satellite-derived observation 88 to 98 % of the time when averaged over the Beaufort Gyre, and model sea ice speeds have 82 % correlation with observations. The model demonstrated the capacity to capture the broad trends in the mixed layer, although with a significant bias. Model water velocities showed only 29 % correlation with point-wise in situ data. This correlation remained low in all three model resolution simulations and we argued that is largely due to the quality of the input atmospheric forcing. Overall, we found that even the coarse-resolution model can make a modest contribution to gas exchange parameterization, by resolving the time variation of parameters that drive the 222Rn budget

  4. A New Energy Source for Organic Synthesis in Europa's Surface Ice

    Science.gov (United States)

    Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

  5. A New Energy Source for Organic Synthesis in Europa's Surface Ice

    Science.gov (United States)

    Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

  6. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  7. Impacts from ice-nucleating bacteria on deep convection: implications for the biosphere-atmosphere interaction in climate change

    Directory of Open Access Journals (Sweden)

    V. T. J. Phillips

    2008-03-01

    Full Text Available A cloud modeling framework is described to simulate ice nucleation by biogenic aerosol particles, as represented by airborne ice-nucleation active (INA bacteria. It includes the empirical parameterization of heterogeneous ice nucleation. The formation of cloud liquid by soluble material coated on such insoluble aerosols is represented and determines their partial removal from deep convective clouds by accretion onto precipitation.

    Preliminary simulations are performed for a case of deep convection over Oklahoma. If present at high enough concentrations, as might occur in proximity to land sources, INA bacteria are found to influence significantly: – (1 the average numbers and sizes of crystals in the clouds; (2 the horizontal cloud coverage in the free troposphere; and (3 precipitation and incident solar insolation at the surface, which influence rates of bacterial growth. At lower concentrations, the corresponding responses of cloud fields appear much lower or are ambiguous.

    In nature, the growth rates of INA bacteria on leaves prior to emission into the atmosphere are known to be highly dependent on temperature, precipitation and plant species. Consequently, the open question emerges of whether emissions of such ice-nucleating biogenic particles can then be modified by their own effects on clouds and atmospheric conditions, forming a weak feedback in climate or microclimate systems.

  8. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model

    Science.gov (United States)

    Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan

    2017-04-01

    Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.

  9. Mass balance of the Greenland ice sheet – a study of ICESat data, surface density and firn compaction modelling

    Directory of Open Access Journals (Sweden)

    L. S. Sørensen

    2010-10-01

    Full Text Available ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat altimetry data.

    Four different methods for deriving the elevation changes from the ICESat altimetry data set are used. This multi method approach gives an understanding of the complexity associated with deriving elevation changes from the ICESat altimetry data set.

    The altimetry can not stand alone in estimating the mass balance of the Greenland ice sheet. We find firn dynamics and surface densities to be important factors in deriving the mass loss from remote sensing altimetry. The volume change derived from ICESat data is corrected for firn compaction, vertical bedrock movement and an intercampaign elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by surface density modelling. The firn compaction and density models are driven by a dynamically downscaled simulation of the HIRHAM5 regional climate model using ERA-Interim reanalysis lateral boundary conditions.

    We find an annual mass loss of the Greenland ice sheet of 210 ± 21 Gt yr−1 in the period from October 2003 to March 2008. This result is in good agreement with other studies of the Greenland ice sheet mass balance, based on different remote sensing techniques.

  10. Implications of the ISOCLOUD campaigns at the AIDA Cloud Chamber for ice growth in cold cirrus

    Science.gov (United States)

    Lamb, Kara; Clouser, Benjamin; Sarkozy, Laszlo; Wagner, Steven; Ebert, Volker; Kerstel, Erik; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth

    2015-04-01

    In-situ water vapor measurements in the upper troposphere and lower stratosphere (UTLS) have routinely observed anomalous supersaturations on the order of 10-20particles when temperatures were below 200 K, raising questions about the physics of how ice forms at cold temperatures in the atmosphere1,2,3,4. The ISOCLOUD campaigns in 2012-2013 at the AIDA Aerosol and Cloud Chamber sought to investigate ice growth at cold temperatures by simulating cirrus clouds at temperatures and pressures characteristic of the upper troposphere. Experiments tested both homogeneous nucleation of sulfate aerosols and heterogeneous nucleation with various ice nuclei, including mineral dust and organic aerosols with and without nitric acid coatings. Optical instruments, both in-situ (TDLAS) and extractive (TDLAS and OFCEAS), measured ice particle number density, water vapor, total water, and water vapor isotopic concentrations, with multiple instruments measuring water. In a series of cirrus formation experiments, we observed no evidence of anomalous saturation vapor pressure and no evidence of ice growth inhibition at low temperatures for the parameter space tested during the ISOCLOUD campaigns. That is, we see no evidence for temperature dependence in the deposition coefficient. In these experiments we determined the deposition coefficient from bulk parameters of the gas (vapor concentration and ice number density). The ISOCLOUD experiments were particularly suited to deposition coefficient measurements since they involved lower pressures and often lower temperatures than previous similar campaigns, producing lower error bars.5 These results can aid in the interpretation of data from aircraft campaigns in the UTLS by solidifying our understanding of the microphysics of ice formation at cold temperatures. [1] Gao, R. et al., Science, 303, no. 6567, 516-520, (2004). [2] Jensen, E. et al., Atmos. Chem. Phys., 5, 851-862, (2005). [3] Peter, T. et al., Science, 314, no. 5804, 1399

  11. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2013-05-01

    Full Text Available We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project camp, NW Greenland (77.45° N, 51.05° W, 2484 m a.s.l.. Measurements were conducted at 9 different heights from 0.1 m to 13.5 m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of ~ 0.23‰ for δ18O and ~ 1.4‰ for δD. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn–air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40‰ surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.

  12. The Location and Styles of Ice-Free “Oases” during Neoproterozoic Glaciations with Evolutionary Implications

    Directory of Open Access Journals (Sweden)

    Daniel Paul Le Heron

    2012-05-01

    Full Text Available Evidence based on molecular clocks, together with molecular evidence/biomarkers and putative body fossils, points to major evolutionary events prior to and during the intense Cryogenian and Ediacaran glaciations. The glaciations themselves were of global extent. Sedimentological evidence, including hummocky cross-stratification (representing ice-free seas affected by intra-glacial storms, dropstone textures, microbial mat-bearing ironstones, ladderback ripples, and wave ripples, militates against a “hard” Snowball Earth event. Each piece of sedimentological evidence potentially allows insight into the shape and location, with respect to the shoreline, of ice-free areas (“oases” that may be viewed as potential refugia. The location of such oases must be seen in the context of global paleogeography, and it is emphasized that continental reconstructions at 600 Ma (about 35 millions years after the “Marinoan” ice age are non-unique solutions. Specifically, whether continents such as greater India, Australia/East Antarctica, Kalahari, South and North China, and Siberia, were welded to a southern supercontinent or not, has implications for island speciation, faunal exchange, and the development of endemism.

  13. Methane excess in Arctic surface water-triggered by sea ice formation and melting

    OpenAIRE

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-01-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence t...

  14. The radiation of surface wave energy: Implications for volcanic tremor

    Science.gov (United States)

    Haney, M. M.; Denolle, M.; Lyons, J. J.; Nakahara, H.

    2015-12-01

    The seismic energy radiated by active volcanism is one common measurement of eruption size. For example, the magnitudes of individual earthquakes in volcano-tectonic (VT) swarms can be summed and expressed in terms of cumulative magnitude, energy, or moment release. However, discrepancies exist in current practice when treating the radiated energy of volcano seismicity dominated by surface waves. This has implications for volcanic tremor, since eruption tremor typically originates at shallow depth and is made up of surface waves. In the absence of a method to compute surface wave energy, estimates of eruption energy partitioning between acoustic and seismic waves typically assume seismic energy is composed of body waves. Furthermore, without the proper treatment of surface wave energy, it is unclear how much volcanic tremor contributes to the overall seismic energy budget during volcanic unrest. To address this issue, we derive, from first principles, the expression of surface wave radiated energy. In contrast with body waves, the surface wave energy equation is naturally expressed in the frequency domain instead of the time domain. We validate our result by reproducing an analytical solution for the radiated power of a vertical force source acting on a free surface. We further show that the surface wave energy equation leads to an explicit relationship between energy and the imaginary part of the surface wave Green's tensor at the source location, a fundamental property recognized within the field of seismic interferometry. With the new surface wave energy equation, we make clear connections to reduced displacement and propose an improved formula for the calculation of surface wave reduced displacement involving integration over the frequency band of tremor. As an alternative to reduced displacement, we show that reduced particle velocity squared is also a valid physical measure of tremor size, one based on seismic energy rate instead of seismic moment rate. These

  15. A NEW SOURCE OF CO{sub 2} IN THE UNIVERSE: A PHOTOACTIVATED ELEY-RIDEAL SURFACE REACTION ON WATER ICES

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chunqing; Cooke, Ilsa R.; Yates, John T. Jr., E-mail: jty2n@virginia.edu [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States)

    2014-08-20

    CO{sub 2} is one of the most abundant components of ices in the interstellar medium; however, its formation mechanism has not been clearly identified. Here we report an experimental observation of an Eley-Rideal-type reaction on a water ice surface, where CO gas molecules react by direct collisions with surface OH radicals, made by photodissociation of H{sub 2}O molecules, to produce CO{sub 2} ice on the surface. The discovery of this source of CO{sub 2} provides a new mechanism to explain the high relative abundance of CO{sub 2} ice in space.

  16. Analysis of scale effect in compressive ice failure and implications for design

    Science.gov (United States)

    Taylor, Rocky Scott

    The main focus of the study was the analysis of scale effect in local ice pressure resulting from probabilistic (spalling) fracture and the relationship between local and global loads due to the averaging of pressures across the width of a structure. A review of fundamental theory, relevant ice mechanics and a critical analysis of data and theory related to the scale dependent pressure behavior of ice were completed. To study high pressure zones (hpzs), data from small-scale indentation tests carried out at the NRC-IOT were analyzed, including small-scale ice block and ice sheet tests. Finite element analysis was used to model a sample ice block indentation event using a damaging, viscoelastic material model and element removal techniques (for spalling). Medium scale tactile sensor data from the Japan Ocean Industries Association (JOIA) program were analyzed to study details of hpz behavior. The averaging of non-simultaneous hpz loads during an ice-structure interaction was examined using local panel pressure data. Probabilistic averaging methodology for extrapolating full-scale pressures from local panel pressures was studied and an improved correlation model was formulated. Panel correlations for high speed events were observed to be lower than panel correlations for low speed events. Global pressure estimates based on probabilistic averaging were found to give substantially lower average errors in estimation of load compared with methods based on linear extrapolation (no averaging). Panel correlations were analyzed for Molikpaq and compared with JOIA results. From this analysis, it was shown that averaging does result in decreasing pressure for increasing structure width. The relationship between local pressure and ice thickness for a panel of unit width was studied in detail using full-scale data from the STRICE, Molikpaq, Cook Inlet and Japan Ocean Industries Association (JOIA) data sets. A distinct trend of decreasing pressure with increasing ice thickness

  17. Ion Irradiation of Ethane and Water Mixture Ice at 15 K: Implications for the Solar System and the ISM

    Science.gov (United States)

    de Barros, A. L. F.; da Silveira, E. F.; Fulvio, D.; Rothard, H.; Boduch, P.

    2016-06-01

    Solid water has been observed on the surface of many different astronomical objects and is the dominant ice present in the universe, from the solar system (detected on the surface of some asteroids, planets and their satellites, trans-Neptunian objects [TNOs], comets, etc.) to dense cold interstellar clouds (where interstellar dust grains are covered with water-rich ices). Ethane has been detected across the solar system, from the atmosphere of the giant planets and the surface of Saturn’s satellite Titan to various comets and TNOs. To date, there were no experiments focused on icy mixtures of C2H6 and H2O exposed to ion irradiation simulating cosmic rays, a case study for many astronomical environments in which C2H6 has been detected. In this work, the radiolysis of a C2H6:H2O (2:3) ice mixture bombarded by a 40 MeV58Ni11+ ion beam is studied. The chemical evolution of the molecular species existing in the sample is monitored by a Fourier transform infrared spectrometer. The analysis of ethane, water, and molecular products in solid phase was performed. Induced chemical reactions in C2H6:H2O ice produce 13 daughter molecular species. Their formation and dissociation cross sections are determined. Furthermore, atomic carbon, oxygen, and hydrogen budgets are determined and used to verify the stoichiometry of the most abundantly formed molecular species. The results are discussed in the view of solar system and interstellar medium chemistry. The study presented here should be regarded as a first step in laboratory works dedicated to simulate the effect of cosmic radiation on multicomponent mixtures involving C2H6 and H2O.

  18. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015)

    Science.gov (United States)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; Lhermitte, Stef; Howat, Ian; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-10-01

    This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958-2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.

  19. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2012-06-01

    Full Text Available Four high-resolution regional climate models (RCMs have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB, and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs. This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2, with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual-mean near-surface air temperature increase over Greenland of ~2 C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice-sheet would eventually be eliminated.

  20. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2012-11-01

    Full Text Available Four high-resolution regional climate models (RCMs have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB, and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs. This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2, with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.

  1. Evaluation of Surface and Near-Surface Melt Characteristics on the Greenland Ice Sheet using MODIS and QuikSCAT Data

    Science.gov (United States)

    Hall, Dorothy K.; Nghiem, Son V.; Schaaf, Crystal B.; DiGirolamo, Nicolo E.

    2009-01-01

    The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.

  2. A robust, multisite Holocene history of drift ice off northern Iceland: Implications for North Atlantic climate

    Science.gov (United States)

    Andrews, John T.; Darby, D.; Eberle, D.; Jennings, A.E.; Moros, M.; Ogilvie, A.

    2009-01-01

    An important indicator of Holocene climate change is provided by evidence for variations in the extent of drift ice. A proxy for drift ice in Iceland waters is provided by the presence of quartz. Quantitative x-ray diffraction analysis of the ice-transport origin. A pilot study on the provenance of Fe oxide grains in two cores that cover the last 1.3 and 6.1 cal. ka BP indicated a large fraction of the grains between 1 and 6 cal. ka BP were from either Icelandic or presently unsampled sources. However, there was a dramatic increase in Canadian and Russian sources from the Arctic Ocean ???1 cal. ka BP. These data may indicate the beginning of an Arctic Oscillation-like climate mode. ?? 2009 SAGE Publications.

  3. Diazotroph diversity in the sea ice, melt ponds and surface waters of the Eurasian Basin of the Central Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Mar Fernández-Méndez

    2016-11-01

    Full Text Available The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct f