WorldWideScience

Sample records for iaea safeguards inspectors

  1. Training the IAEA Inspectors

    Potterton, L.

    2010-01-01

    Newly recruited safeguards inspectors take to the field. There are currently 250 inspectors and every year the IAEA runs an introductory course on the safeguards systems for the organisation's newly appointed inspectors.

  2. IAEA safeguards

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  3. IAEA safeguards: Stemming the spread of nuclear weapons. As the world's nuclear inspectorate, the IAEA performs an indispensable role in furthering nuclear non-proliferation

    2002-01-01

    Following the completion of the Treaty on the Non- Proliferation of Nuclear Weapons (NPT) in 1968, the IAEA has become the instrument with which to verify that the peaceful use commitments made under the NPT or similar agreements are kept through performing what is known as its safeguards role. Under the NPT, governments around the world have committed to three common objectives: preventing the proliferation of nuclear weapons; pursuing nuclear disarmament; and promoting the peaceful uses of nuclear energy. The NPT has made it obligatory for all its non-nuclear weapon State parties to submit all nuclear material in nuclear activities to IAEA safeguards, and to conclude a comprehensive safeguards agreement with the Agency. With all but a handful of the world community as State parties, the NPT is by far the most widely adhered to legal agreement in the field of disarmament and non-proliferation. The IAEA takes account of all source and special fissionable material in countries under safeguards. Monitoring and verification activities focus on those types of nuclear material that are the most crucial and relevant to nuclear weapons manufacturing. This includes plutonium-239, uranium-233 and -235 and any material containing one or more of these. Safeguards activities are applied routinely at over 900 facilities in 71 countries. In 2001 alone, more than 21,000 calendar days in the field were devoted to verifying hundreds of tons of special fissionable material by more than IAEA 250 inspectors

  4. The IAEA inspectorate, including new requirements

    Alston, W.

    1998-01-01

    The basic purpose of the IAEA safeguards system is 'timely detection of diversion of significant quantities of nuclear material'. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  5. The IAEA inspectorate, including new requirements

    Alston, W [International Atomic Energy Agency, Department of Safeguards, Division of Operations A, Vienna (Austria)

    1999-12-31

    The basic purpose of the IAEA safeguards system is `timely detection of diversion of significant quantities of nuclear material`. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  6. IAEA symposium on international safeguards. Extended synopses

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  7. IAEA symposium on international safeguards. Extended synopses

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  8. IAEA Safeguards: Status and prospects

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  9. Optimizing IAEA Safeguards

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  10. IAEA safeguard system

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  11. IAEA safeguards glossary

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  12. IAEA safeguards assessments

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  13. IAEA safeguards for the 21st century

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  14. IAEA safeguards for the 21st century

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  15. Testimony from a former safeguards inspector

    Richter, R.

    1981-01-01

    Testimony by a former inspector relates the ineffectiveness and deficiencies of International Atomic Energy Agency (IAEA) safeguards inspections to Iraq's controversial nuclear program. He notes that all Iraqi inspections since 1976 were conducted by Soviet and Hungarian nationals and that the procedures require prior notice, limited authority, and other loopholes that permit numerous opportunities for materials to be diverted to facilities not subject to inspection. Granting that IAEA inspections are essential, he urges removing some of the constraints that permit noncooperating nations to thwart the intent of the Non-Proliferation Treaty

  16. National safeguard systems - Inspector formation

    Pontes, B.C.

    1986-01-01

    The safeguards' inspector profile, in consequence of the tasks to be performed is described. An activities'hierarchy which will lead, to the structure and content of an introductory course's curriculum is established. The auditing activity as well as the material verification are described in details. Complementary resources for the upgrading the inspector's knowledge and skills are analised and the paper concludes presenting the training period, its dinamics as well as the recrutment criterium for the candidates. (Author) [pt

  17. IAEA Safeguards: Present status and experience gained

    Thorne, L.; Buechler, C.; Haegglund, E.

    1983-01-01

    IAEA safeguards are at the present under critical review with regard to their purpose and effectiveness. This paper describes the development of the IAEA Safeguards System from the early days, when procedures were developed on an ad hoc basis, to the present day. The development of State Systems of Accounting for and Control of Nuclear Material (SSAC), and of sophisticated instrumentation, has been necessary to deal with the rapid growth in the quantities of nuclear material and in the number of facilities under safeguards. The paper also discusses some of the managerial and organizational issues that are inherent in such a large international inspectorate. (author)

  18. A day in the life of a safeguards inspector

    Henriques, Sasha

    2016-01-01

    Walking several miles through the winding, narrow corridors of a nuclear facility in protective gear while carrying heavy equipment, often escorted by facility operator personnel: welcome to the life of an IAEA safeguards inspector. Safeguards inspectors are an essential part of the global non-proliferation regime, carrying out verification activities, so the IAEA can provide assurances to States worldwide that other countries are not diverting nuclear material from peaceful to military purposes or misusing nuclear technology. One important activity is the inspection of declared stocks of nuclear material: the IAEA is the only organization in the world with the mandate to verify the use of nuclear material and technology globally.

  19. The evolution of IAEA safeguards

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  20. The evolution of IAEA safeguards

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  1. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in open-quotes Observational Skillsclose quotes. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector's job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector's job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA's consideration in further developing its Safeguards training program

  2. IAEA safeguards for geological repositories

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  3. An American Academy for Training Safeguards Inspectors - An Idea Revisited

    Durst, Philip Casey; Bean, Robert

    2010-01-01

    In 2009, we presented the idea of an American academy for training safeguards inspectors for the International Atomic Energy Agency (IAEA), due to the declining percentage of Americans in that international organization. In this paper we assert that there is still a compelling need for this academy. While the American Safeguards Academy would be useful in preparing and pre-training American inspectors for the IAEA, it would also be useful for preparing Americans for domestic safeguards duties in the U.S. Department of Energy (DOE), U.S. DOE National Laboratories, and the U.S. Nuclear Regulatory Commission (NRC). It is envisioned that such an academy would train graduate and post-graduate university students, DOE National Laboratory interns, and nuclear safeguards professionals in the modern equipment, safeguards measures, and approaches currently used by the IAEA. It is also envisioned that the Academy would involve the domestic nuclear industry, which could provide use of commercial nuclear facilities for tours and demonstrations of the safeguards tools and methods in actual nuclear facilities. This would be in support of the U.S. DOE National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI). This training would also help American nuclear safeguards and non-proliferation professionals better understand the potential limitations of the current tools used by the IAEA and give them a foundation from which to consider even more effective and efficient safeguards measures and approaches.

  4. IAEA safeguards glossary. 2001 ed

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  5. IAEA safeguards glossary. 2001 ed

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  6. IAEA safeguards glossary. 2001 ed

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  7. IAEA safeguards glossary. 2001 ed

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  8. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  9. IAEA Safeguards Information System (ISIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  10. IAEA safeguards - a 1988 perspective

    Jennekens, J.

    1988-01-01

    The problem of IAEA safeguards as regards its perspectives for 1988 is discussed. The necessity of balancing between safeguards measures required for the timely detection of nuclear material diversion to military purposes and measures to prove the absence of diversion is stated. Accurately working safeguards system aimed at the provision of nondiversion can include, as an accompanying component, any deterrence element required. Such a system will be more expensive than any other altrenatives but it will undoubtly be more suitable and accepatble

  11. IAEA symposium on international safeguards

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  12. IAEA safeguards approaches and goals

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  13. Improved IAEA safeguards for closed nuclear fuel cycles

    1978-12-01

    The paper recognises the limitations of nuclear material accountancy in applying safeguards to future large scale processing plants. For those plants the following will be necessary: (i) The inclusion of safeguards requirements in design criteria. (ii) Extensive application of containment and surveillance with monitors on personnel and goods exits, pipework, tanks, etc. (iii) Continuous inspectorate measurement of input and output flows. Local IAEA laboratories to ensure timeliness. (iv) Upgrading of process control information to enable the inspectorate to monitor the in-process inventory. The inspectorates knowledge of the in-process inventory will be valuable in their assessment of any alarms given by the containment-surveillance system

  14. Staying one step ahead: An IAEA inspector fits the picture

    Bohannon, J.

    2006-01-01

    At 29, Nangonya, an engineer, is the nuclear inspector at the International Atomic Energy Agency (IAEA). Like any scientific research discipline, nuclear inspection requires a blend of science and technical knowledge and a sceptical mindset. But a career in nuclear inspection also demands detective and diplomatic skills sharp enough to handle sensitive political issues. Nangonya joined the IAEA in 2002 by taking the Agency's Safeguards Traineeship Programme, a foundation course on nuclear technology open only to nationals from developing countries. After finishing the year-long programme, Nangonya applied for an IAEA nuclear inspector position-he got it-and then undertook the three-month training course that all newly hired inspectors complete. Most of Nangonya's training covered the subjects that might be expected: the ins and outs of the nuclear fuel cycle, how to verify that each and every reported gram of plutonium and uranium are where they are supposed to be, and how to spot signs of illicit activity. Every year, IAEA hires 15 to 30 nuclear inspectors, typically in their 30s, many with backgrounds far removed from nuclear physics. An inspection team needs a combination of backgrounds. Inspectors come with a range of expertise, from physics, engineering, and chemistry to computer science and even biology; samples from plants and animals often play a role in detecting unreported nuclear materials. But apart from technical expertise, there are also crucial social and psychological skills to be learned, and this is where nuclear inspection diverges most from academic science. Nuclear inspectors must learn to trust their colleagues, but during their training they must learn not to trust others. Careful diplomacy, not covert intrigue, is the modus operandi. Even when nuclear inspectors turn up bad news, such as the recent discovery of what may be a secret nuclear programme in Iran, inspectors are not enforcers. When findings have been confirmed, the IAEA Director

  15. United States Program for Technical assistance to IAEA Standards. Concept Paper: Knowledge Acquisition, Skills training for enhanced IAEA safeguards inspections

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ``Knowledge Acquisition Skills`` in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively.

  16. IAEA safeguards information system

    Nardi, J.

    1984-01-01

    The basic concepts, structure, and operation of the Agency Safeguards Information System is discussed with respect to its role in accomplishing the overall objectives of safeguards. The basis and purposes of the Agency's information system, the structure and flow of information within the Agency's system, the relationship of the components is the Agency system, the requirements of Member States in respect of their reporting to the Agency, and the relationship of accounting data vis-a-vis facility and inspection data are described

  17. IAEA safeguards: Challenges and opportunities

    1993-01-01

    The history of the IAEA safeguards regime is described. New challenges and opportunities are discussed in connection with the discovery in Iraq of a clandestine nuclear weapons development programme, the difficulties experienced in the implementation of the safeguards agreement with the Democratic People's Republic of Korea, the conclusion of a comprehensive safeguards agreement with Argentina, Brazil and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, recent developments in South Africa, the emergence of newly independent States that made up the former USSR. 2 figs

  18. IAEA safeguards: some pros and cons

    Kelly, P.

    1986-01-01

    The author gives a personal view of the International Atomic Energy Agency's (IAEA) safeguards. The IAEA safeguards system is described (including containment, surveillance and inspection), and the limitations and strengths of the system are examined. (U.K.)

  19. IAEA safeguards and classified materials

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  20. IAEA safeguards technical manual

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  1. IAEA inspectors complete verification of nuclear material in Iraq

    2004-01-01

    Full text: At the request of the Government of Iraq and pursuant to the NPT Safeguards Agreement with Iraq, a team of IAEA safeguards inspectors has completed the annual Physical Inventory Verification of declared nuclear material in Iraq, and is returning to Vienna. The material - natural or low-enriched uranium - is not sensitive from a proliferation perspective and is consolidated at a storage facility near the Tuwaitha complex, south of Baghdad. This inspection was conducted with the logistical and security assistance of the Multinational Force and the Office of the UN Security Coordinator. Inspections such as this are required by safeguards agreements with every non-nuclear-weapon state party to the NPT that has declared holdings of nuclear material, to verify the correctness of the declaration, and that material has not been diverted to any undeclared activity. Such inspections have been performed in Iraq on a continuing basis. The most recent took place in June 2003, following reports of looting of nuclear material at the Tuwaitha complex; IAEA inspectors recovered, repackaged and resealed all but a minute amount of material. NPT safeguards inspections are limited in scope and coverage as compared to the verification activities carried out in 1991-98 and 2002-03 by the IAEA under Security Council resolution 687 and related resolutions. 'This week's mission was a good first step,' IAEA Director General Mohamed ElBaradei said. 'Now we hope to be in a position to complete the mandate entrusted to us by the Security Council, to enable the Council over time to remove all sanctions and restrictions imposed on Iraq - so that Iraq's rights as a full-fledged member of the international community can be restored.' The removal of remaining sanctions is dependent on completion of the verification process by the IAEA and the UN Monitoring, Verification and Inspection Commission (UNMOVIC). It should be noted that IAEA technical assistance to Iraq has been resumed over

  2. Equipping the IAEA inspectorate with new skills

    Vidaurre-Henry, J.

    1999-01-01

    The transition to a strengthened safeguards system engendered new skill demands for the International Atomic Energy Agency Inspectorate and information requirements for State Systems of Accountancy and Control (SSAC). In response to these demands, the Section for Safeguards Training (TTR) developed courses to ensure that inspectors have the capability to better detect undeclared nuclear activities in States with comprehensive safeguards agreements, to better detect the misuse of declared nuclear facilities and installations, and to more efficiently and effectively manage the inspection process that allows such detection. This paper examines the resulting enhanced, advanced and refresher training curriculum for inspectors and the activities undertaken to convey relevant information and skills to Member States' personnel in charge of safeguards implementation. The development of the new curriculum required a modernisation of the techniques used to impart knowledge and skills to the trainees and concentrated on the implementation of a systematic approach to training methodology. This methodology gave rise to a logical progression from the identification of the new competencies required under the strengthened regime to the development and implementation of training to achieve these competencies, and to the subsequent evaluation of this training. This paper addresses the resulting expanded and enhanced training approach implemented by TTR. (author)

  3. The IAEA safeguards information system

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  4. Optimizing the IAEA safeguards system

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  5. Development of an IAEA Training Course for Future U.S. Inspectors

    Avgerinos Fitzwater, Savannah; Rynes, Amanda R.; Bracken, David S.; Metcalf, Richard R.M.; West, James D.

    2011-01-01

    U.S. citizens currently make up only 12% of the positions held in the IAEA's Department of Safeguards. While the United States has maintained a high level of support for the Agency over the duration of its history, the number of American inspectors currently in the field does not reflect this level of involvement. As a result, the National Nuclear Security Administration's Office of International Relations, as part of the Next Generation Safeguards Initiative (NGSI) mission, has tasked Idaho National Laboratory (INL) to develop a rigorous two week hands-on training program to encourage and operationally acclimatize U.S. Citizens who are interested in applying for IAEA inspector positions using IAEA authorized equipment at INL. Idaho National Laboratory is one-of-a-kind in its ability to train IAEA inspectors by including training at nuclear facilities on site and includes, for example, direct measurement of an active spent fuel storage cooling pond. This accredited course will introduce and train attendees on the major IAEA systems used in collecting nuclear safeguards data and performing safeguards inspections. Unique in the United States, these classes will give attendees direct hands-on training and will address equipment purpose, function, operating principles, application, and troubleshooting, based upon what would be expected of an IAEA Safeguards Inspector in the field and in the office. Upon completion, U.S. applicants will be better qualified to pursue a position in the IAEA Department of Safeguards Operational Divisions. In support, INL has recently established a new laboratory space to house state of the art nuclear safeguards instrumentation. Currently, equipment installed in the laboratory space includes attended systems: 3DLR (3-D Imaging Laser) for design information verification, a Digital Cerenkov Viewing Device for measurement of spent fuel, HM-5 handheld radiation detectors, quantitative neutron and gamma systems; unattended monitoring systems

  6. Improving the Transparency of IAEA Safeguards Reporting

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-01-01

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  7. The IAEA's safeguards systems. Ready for the 21st century

    1998-01-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? what assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification? (author)

  8. The IAEA's safeguards system. Ready for the 21st century

    1997-09-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? What assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification?

  9. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS

    PEPPER, S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-01-01

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R and D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose

  10. EURATOM safeguards implementation in France and cooperation with the IAEA

    Oddou, J.

    2013-01-01

    International safeguards in France are applied both by: -) the European Commission (EC), through the Chapter 7 of the EURATOM Treaty; -) the International Atomic Energy Agency (IAEA) as France is a party to the NPT and has concluded a safeguards agreement with IAEA. With the exception of mining, France has a complete nuclear fuel cycle from ore concentrates to waste. Based on the legal framework of the EURATOM Treaty, all civil nuclear facilities and all civil nuclear materials are safeguarded by EURATOM wherever they are in France. Therefore the two conversion plants, the two enrichment plants, the three fuel fabrication plants, the 59 nuclear power plants including the EPR of Flamanville under construction, the 2 reprocessing plants in La Hague, the five facilities for waste treatment and numerous research centers and reactors of CEA are declared and controlled by the European Commission. The activities of the EURATOM inspectors are of various kind depending of the facility and the type of inspection. The most common checks are: identification and counting of the nuclear material, verification of accountancy declaration vs. physical follow-up of the nuclear material, non-destructive analysis and destructive analysis after sampling in large bulk handling facilities. There is a strong cooperation between IAEA and EC: the majority of IAEA inspections in France are joint team inspections with the EC. This pooling of equipment and teams can save money and human resources. Equipment for containment and surveillance are paid whether by the EC or by the IAEA and can be used by both bodies of inspectors. With the principle of 'One Job One Person', verification activities are done only once and it saves time for the inspectors and the operators. The paper is followed by the slides of the presentation. (A.C.)

  11. Physical protection in relation to IAEA safeguards

    Sonnier, C.S.

    1984-01-01

    The general structure of the safeguards system, the SSAC interfaces, and physical protection principles, equipment, and techniques are reviewed. In addition, the interactions between the State, the facility operator, and the IAEA are described

  12. IAEA Safeguards: Past, Present, and Future

    Santi, Peter A. [Los Alamos National Laboratory; Hypes, Philip A. [Los Alamos National Laboratory

    2012-06-14

    This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

  13. Information system for IAEA inspectors at a centrifuge enrichment plant

    Baker, A.L.; Tape, J.W.; Picard, R.R.; Strittmatter, R.B.

    1985-01-01

    An information system has been developed to aid International Atomic Energy Agency (IAEA) inspectors at the Portsmouth Gas Centrifuge Plant in the US. This system is designed to provide the inspectors with data storage, data analysis, and data evaluation and decision capabilities with minimal impact on the plant operations. The techniques and methodologies developed for this specific case are described with discussion of their general applicability to IAEA inspections at all types of facilities. 7 refs

  14. The continuing role of item-specific agreements in the IAEA safeguards system

    DeFrancia, Cristian

    2012-01-01

    The International Atomic Energy Agency's (IAEA) 'safeguards system' serves as the foundation of the global nuclear non-proliferation regime, under which the IAEA acts as an auditor, monitor and inspector of state-administered nuclear energy programmes. The system consists of agreements and practices that enable the IAEA to gain a clear picture of a state's nuclear activities in order to provide credible assurances that nuclear energy is used for exclusively peaceful purposes

  15. Containment and surveillance -- A principle IAEA safeguards measure

    Sonnier, C.S.

    1997-01-01

    In October 1954, the Statue of the IAEA (International Atomic Energy Agency) had been signed by 70 nations. The Agency was established in 1957, and at the end of its first year of operation 130 professionals were employed in all departments. By the end of 1990, the number of professionals in the Safeguards Department had increased to over 270, over 200 of whom are designated inspectors. One of the unique features of the IAEA which directly interfaces with Member States is that of on-site inspections by international officials of the IAEA. This growth cycle, spanning some 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. This paper addresses the specific subject of technical means to maintain continuity of knowledge between inspection intervals--classically referred to as Containment and Surveillance

  16. Physical protection in relation to IAEA safeguards

    Sonnier, C.S.

    1985-01-01

    In this session, physical protection, nuclear material accounting and control, and containment and surveillance have been discussed, with emphasis on the interactions of these measures within the context of IAEA safeguards. In addition, the current physical protection equipment and techniques have been reviewed. The interactions can be summarized as follows. Although physical protection is a fundamental element of IAEA safeguards, it is solely a state/facility operator responsibility. While the IAEA has an interest in promoting the implementation of effective physical protection systems, it serves only in an advisory capacity. Nuclear material accounting directly involves the state, facility operator, and the IAEA. Facility records and reports provided by the state are independently verified by the IAEA. The SSAC is of fundamental importance in this process. Containment and surveillance measures are used by the UAEA. Installation and routine use of C/S equipment must be approved by the state and facility operator, and must not affect facility operations or safety

  17. IAEA safeguards: Staying ahead of the game

    2007-07-01

    What are nuclear safeguards and why are they important? Answers are provided in the booklet, describing and explaining the fundamentals of the IAEA safeguards system and its role as a key element of international security, and addressing the system's implementation, costs, requirements, resources and historical development, with an emphasis on trends and strengthening measures over the past 10-15 years. Topics discussed include the safeguards State evaluation process and and the key requirements of the safeguards system including information sources (open source information, commercial satellite imagery and nuclear trade related information) and the state of the art equipment, techniques and technology (unattended and remote monitoring equipment, environmental sampling, etc.)

  18. Recent advances in IAEA safeguards systems analysis

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  19. IAEA safeguards in new nuclear facilities

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  20. IAEA safeguards instrumentation: Development, implementation and control

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  1. The IAEA: politicization and safeguards

    Scheinman, L.

    1983-01-01

    The International Atomic Energy Agency is widely understood to be an essential element of an effective international nonproliferation regime which is itself a condition sine qua non to international nuclear cooperation and commerce. The progressive intrusion into Agency activities of extraneous political issues has threatened the Agency's integrity and undermined confidence in the organization. The consequences of continued deterioration would be substantial, most particularly for international safeguards which are unique and invaluable to peaceful nuclear development and international security. Measures to reverse this trend are identified and discussed

  2. IAEA safeguards and non-proliferation

    Harry, R J.S.

    1995-02-01

    An overview is given of efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this `Full Scope Safeguards` on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear weapon applications.

  3. IAEA safeguards and non-proliferation

    Harry, R.J.S.

    1995-02-01

    An overview is given of the efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the exclusively peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this 'Full Scope Safeguards' on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear

  4. Strengthening IAEA Safeguards for Research Reactors

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  5. Evaluation of an Autonomous Navigation and Positioning System for IAEA-SG Inspectors

    Finker, D.; Cai, R.; Rutkowski, J.; Kocjan, J.

    2015-01-01

    Documenting visual observations and other data taken during field missions such as inspections, complementary accesses and design information verification is a time-consuming process which requires considerable effort from the inspectors in the field. To streamline their work in the field, IAEA inspectors would benefit from being able to position themselves and navigate inside vast and complex sites. Automated positioning of the inspector will result in more accurate and complete documentation of the measurements and data that they collect. While outdoor positioning using GPS is a mature technology, an autonomous system providing ubiquitous positioning without relying on any infrastructure is still an emerging technology. This paper will present the results of the Technology Evaluation Workshop that was conducted in 2014 by the Department of Safeguards to assess the readiness level of existing technologies, identify gaps, and validate the identified operational needs. Potential implementation of the technology will be envisioned, and the presentation will highlight how they could benefit the efficiency of IAEA safeguards activities in the field and at Headquarters. Finally, it will be shown how the process of organizing technology evaluation workshops can be systematized to accelerate technological development and lower the risks associated with their deployment. (author)

  6. Containment and surveillance - A principal IAEA safeguards measure

    Drayer, D.D.; Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    The growth of the safeguards inspectorate of the Agency, spanning more than 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. Although the Agency was established in 1957, the first practical inspections did not occur until the early 1960s. In the early inspections, thee was little C/S equipment available, and no optical surveillance was used. However, by the third decade of the IAEA, the 1980s, many technology advances were made, and the level of C/S equipment activities increased. By the late 1980s, some 200 Twin Minolta film camera systems were deployed by the Agency for safeguards use. At the present time, the Agency is evaluating and beginning to implement remote monitoring as part of the Strengthened Safeguards System. However, adoption of remote monitoring by international agencies cannot occur rapidly because of the many technical and policy issues associated with this activity. A glimpse into the future indicates that an important element of safeguards instrumentation will be the merging of C/S and NDA equipment into integrated systems. The use of modern interior area monitors in International Safeguards also offers a great potential for advancing C/S measures. The research in microsensors is in its infancy, and the opportunities for their reducing the cost, increasing the life time, and increasing the reliability of sensors for safeguards applications are manifold. A period may be approaching in which the terminology of C/S will no longer have its original meaning, as integrated systems combining NDA instruments and C/S instruments are already in use and are expected to be the norm in the near future

  7. Strengthening of Organizational Infrastructure for Meeting IAEA Nuclear Safeguards Obligations: Bangladesh Perspective

    Mollah, A.S.

    2010-01-01

    Safeguards are arrangements to account for and control the use of nuclear materials. This verification is a key element in the international system which ensures that uranium in particular is used only for peaceful purposes. The only nuclear reactor in Bangladesh achieved critically on September 14, 1986. Reactor Operation and Maintenance Unit routinely carries out certain international obligations which need to undertake as signatory of different treaties, agreements and protocols in the international safeguards regime. Pursuant to the relevant articles of these agreements/protocols, the reactor and associated facilities of Bangladesh (Facility code: BDA- and BDZ-) are physically inspected by the designated IAEA safeguards inspectors. The Bangladesh Atomic Energy Commission (BAEC) has recently created a new division called 'Nuclear Safeguards and Security Division' for enhancing the safeguards activities as per international obligations. This division plays a leading role in the planning, implementation, and evaluation of the BAEC's nuclear safeguards and nuclear security activities. This division is actively working with USDOE, IAEA and EU to enhance the nuclear safeguards and security activities in the following areas: - Analysis of nuclear safeguards related reports of 3 MW TRIGA Mark-II research reactor; - Upgrading of physical protection system of 3 MW TRIGA Mark-II research reactor, gamma irradiation facilities, central radioactive storage and processing facility and different radiation oncology facilities of Bangladesh under GTRI programme; - Supervision for installation of radiation monitoring system of the Chittagong port under USDOE Megaports Initiative Programmes for detection of illicit trafficking of nuclear and radioactive materials; - Development of laboratory capabilities for analysis of nuclear safeguards related samples; - Planning for development of organizational infrastructure to carry out safeguards related activities under IAEA different

  8. Improving technical support to IAEA safeguards

    Rundquist, D.

    1986-01-01

    Changes present new safeguards challenges and require that the entire safeguards process become more efficient. A development process has evolved at the Agency that aids in matching appropriate technology to the needs, primarily through the mechanism of voluntary Member States Support Programme, which gives IAEA access to many of the worlds finest nuclear laboratories. The function of these programs is discussed in this article with particular emphasis on the Agency's co-ordination role. Besides a description of the Member States Support Programme the problems involved (coordination and communication aspects) as well as the results achieved are indicated. The support is categorized under the following headlines: 1) Information and expertise; 2) Instrumentation, methods and techniques; 3) Training; 4) Test and calibration facilities. As mentioned in the article Member States also benefit from the Support Programme. Other means of technical support such as multi-national co-operation programmes and bilateral research agreements are mentioned

  9. Contribution of the Member State Support Programmes to IAEA safeguards

    Fortakov, V.; Gardiner, D.; Rautjaervi, J.

    1999-01-01

    Over the last twenty years, Member States of the International Atomic Energy Agency (IAEA) have provided invaluable technical support to IAEA Safeguards. This support has covered practically all aspects of traditional safeguards activities and also those activities recently proposed and introduced for strengthening the safeguards system. As of August 1997, there were fourteen Member States, plus EURATOM, with active programmes in support of IAEA safeguards and the activities conducted under these Member State Support Programmes (MSSPs) are currently valued at an annual twenty million dollars of extra-budgetary contribution to the IAEA. The overall administration in the IAEA of the support programmes is the responsibility of Support Programmes Administration (SPA) in the Safeguards Division of Technical Services. This paper describes the roles and the contributions of the MSSPs, the functions of the MSSP administration activities, and the vital importance the IAEA attaches to the MSSPs. (author)

  10. IAEA safeguards for the Fissile Materials Disposition Project

    Close, D.A.

    1995-06-01

    This document is an overview of International Atomic Energy Agency (IAEA) safeguards and the basic requirements or elements of an IAEA safeguards regime. The primary objective of IAEA safeguards is the timely detection of the diversion of a significant quantity of material and the timely detection of undeclared activities. The two important components of IAEA safeguards to accomplish their primary objective are nuclear material accountancy and containment and surveillance. This overview provides guidance to the Fissile Materials Disposition Project for IAEA inspection requirements. IAEA requirements, DOE Orders, and Nuclear Regulatory Commission regulations will be used as the basis for designing a safeguards and security system for the facilities recommended by the Fissile Materials Disposition Project

  11. IAEA's Safeguards Implementation Practices Guides

    Mathews, C.; Sahar, S.; Cisar, V.

    2015-01-01

    Implementation of IAEA safeguards benefits greatly from effective cooperation among the IAEA, State or regional authorities (SRAs), and operators of facilities and other locations. To improve such cooperation, the IAEA has produced numerous safeguards guidance documents in its Services Series publications. The IAEA also provides assistance, training and advisory services that are based on the published guidance. The foundation of the IAEA's safeguards guidance is the Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (IAEA Services Series 21) published in March of 2012. The large majority of States have concluded CSAs and therefore will benefit from this guidance. Many States with CSAs also have concluded small quantities protocols (SQPs) to their CSAs. In April of 2013, the IAEA published the Safeguards Implementation Guide for States with SQPs (IAEA Services Series 22). Other guidance focuses on specific topics such as preparing additional protocol declarations and nuclear material accounting. This paper will describe a recent effort to produce a ''Safeguards Implementation Practices'' (SIP) series of guides that will provide additional explanatory information about safeguards implementation, and share the practical experiences and lessons learned of States and the IAEA over the many decades of implementing safeguards. The topics to be addressed in four SIP guides include: 1) Facilitating IAEA Verification Activities; 2) Establishing and Maintaining State Safeguards Infrastructure; 3) Provision of Information to the IAEA; and 4) Collaborative Approaches to Safeguards Implementation. The SIP Guides build upon the content of IAEA Services Series 21. Because the SIP Guides are intended to share implementation practices and lessons learned of States, a number of experienced State experts have participated in the development of the documents, through a joint Member State Support Programme task

  12. The NINO [No Inspector, No Operator system] cask-loading safeguards system

    Fiarman, S.

    1987-01-01

    It is, in general difficult to determine by means of camera-surveillance techniques what is loaded into spent-fuel casks being prepared for shipment from light-water reactors to other reactors, reprocessing facilities, or long-term storage. Furthermore, the expected high frequency of cask loadings in the coming years would place too great a burden on the IAEA and Euratom inspectorates if each had to be observed by an inspector. For the case of shipment to other reactors and reprocessing facilities, the casks are soon opened and, in principle, their contents could be ascertained by direct inspection. In the case of long-term-storage facilities, the casks would stay sealed for years, thereby requiring the IAEA to know positively how many spent-fuel assemblies were loaded at the reactor and to have a continuity of knowledge of the cask's contents. It has been proposed instead that the facility operator place the cask seal on the cask within the field of view of a surveillance system linked to the cask seal. This solution, however, may not provide enough credibility for acceptance by the safeguards community. This paper presents an alternative to both inspector presence at cask loading and operator assistance in applying seals; this alternative is called the No Inspector, No Operator system (NINO)

  13. The present status of IAEA safeguards on nuclear fuel cycle facilities

    1979-02-01

    This paper examines the present approach of the International Atomic Energy Agency (IAEA) to safeguarding various types of facilities in the nuclear fuel cycle, in the hope that it will serve as useful background material for several of the various working groups of the International Nuclear Fuel Cycle Evaluation (INFCE). The objectives and criteria of safeguards as well as the specific safeguards techniques which are utilized by the Agency, are addressed. In Part I, a general overview of safeguards as well as a discussion of procedures applicable to most if not all IAEA safeguarded facilities are included. Part II is broken down into specific facility types and focusses on the particular safeguards measures applied to them. Safeguards have reached different degrees of development for different types of facilities, in part because the Agency's experience in safeguarding certain types is considerably greater than for other types. Thus the Agency safeguards described herein are not static, but are continuously evolving. This evolution results not only from the fact that larger and more complex facilities have been coming under safeguards. Changes are also continually being introduced based on practical experience and research and development aimed at improving safeguards efficiency, reducing intrusiveness into plant operations, minimizing operator and inspector radiation exposure, and reducing subjective evaluations in determining the effectiveness of safeguards. To these ends, the technical support programmes of various countries are playing an important role. It is emphasized that this paper is not intended to evaluate the effectiveness of Agency safeguards or to highlight problem areas. It is simply aimed at providing a picture of what safeguards are or are planned to be at various stages of the fuel cycle

  14. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    NONE

    2014-12-15

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  15. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    2014-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  16. Gamma techniques for IAEA [International Atomic Energy Agency] safeguards at centrifuge enrichment cascades

    Aaldijk, J.K.; de Betue, P.A.C.; van der Meer, K.; Harry, R.J.S.

    1987-01-01

    On February 4, 1983, the Hexapartite Safeguards Project (HSP) concluded that the safeguards approach involving limited frequency unannounced access (LFUA) by International Atomic Energy Agency (IAEA) inspectors to cascades areas together with inspection activities outside the cascade areas meets the IAEA safeguards objectives in an effective and efficient way. In this way, the risks of revealing sensitive information were also minimized. The approach has been defined clearly and unambiguously, and it should be applied equally to all technology holders. One of the conclusions of the HSP was that a nondestructive assay go/no-go technique should be used during the LFUA inspections in the cascade areas of centrifuge enrichment plants. The purpose is to verify that the enrichment of the product UF 6 gas is in the range of low-enriched uranium (LEU), i.e., the enrichment is below 20%

  17. European Commission and IAEA Celebrate 30 Years Co-operation on Nuclear Safeguards

    2011-01-01

    Full text: Today the European Commission and the International Atomic Energy Agency (IAEA) celebrate 30 years of cooperation in the safeguarding of nuclear materials and facilities. This anniversary is marked by an event at the AEA Headquarters in Vienna. The Joint Research Centre (JRC) of the European Commission has provided scientific and echnical support to the work of IAEA since 1981, with over 100 scientists and technicians working on more than 25 projects. The anniversary is also an opportunity for both parties to plan their future joint activities. ''Nuclear safety and security are absolute priorities for the EU and in this context expertise on nuclear safeguards is extremely important for global security,'' says Dominique Ristori, Director General of the Joint Research Centre. ''The JRC is constantly at work on state-of-the-art technologies for nuclear safeguards and training of nuclear inspectors to stay ahead of the evolving challenges, in its long-standing cooperation in support of the Agency's mission.'' ''The JRC has provided us with vital scientific and technical support which has helped us to implement safeguards more effectively,'' said Herman Nackaerts, Deputy Director General for Safeguards at the IAEA. ''This has had a positive impact on the security of all the citizens of the European Union and beyond.'' An important chapter in the collaboration between the two organisations is training: high-quality training programmes are provided by the JRC for the next generation of IAEA and EURATOM Inspectors. Other examples of cooperation include special tools to improve environmental particle analysis, a 3D laser-based verification system of nuclear facilities, new nuclear reference materials, and secure sealing for underwater nuclear spent fuel assemblies. Future cooperation between the JRC and IAEA will be in line with the new priorities of the IAEA to further increase the safeguards' effectiveness and efficiency, through a customized approach

  18. A technical analysis of the IAEA nuclear safeguards

    Yoon, J. W.

    1998-01-01

    In the post-Cold War era, the threats of horizontal nuclear proliferation emerge as the forefront security issue while the nuclear arms races among existing nuclear weapon states reduce to a remarkable extent. In this context, there arises lots of research attention to the IAEA nuclear safeguards which have been viewed as the core of international monitoring on the clandestine nuclear activities of potential proliferators. However, previous attention tended to highlight the political aspects of the IAEA nuclear safeguards, centering on the possibilities and limitations of the IAEA's inspection authority. In contrast, this paper purports to focus on the technical aspects of the IAEA nuclear safeguards, so it can show the intrinsic problems of those safeguards in stemming the proliferation of nuclear weapons. This paper mainly deals with the technical objectives and options of the IAEA nuclear safeguards, the technical indices of clandestine nuclear activities, and some measures to improve the efficacy of the IAEA nuclear safeguards. Hopefully, this paper is expected to lead us to approach the issue of the North Korean nuclear transparency from the technical perspective as well as the political one

  19. Canadian safeguards research and development in support of the IAEA

    1980-03-01

    Canada has established a safeguards research and development program whose purpose is to supplement the resources of the IAEA. The program of support is a coordinated effort for the development and application of safeguards techniques and instruments to reactors of Canadian design. This document sets forth those tasks that make up the program

  20. The position of IAEA safeguards relative to nuclear material control accountancy by States

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards, which are always implemented on the basis of agreements which are concluded between one or more Governments and the IAEA, lay down the rights and obligations of the parties; and the more modern types of agreement, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do this in quite some detail. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. These are based on two basic obligations - that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the IAEA to ascertain the absence of diversion of nuclear material by verifying the findings of the States' systems, inter alia through independent measurements and observations. Other articles dealing also with the working relations between States and the IAEA rule that the IAEA should take due account of the technical effectiveness of the States' systems and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy on that of the facility operator. However, quantitative relationships in this respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rationale has been developed and possible practical arrangements discussed with several States concerned. The rationale for co-ordinating the work of the States' inspectorate with that of the IAEA was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted so as to reduce to a certain extent the IAEA's independent verification work in case the States would themselves do extensive verifications in a manner transparent to the IAEA. However, in practice it proved that there are a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards

  1. Finnish support programme to IAEA safeguards. Annual report 1994

    Tarvainen, M.

    1995-05-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out trough separate tasks concentrating on verification of nuclear material, training and expert services to the IAEA. In addition to the Finnish summary, the report includes detailed description of each task in English

  2. IAEA safeguards and detection of undeclared nuclear activities

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.)

  3. IAEA safeguards and detection of undeclared nuclear activities

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.).

  4. Finnish support programme to IAEA safeguards. Annual report 1994; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1994 toimintakertomus

    Tarvainen, M [ed.

    1995-05-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out trough separate tasks concentrating on verification of nuclear material, training and expert services to the IAEA. In addition to the Finnish summary, the report includes detailed description of each task in English.

  5. The present status of IAEA safeguards on nuclear fuel cycle facilities

    1978-11-01

    The present IAEA approach to safeguarding various types of nuclear facilities is examined. The IAEA safeguards objectives, criteria and specific techniques are addressed, with reference e.g. to concepts like timely detection, quantities of safeguards significance, and conversion times. Material accountancy and containment and surveillance as basic features of IAEA safeguards verification are discussed. Safeguards measures for specific facility types are considered and corresponding levels of IAEA safeguards experience are assessed. Outlines of expected IAEA safeguard approaches to large bulk handling facilities are discussed. The evolutionary nature of safeguards based on experience and research and development is mentioned

  6. Non-proliferation and international safeguards. [Booklet by IAEA

    1978-01-01

    This booklet consists of 13 separate, brief analyses related to the subject title, namely: The International Scope of IAEA Safeguards; Application of Safeguards Procedures; Computer-Based Safeguards Information and Accounting System; IAEA Training Activities Related to State Systems of Nuclear Materials Accountancy and Control; Surveillance and Containment Measures to Support IAEA Safeguards; International Plutonium Management; Safeguards for Reprocessing and Enrichment Plants; Non-Destructive Assay: Instruments and Techniques for Agency Safeguards; The Safeguards Analytical Laboratory: Its Functions and Analytical Facilities; Resolution of the UN General Assembly on the Treaty on the Non-Proliferation of Nuclear Weapons of 12 June 1968; The Treaty on the Non-Proliferation of Nuclear Weapons; Final Declaration of the Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons, May 1975; Resolutions on the IAEA's Work in the Field of the Peaceful Uses of Atomic Energy, adopted by the UN General Assembly on 8 and 12 December, 1977; and a Map on the NPT situation in the world (with explanations).

  7. IAEA Guidance for Safeguards Implementation in Facility Design and Construction

    Sprinkle, J.; Hamilton, A.; Poirier, S.; Catton, A.; Ciuculescu, C.; Ingegneri, M.; Plenteda, R.

    2015-01-01

    One of the IAEA's statutory objectives is to seek to accelerate and enlarge the contribution of nuclear energy to peace, health and prosperity throughout the world. One way the IAEA works to achieve this objective is through the publication of technical series that can provide guidance to Member States. These series include the IAEA Services Series, the IAEA Safety Standard Series, the IAEA Nuclear Security Series and the IAEA Nuclear Energy Series. The Nuclear Energy Series is comprised of publications designed to encourage and assist research and development on, and practical application of, nuclear energy for peaceful purposes. This includes guidance to be used by owners and operators of utilities, academia, vendors and government officials. The IAEA has chosen the Nuclear Energy Series to publish guidance for States regarding the consideration of safeguards in nuclear facility design and construction. Historically, safeguards were often applied after a facility was designed or maybe even after it was built. However, many in the design and construction community would prefer to include consideration of these requirements from the conceptual design phase in order to reduce the need for retro-fits and modifications. One can then also take advantage of possible synergies between safeguards, security, safety and environmental protection and reduce the project risk against cost increments and schedule slippage. The IAEA is responding to this interest with a suite of publications in the IAEA Nuclear Energy Series, developed with the assistance of a number of Member State Support Programmes through a joint support programme task: · International Safeguards in Nuclear Facility Design and Construction (NP-T-2.8, 2013), · International Safeguards in the Design of Nuclear Reactors (NP-T-2.9, 2014), · International Safeguards in the Design of Spent Fuel Management (NF-T-3.1, tbd), · International Safeguards in the Design of Fuel Fabrication Plants (NF-T-4.7, tbd

  8. The position of IAEA safeguards relative to nuclear material control accountancy by states

    Rometsch, R.; Hough, G.

    1977-01-01

    IAEA Safeguards are always implemented on the basis of agreements which are concluded between one or more Governments and the Agency. They lay down the rights and obligations of the parties; the more modern types of agreements, in particular those in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, do that in quite some details. Several articles, for instance, regulate the working relations between the States and the IAEA inspectorate. Those are based on two basic obligations: that of the State to establish and maintain a ''System of Accountancy for and Control of Nuclear Material'' and that of the Agency to ascertain the absence of diversion of nuclear material by verifying the findings of the States' system, inter alia through independent measurements and observations. Other articles dealing also with the working relations States - IAEA rule that the Agency should take due account of the technical effectiveness of the States' system and mention among the criteria for determining the inspection effort, the extent of functional dependence of the State's accountancy from that of the facility operator. However, quantitative relationships in that respect are left to be worked out in practice. With the help of consultants and expert advisory groups a rational has been developed and possible practical arrangements discussed with several States concerned. The rational for coordinating the work of the States' inspectorate with IAEA's inspectorate was to use a factor by which the significant quantity used for calculating verification sampling plans would be adjusted in order to reduce to a certain extent the Agency's independent verification work in case the States would do extensive verifications themselves in a manner transparent to IAEA. However, in practice it proved that there are quite a number of points in the fuel cycle where such adaptations would have little or no effect on the inspection effort necessary to achieve the safeguards objective

  9. The future of IAEA safeguards: challenges and responses

    Pilat, Joseph F.; Budlong-Sylvester, Kory W.

    2011-01-01

    For nearly two decades, the International Atomic Energy Agency (lAEA) has been transforming its safeguards system to address the challenges posed by undeclared nuclear programs, the associated revelation of an extensive non-State nuclear procurement network and other issues, including past limits to its verification mandate and the burden of noncompliance issues. Implementing the new measures, including those in the Additional Protocol, and integrating new and old safeguards measures, remains a work in progress. Implementation is complicated by factors including the limited teclmological tools that are available to address such issues as safeguarding bulk handling facilities, detection of undeclared facilities/activities, especially related to enrichment, etc. As this process continues, new challenges are arising, including the demands of expanding nuclear power production worldwide, so-called safeguards by design for a new generation of facilities, the possible IAEA role in a fissile material cutoff treaty and other elements of the arms control and disarmament agenda, the possible role in 'rollback' cases, etc. There is no doubt safeguards will need to evolve in the future, as they have over the last decades. In order for the evolutionary path to proceed, there will inter alia be a need to identify technological gaps, especially with respect to undeclared facilities, and ensure they are filled by adapting old safeguards technologies, by developing and introducing new and novel safeguards teclmologies and/or by developing new procedures and protocols. Safeguards will also need to respond to anticipated emerging threats and to future, unanticipated threats. This will require strategic planning and cooperation among Member States and with the Agency. This paper will address challenges to IAEA safeguards and the technological possibilities and R and D strategies needed to meet those challenges in the context of the forty-year evolution of safeguards, including the

  10. Finnish support programme to IAEA safeguards. Annual report 1993; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1993 toimintakertomus

    Tarvainen, M [ed.

    1994-03-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out through separate tasks related to development of non-destructive measurement methods (NDA methods) for verification of nuclear material, training and expert services to the IAEA. In addition to a Finnish summary, the report includes detailed description of each task in English. (editor).

  11. Finnish support programme to IAEA safeguards. Annual report 1992; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1992 toimintakertomus

    Tarvainen, M [ed.

    1993-04-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out through separate tasks related to development of non-destructive measurement methods (NDA methods) for verification of nuclear material, training and expert services to the IAEA. In addition to a Finnish summary, the report includes detailed description of each task in English. (editor).

  12. Training of the Agency's inspectors

    Pontes, B.; Bates, G.; Dixon, G.

    1981-01-01

    The IAEA Safeguards inspectors are highly qualified professional staff. Their work, however, is a unique and specialized branch of knowledge and it is necessary to train those about to engage in it. Safeguards concepts, methods, practices and techniques are developing rapidly as more and more varied facilities come under international safeguards, needing more inspectors and other professional staff. Experienced inspectors also have to update their knowledge and skills. A Training Unit within the IAEA's Department of Safeguards meets these needs. The training programme for new as well as experienced inspectors is described. Extensive use is made in the training courses of television, videotaped material and other audiovisual aids. A substantial contribution is made to the training of the IAEA's inspectors by the support programmes of Member States

  13. Japan-IAEA Workshops on Advanced Safeguards for Future Nuclear Fuel Cycles

    Hoffheins, B.; Hori, M.; Suzuki, M.; Kuno, Y.; Kimura, N.; Naito, K.; Hosoya, M.; Khlebnikov, N.; Whichello, J.; Zendel, M.

    2010-01-01

    Beginning in 2007, the Japan Atomic Energy Agency (JAEA) and the International Atomic Energy Agency (IAEA) Department of Safeguards initiated a workshop series focused on advanced safeguards technologies for the future nuclear fuel cycle (NFC). The goals for these workshops were to address safeguards challenges, to share implementation experiences, to discuss fuel cycle plans and promising research and development, and to address other issues associated with safeguarding new fuel cycle facilities. Concurrently, the workshops also served to promote dialog and problem solving, and to foster closer collaborations for facility design and planning. These workshops have sought participation from IAEA Member States' support programmes (MSSP), the nuclear industry, R and D organizations, state systems of accounting and control (SSAC), regulators and inspectorates to ensure that all possible stakeholder views can be shared in an open process. Workshop presentations have covered, inter alia, national fuel cycle programs and plans, research progress in proliferation resistance (PR) and safeguardability, approaches for nuclear measurement accountancy of large material throughputs and difficult to access material, new and novel radiation detectors with increased sensitivity and automation, and lessons learned from recent development and operation of safeguards systems for complex facilities and the experiences of integrated safeguards (IS) in Japan. Although the title of the workshops presumes an emphasis on technology, participants recognized that early planning and organization, coupled with close cooperation among stakeholders, that is, through the application of 'Safeguards by Design' (SBD) processes that include nuclear safety and security coordination, 'Remote Inspections' and 'Joint-Use of Equipment (JUE)' would be required to enable more successful implementations of safeguards at future NFC facilities. The needs to cultivate the future workforce, effectively preserve

  14. Design features to facilitate IAEA safeguards at light water reactors

    Pasternak, T.; Glancy, J.; Goldman, L.; Swartz, J.

    1981-01-01

    Several studies have been performed recently to identify and analyze light water reactor (LWR) features that, if incorporated into the facility design, would facilitate the implementation of International Atomic Energy Agency (IAEA) safeguards. This paper presents results and conclusions of these studies. 2 refs

  15. The development and function of the IAEA's safeguards information system

    Dell'Acqua, F.; Gmelin, W.; Issaev, L.; Hough, G.; Nardi, J.

    1981-01-01

    The history of the creation and development of ISIS (International Safeguards Information System), a system for processing information received from Safeguards inspectors about both NPT and non-NPT states, is described. The main procedures for the evaluation of information received from inspectors are also described. ISIS was created on the basis of a commercially available Adaptable DAta-BAse Management System (ADABAS). At the outset, the main efforts of ISIS were devoted to processing the information reported by individual states themselves. The processing of this information fell into three stages: the putting of the information into an intermediate file, then loading the data into logical files, and the quality control of the information. The purpose and motives behind the creation of the new system GULUS (Generalized User Load and Update System) are described, together with its main characteristics. This system is an additional tool for the processing of information provided by inspectors and available even to the not very qualified user. The quick growth of the volume of Safeguards information required more computer power and motivated the buying of a new computer (IBM 3033) which permits the further development of ISIS

  16. The future use of pathway analysis in IAEA safeguards

    Budlong Sylvester, Kory; Pilat, J.; Murphy, Chantell

    2013-01-01

    Pathway analysis has the potential to play an important role in the development of a safeguards system that is more information driven, leveraging all the information available to the International Atomic Energy Agency (IAEA). Pathway analysis should be seen as an extension of traditional hypothesis testing used by the Agency in the past. The most attractive pathways based on the assessed capabilities of a given state can be identified and used in the development of state-level safeguards approaches. This ranking of pathways can be revised based on evidence of pathway use, or preparations for use, allowing limited safeguards resources to flow to the areas of highest concern. The possible uses of pathway analysis in the implementation of the IAEA's state-level concept are described along with implementation issues that will likely arise. The paper is followed by the slides of the presentation. (authors)

  17. Strategic plan for the development of IAEA safeguards equipment

    Khlebnikov, N.

    2001-01-01

    Full text: The need for a top-down Safeguards Strategy to focus departmental objectives was recognized by the Programme Performance Appraisal System (PPAS) performed on the Equipment Development Project in 1999. The Department of Safeguards prepared at the end of 2000 a 5-year Strategic Plan to identify the changes and improvements expected to take place over the 2001-2005 period. Those Strategic Objectives were supposed to be used to properly plan IAEA Safeguards activities and define appropriate and coherent R and D programmes. The present paper describes the strategic directions that the IAEA will follow in the area of equipment development in order to meet the Safeguards Department long-term objectives for 2001-2005. The paper, which is derived from the IAEA Strategic Equipment Development Plan, prepared by the Division of Technical Support, includes two parts: general principles and policies applicable to all equipment development tasks; specific strategic guidance. The paper will not describe the detailed plans which are prepared based on the strategic plan on a biannual basis. Equipment development activities have been divided in five major projects (NDA, Seals, Surveillance, Unattended Monitoring and Remote Monitoring). Strategic directions for each of these projects will be described in the paper. Separate sections will deal with equipment development strategic guidance in the area of additional protocol inspections, JNFL projects, illicit trafficking and Trilateral Initiative. (author)

  18. IAEA safeguards and the additional protocol in the Eurasia Region

    Murakami, K.

    2001-01-01

    Developing and implementing safeguards against misuse of nuclear material and facilities has always been the Agency's main activities. Like the nuclear non-proliferation regime itself, the development of the safeguards system has been an evolutionary process. The first safeguards inspection was carried out in 1962 (in Norway). In the sixties, the basic concepts behind safeguards were developed (INFCIRC/26, adopted in 1961, for some of you it might still have a familiar ring) and the number of inspections and types of facilities inspected grew slowly. With the advent of INFCIRC/66/Rev. 2, a more complete, albeit limited, system of safeguards covering nuclear material, equipment and facilities emerged. But the quantum leap came, of course, wit the entry into force of the NPT. Today, the IAEA has 224 safeguards agreements in force with 140 States. Nearly all of these States are NPT States. In the Eurasia Region, particularly the Newly Independent States (NIS) significant achievements have been made in the Safeguards Implementation. States with nuclear activities have the SG Agreement in force. Some states are already signing the Additional Protocol and it is in force in two of these States in the NIS region. Much progress has been made in the area of nuclear material and accountancy through the IAEA Coordinated Technical Support Programme (CTSP). The programme was organized to co-ordinate the donor states activities and has been successful for the last seven years in providing assistance in the area of nuclear legislation establishment of the State System of Accountancy of nuclear material (SSAC) and other related areas. Improvement is still foreseen in these areas, particularly as more states in the region will be signing and implementing the Additional Protocols

  19. IAEA integrated safeguards instrumentation program (I2SIP)

    Arlt, R.; Fortakov, V.; Gaertner, K.J.

    1995-01-01

    This article is a review of the IAEA integrated safeguards instrumentation program. The historical development of the program is outlined, and current activities are also noted. Brief technical descriptions of certain features are given. It is concluded that the results of this year's efforts in this area will provide significant input and be used to assess the viability of the proposed concepts and to decide on the directions to pursue in the future

  20. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    Badalamente, R. [Pacific Northwest Lab., Richland, WA (United States); Anzelon, G. [Lawrence Livermore National Lab., CA (United States); Deland, S. [Sandia National Labs., Albuquerque, NM (United States); Whiteson, R. [Los Alamos National Lab., NM (United States)

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

  1. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    Badalamente, R.; Anzelon, G.; Deland, S.; Whiteson, R.

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information

  2. IAEA safeguards information system re-engineering project (IRP)

    Whitaker, G.; Becar, J.-M.; Ifyland, N.; Kirkgoeze, R.; Koevesd, G.; Szamosi, L.

    2007-01-01

    The Safeguards Information System Re-engineering Project (IRP) was initiated to assist the IAEA in addressing current and future verification and analysis activities through the establishment of a new information technology framework for strengthened and integrated safeguards. The Project provides a unique opportunity to enhance all of the information services for the Department of Safeguards and will require project management 'best practices' to balance limited funds, available resources and Departmental priorities. To achieve its goals, the Project will require the participation of all stakeholders to create a comprehensive and cohesive plan that provides both a flexible and stable foundation for address changing business needs. The expectation is that high quality integrated information systems will be developed that incorporate state-of-the-art technical architectural standards, improved business processes and consistent user interfaces to store various data types in an enterprise data repository which is accessible on-line in a secure environment. (author)

  3. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    Laughter, Mark D.; Whitaker, J. Michael; Howell, John

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF 6 feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated load

  4. Current status of process monitoring for IAEA safeguards

    Koroyasu, M.

    1987-06-01

    Based on literature survey, this report tries to answer some of the following questions on process monitoring for safeguards purposes of future large scale reprocessing plants: what is process monitoring, what are the basic elements of process monitoring, what kinds of process monitoring are there, what are the basic problems of process monitoring, what is the relationship between process monitoring and near-real-time materials accountancy, what are actual results of process monitoring tests and what should be studied in future. A brief description of Advanced Safeguards Approaches proposed by the four states (France, U.K., Japan and U.S.A.), the approach proposed by the U.S.A., the description of the process monitoring, the main part of the report published as a result of one of the U.S. Support Programmes for IAEA Safeguards and an article on process monitoring presented at an IAEA Symposium held in November 1986 are given in the annexes. 24 refs, 20 figs, tabs

  5. Knowledge Management in the IAEA Department of Safeguards

    Konecni, S.; Carrillo de Fischer, J.

    2016-01-01

    Full text: Knowledge Management (KM) is an integral part of the Departmental Quality Management System because knowledge (i.e., the ‘know-how’, ‘know-when’, ‘know-who’, ‘know-why’, etc.) is needed to produce high quality products and services on a daily basis. The ability to continue providing such products and services is challenged each time an experienced staff member leaves the IAEA due to retirement or end of contract and takes with them important job-related knowledge. The most important assets in the International Atomic Energy Agency (IAEA) Department of Safeguards (SG) are people and their knowledge. The Department of Safeguards developed a knowledge management (KM) framework and the corresponding approaches as well as specific guidelines for its implementation. Knowledge retention (KR) is part of knowledge management and focusses on eliminating the risk of losing the critical job-related knowledge by putting in place a systematic knowledge retention plan. Particularly, for knowledge retention, the Safeguards Division of Concepts and Planning (SGCP) developed a model to draw out and capture the critical knowledge and making it available for use by others. This paper describes the knowledge retention model/approach and lessons learned from implementing the knowledge management programme in SG. (author

  6. Overview of IAEA guidelines for state systems of accounting for and control of nuclear materials: objectives, diversion of nuclear material, and the IAEA safeguards system

    Buechler, C.

    1984-01-01

    Topics discussed include IAEA safeguards statutes, project and transfer agreements, agreements pursuant to the Non-Proliferation Treaty, implementation of IAEA safeguards, diversion strategies, accountancy and surveillance systems, and verification

  7. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Andersson, Christer

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a 'Model Protocol Additional to Safeguards Agreements'. The Protocol provides the legal basis necessary to enhance the Agency's ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following 'Implementation Blueprint' study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small 'imagery unit' within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild's long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small 'imagery unit' using high-resolution data will be a sound and

  8. IAEA Safeguards: Cost/benefit analysis of commercial satellite imagery

    Andersson, Christer [SSC Satellitbild AB, Kiruna (Sweden)

    1999-03-01

    A major milestone in the efforts to strengthen the Safeguards System was reached in May 1997 when the Board of Governors approved a `Model Protocol Additional to Safeguards Agreements`. The Protocol provides the legal basis necessary to enhance the Agency`s ability to detect undeclared nuclear material and activities by using information available from open sources to complement the declarations made by Member States. Commercially available high-resolution satellite data has emerged as one potential complementary open information source to support the traditional and extended Safeguard activities of IAEA. This document constitutes a first report from SSC Satellitbild giving the Agency tentative and initial estimates of the potential cost and time-savings possible with the new proposed technology. The initial cost/benefit simulation will be further finalised in the following `Implementation Blueprint` study. The general foundation and starting point for the cost/benefit calculation is to simulate a new efficient and relatively small `imagery unit` within the IAEA, capable of performing advanced image processing as a tool for various safeguards tasks. The image processing capacity is suggested to be task- and interpretation-oriented. The study was performed over a period of 1,5 weeks in late 1998, and is based upon interviews of IAEA staff, reviews of existing IAEA documentation as well as from SSC Satellitbild`s long-standing experience of satellite imagery and field missions. The cost/benefit analysis is based on a spreadsheet simulation of five potential applications of commercial satellite imagery: Reference information; Confirmation of Agency acquired and Member State supplied data; Change detection and on-going monitoring; Assessing open source information available to the Agency; Detecting undeclared activities and undeclared sites. The study confirms that the proposed concept of a relatively small `imagery unit` using high-resolution data will be a sound and

  9. Collecting Safeguards Relevant Trade Information: The IAEA Procurement Outreach Programme

    Schot, P.; El Gebaly, A.; Tarvainen, M.

    2010-01-01

    The increasing awareness of activities of transnational procurement networks to covertly acquire sensitive nuclear related dual use equipment prompted an evolution of safeguards methodologies. One of the responses to this challenge by the Department of Safeguards in the IAEA was to establish the Trade and Technology Unit (TTA) in November 2004 to analyse and report on these covert nuclear related trade activities. To obtain information relevant to this analysis, TTA is engaging States that might be willing to provide this information to the Secretariat on a voluntary basis. This paper will give an overview of current activities, sum up the results achieved and discuss suggestions to further improve this programme made by Member States. (author)

  10. Radiation detectors as surveillance monitors for IAEA safeguards

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development

  11. Radiation detectors as surveillance monitors for IAEA safeguards

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  12. Enhanced cooperation between IAEA and Republic of Korea on safeguards implementation at light water reactors

    Park, Wan-Sou; Kim, Byung-Koo; Yim, Seuk-Soon

    2001-01-01

    Full text: In Korea, national inspection has been initiated from the second half of 1997. From 1999, national inspection has been carried out for all nuclear facilities in Korea. In 2000, national inspections were performed successfully in 32 nuclear facilities including 12 PWRs, 4 CANDU reactors, 10 research facilities, 4 fuel fabrication plants and others. As the national inspection system settled down, both the IAEA and Korea were looking for possible ways of cooperation for mutual benefit. It was expected that considerable saving on inspection resources as well as more effective safeguards implementation could be achieved, if more enhanced cooperation work was realized. In 1999, the IAEA and Korea agreed to establish a working group for the enhanced cooperation between both sides. A working group, composed of experts from the IAEA and ROK, reviewed several options for enhanced cooperation on LWRs in Korea and suggested a measure for implementing the current safeguards approach for LWRs with remote monitoring. The basic concepts of the Enhanced Cooperation Scheme are: 1. The SSAC shall carry out all scheduled inspections for each facility for each year, while the Agency shall carry out the annual PIV and post-PIV, and a random selection of the remaining inspections; 2, The remote monitoring (RM) data necessary for technical and safeguards review shall be shared between the Agency and SSAC; 3. The IAEA shall bear the costs of purchasing RM equipment and communication operating costs from the central hub station in Korea to Vienna; the ROK will bear the costs of installing all RM equipment and communication operating costs from each LWR to the central hub station in Korea. Typically, around 8-9 inspections are performed for one LWR per annum under current safeguards approach; 1 pre-PIV, 1 PIV, 1 post-PIV, 3-4 interim inspections, fresh fuel receipts and simultaneous inspection. RM design includes 2 digital cameras (equipment hatch and spent fuel pond), VACOSS

  13. Strengthening Performance Management in the IAEA Department of Safeguards

    Villiers, V. Z. de

    2015-01-01

    This paper will describe an initiative to develop a management support tool to improve performance management in the IAEA Department of Safeguards. The envisaged mechanism should enable the Department to (a) plan, assess and report on the achievement of its objectives and (b) to improve its performance on a continuous basis. The performance management tool should be aligned with related processes in the Department and the IAEA as a whole such as strategic planning, programming and budget, the result-based management approach and various reporting mechanisms. It should be integrated with existing and planned information and other management systems. The initially, departmental working group that was established for this initiative focussed on two aspects: confirmation of the overall and specific objectives to be achieved by the Department of Safeguards, and compiling an inventory of indicators of activities, outputs and outcomes that were being used in the Department. This exercise confirmed that alignment and prioritization of activities relating to assessment of, and reporting on, performance could be improved. A value creation map was subsequently developed to assist in focussing the performance management tool to identified needs of stakeholders. Other activities of the working group included the determination of the desired characteristics of a hierarchy of performance indicators to be used to drive desired behaviour across organizational levels. Complexities to be handled included the following: · reflecting the appropriate component of the results chain (such as activities, outputs, outcomes and impact); · maintaining the linkages between objectives and performance indicators across organizational levels; · developing a balanced set of performance indicators (e.g. reflecting in-field and Headquarters activities, incorporating all main components of Departmental processes and balanced scorecard perspectives, measurable vs qualitative indicators); and

  14. IAEA to implement Safeguards Additional Protocols in the EU

    2004-01-01

    Full text: IAEA Director General Mohamed ElBaradei welcomed the entry into force today of the Additional Protocols for 15 States of the European Union - France, the United Kingdom and the 13 non-nuclear weapon States of the EU - and the European Atomic Energy Community (EURATOM). The Protocols, which provide the Agency with better tools to verify compliance with nuclear non-proliferation commitments, entered into force when the European Commission informed the Agency that EURATOM's own requirements for entry into force had been met. The 15 States had provided similar notifications over the past years since signing the Protocols in 1998. The simultaneous entry into force of Additional Protocols for the 15 EU States is 'a very positive development and a milestone in our efforts to strengthen the verification regime', said Dr. ElBaradei. 'In my view, the Additional Protocol should become the standard for verification under the Treaty on the Non-Proliferation of Nuclear Weapons (NPT).' He added that the Agency had been preparing for the entry into force of the EU protocols and was confident that, in co-operation with the 15 States and EURATOM, it would be able to ensure effective and efficient implementation in the EU States. The Model Additional Protocol was developed following the discovery of Iraq's clandestine nuclear weapons programme to ensure that the IAEA is given the information and access it needs for timely discovery of any similar activities in States that have pledged not to use nuclear material and activities for weapons purposes. In the past year, Additional Protocols entered into force for 22 countries, and the Agency will now implement Additional Protocols in 58 States, which includes the 15 EU States. The 10 countries joining the EU on 1 May 2004 - seven of which already have brought into force Additional Protocols to their respective safeguards agreements - are expected to gradually accede to the Safeguards Agreement and Additional Protocol covering

  15. The role of IAEA Safeguards in connection with nuclear trade

    Imai, R.

    1977-01-01

    IAEA safeguards is one of the means to prevent proliferation of military and/or explosive utilization of nuclear material. As such; safeguards can be a potent instrument, and its characteristics are primarily technical. Other means may include; a) political incentives which make possession of nuclear weapons unnecessary and undescribable; b) an extent of trade restrictions regarding certain sensitive material, equipment and technology; and c) accompanying requirements of physical protection. Peaceful nuclear industry has an aspect which naturally calls for international exchange. The technology itself represents one of the most advanced in our times, and therefore, should be shared throughout the world. Uranium resources of economic grades are found only in a limited number of countries. Many of the components of the industry, including reactor manufacture and fuel cycle, are very capital-intensive and technology-intensive, so that it would be natural that a relatively limited number of manufacturing or processing capabilities should serve the rest of the world. It is useful to look at the existing pattern of nuclear trade, as well as to forecast the effects of increasing trade volume. Regarding technology, the problem divides itself into three in order that safeguards should be effective and non-intrusive. There is a need to decrease international shipper/receiver difference by means of containment/surveillance as well as quick and accurate reporting. Obviously, its effectiveness will be maximized if all the world's trading partners should participate in a system of coordination. Improving technical effectiveness of safeguards is very important, once nuclear material is in a country. Thirdly, in addition to nuclear material accountancy, new techniques may be employed to recognize characteristic patterns of a nations's nuclear activities, or deviation from such a pattern. Tracing nuclear trade might become important input to such an analysis

  16. Is the IAEA's Safeguard Strategic Plan Sufficient?

    Sokolski, H.; Gilinsky, V.

    2015-01-01

    IAEA safeguards have much improved and the Safeguards Department is commendably planning to further its technical capabilities and to make full use of its authority. Will this be enough to keep countries from exploiting nuclear power programmes to develop nuclear weapons, or to be in a position to do so rapidly should they so decide? Depending on nuclear programmes developments worldwide, especially on expansions in enrichment and reprocessing, and on how international affairs unfold, the answer may well be no. The fundamental limitations on the Department's ability to prevent proliferation are not technical, but conceptual. The Department is clearly motivated to carry out its technical activities competently. Yet it takes a relatively passive view of its role in the worldwide development of nuclear power-whatever technology comes into use, and whoever deploys it, the Department promises to exert its best effort to safeguard. In our view the Department should be more open about what it can or cannot realistically safeguard, and therefore what technology is permissible for deployment in national programmes. The Department's Strategic Plan says at the outset that its verifications assist the Agency to fulfil its statutory objective to ''accelerate and enlarge the contribution of atomic energy. . . '' The Department should judge itself by how well it promotes international security, not by its contribution to expanding nuclear power use. The Department's Vision includes advancing toward a nuclear weapons free world. That vision should include keeping states from deploying technologies that put them within easy reach of nuclear weapons. Our paper will suggest how the Department might supplement its current plan to best accomplish this. (author)

  17. Knowledge Management in the IAEA Department of Safeguards

    Carrillo-de-Fischer, J.; Martinez, J. D.; Konecni, S.

    2015-01-01

    Knowledge management is the discipline of enabling individuals and teams to collectively and systematically create, share and apply knowledge. The most important assets in the IAEA Department of Safeguards are people and their knowledge. The focus of the Department’s knowledge management activities are to create an environment within which people share, learn and work together. The efforts to manage the knowledge of an individual leaving the Department have been focused on helping the supervisor of the departing staff member to identify what critical knowledge needs to be retained, and how to retain that knowledge. The Safeguards Knowledge Management team developed a person-centred approach. This approach involves interviews with the staff member, co-workers and/or customers to identify the critical knowledge to be transferred. Although time consuming, this method has been found to be effective in capturing the needed knowledge. This approach has four steps: – Identify the critical knowledge to be retained; – Select the knowledge transfer methods; – Apply the knowledge transfer methods; and – Assess and refine the transfer process. The paper will describe the person-centred approach and lessons learned from implementing this programme in the Department over several years. (author)

  18. Knowledge Management in the IAEA Department of Safeguards

    Konecni, S.; McCullough, R.

    2015-01-01

    Knowledge management is the discipline of enabling individuals and teams to collectively and systematically create, share and apply knowledge. The most important assets in the IAEA Department of Safeguards are people and their knowledge. The focus of the Department is to create an environment within which people share, learn and work together. The efforts to manage the knowledge leaving the Department have been focused on helping the supervisor of the departing staff member to identify what critical knowledge needs to be retained, and how to retain that knowledge. The Safeguards Knowledge Management team developed a person-centred approach. This approach involves interviews with the staff member, co-workers and/or customers to identify the critical knowledge to be transferred. Although time consuming we have found that this method is most effective to capture the needed knowledge. This approach has four steps: · Identify the critical knowledge to be retained; · Select the knowledge transfer methods; · Apply the knowledge transfer methods; and · Assess and refine the transfer process. The paper will describe the person-centred approach and lessons learned from implementing this programme in the Department over several years. (author)

  19. The role of IAEA safeguards in connection with nuclear trade

    Imai, R.

    1977-01-01

    IAEA safeguards are one of the means to prevent the proliferation of nuclear material for military purposes. As such safeguards can be a potent instrument, and its characteristics are primarily technical. Other means may include (a) political incentives which render possession of nuclear weapons unnecessary and undesirable; (b) extension of trade restrictions regarding certain sensitive material, equipment and technology; and (c) accompanying requirements for physical protection. Peaceful nuclear industry has certain aspects which naturally call for international exchange. The technology itself represents one of the most advanced in our times, and therefore needs to be shared throughout the world. Uranium resources of economic levels are found in only a limited number of countries. Many of the components of the industry, including reactor manufacture and fuel cycle, are vey capital-intensive and technology-intensive, so that it would be natural for a relatively limited number of manufacturing or processing capabilities to serve the rest of the world. It is useful to examine the existing pattern of nuclear trade, as well as to forecast the effects of increasing trade volume. Regarding technology, there is a need to decrease the international shipper/receiver difference by means of containment/surveillance as well as by rapid and accurate reporting. Obviously, its effectiveness will be maximized if all the world's trading partners participated in a system of co-ordination. Improving technical effectiveness of safeguards is very important once nuclear material is in a country. In addition to nuclear material accountancy, new techniques may be employed to recognize the characteristic pattern of a nation's nuclear activities, or deviation from such a pattern. Tracing nuclear trade might become an important input to such an analysis. (author)

  20. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    2008-06-01

    This report provides background information on safeguards and explains procedures for States to conclude Additional Protocols to comprehensive Safeguards Agreements with the IAEA. Since the IAEA was founded in 1957, its safeguards system has been an indispensable component of the nuclear non-proliferation regime and has facilitated peaceful nuclear cooperation. In recognition of this, the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) makes it mandatory for all non-nuclear-weapon States (NNWS) party to the Treaty to conclude comprehensive safeguards agreements with the IAEA, and thus allow for the application of safeguards to all their nuclear material. Under Article III of the NPT, all NNWS undertake to accept safeguards, as set forth in agreements to be negotiated and concluded with the IAEA, for the exclusive purpose of verification of the fulfilment of the States' obligations under the NPT. In May 1997, the IAEA Board of Governors approved the Model Additional Protocol to Safeguards Agreements (reproduced in INFCIRC/540(Corr.)) which provided for an additional legal authority. In States that have both a comprehensive safeguards agreement and an additional protocol in force, the IAEA is able to optimize the implementation of all safeguards measures available. In order to simplify certain procedures under comprehensive safeguards agreements for States with little or no nuclear material and no nuclear material in a facility, the IAEA began making available, in 1971, a 'small quantities protocol' (SQP), which held in abeyance the implementation of most of the detailed provisions of comprehensive safeguards agreements for so long as the State concerned satisfied these criteria. The safeguards system aims at detecting and deterring the diversion of nuclear material. Such material includes enriched uranium, plutonium and uranium-233, which could be used directly in nuclear weapons. It also includes natural uranium and depleted uranium, the latter of which is

  1. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    2008-04-01

    This report provides background information on safeguards and explains procedures for States to conclude Additional Protocols to comprehensive Safeguards Agreements with the IAEA. Since the IAEA was founded in 1957, its safeguards system has been an indispensable component of the nuclear non-proliferation regime and has facilitated peaceful nuclear cooperation. In recognition of this, the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) makes it mandatory for all non-nuclear-weapon States (NNWS) party to the Treaty to conclude comprehensive safeguards agreements with the IAEA, and thus allow for the application of safeguards to all their nuclear material. Under Article III of the NPT, all NNWS undertake to accept safeguards, as set forth in agreements to be negotiated and concluded with the IAEA, for the exclusive purpose of verification of the fulfilment of the States' obligations under the NPT. In May 1997, the IAEA Board of Governors approved the Model Additional Protocol to Safeguards Agreements (reproduced in INFCIRC/540(Corr.)) which provided for an additional legal authority. In States that have both a comprehensive safeguards agreement and an additional protocol in force, the IAEA is able to optimize the implementation of all safeguards measures available. In order to simplify certain procedures under comprehensive safeguards agreements for States with little or no nuclear material and no nuclear material in a facility, the IAEA began making available, in 1971, a 'small quantities protocol' (SQP), which held in abeyance the implementation of most of the detailed provisions of comprehensive safeguards agreements for so long as the State concerned satisfied these criteria. The safeguards system aims at detecting and deterring the diversion of nuclear material. Such material includes enriched uranium, plutonium and uranium-233, which could be used directly in nuclear weapons. It also includes natural uranium and depleted uranium, the latter of which is

  2. A Little Customs Glossary for IAEA Safeguards: Customs Procedures and Concepts that Matter for the Implementation of Modern Safeguards

    Chatelus, Renaud [Consultant, Export Control and IAEA Safeguards Specialist, IAEA (International Atomic Energy Agency (IAEA))

    2012-06-15

    The additional protocols to the IAEA comprehensive safeguards agreements include provisions about the reporting by states of their imports and exports of listed equipment and non-nuclear material, also known as the 'trigger list', as well as nuclear materials. Beyond declarations and their verification, IAEA Safeguards also looks at other Imports and exports as part of its efforts to build confidence on the absence of undeclared nuclear activities or material. In all cases, information about international transfers of interest to Nuclear Safeguards is closely related to export control activities. But, if much has been written about the material and equipment to be declared, neither IAEA Safeguards nor Export control related documents provide much explanation about what exports and imports actually are. In fact, precise legal definitions are to be found generally in national customs regulations and international agreements on customs and trade. Unfortunately, these are not necessarily in line with Safeguards understanding. It is therefore essential that IAEA safeguards comprehends the customs concepts and procedures that are behind Safeguards relevant information.

  3. A Little Customs Glossary for IAEA Safeguards: Customs Procedures and Concepts that Matter for the Implementation of Modern Safeguards

    Chatelus, Renaud; )

    2012-01-01

    The additional protocols to the IAEA comprehensive safeguards agreements include provisions about the reporting by states of their imports and exports of listed equipment and non-nuclear material, also known as the “trigger list”, as well as nuclear materials. Beyond declarations and their verification, IAEA Safeguards also looks at other Imports and exports as part of its efforts to build confidence on the absence of undeclared nuclear activities or material. In all cases, information about international transfers of interest to Nuclear Safeguards is closely related to export control activities. But, if much has been written about the material and equipment to be declared, neither IAEA Safeguards nor Export control related documents provide much explanation about what exports and imports actually are. In fact, precise legal definitions are to be found generally in national customs regulations and international agreements on customs and trade. Unfortunately, these are not necessarily in line with Safeguards understanding. It is therefore essential that IAEA safeguards comprehends the customs concepts and procedures that are behind Safeguards relevant information.

  4. Recruitment of U.S. citizens for vacancies in IAEA Safeguards

    Pepper, S.E.; Decaro, D.; Williams, G.; Carelli, J.; Assur, M.

    1999-01-01

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is important that persons within and outside the US nuclear and safeguards industries become aware of career opportunities available at the IAEA, and informed about important vacancies. The IAEA has established an impressive web page to advertise opportunities for employment. However, additional effort is necessary to ensure that there is sufficient awareness in the US of these opportunities, and assistance for persons interested in taking positions at the IAEA. In 1998, the Subgroup on Safeguards Technical Support (SSTS) approved a special task under the US Support Program to IAEA Safeguards (USSP) for improving US efforts to identify qualified candidates for vacancies in IAEA's Department of Safeguards. The International Safeguards Project Office (ISPO) developed a plan that includes increased advertising, development of a web page to support US recruitment efforts, feedback from the US Mission in Vienna, and interaction with other recruitment services provided by US professional organizations. The main purpose of this effort is to educate US citizens about opportunities at the IAEA so that qualified candidates can be identified for the IAEA's consideration

  5. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    Zhang Hui

    2001-01-01

    Full text: In May 1997, the IAEA Board of Governors adopted the Additional Safeguards Protocol to improve its ability to detect the undeclared production of fissile material. This new strengthened safeguards system has opened the door for the IAEA to use of all types of information, including the potential use of commercial satellite imagery. We have therefore been investigating the feasibility of strengthening IAEA safeguards using commercial satellite imagery. Based on our analysis on a number of one-meter resolution IKONOS satellite images of military nuclear production facilities at nuclear states including Russia, China, India, Pakistan and Israel, we found that the new high-resolution commercial satellite imagery would play a new and valuable role in strengthening IAEA safeguards. Since 1999, images with a resolution of one meter have been available commercially from Space Imaging's IKONOS satellite. One-meter images from other companies are expected to enter the market soon. Although still an order of magnitude less capable than military imaging satellites, the capabilities of these new high-resolution commercial satellites are good enough to detect and identify the major visible characteristics of nuclear production facilities and sites. Unlike the classified spy satellite photos limited to few countries, the commercial satellite imagery is commercially available to anyone who wants to purchase it. Therefore, the new commercial satellite open a new chance that each state, international organizations, and non-governmental groups could use the commercial images to play a more proactive role in monitoring the nuclear activities in related countries and verifying the compliance of non-proliferation agreements. This could help galvanize support for intensified efforts to slow the pace of nuclear proliferation. To produce fissile materials (plutonium and highly enriched uranium) for weapons, a country would operate dedicated plutonium-production reactors and the

  6. Safeguards agreement and additional protocol - IAEA instruments for control of nuclear materials distribution and their application in Tajikistan

    Nasrulloev, Kh.; Mirsaidov, U.

    2010-01-01

    -proliferation regime. For strengthening of nuclear materials non-proliferation regime it is necessary to: strengthen safeguards; more effective export control and efforts on black market network liquidation; effective activities on search of orphan sources; efforts exhorting demand reduce for nuclear weapons. For safeguards strengthening it is necessary to conduct annual IAEA inspections. Taking into account that Additional protocol provides to IAEA considerably more wide access to information and IAEA should make use of its privileges. Some countries signed Nuclear weapon non-proliferation treaty but unfortunately didn't signed Safeguards Agreement and Additional Protocol. That's why Additional Protocol should be ratified by all countries, which can be universal standard of nuclear inspection. Provider states should make Additional protocol as condition for license issuance on nuclear materials, services and technology export. Tajikistan provides necessary information to IAEA in accordance with Additional Protocol: location where nuclear material is available or might be available; information about all buildings where nuclear material could be available; ready to provide assistance for IAEA missions on environmental sampling; provides to IAEA inspectors multiple visas; information about scientific and research works. Exclusive importance for IAEA safeguards agreement is high safeguards culture. IAEA should regularly conduct seminars on advanced assessment of safeguards culture - exactly as recommends to nuclear sites regularly to assess safety culture, and to undertake steps on elimination of any revealed shortcomings. One of the important safeguards criteria is nuclear knowledge preservation. IAEA member-states should advocate initiative on attraction and next generation specialists training and provide them a stimulus to make a carrier in IAEA. Important safeguards element is more effective export control and efforts to liquidate black markets network. The experience

  7. SSAC at Your Service: Promoting Co-operation Between IAEA and Finnish SSAC for Safeguards Implementation (Within the EU)

    Haemaelaeinen, Marko; Okko, Olli; Honkamaa, Tapani; Martikka, Elina

    2010-01-01

    this matter. Finland is also active in supporting IAEA through safeguards support programme (FINSP), for example facilitating training courses for IAEA inspectors in Finnish sites. Enthusiasm and experiences with the view of IAEA demands are the driven forces. For example, safeguarding the final disposal of spent fuel is a task in which STUK has been pushing forward intensively and openly by searching for solutions and developing methods for non-destructive assay. (author)

  8. 2. JAPAN-IAEA workshop on advanced safeguards technology for the future nuclear fuel cycle. Abstracts

    2009-01-01

    This international workshop addressed issues and technologies associated with safeguarding the future nuclear fuel cycle. The workshop discussed issues of interest to the safeguards community, facility operators and State Systems of accounting and control of nuclear materials. Topic areas covered were as follows: Current Status and Future Prospects of Developing Safeguards Technologies for Nuclear Fuel Cycle Facilities, Technology and Instrumentation Needs, Advanced Safeguards Technologies, Guidelines on Developing Instrumentation to Lead the Way for Implementing Future Safeguards, and Experiences and Lessons learned. This workshop was of interest to individuals and organizations concerned with future nuclear fuel cycle technical developments and safeguards technologies. This includes representatives from the nuclear industry, R and D organizations, safeguards inspectorates, State systems of accountancy and control, and Member States Support Programmes

  9. Quality management at the Safeguards Analytical Laboratory of IAEA

    Aigner, H.; Doherty, P.; Donohue, D.; Kuno, Y.

    2001-01-01

    Full text: In the year 2000, SAL'S quality management system was certified for conforming with the requirements of the international standard ISO-9002: 1994. The certification incurred considerable efforts, both in manpower and capital investments. The expected benefits of a formal quality management system do not directly target the correctness and reliability of analytical results. SAL believes that it was already performing well in this respect, even before re-shaping its quality system according to the reference model. Systematic QA and QC procedures have been applied since the begin of SAL'S operations in the mid-70's. The management framework specified in ISO-9002: 1994 complements these technical measures. Besides its value of being internationally recognised and thus enhancing perhaps the credibility in the quality of SAL'S services, the quality management system in this form provides additional advantages for the customer of the services of SAL, i.e. the Department of Safeguards of the IAEA, but also for the control and management of SAL'S internal 'business' processes. The paper discusses if these expected additional benefits are indeed obtained and whether or not their value is in balance with operational and initial investment costs. (author)

  10. Case study application of the IAEA safeguards assessment methodology to a mixed oxide fuel fabrication facility

    Swartz, J.; McDaniel, T.

    1981-01-01

    Science Applications, Inc. has prepared a case study illustrating the application of an assessment methodology to an international system for safeguarding mixed oxide (MOX) fuel fabrication facilities. This study is the second in a series of case studies which support an effort by the International Atomic Energy Agency (IAEA) and an international Consultant Group to develop a methodology for assessing the effectiveness of IAEA safeguards. 3 refs

  11. Safeguards Implementation Practices Guide on Provision of Information to the IAEA

    2016-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement and is furthered through a common understanding of the respective rights and obligations of States and the IAEA. To address this, in 2012 the IAEA published IAEA Services Series No. 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding and improving cooperation in safeguards implementation. To meet their safeguards obligations, States may establish different processes and procedures at the national level, and set up their infrastructure to meet their specific needs. Indeed, a variety of approaches are to be expected, owing to differences in the size and complexity of States’ nuclear programmes, their regulatory framework and other factors. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. This SIP Guide addresses the important topic of the provision of information by States to the IAEA. Declarations by States form the basis for IAEA verification activities, and the quality and timeliness of such declarations impact significantly the efficiency of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and their use is voluntary. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear

  12. Against the spread of nuclear weapons: IAEA Safeguards in the 1990s

    1993-12-01

    This booklet describes the role of IAEA verification activities, or safeguards, in the non-proliferation regime and shows how safeguards provide confidence that States fulfill the obligations they have undertaken in relation to the peaceful use of atomic energy. It also describes ways in which this role could develop in the future

  13. Termination of international safeguards on nuclear material discards: An IAEA update

    Larrimore, J.A.

    1995-01-01

    The IAEA adopted a policy for termination of international safeguards on measured discards in mid-1994. The policy addresses a broad range of termination of safeguards on nuclear material in waste with a focus on conditioned waste arising from reprocessing. The safeguards relevant aspects of waste handling up to the point of termination must be approved, and a determination made that the waste type, form of conditioning and nuclear material concentration satisfy specific criteria. In addition, the State where the terminated waste will be stored is requested to notify the IAEA of future movement or processing of the waste. Cases of international transfers of conditioned waste are also addressed

  14. Preliminary considerations on developing IAEA technical safeguards for LMFBR power systems

    Persiani, P.J.

    1980-09-01

    Nuclear fuel cycles safeguards should be considered in the dynamic context of a world deployment of various reactor types and varying availability of fuel-cycle services. There will be a close interaction between thermal-reactor cycles and the future deployment of fast breeders. The quantitites of plutonium and the reprocessing, conversion, fabrication, and storage methods of the fuel for the fast breeders will have a significant impact on safeguards techniques. The approach to the fast breeder fuel cycle safeguards follows the general safeguards system approach proposed by the IAEA. Objective of IAEA safeguards is the detection of diversion of nuclear material and deterrence of such diversion. To achieve independent verification of material balance accountancy requires the capability to monitor inventory status and verify material flows and quantities of all nuclear materials subject to safeguards. Containment and surveillance measures are applied to monitor key measurement points, maintain integrity of material balance, and complement material accountancy. The safeguards study attempts to develop a generic reference IAEA Safeguards System and explores various system options using containment/surveillance and material accountancy instrumentation and integrated systems designs

  15. United States Program for Technical assistance to IAEA Standards

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ''Knowledge Acquisition Skills'' in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively

  16. IAEA Safeguards and technical support programs: POTAS in the 1990s

    Kessler, C.J.

    1991-01-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) has since 1978 provided technology and technical assistance to the IAEA to support its nuclear safeguards activities. The present level of support, $6.9 million per year, equals 10% of the Department of Safeguards annual budget. During the next decade, the International Atomic Energy Agency (IAEA) will face new technical challenges in carrying out its verification activities. To help the IAEA acquire the technology and other technical support that it will require in the 1990s, POTAS expects to continue its assistance, both in the areas established in the past and in additional areas dictated by newly identified IAEA safeguards requirements. This paper will look at the political and policy context within which the Department of Safeguards, and hence POTAS, operates, and how that context is expected to evolve over the next decade. The roles and functions of POTAS will be identified and discussed in terms of their historical evolution. Lastly, the paper will consider how POTAS is expected to change during the 1990s, both to maintain effectiveness in existing roles and functions, and to meet the challenge of the changing policy context. 5 refs

  17. Integrated Safeguards proposal for Finland. Final report on Task FIN C 1264 of the Finnish Support Programme to IAEA Safeguards

    Anttila, M.

    2000-08-01

    The IAEA has requested several member states to present their proposal of the application of the Integrated Safeguards (IS) system in their nuclear facilities. This report contains a IS proposal for Finland prepared under the Task FIN C 1264 of The Finnish Support Programme to IAEA Safeguards. The comprehensive safeguards system of the International Atomic Energy Agency (IAEA) has been one of the main tools in the fight against nuclear proliferation since the entry-into-force of the Nuclear Non-proliferation Treaty three decades ago. In the 1990s some of the inherent weaknesses of this so-called traditional safeguards system were revealed first in Iraq and then in North Korea. Therefore, the member states of the LAEA decided to give the Agency additional legal authority in order to make its control system more effective as well as more efficient than before. This was accomplished by the approval of the so-called Model Additional Protocol (INFCIRC/540) in 1997. Straightforward implementation of new safeguards measures allowed by the Additional Protocol (INF-CIRC540) without careful review of the old procedures based on INFCIRC153 would only result in increased costs within the IAEA and in the member states. In order to avoid that kind of outcome the old and new means available to the Agency shall be combined to form an optimised integrated safeguards (IS) system. When creating an effective and efficient system a necessary approach is a state-level evaluation, which means that each state shall be assessed by the IAEA separately and as a whole. The assessment of a country's nuclear field shall result in credible assurance of the absence of diversion of declared nuclear materials to prohibited purposes and of the absence of clandestine nuclear activities, facilities and materials. Having achieved that assurance and being able to maintain it in a state the LAEA can leave some traditional routine safeguards activities undone there. At present, the nuclear fuel cycle in

  18. IAEA fifty years: more than just safeguards. Interview with Professor Werner Burkart

    Anon.

    2007-01-01

    Professor Werner Burkart, IAEA Deputy Director General and head of the Nuclear Sciences and Applications Division, comments upon matters associated with the fiftieth anniversary of the International Atomic Energy Agency (IAEA). The Agency was founded on July 29, 1957. Today it is a worldwide organization of the United Nations with 144 member countries and manifold duties in the field of nuclear power utilization. The mandate of IAEA is based on the 'Atoms for Peace' initiative, its essence being support of all member countries in the use of nuclear power as long as IAEA safeguards on the spot ensure that no military aims are pursued in those activities. The safeguards work serves to prevent military uses. IAEA recommendations for a global nuclear safety culture, the so-called Safety Standards, are employed by member countries as a basis of legislation and ordinances. The emerging renaissance of nuclear power will be accompanied by the IAEA especially with regard to the important aspects of harmonization, safeguards, safety, security, and readiness for emergencies. The interview took place in Vienna on September 20, 2007. The questions were asked by the President of the Swiss Nuclear Forum, Dr. Bruno Pellaud, former Deputy Director General of IAEA. (orig.)

  19. Safeguards surveillance equipment and data sharing between IAEA and a member state

    Park, Seung Sik

    1999-01-01

    Efficiency and reliability are two prongs of implementation of safeguards policy. Unattended surveillance is getting wide acceptance through its field trials and technical advances. In achieving goal of safeguards, new safeguards system should provide less intrusiveness than conventional inspection. Unattended surveillance data share will be a major issue among some countries that have own national inspection scheme in place in parallel with international safeguards to check the resources consuming incurred by the repeated installations. Nonetheless, the issue has not been focussed yet among the States concerned, especially for the country like Korea with national inspection in operation. For balanced development in safeguards regime between IAEA and Korea, sharing of unattended surveillance data with SSAC needs to be worked out in conjunction with the joint use of safeguards instruments that is in the process

  20. IAEA preparations for the year 2000 compliance of safeguards equipment systems

    Aparo, M.; Barnes, B.; Lewis, W.; Hsiung, Sue

    1999-01-01

    The Department of Safeguards, IAEA, has used equipment systems for acquiring relevant data to support safeguards evaluation and verification activities. Typically an equipment system consists of EPROM (embedded system), a connecting personal computer with instrument software for data acquisition, and may include data evaluation software. Complementing the equipment systems is a collection of general evaluation software systems (application software) which support the analysis of the acquired data. In preparing for the year 2000 compliance of all safeguards systems, SGTS (Safeguards Division of Technical Services) in IAEA, must ascertain the equipment systems and the evaluation software authorised for inspection use can properly operate through the passage of year 2000. We present the year 2000 challenge for these systems, the approach we use to tackle the problem, and the status of our year 2000 project. (author)

  1. IAEA concerns about advanced containment and surveillance concepts or other alternative safeguards concepts

    von Baeckmann, A.; Powers, J.

    1981-01-01

    Nuclear material accountancy is used in IAEA safeguards as a measure of fundamental importance, with containment and surveillance as important complementary measures. Over the past five years the IAEA has worked with its Standing Advisory Group on Safeguards Implementation (SAGSI) to quantify major terms of the objectives, i.e., timeliness of detection, significant quantities and detection probabilities. The Agency is using those quantifications, as recommended by SAGSI, as guidelines for inspection planning and for evaluating the effectiveness of safeguards. The guidelines are used in this paper, together with other criteria like cost-effectiveness, compliance with legal limitation and non-intrusiveness, as yard-sticks for the assessment of the potential capabilities of alternative safeguards approaches. 4 refs

  2. NDA [nondestructive assay] training for new IAEA inspectors at Los Alamos

    Stewart, J.E.; Reilly, T.D.; Belew, W.; Woelfl, E.; Fager, J.

    1987-01-01

    The history of the evolution of nondestructive assay (NDA) training for international inspectors at Los Alamos is described. The current NDA training course for International Atomic Energy Agency inspectors is presented in terms of structure, content, and rationale. Results of inspector measurement exercises are given along with projections for future developments in NDA inspector training. 3 refs

  3. Physical protection of nuclear facilities and materials. Safeguards and the role of the IAEA in physical protection

    Smolej, M.

    1999-01-01

    The physical protection and security of nuclear facilities and materials concerns utilities, manufactures, the general public, and those who are responsible for licensing and regulating such facilities. The requirements and process to ensure an acceptable physical protection and security system have been evolutionary in nature. This paper reviews the first step of such process: the State's safeguards system and the international safeguards system of the International Atomic Energy Agency (IAEA), including the relationship between these two safeguards systems. The elements of these systems that are reviewed include the State System of Accounting for and Control of Nuclear Material, physical protection measures, and containment and surveillance measures. In addition, the interactions between the State, the facility operator, and the IAEA are described. The paper addresses the IAEA safeguards system, including material accountancy and containment and surveillance; the State safeguards system, including material control and accountancy, and physical protection; the role of the IAEA in physical protection; a summary of safeguards system interactions.(author)

  4. Current trends in the implementation of IAEA safeguards

    Adamson, A.; Bychkov, V.

    1993-01-01

    A practical goal, embodying the principle that a minimum amount of material is required in order to manufacture a nuclear explosive device, is that safeguards activities should enable the timely detection of the diversion of a significant quantity of nuclear material. It is important to note that the safeguards activities are not restricted to the International Atomic Energy Agency (the agency) but impose obligations on both state (and consequently on facility operators) and the agency. The beneficiaries are member states of the world community which have enhanced confidence in the competence and probity of states with safeguards agreements. Neither safeguards nor the nuclear industry have remained stationary. As new techniques have been developed, they have found applications, and as new challenges were encountered, the system has responded, for example, through improved measurements; through new or improved techniques for the operator, state or agency; and through new regulations. This paper details approaches, procedures and techniques developed for new complex nuclear facilities. Trends toward increase efficiency and effectiveness, and developments leading to more automated analysis and collection of data and the development of nondestructive assay methods are examined. Also important are trends in the presentation of safeguards results to the states and the general public

  5. Scientific and technical information as a source for IAEA safeguards state evaluation

    Barletta, M.; Feldman, Y.; Ferguson, M. [International Atomic Energy Agency, Vienna (Austria)

    2014-07-01

    The IAEA Department of Safeguards is continually working to refine its methodologies and procedures for the analysis of information relevant to the evaluation of the nuclear fuel cycle in States that have safeguards agreements with the IAEA. This analysis is required to achieve an understanding of States' nuclear-related activities against which a State's declarations are evaluated for correctness as well as completeness, and to provide credible assurances on the peaceful uses of nuclear material in the State. To achieve this end, diversification of sources and comparison for consistency among available information is essential to ensure an accurate assessment of a State's nuclear activities. Open sources of information on scientific and technical (S&T) developments and research provide the Department of Safeguards with an enhanced basis to evaluate the technical capabilities of States. These information sources are regularly and systematically assessed to provide information about industrial capabilities, patenting activities and research and development activities in States as reflected through published scientific and technical literature. Using such sources, in addition to other, long-established safeguards information sources, helps the IAEA to draw soundly-based safeguards conclusions. The utility of this category of information in terms of the State evaluation process lies primarily in the comparison with other sources of information, especially State-declared information, and in the assessment of consistency of all safeguards-relevant information regarding nuclear fuel cycle technologies and activities in a State. The current paper aims to describe the use of S&T literature, how information from different sources is consolidated, how it is analysed and how it contributes in the overall process of State evaluation in the IAEA Department of Safeguards. (author)

  6. Canadian safeguards research and development in support of the IAEA program document outlining the various tasks which comprise the program

    1985-12-01

    Canada has established a safeguards research and development program, the purpose of which is to supplement the resources of the International Atomic Energy Agency. The program of support is a coordinated effort for the development and application of safeguards techniques and instruments to facilities safeguarded by the IAEA. This document sets forth those tasks which comprise the program

  7. The IAEA`s safeguards systems. Ready for the 21st century; Le systeme de garanties de l`AIEA au seuil du 21e siecle; El sistema de salvaguardias del OIEA a punto para el siglo 21; Sistema garantij magateh gotova vstupleniyu v 21-j vek

    NONE

    1998-10-01

    The publication reviews the IAEA`s safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? what assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification? (author)

  8. Quality assurance measures applicable to IAEA anomaly and discrepancy resolution (ISPO Task D.52). Program for technical assistance to IAEA safeguards

    Harms, N.L.; Smith, B.W.

    1984-11-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations comply with their commitments for the peaceful use of nuclear energy. This assurance is based on the capabilities of the IAEA safeguards program to detect diversion of nuclear material. Anomalies and discrepancies, which occur in the event of a diversion or concealment, are detected as part of the IAEA safeguards program. Anomalies and discrepancies normally result from innocent causes and it is the purpose of the resolution process to determine the significance of them. The IAEA is instituting quality assurance measures for the IAEA inspection process. This paper reviews the anomaly and discrepancy resolution process and describes quality control measures which are the basis for quality assurance. 13 references, 6 tables

  9. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    Barletta, M.; Zarimpas, N.; Zarucki, R., E-mail: M.Barletta@iaea.or [IAEA, Wagramerstrasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2010-10-15

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  10. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    Barletta, M.; Zarimpas, N.; Zarucki, R.

    2010-10-01

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  11. A Comparative Study on Safeguards Implementation under Bilateral Nuclear Cooperation Agreements and the IAEA Comprehensive Safeguards Agreement

    Jeon, Jihye; Kim, Ki-Hyun; Lee, Young Wook [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    A Nuclear Cooperation Agreement (NCA) requires several conditions, so-called obligations, on the items under the agreement such as: 1) peaceful use, 2) retransfer consent, 3) consent prior to reprocessing or enrichment and 4) safeguards and security. These obligations of the NCAs are imposed by the supplier country. The Comprehensive Safeguards Agreement (CSA) between the International Atomic Energy Agency (IAEA) and its member states require similar activities. However, there is a significant gap in nuclear material accountancy between safeguards implementation under the NCA and CSA. The difference of those two frameworks is compared herein, focusing on the unique features of the NCA safeguards and its implications are presented. In this study, the NCAs between the ROK and Canada, Australia and US were analyzed since each of them is one of the ROK’s major nuclear trading partners. The safeguards implementation under the NCA is usually specified in an Administrative Arrangement (AA) under the Agreement. The ROK has two AAs in force with Canada and Australia among 29 countries with NCA. Recently, the AA with Canada was revised in December 2015, with those concepts mentioned above. The AA with the US is currently under discussion. Cooperation in nuclear energy between two countries could be further enhanced through reliable implementation of the NCA undertakings. Taking into account the unique features of the NCA, we need to establish effective strategy for fulfilling the obligation under the Agreement.

  12. The US Support Program to IAEA Safeguards Priority of Containment and Surveillance

    Diaz,R.A.

    2008-06-13

    The United States Support Program (USSP) priority for containment and surveillance (US) focuses on maintaining or improving the reliability and cost-effectiveness of C/S systems for IAEA safeguards, expanding the number of systems that are unattended and remotely monitored, and developing verification methods that help streamline the on-site inspection process. Existing IAEA C/S systems have evolved to become complex, integrated systems, which may include active seals, nondestructive assay (NDA) instruments, video cameras, and other sensors. These systems operate autonomously. They send analytical data to IAEA headquarters where it can be reviewed. These systems present challenges to the goals of improved system performance, standardization, reliability, maintainability, documentation, and cost effectiveness. One critical lesson from past experiences is the need for cooperation and common objectives among the IAEA, the developer, and the facility operator, to create a successful, cost effective system. Recent USSP C/S activities include Rokkasho Reprocessing Plant safeguard systems, production of a new shift register, numerous vulnerability assessments of C/S systems, a conduit monitoring system which identifies tampering of IAEA conduit deployed in the field, fiber optic seal upgrades, unattended monitoring system software upgrades, next generation surveillance system which will upgrade existing camera systems, and support of the IAEA's development of the universal nondestructive assay data acquisition platform.

  13. Incident involving radioactive material at IAEA Safeguards Laboratory - No radioactivity released to environment

    2008-01-01

    Full text: Pressure build-up in a small sealed sample bottle in a storage safe resulted in plutonium contamination of a storage room at about 02:30 today at the IAEA's Safeguards Analytical Laboratory in Seibersdorf. All indications are that there was no release of radioactivity to the environment. Further monitoring around the laboratory will be undertaken. No one was working in the laboratory at the time. The Laboratory's safety system detected plutonium contamination in the storage room where the safe was located and in two other rooms - subsequently confirmed by a team of IAEA radiation protection experts. The Laboratory is equipped with multiple safety systems, including an air-filtering system to prevent the release of radioactivity to the environment. There will be restricted access to the affected rooms until they are decontaminated. A full investigation of the incident will be conducted. The IAEA has informed the Austrian regulatory authority. The IAEA's Laboratory in Seibersdorf is located within the complex of the Austrian Research Centers Seibersdorf (ARC), about 35 km southeast of Vienna. The laboratory routinely analyses small samples of nuclear material (uranium or plutonium) as part of the IAEA's safeguards verification work. (IAEA)

  14. How safe are nuclear safeguards

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  15. Quality assurance procedures for the IAEA Department of Safeguards Twin Minolta Camera Surveillance System

    Geoffrion, R.R.; Bussolini, P.L.; Stark, W.A.; Ahlquist, A.J.; Sanders, K.E.; Rubinstein, G.

    1986-01-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations are complying with nuclear safeguards treaties. In one aspect of the program, the Department of Safeguards has developed a twin Minolta camera photo surveillance systems program to assure itself and the international community that material handling is accomplished according to safeguards treaty regulations. The camera systems are positioned in strategic locations in facilities such that objective evidence can be obtained for material transactions. The films are then processed, reviewed, and used to substantiate the conclusions that nuclear material has not been diverted. Procedures have been developed to document and aid in: 1) the performance of activities involved in positioning of the camera system; 2) installation of the systems; 3) review and use of the film taken from the cameras

  16. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

    Pepper S. E.; .; Worrall, L.; Pickett, C.; Bachner, K.; Queirolo, A.

    2014-08-08

    The U.S. National Nuclear Security Administration’s Next Generation Safeguards Initiative, the U.S. Department of State, and the International Atomic Energy Agency (IAEA) organized a a workshop on the subject of ”Software Sustainability for Safeguards Instrumentation.” The workshop was held at the Vienna International Centre in Vienna, Austria, May 6-8, 2014. The workshop participants included software and hardware experts from national laboratories, industry, government, and IAEA member states who were specially selected by the workshop organizers based on their experience with software that is developed for the control and operation of safeguards instrumentation. The workshop included presentations, to orient the participants to the IAEA Department of Safeguards software activities related to instrumentation data collection and processing, and case studies that were designed to inspire discussion of software development, use, maintenance, and upgrades in breakout sessions and to result in recommendations for effective software practices and management. This report summarizes the results of the workshop.

  17. All-Source Information Acquisition and Analysis in the IAEA Department of Safeguards

    Ferguson, Matthew; Norman, Claude

    2010-01-01

    All source information analysis enables proactive implementation of in-field verification activities, supports the State Evaluation process, and is essential to the IAEA's strengthened safeguards system. Information sources include State-declared nuclear material accounting and facility design information; voluntarily supplied information such as nuclear procurement data; commercial satellite imagery; open source information and information/results from design information verifications (DIVs), inspections and complementary accesses (CAs). The analysis of disparate information sources directly supports inspections, design information verifications and complementary access, and enables both more reliable cross-examination for consistency and completeness as well as in-depth investigation of possible safeguards compliance issues. Comparison of State-declared information against information on illicit nuclear procurement networks, possible trafficking in nuclear materials, and scientific and technical information on nuclear-related research and development programmes, provides complementary measures for monitoring nuclear developments and increases Agency capabilities to detect possible undeclared nuclear activities. Likewise, expert analysis of commercial satellite imagery plays a critical role for monitoring un-safeguarded sites and facilities. In sum, the combination of these measures provides early identification of possible undeclared nuclear material or activities, thus enhancing deterrence of safeguards system that is fully information driven, and increasing confidence in Safeguards conclusions. By increasing confidence that nuclear materials and technologies in States under Safeguards are used solely for peaceful purposes, information-driven safeguards will strengthen the nuclear non-proliferation system. Key assets for Agency collection, processing, expert analysis, and integration of these information sources are the Information Collection and Analysis

  18. Safeguards

    Carchon, R.

    1998-01-01

    Safeguards activities at the Belgian Nuclear Research Centre SCK/CEN answer internal needs, support the Belgian authorities, and support the IAEA. The main objectives of activities concerning safeguards are: (1) to contribute to a prevention of the proliferation of nuclear materials by maintaining an up-to-date expertise in the field of safeguards and providing advice and guidance as well as scientific and technical support to the Belgian authorities and nuclear industry; (2) to improve the qualification and quantification of nuclear materials via nondestructive assay. The main achievements for 1997 are described

  19. Framework for fuel-cycle approaches to IAEA safeguards

    Fishbone, L.G.; Higinbotham, W.

    1986-01-01

    A framework is presented for comparing various safeguards verification approaches which have been proposed for consideration. Each inventory change, inventory, and material balance for each nuclear facility, reported by a state, may be verified. Verification approaches are compared by listing which of these reports would be verified and to what degree for each approach as they might be applied to a state with a closed fuel cycle. The comparison indicates that the extended-material-balance-area (or zone), the information-correlation, and the randomization-over-facilities approaches make more efficient use of Agency resources than the facility-oriented approach for states with large nuclear power programs. In contrast, any advantages of randomizing inspections over inspection activities within facilities are, percentagewise, relatively independent of the size of a state's nuclear program

  20. IAEA Newsbriefs. V. 14, no. 1(82). Jan-Feb 1999

    1999-01-01

    This issue gives brief information on the following topics: 2000 Budget Goes Before IAEA Board of Governors, IAEA, Inspectors Relocated from Iraq, Review Meeting of Nuclear Safety Convention Set in April, Statements of IAEA Director General, The IAEA and Y2K Issues: Clearinghouse and Contact Point, Strengthened Safeguards System: Status of Additional Protocols, More States Join International Conventions in Nuclear Fields, IAEA International Scientific Symposia and Seminars in 1999, New IAEA Books, and othe short information

  1. Overview of IAEA year 2000 activities in the Department of Safeguards

    Chitumbo, K.

    1999-01-01

    The IAEA Department of Safeguards established a project in 1996 for the year 2000 (Y2K) conversion activities. This project covered assessment, conversion and testing of the software applications, instrument evaluation software, embedded systems and Personal Computer (PC) hardware attached to various equipment. Significant progress has been made in converting the applications and instruments to be year 2000 compliant. At the same time Member states have made an effort as well in converting the systems used jointly at the facilities

  2. Non-proliferation of nuclear weapons and nuclear security. IAEA safeguards agreements and additional protocols

    Lodding, Jan; Kinley, David III

    2002-09-01

    One of the most urgent challenges facing the International Atomic Energy Agency (IAEA) is to strengthen the Agency's safeguards system for verification in order to increase the likelihood of detecting any clandestine nuclear weapons programme in breach of international obligations. The IAEA should be able to provide credible assurance not only about declared nuclear material in a State but also about the absence of undeclared material and activities. Realising the full potential of the strengthened system will require that all States bring into force their relevant safeguards agreements, as well as additional protocols thereto. Today, 45 years after the Agency's foundation, its verification mission is as relevant as ever. This is illustrated by the special challenges encountered with regard to verification in Iraq and North Korea in the past decade. Moreover, the horrifying events of 11 September 2001 demonstrated all too well the urgent need to strengthen worldwide control of nuclear and other radioactive material. The IAEA will continue to assist States in their efforts to counter the spread of nuclear weapons and to prevent, detect and respond to illegal uses of nuclear and radioactive material. Adherence by as many States as possible to the strengthened safeguards system is a crucial component in this endeavour

  3. Exploiting the Geospatial Dimension of Data in Support of IAEA Safeguard

    McDaniel, M.; Bleakly, D.; Horak, K. [Sandia National Laboratories, Albuquerque, New Mexico (United States)

    2012-06-15

    The nuclear fuel cycle is highly dependent upon geographic factors and each step in a state's nuclear fuel cycle occurs in geographically explicit locations. Because of this, information indicative of these activities is likely to have a strong geographic competent. Therefore, it is suggested that open source information management in support of State Level Assessments also be geographically focused. With an explicit geographic interface for collecting, evaluating, analyzing, structuring, and disseminating open source information, the information management challenges faced by the IAEA can be made more intuitive and result in more effective, information-driven safeguards analyses, potentially leading to more timely safeguards conclusions. This paper proposes an information management framework based upon geographic information systems (GIS) principles for open-source information analysis in support of international safeguards.

  4. Preparing the 1993--94 Safeguards Implementation Support Programme for IAEA

    Green, L.

    1993-01-01

    The 1993-94 Safeguards Implementation Support (IS) Program describes the Department of Safeguards' program of implementation support for the coming two years. The main body of the document describes the IS program for IAEA. A detailed description of the individual IS needs for 1993-1994 is contained in an annex that specifies the nee, assigns priorities and lists tasks and activities underway to address the need. Other annexes address policy and procedures for program planning and management, current Member State Support Programs (MSSP) tasks, and identification of MSSP resources required for implementation of developed technologies that could be provided. The primary responsibility for supporting the implementation of safeguards technology is with the support divisions of the Department of Safeguards. However, in this time of limited resources it is essential that, where possible, the Department receives assistance from MSSPs that have the needed resources. This document should serve as a guide for IAEA, in planning implementation support activities and for identifying tasks for MSSPs wishing to provide assistance

  5. RECRUITMENT OF U.S. CITIZENS FOR VACANCIES IN IAEA SAFEGUARDS

    OCCHIOGROSSO, D.; PEPPER, S.

    2006-01-01

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is likewise important to the U.S. government for U.S. citizens to take positions with the IAEA to contribute to its success. It is important for persons within and outside the U.S. nuclear and safeguards industries to become aware of the job opportunities available at the IAEA and to be informed of important vacancies as they arise. The International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) is tasked by the U.S. government with recruiting candidates for positions within the Department of Safeguards at the IAEA and since 1998, has been actively seeking methods for improving outreach. In addition, ISPO has been working more closely with the IAEA Division of Personnel. ISPO staff members attend trade shows to distribute information about IAEA opportunities. The shows target the nuclear industry as well as shows that are unrelated to the nuclear industry. ISPO developed a web site that provides information for prospective candidates. They have worked with the IAEA to understand its recruitment processes, to make suggestions for improvements, and to understand employment benefits so they can be communicated to potential U.S. applicants. ISPO is also collaborating with a State Department working group that is focused on increasing U.S. representation within the United Nations as a whole. Most recently Secretary of State Condoleezza Rice issued a letter to all Federal Agency heads encouraging details and transfers of their employees to international organizations to the maximum extent feasible and with due regard to their manpower requirements. She urged all federal agencies to review their detail and transfer policies and practices to ensure that employment in international organizations is promoted in a positive and active manner. In addition, she wrote that it is

  6. Ultra-sensitive detection of nuclear signatures in support of IAEA safeguards

    Hotchkis, M.; Child, D.; Tuniz, C.; Williams, M.

    2003-01-01

    The International Atomic Energy Agency (IAEA) applies a range of ultra-sensitive detection techniques to provide assurance that Member States are in compliance with their safeguards agreements. Environmental samples are collected which can contain minute traces of nuclear material or other evidence. Careful analysis of these samples reveals the nature of the activities undertaken in the vicinity of the sampling point. This paper reviews the analytical techniques that are being applied. To ensure that the IAEA has access to the best available methods, samples are distributed to a group of qualified laboratories around the world for analysis. The Accelerator Mass Spectrometry facility at the Australian Nuclear Science and Technology Organisation (ANSTO) is part of this select group of laboratories, and is the only AMS facility currently accredited with the IAEA. AMS provides the highest sensitivity available for detection of particularly useful signature radioisotopes, including 129 I, 236 U and plutonium isotopes

  7. In Situ Object Counting System (ISOCS) Technique: Cost-Effective Tool for NDA Verification in IAEA Safeguards

    Braverman, E.; Lebrun, A.; Nizhnik, V.; Rorif, F.

    2010-01-01

    Uranium materials measurements using the ISOCS technique play an increasing role in IAEA verification activities. This methodology provides high uranium/plutonium sensitivity and a low detection limit together with the capability to measure items with different shapes and sizes. In addition, the numerical absolute efficiency calibration of a germanium detector which is used by the technique does not require any calibration standards or reference materials. ISOCS modelling software allows performing absolute efficiency calibration for items of arbitrary container shape and wall material, matrix chemical composition, material fill-height, uranium or plutonium weight fraction inside the matrix and even nuclear material/matrix non-homogeneous distribution. Furthermore, in a number of cases, some key parameters such as matrix density and U/Pu weight fraction can be determined along with analysis of nuclear material mass and isotopic composition. These capabilities provide a verification solution suitable for a majority of cases where quantitative and isotopic analysis should be performed. Today, the basic tool for uranium and plutonium mass measurement used in Safeguards verification activities is the neutron counting technique which employs neutron coincidence and multiplicity counters. In respect to the neutron counting technique, ISOCS calibrated detectors have relatively low cost. Taking into account its advantages, this methodology becomes a cost-effective solution for nuclear material NDA verification. At present, the Agency uses ISOCS for quantitative analysis in a wide range of applications: - Uranium scrap materials; - Uranium contaminated solid wastes; - Uranium fuel elements; - Some specific verification cases like measurement of Pu-Be neutron sources, quantification of fission products in solid wastes etc. For uranium hold-up measurements, ISOCS the only available methodology for quantitative and isotopic composition analysis of nuclear materials deposited

  8. Japanese Quality Assurance System Regarding the Provision of Material Accounting Reports and the Safeguards Relevant Information to the IAEA

    Goto, Y.; Namekawa, M.; Kumekawa, H.; Usui, A.; Sano, K.

    2015-01-01

    The provision of the safeguards relevant reports and information in accordance with the comprehensive safeguards agreement (CSA) and the additional protocol (AP) is the basis for the IAEA safeguards. The government of Japan (Japan Safeguards Office, JSGO) has believed that the correct reports contribute to effective and efficient safeguards therefore the domestic quality assurance system for the reporting to the IAEA was already established at the time of the accession of the CSA in 1977. It consists of Code 10 interpretation (including the seminars for operators in Japan), SSAC's checks for syntax error, code and internal consistency (computer based consistency check between facilities) and the discussion with the IAEA on the facilities' measurement system for bulk-handling facilities, which contributes to the more accurate reports from operators. This spirit has been maintained for the entry into force of the AP. For example, questions and amplification from the IAEA will be taken into account the review of the AP declaration before sending to the IAEA and the open source information such as news article and scientific literature in Japanese is collected and translated into English, and the translated information is provided to the IAEA as the supplementary information, which may contribute to broadening the IAEA information source and to their comprehensive evaluation. The other safeguards relevant information, such as the mail-box information for SNRI at LEU fuel fabrication plants, is also checked by the JSGO's QC software before posting. The software was developed by JSGO and it checks data format, batch IDs, birth/death date, shipper/receiver information and material description code. This paper explains the history of the development of the Japanese quality assurance system regarding the reports and the safeguards relevant information to the IAEA. (author)

  9. International safeguards

    Petit, A.

    1991-01-01

    The IAEA has now 200 Inspectors or so, and Euratom a similar number. People in Vienna are talking about increases of this staff, in the range of a possible doubling in the five years to come, although even an immediate restart of the expansion of nuclear industry, would not materialize significantly within this period. This means that keeping the same safeguarding approach would probably lead to another doubling of such staff in the ten following years, which is completely unrealistic. Such a staff is our of proportion with those of national inspectorates in other fields. The paper analyzes the basic irrealistic dogma which have hindered the progress of international safeguards, and recall the suggestions made since ten years to improve them

  10. Outcome and Perspectives from the First IAEA International Technical Meeting on Statistical Methodologies for Safeguards

    Norman, C.; Binner, R.; Peter, N. J.; Wuester, J.; Zhao, K.; Krieger, T.; Walczak-Typke, A.C.; Richet, S.; Portaix, C.G.; Martin, K.; Bonner, E.R.

    2015-01-01

    Statistical and probabilistic methodologies have always played a fundamental role in the field of safeguards. In-field inspection approaches are based on sampling algorithms and random verification schemes designed to achieve a designed detection probability for defects of interest (e.g., missing material, indicators of tampering with containment and other equipment, changes of design). In addition, the evaluation of verification data with a view to drawing soundly based safeguards conclusions rests on the application of various advanced statistical methodologies. The considerable progress of information technology in the field of data processing and computational capabilities as well as the evolution of safeguards concepts and the steep increase in the volume of verification data in the last decades call for the review and modernization of safeguards statistical methodologies, not only to improve the efficiency of the analytical processes but also to address new statistical and probabilistic questions. Modern computer-intensive approaches are also needed to fully exploit the large body of verification data collected over the years in the increasing number and diversifying types of nuclear fuel cycle facilities in the world. The first biennial IAEA International Technical Meeting on Statistical Methodologies for Safeguards was held in Vienna from the 16 to 18 October 2013. Recommendations and a working plan were drafted which identify and chart necessary steps to review, harmonize, update and consolidate statistical methodologies for safeguards. Three major problem spaces were identified: Random Verification Schemes, Estimation of Uncertainties and Statistical Evaluation of Safeguards Verification Data for which a detailed list of objectives and actions to be taken were established. Since the meeting, considerable progress was made to meet these objectives. The actions undertaken and their outcome are presented in this paper. (author)

  11. Novel technologies for safeguards

    Annese, C.; Monteith, A.; Whichello, J.

    2009-01-01

    Full-text: The International Atomic Energy Agency (IAEA) Novel Technologies Project is providing access to a wider range of methods and instruments, as well as establishing a systematic mechanism to analyse gaps in the inspectorate's technical support capabilities. The project also targets emerging and future inspectorate needs in the areas of verification and the detection of undeclared nuclear activities, materials, and facilities, providing an effective pathway to technologies in support of safeguards implementation. The identification of safeguards-useful nuclear fuel cycle (NFC) indicators and signatures (I and S) is a fundamental sub-task within the Project. It interfaces with other IAEA efforts currently underway to develop future safeguards approaches through undertaking an in-depth review of NFC processes. Primarily, the sub-task aims to identify unique and safeguards-useful 'indicators', which identify the presence of a particular process, and 'signatures', which emanate from that process when it is in operation. The matching of safeguards needs to detection tool capabilities facilitates the identification of gaps where no current method or instrument exists. The Project has already identified several promising technologies based on atmospheric gas sampling and analysis, laser spectrometry and optically stimulated luminescence. Instruments based on these technologies are presently being developed through support programme tasks with Member States. This paper discusses the IAEA's project, Novel Technologies for the Detection of Undeclared Nuclear Activities, Materials and Facilities and its goal to develop improved methods and instruments. The paper also describes the method that has been devised within the Project to identify safeguards-useful NFC I and S and to determine how the sub-task interfaces with other IAEA efforts to establish emerging safeguards approaches. As with all safeguards-targeted research and development (R and D), the IAEA depends

  12. Private sector involvement in the US program of technical assistance to IAEA safeguards

    Pepper, S.E.; Epel, L.; Maise, G.; Reisman, A.; Skalyo, J.

    1995-01-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) relies on technical expertise found in the U. S private and public sectors. Since 1993, the international Safeguards Project Office (ISPO) has sought to increase the role of the private sector in POTAS. ISPO maintains and continues to develop a database of US companies interested in providing technical expertise to the IAEA. This database is used by ISPO to find appropriate contractors to respond to IAEA requests for technical assistance when the assistance can be provided by the private sector. The private sector is currently providing support in the development of equipment, training, and procedure preparation. POTAS also supports the work of private consultants. This paper discusses ISPO's efforts to identify suitable vendors and discusses conditions that hinder more substantial involvement by the private sector. In addition, the paper will discuss selected projects that are currently in progress and identify common problems that impede the progress and success of tasks performed by the private sector

  13. Development of a Safeguards Approach for a Pyroprocessing Plant by IAEA Member State Support Program

    Shin, H. S.; Kim, H. D.; Song, D. Y.; Eom, S. H.; Lee, T. H.; Ahn, S. K.; Park, S. H.; Han, B. Y.; Choi, Y.

    2012-01-01

    The objective of this project is to analyze the safeguard ability of pyroprocess facility and to establish the safeguards system for pyroprocess by developing the technology of nuclear material accounting for unit process, surveillance technology and nuclear characteristic analysis technology which are needed to demonstrate the safeguards technology of pyroprocess. Therefore, the development of a safeguards approach for pyroprocessing facilities is required as the interest of pyroprocessing increases. Regarding this issue, the IAEA made a contract the 3-years long Member State Support Program (MSSP) for the 'Support for Development of a Safeguards Approach for a Pyroprocessing Plant' with the Republic of Korea (ROK) in July 2008. Even though the pyroprocess technology is currently being developed all over the world, its safeguards approach has not been established yet, and especially, nuclear material accountancy technology which is the core of safeguards has not been established as well. Therefore, the development of new accountancy technology which is appropriate for the construction of pyroprocess facility is needed. Due to the nature of the process, pyroprocess has various kinds of process material form, and the composition of Pu and U isotopes included in process material is not homogeneous. Also, the existing nuclear material accountancy technology for a wet reprocessing facility is hard to apply because of a large quantity of gamma-ray radiation which is emitted from the fissile products in process material. In this report, the study for the development of a safeguards approach for a pyroprocessing plant pyroprocessing has been described. As the previous results six pyroprocessing facility concepts suggested by US, Japan, and Republic of Korea had been summarized and analyzed, and the determination principles were established to determine a reference pyroprocessing facility concept. The reference pyroprocessing facility was determined to be the ESPF of KAERI

  14. Development of IAEA safeguards at low enrichment uranium fuel fabrication plants

    Badawy, I.

    1988-01-01

    In this report the nuclear material at low enrichment uranium fuel fabrication plants under IAEA safeguards is studied. The current verification practices of the nuclear material and future improvements are also considered. The problems met during the implementation of the the verification measures of the nuclear material - particularly for the fuel assemblies are discussed. The additional verification activities as proposed for future improvements are also discussed including the physical inventory verification and the verification of receipts and shipments. It is concluded that the future development of the present IAEA verification practices at low enrichment uranium fuel fabrication plants would necessitate the application of quantitative measures of the nuclear material and the implementation of advanced measurement techniques and instruments. 2 fig., 4 tab

  15. Estimated incremental costs for NRC licensees to implement the US/IAEA safeguards agreement

    Clark, R.G.; Brouns, R.J.; Chockie, A.D.; Davenport, L.C.; Merrill, J.A.

    1979-01-01

    A study was recently completed for the US Nuclear Regulatory Commision (NRC) by the Pacific Northwest Laboratory (PNL) to identify the incremental cost of implementing the US/IAEA safeguards treaty agreement to eligible NRC licensees. Sources for the study were cost estimates from several licensees who will be affected by the agreement and cost analyses by PNL staff. The initial cost to all eligible licensees to implement the agreement is estimated by PNL to range from $1.9 to $7.2 million. The annual cost to these same licensees for the required accounting and reporting activities is estimated at $0.5 to $1.5 million. Annual inspection costs to the industry for the limited IAEA inspection being assumed is estimated at $80,000 to $160,000

  16. Nuclear Safeguards Culture

    Findlay, T.

    2015-01-01

    The paper will consider safeguards culture both at the IAEA and among member states. It will do so through the lens of organizational culture theory and taking into account developments in safeguards since the Iraq case of the early 1990s. The study will seek to identify the current characteristics of safeguards culture and how it has evolved since the 93+2 programme was initiated, as well as considering the roles of the most important purveyors of such culture, including member states and their national safeguards authorities, the General Conference and Board of Governors, the Director General, the Secretariat as a whole, the Safeguards Department and the inspectorate. The question of what might be an optimal safeguards culture at the Agency and among member states will be investigated, along with the issue of how such a culture might be engendered or encouraged. (author)

  17. IAEA monitoring field trials workshop

    Ross, H.H.; Cooley, J.N.; Belew, W.L.

    1995-01-01

    Recent safeguards inspections in Iraq and elsewhere by the International Atomic Energy Agency (IAEA) have led to the supposition that environmental monitoring can aid in verifying declared and in detecting undeclared nuclear activities or operations. This assumption was most recently examined by the IAEA's Standing Advisory Group on Safeguards Implementation (SAGSI), in their reports to the IAEA Board of Governors. In their reports, SAGSI suggested that further assessment and development of environmental monitoring would be needed to fully evaluate its potential application to enhanced IAEA safeguards. Such an inquiry became part of the IAEA ''Programme 93+2'' assessment of measures to enhance IAEA safeguards. In March, 1994, the International Safeguards Group at Oak Ridge hosted an environmental monitoring field trial workshop for IAEA inspectors to train them in the techniques needed for effective environmental sampling. The workshop included both classroom lectures and actual field sampling exercises. The workshop was designed to emphasize the analytical infrastructure needed for an environmental program, practical sampling methods, and suggested procedures for properly planning a sampling campaign. Detailed techniques for swipe, vegetation, soil, biota, and water associated sampling were covered. The overall approach to the workshop, and observed results, are described

  18. IFSS: The IAEA's inspection field support system

    Muller, R.; Heinonen, O.J.; Schriefer, D.

    1990-01-01

    Recently, highly automated nuclear facilities with enormous volumes of nuclear material accounting data have come into operation. A few others will become operational shortly. Analysis and verification of the data for safeguards purposes is manageable only with improved computer support in the field. To assist its safeguards inspectors, the IAEA has developed the Inspection Field Support System (IFSS). It allows safeguards inspectors to collect, maintain, analyse, and evaluate inspection data on site at nuclear facilities. Previously, field computer support to safeguards inspectors concentrated on providing measurement instrumentation with data storage, but data analysis capabilities were elementary. Also, generic statistical tools were available to handle data that inspectors could (usually manually) input into a computer. Electronic links between these two directions were rudimentary. IFSS integrates the data required for verification and accounting so that inspectors will be able to devote more time to measurements and to derive conclusions at the site in a more timely manner. The system operates on stationary personal computers as well as on portable ones. Its introduction reflects the IAEA Department of Safeguards determination to further improve operational efficiency. It should be emphasized that IFSS implementation is still under development. Several field installations have been made to obtain practical experience and to determine the system's effectiveness

  19. Two low-level gamma spectrometry systems of the IAEA Safeguards Analytical Laboratory

    Parus, J L [IAEA, SAL, Vienna (Austria); Raab, W [IAEA, SAL, Vienna (Austria); Donohue, D [IAEA, SAL, Vienna (Austria); Jansta, V [IAEA, SAL, Vienna (Austria); Kierzek, J [IAEA, SAL, Vienna (Austria)

    1997-03-01

    A gamma spectrometry system designed for the measurement of samples with low and medium radioactivity (activity from a few to about 10{sup 4} Bq in the energy range from 25 to 2700 keV) has been installed at the IAEA Safeguards Analytical Laboratory in Seibersdorf. The system consists of 3 low level detectors: (1) n-type coaxial Ge with 42.4% relative efficiency, 1.85 keV FWHM at 1.33 MeV (2) planar Ge with 2000 mm{sup 2} area and 20 mm thickness, 562 eV FWHM at 122 keV (3) NaI(Tl) annulus of 25.4 cm diameter and 25.4 cm height, hole diameter 90 mm. (orig./DG)

  20. Containment and surveillance systems for international safeguards

    Ney, J.F.

    1978-01-01

    Important criteria in measuring the effectiveness of IAEA safeguards include timeliness of detection of diversion, timeliness of reporting such detections, and confidence in determining the amount of material diverted. Optimum use of IAEA inspectors, combined with adequate instrumentation, can provide a practical means for achieving these criteria. System studies are being carried out for different types of facilities that may come under IAEA safeguards to determine the proper balance between inspector's efforts and the use of safeguards instrumentation. A description of a typical study is presented. Based on the results of these studies, the program undertaken to develop those containment and surveillance subsystems for which the technical feasibility and operational acceptability need to be established is described

  1. Future issues in international safeguards

    Hakkila, E.A.; Markin, J.T.; Mullen, M.F.

    1991-01-01

    The introduction of large bulk-handling facilities into the internationally safeguarded, commercial nuclear fuel cycle, increased concerns for radiation exposure, and the constant level of resources available to the International Atomic Energy Agency (IAEA) are driving new and innovative approaches to international safeguards. Inspector resources have traditionally been allocated on a facility-type basis. Approaches such as randomization of inspections either within a facility or across facilities in a State or the application of a fuel-cycle approach within a State are being considered as means of conserving resources. Large bulk-handling facilities require frequent material balance closures to meet IAEA timeliness goals. Approaches such as near-real-time accounting, running book inventories, and adjusted running book inventories are considered as means to meet these goals. The automated facilities require that safeguards measures also be automated, leading to more reliance on operator-supplied equipment that must be authenticated by the inspectorate. New Non-Proliferation Treaty signatory States with advanced nuclear programs will further drain IAEA resources. Finally, the role of special inspections in IAEA safeguards may be expanded. This paper discusses these issues in terms of increasing safeguards effectiveness and the possible impact on operators. 14 refs

  2. Transparency and other State-specific factors: exploration of Ideas for evolving the system of State-evaluations and safeguards implementation of IAEA

    Everton, C.; Leslie, R.; Bayer, S.; East, M. [Craig Everton, Russell Leslie, Stephan Bayer, Michael East, Australia (Australia)

    2011-12-15

    In November 2010 the IAEA Department of Safeguards launched its Long Term Strategic Plan at the IAEA Symposium on International Safeguards: 'Preparing for Future Verification Challenges'. A key element of the Long Term Strategic Plan is the further evolution of the State-level approach for safeguards implementation away from criteria driven safeguards approaches focussed at the facility level, to a safeguards system that is objectives-based and fully information-driven. The State-level approach is a holistic approach to safeguards implementation, applicable to all States, incorporating comprehensive State evaluations and safeguards implementation approaches that make use of all information available to the IAEA. In further evolving the State-level concept State-specific factors and acquisition path analysis will become increasingly important in State evaluations and in the determination of safeguards approaches for each State. It will be important to determine objective modalities for incorporating these factors. Consideration of State-specific factors in determining safeguards approaches is not new - in fact, paragraph 81 of INFCIRC/153 (concluded June 1972) enumerates several such factors that can be considered. This paper will explore some ideas for State-specific factors that could be used in State-evaluations, and how these factors could be used for determining State-by-State safeguards approaches. Ideas for State-specific factors will include effectiveness of State Systems of Accountancy and Control (SSAC), transparency of States in their dealings with the IAEA, and characteristics of a nuclear fuel cycle of a State.

  3. Transparency and other State-specific factors: exploration of Ideas for evolving the system of State-evaluations and safeguards implementation of IAEA

    Everton, C.; Leslie, R.; Bayer, S.; East, M.

    2011-01-01

    In November 2010 the IAEA Department of Safeguards launched its Long Term Strategic Plan at the IAEA Symposium on International Safeguards: 'Preparing for Future Verification Challenges'. A key element of the Long Term Strategic Plan is the further evolution of the State-level approach for safeguards implementation away from criteria driven safeguards approaches focussed at the facility level, to a safeguards system that is objectives-based and fully information-driven. The State-level approach is a holistic approach to safeguards implementation, applicable to all States, incorporating comprehensive State evaluations and safeguards implementation approaches that make use of all information available to the IAEA. In further evolving the State-level concept State-specific factors and acquisition path analysis will become increasingly important in State evaluations and in the determination of safeguards approaches for each State. It will be important to determine objective modalities for incorporating these factors. Consideration of State-specific factors in determining safeguards approaches is not new - in fact, paragraph 81 of INFCIRC/153 (concluded June 1972) enumerates several such factors that can be considered. This paper will explore some ideas for State-specific factors that could be used in State-evaluations, and how these factors could be used for determining State-by-State safeguards approaches. Ideas for State-specific factors will include effectiveness of State Systems of Accountancy and Control (SSAC), transparency of States in their dealings with the IAEA, and characteristics of a nuclear fuel cycle of a State.

  4. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    Pepper, Susan E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pickett, Chris A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Queirolo, Al [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, Katherine M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Worrall, Louise G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-07

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers’ goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term “software sustainability” was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  5. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation: Report to the NNSA DOE Office of International Nuclear Safeguards (NA-241)

    Pepper, Susan E.; Pickett, Chris A.; Queirolo, Al; Bachner, Katherine M.; Worrall, Louise G.

    2015-01-01

    The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA) convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing environment to ensure existing instruments can continue to perform as designed, with improved security. The approaches to the development and maintenance of instrument software used in the past may not be the best model for the future and, therefore, the organizers' goal was to investigate these past approaches and to determine an optimal path forward. The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related to the development and maintenance of software used in the implementation of international nuclear safeguards. For example, this guidance can be used when determining whether to fund the development, upgrade, or replacement of a particular software product. The report identifies the challenges related to sustaining software, and makes recommendations for addressing these challenges, supported by summaries and detailed notes from the workshop discussions. In addition the authors provide a set of recommendations for institutionalizing software sustainability practices in the safeguards community. The term ''software sustainability'' was defined for this workshop as ensuring that safeguards instrument software and algorithm functionality can be maintained efficiently throughout the instrument lifecycle, without interruption and providing the ability to continue to improve that software as needs arise.

  6. Peaceful uses of nuclear energy and IAEA safeguards and related activities

    Anon.

    1990-01-01

    This paper reports that deliberations on the peaceful uses of nuclear energy, both within and outside the United Nations, have focused on two divergent points of view. One emphasizes the potential benefits of the peaceful application of this source of energy to a variety of purposes, particularly the generation of electric power. The other stresses the risks engendered by the transfer of nuclear material, equipment and technology that might lend themselves to the manufacture of nuclear weapons. Recipient States have traditionally underlined their need and their inherent right to have unimpaired access to the peaceful applications of nuclear energy, while the supplier States, wishing to avoid contributing to the spread of a nuclear-weapon capability among recipients, have advocated restrictions on international transfers, especially of nuclear know-how and installations. In 1977, 15 supplier States agreed upon criteria for the application of IAEA safeguards to exports and formulated requirements to prevent unauthorized transactions, including restrictions on re-exportation. In February 1980, the Conference on the International Nuclear Fuel Cycle Evaluation (INFCE), initiated by the United States, completed a technical evaluation of data and options that it had undertaken to find less proliferation-prone nuclear fuel cycles. Sixty-six States-both suppliers and recipients of nuclear technology-took part in the evaluation, which did not, however, lead to the hoped-for result

  7. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  8. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Andersson, Christer [SSC Satellitbild AB, Solna (Sweden)

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  9. Phase 2 Final Report. IAEA Safeguards: Implementation blueprint of commercial satellite imagery

    Andersson, Christer

    2000-01-01

    This document - IAEA Safeguards: Implementation Blueprint of Commercial Satellite Imagery - constitutes the second report from SSC Satellitbild giving a structured view and solid guidelines on how to proceed with a conceivable implementation of satellite imagery to support Safeguards activities of the Agency. This Phase 2 report presents a large number of concrete recommendations regarding suggested management issues, work organisation, imagery purchasing and team building. The study has also resulted in several lists of actions and preliminary project plans with GANT schedules concerning training, hardware and software, as well as for the initial pilot studies. In both the Phase 1 and Phase 2 studies it is confirmed that the proposed concept of a relatively small Imagery Unit using high-resolution data will be a sound and feasible undertaking. Such a unit capable of performing advanced image processing as a tool for various safeguard tasks will give the Agency an effective instrument for reference, monitoring, verification, and detection of declared and undeclared activities. The total cost for implementing commercial satellite imagery at the Department for Safeguards, as simulated in these studies, is approximately MUSD 1,5 per year. This cost is founded on an activity scenario with a staff of 4 experts working in an IAEA Imagery Unit with a workload of three dossiers or issues per week. The imagery unit is built around an advanced PC image processing system capable of handling several hundreds of pre-processed images per year. Alternatively a Reduced Scenario with a staff of 3 would need a budget of approximately MUSD 0,9 per year, whereas an Enhanced Imagery Unit including 5 experts and a considerably enlarged capacity would cost MUSD 1,7 per year. The Imagery Unit should be organised so it clearly reflects the objectives and role as set by the Member States and the management of the Agency. We recommend the Imagery Unit to be organised into four main work

  10. Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis

    Pabian, Frank V [Los Alamos National Laboratory

    2012-08-14

    This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previously used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant

  11. Safeguards by Design Challenge

    Alwin, Jennifer Louise

    2016-01-01

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA's limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  12. Middle term prospects for Japan's safeguards

    Ogawa, T.

    2001-01-01

    Japan has responded to IAEA requirements on reinforced safeguard regulations. The IAEA additional protocol entered in force in Japan on December 1999. Japan submitted a preliminary information report to IAEA on June 2000 after joint works with the Nuclear Material Control Center (NMCC) of Japan. The first annual report was submitted to IAEA on May 2001. Another activity for the additional protocol is complementary accesses. The total 36 accesses to facilities have been done from November 2000 to September 2001. Procedures of access to managements are under discussion. MEXT (Ministry of Education, Culture, Sports, Science and Technology) has been constructing the Rokkasho Safeguards On-Site Laboratory from 1997, and the Rokkasho Safeguards Center from 2000. The Design Information Verification (DIV) is now ongoing. Much more personal resources will be needed for future inspections. Therefore, the budget for safeguards is increasing in contrast to the flat base budget for the total atomic energy. As for future activity, a MOX (Mixed Oxide Fuels) fuel processing plant is one of the issues for discussion. The construction of the MOX processing plant is supposed to begin on around 2004. The conclusion of additional protocol will be given by IAEA until end of 2002. Shift to integrated safeguards are under discussions by MEXT, NMCC and utilities of Japan parallel with IAEA. Key issues of discussion are cost saving for safeguards, development of personal resources for inspectors and the role of NMCC. (Y. Tanaka)

  13. IAEA safeguards related to the Non-Proliferation Treaty of Nuclear Weapons- T.N.P. and the Treaty for the Prohibition of Nuclear Weapons in Latin America-Tlatelolco

    Rodrigues, M.D.F.

    1978-04-01

    The application of safeguards, focusing mainly the causes that gave origin to this type of control, is studied. The safeguard procedures used by the IAEA are also given, relative to the Treaty for the Prohibition of Nuclear Weapons in Latin America - Tlatelolco, the Non-Proliferation Treaty of Nuclear Weapons - T.N.P. and the Euratom safeguards. Some consideration is given to the organizations related to safeguards application such as IAEA, OPANAL and Euratom, their functions and aims. (F.E.) [pt

  14. The UK safeguards R and D support program

    Patrick, B.H.; Andrew, G.; Tuley, J.N.

    1991-01-01

    The UK Safeguards R and D Programme in support of IAEA safeguards was formally initiated in 1981. Funding is provided by HM Government through the Department of Energy, responsibility for managing and carrying out the work being placed in the hands of the UK Atomic Energy Authority The programme covers safeguards in a variety of areas, including reprocessing and enrichment plants, nuclear materials in waste, authentication of facility computer systems, training courses for safeguards inspectors, containment and surveillance, destructive and non-destructive assay techniques and techniques for assessing diversion path analysis. In this paper an overview of the work is presented

  15. Strengthening the effectiveness and improving the efficiency of the IAEA safeguards system (Programme 93+2)

    Tani, Hiroshi

    1999-01-01

    Present safeguards systems against nuclear proliferation as well as their improvement activities for more effective results are reviewed. First, the mechanism of the NPT Safeguards System is explained, which is the grasp of inventories of nuclear materials through change and transfer booking starting with actual investigation. Then, other various safeguards systems are described, including TLATELOCO (Treaty for the prohibition of nuclear weapons in Latin America), VO (Voluntary Offer), OCA (Other Comprehensive Safeguards Agreement), PA (Project Agreement), US (Unilateral Submission), and OSA (Other Safeguards Agreement). Thirdly, the present status and problems of the nuclear proliferation prevention in the world are described, including competitive nuclear weapon development in India and Pakistan, and Iraq and North Korea problems. Lastly, the 93 + 2 plan to improve the present system is explained. (M.M.)

  16. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    professional societies who either are experts in international safeguards, or understand the challenges of recruiting for technical positions. The 44 participants represented eight national laboratories, four universities, three government organizations, two international organizations, two professional organizations, and three small companies. The goal of the ERIS workshop was to improve efforts to engage U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. At the workshop's conclusion, participants presented their findings to the NNSA Office of International Regimes and Agreements (NA-243). The report's major findings are summarized.

  17. Improvement and validation of isotopic libraries of commercial gamma spectra evaluation packages. Report on task FIN A 955 of Finnish support programme to IAEA safeguards

    Nikkinen, M.

    1997-06-01

    The Department of Safeguards at the International Atomic Energy Agency (IAEA) is running gamma spectroscopy analysis with various samples taken at various stages of the nuclear fuel cycle. It was found that the commercial gamma spectra analysis packages available do not include proper gamma-line libraries for the various tasks needed for the safeguards purposes because the libraries of these packages are often incomplete and outdated. New libraries were developed to satisfy the needs in the analysis tasks required for the safeguards purposes. These lines are limited by the number of gamma lines to avoid the problems with too many candidates for a single gamma peak. The work was carried out under the Task FIN A 955 Finnish Support Programme to IAEA Safeguards. (orig.) (18 refs.).

  18. Safeguards policy and strategies: An IAEA perspective for spent fuel in geological repositories

    Fattah, A.

    2002-01-01

    Safeguards for nuclear materials in geologic repositories have to be continued even after the repository has been backfilled and sealed. The nuclear materials disposed in a geologic repository may pose a higher and long-term proliferation risk because the inventory is many times the 'significant quantity' needed safeguards. The safeguards measures must be flexible enough to respond to the changing development of technology and changing need for current as well as future generations. Change in social, economic, environmental and other scenarios might demand recovery of nuclear and other materials from the repository sometime in the future. (author)

  19. Safeguards by Design Challenge

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    The International Atomic Energy Agency (IAEA) defines Safeguards as a system of inspection and verification of the peaceful uses of nuclear materials as part of the Nuclear Nonproliferation Treaty. IAEA oversees safeguards worldwide. Safeguards by Design (SBD) involves incorporation of safeguards technologies, techniques, and instrumentation during the design phase of a facility, rather that after the fact. Design challenge goals are the following: Design a system of safeguards technologies, techniques, and instrumentation for inspection and verification of the peaceful uses of nuclear materials. Cost should be minimized to work with the IAEA’s limited budget. Dose to workers should always be as low are reasonably achievable (ALARA). Time is of the essence in operating facilities and flow of material should not be interrupted significantly. Proprietary process information in facilities may need to be protected, thus the amount of information obtained by inspectors should be the minimum required to achieve the measurement goal. Then three different design challenges are detailed: Plutonium Waste Item Measurement System, Marine-based Modular Reactor, and Floating Nuclear Power Plant (FNPP).

  20. IAEA workshop and field trial at the Oak Ridge K-25 Site

    Hembree, D.M. Jr.; Ross, H.H.; Carter, J.A.

    1995-03-01

    In March 1994, members of the International Safeguards Department in the National Security Program Office (NSPO) hosted an environmental monitoring field trial workshop for International Atomic Energy Agency (IAEA) inspectors. The workshop was held at the Oak Ridge K-25 Site and its primary purpose was to train the inspectors in the techniques needed for effective environmental sample collection and handling. The workshop emphasized both sampling theory and practice. First, detailed techniques for swipe, vegetation, soil, biota, and water-associated sampling were covered in the classroom. Subsequently, the inspectors were divided into three groups for actual sample collection in and around the K-25 locale. The collected samples were processed by the Department of Energy (DOE) Network of Analytical Laboratories using established analytical techniques. This activity is part of the IAEA ''Programme 93+2 in. assessment of measures to enhance IAEA safeguards

  1. GPS positioning and desktop mapping. Applications to environmental monitoring. Report on task JNT B898 on the Finnish support programme to IAEA safeguards

    Kansanaho, A.; Ilander, T.; Toivonen, H.

    1995-10-01

    Satellite navigation has been used for in-field applications by the Finnish Centre for Radiation and Nuclear Safety since 1993. Because of this experience, training in the use of GPS positioning and desktop mapping was chosen as a task under the Finnish Support programme to IAEA safeguards. A lecture and a field experiment was held in the training course on environmental monitoring at the IAEA headquarters in June 1995. Real-time mapping of the co-ordinates and storing information on sampling sites and procedures can make safeguards implementation more efficient and effective. Further software development are needed for these purposes. (author) (6 figs.)

  2. IAEA Newsbriefs. V. 15, no. 1(86). Jan-Feb 2000

    2000-01-01

    This issue gives brief information on the following topics: the review of the 2001 draft budget, the return of the IAEA safeguards inspectors from Iraq, the strengthened safeguards system including the signature status of additional protocols as of February 2000, the nomination of the former IAEA Director General H. Blix as head of the new monitoring commission for Iraq, recent statements of the IAEA Director General, the sixth NPT review conference which will open in April 2000, IAEA symposia and seminars in the year 2000, states joining international conventions in nuclear fields, the industry forum convened by the IAEA on nuclear energy issues, cooperation of states against the Y2K problem, IAEA strategy to 2005, sharing lessons from Tokaimura accident, in memoriam of the former IAEA Director General Sigvard Eklund, and other short information

  3. TECHNOLOGY ROADMAPPING FOR IAEA SEALS.

    HOFFHEINS,B.; ANNESE,C.; GOODMAN,M.; OCONNOR,W.; GUSHUE,S.; PEPPER,S.

    2003-07-13

    In the fall of 2002, the U.S. Support Program (USSP) initiated an effort to define a strategy or ''roadmap'' for future seals technologies and to develop a generalized process for planning safeguards equipment development, which includes seals and other safeguards equipment. The underlying objectives of the USSP include becoming more proactive than reactive in addressing safeguards equipment needs, helping the IAEA to maintain an inventory of cost-effective, reliable, and effective safeguards equipment, establishing a long-term planning horizon, and securing IAEA ownership in the process of effective requirements definition and timely transitioning of new or improved systems for IAEA use. At an initial workshop, seals, their functions, performance issues, and future embodiments were discussed in the following order: adhesive seals, metal seals, passive and active loop seals, ultrasonic seals, tamper indicating enclosures (including sample containers, equipment enclosures, and conduits). Suggested improvements to these technologies focused largely on a few themes: (1) The seals must be applied quickly, easily, and correctly; (2) Seals and their associated equipment should not unduly add bulk or weight to the inspectors load; (3) Rapid, in-situ verifiability of seals is desirable; and (4) Seal systems for high risk or high value applications should have two-way, remote communications. Based upon these observations and other insights, the participants constructed a skeletal approach for seals technology planning. The process begins with a top-level review of the fundamental safeguards requirements and extraction of required system features, which is followed by analysis of suitable technologies and identification of technology gaps, and finally by development of a planning schedule for system improvements and new technology integration. Development of a comprehensive procedure will require the partnership and participation of the IAEA. The

  4. IAEA safeguards to prevent nuclear matrials diversion for fabrication of nuclear explosives

    Preuschen von und zu Liebenstein, R.

    1982-01-01

    The IAEA precautionary measures in accordance with the Non-Proliferation Treaty can be characterized as measures creating confidence. They constitute at present the essential basis for peaceful use of atomic energy. Even though there is a lot of criticism concerning the efficiency of the precautionary measures, and all justified calls for the elaboration of further legal instruments against nuclear materials diversion must not be neglected, the IAEA precautionary measures have already in a credible way contributed to contain the proliferation of nuclear weapons. (orig./HSCH) [de

  5. International Cooperation for Enhancing Nuclear Safety, Security, Safeguards and Non-proliferation : 60 Years of IAEA and EURATOM

    Abousahl, Said; Plastino, Wolfango

    2018-01-01

    This open access book examines key aspects of international cooperation to enhance nuclear safety, security, safeguards, and non-proliferation, thereby assisting in development and maintenance of the verification regime and fostering progress toward a nuclear weapon-free world. The book opens by addressing important political, institutional, and legal dimensions. Current challenges are discussed and attempts made to identify possible solutions and future improvements. Subsequent sections consider scientific developments that have the potential to increase the effectiveness of implementation of international regimes, particularly in critical areas, technology foresight, and the ongoing evaluation of current capabilities. The closing sections examine scientific and technical challenges and discuss the role of international cooperation and actions of the scientific community in leading the world toward peace and security. The book – which celebrates 60 years of IAEA Atoms for Peace and Development and the EURA...

  6. IAEA preparations for the year 2000 compliance of safeguards information systems

    Smith, P.M.

    1999-01-01

    The year-2000 (Y2K) problem affects both information systems and equipment systems. This paper describes the work which has been done, and is currently underway, to make the information systems of the Department of Safeguards year-2000 compliant. (author)

  7. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Pepper, S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-01-01

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency's (IAEA's) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL's International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  8. International Atomic Energy Agency Safeguards: Challenge and response

    Spector, Leonard S.

    2017-11-01

    This article provides a critical review of the nuclear accounting and inspection system of the International Atomic Energy Agency (IAEA), known as "IAEA safeguards." The article focuses on the multiple challenges the Agency confronts in verifying that all nuclear activities in the countries under its safeguards system are being pursued for exclusively peaceful purposes. The principal challenges noted are those posed by: undeclared facilities, the development of enrichment and reprocessing capabilities, illicit procurement activities, denial of inspector access, difficulties in verifying absence of weaponization activities, and difficulties in establishing that all nuclear-relevant activities in a state are peaceful. The article is in the form of annotated PowerPoint briefing slides.

  9. Smart unattended systems for plutonium safeguards

    Menlove, H.O.; Abhold, M.; Eccleston, G.; Puckett, J.M.

    1996-01-01

    During the past decade, IAEA inspectors, national inspectors, and facility operators have used neutron coincidence counters and gamma-ray isotopics measurements extensively to measure the plutonium content of various forms of nuclear materials in the fuel cycle. Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector''s oversight of measurement operations, reduce the inspector''s workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained form unattended assays could be used by independent inspectors such as the IAEA. The standardized containers and robot-controlled fuel movements in automated facilities enable more accurate nondestructive assay (NDA) measurements than are possible in conventional nonautomated facilities. The NDA instrumentation can be custom designed and optimized for the particular measurement goal in the automated facility

  10. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  11. A programme for Euratom safeguards inspectors, used in the assay of plutonium bearing materials by passive neutron interrogation

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme PECC (Passive Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurements data originating from passive neutron assay of plutonium bearing materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for all types of passive neutron coincidence deployed by the Euratom Safeguards Directorate, Luxembourg

  12. Application of safeguards procedures

    1977-01-01

    technical limitations. Upon completion each analysis is formalized in a Safeguards Implementation Practice (SIP) which becomes both an official guide and instruction to the field inspector for his day to day work. Subsequent to the inspections, a formal report is prepared for each facility that has been visited. The report describes the work which was carried out and, most importantly, the technical conclusions which can be drawn are stated. The conclusions are reviewed at successively higher management levels. Starting in 1977, the conclusions of the reports are summarized and presented to the Board of Governors as a 'Special Safeguards Implementation Report'. To help in formulating the criteria for evaluating the reports, the IAEA Secretariat has been given the help of external consultants known colloquially as 'SAGSI', more formally as the 'Standing Advisory Group on Safeguards Implementation'. (author)

  13. IAEA Newsbriefs. V. 12, no. 2(75). Apr-May 1997

    1997-01-01

    This issue gives brief information on the following topics: IAEA safeguards inspectorate granted broader rights, Conferences on nuclear liability, waste safety in early September, States set nuclear safety review meeting, Statements of IAEA Director General, Namibia joins anti-trafficking programme, Symposium on desalination in Republic of Korea, Energy issues on agenda of nuclear fuel cycle symposium in June, IAEA seminars and symposia this autumn, Recent IAEA publications, Atoms for animal health and productivity, Studying the past to learn about the future, Nuclear power status around the world, and other short information

  14. Experience with Nuclear Inspector Training at JRC, Ispra

    Berndt, R.; Mortreau, P.

    2013-01-01

    About 500 nuclear safeguards inspectors are working at the IAEA, EURATOM and as national inspectors in Europe. Up to 50 of them are recruited every year and need training for their new work, comprising all its aspects. More than 1050 trainees have attended nuclear inspector training courses at the Ispra site of the Joint Research Centre of the EU within more than 20 years. A higher number of inspectors need refreshment courses or introductions into new working fields. Moreover, new instruments or techniques require special training, in class, laboratory or in field. The Preparatory course, 'NDA (Non-Destructive Assay of nuclear material) basic physics', is held at the EURATOM headquarters at Luxembourg. It is foreseen mainly for new inspectors. The four NDA laboratory courses in PERLA are of special importance for the inspectors. They demonstrate clearly the possibility for an inspector to verify with non-destructive methods the presence of nuclear material, its quality and its quantity. Most of the EURATOM inspectors have followed them at the beginning of their inspector service. The advanced/special laboratory courses in PERLA combine different elements: the 'Pu physical inventory verification course' comprises inspection planning, qualitative and quantitative measurements and statistical data evaluation. The 'Advanced hands-on RADAR/CRISP/XSEAT course' combines automatic measurement stations, installation of informatics tools, unattended data collection, data evaluation and inspection report. The reaction of course participants proofed that these demanding courses are good for the motivation of experienced inspectors. Special instrument courses are always changing and often held only one or two times. The paper is followed by the slides of the presentation

  15. UF/sub 6/ test loop for evaluation and implementation of international enrichment plant safeguards

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-01-01

    A functional test loop capable of simulating UF/sub 6/ flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by the International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. The purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized. By giving the IAEA the in-house capability to evaluate LFUA inspection strategy approaches, to develop inspection procedures, to calibrate instrumentation, and to train inspectors, the UF/sub 6/ cascade header pipe test loop will contribute to the IAEA's success in implementing LFUA strategy inspections at gas centrifuge enrichment facilities subject to international safeguards inspections

  16. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  17. Specification of a VVER-1000 SFAT device prototype. Interim report on Task FIN A 1073 of the Finnish Support Programme to IAEA Safeguards

    Nikkinen, M.; Tiitta, A.; Iievlev, S.; Dvoeglazov, M.; Lopatin, S.

    1999-01-01

    The project to specify the optimal design of the Spent Fuel Attribute Tester (SFAT) for Ukrainian VVER-1000 facilities was run under Finnish Support Programme for IAEA Safeguards under the task FIN A1073. This document illustrates the optimum design and takes into account the special conditions at the Ukrainian facilities. The requirement presented here takes into account the needs of the user (IAEA), nuclear safety authority (NRA) and facilities. This document contains the views of these parties. According to this document, the work to design the optimal SFAT device can be started. This document contains also consideration for the operational procedures, maintenance and safety. (orig.)

  18. Conceptual design of a system for nuclear material control in a research centre according to the IAEA safeguards requirements

    Bueker, H.; Kotte, U.; Stein, G.

    1976-01-01

    In comparison with other facilities handling nuclear material, a nuclear research centre is characterized by a wider spectrum of operations. This requires a number of installations within the centre such as research reactors, critical assemblies, research institutes and central departments, operating, in general, independently of each other. Nuclear material is stored and processed in small quantities and in different chemical and physical configurations within prescribed license areas. The conceptual design of a new system for nuclear material control in a research centre has to consider the operator's and IAEA's safeguards requirements. Using the example of the Juelich Nuclear Research Centre in the Federal Republic of Germany, these requirements are being examined in conjunction with the specified peculiarities of a nuclear research centre. Following this, a division of the research centre into material balance areas and key measurement points is being proposed, based on the existing facilities and licence areas. The essential characteristic of the concept is a far-reaching displayability of the inventory and flow of nuclear material. The availability of information is based on differentiated material accountancy in conjunction with adequate measurement of nuclear material data. For data processing and generation of data, a computerized record and report system is to be provided as well as a central measurement system. The design of an integrated accountancy system with a central computer and remote terminals is described; various measuring appliances, now being developed or tested, for the non-destructive assay of nuclear material are specified. The functions of a central department for nuclear material management for operating these systems are discussed and the planned verification of nuclear material in the different material balance areas illustrated. On applying the measures described in this paper, the conceptual design of a system for nuclear material

  19. Development of safeguards approach for the Rokkasho Reprocessing Plant

    Johnson, S.J.; Abedin-Zadeh, R.; Pearsall, C.; Chesnay, B.; Creusot, C.; Ehinger, M.; Kuhn, E.; Robson, N.; Higuchi, H.; Takeda, S.; Fujimaki, K.; Ai, H.; Uehara, S.; Amano, H.; Hoshi, K.

    2001-01-01

    Full text: The Rokkasho Reprocessing Plant (RRP), which is currently undergoing construction and commissioning by the Japan Nuclear Fuels Limited (JNFL), is scheduled to begin active operations in 2005. The planned operating capacity is 800 tonnes of spent fuel per year containing approximately 8 tonnes of plutonium. The International Atomic Energy Agency (IAEA) and the Japan safeguards authorities are working with JNFL to develop a Safeguards Approach that is both effective and efficient. In order to accomplish this goal, a number of advanced concepts are being introduced and many currently applied safeguards measures are being enhanced. These new and improved techniques and procedures will provide for more sensitive and reliable verification of nuclear material and facility operations while reducing the required inspection effort. The Safeguards Approach incorporates systematic Design Information Examination and Verification (DIE/DIV) during all phases of construction, commissioning and operation. It incorporates installed, unattended radiation and solution measurement and monitoring systems along with a number of inspector attended measurement systems. While many of the measurement systems will be independent-inspector controlled, others will require authentication of a split signal from operator controlled systems. The independent and/or authenticated data from these systems will be transmitted over a network to a central inspector center for evaluation. Near-Real-Time-Accountancy (NRTA) will be used for short period sequential analysis of the operator and inspector data which, when combined with Solution Monitoring data, will provide higher assurance in the verification of nuclear material for timeliness and of the operational status of the facility. Samples will be taken using a facility installed, but IAEA authenticated, automatic sampling system and will then be transferred to a jointly used IAEA-JSGO On-Site Laboratory (OSL). This paper provides an

  20. In situ object counting system (ISOCSi3TM) technique: A cost-effective tool for NDA verification in IAEA Safeguards

    Nizhnik, V.; Belian, A.; Shephard, A.; Lebrun, A.

    2011-01-01

    Nuclear material measurements using the ISOCS technique are playing an increasing role in IAEA verification activities. The ISOCS capabilities include: a high sensitivity to the presence of U and Pu; the ability to detect very small amounts of material; and the ability to measure items of different shapes and sizes. In addition, the numerical absolute efficiency calibration of a germanium detector used in the technique does not require any calibration standards or reference materials. The ISOCS modelling software performs an absolute efficiency calibration for items with various container shapes, container wall materials, material compositions, material fill-heights, U/Pu weight fractions and even heterogeneously distributed emitting materials. In a number of cases, some key parameters, such as the matrix density and U/Pu weight fraction, can be determined in addition to the emitting material mass and isotopic composition. These capabilities provide a verification solution suitable for a majority of cases where quantitative and isotopic analysis should be performed. Taking into account these advantages, the technique becomes a cost-effective solution for nuclear material non-destructive assay (NDA) verification. At present, the IAEA uses the ISOCS for a wide range of applications including the quantitative analysis of U scrap materials, U/Pu contaminated solid wastes, U fuel elements, U hold-up materials. Additionally, the ISOCS is also applied to some specific verification cases such as the measurement of PuBe neutron sources and the quantification of fission products in solid wastes. In reprocessing facilities with U/Pu waste compaction or facilities with item re-batching, the continuity-of-knowledge can be assured by applying either video surveillance systems together with seals (requiring attaching/detaching and verification activities for each seal) or verification of operator declarations using quantitative measurements for items selected on a random basis

  1. Euratom experience in safeguarding reprocessing and thermal reactor mixed oxide fuel fabrication facilities within the European Community

    1978-11-01

    The legal basis and instruments for the application of safeguards in the European Community are described. Euratom safeguards apply throughout the fuel cycle starting at the ore stage. Euratom has had experience in the application of safeguards to small and medium size reprocessing and MOX fabrication plants. In reprocessing plants accountancy, containment and surveillance methods are applied and the plant is divided into three material balance areas. Similar procedures are applied at fabrication plants. Euratom inspectors apply their main verification activities at strategic points but have the right of access at any time to all places which contain nuclear material. Under the Euratom-IAEA Agreements 'Joint Teams' of Euratom and IAEA inspectors will operate together to minimise the burden on operators and to avoid duplication of effort while enabling both organisations to achieve their safeguards objectives

  2. Use of operator-provided, installed C/S equipment in IAEA safeguards

    Shea, T.; Rundquist, D.; Gaertner, K.; Yellin, E.

    1987-01-01

    Developing solutions for complex safe guards problems in close cooperation with Operators is becoming more common, especially as the IAEA continues to operate under zero-growth limitations. This has in practice taken on various forms; from the extreme case of very specific equipment developed and constructed by the State/Operator for use in only one facility, to the more normal case where only the development is carried out by the State/Operator. This practice has advantages and disadvantages. For example, to ensure that Agency inspections will be carried out in a predictable manner, it will be in the Operator's interest to ensure that any equipment he provides is of the highest quality, meets all national safety requirements, and is installed and maintained in such a manner that it will provide years of service. Agency equipment performs its intended function in a reliable manner, but with very specific, limited applications in mind, improvements in reliability over that obtained with normal Agency equipment are to be expected. Also, the authors experience is that reaching acceptable arrangements for the use of State- of Operator-supplied equipment is often far more straightforward than when arranging to apply Agency equipment

  3. IAEA inspection team conducting investigation in South Korea

    2004-01-01

    Full text: On 23 August 2004, during discussions about the initial declarations of the Republic of Korea (ROK) under the Additional Protocol to its Safeguards Agreement, the ROK informed the IAEA that it had enriched nuclear material in the course of atomic vapour laser isotope separation (AVLIS) experiments that had not been declared to the IAEA. The ROK informed the IAEA that these experiments had been on a laboratory scale and involved the production of only milligram quantities of enriched uranium. According to the ROK, these activities were carried out without the Government's knowledge at a nuclear site in Korea in 2000, and that the activities had been terminated. Following receipt of this information, the IAEA dispatched a team of inspectors, headed by the Director of the Safeguards Operations Division responsible for the ROK, to investigate further all relevant aspects of this matter. The inspectors will report to the Director General upon their return to Vienna early next week. The Director General will be informing the Board of Governors of the IAEA's initial findings at the next meeting of the Board of Governors beginning on 13 September 2004. (IAEA)

  4. Verification and the safeguards legacy

    Perricos, Demetrius

    2001-01-01

    A number of inspection or monitoring systems throughout the world over the last decades have been structured drawing upon the IAEA experience of setting up and operating its safeguards system. The first global verification system was born with the creation of the IAEA safeguards system, about 35 years ago. With the conclusion of the NPT in 1968, inspections were to be performed under safeguards agreements, concluded directly between the IAEA and non-nuclear weapon states parties to the Treaty. The IAEA developed the safeguards system within the limitations reflected in the Blue Book (INFCIRC 153), such as limitations of routine access by the inspectors to 'strategic points', including 'key measurement points', and the focusing of verification on declared nuclear material in declared installations. The system, based as it was on nuclear material accountancy. It was expected to detect a diversion of nuclear material with a high probability and within a given time and therefore determine also that there had been no diversion of nuclear material from peaceful purposes. The most vital element of any verification system is the inspector. Technology can assist but cannot replace the inspector in the field. Their experience, knowledge, intuition and initiative are invaluable factors contributing to the success of any inspection regime. The IAEA inspectors are however not part of an international police force that will intervene to prevent a violation taking place. To be credible they should be technically qualified with substantial experience in industry or in research and development before they are recruited. An extensive training program has to make sure that the inspectors retain their professional capabilities and that it provides them with new skills. Over the years, the inspectors and through them the safeguards verification system gained experience in: organization and management of large teams; examination of records and evaluation of material balances

  5. Protocol to suspend the application of safeguards pursuant to the Agreement of 26 February 1976 between the Agency, the Government of the Federative Republic of Brazil and the Government of the Federal Republic of Germany in the light of the provisions for the application of safeguards pursuant to the Quadripartite Safeguards Agreement between Argentina, Brazil, the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials and the IAEA

    1999-01-01

    The document reproduces the text of the Protocol of 16 October 1998 suspending the application of safeguards under the Safeguards Agreement (INFCIRC/237) of 26 February 1976 between the Agency, Brazil and the Federal Republic of Germany in the light of the provisions for the application of safeguards pursuant to the Quadripartite Safeguards Agreement between the Agency, Brazil, the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials and the IAEA. The Protocol entered into force on 21 October 1999

  6. Feasibility Study of Implementing a Mobile Collaborative Information Platform for International Safeguards Inspections

    Gastelum, Zoe N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gitau, Ernest T. N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doehle, Joel R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toomey, Christopher M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    In response to the growing pervasiveness of mobile technologies such as tablets and smartphones, the International Atomic Energy Agency and the U.S. Department of Energy National Laboratories have been exploring the potential use of these platforms for international safeguards activities. Specifically of interest are information systems (software, and accompanying servers and architecture) deployed on mobile devices to increase the situational awareness and productivity of an IAEA safeguards inspector in the field, while simultaneously reducing paperwork and pack weight of safeguards equipment. Exploratory development in this area has been met with skepticism regarding the ability to overcome technology deployment challenges for IAEA safeguards equipment. This report documents research conducted to identify potential challenges for the deployment of a mobile collaborative information system to the IAEA, and proposes strategies to mitigate those challenges.

  7. A study of a zone approach to IAEA [International Atomic Energy Agency] safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches

  8. A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

  9. Close-up on safeguards training

    Strelkov, D.; Kashirsky, A.

    1985-01-01

    Continuous training is provided to IAEA inspector personnel to assure their proficiency in carrying out the mission of the Agency in prohibiting the potential diversion of nuclear material. The number and complexity of nuclear facilities under safeguards have increased since the Agency's founding, resulting in an ever increasing number of inspectors and, concurrently, in the need for higher quality of technical training. Basic training for newly recruited inspectors and inspection assistants is provided by the Department of Safeguards and training is programmed throughout the working experience of an inspector. Over the years, it has been proven beneficial to utilize the capability and facilities of Member States to provide specialized training at operating nuclear facilities. The training exercise described here is one of those funded by the USSR and conducted at an operating nuclear facility in the USSR. These support training courses are an effective way of providing the specialized training needed to maintain the proficiency of the inspectorate staff and supplement the training that is offered by the Agency in Vienna

  10. The processing and evaluation of new information for strengthened safeguards

    Nilsson, A.

    1999-01-01

    The framework of safeguard activities of the IAEA from the viewpoint of informanagement is described. As methodology, major sources of information are, member state supplied information, information obtained by the Agency through its verification activity, and open source information. Software tools are provided to retrieve and to filter information for storage. Organizational structure of the Agency's information activities, and the changing roles of the inspectors are also described. (Yamamoto, A.)

  11. Changes to the way support programme tasks are managed in the IAEA's Department of Safeguards

    Khlebnikov, N.; Hamilton, A.

    2001-01-01

    Full text: The Department of Safeguards and the 16 Member State Support Programmes jointly manage about 250 tasks. Recently, in response to a number of events, the Department has reorganized the manner in which these tasks are proposed and managed. The presentation and paper will document the following: The need to change - Although there have been a number of significant successes it has been recognised that both the way in which tasks are proposed and the management of tasks could be better performed. In particular the Report of the External Auditor 1999 stated the following: With respect to the R and D Programme the Agency 'has had difficulty in defining and prioritising tasks'; 'Ideas for tasks have come from operational units but not always in a coordinated manner'; 'I support the Agency's consideration of a move towards more centralised planning of task priorities' and the application of the 'general principles of good programme or project management. The tone of these comments was generally repeated by Member State Support Programme Co-ordinators at their meeting in November 1999 and by the Programme Performance Assessment System Report on Equipment Development. Of course the Department already knew that improvements could be made. The 'old' system - Prior to the changes three structures dominated the organisation. Firstly, a task approval process that did not allow for the application of the Department's priorities in a coordinated manner. Each task proposal was judged on its individual merits. Secondly, the distribution of task management responsibilities throughout the Department again did not allow easy coordination. Finally the focus on Member State task review meetings which did not allow the coordination of tasks in a particular subject area. The consequences of this were almost certainly the duplication of tasks, the performance of the wrong tasks and poor prioritisation of work. All at a time when the Department was generally short of resources. The

  12. The IAEA at work

    2004-03-01

    Fifty years ago, Dwight Eisenhower stood before the United Nations to offer both a warning and a vision. The knowledge to build an atomic bomb was in the hands of rival powers and would soon be shared by many countries, the President said. It was time to create a U.N. body that could ensure that the new technology served no military purpose. It was time, moreover, to 'devise methods whereby this fissionable material would be allocated to serve the peaceful pursuits of mankind' in agriculture, medicine and other peaceful activities. Eisenhower foresaw a world safe from the destructive power of atomic fission but gaining from its technological advances. Half a century later, the world continues to witness his foresight through the work of the International Atomic Energy Agency (IAEA). The IAEA aims at four formidable goals: safeguarding nuclear nonproliferation; enhancing the security of nuclear facilities and radioactive materials; ensuring the safety of nuclear technologies; and promoting nuclear science to meet human needs. As the world's 'nuclear watchdog,' the IAEA's impartial inspectorate verifies the peaceful uses of nuclear energy in scores of countries. By joining the Agency's strengthened safeguards system and concluding an Additional Protocol, countries can assure the world-and the IAEA can verify-that their nuclear activities are not used for weapons purposes. True to Eisenhower's vision, the power of the atom is being tapped for many human benefits, especially in the world's less developed nations. Extreme poverty remains a profound problem today: some 1.2 billion people in the developing world survive marginally on less that US$1 per day. Another 2.8 billion struggle on less than US$2 per day. The IAEA is mobilizing nuclear science to help address these pressing needs. From managing water better, to controlling pests and diseases, to protecting the environment, the IAEA is helping poor countries make sizeable advances. At the same time, the IAEA works

  13. The Site Approach - Lessons Learned from the Integrated Safeguards Approach for JNC-1

    Kikuchi, M.; Iso, S.; Tomine, K.; Hirato, Y.; Namekawa, M.; Takasugi, N.; Watanabe, M.; Tsutaki, Y.; Asano, T.; Nagatani, T.; Ninagawa, J.; Fujiwara, S.; Takahashi, S.; Kimura, T.; Kodani, Y.; Fukuhara, J.; Miyaji, N.; Kawakami, Y.; Koizumi, A.; Yamazaki, Y.; Nishinosono, S.; Sasaki, K.

    2010-01-01

    Integrated safeguards approaches for specific sites are recognized important elements in the design of a State-level approach under the concept of grouping facilities. Japan and the IAEA agreed further improvement of integrated safeguards implementation in effective and efficient manner, particularly at large complex nuclear sites in Japan. Japan and the IAEA developed the integrated safeguards approach for specific sites defined at Article 18 of Additional Protocol. In 2008, the IAEA started the three-year test implementation of JNC-1 site approach for improving the effectiveness and efficiency of the safeguards implementation of UDU material handling facilities. Japan and IAEA agreed to adopt the sector concept in order to make clear of subjected nuclear material to be verified. The sector is defined as spatial assignment that treats the same material stratum beyond MBAs in the site. The arrangement of MBAs and related material balance calculations as well as statistical analysis is maintained as a fundamental safeguards measure. At the boundaries of each sector, appropriate unattended NDA system and/or C/S system are installed, and material flows across the boundaries are verified by the system or attendance of resident inspectors. For inventory verification of the nuclear material stayed in sectors, an appropriate numbers of randomly scheduled inspections will be implemented. IAEA can access to the randomly selected sectors within 2 hours after notification. NRTA based on frequent operator's declaration will be performed for achievement of timeliness detection goal. The JNC-1 site approach has been implemented under the enhanced co-operation between the IAEA and SSAC through joint use of equipment and arrangements for DA analysis. Especially, national inspectors are working with IAEA together for coordination with operators. Because NMCC lab analyses all DA samples taken from facilities and the analysis results will be shared by the IAEA, certain numbers of DA

  14. The 50 Years of Safeguards and Non-Proliferation in Poland

    Pawlak, A.; Jurkowski, M.; Zagrajek, M.

    2015-01-01

    Milestones of safeguards and non-proliferation activities are presented. Poland has declared its compliance with non-proliferation regime by ratification of Treaty of Nonproliferation of Nuclear Weapons in 1969. Poland concluded in 1972 Agreement with IAEA for application of safeguards — INFCIRC/153. Next steps in implementation of international safeguards were: ratification of Additional Protocol and introduction of Integrated Safeguards. After accession to European Union, Poland fulfils its safeguards obligations according to following international legal instruments: Treaty establishing Euratom, Agreement between Poland, European Commission and International Atomic Energy Agency in connection with implementation of Article III of Treaty of Non-proliferation of Nuclear Weapons — INFCIRC/193 and Additional Protocol to this Agreement — INFCIRC/193 Add.8. Detailed safeguards requirements are established by domestic Act of Parliament of 29th November 2000 — Atomic law and European Union's Regulations of Commission (Euratom) No 302/2005 on application of Euratom safeguards and the Commission Recommendation on guidelines for the application of Regulation (Euratom) No 302/2005. SSAC was established in 1972 as required by CSA. Activities related to accounting for and control of nuclear material were conducted from 1970s till 1990s by Central Laboratory for Radiological Protection and National Inspectorate for Radiation and Nuclear Safety. Currently, NAEA is responsible for collecting and maintenance of accounting data and safeguards inspections at all MBAs. Around 30 routine inspections/year are performed by the NAEA, Euratom and IAEA. In addition, usually 2 unannounced inspections/year under framework of Integrated Safeguards are conducted. In accordance with implementation of Global Threat Reduction Initiative seven shipments of high enriched nuclear fuel from research reactor to Russian Federation under supervision of safeguards inspectors from NAEA

  15. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    Boyer, Brian David; Erpenbeck, Heather H.; Miller, Karen A.; Ianakiev, Kiril D.; Reimold, Benjamin A.; Ward, Steven L.; Howell, John

    2010-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235 U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  16. Safeguards activities in Japan

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  17. Recent developments in the implementation of Euratom safeguards

    Gmelin, W.; Bommelle, P.; Sharpe, B.W.; Love, B.

    1983-01-01

    The EURATOM safeguards system is based legally on the 1958 Treaty of Rome establishing the original Community of six (now 10) countries. Under this safeguards system, the Commission has, inter alia, ''to satisfy itself that any particular safeguarding obligations assumed by the Community under an agreement concluded with a third state or an international organisation are complied with'' (art. 77b). The practical implementation of safeguards within the Community is significantly influenced by the requirements of: (a) the three different agreements between the Community, its Member States and the IAEA, concerning the application of IAEA safeguards to some or all of the civil nuclear materials in the Community, and (b) the various agreements between the Community and certain third countries, concerning inter alia the application of safeguards within the Community to nuclear materials supplied, directly or indirectly, by these third countries. Within the past four years significant developments have occurred in both groups of agreements. The EURATOM safeguards organisation is the only multinational safeguards organisation in the world, and currently has a staff of some 120 inspectors, with appropriate administrative support, and can draw for research and development work on the resources of the Community's Joint Research Centre. The recent changes in inspection techniques, particularly in relation to non-destructive assay techniques, and the implementation of containment and surveillance measures, are discussed. A description is given of the experience gained in recent years in the operation of ''Joint Teams'' of EURATOM and IAEA inspectors in certain plants as well as the continuing experience gained under the normal regime, using the observation principle, as foreseen in the respective Agreement

  18. Lessons Learned from the Development of an Example Precision Information Environment for International Safeguards

    Gastelum, Zoe N.; Henry, Michael J.; Burtner, IV E.R.; Doehle, J. R.; Hampton, S. D.; La Mothe, R. R.; Nordquist, P. L.; Zarzhitsky, D. V.

    2014-01-01

    The International Atomic Energy Agency (IAEA) is interested in increasing capabilities of IAEA safeguards inspectors to access information that would improve their situational awareness on the job. A mobile information platform could potentially provide access to information, analytics, and technical and logistical support to inspectors in the field, as well as providing regular updates to analysts at IAEA Headquarters in Vienna or at satellite offices. To demonstrate the potential capability of such a system, Pacific Northwest National Laboratory (PNNL) implemented a number of example capabilities within a PNNL-developed precision information environment (PIE), and using a tablet as a mobile information platform. PNNL's safeguards proof-of-concept PIE intends to; demonstrate novel applications of mobile information platforms to international safeguards use cases; demonstrate proof-of-principle capability implementation; and provide ''vision''@ for capabilities that could be implemented. This report documents the lessons learned from this two-year development activity for the Precision Information Environment for International Safeguards (PIE-IS), describing the developed capabilities, technical challenges, and considerations for future development, so that developers working to develop a similar system for the IAEA or other safeguards agencies might benefit from our work.

  19. Lessons Learned from the Development of an Example Precision Information Environment for International Safeguards

    Gastelum, Zoe N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henry, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burtner, IV, E. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doehle, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hampton, S. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); La Mothe, R. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nordquist, P. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zarzhitsky, D. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The International Atomic Energy Agency (IAEA) is interested in increasing capabilities of IAEA safeguards inspectors to access information that would improve their situational awareness on the job. A mobile information platform could potentially provide access to information, analytics, and technical and logistical support to inspectors in the field, as well as providing regular updates to analysts at IAEA Headquarters in Vienna or at satellite offices. To demonstrate the potential capability of such a system, Pacific Northwest National Laboratory (PNNL) implemented a number of example capabilities within a PNNL-developed precision information environment (PIE), and using a tablet as a mobile information platform. PNNL’s safeguards proof-of-concept PIE intends to; demonstrate novel applications of mobile information platforms to international safeguards use cases; demonstrate proof-of-principle capability implementation; and provide “vision” for capabilities that could be implemented. This report documents the lessons learned from this two-year development activity for the Precision Information Environment for International Safeguards (PIE-IS), describing the developed capabilities, technical challenges, and considerations for future development, so that developers working to develop a similar system for the IAEA or other safeguards agencies might benefit from our work.

  20. IAEA verification of materials accounting in commercial reprocessing plants

    Gutmacher, R.G.; Hakkila, E.A.

    1987-01-01

    The reprocessing plants currently under International Atomic Energy Agency (IAEA) safeguards have design capacities up to 210 tonnes of heavy metal per year. All of the plants use conventional materials accounting for safeguards. However, several larger commercial reprocessing plants are being designed with capacities of 350 to 1200 tonnes of heavy metal per year. It is likely that many of these plants, as well as some of the existing smaller ones, will adopt near-real-time materials accounting. The major effect of the combination of larger plants and near-real-time accounting on IAEA safeguards will be the demand for greater timeliness of verification. Continuous inspector presence may be required, as well as more on-site measurements by the inspector. In this paper, the authors review what needs to be verified, as well as current inspector activities in the process area. The bulk of the paper describes rapid, easy-to-use measurement techniques and instruments that may be applied to on-site verification measurements

  1. Strengthening safeguards information evaluation

    Harry, J.; Hudson, P.

    2001-01-01

    The strengthening of safeguards should not be limited to the verification of explicit declarations made by the States. Additional information should guide the IAEA to set priorities for further investigations. Not only all aspects of the State's nuclear programme, including the application of safe, secure and transparent nuclear management, but also the level of compliance with other verifiable treaties, political motivation, economic capabilities, international relations and ties, co-operative attitude to safeguards, and general openness and transparency should be included. The evaluation of the diverse forms of information from different sources requires new reliable processes that will result in a high credibility and detection probability. The IAEA uses the physical model for the evaluation of the technical information, and proposed also Fuzzy Logic, or Calculation with Words, to handle the information. But for the evaluation it is questioned whether fuzziness could lead to a crisp judgement. In this paper an objective method of information evaluation is proposed, which allows to integrate different kinds of information and to include calibration and tests in the establishment of the evaluation process. This method, Delta, uses elicitation of a syndicate of experienced inspectors to integrate obvious indicators together with apparently innocent indicators, into a database that forms the core of the evaluation process. Nominal or ordinal scales could be applied to come to an objective and quantifiable result. Experience with this method can in the course of time result in predictive conclusions. 9 refs

  2. The application of probability methods for safeguards purposes

    Rumyantsev, A.N.

    1976-01-01

    The authors consider possible ways of applying probability methods to solve problems involved in accounting for nuclear materials. The increase in the flow of nuclear materials subject to IAEA safeguards makes it necessary to increase the accuracy of determination of the actual quantities of nuclear materials at all stages of their processing and use. It is proposed that the IAEA's automated system of accounting for nuclear materials, based on accounting information for each material balance zone and the results of random experimental checks performed by IAEA inspectors, be supplemented with mathematical models of the flow of nuclear materials in each balance zone based on the data supplied for each facility in the balance zone when it was placed under safeguards. The statistical error in determining the material balance and the material unaccounted for can be considerably reduced in this way even if the experimental control methods are retained. (author)

  3. DESIGN INFORMATION VERIFICATION FOR NUCLEAR SAFEGUARDS

    Robert S. Bean; Richard R. M. Metcalf; Phillip C. Durst

    2009-07-01

    A critical aspect of international safeguards activities performed by the International Atomic Energy Agency (IAEA) is the verification that facility design and construction (including upgrades and modifications) do not create opportunities for nuclear proliferation. These Design Information Verification activities require that IAEA inspectors compare current and past information about the facility to verify the operator’s declaration of proper use. The actual practice of DIV presents challenges to the inspectors due to the large amount of data generated, concerns about sensitive or proprietary data, the overall complexity of the facility, and the effort required to extract just the safeguards relevant information. Planned and anticipated facilities will (especially in the case of reprocessing plants) be ever larger and increasingly complex, thus exacerbating the challenges. This paper reports the results of a workshop held at the Idaho National Laboratory in March 2009, which considered technologies and methods to address these challenges. The use of 3D Laser Range Finding, Outdoor Visualization System, Gamma-LIDAR, and virtual facility modeling, as well as methods to handle the facility data issues (quantity, sensitivity, and accessibility and portability for the inspector) were presented. The workshop attendees drew conclusions about the use of these techniques with respect to successfully employing them in an operating environment, using a Fuel Conditioning Facility walk-through as a baseline for discussion.

  4. Safeguards techniques and equipment. 2003 ed

    2003-01-01

    The 1990s saw significant non-proliferation related developments in the world, resulting in a new period of safeguards development. Over several years an assessment was made of how to strengthen the effectiveness and improve the efficiency of IAEA safeguards. In May 1997 this culminated in the adoption by the IAEA Board of Governors of a Protocol Additional to Safeguards Agreements which significantly broadens the role of IAEA safeguards. As a consequence, the IAEA safeguards system entered a new era. In 1997 the IAEA began to publish a new series of booklets on safeguards, called the International Nuclear Verification Series (NVS). The objective of these booklets was to help in explaining IAEA safeguards, especially the new developments in safeguards, particularly for facility operators and government officers involved with these topics. The current booklet, which is a revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. A completely new section on data security has been added to describe the specific features that are included in installed equipment systems in order to ensure the authenticity and confidentiality of information. As new verification measures continue to be developed the material in this booklet will be periodically reviewed and updated versions issued. The basic verification measure used by the IAEA is nuclear material accountancy. In applying nuclear material accountancy, IAEA safeguards inspectors make independent measurements to verify quantitatively the amount of nuclear material presented in the State's accounts. For this purpose, inspectors count items (e.g. fuel assemblies, bundles or rods, or containers of powdered compounds of uranium or plutonium) and measure attributes of these items during their inspections using non

  5. IAEA safeguards technical manual

    1980-02-01

    The necessity for statistical inference procedures arises because of time and cost limitations imposed on inspection activities, and also because of inherent limitations of inspection measurement instruments and techniques. This manual produces statistical concepts and techniques in the field of nuclear material control

  6. Integrated Safeguards Information System for Japan (ISIS-J) - Strengthening SSAC for Enhancing Confidence in Compliance with Safeguards Obligations -

    Iso, S.; Nishiyama, N.; Kumakura, S.; Takizawa, K.; Yoshida, H.; Kobayashi, I.; Kikuchi, M.; Kimura, N.; Matsubara, T.; Yatsu, S.

    2010-01-01

    IAEA has stated the importance of enhancing cooperation with SSAC. Therefore, Japan has developed the Integrated Safeguards Information System for enhancing confidence in compliance with the national obligation under the safeguards agreement and the additional protocol. Japan already established the National System including national inspections with NDA and DA verification functions and evaluation of data obtained from national inspections and has maintained the National System of safeguards as a SSAC in accordance with the safeguards agreement. Nuclear Material Control Center (NMCC) is engaged in national safeguards activities as designated organization of national inspectorate and information treatment including safeguards data analysis. Recently, purpose of IAEA's safeguards activities may shift to detection of proliferation based on plausible proliferation paths from detection of diversion by certain material accountancy measures. Major safeguards activities of IAEA have changed from quantitative aspects to qualitative them. As supplements for declining the quantitative measures such as the activities based on the safeguards criteria the IAEA would expect the SSAC functions for maintaining the activities of quantitative manners. Japan believes that the State's responsibility for enhancing cooperation between the National System and the IAEA must assure the confidence level of correctness and completeness of the State declarations with accurate and precise accountability as findings from SSAC. Japan has started the development of the strengthened and autonomous national system namely the Integrated safeguards Information System for Japan (ISIS-J) in order to fulfil our responsibility. Japan would seek to improve quality of information including nuclear material accounting data as well as expanded declaration relevant to nuclear activities in Japan, and to increase abilities for explaining safeguards relevant events in Japan. The enhanced findings could include

  7. The IAEA concept of detection of diversion through nuclear material accountancy (2)

    Akiba, Mitsunori

    2005-01-01

    Diversion into D (falsification of accounting report) and diversion into MUF could be detected by the Inspectorate through nuclear material accountancy. The Inspectorate designs inspection activities to detect diversion into D in cost effective ways. As a result, detection of diversion into D is divided into two statistics, one is item difference statistics which could detect major defects and the other is material balance statistics which could detect remaining small defects. MUF statistics could detect Diversion into MUF. Item statistics has many useful characteristics from safeguards view points, so it is examined in details. Material balance statistics and MUF statistics stem from measurement error associated with equipment inevitably. The above-mentioned concept is called 'IAEA decision structure'. Hereafter, designing safeguards (inspection activities) approach will be based on the IAEA decision structure. (author)

  8. Implementation of integrated safeguards at Nuclear Fuel Plant Pitesti, Romania

    Olaru, Vasilica; Ivana, Tiberiu; Epure, Gheorghe

    2010-01-01

    The nuclear activity in ROMANIA was for many years under Traditional Safeguards (TS) and has developed in good conditions this type of nuclear safeguards. Now, the opportunity exists to improve the performance and quality of the safeguards activity and increase the accountancy and control of nuclear material by passing to Integrated Safeguards (IS). The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional to the Agreement between the Socialist Republic of Romania Government and IAEA related to safeguards as part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol content published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between Nuclear Fuel Plant (NFP) representatives and IAEA inspectors was in June 2005. In Feb. 2007 an IAEA mission visited NFP and established the main steps for implementing the IS. There were visited the storages, technological flow, and was reviewed the disposal times for different nuclear materials, the applied chemical analysis, measuring methods, weighting method and elaborating procedure of the documents and lists. At that time the IAEA and NFP representatives established the main points for starting the IS at NFP: performing the Short Notice Random Inspections (SNRI); communication of the days established for SNRI for each year; communication of the estimated deliveries and shipments for first quarter and then for the rest of the year: daily mail box declaration (DD) with respect to the deposit time for several nuclear materials i.e. advance notification (AN) for each nuclear material transfer (shipments and receipts), others. At 01 June 2007 Romania has passed officially to Integrated Safeguards and NFP (WRMD) has taken all measures to implement this objective. (authors)

  9. International safeguards for critical facilities

    Ney, J.F.; Todd, J.L.

    1979-01-01

    A study was undertaken to investigate various approaches to provide international safeguards for critical facilities and to select an optimized system. Only high-inventory critical facilities were considered. The goal of the study was to detect and confirm the protracted or abrupt diversion of 8kg of plutonium or 25kg of the uranium isotope 235 within approximately a week of the diversion. The general safeguards alternatives considered were (1) continuous inspections by resident inspectors, with varying degrees of comprehensiveness, (2) periodic inspections by regional inspectors at varying time intervals, (3) unattended containment/surveillance measures, and (4) various combinations of the above. It was concluded that a practical and effective international safeguards system can be achieved by employing a method of continuously monitoring facility activities which could lead to diversion. This is in addition to the routine inspections typical of current international safeguards. Monitoring detects inventory discrepancies and violations of agreed-upon procedural restrictions, as well as unauthorized removal of Special Nuclear Materials (SNM). A special inventory is used following detection to confirm any suspected diversion. Comparison of 28 safeguards options led to the selection of a system for further development which uses a combination of surveillance and inspection by resident IAEA personnel, containment/surveillance by unattended equipment, and routine inventory sampling. A development programme is described which is intended to demonstrate the feasibility of several containment and surveillance measures proposed in the study. Included are a personnel portal and an instrument/material pass-through as well as associated recording and tamper-protection features. (author)

  10. Safeguarding the fuel cycle: Methodologies

    Gruemm, H.

    1984-01-01

    The effectiveness of IAEA safeguards is characterized by the extent to which they achieve their basic purpose - credible verification that no nuclear material is diverted from peaceful uses. This effectiveness depends inter alia but significantly on manpower in terms of the number and qualifications of inspectors. Staff increases will be required to improve effectiveness further, if this is requested by Member States, as well as to take into account new facilities expected to come under safeguards in the future. However, they are difficult to achieve due to financial constraints set by the IAEA budget. As a consequence, much has been done and is being undertaken to improve utilization of available manpower, including standardization of inspection procedures; improvement of management practices and training; rationalization of planning, reporting, and evaluation of inspection activities; and development of new equipment. This article focuses on certain aspects of the verification methodology presently used and asks: are any modifications of this methodology conceivable that would lead to economies of manpower, without loss of effectiveness. It has been stated in this context that present safeguards approaches are ''facility-oriented'' and that the adoption of a ''fuel cycle-oriented approach'' might bring about the desired savings. Many studies have been devoted to this very interesting suggestion. Up to this moment, no definite answer is available and further studies will be necessary to come to a conclusion. In what follows, the essentials of the problem are explained and some possible paths to a solution are discussed

  11. Opening Statement from the IAEA Director General

    Amano, Y.

    2015-01-01

    The safeguards resolution adopted at the IAEA General Conference last month recognised that 'effective and efficient safeguards implementation requires a cooperative effort between the Agency and States.' This cooperative effort takes place every day through the work of our inspectors in the field and our headquarters staff in Vienna, together with their counterparts in the 181 countries in which we implement safeguards. But this Symposium also has a very important part to play. Every four years, it brings together key interested parties from the Agency and Member States for an in-depth, week-long examination of key issues in nuclear verification. And, as all of us know, the field of nuclear verification never stands still. The number of nuclear facilities coming under IAEA safeguards continues to grow steadily - by 12 percent in the past five years alone. So does the amount of nuclear material to be safeguarded. It has risen by around 14 percent in that period. With 72 nuclear power plants under construction, and many additional countries considering the introduction of nuclear power in the coming years, that trend looks very likely to continue. And that is just nuclear power. The use of nuclear science and technology in other peaceful applications - in industry, medicine and agriculture, for example - also continues to grow. Funding for the Agency has not kept pace with growing demand for our services and is unlikely to do so in the coming years. That means we must constantly find ways of working more effectively and more efficiently in all areas of our work, including safeguards. I will briefly highlight some key developments in the Agency's safeguards activities since the last Symposium in 2010

  12. Safeguard sleuths

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  13. Report on the US Program of Technical Assistance to Safeguards of the International Atomic Energy Agency (POTAS)

    1981-01-01

    This document summarizes the work done under the US Program of Technical Assistance to IAEA Safeguards (POTAS), providing the US Government, IAEA, and others with a short review of the progress made in the program since its inception. Becaue of the size and complexity of the program, only major accomplishments are presented. These are grouped under the following categories: (1) equipment and standard which cover assay of irradiated and unirradiated nuclear materials, automatic data processing, and physical standards; (2) experts who are involved in technology transfer, training, system design, and safeguard information processing and analysis; (3) system studies which cover diversion hazard analysis, safeguards approaches and application, and inspection effort planning and forecasting; (4) techniques, procedures, and equipment evaluation; (5) training of IAEA inspectors and safeguards specialists from member states. The major achievement has been the provisions of safeguards equipment designed to be reliable, and tamper resistant, some of which have already been in use in the field by inspector or by IAEA staff members in Vienna. These are listed in a table

  14. Safeguards at Kozloduy NPP - Experience and expectations

    Elenkov, Todor

    2001-01-01

    Bulgaria is a party of Non Proliferation Treaty since 5 September 1969. The agreement between IAEA and Bulgaria - INFCIRC 178 - has been in force since 29 February 1972. At that time Bulgaria had one research reactor IRT-2000 in Sofia and two power reactors of WWER-440 type under construction. Now at Kozloduy NPP site there are 4 facilities, which consist of 4 WWER-440 and 2 WWER-1000 type power reactors, producing almost 50% of the electricity in Bulgaria and 1 wet away from reactor spent fuel storage. In 1991 under the green movements and social pressure, the research reactor in Sofia was closed and the construction of the second NPP in Belene with 2 WWER-1000 type reactors was halted. After the transfer in 1994 of the fresh fuel from the research reactor to Kozloduy due to security reasons practically NPP Kozloduy remains the only significant (from safeguards point of view) nuclear site in Bulgaria. In 1972 a 'Nuclear Fuel' group was formed at the Physicists Department in NPP Kozloduy with responsibilities to carry out for safeguards records and reports, fresh and spent fuel transport and control. In 1990 this group was transferred to the Safety Section and since 1992 it exists as 'Control and Accounting for of the Nuclear Materials' - a section in the Safety Department. Currently the section serves all four facilities in NPP Kozloduy and has four people: section head, chief inspector and two inspectors. The main activities of the section include: a) Control of the nuclear fuel location as well as meeting the storage and transport conditions regulations; b) Control of the conditions for normal operations of the installed IAEA surveillance systems; c) Preparation of documents for licensing of fresh and spent nuclear fuel transport; d) Preparation of the official information on nuclear materials location and quantity; e) Preparation of accounting records and the reports for IAEA (ICR, PIL, MBR); f) Co-ordination of the IAEA safeguards inspection activities at NPP

  15. Safeguards approaches for conversion and gas centrifuge enrichment plants

    Stanuch, C.; Whitaker, M.; Lockwood, D.; Boyer, B.

    2013-01-01

    This paper describes recent studies and investigations of new safeguards measures and inspection tools to strengthen international safeguards at GCEPs (Gas Centrifuge Enrichment Plants) and conversion plants. The IAEA has indicated that continuous, unattended process monitoring should play a central role in future safeguards approaches for conversion plants and GCEPs. Monitoring safeguards relevant information from accountancy scales, process load cells, and unit header pipes can make existing safeguards approaches more efficient by replacing repetitive, routine, labor-intensive inspection activities with automated systems. These systems can make the safeguards approach more effective by addressing more completely the safeguards objectives at these facilities. Automated collection and analysis of the data can further enable the IAEA to move towards a fully-information driven inspection regime with randomized (from the operator's perspective), short-notice inspections. The reduction in repetitive on-site inspection activities would also be beneficial to plant operators, but only if sensitive and proprietary information can be protected and the new systems prove to be reliable. New facilities that incorporate Safeguards by Design into the earliest design stages can facilitate the effective DIV (Design Information Verification) of the plant to allow the inspectors to analyze the capacity of the plant, to project maximum production from the plant, and to provide a focus on the areas in the plant where credible diversion scenarios could be attempted. Facilitating efficient nuclear material accountancy by simplifying process pipework and making flow measurement points more accessible can allow for easier estimation of plant holdup and a potential reduction in the number of person-days of inspection. Lastly, a universal monitoring standard that tracks the location, movement, and use of UF 6 cylinders may enhance the efficiency of operations at industry sites and would

  16. Summary of safeguards interactions between Los Alamos and Chinese scientists

    Eccleston, G.W.

    1994-01-01

    Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions

  17. IAEA team to visit North Korean nuclear facilities

    2002-01-01

    A technical team from the IAEA will visit nuclear facilities in the Nyongbyon area of the Democratic People's Republic of Korea (DPRK) from 15-19 January. The visit will include the Isotope Production Laboratory, an installation that the DPRK has stated was involved in the early stages of development of their nuclear programme. Since 1993, the IAEA has been unable to fully implement its comprehensive safeguards agreement with the DPRK, and has been therefore unable to verify the completeness and correctness of the DPRK's initial 1992 declaration of its nuclear inventory. In May 2001, the IAEA proposed to the DPRK concrete steps that need to be carried out in that verification process, and indicated its readiness to start implementing these measures immediately. At a technical meeting between the DPRK and the IAEA in November 2001, the DPRK did not agree to promptly start to implement those proposals, citing the delay in implementation of the USA/DPRK Agreed Framework as the principal reason for declining. However, the DPRK did agree to a visit, not an inspection, by IAEA inspectors to the Isotope Production Laboratory. The DPRK withdrew its membership from the Agency in June 1994. The Director General encourages the DPRK to normalize its relations with the IAEA including resumption of full safeguards inspections

  18. Designing a safeguards approach for the transfer and storage of used fuel

    Benjamin, Robert; Truong, Q.S. Bob; Keeffe, Richard; Whiting, Neville; Green, Brian

    2001-01-01

    Full text: To provide needed space in the bays for continued CANDU reactor discharges, used fuel must be moved from the bays to dry storage facilities, which are built on site. Over the next decades, used fuel in the bays in Canada will be loaded into containers or transfer flasks and moved to the dry storage facilities. The IAEA currently verifies the transfer of used fuel to dry storage at the Point Lepreau and Gentilly and Pickering CANDU reactor stations. When the Bruce Used Fuel Dry Storage Facility starts operating in 2002 followed by the Darlington Used Fuel Dry Storage Facility in 2007-2009 increased Agency safeguards resources will be required. Safeguarding these new facilities and the flow of fuel to them would place additional demand on IAEA resources if the current approach, which relies heavily upon inspectors being present at the facility, were used. In a continuous search for more efficient approaches, the IAEA, the Canadian Nuclear Safety Commission, and the facility operators are working together to develop a safeguards scheme that depends less upon inspectors and more upon instruments, operator activity and remote monitoring. This paper describes the current approach to safeguarding used fuel in transit and in storage at the Pickering site and how that approach might be applied to the Bruce site. Alternative approaches are also discussed and their application to existing and future used fuel dry storage facilities is considered. Safeguards approaches under existing Safeguards Criteria are compared with approaches that might be possible under a safeguards regime strengthened by the Additional Protocol, and with approaches optimised under Integrated Safeguards. The technologies being considered to safeguard used fuel include position tracking using Global Positioning System (GPS), Geospatial Information System (GIS), radio frequency techniques, electronic seals, operator activity and remote surveillance and monitoring. (author)

  19. Information collection strategies to support strengthened safeguards

    Costantini, L.; Hill, J.

    2001-01-01

    The IAEA Board of Governors approved the implementation of Part 1 of Strengthened Safeguards in June 1995. Since then, the collection and analysis of information beyond that provided by States parties and acquired by inspectors under NPT Safeguards Agreements has been an integral part of IAEA safeguards. The Agency has formally established internal structures and procedures to facilitate the effective use of open-source and other information not previously used in safeguards. Over this period the IAEA Division of Safeguards Information Technology (SGIT) has been building its collections of electronically held open source information. Some of these collections are quite nuclear-specific, such as material from the Monterey Institute in California, and nuclear news collections provided voluntarily by a number of Member States. Others are completely general news sources. Several of these collections contain many more reports than could possibly be reviewed by a human analyst. So a need has arisen for computerised search facilities to identify nuclear-relevant items from those collections. The Agency has more than one piece of software available to help searching and analysis of substantial collections of reports. Search 97 from Verity was chosen for this particular application because it is very straightforward to use, and it was expected that personnel from all over the Department of Safeguards would carry out these searches on a routine basis. The approach whereby special-purpose search mechanisms are designed for use by a large number of users, who are unfamiliar with the details of the search software, seems to be unusual if not unique to the Agency

  20. Information-Driven Safeguards: A Country Officer's Perspective

    Gyane, E.

    2010-01-01

    Since the transition from 'traditional' to strengthened safeguards, the evaluation and analysis of information has played an increasingly important role in the Agency's safeguards activities. During the State evaluation process, the Agency utilizes all available information for drawing credible safeguards conclusions. Besides State declared information and data gathered during inspections, a large number of information sources are reviewed for any indications of safeguards relevance. The State level approach - in contrast to the facility-based approach under traditional safeguards - considers the acquisition paths available to a State and adjusts safeguards intensity accordingly. An additional protocol widens the information base available to the Agency for analysis and evaluation and it extends the Agency's access rights in the field. The use of information for determining safeguards activities is often referred to as 'information-driven safeguards'. Country officers are inspectors in the Department of Safeguards Operations Divisions who are responsible for States and thus form the base of the Agency's information chain. The information-driven safeguards approach has led to a significant change in the role of inspector country officers: While the verification of declared nuclear material remains the cornerstone of the IAEA Safeguards System, country officers are now not only expected to be knowledgeable about the inspection-related aspects in their countries. They also need to act on information on their States coming from a variety of sources on an ongoing basis, in order to identify proliferation indicators at an early stage. Country officers thus analyse developments in their States as well as their States' relations with other States. They review scientific literature for research that could potentially be of safeguards relevance. They observe their States' nuclear facilities from satellite imagery. They evaluate reports on nuclear trade between their States

  1. Steps of Ukrainian SSAC to Integrated Safeguards

    Lopatin, S.

    2010-01-01

    Strengthening of SSAC is a necessary condition for application of integrated safeguards. Ukrainian State System has been working since 1994 and passed several stages in its development: At the early stage it allowed us to conclude the first Safeguards Agreement; In 2003 SSAC covered also all nuclear material at locations outside facilities; In 2006 Additional Protocol (AP) entered into force. The significant contribution to strengthening of SSAC has been made by ISSAS mission carried out in Ukraine in 2007. The mission helped us to evaluate the State Safeguards System, provided us recommendations on improving of legislation, in particular to establish the system of personnel training. Cooperation between the IAEA and Ukrainian SSAC is carried out in following directions. Annual meeting of Safeguards Implementation Review Group takes place in Kiev. Participants discuss current tasks or problem issues of Safeguards implementation and work out Action Plan in order to resolve a problem or find a way for improving situation. Ukrainian State inspectors organize and take part in each IAEA inspection and complementary access. Ukraine has got considerable experience in the AP implementation, to a certain extent determined by peculiarities of Ukraine as a former part of a nuclear weapon state. For 5 years we have accumulated a significant amount of AP information and it became a problem to keep track of it. Due to Protocol Reporter software has limited possibilities there was a need to develop additional software for AP information management. The transmission of encrypted data on nuclear materials from surveillance systems installed at all NPPs directly to the IAEA Headquarters has started recently. Since September 2010 the IAEA plans to use these data for drawing conclusion of safeguards implementation that will allow to reduce the number of IAEA inspections to the Ukrainian NPPs. While implementing the AP we got a question about correspondence of efforts spent for

  2. Optimizing and joining future safeguards efforts by 'remote inspections'

    Zendel, M.; Khlebnikov, N.

    2009-01-01

    Full-text: Remote inspections have a large potential to save inspection effort in future routine safeguards implementation. Such inspections involve remote activities based on the analysis of data acquired in the field without the physical presence of an inspector, shifting the inspectors' priorities further toward unannounced inspections, complementary access activities and data evaluation. Large, automated and complex facilities require facility resident and specific safeguards equipment systems with features for unattended and remotely controlled operation as well as being integrated in the nuclear process. In many instances the use of such equipment jointly with the SSAC/RSAC and the operator is foreseen to achieve affordable effectiveness with a minimum level of intrusiveness to the facility operation. Where it becomes possible to achieve independent conclusions by this approach, the IAEA would make full use of the SSAC/RSAC, involving State inspectors and/or facility operators to operate inspection systems under remotely controlled IAEA mechanisms. These mechanisms would include documented procedures for routine joint-use, defining arrangements for data sharing, physical security and authentication mechanisms, recalibration and use of standards and software, maintenance, repair, storage and transportation. The level of cooperation and willingness of a State to implement such measures requested and properly justified by the IAEA will demonstrate its commitment to full transparency in its nuclear activities. Examples of existing remote inspection activities, including joint-use activities will be discussed. The future potential of remote inspections will be assessed considering technical developments and increased needs for process monitoring. Enhanced cooperation with SSAC/RSAC within the framework of remote inspections could further optimize the IAEA's inspection efforts while at the same time maintaining effective safeguards implementation. (author)

  3. Nuclear safeguards

    Estrampres, J.

    2010-01-01

    Close cooperation with the Ministry of Industry with representation from the UNESA Safeguards Group, has meant that, after almost two years of intense meetings and negotiations, Spain has a specific plant to plant agreement for the application of Safeguards under this new method. This is an agreement which aims to be a benchmark for all other EU countries, as the IAEA tends to apply a generic agreement that, in many cases, majority interferes in the nuclear power plants own processes. (Author).

  4. Remote monitoring field trial. Application to automated air sampling. Report on Task FIN-E935 of the Finnish Support Programme to IAEA Safeguards

    Poellaenen, R.; Ilander, T.; Lehtinen, J.; Leppaenen, A.; Nikkinen, M.; Toivonen, H.; Ylaetalo, S.; Smartt, H.; Garcia, R.; Martinez, R.; Glidewell, D.; Krantz, K.

    1999-01-01

    An automated air sampling station has recently been developed by Radiation and Nuclear Safety Authority (STUK). The station is furnished with equipment that allows comprehensive remote monitoring of the station and the data. Under the Finnish Support Programme to IAEA Safeguards, STUK and Sandia National Laboratories (SNL) established a field trial to demonstrate the use of remote monitoring technologies. STUK provided means for real-lime radiation monitoring and sample authentication whereas SNL delivered means for authenticated surveillance of the equipment and its location. The field trial showed that remote monitoring can be carried out using simple means although advanced facilities are needed for comprehensive surveillance. Authenticated measurement data could be reliably transferred from the monitoring site to the headquarters without the presence of authorized personnel in the monitoring site. The operation of the station and the remote monitoring system were reliable. (orig.)

  5. Radionuclide analysis of environmental field trial samples at STUK. Report on Task FIN A 847 of the Finnish Support Programme to IAEA Safeguards

    Rantavaara, A.; Klemola, S.; Saxen, R.; Ikaeheimonen, T.K.; Moring, M.

    1994-12-01

    Radionuclide determinations on seventeen field trial test samples were carried out for the International Atomic Energy Agency by the Finnish Centre for Radiation and Nuclear Safety (STUK). All the samples, i.e., samples of sea water, grass and biota were analysed for gamma emitting nuclides. 3 H was determined in water, 90 Sr in grass and 238 Pu, 239 Pu, 240 Pu and 241 Am in biota samples. To avoid losses of radionuclides before gamma activity measurements, the sequence of treatments was adjusted considering the unknown radionuclide composition. The radionuclide contents found in the samples were roughly the same or lower than contents in same types of environmental samples in the Northern hemisphere. The ratios of Pu and Am nuclides in two of the biota samples referred to an origin other than the global atmospheric fallout. The work was carried out under Task FIN A 847 of the Finnish Support Programme to IAEA Safeguards. (orig.) (21 refs., 3 figs., 7 tabs.)

  6. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    NONE

    1995-06-01

    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  7. International safeguards: Accounting for nuclear materials

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  8. International safeguards: Accounting for nuclear materials

    Fishbone, L.G.

    1988-01-01

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the ''non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs

  9. The international safeguards profession

    Sanders, K.E.

    1986-01-01

    The International Atomic Energy Agency has established a staff of safeguards professionals who are responsible for carrying out on-site inspections to determine compliance with international safeguards agreements. By IAEA Statute, the paramount consideration in recruiting IAEA staff is to secure employees of the highest standards of efficiency, technical competence, and integrity. An analysis of the distribution of professionals in the IAEA Department of Safeguards has revealed some interesting observations regarding the distribution of grade levels, age, time in service, gender, and geographical origin. Following several earlier studies performed by contractors for ACDA, U.S. efforts have been undertaken to attract and better prepare candidates for working at the IAEA

  10. Developing reliable safeguards seals for application verification and removal by State operators

    Finch, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haddal, Risa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Once a geological repository has begun operations, the encapsulation and disposal of spent fuel will be performed as a continuous, industrial-scale series of processes, during which time safeguards seals will be applied to transportation casks before shipment from an encapsulation plant, and then verified and removed following receipt at the repository. These operations will occur approximately daily during several decades of Sweden's repository operation; however, requiring safeguards inspectors to perform the application, verification, and removal of every seal would be an onerous burden on International Atomic Energy Agency's (IAEA's) resources. Current IAEA practice includes allowing operators to either apply seals or remove them, but not both, so the daily task of either applying or verifying and removing would still require continuous presence of IAEA inspectors at one site at least. Of special importance is the inability to re-verify cask or canisters from which seals have been removed and the canisters emplaced underground. Successfully designing seals that can be applied, verified and removed by an operator with IAEA approval could impact more than repository shipments, but other applications as well, potentially reducing inspector burdens for a wide range of such duties.

  11. A report on the IAEA co-ordinated research programme on the Application of Isotopic Correlation Techniques to international safeguards 1975-1982

    Sanatani, S.

    1983-01-01

    A co-ordinated research programme on the Application of Isotopic Correlation Techniques (ICT) to International Safeguards has just ended in the Agency. During the continuation of the programme, scientists from Belgium, Japan, France, United Kingdom, United States and Euratom, engaged in the development of ICT, met periodically to discuss the results obtained by them from both theoretical and experimental investigations. The paper describes the main features of the alternative approaches developed at participating laboratories as well as procedures developed at the IAEA. At the conclusion of the programme, there was an unanimous recommendation from the participants that ICT is a useful tool for verification of input analysis at a chemical reprocessing plant. After the closure of the co-ordinated research programme, the IAEA is now applying data evaluation procedures developed at the Agency and keeping in contact with the progress of work on ICT carried on in laboratories such as JAERI (Japan), CEA (France) and Euratom, through support programmes and through participation in the ESARDA working group dealing with ICT

  12. IAEA yearbook 1991

    1991-01-01

    The IAEA Yearbook 1991 contains the following 6 chapters: Transfer of Nuclear Technology; Applications of Nuclear Techniques and Research (Also published separately as Part B of the IAEA Yearbook 1991); Nuclear Power, Nuclear Fuel Cycle and Waste Management (Also published separately as Part C of the IAEA Yearbook 1991); Nuclear Safety Review (Also published separately as Part D of the IAEA Yearbook 1991); IAEA Safeguards; The IAEA (operating framework and functions). A separate abstract and indexing was provided for each chapter. Refs, figs and tabs

  13. VVER-1000 SFAT-specification of an industrial prototype. Interim report on Task FIN A 1073 of the Finnish Support Programme to IAEA Safeguards

    Tiitta, A. [VTT Chemical Technology, Espoo (Finland); Dvoyeglazov, A.M.; Iievlev, S.M. [State Scientific and Technical Centre for Nuclear and Radiation Safety, Kiev (Ukraine); Tarvainen, M.; Nikkinen, M. [Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2000-05-01

    The project to develop a Spent Fuel Attribute Tester (SFAT) for Ukrainian VVER-1000 facilities is going on under the Task FIN A 1073 of the Finnish Support Programme to the IAEA safeguards. In the SFAT method the verification is based on an unambiguous detection of gamma radiation of the fission products. This is implemented by detecting the radiation emitted by a fuel assembly with a mobile gamma-spectroscopic instrument consisting of a collimator arrangement and a detector unit. The fuel assemblies stored in a wet storage are not moved during the verification measurement. The principal target is the radiation characteristic to {sup 137}Cs. For short cooled assemblies also {sup 144}Pr can be used as the target fission product nuclide. The generic IAEA SFAT concept has been adapted to the special conditions at the Ukrainian facilities. The requirements of the End User (IAEA), the State Nuclear Safety Authority (NRA) and the facilities have been taken into account and included in the specifications. Since the issuance of the first interim report, additional measurements were conducted at the Zaporozhye NPP to ensure the feasibility of the suggested measurement geometry and to test whether the SFAT device could be operated using the refuelling machine. A clear answer to the optimal measurement geometry and the detector choice was also obtained during this first phase of the task. Basing on the measurement results and the operational experience, the technical specifications for an industrial SFAT prototype are formulated. The technical specifications presented in this report and in the previous report have been approved by the Ukrainian State Authority and one of the facility operators, the Zaporozhye NPP. A procedure has been started for getting the approval of the other Ukrainian operators. (orig.)

  14. Market Research Survey of Commercial Off-The-Shelf (COTS) Portable MS Systems for IAEA Safeguards Applications

    Hart, Garret L.; Hager, George J.; Barinaga, Charles J.; Duckworth, Douglas C.

    2013-02-01

    This report summarizes the results for the market research survey of mass spectrometers that are deemed pertinent to International Atomic Energy Agency (IAEA) needs and strategic objectives. The focus of the report is on MS instruments that represent currently available (or soon to be) commercial off-the shelf (COTS) technology and weigh less than 400 pounds. A compilation of all available MS instruments (36 COTS and 2 R&D) is presented, along with pertinent information regarding each instrument.

  15. Use of Equipment Information System (EQUIS) to determine priority for purchasing safeguards equipment

    Silberberg, S.

    1988-01-01

    To manage its large world-wide inventory of safeguards equipment, the IAEA Safeguards department uses a computerized Equipment Information System (EQUIS). EQUIS data have been analyzed using Queueing Theory to determine if inventory is adequate to meet inspector demands and in those cases where it is inadequate, to indicate how many additional units should be procured. Results are tabulated for various types of non-destructive analysis (NDA) equipment. For equipment where there is a high turnover and hence a large amount of data, the analysis provides a powerful tool for assisting procurement decisions

  16. Report Of The Workshop On Nuclear Facility Design Information Examination And Verification For Safeguards

    Metcalf, Richard; Bean, Robert

    2009-01-01

    The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEA's Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facility's general character, purpose, capacity, and location; (2) Description of the facility's layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards in the future

  17. The IAEA's activities in safeguarding nuclear materials and in developing internationally acceptable safety codes and guides for nuclear power plants

    Rometsch, Rudolf; Specter, Herschel

    1977-01-01

    Promoting the peaceful use of nuclear energy and aiming at the international sharing of its benefits are objectives that guide the activities of the Agency. But this promotional work is carried out on condition that security and safety are provided for. All Agency assistance involving nuclear facilities will be subjected to standards of safety or other standards, which are proposed by a State the Agency finds essentially equivalent. Safeguards are always applied on the basis of agreement. States party to NPT are obligated to negotiate and conclude with the Agency agreements which cover all their peaceful nuclear activities. Safeguards agreements concluded outside NPT are applied to specific supplies of facilities, equipment and material. To assist countries in laying down their nuclear safety regulations the Agency's program for the developing of codesof practice and safety guides for nuclear power plants draws up guidelines for governmental organizations, siting, design, operation and quality assurance. Codes are the fundamental documents laying down the objectives of each field of nuclear safety

  18. International safeguards 1979

    Fischer, D.

    1979-01-01

    First, the nature of the nuclear proliferation problem is reviewed. Afterward, the extent to which the risk of further horizontal proliferation of nuclear weapons is being contained by international agreements and by the application of the IAEA's safeguards under these agreements is investigated. The geographical scope of such safeguards, the gaps in safeguards coverage, and the political and technical effectiveness of such safeguards are examined. In conclusion, it is pointed out that IAEA safeguards are the cutting edge of almost every nonproliferation measure that has so far been applied or put forward. Safeguards would also play a part in any international scheme for limiting vertical proliferation. If the cutting edge of safeguards is blunted or if, for one reason or another, safeguards cannot be or are not being applied, the nonproliferation regime will suffer commensurate damage

  19. Safeguards Implementation at KAERI

    Jung, Juang; Lee, Sung Ho; Lee, Byung-Doo; Kim, Hyun-Sook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The main objective of the safeguards implementation activities is to assure that there are no diversions of declared nuclear material and/or no undeclared activity. The purpose of safeguards implementation activities is the assistance facility operators to meet the safeguards criteria set forth by the Atomic Energy Safety Acts and Regulations. In addition, the nuclear material and technology control team has acted as a contact point for domestic and international safeguards inspection activities and for the relevant safeguards cooperation. Domestic inspections were successfully carried out at the KAERI nuclear facilities pursuant to the domestic laws and regulations in parallel with the IAEA safeguards inspections. It is expected that safeguards work will be increased due to the pyro-related facilities such as PRIDE, ACPF and DUPIC, for which the IAEA is making an effort to establish safeguards approach. KAERI will actively cope with the plan of the NSSC by changing its domestic inspection regulations on the accounting and control of nuclear materials.

  20. Independent verification of a material balance at a LEU fuel fabrication plant. Program for technical assistance to IAEA safeguards

    Sorenson, R.J.; McSweeney, T.I.; Hartman, M.G.; Brouns, R.J.; Stewart, K.B.; Granquist, D.P.

    1977-11-01

    This report describes the application of methodology for planning an inspection according to the procedures of the International Atomic Energy Agency (IAEA), and an example evaluation of data representative of low-enriched uranium fuel fabrication facilities. Included are the inspection plan test criteria, the inspection sampling plans, the sample data collected during the inspection, acceptance testing of physical inventories with test equipment, material unaccounted for (MUF) evaluation, and quantitative statements of the results and conclusions that could be derived from the inspection. The analysis in this report demonstrates the application of inspection strategies which produce quantitative results. A facility model was used that is representative of large low-enriched uranium fuel fabrication plants with material flows, inventory sizes, and compositions of material representative of operating commercial facilities. The principal objective was to determine and illustrate the degree of assurance against a diversion of special nuclear materials (SNM) that can be achieved by an inspection and the verification of material flows and inventories. This work was performed as part of the USA program for technical assistance to the IAEA. 10 figs, 14 tables

  1. Inspection methods for safeguards systems at nuclear facilities

    Minichino, C.; Richard, E.W.

    1981-01-01

    A project team at Lawrence Livermore National Laboratory has been developing inspection procedures and training materials for the NRC inspectors of safeguards systems at licensed nuclear facilities. This paper describes (1) procedures developed for inspecting for compliance with the Code of Federal Regulations, (2) training materials for safeguards inspectors on technical topics related to safeguards systems, such as computer surety, alarm systems, sampling techniques, and power supplies, and (3) an inspector-oriented methodology for evaluating the overall effectiveness of safeguards systems

  2. International safeguards

    Sanders, B.; Ha Vinh Phuong

    1976-01-01

    Since the start of the post-war era, international safeguards were considered essential to ensure that nuclear materials should not be diverted to unauthorised uses. In parallel, it was proposed to set up an international atomic energy agency within the United Nations through which international cooperation in nuclear matters would be channelled and controlled. Created in 1957, the IAEA was authorized to administer safeguards in connection with any assistance it provided as well as at the request of Member State and of any party to bilateral or multilateral arrangements in its ambit. Today, there are two international treaties requiring that its parties should accept Agency safeguards unilaterally, the Latin America Tlatelolco Treaty of 1967, and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), operative since 1970, which requires in particular that non-nuclear weapon states should accept Agency safeguards on its peaceful nuclear activities. Thus while NPT covers peaceful nuclear activities indiscriminately in a country, the Agency's original safeguards system is applied according to specific agreements and to given facilities. A basic conflict has now emerged between commercial interests and the increasing wish that transfer of nuclear equipment and know-how should not result in proliferation of military nuclear capacity; however, serious efforts are currently in progress to ensure universal application of IAEA safeguards and to develop them in step with the uses of nuclear energy. (N.E.A.) [fr

  3. The international safeguards and domestic safeguards and security interface

    Whitworth, A.

    1996-01-01

    The International Safeguards Division, in conjunction with the Office of Safeguards and Security, organized a workshop on the international safeguards/domestic safeguards and security interface that was held in March 1996. The purpose of the workshop was to identify and resolve domestic safeguards and security issues associated with the implementation of International Atomic Energy Agency (IAEA) safeguards in the Department of Energy (DOE) complex. The workshop drew heavily upon lessons learned in the application of IAEA safeguards at storage facilities in oak Ridge, Hanford, and Rocky Flats. It was anticipated that the workshop would facilitate a consistent DOE safeguards and security approach for the implementation of IAEA safeguards in the DOE complex. This paper discusses the issues and resolutions of several issues raised at the workshop that involve primarily the domestic material control and accountability program

  4. Applications of a portable MCA in nuclear safeguards

    Halbig, J.K.; Klosterbuer, F.; Cameron, R.A.

    1986-01-01

    In 1981 a small, battery-operated multichannel analyzer (MCA) prototype developed at Los Alamos National Laboratory was delivered to the International Atomic Energy Agency (IAEA). The intent was to produce an instrument for inspector (nonscientist) use. Automated measurement programs were built into the MCA. An enhanced, commercially produced MCA is now available, which was patterned after and is software compatible with the prototype. After an extensive review of the hardware and software of the available portable MCAs, the IAEA has chosen this MCA to be used by IAEA inspectors throughout the world. Inspectors from the EURATOM Directorate of Safeguards are also using these MCAs in inspections throughout Europe. While this MCA's portability and programmability make it ideally suited for infield applications, its powerful built-in intelligence and communications protocol make it a strong candidate for distributed data acquisition and control systems. The user-instrument interface philosophy is so easy to use that in domestic and international training schools, the operators manual is not used

  5. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    Richard Metcalf; Robert Bean

    2009-10-01

    Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEA’s Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facility’s general character, purpose, capacity, and location; (2) Description of the facility’s layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards

  6. Implementation of integrated safeguards in Nuclear Fuel Plant at Pitesti, Romania

    Olaru, V.; Ivana, T.; Epure, Gh.

    2009-01-01

    The nuclear activity was conducted for many years in Romania under Traditional Safeguards (TS) and has developed in good conditions the specific nuclear safeguards. Now there is a good opportunity to improve the performance and quality of the safeguards activity and at the same time to increase the accountancy and control of nuclear materials by passing to Integrated Safeguards (IS) implementation. The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional completion to the Agreement between the Socialist Republic of Romania Government and IAEA relating to safeguards. It is part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between the Nuclear Fuel Plant (FCN) representatives and IAEA inspectors has taken place in June 2005. In Feb. 2007 an IAEA mission visited FCN and established the main steps for implementing the IS. There were visited the storage and the technological flow and it was reviewed the residence times for different nuclear materials, the applied chemical analysis, metrological methods, weighting method and procedures of elaborating the implied documents and lists. At the same time the IAEA and FCN representatives established the main points for implementing the IS at FCN i.e. performing the Short Notice Random Inspections (SNRI), communicating the eligible days for SNRI for each year, communicating the estimated deliveries and shipments for the first quarter and then for the rest of the year, mail box daily declaration (DD) with respect to the residence time for several nuclear materials, advance notification (AN) for each nuclear material transfer (shipments and receipts), etc. At 01 June 2007 Romania has passed officially to Integrated Safeguards and FCN (RO

  7. Materials management in an internationally safeguarded fuels reprocessing plant

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance

  8. Materials management in an internationally safeguarded fuels reprocessing plant

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  9. Analysis of the impact of safeguards criteria

    Mullen, M.F.; Reardon, P.T.

    1981-01-01

    As part of the US Program of Technical Assistance to IAEA Safeguards, the Pacific Northwest Laboratory (PNL) was asked to assist in developing and demonstrating a model for assessing the impact of setting criteria for the application of IAEA safeguards. This report presents the results of PNL's work on the task. The report is in three parts. The first explains the technical approach and methodology. The second contains an example application of the methodology. The third presents the conclusions of the study. PNL used the model and computer programs developed as part of Task C.5 (Estimation of Inspection Efforts) of the Program of Technical Assistance. The example application of the methodology involves low-enriched uranium conversion and fuel fabrication facilities. The effects of variations in seven parameters are considered: false alarm probability, goal probability of detection, detection goal quantity, the plant operator's measurement capability, the inspector's variables measurement capability, the inspector's attributes measurement capability, and annual plant throughput. Among the key results and conclusions of the analysis are the following: the variables with the greatest impact on the probability of detection are the inspector's measurement capability, the goal quantity, and the throughput; the variables with the greatest impact on inspection costs are the throughput, the goal quantity, and the goal probability of detection; there are important interactions between variables. That is, the effects of a given variable often depends on the level or value of some other variable. With the methodology used in this study, these interactions can be quantitatively analyzed; reasonably good approximate prediction equations can be developed using the methodology described here

  10. Safeguards '85

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  11. Addressing Safeguards Challenges for the Future

    Majali, Raed; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    IAEA safeguard system is considered the corner stone of the international nuclear nonproliferation regime. Effective implementation of this legal instrument enables the IAEA to draw a conclusion with a high degree of confidence on the peaceful use of nuclear material and activities in the state. This paper aims to provide an opportunity to address various challenges encountered by IAEA. Strengthening safeguards system for verification is one of the most urgent challenges facing the IAEA. The IAEA should be able to provide credible assurance not only about declared use of nuclear material and facilities but also about the absence of undeclared material and activities. Implementation of IAEA safeguards continue to play a vital role within the nuclear non-proliferation regime. IAEA must move towards more enhanced safeguards system that is driven by the full use of all the safeguards available relevant information. Safeguards system must be responsive to evolving challenges and continue innovation through efficient implementations of more effective safeguards.

  12. The organization for the prohibition of chemical weapons and the IAEA: A comparative overview

    Dorn, A.W.; Rolya, A.

    1993-01-01

    The long-awaited Chemical Weapons Convention (CWC) - which was endorsed in New York by the United Nations General Assembly on 30 November 1992 - was opened for signature on 13 January 1993. To oversee its implementation, a new international organization, the Organization for the Prohibition of Chemical Weapons (OPCW), will be established when the treaty enters into force, which could be as early as January 1995. The IAEA - as the only existing organization with a mandate for implementing an international verification system - is an important model for the structure and functioning of the OPCW. Many provisions in the CWC benefit from the lessons learned through the implementation of the IAEA's safeguards system in such matters as rights of access for inspectors, the designation of inspectors, and procedural arrangements. Overall, the structure of the IAEA and that foreseen for the OPCE are quite similar. There are, nonetheless, several structural differences. Most notably, the IAEA is charged with a dual mission, that of promoting the contribution of nuclear energy to social and economic development and of seeking to ensure that nuclear materials and facilities which have been placed under safeguards are not diverted from peaceful uses. The OPCW is responsible for achieving a complete ban on chemical weapons and is not responsible, at least as currently envisaged, for the promotion of peaceful uses of chemistry and chemical sciences

  13. Radionuclide analysis of environmental field trial samples at STUK/II. Second report on task FIN A 847 of the Finnish support programme to IAEA safeguards

    Ikaeheimonen, T.K.; Rantavaara, A.; Moring, M.; Klemola, S.

    1995-06-01

    Radionuclide determinations of 35 environmental samples of eight different materials were carried out for the International Atomic Energy Agency by the Finnish Centre for Radiation and Nuclear Safety (STUK). All the samples were analysed for gamma emitting nuclides, 90 Sr, 238 Pu and 239 , 240 Pu. In most of the samples the found radionuclide contents were roughly at the same levels as in the same types of environmental samples in the northern hemisphere. However, some samples of grass, moss, lichen and sheep faeces showed exceptionally great contents of radionuclides measured. The maximum contents of 90 Sr, 137 Cs, 238 Pu and 239 , 240 Pu were found in the sam individual samples. The ratios of nuclide concentrations in these samples also deviated from ratios in other samples. This referred to an origin of these nuclides other than the global fallout. The work was a continuation to the study carried out under the Task FIN A 847 of the Finnish Support Programme to IAEA Safeguard. (orig.) (1 ref., 1 fig., 4 tabs.)

  14. Introduction of designated organization to safeguards implementation in Japan

    Terada, Hiromi; Akiba, Mitsunori; Ando, Hisataka; Okazaki, Shuji; Irikura, Masatoshi; Kurihara, Hiroyoshi

    2000-01-01

    With domestic application of the IAEA new measures (program 93+2) for strengthening the effectiveness and improving the efficiency of the safeguards system, the Nuclear Regulation Laws was amended for implementation of the new measures based upon the Additional Protocol, and also the new Designated Organization System was introduced to the SSAC (States' System of Accounting for and Control of Nuclear Materials) for safeguards implementation in Japan since beginning of January 2000. On the basis of accumulated experiences of the state safeguards implementation for more than 20 years and then established standardization of the inspection procedures, the Japan's Government is able to utilize the expertise of private organizations for the safeguards implementation. Any capable organizations can be designated by the Government as the Designated Organization for all or a part of safeguards implementations on behalf of the Government. According to the amended Law, the Prime Minister can make the Designated Organization implement safeguards implementations that are defined firstly as safeguards inspections which can be done along the Government instructions without any discussions and decisions, secondarily as destructive analysis of safeguards samples, and thirdly as technical research on advanced safeguards measures. The amendment of the Law was approved by the National Diet on June 9th 1999 and entered into force on December 16th 1999. The Additional Protocol also entered into force in Japan at the same time. The NMCC (Nuclear Material Control Center) was designated as the Organization on December 27th 1999 and started the safeguards implementation in January 7th 2000. In order to prepare for the Designated Organization, the NMCC rearranged the organizational system and kept capable human resources enough for the safeguards implementations. Also the NMCC carried out many programs of education and training for the inspectors. Furthermore, manuals and criteria for the

  15. Smart unattended systems for plutonium safeguards

    Menlove, H.O.; Abhold, M.; Eccleston, G.; Puckett, J.M.

    1996-01-01

    Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. The robotics used for automation require special containers for nuclear material that cannot be easily removed from the production line. Safety and radiation protection considerations also require that the assay instrumentation be installed in the fuel production lines because, in general, personnel cannot be in the fuel-handling area with nuclear material during operations. Such operational constraints are common in many of the modern facilities that have been designed for fabricating and processing plutonium fuel. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector's oversight of measurement operations, reduce the inspector's workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained from unattended assays could be used by independent inspectors such as the IAEA

  16. Trade Analysis and Safeguards

    Chatelus, R.; Schot, P.M.

    2010-01-01

    In order to verify compliance with safeguards and draw conclusions on the absence of undeclared nuclear material and activities, the International Atomic Energy Agency (IAEA) collects and analyses trade information that it receives from open sources as well as from Member States. Although the IAEA does not intervene in national export controls, it has to monitor the trade of dual use items. Trade analysis helps the IAEA to evaluate global proliferation threats, to understand States' ability to report exports according to additional protocols but also to compare against State declarations. Consequently, the IAEA has explored sources of trade-related information and has developed analysis methodologies beyond its traditional safeguards approaches. (author)

  17. Inspector measurement verification activities

    George, R.S.; Crouch, R.

    e most difficult and complex activity facing a safeguards inspector involves the verification of measurements and the performance of the measurement system. Remeasurement is the key to measurement verification activities. Remeasurerements using the facility's measurement system provide the bulk of the data needed for determining the performance of the measurement system. Remeasurements by reference laboratories are also important for evaluation of the measurement system and determination of systematic errors. The use of these measurement verification activities in conjunction with accepted inventory verification practices provides a better basis for accepting or rejecting an inventory. (U.S.)

  18. Statistical investigations for an optimal evaluation of data in international safeguards

    Beedgen, R.

    1981-09-01

    In international safeguards of nuclear material the material accountancy is an essential principle of the IAEA. The material balance is closed with the operator's data which are verified by the inspector at the hand of independent measurements on a random sampling basis. The results of the inspector have a probabilistic character because of measurement uncertainties and sampling. A diverter has in principle two possibilities - diversion without data falsification and playing with the measurement uncertainties - diversion with data falsification that the material balance seems to be correct. The strategies of the inspector are - closing the material balance - independent verification of the operator's data. The question is answered which test procedure leads under certain assumptions to the highest detection probability where the false alarm probability is fixed. The possibility of an optimal strategy of the diverter is taken into account. The results are partly illustrated at the hand of examples. (orig./HP) [de

  19. Establishment of IAEA knowledge of integrity of the geological repository boundaries and disposed spent fuel assemblies in the context of the Finnish geological repository. Experts' Group meeting Report on Task JNT/C 1204 of the Member States' Support Programme to IAEA Safeguards

    Okko, O.

    2004-05-01

    The Geological Repository Safeguards Experts Group (Member State Support Programme tasks JNT/C1204 and C1226), agreed that annual meetings should be held to address interface issues between IAEA safeguards and radioactive waste management and to explore the use of safety and operational information to make International Atomic Energy Agency (IAEA) safeguards more effective and efficient for geological repository facilities. It has also been recognised that the safeguards measures for geological repositories are to be developed site-specifically. To address these issues to the planned Olkiluoto repository in Finland a meeting of experts in safety, geological repository operations,and safeguards from 6 States, European Commission, and IAEA was held in Olkiluoto and Rauma, Finland, during September 29 - October 4, 2003. The pre-operational phase of the Olkiluoto repository should be efficiently used by the parties involved in safeguards. The applicability and reliability of the potential new techniques and the efficient practices must be developed and proven before their implementation as safeguards measures to be applied at the subsequent stages of the repository development. The visit to the location of the proposed Olkiluoto repository and neighbouring areas and subsequent presentations enabled the working groups to discuss the various issues with reference to actual site conditions. The working groups were thus able to identify potential measurement and monitoring techniques and research and development requirements for consideration by the Finnish authorities, in addition to making recommendations to the IAEA on planned activities for carrying out before and during the early investigation phase of the proposed Olkiluoto repository. It was understood that all parties shall take good care of the implementation of the planned activities to ensure that proven means, approaches and the required verified information is at hand at the time the projected facility will

  20. Overcoming Safeguards Challenges

    Henriques, Sasha

    2011-01-01

    The focus of the 2010 IAEA International Safeguards Symposium was how best, from a technical perspective, to prepare for future verification challenges during this time of change. By bringing together the leading experts in the field from across the world, this symposium provided an opportunity for stakeholders to explore possible solutions in support of the IAEA's nuclear verification mission, and to identify areas where the different stakeholders in the safeguards business can help address these challenges

  1. Safeguards management inspection procedures

    Barth, M.J.; Dunn, D.R.

    1984-08-01

    The objective of this inspection module is to independently assess the contributions of licensee management to overall safeguards systems performance. The inspector accomplishes this objective by comparing the licensee's safeguards management to both the 10 CFR, parts 70 and 73, requirements and to generally accepted management practices. The vehicle by which this comparison is to be made consists of assessment questions and key issues which point the inspector to areas of primary concern to the NRC and which raise additional issues for the purpose of exposing management ineffectiveness. Further insight into management effectiveness is obtained through those assessment questions specifically directed toward the licensee's safeguards system performance. If the quality of the safeguards is poor, then the inspector should strongly suspect that management's role is ineffective and should attempt to determine management's influence (or lack thereof) on the underlying safeguards deficiencies. (The converse is not necessarily true, however.) The assessment questions in essence provide an opportunity for the inspector to identify, to single out, and to probe further, questionable management practices. Specific issues, circumstances, and concerns which point to questionable or inappropriate practices should be explicitly identified and referenced against the CFR and the assessment questions. The inspection report should also explain why the inspector feels certain management practices are poor, counter to the CFR, and/or point to ineffecive management. Concurrent with documenting the inspection results, the inspector should provide recommendations for alleviating observed management practices that are detrimental to effective safeguards. The recommendations could include: specific changes in the practices of the licensee, followup procedures on the part of NRC, and proposed license changes

  2. International safeguards

    1995-01-01

    The system of international safeguards carried out by the IAEA is designed to verify that governments are living up to pledges to use nuclear energy only for peaceful purposes under the NPT (Treaty on the non-proliferation of nuclear weapons) and similar agreements. The film illustrates the range of field inspections and analytical work involved. It also shows how new approaches are helping to strengthen the system

  3. Quality assurance for IAEA inspection planning

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed

  4. A view to the new safeguards system

    Tsuboi, Hiroshi

    2000-01-01

    The Additional Protocol to the Safeguards Agreement between Japan and the IAEA entered into force on 16 December 1999. An initial declaration of the expanded information will be provided to the IAEA by next June in accordance with the Additional Protocol. In Japan the new integrated safeguards system, which strengthens the effectiveness and improves efficiency of IAEA Safeguards, is considered to be very important issue. The establishment of a permanent and universal safeguards system including application of safeguards in Nuclear Weapon States also is an important issue from the view-point of not only non-proliferation but also nuclear disarmament. Safeguards are expected to have an increasingly important role. (author)

  5. Nuclear safeguards policy

    Anon.

    1982-01-01

    Claims have been made that Australia's nuclear safeguards policy, announced in 1977, has changed. However, examination of the texts of nuclear safeguards agreements negotiated by Australia shows that the policy has been implemented and adhered to. The purpose of these agreements is to obtain assurance that uranium exported is used exclusively for peaceful purposes. The questions of reprocessing, transfer to third countries and the application of IAEA safeguards are discussed

  6. The Canadian Safeguards Support Program - A future outlook

    Keeffe, R.; Truong, Q.S. Bob

    2001-01-01

    Full text: The Canadian Safeguards Support Program (CSSP) is one of the first safeguards support programs with an overall objective to assist the IAEA by providing technical assistance and other resources and by developing equipment to improve the effectiveness of international safeguards. This paper provides a brief discussion of the evolution of the CSSP, from the beginning when the program was under joint management between the Atomic Energy Control Board (AECB) and Atomic Energy of Canada Limited (AECL), a Canadian crown corporation, until recent years when the AECB became responsible for all projects and financial management. Recently, new legislation came into force and the AECB became the Canadian Nuclear Safety Commission (CNSC). However, the mandate and management of the CSSP under the CNSC remain fundamentally unchanged. Major CSSP activities are devoted to the following areas: (a) Human resource assistance through the provision of cost-free experts (CFEs) to the IAEA; (b) Training of IAEA inspectors and facility operators, development of training resources and integrated approaches for training; (c) System studies, e.g. the development of integrated safeguards approach for CANDU reactors, geological repository, and physical model; (d) Equipment development, e.g. the VXI Integrated Fuel Monitor, Digital Cerenkov Viewing Device, seals, remote monitoring, encryption and authentication; (e) Information technology which includes satellite imagery, Geographical Information System (GIS), and position tracking of spent fuel containers. The CSSP has continued to evolve during the past 25 years. Although formerly larger the CSSP budget has settled to a stable level of just slightly above (Canadian) $2M. Leveraging of the CSSP budget through collaborations with several Member State Support Programs and Canadian government departments has provided mutual benefits for all parties involved and useful results that have been put into practical use by the IAEA. (author)

  7. A collaborative environment for information driven safeguards

    Scott, Mark R.; Michel, Kelly D.

    2010-01-01

    For two decades, the IAEA has recognized the need for a comprehensive and strongly integrated Knowledge Management system to support its Information Driven Safeguards activities. In the past, plans for the development of such a system have progressed slowly due to concerns over costs and feasibility. In recent years, Los Alamos National Laboratory has developed a knowledge management system that could serve as the basis for an IAEA Collaborative Environment (ICE). The ICE derivative knowledge management system described in this paper addresses the challenge of living in an era of information overload coupled with certain knowledge shortfalls. The paper describes and defines a system that is flexible, yet ensures coordinated and focused collaboration, broad data evaluation capabilities, architected and organized work flows, and improved communications. The paper and demonstration of ICE will utilize a hypothetical scenario to highlight the functional features that facilitate collaboration amongst and between information analysts and inspectors. The scenario will place these two groups into a simulated planning exercise for a safeguards inspection drawing upon past data acquisitions, inspection reports, analyst conclusions, and a coordinated walk-through of a 3-D model of the facility. Subsequent to the conduct of the simulated facility inspection, the detection of an anomaly and pursuit of follow up activities will illustrate the event notification, information sharing, and collaborative capabilities of the system. The use of a collaborative environment such as ICE to fulfill the complicated knowledge management demands of the Agency and facilitate the completion of annual State Evaluation Reports will also be addressed.

  8. Spent fuel encapsulation and verification. Safequards workshop in Helsinki, Finland, 19-20 December 2000. Phase II interim report on Task FIN C1184 of the Finnish Support Programme to IAEA safeguards

    Honkamaa, T. (ed.)

    2001-03-01

    According the present plans the final disposal of spent fuel will begin in Finland in 2020. The construction of the encapsulation facility will begin five years earlier. Preliminary design of encapsulation facility has already been presented by Finnish nuclear waste management company Posiva ltd. In order to avoid unnecessary costs and delays in implementation of safeguards regime in the facility, the safeguards-related aspects should be taken into account in early phase. This requires open communication between the operator, regulators and expert bodies. In December 2000, Finnish Support Programme to IAEA safeguards arranged a workshop to facilitate the communication between the operators, regulators and experts. Due to the new concept, the open discussion is beneficial and necessary for all parties. One goal of the workshop was also to provide basis for further designing of the facility. The goals for the meeting were achieved. The discussions were conducted in very good and fruitful atmosphere. The conclusions and recommendations of the workshop were discussed and written down by the chair of the final session. The draft document was distributed to the participants and all comments were taken into account, This report, representing the views of the participants, gives also recommendations for further work. It was tentatively agreed that parties will meet again in 2001 to review and discuss, in an informal atmosphere, facility design developments and potential safeguards measures. Action to convene the meeting is on the FINSP (orig.)

  9. Safeguards considerations for uranium enrichment facilities, as applied to gas centrifuge and gaseous diffusion facilities

    1979-03-01

    The goals and objectives of IAEA safeguards as they are understood by the authors based on published documents are reviewed. These goals are then used to derive safeguards concerns, diversion strategies, and potential safeguards measures for four base cases, the production of highly enriched uranium (HEU) at a diffusion plant, the diversion of low enriched uranium (LEU) at a diffusion plant, the diversion of HEU at a gas centrifuge plant, and the diversion of LEU at a gas centrifuge plant. Tables of estimated capabilities are given for each case, under the assumption that the inspector would have access: to the cascade perimeter at or after the start of operations, to the cascade perimeter throughout construction and operation, to the cascade perimeter during operation plus a one-time access to the cascade itself, to the cascade during construction but only its perimeter during operation, or to the cascade itself during construction and operation

  10. US statutes for enforcement by security inspectors

    Cadwell, J.J.; Ruger, C.J.

    1995-12-01

    This document is one of a three volume set. BNL 52201 is titled `Selected Text of Atomic Energy Act Executive Orders and Other Laws of General Interest to Safeguards and Security Executives`, and it contains detailed information for use by executives. BNL 52202 is titled `U.S. Statutes of General Interest to Safeguards and Security Officers`, and contains less detail than BNL 52201. It is intended for use by officers. BNL 52203 is titled `U.S. Statutes for Enforcement by Security Inspectors`, and it contains statutes to be applied by uniformed security inspectors.

  11. The International Atomic Energy Agency's safeguards system

    Wagner, W.

    2000-01-01

    A system of international safeguards has been established to provide assurance that nuclear materials in civilian use are not diverted from their peaceful purpose. The safeguards system is administered by the International Atomic Energy Agency/Department of Safeguards and devolves from treaties and other international agreements. Inspectors from the Agency verify reports from States about nuclear facilities by audits, observation, and measurements. (author)

  12. IAEA experience with authentication of in-plant NDA instrumentation

    Augustson, R.H.; Dermendjiev, E.

    1983-01-01

    The paper discusses IAEA experience with permanently installed measuring equipment, i.e. in-plant NDA instrumentation, which often has advantages over portable equipment, such as improved accuracy, automated sample handling and data collection, and capacity for higher throughput. In some cases, in-plant equipment is the only means of making a field measurement. However, the use of in-plant equipment requires an additional set of inspector procedures to ensure that the instrument is working correctly and has not been tampered with. This process of verifying instrument performance is called authentication. General guidelines for approaches to authentication have been studied and formulated by an IAEA Advisory Group Meeting held in November 1981. Procedures for specific instruments have been developed in some cases with the help of national support programmes. The field application of authentication is accomplished by incorporating specific actions into inspection procedures. Results are written down as part of the working papers and included in the final inspection report. For quantitative checks such as measurement of a working standard the results are sent along with the inspection measurements to the Agency for inclusion in the safeguards data base. The in-plant equipment may be owned by the facility, a State, a safeguards organization or the Agency. In each case, the use of the in-plant equipment will necessitate additional interactions between facility operator and inspector, in order to judge the impact on plant operation, and understand what is being measured and what can go wrong. The paper discusses the IAEA's experience gained in the field application of authentication procedures for instrument systems such as weighing and volume measuring devices, rod scanners, neutron activation systems and K-edge densitometers

  13. A brief history of NDA at the IAEA

    Sprinkle, J.K.; Sinkule, B.J.; Hsue, S.-T.; Abhold, M.E.

    2001-01-01

    Nearly 30 years ago, the first portable nondestructive assay instrument, a SAM-II, was brought to Vienna for IAEA consideration. This initial foray into the usage of nondestructive assay (NDA) as an independent assessment tool has materialized into one of the important tools for IAEA inspections. NDA instruments have several inherent advantages for inspectors; their measurements generate no radioactive waste, provide immediate answers, do not require specialized operators, and can be either taken to the items to be measured (portable instruments), or the items for measurement can be brought to the instruments, such as can be applied in on-site IAEA laboratories or off-site IAEA lab at Siebersdorf. The SAM-II was a small, lightweight, battery-powered, gamma-ray instrument used for uranium enrichment measurements. It was also found to be usehl for locating nuclear material, distinguishing between uranium and plutonium, and determining the active length of items like fuel pins. However it was not well suited for determining the amount of bulk material present, except for small containers of low-density materials. A 6-sided neutron coincidence counter, easily disassembled so it could be shipped and carried by airplane, was developed for bulk measurements of plutonium. The HLNCC (High Level Neutron Coincidence Counter) was immediately useful for quantitative measurements of pure plutonium oxide. However, the IAEA had to make a trade-off between the ease of use of NDA instruments on-site, and the problems of obtaining small samples for shipment to an independent lab for more accurate analysis. NDA does not create radioactive waste, so as waste handling has become more cautious and more regulated, NDA looks better and better. After acceptance of NDA by the IAEA for routine use, the follow-up question was naturally, 'How much better can this measurement be made?' The Program for Technical Assistance to IAEA Safeguards (POTAS) supported multiple and varied efforts in this

  14. Target values for nuclear material safeguards measurements - motivation or burden to operators?

    Weh, R.; Kuhn, K.D.

    1989-01-01

    The analytical determination of material streams and inventories plays an important part in those nuclear facilities called bulk-handling facilities in safeguards terminology. Reprocessing plants and mixed-oxide fabrication facilities are typical examples. With respect to their safeguards, the relevant regulations attach fundamental importance to material accountancy. The balance itself is examined by International Atomic Energy Agency (IAEA) inspectors and within the boundaries of the European Communities by Euratom inspectors as well, with regard to formal correctness. The analytical methods of accountancy in, for example, reprocessing plants, make high demands on the qualifications of the analyst. A conscientious analyst will, of course, try to fulfill his task as well and effectively as possible. These target values will become a burden, however, when they have been drawn up for purely scientific interest and the operator has been urged to achieve them on the pretext of improving safeguards. There are basically two reasons for which the authors have misgivings in this respect. First, the measurement system, which the material balance is based on, has to conform to the latest international regulations. This could easily lead to a permanent obligation of updating for the plants concerned. Second, the goal quantities set by the IAEA will induce an attempt to adjust measurement techniques and chemical analysis to goals totally unsuitable for large-scale plants

  15. Advances in the Processing of VHR Optical Imagery in Support of Safeguards Verification

    Niemeyer, I.; Listner, C.; Canty, M.

    2015-01-01

    Under the Additional Protocol of the Non-Proliferation Treaty (NPT) complementing the safeguards agreements between States and the International Atomic Energy Agency, commercial satellite imagery, preferably acquired by very high-resolution (VHR) satellite sensors, is an important source of safeguards-relevant information. Satellite imagery can assist in the evaluation of site declarations, design information verification, the detection of undeclared nuclear facilities, and the preparation of inspections or other visits. With the IAEA's Geospatial Exploitation System (GES), satellite imagery and other geospatial information such as site plans of nuclear facilities are available for a broad range of inspectors, analysts and country officers. The demand for spatial information and new tools to analyze this data is growing, together with the rising number of nuclear facilities under safeguards worldwide. Automated computer-driven processing of satellite imagery could therefore add a big value in the safeguards verification process. These could be, for example, satellite imagery pre-processing algorithms specially developed for new sensors, tools for pixel or object-based image analysis, or geoprocessing tools that generate additional safeguards-relevant information. In the last decade procedures for automated (pre-) processing of satellite imagery have considerably evolved. This paper aims at testing some pixel-based and object-based procedures for automated change detection and classification in support of safeguards verification. Taking different nuclear sites as examples, these methods will be evaluated and compared with regard to their suitability to (semi-) automatically extract safeguards-relevant information. (author)

  16. Safeguarding the atom

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  17. The Inspector

    Kuhail, Mohammad A.; Lauesen, Søren; Pantazos, Kostas

    2013-01-01

    Existing custom visualization tools provide cognitive artefacts that can reduce the cognitive barriers designers encounter in visual mapping, mapping data to visual primitives (e.g. ellipse, rectangle) and their properties (e.g. colour, size.) However, our experience with designers shows that the......Existing custom visualization tools provide cognitive artefacts that can reduce the cognitive barriers designers encounter in visual mapping, mapping data to visual primitives (e.g. ellipse, rectangle) and their properties (e.g. colour, size.) However, our experience with designers shows...... that the existing artefacts are insufficient. In particular, designers struggle to understand the relationship between visual primitives, their properties, and data. Moreover, it is hard to verify the correctness of the visual mappings. In response, we developed a new cognitive artefact, the inspector......, that explicitly shows the data behind visual primitive and their properties. We evaluated the impact of the inspector on usability with seven designers. The result shows that the inspector reduced usability problems and helped designers verify the visual mappings....

  18. Measurements Matter in Nuclear Safeguards & Security

    Aregbe, Y.; Jakopic, R.; Richter, S.; Schillebeeckx, P.; Hult, M.

    2015-01-01

    The deliverable of any laboratory is a measurement result with stated uncertainty and traceability (ISO/IEC 17025: 2005). Measurement results, particularly in safeguards, have to be accurate, comparable and traceable to a stated reference, preferably to the SI. Results provided by operator-, safeguards- or network laboratories have to be in compliance with specific quality goals for nuclear material and environmental sample analysis. Metrological quality control tools are prerequisites to build up confidence in measurement results that have to be translated into meaningful safeguards conclusions or to demonstrate conformity of findings with declared processes. The European Commission—Joint Research Centre (EC–JRC) has dedicated facilities, laboratories and projects to provide certified nuclear reference materials (CRM), to develop reference methods and to organize inter-laboratory comparisons (ILC) in compliance with ISO Guide 34, ISO17025 and ISO17043, including respective training. Recent examples are: – cooperation with the JAEA to investigate on the application of Neutron Resonance Densitometry (NRD) to quantify the amount of special nuclear material in particlelike debris of melted fuel as formed in the nuclear accident in Fukushima – training in metrology and gamma-ray spectrometry for EURATOM safeguards inspectors – development of uranium reference particle standards under a new EC support task to the IAEA. Currently, the JRC puts major efforts in producing CRMs and conformity assessment tools for “age-dating” of uranium and plutonium samples. They are needed for method validation in determining the date of the last chemical separation of uranium or plutonium from their daughter nuclides. These type of CRMs are not only needed in nuclear safeguards and forensics, but could support in the future a possible new type of “verification mechanism” as part of the Fissile Material Cut-off Treaty (FMCT), since measurements and measurement standards

  19. Some reflections on nuclear safeguards

    Campbell, Ross.

    1981-01-01

    The author doubts whether, in view of the 1976 policy of requiring adherence to the Non-Proliferation Treaty or equivalent IAEA safeguards, Canada still needs the 1974 policy of bilateral safeguards on technology as well as material. The opinion is expressed that bilateral safeguards create difficulties for the IAEA, and are resented by some potential customers. Much better, if it were achievable, would be a code agreed by a convention of vendors and customers alike, to include sanctions against transgressors. The author expresses confidence in the IAEA, but perceives a need for more men and money. Also needed are better instruments to account for materials

  20. Nuclear safeguards in the Federal Republic of Germany by the Commission of the European Communities, EURATOM, and the International Atomic Energy Agency (IAEA)

    Brueckner, C.

    1979-10-01

    The author reviews the developement of the legal and contractual bases for nuclear safeguards. In doing so, he deals with the EURATOM treaty, the non-proliferation treaty, the verification treaty; adjustment of control by means of the EURATOM regulation no. 3222/76 and the implementary law on the verification treaty. In the second part, he examines the control concept which is based on keeping books on materials, making-out balance sheets and on balance-sheet auditing. He sees problems arising as nuclear safeguards are introduced in nuclear installations in the endeavour to develop nuclear safeguards any further. (HSCH) [de

  1. Nuclear safeguards in challenging times [Experts on nuclear safeguards and verification assess the global picture

    Park, W.S.; Hillerman, J.

    2007-01-01

    Meeting at the IAEA's International Safeguards Symposium in October 2006, more than 500 experts from 60-plus countries and organizations addressed current and future challenges related to safeguards concepts, approaches, technologies, and experience. Sessions addressed five main issues driving developments: Current challenges to the safeguards system; Further strengthening safeguards practices and approaches; Improving the collection and analysis of safeguards information; Advances in safeguards techniques and technology; and Future challenges. Every four to five years, the IAEA brings together safeguards experts from all over the world at international symposia. In October 2001, they met in the shadow of 9/11 and the symposium included a special session on the prevention of nuclear terrorism

  2. International seminar on safeguards information reporting and processing. Extended synopses

    1998-01-01

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included

  3. Integrated safeguards: Australian views and experience

    Carlson, J.; Bragin, V.; Leslie, R.

    2001-01-01

    accesses, which in most cases have been undertaken at the Lucas Heights site. Under the integrated safeguards regime now being applied, the timeliness period for irradiated fuel has been changed from three months to 12 months, eliminating quarterly interim inspections. The four inspections each year have been replaced by one PIV (including comprehensive Design Information Verification activities), and an average of one unannounced inspection. The objectives of unannounced inspections include, to verify the fresh and spent fuel inventory and if possible the core fuel, and to confirm facility design information, the declared operation of the reactor, and the absence of undeclared activities. The term 'average' is important - to maintain deterrence, once an unannounced inspection has taken place, there will always be the possibility of a further unannounced inspection in the same year. Where possible, fuel transfers will be verified during the PIV or unannounced inspection(s), but the IAEA has indicated that if necessary additional inspections may be undertaken for this purpose. In addition to the inspections outlined above, there are five or six complementary accesses each year, mainly at the Lucas Heights site, but also encompassing uranium mines and LOFs (locations other than facilities). In most circumstances it is expected that complementary accesses would be carried out when inspectors are in Australia for routine inspections. The overall savings in inspection effort are expected to be about 45% (a reduction from 18 to 10 PDI) a year. However, this depends on whether additional inspections are required to verify fuel transfers - an area where Australia considers remote monitoring could be very useful. The paper discusses implementation issues such as the participation of national inspectors in inspections and complementary access, and the conduct of unannounced inspections. The value of unannounced inspections - i.e. inspections whose timing is unpredictable to the

  4. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual

    Tarvainen, M.; Paakkunainen, M.; Tiitta, A.; Sarparanta, K.

    1994-04-01

    A measurement instrument called Spent Fuel Attribute Tester, SFAT, has been designed, fabricated and taken into use by the IAEA in gross defect verification of spent BWR fuel assemblies. The equipment consists of an underwater measurement head connected with cables to a control unit on the bridge of the fuel handling machine as well as to a PMCA for measurement of the gamma spectra. The BWR SFAT is optimized for the AFR interim storage, TVO KPA-STORE, of the TVO Power Company in Olkiluoto, Finland. It has a shape and it is moved like a fuel assembly using the fuel handling machine. No fuel movements are needed. Spent fuel specific radiation from the fission product 137 Cs at the gamma-ray energy of 662 keV is detected above the assemblies in the storage rack using a NaI(Tl) detector. In the design and in licensing the requirements of the IAEA, operator and the safety authority have been taken into account. The BWR SFAT allows modifications for other LWR fuel types with minor changes. The work has been carried out under the task FIN A 563 of the Finnish Support Programme to IAEA Safeguards. (orig.) (9 refs., 22 figs.)

  5. In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants

    Ward, R.; Rosenthal, M.

    2009-01-01

    Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector's efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the 'Option 4' safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo's paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.

  6. NPT safeguards and the peaceful use of nuclear energy

    Kyd, D.R.

    1993-10-01

    Origin of safeguards system and of comprehensive safeguards agreements, assurance given by IAEA safeguards, penalties and sanctions in case of breach of a safeguards agreement, recent experiences with Iraq, South Africa and DPRK as well as limits of the safeguards system are described

  7. Safeguards and nuclear forensics

    Gangotra, Suresh

    2016-01-01

    Nuclear Safeguards is the detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons, or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by early detection. Safeguards implementation involves nuclear material accounting and containment and surveillance measures. The safeguards are implemented in nuclear facilities by the states, or agencies and International Atomic Energy Agency (IAEA). The measures for the safeguards include nuclear material Accounting (NUMAC) and Containment and surveillance systems. In recent times, there have been advances in safeguards like Near Real Time Monitoring (NRTM), Dynamic Nuclear Material Accounting (DNMA), Safeguards-by-Design (SBD), satellite imagery, information from open sources, remote monitoring etc

  8. Overview of the Facility Safeguardability Analysis (FSA) Process

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  9. Swedish experiences in implementing national and international safeguards

    Nilsson, A.; Elborn, M.; Grahn, P.

    1991-01-01

    This paper reports that international safeguards have been applied in Sweden since the early 70s. Experiences have been achieved from exclusive bilateral and trilateral control followed by NPT safeguards in 1975. The Swedish State System for accountancy and Control (SSAC) includes all regulations that follows from prevailing obligations regarding the peaceful uses of nuclear material. The system has been developed in cooperation between the national authority, the Swedish Nuclear Power Inspectorate (SKI) and the Swedish nuclear industry. The paper presents experiences from the practical implementation of the SSAC and the IAEA safeguards system, gained by the SKI and the nuclear industry, respectively. Joint approaches and solutions to some significant safeguards issues are presented. The cooperation between the nuclear industry and the authority in R and D activities, in particular with respect to the Swedish Support Program is highlighted, e.g. the use of nuclear facilities in development or training tasks. some of the difficulties encountered with the system are also touched upon

  10. Review of selected dynamic material control functions for international safeguards

    Lowry, L.L.

    1980-09-01

    With the development of Dynamic Special Nuclear Material Accounting and Control systems used in nuclear manufacturing and reprocessing plants, there arises the question as to how these systems affect the IAEA inspection capabilities. The systems in being and under development provide information and control for a variety of purposes important to the plant operator, the safeguards purpose being one of them. This report attempts to judge the usefulness of these dynamic systems to the IAEA and have defined 12 functions that provide essential information to it. If the information acquired by these dynamic systems is to be useful to the IAEA, the inspectors must be able to independently verify it. Some suggestions are made as to how this might be done. But, even if it should not be possible to verify all the data, the availability to the IAEA of detailed, simultaneous, and plant-wide information would tend to inhibit a plant operator from attempting to generate a floating or fictitious inventory. Suggestions are made that might be helpful in the design of future software systems, an area which has proved to be fatally deficient in some systems and difficult in all

  11. International safeguards: experience and prospects

    Keepin, G.R.; Menlove, H.O.

    1982-01-01

    IAEA safeguards have been applied to over 95% of the nuclear material and facilities outside of the nuclear weapon states. The present system of nonproliferation agreements implemented by IAEA safeguards likely will not be changed in the foreseeable future. Instruments used for nondestructive analysis are described: portable multichannel analyzer, high-level neutron coincidence counter, active well coincidence counter, and neutron coincidence collar. 7 figs

  12. Equipment support for the implementation of safeguards

    Arlt, R.; Bosler, G.; Goldfarb, M.; Schanfein, M.; Whichello, J.

    2001-01-01

    Full text: The provision of effective, reliable, and user-friendly equipment needed for the implementation of safeguards is one of the main objectives of the Division of Technical Services (SOTS) in the Department of Safeguards. As an outcome of a review by an independent external consultant firm, the instrumentation sections of the SGTS were reorganized in January 2001 into two new sections, the Section for NDA Systems and Seals (TNS) and Section for Installed Systems (TIE). Each section has 'cradle-to-grave' responsibilities for development, implementation, maintenance, and decommissioning of safeguards instruments and measurement systems. Unattended assay, monitoring and surveillance instruments are the responsibility of TIE while attended nondestructive assay (NDA) instruments and seals are handled by TNS. The principal goals of both sections are to define equipment requirements based on Departmental needs, to coordinate Support Programme tasks concerning development and implementation activities, to provide system engineering of commercial components, manage laboratory and to do field testing and prove system suitability for defined safeguards applications. In addition both sections coordinate equipment and supply needs for the Department, including acquisition, preparation, servicing, installation, commissioning, troubleshooting, maintenance and repair, ensuring their availability when needed. As required, TIE and TNS provide specialized field support to the Operations Divisions. Each section is working to standardize equipment as much as possible and reduce the number of instruments performing the same function. This reduces both inspector and technician training, required parts inventories, and overall life-cycle costs. Development based on User Needs from the Operations Divisions follows a strict quality control program that includes a thorough qualification testing procedure with the last phase being field-testing under actual facility conditions. A

  13. Entry into Force of the Additional Protocol to the safeguards agreements

    Prieto, N.; Recio, M.

    2004-01-01

    The development of the peaceful use of nuclear energy has always been linked to verification of the truthfulness of such peaceful application. such checks must necessarily be undertaken by people or organisations possessing technical competence and a status of independence recognised by the international community. this is the case of the safeguards inspectors of the International Atomic Energy Agency (IAEA). The history of safeguards dates back to the speech Atoms for Peace, given by the US President Eisenhower before the General Assembly of the United Nations on 8th December 1953. In his speech, Eisenhower underlined the serious threat of the incipient atomic weapons race and the advisability of achieving a collective commitment to the peaceful use of atomic energy. the speech anticipated the setting up of an international agency that would cooperate in the technological development of nuclear energy and at the same time safeguard a material that should not be used for the clandestine manufacturing of weapons. This agency, the IAEA, was created three years later within the framework of the United Nations and is today the leading actor in the application of safeguards measures in relation to nuclear materials and facilities

  14. Validation of CsNaIF data evaluation software. Final report on task FIN A940 on the Finnish support programme to IAEA safeguards

    Kaartinen, J.

    1996-07-01

    A new computer programme, called CsNaIF, which calculates the area of 137 Cs peak in spent fuel spectra has been developed for IAEA. This programme has been tested and evaluated in this report. Evaluation has been made by calculating different types of SFAT spectra (NaI- and CdTe-SFAT) with the validated software and with a research grade gamma spectroscopy software, SAMPO 90. Obtained results, mainly 137 Cs peak areas and their errors, have been compared and perceived differences have been reported. Also some recommendations of the usability of CsNaIF programme have been made for IAEA. (orig.) (4 refs.)

  15. The Nuclear Safeguards and Security Activities under Euratom Research and Training Programme

    Abousahl, S.; Palajova, Z.; Janssens, W.A.M.; Luetzenkirchen, K.; Goncalves, J.G.M.; Aregbe, Y.; )

    2015-01-01

    Nuclear safeguards and security are absolute priorities for the EU. At technical level, the Joint Research Centre (JRC) as the European Commission's in-house science service plays an important role in the field of nuclear research, training and education that include nuclear safety, safeguards and security. The JRC's nuclear research activities are defined in a Council Regulation on the research and training programme of the European Atomic Energy Community. The JRC works closely with EC safeguards authority, whose mission is to ensure that nuclear material within the EU is not diverted from its intended use according to Euratom treaty. Technologies, methodologies and trainings are developed according to the Euratom Safeguards inspectorate's needs. In the area of nuclear security, the JRC contributes to the development of specific expertise in the field of nuclear forensics and border security detection as well as related training efforts for first front-line responders and national experts. The JRC provides its expert support for the implementation of internal EU action plans mainly in the field of radiological and nuclear security. At an international level, the JRC cooperates with the IAEA mainly through the EC support programme on the control of nuclear materials and facilities in order to avoid proliferation or diversion. Close cooperation with IAEA nuclear security is developed through the recent signature of a dedicated practical arrangement. Key partnerships have also been developed in the field of safeguards and security with the US-DoE, Russia, Japan and China. In addition, JRC contributes significantly to the EU nuclear safeguards and security outreach activities implemented under the Instrument for Nuclear Safety Cooperation and Instrument contributing to Stability and Peace. In this paper we will highlight some of the JRC contributions to the enhancement of nuclear safeguards and security at EU and international levels. (author)

  16. Strengthening regional safeguards

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-01-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980's and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States

  17. Inspector training for VIFM equipment - An integrated approach

    Truong, Q.S. Bob; Keeffe, R.; Ellacott, T.; Desson, K.; Herber, N.

    2001-01-01

    Full text: The VXI Integrated Fuel Monitor (VIFM) was developed by the Canadian Safeguards Support Program (CSSP) as a generic radiation monitor for safeguards applications. The VIFM equipment features a modular design, where a single cabinet can house several instruments such as bundle counters, core discharge monitors, Yes/No monitors, and other devices. VIFM can also be used in a stand-alone, transportable mode, with a detector connected to a single VIFM module linked to a laptop computer. VIFM equipment is currently in use at CANDU nuclear generating stations in several countries. Because each facility may have a different combination of detectors, the training program has been designed to reflect the modular nature of VIFM. Introductory material is generic and applies to any facility. More advanced material is carefully compartmentalized to allow IAEA Inspectors to concentrate their efforts in areas that concern them. Advanced material is available in a just-in-time reference format that simplifies rapid access to detailed information. A number of training resources have been developed, including multimedia and video material on CD-ROMs. This material has been designed to operate on a laptop computer, allowing inspectors to review and refresh their knowledge at any time - for example, during inspection trips. Although each of these resources is useful in its own right, the CSSP is developing an integrated approach to inspector training that combines all of these elements in a new way calculated to produce better training results than in the past. This new training approach features a two-day workshop preceded by a period of CD-ROM-based self-paced study. After the workshop, participants are able to make use of printed and CD-ROM-based reference materials for just-in-time 'refreshers'. Each step in this integrated approach to training will be described in the presentation. Briefly, the steps are as follows. A multimedia computer-based training package is made

  18. International safeguards without material balance areas

    Sanborn, J.B.; Lu Mingshih; Indusi, J.P.

    1992-01-01

    Recently altered perceptions of the role of the non-proliferation regime, as well as continued IAEA funding constraints, suggest a need to re-examine the fundamentals of IAEA verification strategy. This paper suggests that abandoning certain material balance area (MBA) related concepts that nominally form the basic framework of ''full-scope'' safeguards would result in a more flexible inspection regime. The MBA concept applied in the domestic context enables a national authority to localize losses in space and in time and to minimize the need to measure in-process inventory. However, these advantages do not accrue to an international verification regime because it cannot truly verify the ''flows'' between MBAs without extensive containment/surveillance measures. In the verification model studied, the entire nuclear inventory of a state is periodically declared and verified simultaneously in one or two large segments (containing possibly many MBAS). Simultaneous inventory of all MBAs within a segment would occur through advance ''mailbox'' declarations and random selection of MBAs for on-site verification or through enhanced containment/surveillance techniques. Flows are generally speaking not verified. This scheme would free the inspectorate from the obligation to attempt to verify on-site each stratum of the material balance of every facility declaring significant quantities of nuclear material

  19. Defining and Measuring Safeguards Culture

    Frazar, Sarah L.; Mladineo, Stephen V.

    2010-01-01

    In light of the shift toward State Level Evaluations and information driven safeguards, this paper offers a refined definition of safeguards culture and a set of metrics for measuring the extent to which a safeguards culture exists in a state. Where the IAEA is able to use the definition and metrics to come to a positive conclusion about the country, it may help reduce the burden on the Agency and the state.

  20. The application of safeguards design principles to the spent fuel bundle counter for 600 MW

    Stirling, A.J.; Allen, V.H.

    1978-10-01

    The irradiated fuel bundle counters for CANDU 600 MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent fuel storage bay at each inspection. Their function is straightforward: to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ΣintelligentΣ instruments which have required a major development program. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A Microprocessor analyzes the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnomal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  1. Unannounced inspection for integrated safeguards: A theoretical perspective

    Canty, M.J.; Avenhaus, R.

    2001-01-01

    Full text: The application of a safeguards verification regime based on existing agreements under INFCIRC/153 and on the Additional Protocol, INFCIRC/540, has the potential to allow the International Atomic Energy Agency (IAEA) to relax its traditional facility and material-oriented inspection procedures. The relaxation will take into account the IAEA's enhanced access to information as well as complementary access to locations gained through the application of extended measures foreseen under the Additional Protocol. It will reflect the associated confidence achieved at the State level. It is generally agreed that such a trade-off between the new strengthening measures and the traditional measures is reasonable and desirable, both from the point of view of the inspected State, which would like to receive tangible credit for providing increased openness and transparency in its peaceful nuclear activities, and from the viewpoint of the IAEA, which must apportion its limited inspection resources efficiently. An often-discussed proposal to reduce routine inspection effort while maintaining safeguards effectiveness is to replace scheduled interim inspections with a smaller number of random, unannounced visits. Intuitively, the unpredictability aspect is appealing, as it places the potential diverter in a permanent state of uncertainty. There are also some disadvantages, however, such as the difficulty of planning and implementing truly random inspections and the burden experienced by facility operators obliged to accommodate them. An objective evaluation of a randomized inspection regime vis-a-vis conventional routine inspections requires an objective measure of effectiveness and a means of optimizing that measure - in other words a theoretical framework for analyzing verification problems. In our paper we provide such a framework by quantifying the notion of timely detection and by treating the problem consistently a strategic one. We present a series of models which

  2. Safeguards by design - The early consideration of safeguards concepts

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  3. Facility Safeguardability Analysis in Support of Safeguards by Design

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  4. Technical basis of safeguards

    Buechler, C.

    1975-01-01

    Definition of nuclear materials control. Materials accountancy and physical control as technical possibilities. Legal possibilities and levels of responsibility: material holders, national and international authority. Detection vs. prevention. Physical security and containment surveillance. Accountancy: materials balance concept. Materials measurement: inventory taking, flow determination. IAEA safeguards; verification of operator's statement. (HP) [de

  5. Secure Video Surveillance System (SVSS) for unannounced safeguards inspections

    Galdoz, Erwin G.; Pinkalla, Mark

    2010-01-01

    The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed. ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains

  6. Clarifying the role of the IAEA

    Smith, R.

    1983-01-01

    The IAEA has many roles in promoting the role of nuclear energy for peaceful purposes. The most significant role that the IAEA undertakes is the development and application of safeguards to nuclear material, other material, equipment and facilities; this work consumes about 35% of the IAEA budget. The authority, procedures and limitations for the application of safeguards were described together with the relationship between the IAEA and the States where safeguards are in effect. Claims that the IAEA is not adequately fulfilling its safeguard role are usually based on misunderstandings of its role and authority. The IAEA's relationship to inspected States is not adversarial, regulatory, or guarding. It provides assurance to all States that peaceful nuclear activities are not diverted to a military program and in so doing enhances the reputation of States to whom safeguards are applied. Safeguards would be only one of many factors that would be involved in a States embarking on a military nuclear program. If proliferation of nuclear weapons occurs, this may be due in entirety or in part to these other factors. Many States could now undertake a military program but do not do so, because of their enlightened viewpoint that such activities are not in their own, or the world's best interests. However, any trend to further proliferation of nuclear weapons could be diminished by: -a lessening of political and economic tension between States, -restrictions on the supply of required technology, equipment, and material, and -an effective IAEA safeguard regime. There has been a regrettable trend to politicization in the direction and operation of the IAEA. It is hoped that this trend will be reversed and that IAEA will return to its earlier more technical role. There is a pressing need for the general public and governments to more fully understand the IAEA's role and its limitations

  7. REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS, INFCIRC/540 (Corrected) VOLUME II/III IAEA COMMITTEE 24, Major Issues Underlying the Model Additional Protocol (1996-1997).

    Rosenthal, M.D.; Saum-Manning, L.; Houck, F.

    2010-01-01

    Volume I of this Review traces the origins of the Model Additional Protocol. It covers the period from 1991, when events in Iraq triggered an intensive review of the safeguards system, until 1996, when the IAEA Board of Governors established Committee 24 to negotiate a new protocol to safeguards agreement. The period from 1991-1996 set the stage for this negotiation and shaped its outcome in important ways. During this 5-year period, many proposals for strengthening safeguards were suggested and reviewed. Some proposals were dropped, for example, the suggestion by the IAEA Secretariat to verify certain imports, and others were refined. A rough consensus was established about the directions in which the international community wanted to go, and this was reflected in the draft of an additional protocol that was submitted to the IAEA Board of Governors on May 6, 1996 in document GOV/2863, Strengthening the Effectiveness and Improving the Efficiency of the Safeguards System - Proposals For Implementation Under Complementary Legal Authority, A Report by the Director General. This document ended with a recommendation that, 'the Board, through an appropriate mechanism, finalize the required legal instrument taking as a basis the draft protocol proposed by the Secretariat and the explanation of the measures contained in this document.'

  8. Development of in-field monitoring techniques. Report on Task FIN A845 on the Finnish Support Programme to IAEA Safeguards

    Toivonen, H; Honkamaa, T; Kansanaho, A; Poellaenen, R [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Aerosol Lab.; Aarnio, P; Ala-Heikkilae, J; Nikkinen, M [Helsinki Univ. of Technology, Otaniemi (Finland). Nuclear Engineering Lab.

    1994-12-01

    Several in-field measuring techniques were identified for use in safeguards inspections. The radiation measurements play a major role in seeking environmetal signatures. A high-resolution gamma-ray spectrometer, either in-situ or in sample analysis, gives unequivocal evidence of nuclear activities on the site of interest. Although portable spectrometers are commercially available, hardware development and software tailoring seem to be necessary before efficient mobile measurements can be initiated. To understand trends and pattern of contamination, the results of the measurements have be displayed on digital maps. GPS-integration is an essential requirement for the equipment in environmental monitoring. (orig.) (14 refs., 5 figs., 17 tabs.).

  9. Advanced training course on state systems of accounting for and control of nuclear materials. Volume I. Program for technical assistance to IAEA safeguards

    Sorenson, R.J.; Schneider, R.A.

    1979-01-01

    Purpose of the course was to provide practical training in the implementation and operation of a national system of accounting for and control of nuclear materials in a bulk processing facility, in the context of international safeguards. This course extends the training received in the basic course on State Systems of Accounting for and Control of Nuclear Materials to a practical, illustrative example utilizing the Exxon Nuclear low enriched uranium fabrication plant. Volume I of this manual contains the text of the presentations following the outline of the syllabus. Sample problems and answers are also included, along with some visual aids

  10. Development of in-field monitoring techniques. Report on Task FIN A845 on the Finnish Support Programme to IAEA Safeguards

    Toivonen, H.; Honkamaa, T.; Kansanaho, A.; Poellaenen, R.; Aarnio, P.; Ala-Heikkilae, J.; Nikkinen, M.

    1994-12-01

    Several in-field measuring techniques were identified for use in safeguards inspections. The radiation measurements play a major role in seeking environmetal signatures. A high-resolution gamma-ray spectrometer, either in-situ or in sample analysis, gives unequivocal evidence of nuclear activities on the site of interest. Although portable spectrometers are commercially available, hardware development and software tailoring seem to be necessary before efficient mobile measurements can be initiated. To understand trends and pattern of contamination, the results of the measurements have be displayed on digital maps. GPS-integration is an essential requirement for the equipment in environmental monitoring. (orig.) (14 refs., 5 figs., 17 tabs.)

  11. 20 years of the implementation of the safeguards agreements

    Ramirez Quijada, Renan

    2001-01-01

    Peru has signed an INFIRC/153 type safeguards agreement with the IAEA in 1979. The paper describes the nuclear material under control and outlines the organization and the activities related to the implementation of the safeguards agreements

  12. IAEA at a glance

    Kinley, D. III

    1997-12-01

    The publication briefly describes the 'peaceful universe' and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  13. IAEA at a glance

    Kinley, D III

    1997-12-01

    The publication briefly describes the `peaceful universe` and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  14. Meeting the safeguards challenges of a commercial reprocessing plant

    Johnson, S.J.; Chesnay, B.; Pearsall, C.; Takeda, S.; Tomikawa, H.; Fujimaki, K.; Iwamoto, T.

    2004-01-01

    Never before has the IAEA taken on such a large challenge as implementing a safeguards system at a commercial reprocessing plant. The challenges lay in a wide range of areas. This paper will present an overview of how specific challenges are being met in: Providing an initial and continuing design verification approach that maintains continuity of knowledge for the life-time of the plant; Providing a robust safeguards approach, including added assurance measures to confirm the operational conditions of the facility; Providing verification systems with the highest sensitivity and reliability, while also being cost efficient; Providing timely and accurate analytical laboratory results; Providing sufficient authentication to joint-use, unattended verification systems to assure that independent conclusions can be reached; Providing a comprehensive integrated software system that allows for remote inspector data handling and evaluation and thus reducing inspection effort. A primary prerequisite to developing and implementing a safeguards approach of this magnitude is the transparent and interactive cooperation of the State and the operator. The JNFL Project has been a model example of this cooperation. This cooperation has been in the areas of system security, operational modifications, schedule adjustments, technical development and financial support. (author)

  15. Measuring Safeguards Culture

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-01-01

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  16. Measuring Safeguards Culture

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  17. SGNucDat. Safeguards nuclear data for windows. Summary documentation

    Lemmel, H.D.; Schwerer, O.

    1996-01-01

    SGNucDat is a PC code displaying recommended values of nuclear data that are required for nuclear materials analyses by IAEA safeguards. Diskette and report available from the IAEA Nuclear Data Section, costfree upon request. (author)

  18. The safeguards options study

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  19. The safeguards options study

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  20. Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols

    2012-01-01

    This publication is aimed at enhancing States' understanding of the safeguards obligations of both the State and the IAEA, and at improving the cooperation between States and the IAEA in safeguards implementation. It is principally intended for State or regional safeguards regulatory authorities and facility operators, and is a reference document that will be supported by detailed guidance and examples in 'Safeguards Implementation Practices' (SIPs) to be published separately.

  1. Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols

    2016-01-01

    This publication is aimed at enhancing States’ understanding of the safeguards obligations of both the State and the IAEA, and at improving the cooperation between States and the IAEA in safeguards implementation. It is principally intended for State or regional safeguards regulatory authorities and facility operators, and is a reference document that is supported by detailed guidance and examples in safeguards implementation practices presented in other publications in the series. (This version is the 2016 update.)

  2. The International Atomic Energy Agency - IAEA

    Pezzutti, A.A.C.

    1980-01-01

    The origens, functions and objectives of the IAEA are analysed. The application of safeguards to avoid military uses of nuclear energy is discussed. In the final section the agrement between Brazil and Germany regarding IAEA safeguards, as well as the competence for executing the brazilian program are explained. It is, then, an informative study dealing with nuclear energy and its peaceful path, the creation of International Fuel Cycle Evaluation and nonproliferation [pt

  3. Legal instruments related to the application of safeguards

    Rockwood, Laura

    2001-01-01

    The legal framework of IAEA safeguards consists of a number of elements, not at all of which are documents. These elements include the Statute of the IAEA; treaties and supply agreements calling for verification of nonproliferation undertakings; the basic safeguards documents, the safeguards agreements themselves, along with the relevant protocols and subsidiary arrangements; and finally, the decisions, interpretations and practices of the Board of Governors. After a discussion of these elements the major differences between the various types of IAEA safeguards agreements are outlined. Finally the procedures involved in the initiation, negotiation, conclusion and amendment of safeguards agreements are described. (author)

  4. The basis for the strengthening of safeguards

    Goldschmidt, P.

    1999-01-01

    For the past 30 years, the International Atomic Energy Agency's safeguards system has contributed to the international non-proliferation regime, by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons programme in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. This paper will summarize the evolution of the safeguards system, describe strengthened safeguards, report on the status of implementing the strengthening measures, and outline plans for integrating all available safeguards measures. (author)

  5. Safeguards for geological repositories

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  6. Safeguards Culture

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  7. Safeguards on nuclear materials

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  8. Desktop mapping using GPS. SAHTI - a software package for environmental monitoring. Report on task JNTB898 on the Finnish support programme to IAEA safeguards

    Ilander, T; Kansanaho, A; Toivonen, H

    1996-02-01

    Environmental sampling is the key method of the IAEA in searching signatures of a covert nuclear programme. However, it is not always easy to know the exact location of the sampling site. The satellite navigation system, utilizing a small receiver (GPS) and a PC, allows to have independent positioning data easily. The present task on the Finnish Support Programme was launched to create software to merge information about sampling and positioning. The system is build above a desktop mapping software package. However, the result of the development goes beyond the initial goal: the software can be used to real- time positioning in a mobile unit utilizing maps that can be purchased or produced by the user. In addition, the system can be easily enlarged to visualize data in real time from mobile environmental monitors, such as a Geiger counter, a pressurized ionisation chamber of a gamma-ray spectrometer. (orig.) (7 figs.).

  9. Desktop mapping using GPS. SAHTI - a software package for environmental monitoring. Report on task JNTB898 on the Finnish support programme to IAEA safeguards

    Ilander, T.; Kansanaho, A.; Toivonen, H.

    1996-02-01

    Environmental sampling is the key method of the IAEA in searching signatures of a covert nuclear programme. However, it is not always easy to know the exact location of the sampling site. The satellite navigation system, utilizing a small receiver (GPS) and a PC, allows to have independent positioning data easily. The present task on the Finnish Support Programme was launched to create software to merge information about sampling and positioning. The system is build above a desktop mapping software package. However, the result of the development goes beyond the initial goal: the software can be used to real- time positioning in a mobile unit utilizing maps that can be purchased or produced by the user. In addition, the system can be easily enlarged to visualize data in real time from mobile environmental monitors, such as a Geiger counter, a pressurized ionisation chamber of a gamma-ray spectrometer. (orig.) (7 figs.)

  10. Nuclear safeguards implementations in Taiwan

    Hou, R-H.; Chang, C-K.; Lin, C-R.; Gone, J-K.; Chen, W-L.; Yao, D.

    2006-01-01

    Full text: Now with six Nuclear Power Plant (NPP) units in operation, two Advanced Boiling Water Reactor (ABWR) units under construction, and other peaceful applications of nuclear and radiation technology expanding in great pace, the Atomic Energy Council (AEC) has been focused on reactor safety regulation, radiation protection, radioactive waste administration, environmental monitoring and R and D for technology development and other civilian nuclear applications. Despite Taiwan's departure from the United Nations and therefore its family member International Atomic Energy Agency (IAEA) in 1971, Taiwan remains its commitment to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). To date, Taiwan is still part of the international nuclear safeguards system and accepts IAEA's inspections in accordance with its regulations on nuclear safeguards. In 1998, Taiwan further agreed, through exchange of letters between the AEC and IAEA, to implementation of the measures provided for in the model Protocol Additional to its safeguards agreement. In this paper, we will introduce Taiwan's nuclear safeguards history and describe some highlights of safeguards implementation in recent years, such as complementary accesses, transparency visits, remote monitoring inspections, unannounced inspections, facility attachment termination for the decommissioned facilities, and annual safeguards implementation meeting with IAEA

  11. The next generation safeguards initiative

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  12. Application of safeguards design principles to the spent-fuel bundle counters for 600-MW CANDU reactors

    Stirling, A.J.; Allen, V.H.

    1979-01-01

    The irradiated fuel bundle counters for CANDU 600-MW reactors provide the IAEA with a secure and independent means of estimating the inventory of the spent-fuel storage bay at each inspection. Their function is straightforward - to count the bundles entering the storage area through the normal transfer ports. However, location, reliability, security and operating requirements make them highly ''intelligent'' instruments which have required a major development programme. Moreover, the bundle counters incorporate principles which apply to many unattended safeguards instruments. For example, concealing the operating status from potential diverters eases reliability specifications, continuous self-checking gives the inspector confidence in the readout, independence from continuous station services improves tamper-resistance, and the detailed data display provides tamper indication and a high level of credibility. Each irradiated fuel-bundle counter uses four Geiger counters to detect the passage of fuel bundles as they pass sequentially through the field-of-view. A microprocessor analyses the sequence of the Geiger counter signals and determines the number and direction of bundles transferred. The readout for IAEA inspectors includes both a tally and a printed log. The printer is also used to alert the inspector to abnormal fuel movements, tampering, Geiger counter failures and contamination of the fuel transfer mechanism. (author)

  13. Evolution of a safeguards support program: POTAS past and future

    Kessler, J.C.; Reisman, A.W.

    1992-01-01

    When the Non-Proliferation Treaty came into force, the International Atomic Energy Agency (IAEA) became for the first time responsible for implementing full-scope safeguards in many countries, including countries with large and sophisticated nuclear programs. The IAEA's Department of Safeguards did not have the safeguards technology appropriate for these rapidly expanding responsibilities, nor did it have a research and development program to respond to that need. In response to this situation, the United States initiated the US Program of Technical Assitance to IAEA Safeguards (POTAS) in 1977. This program was originally intended to be a 5-yr, $5 million program. As the United States and the IAEA began to implement this program, several things rapidly became clear. Meeting the evolving safeguards technology needs would require much more than $5 million; within the first 5 yr, the United States allocated more than $20 million. This paper summarizes the policies activities, and practices POTAS has employed in support of IAEA safeguards program

  14. Concepts of IAEA nuclear materials accounting

    Oakberg, John A.

    2001-01-01

    The paper describes nuclear material accounting from the standpoint of IAEA Safeguards and how this accounting is applied by the Agency. The basic concepts of nuclear material accounting are defined and the way these apply to States with INFCIRC/153-type safeguards agreements is presented. (author)

  15. Safeguards Implementation Practices Guide on Establishing and Maintaining State Safeguards Infrastructure

    2015-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreements. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This

  16. A programme for Euratom safeguards inspectors, used in the assay of high enriched (H.E.U.) and low enriched (L.E.U.) uranium fuel materials by active neutron interrogation

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme AECC (Active Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurement data originating from active neutron interrogation of HEU and LEU fuel materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for the Active Well Coincidence Counters and Active Neutron Coincidence Counters deployed by the Euratom Safeguards Directorate, Luxembourg

  17. The challenges of integrating multiple safeguards systems in a large nuclear facility

    Lavietes, A.; Liguori, C.; Pickrell, M.; Plenteda, R.; Sweet, M.

    2009-01-01

    Full-text: Implementing safeguards in a cost-effective manner in large nuclear facilities such as fuel conditioning, fuel reprocessing, and fuel fabrication plants requires the extensive use of instrumentation that is operated in unattended mode. The collected data is then periodically reviewed by the inspectors either on-site at a central location in the facility or remotely in the IAEA offices. A wide variety of instruments are deployed in large facilities, including video surveillance cameras, electronic sealing devices, non-destructive assay systems based on gamma ray and neutron detection, load cells for mass measurement, ID-readers, and other process-specific monitors. The challenge to integrate these different measurement instruments into an efficient, reliable, and secure system requires implementing standardization at various levels throughout the design process. This standardization includes the data generator behaviour and interface, networking solutions, and data security approaches. This standardization will provide a wide range of savings, including reduced training for inspectors and technicians, reduced periodic technical maintenance, reduced spare parts inventory, increased system robustness, and more predictive system behaviour. The development of standard building blocks will reduce the number of data generators required and allow implementation of simplified architectures that do not require local collection computers but rather utilize transmission of the acquired data directly to a central server via Ethernet connectivity. This approach will result in fewer system components and therefore reduced maintenance efforts and improved reliability. This paper discusses in detail the challenges and the subsequent solutions in the various areas that the IAEA Department of Safeguards has committed to pursue as the best sustainable way of maintaining the ability to implement reliable safeguards systems. (author)

  18. SMOPY, a new NDA tool for safeguards of LEU and MOX spent fuel

    Lebrun, A.; Merelli, M.; Szabo, J.-L.; Huver, M.; Arenas-Carrasco, J.

    2001-01-01

    Upon IAEA request, the French support program to IAEA Safeguards has developed a new device for control of the irradiated LEU and MOX fuels. The Safeguards Mox Python (SMOPY) is the achievement of a 4 years R and D program supported by CEA and COGEMA in partnership with Eurisys Mesures. The SMOPY system is based on the combination of 2 NDA techniques (passive neutron and room temperature gamma spectrometry) and on line interpretation tools (automatic gamma spectrum interpretation, depletion code EVO). Through the measurement managing software, all this contributes to the fully automatic measurement, interpretation and characterization of any kind of spent fuel. The device is transportable (50 kg, 60 cm) and is composed of four parts: 1. the measurement head with one high efficiency fission chamber and a micro room temperature gamma spectrometric probe; 2. the carrier which carries the measurement head. The carrier bottom fits the racks for accurate positioning and its top fits operator's fuel moving tool; 3. the portable electronic cabinet which includes both neutron and gamma electronic cards; 4. the portable PC which gets inspectors data, controls the measurement, get measured values, interprets them and immediately provides the inspector with worthwhile info for appropriate on the field decisions. Main features of SMOPY are: Discrimination of MOX versus LEU irradiated fuels in any case (conservative case is one cycle MOX versus three cycles LEU after short cooling time); Full characterization of irradiated LEU (burnup, cooling time, Pu amounts ...); Partial Defect Test on LEU fuels. A first version of SMOPY has been tested in industrial condition during summer 2000. This tests shown a need of shielding improvement around the gamma detector. A new version has been build a will be qualified during a new field test and then the system will be ready for routine operation in IAEA and commercial delivery. After giving details about the system itself, this paper

  19. Safeguards as an evolutionary system

    Carlson, J.

    1998-01-01

    NPT safeguards pursuant to INFCIRC/153 retain a strong emphasis on materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognized as a major shortcoming in the safeguards system. Since the 'classical' safeguards system is unable to provide credible assurance of the absence of clandestine nuclear activities, substantial efforts are being made to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the Agency's authority, and good progress has been made in developing the new approaches, technologies and techniques required to ensure this authority is used effectively. Increasingly, safeguards will involve more qualitative judgements. Transparency will be very important - without a clear understanding by Member States of how the Agency goes about its new tasks and reaches its conclusions about the absence of undeclared activities, the safeguards system will not fulfil its vital confidence-building role. A major theme in current safeguards thinking is integration, the rationalization of classical safeguards with the new safeguards strengthening measures. As part of the rationalization process, it is timely to re-assess traditional safeguards implementation practices. One of these is uniformity in the way safeguards activities are implemented in different States. Another is whether the traditional concept of safeguards confidentiality is consistent with the increasing importance of transparency. (author)

  20. Contribution of the ''safeguarded'' to the development of safeguards

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in Safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. Management has many reasons to exercise stringent control of nuclear materials stemming from the value and hazardous nature of the materials being used, and the requirements of relevant national legislation. Because systems at a plant and within a State are generally designed to control quantities of nuclear materials within limits smaller than those specified in the I.A.E.A.'s Safeguards objectives, experience at the plant level has contributed significantly to the development of International Safeguards procedures. In making such contributions, plant management and the national authorities have a common objective with that of the I.A.E.A. in developing a Safeguards system which is both technically-effective and cost-effective. The pursuit of this objective requires that implementation of the Safeguards system can be modified in the light of relevant practical experience of plant operators and of the I.A.E.A. The familiar Blue Book (INFCIRC 153) recognises clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective I.A.E.A. system of Safeguards. It is therefore helpful to review the relevant contributions from the 'Safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of

  1. Contribution of the 'safeguarded' to the development of safeguards

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  2. Relations between SSAC and the IAEA

    Buechler, C.

    1985-01-01

    Nuclear and non nuclear material, services, facilities, equipment and information which are to be used for legally defined purposes may be deliberately diverted from these purposes. Actions aimed at the detection and deterrence of this diversion are known as safeguards. The development of safeguard regulations within the IAEA is described from a historical perspective in part 1 of this report. In part 2 potential divertors and diversion methods are described. Part 3 contains a description of current IAEA safeguards implementation, including discussions of accountancy, surveillance, containment and verification

  3. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 9 December 1999

    ElBaradei, M.

    1999-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 9 December 1999. The following aspects from the Agency's activity are briefly presented: IAEA's safeguards, physical protection of nuclear material, the status of Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), and Agency's actions in connection with Y2K possible problems

  4. Recent advances in safeguards operations

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  5. Opening remarks at the press conference on the outcome of the Board of Governors' consideration of the implementation of safeguards in the Islamic Republic of Iran. 26 November 2003, Vienna, Austria. IAEA Board of Governors

    ElBaradei, M.

    2003-01-01

    Full text: 1. This is a good day for peace, multilateralism and non-proliferation. - A good day for peace because the Board decided to continue to make every effort to use verification and diplomacy to resolve questions about Iran's nuclear programme. - A good day for multilateralism because the international community has decided to stand as one in addressing what is clearly a very critical issue, with serious implications. - A good day for non-proliferation because of the clear message coming from the international community that the integrity of the nuclear non-proliferation regime must be respected and upheld. 2. By today's decision, the international community affirmed, in no uncertain terms, the integrity of the nuclear non-proliferation regime by strongly deploring Iran's failures and breaches to comply with its obligations under the safeguards agreement. The international community also laid down a marker that Iran must strictly adhere to its non-proliferation obligations in both letter and spirit through a policy of active co-operation and full transparency. Importantly, and in addition, it made it clear that any serious failures in the future by Iran to comply with its obligations will be met with an appropriately serious response. 3. From a nuclear non-proliferation perspective we are in new territory with respect to Iran's nuclear programme. Through verification and diplomacy we now know much more about this programme, its nature, extent and development, than at any time in the past. Corrective actions to address past breaches and failures have been and are being taken by Iran. Iran has committed itself to a policy of full disclosure and has decided, as a confidence building measure, not only to sign the Additional Protocol, making way for more robust and comprehensive inspections, but also to take the important step of suspending all enrichment related and reprocessing activities and to accept IAEA verification of this suspension. These are positive

  6. Update: Tests confirm no radioactivity release to environment from IAEA Seibersdorf Lab after 3 August incident

    2008-01-01

    successfully contained the contamination. The incident was rated as level 1 (anomaly) on the Nuclear and Radiological Event Scale (INES) of events. The INES scale has seven categories, the most serious being a 'major accident'. The IAEA's Laboratories in Seibersdorf are located about 35 km southeast of Vienna. The laboratories provide research and training in applying nuclear science to environmental protection, insect pest control, plant breeding, human and animal health, as well as physical and chemical studies, and nuclear instrumentation. The Safeguards Analytical Laboratory, where the incident occurred, undertakes most of the IAEA's analysis of nuclear material samples (very small quantities of uranium or plutonium), collected by its safeguards inspectors from civilian nuclear facilities, as part of its normal verification work. (IAEA)

  7. Update: Tests confirm no radioactivity release to environment from IAEA Seibersdorf Lab after 3 August incident

    2008-01-01

    successfully contained the contamination. The incident was rated as level 1 (anomaly) on the Nuclear and Radiological Event Scale (INES) of events. The INES scale has seven categories, the most serious being a 'major accident'. The IAEA's Laboratories in Seibersdorf are located about 35 km southeast of Vienna. The laboratories provide research and training in applying nuclear science to environmental protection, insect pest control, plant breeding, human and animal health, as well as physical and chemical studies, and nuclear instrumentation. The Safeguards Analytical Laboratory, where the incident occurred, undertakes most of the IAEA's analysis of nuclear material samples (very small quantities of uranium or plutonium), collected by its safeguards inspectors from civilian nuclear facilities, as part of its normal verification work. (IAEA) [de

  8. Agreement reached on integrated safeguards in European Union

    2010-01-01

    Full text: The International Atomic Energy Agency (IAEA), in cooperation with the European Commission, has reached agreement on arrangements to implement 'integrated safeguards' in all non-nuclear-weapon States of the European Union with significant nuclear activities. 'This important milestone is the result of the constructive common efforts of all parties concerned. It is a clear signal of the importance attributed by the EU and its Member States, as well as the IAEA, to the reinforcement of the nuclear non-proliferation regime,' said Andris Piebalgs, Member of the European Commission in charge of Energy. 'Once we have sufficient confidence that a State' s nuclear activities are purely peaceful, we can apply safeguards measures in a less prescriptive, more customised manner. This reduces the inspection burden on the State and the inspection effort of the IAEA, while enabling the IAEA to maintain the conclusion that all nuclear material has remained in peaceful activities,' said Olli Heinonen, Deputy Director General and Head of IAEA Safeguards Department. Background The Nuclear Non-Proliferation Treaty (NPT) is the main international Treaty prohibiting the spread of nuclear weapons. It entrusts the IAEA to verify that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices through the application of 'safeguards'. IAEA safeguards include comprehensive safeguards agreements and additional protocols that enable the IAEA to conclude that all nuclear material has remained in peaceful activities in a State. Integrated Safeguards refers to the optimum combination of all safeguards measures available to the Agency under comprehensive safeguards agreements and additional protocols to achieve maximum effectiveness and efficiency in meeting the Agency ' s safeguards obligations. In the European Union, nuclear safeguards are implemented on the basis of the Euratom Treaty and trilateral agreements between Euratom, its Member States and the IAEA

  9. International safeguards and nuclear terrorism

    Moglewer, S.

    1987-01-01

    This report provides a critical review of the effectiveness of International Atomic Energy Agency (IAEA) safeguards against potential acts of nuclear terrorism. The author argues that IAEA safeguards should be made applicable to deterring diversions of nuclear materials from civil to weapons purposes by subnational groups as well as by nations. Both technical and institutional factors are considered, and suggestions for organizational restructuring and further technical development are made. Awareness of the necessity for effective preventive measures is emphasized, and possible directions for further effort are suggested

  10. Topical and working papers on heavy water accountability and safeguards

    This report contains the following papers: 1) Statement of IAEA concerning safeguarding of heavy water; 2) Preliminary Canadian Comments on IAEA document on heavy water safeguards; 3) Heavy water accountability 03.10.78; 4) Heavy water accountability 05.04.79

  11. Safeguards by Design at the Encapsulation Plant in Finland

    Ingegneri, M.; Baird, K.; Park, W.-S.; Coyne, J.M.; Enkhjin, L.; Chew, L.S.; Plenteda, R.; Sprinkle, J.; Yudin, Y.; Ciuculescu, C.; Koutsoyannopoulos, C.; Murtezi, M.; Schwalbach, P.; Vaccaro, S.; Pekkarinen, J.; Thomas, M.; Zein, A.; Honkamaa, T.; Hamalainen, M.; Martikka, E.; Moring, M.; Okko, O.

    2015-01-01

    Finland has launched a spent fuel disposition project to encapsulate all of its spent fuel assemblies and confine the disposal canisters in a deep geological repository. The construction of the underground premises started several years ago with the drilling, blasting and reinforcement of tunnels and shafts to ensure the safe deep underground construction and disposal techniques in the repository, while the design of the encapsulation plant (EP) enters the licencing phase preliminary to its construction. The spent fuel assemblies, which have been safeguarded for decades at the nuclear power plants, are going to be transported to the EP, loaded into copper canisters and stored in underground tunnels where they become inaccessible after backfilling. Safeguards measures are needed to ensure that final spent fuel verification is performed before its encapsulation and that no nuclear material is diverted during the process. This is an opportunity for the inspectorates to have the infrastructure necessary for the safeguards equipment incorporated in the design of the encapsulation plant before licencing for construction occurs. The peculiarity of this project is that it is going to run for more than a century. Therefore, significant changes are to be expected in the technical capabilities available for implementing safeguards (e.g., verification techniques and instruments), as well as in the process itself, e.g., redesign for the encapsulation of future fuel types. For these reasons a high degree of flexibility is required in order to be able to shift to different solutions at a later stage while minimizing the interference with the licencing process and facility operations. This paper describes the process leading to the definition of the technical requirements by IAEA and Euratom to be incorporated in the facility's design. (author)

  12. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kouzes, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peerani, P. [European Commission, Ispra (Italy). Joint Research Centre; Aspinall, M. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Baird, K. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Bakel, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Borella, M. [SCK.CEN, Mol (Belgium); Bourne, M. [Univ. of Michigan, Ann Arbor, MI (United States); Bourva, L. [Canberra Ltd., Oxford (United Kingdom); Cave, F. [Hybrid Instruments Ltd., Birmingham (United Kingdom); Chandra, R. [Arktis Radiation Detectors Ltd., Zurich (Sweden); Chernikova, D. [Chalmers Univ. of Technology (Sweden); Croft, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dermody, G. [Symetrica Inc., Maynard, MA (United States); Dougan, A. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Ely, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fanchini, E. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Gavron, Victor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kureta, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ishiyama, K. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Lee, T. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Martin, Ch. [Symetrica Inc., Maynard, MA (United States); McKinny, K. [GE Reuter-Stokes, Twinsburg, OH (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Orton, Ch. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Pappalardo, A. [Istituto Nazionale di Fisica Nucleare (INFN), Milano (Italy); Pedersen, B. [European Commission, Ispra (Italy). Joint Research Centre; Peranteau, D. [National Nuclear Security Administration (NNSA), Washington, DC (United States); Plenteda, R. [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Pozzi, S. [Univ. of Michigan, Ann Arbor, MI (United States); Schear, M. [Symetrica Inc., Maynard, MA (United States); Seya, M. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Siciliano, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, L. [Proportional Technologies Inc., Houston, TX (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tagziria, H. [European Commission, Ispra (Italy). Joint Research Centre; Vaccaro, S. [DG Energy (Luxembourg); Takamine, J. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Weber, A. -L. [Inst. for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses (France); Yamaguchi, T. [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Zhu, H. [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  13. The inquisitive inspector: Reflections on the nuclear fuel cycle and proliferation pathways training course

    Burrows, B.; Howsley, R.; Andrew, G.; Fortakov, V.; Nilsson, A.

    1999-01-01

    Amongst the many lessons to be learnt from the Iraqi experience is the intrinsic value of utilising individuals who are well informed in fuel cycle technologies and who possess keen powers of observation. The safeguards strengthening measures of increased access and increased information now set the scene for IAEA inspectors to wear two hats; the traditional role of inspecting declared nuclear materials and the more inquisitive role of probing for and recognising indicators of undeclared activities. The key to unlocking any enquiring potential is the provision of training to increase the awareness of fuel cycle indicators especially those which lie on the more sensitive pathways that a proliferator may follow. In 1994, the IAEA formulated a task for such training, which was subsequently sponsored by the Department of Trade and Industry (DTI) under the United Kingdom Safeguards R and D Support Programme to the IAEA. Experts from the UK have worked closely with the IAEA to develop an intensive one week course entitled 'The Nuclear Fuel Cycle and Proliferation Pathways'. Following trial running, the course went into 'active operation' in 1996 and has been universally well received by the course participants. This paper describes the course development, the objectives, the syllabus, the use of audio-visual material and the evaluation of the effectiveness of the course. The training is very intensive and challenging; as a new course its content is still evolving and being adjusted in the light of feedback from participants. From the outset it was necessary to recognise the balance between increasing observation and being educational on critical technologies. The course therefore, is strongly focused on the indicators of 'what' activities rather than the 'how' of a particular proliferation pathway. The course is in line with and in support of what was the IAEA Programme '93+2' Task 5 for increased information analysis. As to the impact the course has on its participants

  14. Safeguards Culture: lesson learned

    Frazar, S.; Mladineo, S.V.

    2010-01-01

    After the discovery of Iraq's clandestine nuclear program in 1991, the international community developed new tools for evaluating and demonstrating states' nuclear intentions. The International Atomic Energy Agency (IAEA) developed a more holistic approach toward international safeguards verification to garner more complete information about states' nuclear activities. This approach manifested itself in State Level Evaluations, using information from a variety of sources, including the implementation of integrated safeguards in Member States, to reach a broader conclusion. Those wishing to exhibit strong nonproliferation postures to a more critical international community took steps to demonstrate their nonproliferation 'bona fides'. As these Member States signed and brought into force the Additional Protocol, submitted United Nations Security Council Resolution 1540 reports and strengthened their export control laws, the international community began to consider the emergence of so-called safeguards cultures. Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been under appreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured.

  15. Quality assurance and quality control at the joint IAEA NMCC On-Site Laboratory at RRP as a contribution to the inspectorate's review of near real time accountancy of nuclear material

    Ludwig, R.; Duhamel, G.; Raptis, K.; Mayorov, V.; Sato, Y.; Hara, S.; Itoh, Y.; Hayakawa, T.

    2011-01-01

    This paper provides updates on the elements of the quality management system (QMS) of the On-Site Laboratory for nuclear safeguards at the Rokkasho Reprocessing Plant. Representative examples of the OSL's quality control levels are discussed, such as analytical method performance review, method inter-comparison and participation in Laboratory inter-comparison exercises. It also highlights quality assurance measures to continuously improve the data quality within the boundary conditions of a high throughput industrial laboratory operating according to the guidelines of ISO 17025 and to meet the requirements of the ITV's on method uncertainties. (author)

  16. Safeguards instrumentation: a computer-based catalog

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available

  17. Safeguards instrumentation: a computer-based catalog

    Fishbone, L.G.; Keisch, B.

    1981-08-01

    The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

  18. Fuel cycle based safeguards

    De Montmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-07-01

    In NPT safeguards the same model approach and absolute-quantity inspection goals are applied at present to all similar facilities, irrespective of the State's fuel cycle. There is a continuing interest and activity on the part of the IAEA in new NPT safeguards approaches that more directly address a State's nuclear activities as a whole. This fuel cycle based safeguards system is expected to a) provide a statement of findings for the entire State rather than only for individual facilities; b) allocate inspection efforts so as to reflect more realistically the different categories of nuclear materials in the different parts of the fuel cycle and c) provide more timely and better coordinated information on the inputs, outputs and inventories of nuclear materials in a State. (orig./RF) [de

  19. Inspector qualification guidelines

    Batty, A.C.; Van Binnebeek, J.J.; Ericsson, P.O.; Fisher, J.C.; Geiger, P.; Grandame, M.; Grimes, B.K.; Joode, A. de; Kaufer, B.; Kinoshita, M.; Klonk, H.; Koizumi, H.; Maeda, N.; Maqua, M.; Perez del Moral, C.; Roselli, F.; Warren, T.; Zimmerman, R.

    1994-07-01

    The OECD Nuclear Energy Agency Committee on Nuclear Regulatory Activities (CNRA) has a Working Group on Inspection Practices (WGIP). The WGIP provides a forum for the exchange of Information and experience on the safety Inspection practices of regulatory authorities In the CNRA member countries. A consistent qualification process and well defined level of training for all Inspectors who participate In the safety Inspections are needed to provide consistent Inspections and reliable Inspection results. The WGIP organized in 1992 a workshop on the conduct of inspections, inspector qualification and training, and shutdown inspections at the Technical Training Center of the US NRC in Chattanooga, Tennessee. In the connection of workshop the WGIP identified a need to develop guidance for inspector qualification which could be used as a model by those who are developing their qualification practices. The inspector qualification journals of US NRC provided a good basis for the work. The following inspector qualification guideline has been developed for guidance of qualification of a new inspector recruited to the regulatory body. This guideline has been developed for helping the supervisors and training officers to give the initial training and familiarization to the duties of a new inspector in a controlled manner. US NRC inspector qualification journals have been used to define the areas of attention. This guideline provides large flexibility for application in different type organizations. Large organizations can develop separate qualification journals for each inspector positions. Small regulatory bodies can develop individual training programmes by defining the necessary training topics on case by case basis. E.g. the guideline can be used to define the qualifications of contracted inspectors used in some countries. The appropriate part would apply. Annex 1 gives two examples how this guideline could be applied

  20. Inspector qualification guidelines

    Batty, A. C.; Van Binnebeek, J. J.; Ericsson, P. O.; Fisher, J. C.; Geiger, P.; Grandame, M.; Grimes, B. K.; Joode, A. de; Kaufer, B.; Kinoshita, M.; Klonk, H.; Koizumi, H.; Maeda, N.; Maqua, M.; Perez del Moral, C.; Roselli, F.; Warren, T.; Zimmerman, R.

    1994-07-15

    The OECD Nuclear Energy Agency Committee on Nuclear Regulatory Activities (CNRA) has a Working Group on Inspection Practices (WGIP). The WGIP provides a forum for the exchange of Information and experience on the safety Inspection practices of regulatory authorities In the CNRA member countries. A consistent qualification process and well defined level of training for all Inspectors who participate In the safety Inspections are needed to provide consistent Inspections and reliable Inspection results. The WGIP organized in 1992 a workshop on the conduct of inspections, inspector qualification and training, and shutdown inspections at the Technical Training Center of the US NRC in Chattanooga, Tennessee. In the connection of workshop the WGIP identified a need to develop guidance for inspector qualification which could be used as a model by those who are developing their qualification practices. The inspector qualification journals of US NRC provided a good basis for the work. The following inspector qualification guideline has been developed for guidance of qualification of a new inspector recruited to the regulatory body. This guideline has been developed for helping the supervisors and training officers to give the initial training and familiarization to the duties of a new inspector in a controlled manner. US NRC inspector qualification journals have been used to define the areas of attention. This guideline provides large flexibility for application in different type organizations. Large organizations can develop separate qualification journals for each inspector positions. Small regulatory bodies can develop individual training programmes by defining the necessary training topics on case by case basis. E.g. the guideline can be used to define the qualifications of contracted inspectors used in some countries. The appropriate part would apply. Annex 1 gives two examples how this guideline could be applied.

  1. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    1994-01-01

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa's participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  2. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    NONE

    1994-12-31

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa`s participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  3. IAEA inspection activities in the model country

    Madueme, G.

    1989-01-01

    An overview of the activities undertaken by IAEA inspectors at the model research reactor and research laboratories is given. The basic philosophy behind nuclear material stratification and the concepts of Material Balance Areas and Key Measurement Points are explained. Diversion routes and plausible diversion scenarios are analysed. 8 refs., 6 figs., 3 tabs., poster presentations included

  4. Networking of safeguards systems

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  5. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  6. IAEA yearbook 1996

    1996-09-01

    Part A of the Yearbook describes the role played by the IAEA in helping to advance sustainable development by the transfer of nuclear and radiation technology. The introduction to this section this year discusses the application of quality assurance practices to this important work. The main article describes new planning procedures that are being adopted to ensure that these technical co-operation activities are of significant and practical benefit to the States concerned. The work routinely carried out by the IAEA on the development and dissemination of nuclear and radiation techniques covers a wide range of subjects - the practical aspects of physics and chemistry, hydrology, industrial applications, human health, and food and agriculture. Part B of the Yearbook concentrates on food irradiation and the use of nuclear monitoring techniques in programmes for improving human nutrition. Part C of the Yearbook deals with nuclear power and its fuel cycle and waste management technology. The section on nuclear power describes developments during 1995 in a wide range of countries. It also details the IAEA's work on the comparative health and environmental impacts of different types of energy systems. Of particular interest this year in the fuel cycle area is the report of the downturn in world uranium activities that has lasted for more than 15 years may be coming to an end. In the waste management section, emphasis is given to the technology of environmental restoration of sites after contamination resulting from past nuclear activities. A discussion of different aspects of the safety of nuclear power and of the uses of radiation is to be found in Part D, The Nuclear Safety Review. As in previous years, Part E of the IAEA Yearbook 1996 deals with the IAEA's major contribution to the non-proliferation regime - international safeguards. Part E also contains a description of IAEA activities designed to assist Member States in preventing trafficking in nuclear materials

  7. Technology development for safeguards

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  8. Twenty Years of Regional Safeguards: the ABACC System and the Synergy with the National Nuclear Material Control Systems

    Dias, Fabio C.; Palhares, Lilia C.; De Mello, Luiz A.; Vicens, Hugo E.; Maceiras, Elena; Terigi, Gabriel

    2011-01-01

    As result of the nuclear integration between Brazil and Argentina, in July 1991 the Agreement for Peaceful Uses of the Nuclear Energy (Bilateral Agreement) was signed and the Brazilian Argentine Agency for Accountancy and Control of Nuclear Material (ABACC) was created [1]. The main role assigned to ABACC was the implementation and administration of the regional control system and the coordination with the International Atomic Energy Agency (IAEA) in order to apply safeguards to all nuclear material in all nuclear activities of Argentina and Brazil. In December 1991 the IAEA, ABACC, Argentina and Brazil signed the Quadripartite Agreement (INFCIRC/435) [2]. The agreement establishes obligations similar to those established by model INFCIRC/153 comprehensive agreements. The Bilateral Agreement establishes that the Parties should make available financial and technical capabilities to support ABACC activities. In order to accomplish this challenge, the National Systems had to improve their structure and capabilities. Through the close interaction with the IAEA and ABACC, the national systems have been enriched by adopting new methodologies, implementing innovative safeguards approaches and providing specialized training to the regional inspectors. All of this also resulted in relevant technical improvements to the regional system as a whole. The approach of both neighborhoods controlling each other increased the confidence between the partners and permitted a better knowledge of their potentialities. The recognized performance of the regional system in the implementation of innovative, efficient and credible safeguards measures increased the confidence of the international community on the implementation of nuclear safeguards in Argentina and Brazil. In this paper, after twenty years of the creation of the ABACC System, the view of the Brazilian and Argentine National Authorities is presented. (authors)

  9. Development of Laser-Induced Breakdown Spectroscopy Technologies for Nuclear Safeguards and Forensic Applications

    Chen, S.; El-Jaby, A.; Doucet, F.; Bouchard, P.; Sabsabi, M.

    2015-01-01

    Under the IAEA Task A1855, the Canadian Safeguards Support Program (CSSP) undertook the development of laser-induced breakdown spectroscopy (LIBS) technologies for safeguards applications. Collaboration between the Canadian Nuclear Safety Commission (CNSC), the National Research Council Canada, and the IAEA has demonstrated that the LIBS technique combined with chemometrics can determine the origins of yellowcake, identify maraging steels, aluminium alloys, and magnesium alloys, among other materials involved in the nuclear industry; and determine heavy water content as well as the isotope ratios of other actinides. As part of the task, the CSSP has developed a portable LIBS system to enable inspectors to characterize specific nuclear and non-nuclear material during complementary access and inspections. This device was recently tested by the IAEA in both Vienna and Siebersdorf for various metals and uranium bearing materials. The laser source proved to be stable and the chemometrics software was able to identify various materials. The device is ready for further in-depth testing. The chemometrics algorithm that has been developed for LIBS can also be adapted to nuclear forensics for the querying database. Multi-stage pattern recognition algorithms can reliably identify unknown materials among database populations (e.g., identify origins of yellowcake). Further work in this field is being undertaken as part of the CNSC's National Nuclear Forensics Library (NNFL) development activities for the Canadian National Nuclear Forensics Capability Project (CNNFCP). The paper will provide an overview of the LIBS techniques being developed for safeguards and forensic applications, and of progress in integrating all components into a compact unit. (author)

  10. Development of solution monitoring software for enhanced safeguards at a large scale reprocessing facility

    Van Handenhove, Carl; Breban, Domnica; Creusot, Christophe [International Atomic Energy Agency, Vienna (Austria); Dransart, Pascal; Dechamp, Luc [Joint Research Centre, European Commission, Ispra, Varese, (Italy); Jarde, Eric [Euriware, Equeurdreville (France)

    2011-12-15

    The implementation of an effective and efficient IAEA safeguards approach at large scale reprocessing facilities with large throughput and continuous flow of nuclear material requires the introduction of enhanced safeguards measures to provide added assurance about the absence of diversion of nuclear material and confirmation that the facility is operated as declared. One of the enhanced safeguards measures, a Solution Monitoring and Measurement System (SMMS), comprising data collection instruments, data transmission equipment and an advanced Solution Monitoring Software (SMS), is being implemented at a large scale reprocessing plant in Japan. SMS is designed as a tool to enable automatic calculations of volumes, densities and flow-rates in selected process vessels, including most of the vessels of the main nuclear material stream. This software also includes automatic features to support the inspectorate in verifying inventories and inventory changes. The software also enables one to analyze the flows of nuclear material within the process and of specified 'cycles' of operation, and, in order to provide assurance that the facility is being operated as declared to compare these with those expected (reference signatures). The configuration and parameterization work (especially the analytical and comparative work) for the implementation and configuration of the SMS has been carried out jointly between the IAEA, Euriware-France (the software developer) and the Joint Research Centre (JRC)-Ispra. This paper describes the main features of the SMS, including the principles underlying the automatic analysis functionalities. It then focuses on the collaborative work performed by the JRC-Ispra, Euriware and the IAEA for the parameterization of the software (vessels and cycles of operation), including the current status and the future challenges.

  11. Non-proliferation and international safeguards

    Blix, H.

    1992-01-01

    Full text: In my view, drastic nuclear disarmament by nuclear weapon States could be coupled with universal commitment to non-proliferation by non-nuclear weapon States by 1995 when the extension of the NPT Will be discussed. The incentives and disincentives for making and stockpiling nuclear weapons are first of all in the political and security fields, (Global and regional detente reduce the incentive, With the cold war gone, the US and Russia are now agreeing on far-reaching cuts in their nuclear arsenals and at some point the other declared nuclear weapon States Will follow.In the regional fields, we have seen how Argentina and Brazil are about to commit themselves to exclusively peaceful uses of the atom through the Latin American Tlatelolco Treaty. And we have seen how South Africa has joined the NPT. A new wave of States adhering to the NPT may be expected from countries in the former Soviet Union. Some have already come, others are on the way. Detente in the Middle East and on the Indian subcontinent would improve the outlook for non-proliferation in these areas. A second barrier to nuclear proliferation lies in export restrictions on sensitive nuclear material and equipment, Following the discoveries in Iraq, these restrictions are being strengthened in a large number of States. A third barrier to nuclear proliferation lies in the economic and political consequences that would follow for a State if IAEA safeguards inspection revealed activities aimed at the production of nuclear weapons. These must have a high degree of reliability. The case of Iraq showed that it was possible for a closed, highly militarized State to hide nuclear activities from the IAEA and the world We are now drawing the lessons from this case. It is not physically possible for inspectors to look into every building and basement in vast countries, They must have information about where to look, and the IAEA is significantly strengthening its information basis. The IAEA has also re

  12. Implementation of Safeguards in Thailand

    Rueanngoen, A.; Changkrueng, K.; Srijittawa, L.; Mungpayaban, H.; Wititteeranon, A.

    2015-01-01

    Thailand is a non-nuclear weapon state. The non-nuclear activities are mainly medical, agricultural, and industrial. Therefore, Thailand ratified the Nuclear Non-Proliferation Treaty (NPT) since 1972 and has been entry into force of the Comprehensive Safeguards Agreement (INFCIRC 241) since 1974. Based on the INFCIRC 153, Thailand established a system of accounting for and control of all nuclear material subject to safeguards under the Agreement. In order to ensure the peaceful use of nuclear in Thailand the Nuclear-Non- Proliferation Center of Office of Atoms for Peace (NPC, OAP) was established to act as State level Safeguards. NPC is responsible for keeping records and providing information under requirement of Comprehensive Safeguards Agreement. In addition, the strengthening of cooperation and good coordination between Thailand and IAEA are indeed important and necessary to implementation safeguards in country. Based on the report of IAEA safeguards statement, there is no indication of the diversion of nuclear materials or misuse of the facility or the items in Thailand. Up to present, nuclear activities in Thailand are peaceful without diversion of using. This paper reviews the current status of the implementation Safeguards in Thailand. (author)

  13. Legal instruments related to the application of safeguards

    Rames, J.

    1999-01-01

    This presentation discusses the legal framework of IAEA Safeguards which consists of a number of elements, including agreements calling for verification of nonproliferation undertakings, basic safeguards documents (INFCIRC/66/Rev.2, INFCIRC/153 (Corr..), INFCIRC/540 (Corr.), INFCIRC/9/Rev.2, GC(V)/INF/39), the safeguards agreements themselves, along with the relevant protocols and subsidiary arrangements, and finally the decisions, interpretations and practices of the Boards of Governors. Major differences between the various types of IAEA safeguards agreements are outlined. Procedures involved in the initiation, negotiation, conclusion and amendment of safeguard agreements are described

  14. International seminar on safeguards information reporting and processing. Extended synopses

    NONE

    1999-12-31

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included Refs, figs, 1 tab

  15. SARP-II: Safeguards Accounting and Reports Program, Revised

    Kempf, C.R.

    1994-01-01

    A computer code, SARP (Safeguards Accounting and Reports Program) which will generate and maintain at-facility safeguards accounting records, and generate IAEA safeguards reports based on accounting data input by the user, was completed in 1990 by the Safeguards, Safety, and Nonproliferation Division (formerly the Technical Support Organization) at Brookhaven National Laboratory as a task under the US Program of Technical Support to IAEA safeguards. The code was based on a State System of Accounting for and Control of Nuclear Material (SSAC) for off-load refueled power reactor facilities, with model facility and safeguards accounting regime as described in IAEA Safeguards Publication STR-165. Since 1990, improvements in computing capabilities and comments and suggestions from users engendered revision of the original code. The result is an updated, revised version called SARP-II which is discussed in this report

  16. Development of the strengthened safeguards system and the Additional Protocol

    Vidaurre-Henry, Jaime

    2001-01-01

    For the past 30 years, the IAEA's safeguards system has contributed to the international non-proliferation regime by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons program in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. The paper summarizes the evolution of the safeguards system, describes strengthened safeguards, reports on the status of implementing the strengthening measures, and outlines plans for integrating all available safeguards measures. (author)

  17. Collection, Analysis, and Dissemination of Open Source News and Analysis for Safeguards Implementation and Evaluation

    Khaled, J.; Reed, J.; Ferguson, M.; Hepworth, C.; Serrat, J.; Priori, M.; Hammond, W.

    2015-01-01

    Analysis of all safeguards-relevant information is an essential component of IAEA safeguards and the ongoing State evaluation underlying IAEA verification activities. In addition to State declared safeguards information and information generated from safeguards activities both in the field and at headquarters, the IAEA collects and analyzes information from a wide array of open sources relevant to States' nuclear related activities. A number of these open sources include information that could be loosely categorized as ''news'': international, regional, and local media; company and government press releases; public records of parliamentary proceedings; and NGO/academic commentaries and analyzes. It is the task of the State Factors Analysis Section of the Department of Safeguards to collect, analyze and disseminate news of relevance to support ongoing State evaluation. This information supports State evaluation by providing the Department with a global overview of safeguards-relevant nuclear developments. Additionally, this type of information can support in-depth analyses of nuclear fuel cycle related activities, alerting State Evaluation Groups to potential inconsistencies in State declarations, and preparing inspectors for activities in the field. The State Factors Analysis Section uses a variety of tools, including subscription services, news aggregators, a roster of specialized sources, and a custom software application developed by an external partner to manage incoming data streams and assist with making sure that critical information is not overlooked. When analyzing data, it is necessary to determine the credibility of a given source and piece of information. Data must be considered for accuracy, bias, and relevance to the overall assessment. Analysts use a variety of methodological techniques to make these types of judgments, which are included when the information is presented to State Evaluation Groups. Dissemination of news to

  18. Nuclear materials accountancy in an industrial MOX fuel fabrication plant safeguards versus commercial aspects

    Canck, H. de; Ingels, R.; Lefevre, R.

    1991-01-01

    In a modern MOX Fuel Fabrication Plant, with a large throughput of nuclear materials, computerized real-time accountancy systems are applied. Following regulations and prescriptions imposed by the Inspectorates EURATOM-IAEA, the State and also by internal plant safety rules, the accountancy is kept in plutonium element, uranium element and 235 U for enriched uranium. In practice, Safeguards Authorities are concerned with quantities of the element (U tot , Pu tot ) and to some extent with its fissile content. Custom Authorities are for historical reasons, interested in fissile quantities (U fiss , Pu fiss ) whereas owners wish to recover the energetic value of their material (Pu equivalent). Balancing the accountancy simultaneously in all these related but not proportional units is a new problem in a MOX-plant where pool accountancy is applied. This paper indicates possible ways to solve the balancing problem created by these different units used for expressing nuclear material quantities

  19. Experience with an ultrasonic sealing system for nuclear safeguards in irradiated fuel bay demonstrations

    White, B.F.; Smith, M.T.

    1985-07-01

    The development of the irradiated fuel safeguards containment assembly for CANDU nuclear generating stations has stimulated the development of the AECL Random Coil Sealing System. The ARC seal combines the identity and integrity elements in an ultrasonically-determined signature. This is verified in situ, in real time with the seal reading system. The maturation of this technology has been facilitated with demonstration trials in the NRU and NPD irradiated fuel bays. The NPD demonstration includes operation of the systems tooling by Ontario Hydro staff. It provides the opportunity for IAEA inspectors from Toronto and Vienna to direct the operational procedures and to perform the data acquisition. The procedures and systems developed in these trials are reviewed. The estimation of the system performance characteristics from the observations is presented. A minimum frequency of reading for individual seals is recommended to be once per annum following initial deployment

  20. Development of a Sealing-Bolt for the safeguarding of large containers such as multielement bottles

    D'Agraives, B.C.; Toornvliet

    1985-01-01

    A preliminary study on the development of a ''Sealing-Bolt'' is currently being carried out at JRC-Ispra. It is required for the safeguarding of large containers. A ''Sealing-Bolt'' would replace one - or more - of the conventional bolts, normally used for tightening a container's cover. It could not be removed - or unscrewed - without the knowledge of Inspectors. Thus, it has to meet the requirements of an Underwater Verifiable Seal and of a Threaded Stud-Bolt. It is proposed to derive the sealing feature from the VAK III seal, a LWR Fuel Assembly Ultrasonic Seal which has been developed by JRC-Ispra and is field tested at the Kahl Reactor Facility (FRG) since October 1983, while under evaluation for use by IAEA. The mechanical part asks for a specific study of a reliable system able to evidence that the bolt has been unscrewed during an opening of the lid

  1. Safeguards Technology Strategic Planning Pentachart

    Carroll, C. J.

    2017-01-01

    Builds on earlier strategic planning workshops conducted for SGIT, SGTS, and SGCP. Many of recommendations from these workshops have been successfully implemented at the IAEA. Provide a context for evaluating new approaches for anticipated safeguards challenges of the future. Approach used by government and military to plan for an uncertain future. Uses consensus decision-making.

  2. Implementation of Safeguards and Non-Proliferation in Sierra Leone

    George, M.

    2015-01-01

    Sierra Leone under the Comprehensive Safeguards Agreements (CSAs) has enacted the Nuclear Safety and Radiation Protection (NSRP) Act 2012 and has given numerous powers to the Authority to implement the above mentioned act fully. The NSRP Act 2012 established the Nuclear Safety and Radiation Protection Authority which among other things to regulate, control and supervise the acquisition, importation, exportation, use, transportation and disposal of radioactive sources and devices emitting Ionizing Radiation. The Authority is bounded by law to cooperate with the International Atomic Energy Agency in the application of Safeguards Agreement and any protocol thereto between Sierra Leone and the International Atomic Energy Agency including conducting inspections and providing any assistance or information required by designated IAEA inspectors in the fulfillment of their responsibilities pursuant to Section 5, Subsection 2, Article xvi of the NSRP Act 2012. The Authority is also granted powers to adopt all necessary measures including a system of licensing to control the export, re-export, transit and transhipment of any nuclear material, equipment or technology in order to protect the safety and security of Sierra Leone. The Regulatory Authority has established departments for the control of nuclear materials: One of which is The Regulatory Control Department; responsible for Inspections, Authorization and Enforcement actions for all radiation sources and nuclear materials. The Authority has been conducting inspections regularly on various facilities ranging from medical radiation generating equipment to industrial radiography sources. The methodology to be used is the issuance of the standard IAEA checklist which is consistent with the Regulatory Authority’s documents for inspection of sources and is in line with the General Safety Requirements(GSR)Part III. The expected outcomes would be increasing training of regulatory authority’s staff, the procurement of

  3. Safeguards Implementation in Kazakhstan: Experience and Challenges

    Zhantikin, T.

    2015-01-01

    Experience of Kazakhstan joined the NPT in 1993, just after desintegration of USSR, and enforced Safeguards Agreement in 1995 can be interesting in implementation of safeguards in non-standard cases. Having weapon materials and test infrastructure legacy, the country together with IAEA and several donor countries found acceptable approaches to meet NPT provisions. One of challenges was to provide protection of sensitive information that could be accidentally disclosed in safeguards activities. With support of several weapon countries in close cooperation with the IAEA Kazakhstan liquidated test infrastructure in Semipalatinsk, implemented projects on elimination and minimization of use of HEU in civil sector, decommissioning of BN-350 fast breeder reactor. Now the IAEA LEU Bank is going to be established in Kazakhstan, and more challenges are coming in implementation of safeguards. Some technical and organizational details will be described from the experience of Kazakhstan in these projects. (author)

  4. Protecting safeguards information / Division of technical support

    2002-01-01

    This DVD contains two films representing the key aspects of the IAEA Department of Safeguards. 'Protecting Safeguards Information' is a narrative/fiction film which presents the Agency's information handling and protection measures. A security representative from a fictional nation receives a briefing on the procedures and methods used by the Department. These techniques will assure member states that the information they provide to the Agency is kept safe and confidential. 'Division of Technical Support' is a non-fiction documentary which presents a detailed look at the technical capabilities and management techniques used by the Agency in nuclear material accountancy. The film covers many aspects of safeguards equipment and techniques including: NDA and DA instruments, seals, surveillance, training, development and maintenance. Taken together, these films provide an introduction and overview to many important aspects of the IAEA Department of Safeguards. (IAEA)

  5. Chief Inspector's guidance to inspectors: combustion processes

    1992-01-01

    This Note is issued by the Chief Inspector of Her Majesty's Inspectorate of Pollution (HMIP) as one of a series providing guidance for processes prescribed for integrated pollution control in Regulations made under Section 2 of the United Kingdom Environmental Protection Act 1990. It covers the burning of solid fuel manufactured from or comprised of tyres, tyre rubber or similar rubber waste primarily for the purpose of producing energy, in an appliance with a net rated thermal input of 3 megawatts or more. The note includes: a list of prescribed substances most likely to be present in releases to the environment by the processes considered; release limits for release to air, water and land; an outline of techniques for pollution abatement; monitoring requirements. (Author)

  6. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P. [Euratom, Communaute europeenne de l' energie atomique - CEEA (European Commission (EC))

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  7. Now and future of IAEA

    Taniguchi, Tomihiro; Omoto, Akira; Ichimura, Tomoya

    2005-01-01

    IAEA was established in 1957. Main activities consist of safeguards, cooperation of technologies and safety security. It has six sections such as the cooperation of technologies, nuclear energy, safety standards and security, nuclear science and its application, selfguards and management. Eleven Japanese are working in it and they .reported the present activities, problems and the future. Their subjects contain the problems of IAEA and expectation to Japanese, the utilization of nuclear energy, increasing nuclear safety and security in the world, application of radiation and isotope technologies, change and prospect of cooperation of technologies, and non-proliferation and safeguards. It was concluded as a first country holding many nuclear facilities that Japan had not nuclear materials and development activity in hiding and did not transform nuclear fuels reported to weapons. Accordingly, Japan is expected to make effort leading nuclear use for peace and non-proliferation in the world. (S.Y.)

  8. Introduction to nuclear material safeguards

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  9. Safeguards against use of nuclear material for weapons

    Sanders, B.; Rometsch, R.

    1975-01-01

    The history of safeguards is traced from the first session of the United Nations Atomic Energy Commission in 1946, through the various stages of the IAEA safeguard system for nuclear materials and to the initiation of the Treaty on the Non-proliferation of Nuclear Weapons in 1968. The role of the IAEA under the treaty is discussed. The structure and content of safeguards agreements in connection with the treaty were laid down and the objective of safeguards clearly defined. The methods of verification by the IAEA of the facility operator's material accountancy through inspection and statistical analysis and evaluation of 'material unaccounted for' are explained. The extent to which the IAEA may make use of the State's system of accounting and control of nuclear materials is considered. Reference is also made to the question of protection against theft and sabotage. Finally the scope of safeguards work for the next 15 years is forecast. (U.K.)

  10. Video image processing for nuclear safeguards

    Rodriguez, C.A.; Howell, J.A.; Menlove, H.O.; Brislawn, C.M.; Bradley, J.N.; Chare, P.; Gorten, J.

    1995-01-01

    The field of nuclear safeguards has received increasing amounts of public attention since the events of the Iraq-UN conflict over Kuwait, the dismantlement of the former Soviet Union, and more recently, the North Korean resistance to nuclear facility inspections by the International Atomic Energy Agency (IAEA). The role of nuclear safeguards in these and other events relating to the world's nuclear material inventory is to assure safekeeping of these materials and to verify the inventory and use of nuclear materials as reported by states that have signed the nuclear Nonproliferation Treaty throughout the world. Nuclear safeguards are measures prescribed by domestic and international regulatory bodies such as DOE, NRC, IAEA, and EURATOM and implemented by the nuclear facility or the regulatory body. These measures include destructive and non destructive analysis of product materials/process by-products for materials control and accountancy purposes, physical protection for domestic safeguards, and containment and surveillance for international safeguards

  11. Safeguarding research reactors

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  12. Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (Spanish Edition)

    2015-01-01

    This publication is aimed at enhancing States’ understanding of the safeguards obligations of both the State and the IAEA, and at improving the cooperation between States and the IAEA in safeguards implementation. It is principally intended for State or regional safeguards regulatory authorities and facility operators, and is a reference document that will be supported by detailed guidance and examples in ‘Safeguards Implementation Practices’ (SIPs) to be published separately

  13. Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (Arabic Edition)

    2017-01-01

    This publication is aimed at enhancing States’ understanding of the safeguards obligations of both the State and the IAEA, and at improving the cooperation between States and the IAEA in safeguards implementation. It is principally intended for State or regional safeguards regulatory authorities and facility operators, and is a reference document that will be supported by detailed guidance and examples in ‘Safeguards Implementation Practices’ (SIPs) to be published separately.

  14. Have IAEA safety precautions failed in Iraq

    Gruemm, H.

    1981-01-01

    Israel's air raid on the Tamuz-1 research reactor (Osirak) in Iraq has given new impetus to the discussion of the potential and limits of international control as carried out by the IAEA in the framework of the non-proliferation treaty. A lack of faith in the effectiveness of IAEA control must be assuemd to be one of the main reasons for this attack. Prof. Grimm, vice chairman of the nuclear safeguards department of the International Atomic Energy Agency, comments on the possibility of producing nuclear weapons with the aid of this reactor and on the efficiency of present and projected nuclear safeguards measures. (orig.) [de

  15. INF and IAEA: A comparative analysis of verification strategy

    Scheinman, L.; Kratzer, M.

    1992-07-01

    This is the final report of a study on the relevance and possible lessons of Intermediate Range Nuclear Force (INF) verification to the International Atomic Energy Agency (IAEA) international safeguards activities

  16. Some problems relating to application of safeguards in the future

    Tolchenkov, D.L.

    1983-01-01

    By the end of this century there will have been a considerable increase in the amount of nuclear material and the number of facilities subject to IAEA safeguards. The IAEA will therefore be faced with problems due to the increased volume of safeguards activity, the application of safeguards to new types of facility and to large facilities, the optimization of the existing IAEA safeguards system and so on. The authors analyse the potential growth in the IAEA's safeguards activities up to the year 2000 and consider how to optimize methods for the application of safeguards, taking into account a number of factors relating to a State's nuclear activity, the application of full-scope IAEA safeguards etc. On the basis of a hypothetical model of the nuclear fuel cycle that allows for the factors considered as part of the International Nuclear Fuel Cycle Evaluation (INFCE), the authors assess the possible risk of diversion as a function of a full-scope safeguards effort. They also examine possible conceptual approaches to safeguarding large-scale facilities such as fuel reprocessing and uranium enrichment plants. (author)

  17. Canada and international safeguards. Verifying nuclear non-proliferation

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result

  18. Safeguards and Non-destructive Assay

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  19. Report by the Director General of the International Atomic Energy Agency on behalf of the Board of Governors to all members of the Agency on the Non-Compliance of the Democratic People's Republic of Korea with the agreement between the IAEA and the Democratic People's Republic of Korea for the application of safeguards in connection with the treaty on the non-proliferation of nuclear weapons (INFCIRC/403) and on the Agency's inability to verify the non-diversion of material required to be safeguarded

    1993-01-01

    The document contains the following items: Report by the Director General of the International Atomic Energy Agency on behalf of the Board of Governors to all members of the Agency on the non-compliance of the Democratic People's Republic of Korea with the agreement between the IAEA and the Democratic People's Republic of Korea for the application of Safeguards in connection with the treaty on the non-proliferation of nuclear weapons and on the Agency's inability to verify the non-diversion of material required to be safeguarded; resolution adopted by the Board on 1 April 1993 (Annex 1); Agreement of 30 January 1992 between the Government of the Democratic People's Republic of Korea and the International Atomic Energy Agency for the application of safeguards connection with the treaty on the non-proliferation of nuclear weapons (Annex 2); resolution adopted by the Board of Governors on 25 February 1993 (Annex 3); Communications from the Director General of the IAEA to the Minister for Atomic Energy of DPRK or from the Minister for Atomic Energy of the DPRK of the Director General of the IAEA (Annexes 3, 4, 5, 6, 8, 9, 11, 12); statement of the Government of the Democratic People's Republic of Korea, Pyongyang, 12 March 1993 (Annex 7); resolution adopted by the Board on 18 March 1993 (Annex 10)

  20. Symposium on International Safeguards: Preparing for Future Verification Challenges

    2010-01-01

    The purpose of the symposium is to foster dialogue and information exchange involving Member States, the nuclear industry and members of the broader nuclear non-proliferation community to prepare for future verification challenges. Topics addressed during the 2010 symposium include the following: - Supporting the global nuclear non-proliferation regime: Building support for strengthening international safeguards; Enhancing confidence in compliance with safeguards obligations; Legal authority as a means to enhance effectiveness and efficiency; Verification roles in support of arms control and disarmament. - Building collaboration and partnerships with other international forums: Other verification and non-proliferation regimes; Synergies between safety, security and safeguards regimes. - Improving cooperation between IAEA and States for safeguards implementation: Strengthening State systems for meeting safeguards obligations; Enhancing safeguards effectiveness and efficiency through greater cooperation; Lessons learned: recommendations for enhancing integrated safeguards implementation. - Addressing safeguards challenges in an increasingly interconnected world: Non-State actors and covert trade networks; Globalization of nuclear information and technology. - Preparing for the global nuclear expansion and increasing safeguards workload: Furthering implementation of the State-level concept and integrated safeguards; Information-driven safeguards; Remote data-driven safeguards inspections; Safeguards in States without comprehensive safeguards agreements. - Safeguarding advanced nuclear facilities and innovative fuel cycles: Proliferation resistance; Safeguards by design; Safeguards approaches for advanced facilities. - Advanced technologies and methodologies: For verifying nuclear material and activities; For detecting undeclared nuclear material and activities; For information collection, analysis and integration. - Enhancing the development and use of safeguards

  1. Development of DUPIC safeguards technology

    Kim, H D; Ko, W I; Song, D Y [and others

    2000-03-01

    During the first phase of R and D program conducted from 1997 to 1999, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. For the nuclear material measurement system, the performance test was finished and received IAEA approval, and now is being used in DUPIC Fuel Fabrication Facility(DFDF) for nuclear material accounting and control. Other systems being developed in this study were already installed in DFDF and being under performance test. Those systems developed in this study will make a contribution not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author)

  2. International safeguards for fast critical facilities

    Gunderson, D.O.; Todd, J.L.

    1978-12-01

    It was concluded that practical routine inventory verification techniques can be effective in detecting protracted diversion but will not meet the seven-day timeliness criteria either for protracted or large one-time diversions. An effective international safeguards system requires a method of continuously monitoring facility activities either with instrumentation, inspectors, or a combination thereof. It was also concluded that a resident inspector is required at this type of facility because of the many nonroutine operations. However, a single inspector cannot adequately monitor all activities to assure that no diversion is taking place. The use of existing structural features and unattended monitoring at portals as well as surveillance by a resident inspector can provide an effective detection capability. A rapid special inventory verification is required following detection to verify any suspected diversion

  3. IAEA instrumentation programme keeping pace with technology

    Fortakov, V.; Rundquist, D.E.

    1995-01-01

    Nuclear components, nuclear practices and nuclear facilities have all improved with the maturing of the industry. These improvements have been driven by forces, which are beyond the normal evolutionary pressures, such as increased safety, as low as possible radiation exposure for the workers as well as for the public and the increasing competiveness of alternative forms of energy generation. International nuclear safeguards has had to keep pace with these technological and administrative changes. Moreover, the political climate has changed since the initial implementation of safeguards under the Non-Proliferation Treaty. Implementation of safeguards agreements has accommodated to these changes as well as to the technical innovations. One important component of safeguards implementation, namely the instruments deployed by inspectors, has matured with the help of Member States. Continued efforts in the development and deployment of appropriate instruments are needed to maintain an acceptable level of efficiency and credibility. (orig.)

  4. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 8 December 1997

    ElBaradei, M.

    1997-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 8 December 1997. The following aspects from the Agency's activity are presented: nuclear energy, Agency's inspections in Iraq in relation to its clandestine nuclear programme, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), and conclusion of safeguards agreements and additional protocols

  5. IAEA Newsbriefs. V. 10, no. 1(67). Mar-Apr 1995

    1995-01-01

    This issue gives brief information on the following topics: IAEA Board to Consider Proposal on Safeguards, IAEA Director General to Address NPT Conference in mid-April, IAEA Hosts UN System-Wide Meeting, Joint IAEA/EC/WHO Conference on Chernobyl Announced, IAEA Concludes Post-Chernobyl Research Project, Uranium Data in Environmental Monitoring, Director General Address in Chile, South Africa, the Philippines Host Nuclear Information Seminars, Upcoming IAEA Conferences, Symposia and Seminars, Isotopes in Water Resources Management, Environmental Impacts of Radioactive Releases, Joint FAO/IAEA Symposium on Crop Improvement, Other Conferences, Symposia and Seminars in 1995, Safeguards and Non-Proliferation Developments (IAEA Safeguards Agreements, New NPT Members), Handbook on Nuclear Communications, SIT Campaign in Zanzibar, and other short information

  6. Transit Matching for International Safeguards

    Gilligan, K.; Whitaker, M.; Oakberg, J.

    2015-01-01

    In 2013 the U.S. Department of Energy / National Nuclear Security Administration Office of Non-proliferation and International Security (NIS) supported a study of the International Atomic Energy Agency's (IAEA) processes and procedures for ensuring that shipments of nuclear material correspond to (match) their receipts (i.e., transit matching). Under Comprehensive Safeguards Agreements, Member States are obliged to declare such information within certain time frames. Nuclear weapons states voluntarily declare such information under INFCIRC/207. This study was funded by the NIS Next Generation Safeguards Initiative (NGSI) Concepts and Approaches program. Oak Ridge National Laboratory led the research, which included collaboration with the U.S. Nuclear Regulatory Commission, the U.S. Nuclear Material Management and Safeguards System (NMMSS), and the IAEA Section for Declared Information Analysis within the Department of Safeguards. The project studied the current transit matching methodologies, identified current challenges (e.g., level of effort and timeliness), and suggested improvements. This paper presents the recommendations that resulted from the study and discussions with IAEA staff. In particular, it includes a recommendation to collaboratively develop a set of best reporting practices for nuclear weapons states under INFCIRC/207. (author)

  7. Development of safeguards information treatment system at the facility level

    Lee, Byung Doo; Song, Dae Yong; So, Dong Sup; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-04-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described. 3 tabs. (Author)

  8. Paying tribute to 25 years of safeguards leadership

    1994-01-01

    After phases of intensive development in the 1970s and consolidation in the 1980s, the IAEA's international safeguards system is now in a phase of transition. The 1990s look to be a time when verification activities are further expanded in response to global developments and challenges in the field of nuclear non-proliferation. How far have safeguards come, and where are they headed? This article offers some thoughts and perspectives on the main challenges and opportunities facing IAEA safeguards, in the context of some recent developments and the overall evolution of the safeguards system

  9. IAEA Newsbriefs. V. 14, no. 4(85). Oct-Nov 1999

    1999-01-01

    This issue gives brief information on the following topics: the new IAEA Board of Governors, conclusions of the 1999 IAEA General Conference, the return of the IAEA fact-finding team from Japan, future energy and nuclear power, talks on future IAEA verification of ex-weapon material, the IAEA and Y2K (steps against the bug intensify), African partnership for technology transfer extended, strengthened safeguards system (status of additional protocols), and other short information

  10. The application of state-level integration of safeguards in Sweden. Final report

    Dahlin, G.; Haeggblom, E.; Larsson, Mats; Rehn, I.

    2000-12-01

    SSAC/SKI activities as well as activities of the Euratom inspectorate. IAEA would be required to carry out the necessary measures, including sufficient independent verification activities, to assure that the results obtained are correct, and that they correctly represent the actual inventory of nuclear material. One or two unannounced inspections are foreseen to provide, as applicable, material balance verification and quality assurance, as well as to contribute to deterrence. It is expected, however, that such inspections will be co-ordinated between IAEA and Euratom to ensure the cost-effectiveness. The use of advanced technology, C/S and NDA instruments, with or without remote monitoring capability, would be limited to situations where repetition of costly verification measurements could be avoided. As regards fresh MOX, such instruments could be used to avoid costly measurements and to increase the detection capability of diversion, thus providing additional deterrence. Such technology and measures may also be used in special safeguard situations. The implementation of integrated safeguards in a cost-effective manner in Sweden would depend, on one hand, on the ability of the IAEA to ensure the application of all measures so that 'there is credible assurance of the absence of undeclared nuclear materials' in Sweden. On the other hand, the increased use of SSAC/SKI and RSAC/Euratom would facilitate the optimal use of all resources involved in implementation of integrated safeguards in Sweden. In order to add credibility to any decision that would reduce measures aimed at assuring the absence of diversion of declared nuclear materials, the value of the measures of the Additional Protocol should be better understood in that respect. The confidence in the ability of the IAEA to draw conclusions on the absence of undeclared nuclear materials and activities in a State is expected to increase as experience is gained. The roles and functional responsibilities of the four

  11. The emergence of internet-based virtual private networks in international safeguards

    Smartt, Heidi Anne

    2001-01-01

    Full text: The costs associated with secure data transmission can be an obstacle to International Safeguards. Typical communication methods are priced by distance and may include telephone lines, frame relay, and ISDN. It is therefore costly to communicate globally. The growth of the Internet has provided an extensive backbone for global communications; however, the Internet does not provide intrinsic security measures. Combining the Internet with Virtual Private Network technology, which encrypts and authenticates data, creates a secure and potentially cost-effective data transmission path, as well as achieving other benefits such as reliability and scalability. Access to the Internet can be achieved by connecting to a local Internet Service Provider, which can be preferable to installing a static link between two distant points. The cost-effectiveness of the Internet-based Virtual Private Network is dependent on such factors as data amount, current operational costs, and the specifics of the Internet connection, such as user proximity to an Internet Service Provider or existing access to the Internet. This paper will introduce Virtual Private Network technology, the benefits of Internet communication, and the emergence of Internet-based Virtual Private Networks throughout the International Safeguards community. Specific projects to be discussed include: The completed demonstration of secure remote monitoring data transfer via the Internet between STUK in Helsinki, Finland, and the IAEA in Vienna, Austria; The demonstration of secure remote access to IAEA resources by traveling inspectors with Virtual Private Network software loaded on laptops; The proposed Action Sheets between ABACC/DOE and ARN/DOE, which will provide a link between Rio de Janeiro and Buenos Aires; The proposed use at the HIFAR research reactor, located in Australia, to provide remote monitoring data to the IAEA; The use of Virtual Private Networks by JRC, Ispra, Italy. (author)

  12. Safeguards sealing systems for Zebra

    Ingram, G.; Jamieson, G.R.

    1983-01-01

    A relatively simple design has been produced for safeguards seals to be applied throughout the fuel containing areas at Zebra. It is based on the use of wire seals and regular Inspector surveillance. The application of the system would allow an Inspector to establish to a high degree of confidence that significant quantities of fuel had not been diverted during an intensive experimental programme. It would add about 5% to the time required for experiments, and careful planning would reduce this value. The inspection effort required to witness element movements during the experimental programme would average about 2 hours per day, with a further 2 hours spent each week on NDA of the fuel exposed. The Safeguards Inspector would require to spend about 25% of his time in the reactor area and would have ample time to deal with the relatively small number of fuel movements taking place in the storage area and with his duties elsewhere in the plant. During a core change, full-time inspection effort would be required for about 6 weeks each year. (author)

  13. The design and performance evaluation of the ultrasonic random coil identity-integrity element for underwater safeguards seals

    Allen, V.H.; Backer, S.; Smith, M.T.

    1983-06-01

    Irradiated fuel discharged from CANDU power reactors is stored underwater and, in order to comply with the requirements of International Safe-guards, the fuel is stacked in sealed containers which are examined at intervals by IAEA inspectors. The seals are verified for identity and integrity and this report describes the design of an identity/integrity element for the seals. The element is in the form of a random coil of wire which is interrogated by ultrasonic methods. An evaluation of thirty-six seals is reported. The application of seals to stacks of fuel was simulated in a water-filled bay at CRNL and repetitive verification measurements were made which simulated inspection procedures. The seal identity signatures were compared using cross-correlation methods and the results show that a broken or tampered seal can be identified with a high level of confidence

  14. Safeguards technology development for spent fuel storage and disposal

    Sanders, K.E.

    1991-01-01

    This paper reports on facilities for monitored retrievable storage and geologic repository that will be operating in the US by 1998 and 2010 respectively. The international safeguards approach for these facilities will be determined broadly by the Safeguards Agreement and the IAEA Safeguards Criteria (currently available for 1991-1995) and defined specifically in the General Subsidiary Arrangements and Specific Facility Attachments negotiated under the US/IAEA Safeguards Agreement. Design information for these facilities types, as it is conceptualized, will be essential input to the safeguards approach. Unique design and operating features will translate into equally unique challenges to the application of international safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards by enabling efficient and effective application with regard to the operator's interest, US policies, and the IAEA's statutorial obligations. Advanced unattended or remote measurement, authentication of operator's measurement, authentication of operator's measurement data, and integration of monitoring and containment/surveillance potentially are among the most fruitful areas of technology development. During the next year, a long range program plan for international safeguard technology development for monitored retrievable storage and geologic repository will be developed by the International Branch in close coordination with the Office of Civilian Radioactive Waste Management. This presentation preliminarily identifies elements of this long range program

  15. Time Management of Educational Inspectors

    Göksoy, Süleyman

    2015-01-01

    The aim of the research is to determine the fields that Educational Inspectors have to spare time for and the fields that Educational Inspectors demand to make time for. The data collected by review form was analyzed by content analysis method. According to research results: Educational Inspectors want to make time mostly for counselling and…

  16. IAEA and International Science and Technology Center sign cooperative agreement

    2008-01-01

    Full text: The IAEA and the International Science and Technology Center (ISTC) today signed an agreement that calls for an increase in cooperation between the two organizations. The memorandum of understanding seeks to amplify their collaboration in the research and development of applications and technology that could contribute to the IAEA's activities in the fields of verification and nuclear security, including training and capacity building. IAEA Safeguards Director of Technical Support Nikolay Khlebnikov and ISTC Executive Director Adriaan van der Meer signed the Agreement at IAEA headquarters in Vienna on 22 October 2008. (IAEA)

  17. Design measures to facilitate implementation of safeguards at future water cooled nuclear power plants

    1999-01-01

    The report is intended to present guidelines to the State authorities, designers and prospective purchasers of future water cooled power reactors which, if taken into account, will minimize the impact of IAEA safeguards on plant operation and ensure efficient and effective acquisition of safeguards data to the mutual benefit of the Member State, the plant operator and the IAEA. These guidelines incorporate the IAEA's experience in establishing and carrying out safeguards at currently operating nuclear power plants, the ongoing development of safeguards techniques and feedback of experience from plant operators and designers on the impact of IAEA safeguards on plant operation. The following main subjects are included: The IAEA's safeguards function for current and future nuclear power plants; summary of the political and legal foundations of the IAEA's safeguards system; the technical objective of safeguards and the supply and use of required design information; safeguards approaches for nuclear power plants; design implications of experience in safeguarding nuclear power plants and guidelines for future water cooled reactors to facilitate the implementation of safeguards

  18. Implementation of international safeguards - An operator's viewpoint

    Schneider, R.A.; Herz, E.R.

    1983-01-01

    Experience gained to date from implementation of IAEA verification at fuel fabrication plants is described. From that experience, the authors have concluded that the IAEA verification of material quantities is generally technically effective and is not overly burdensome. They also believe that the operator can, to some extent, minimize his costs for the verification of his inventory by the IAEA by maximizing the ''verifiability'' of the inventory. The cooperative efforts of the inspector and operator in planning, scheduling, and coordinating the combined activities of inventory taking by the operator and inventory verification by the IAEA, are able to significantly reduce the potential for lost production. Lastly, it has been shown that non-destructive assay instruments play an important role in the efficiency and effectiveness of IAEA verification

  19. Inspector General Complaints

    to file an online IG complaint. Active Duty Resources dfas logo Defense Finance Accounting Service Inspector General Air Force Reserve Resources dfas logo Defense Finance Accounting Service ARPC Air Reserve National Guard Resources dfas logo Defense Finance Accounting Service VPC-GR myPers AFPC Air Force Review

  20. The present status of safeguards in Turkey

    Yilmazer, A.; Yuecel, A.

    2001-01-01

    Republic of Turkey signed Non-Proliferation Treaty (NPT) in Vienna, Austria on January 28, 1969 and the Treaty was ratified by Turkish Parliament on March 29, 1979. International Atomic Energy Agency (IAEA) and Republic of Turkey signed the Safeguards Agreement on June 30, 1981. Turkey accepted the international safeguards administered by IAEA and at the same time its subsidiary arrangements and Facility attachments were enforced for all nuclear facilities as an Non-Nuclear-Weapon State party to NPT. Regulation on Nuclear Materials Accounting and Control, which was prepared in accordance with Agreement Between the Government of Turkey and IAEA for the application of Safeguard in Connection with the Treaty on NPT, has been put into force since it was published in Official Gazette on September 10, 1997. This study presents the essential futures of national system of accounting for and control of nuclear materials in Turkey

  1. Inspections talks with IAEA again broken off

    Anon.

    1993-01-01

    North Korea again appears likely to resist more detailed safeguards inspections of its disputed nuclear facilities by the International Atomic Energy Agency. The country's loner status was reinforced during the IAEA General Conference in September, when no other nation joined North Korea in voting against the placement of the inspection issue on the conference's agenda

  2. ISSAS guidelines. Reference report for IAEA SSAC advisory service

    2005-01-01

    All comprehensive safeguards agreements between the IAEA and Member States concluded on the basis of INFCIRC/153 (Corrected) require the Member State to establish and maintain a system of accounting for and control of nuclear material subject to safeguards. In the years following the negotiation of INFCIRC/153, the IAEA's Secretariat and a large group of experts from Member States collaborated in the production of a set of guidelines to assist Member States in establishing their State system of accounting for and control of nuclear materials (SSAC). These guidelines, termed 'Guidelines for States' Systems of Accounting for and Control of Nuclear Materials', were published in 1980 as part of the IAEA's information series on the then developing safeguards system (IAEA/SG/INF/2). However, events over the past decade have changed the circumstances and requirements of the safeguards system. The IAEA, with support and assistance from Member States, embarked on an extensive multiyear effort to strengthen the safeguards system by increasing the IAEA's capability to detect undeclared nuclear material and activities. The centre-piece of this effort is the Model Protocol Additional to Safeguards Agreements (referred to as the 'additional protocol' and contained in INFCIRC/540 (Corrected)) approved by the Board of Governors in May 1997. The central components of strengthened safeguards and the additional protocol are increased access to information and increased physical access. The effective and efficient implementation of the strengthened safeguards system requires the SSACs to be effective and to cooperate closely with the IAEA. To achieve this aim the IAEA is, inter alia, revising IAEA/SG/INF/2, providing training and equipment to SSAC Authorities and providing an advisory service to Member States known as the IAEA SSAC Advisory Service (ISSAS). Accounting for and control of nuclear material is also key for nuclear security. General Conference resolutions (e.g. GC(48)/RES

  3. The Concept of Goals-Driven Safeguards

    Wigeland, R.; Bjornard, T.; Castle, B.

    2009-01-01

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization's purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations' approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  4. The international safeguards system and physical protection

    Canty, M.J.; Lauppe, W.D.; Richter, B.; Stein, G.

    1990-02-01

    The report summarizes and explains facts and aspects of the IAEA safeguards performed within the framework of the Non-Proliferation Treaty, and shows perspectives to be discussed by the NPT Review Conferences in 1990 and 1995. The technical background of potential misuse of nuclear materials for military purposes is explained in connection with the physical protection regime of the international safeguards, referring to recent developments for improvement of technical measures for material containment and surveillance. Most attention is given to the peaceful uses of nuclear energy and their surveillance by the IAEA safeguards, including such new technologies and applications as controlled nuclear fusion, laser techniques for uranium enrichment, and particle accelerators. The report's concluding analyses of the current situation show potentials for improvement and desirable or necessary consequences to be drawn for the international safeguards system, also taking into account recent discussions on the parliamentary level. (orig./HP) [de

  5. International safeguards data management system

    Argentesi, F.; Costantini, L.; Franklin, M.; Dondi, M.G.

    1981-01-01

    The data base management system ''ISADAM'' (i.e. International Safeguards Data Management System) described in this report is intended to facilitate the safeguards authority in making efficient and effective use of accounting reports. ISADAM has been developed using the ADABAS data base management system and is implemented on the JRC-Ispra computer. The evaluation of safeguards declarations focuses on three main objectives: - the requirement of syntactical consistency with the legal conventions of data recording for safeguards accountancy; - the requirement of accounting evidence that there is no material unaccounted for (MUF); - the requirement of semantic consistency with the technological characteristics of the plant and the processing plans of the operator. Section 2 describes in more detail the facilities which ISADAM makes available to a safeguards inspector. Section 3 describes how the MUF variance computation is derived from models of measurement error propagation. Many features of the ISADAM system are automatically provided by ADABAS. The exceptions to this are the utility software designed to: - screen plant declarations before loading into the data base, - prepare variance summary files designed to support real-time computation of MUF and variance of MUF, - provide analyses in response to user requests in interactive or batch mode. Section 4 describes the structure and functions of this software which have been developed by JRC-Ispra

  6. Role of materials accounting in integrated safeguards systems for reprocessing plants

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.

    1981-01-01

    Integration of materials accounting and containment/surveillance techniques for international safeguards requires careful examination and definition of suitable inspector activities for verification of operator's materials accounting data. The inspector's verification procedures are designed to protect against data falsification and/or the use of measurement uncertainties to conceal missing material. Materials accounting activities are developed to provide an effective international safeguards system when combined with containment/surveillance activities described in a companion paper

  7. LESSONS LEARNED IN TESTING OF SAFEGUARDS EQUIPMENT

    Pepper, S.; Farnitano, M.; Carelli, J.; Hazeltine, J.; Bailey, D.

    2001-01-01

    The International Atomic Energy Agency's (IAEA) Department of Safeguards uses complex instrumentation for the application of safeguards at nuclear facilities around the world. Often, this equipment is developed through cooperation with member state support programs because the Agency's requirements are unique and are not met by commercially available equipment. Before approving an instrument or system for routine inspection use, the IAEA subjects it to a series of tests designed to evaluate its reliability. In 2000, the IAEA began to observe operational failures in digital surveillance systems. In response to the observed failures, the IAEA worked with the equipment designer and manufacturer to determine the cause of failure. An action plan was developed to correct the performance issues and further test the systems to make sure that additional operational issues would not surface later. This paper addresses the steps taken to address operation issues related to digital image surveillance systems and the lessons learned during this process

  8. ABACC: A regional safeguards agency

    Palacios, E.

    1998-01-01

    Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was created as a common system of accounting and control. It is based on Bilateral Agreement between the two countries and the agreement with the IAEA. After a few years of experience it might be concluded that a regional system may contribute in many ways to enhance the safeguards system. The most relevant are: to improve the effectiveness and efficiency of safeguards by sending as professionals who are experts in the process involved in installations that are to be inspected; to have much more information on nuclear activities in each of the two countries than available to the IAEA; and to maintain formal and informal channels of communication

  9. Non cooperative games applied to nuclear safeguards

    Goutal, P.

    1997-01-01

    This study presents the utilization of the non cooperative games in the nuclear safeguards. In order to dissuade from possible diversions of nuclear materials, an inspector has to realize a certain number of inspections in a nuclear installation. The inspector has to minimize the detection time of a diversion and the diverter has to maximize this time. A software, JADIS, is realized to obtain optimum inspection strategy for a great number of periods. Another game is studied: the infiltration game. An infiltration agent has to brake into the installation without being headed off. (A.L.B.)

  10. Safeguard application

    Goes Fischer, M.D. de.

    1979-01-01

    The historical aspects of the International Atomic Energy Agency-IAEA-and the European Atomic Energy Community EURATOM foundations are presented. Besides abrief description of the Tlatelolco Treaty given. The IAEA and EURATOM purposes and activities are also emphasized. (A.L.S.L.) [pt

  11. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 25 November 1998

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 25 November 1998. The following aspects from the Agency's activity are presented: inspections in Iraq in relation to its clandestine nuclear programme, conclusion of Additional Protocols to safeguards agreements, the strengthened safeguards system, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), safety review at the Mochovce nuclear power plant in Slovakia, and the year 2000 (Y2K) computer system problems in the Agency's Member States

  12. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 8 June 1998

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 8 June 1998. The following aspects from the Agency's activity are presented: nuclear testing, technical co-operation, programme and budget, safeguards, safeguards implementation report, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, security of material, measures to strengthen international co-operation in nuclear, radiation and waste safety, study of the radiological situation at the atolls of Mururoa and Fangataufa, and Agency's role in safety assessment of the Mochovce nuclear power plant

  13. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 14 September 1998

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 14 September 1998. The following aspects from the Agency's activity are presented: nuclear safety, technical co-operation programme, safeguards and verification, fissile material treaty, nuclear material released from the military sector, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, and Agency's safeguards in the Middle East region

  14. Safeguards for a nuclear weapon convention

    Fischer, D.

    1999-01-01

    An NDT presupposes a fundamental commitment by all parties to its final objective and hence requires a high and sustained level of confidence amongst all states concerned. The appropriate format for an Nuclear Disarmament Treaty (NDT) would probably be a multilateral treaty open to all states. The treaty must necessarily include the five nuclear weapon states and a procedure would have to be found for securing the ratification of the threshold states without conferring upon them the status of nuclear weapon states. While the IAEA may well be able to carry out the safeguards tasks required by an NDT it would probably be necessary to establish a new international organization to verify the elimination of all nuclear weapons. The experience of UNSCOM and the IAEA in Iraq, and of the IAEA in the DPRK, have shown how difficult the verification of international obligations is in the absence of a commitment to disarm, while the experience of the INF and START treaties, and of the IAEA in South Africa have shown how much simpler it is when the parties concerned are fully committed to the process. Verifying and safeguarding an NDT would be largely an extrapolation of activities already carried out by the nuclear weapon states under the INF and START treaties and by the IAEA in the routine application of safeguards as well as in its less routine work in Iraq, South Africa and the DPRK. Both the verification and safeguarding tasks would be made very much easier if it were possible to bring down to a few hundred the number of nuclear warheads remaining in the hands of any avowed nuclear weapon state, and to conclude a cutoff convention. Experience is needed to show whether the additional safeguards authority accorded to the IAEA by 'programme 93+2' will enable it to effectively safeguard the facilities that would be decommissioned as a result of an NDT and those that would remain in operation to satisfy civilian needs. Subject to this rider and on condition that the IAEA

  15. IAEA Newsbriefs. V. 13, no. 3(80). Jul-Aug 1998

    1998-01-01

    This issue gives brief information on the following topics: IAEA General Conference Opens 21 September in Vienna, IAEA Board Concludes Mid-Year Review: Approves Six More Protocols to Safeguards Agreements, Safeguards Implementation in 1997 Reported, Study of Radiological Situation at Mururoa and Fangataufa Atolls, Nuclear Inspections in Iraq Seeking Further Clarification, Pioneering Waste Repository Gets 'Green Light' in the USA, Status of International Conventions, Nuclear Techniques Targeted for Studying Water Pollution, Zimbabwe Farmers Realize Benefits from Nuclear Techniques, Waging a War Against Insect Pests, IAEA and WCO Formally Join Forces Against Illicit Trafficking, Annual Report for 1997, Range of Topics on IAEA Meeting Agenda, New IAEA Books, and other short information

  16. The roles of Euratom and the IAEA in nuclear non-proliferation - a Euratom view

    Szymanski, P.

    2013-01-01

    The IAEA safeguards conclusion that all nuclear material has remained in peaceful activities in a State is based on the finding that there are no indications of diversion of declared nuclear material from peaceful activities and no indications of undeclared nuclear material or activities in the State as a whole. The state-level concept that has been introduced by the IAEA in this respect allows and obliges the IAEA to take into account state specific factors to determine the set of safeguards activities to be applied in a State. The effectiveness of the EURATOM regional safeguards systems, its cooperation with the IAEA and its independence from States and operators are among the factors which the IAEA needs to consider in order to apply safeguards in an effective and efficient way. Socio-economic and political factors like the support to international non-proliferation should also be factors in this concept. The intended evolution of the state-level concept by the IAEA then should result in making better use of the activities of EURATOM safeguards. This is possible by the IAEA relying more on the EURATOM activities for the verification of declared nuclear material and the IAEA concentrating on getting assurance on the absence of undeclared materials and activities. Developing a regional-level concept that supplements the state-level concept can contribute to determine the extent to which the IAEA can make better use of EURATOM safeguards in the future. (author)

  17. IAEA Newsbriefs. V. 12, no. 3(76). Jul-Aug 1997

    1997-01-01

    This issue gives brief information on the following topics: IAEA General Conference opens in Vienna 29 September, UN special session on environment and development, Safe storage of radiation sources, Implementation of IAEA Safeguards in 1996, IAEA/NEA review of 1996 performance assessment of US waste isolation pilot plant, and other short information

  18. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Lee, Jae Sung; Park, W S; Cha, H R; Ham, Y S; Lee, Y G; Kim, K P; Hong, Y D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  19. Safeguards culture on 3S interfaces

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice.

  20. Safeguards culture on 3S interfaces

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun

    2015-01-01

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice

  1. Accountability and Transparency: Essential Underpinnings of Quality Safeguards

    Everton, C.; Floyd, R.

    2015-01-01

    The fundamental purpose of IAEA safeguards is to maintain confidence in the international community of the compliance of States with their respective non-proliferation commitments. The safeguards system for ensuring this compliance produces the most important output, the IAEA's compliance findings. Confidence in the findings of any compliance verification system requires some basic elements such as independence, accountability, transparency, and quality management systems. Quality management systems are an internal set of documents and procedures that, while clearly important, need to incorporate an external communication component in order to engender confidence as to how compliance is being managed and ensured. This paper will explore the importance of these fundamentals to confidence in IAEA safeguards compliance conclusions, with a focus on the external communication elements of accountability and transparency. Accountability and transparency will be considered with different communication channels through which safeguards implementation matters are explained and reported and at different levels, facility, State, regional, and the IAEA. This will include communications by: the IAEA and State authorities to the general public; State authorities to peers in other national safeguards authorities (regional and beyond); and, the IAEA and State authorities to the international community as represented through the Board of Governors and General Conference. Examples will be presented of good practices in these areas to encourage greater accountability and transparency in the work of safeguards. (author)

  2. Present status and progress of safeguards activities and physical protection on the eve of year 2000 in Bulgaria

    Simov, R.; Gotzev, A.

    1999-01-01

    From the very beginning of the IAEA safeguards implementation in Bulgaria, up to now the IAEA inspections verified no deviations or uncertainties in accounting of the nuclear materials. According to the official IAEA reports Bulgaria has fulfilled completely its duties under the safeguards and the Non-proliferation Treaty and has fully assisted the IAEA inspection activity. As for the physical protection, the complicated up-to-date system was established contributing to the safety of Kozloduy NPP and the plant operation

  3. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  4. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses

    NONE

    2001-07-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards (including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security.

  5. Symposium on international safeguards: Verification and nuclear material security. Book of extended synopses. Addendum

    2001-01-01

    The symposium covered the topics related to international safeguards, verification and nuclear materials security, namely: verification and nuclear material security; the NPT regime: progress and promises; the Additional Protocol as an important tool for the strengthening of the safeguards system; the nuclear threat and the nuclear threat initiative. Eighteen sessions dealt with the following subjects: the evolution of IAEA safeguards ( including strengthened safeguards, present and future challenges; verification of correctness and completeness of initial declarations; implementation of the Additional Protocol, progress and experience; security of material; nuclear disarmament and ongoing monitoring and verification in Iraq; evolution of IAEA verification in relation to nuclear disarmament); integrated safeguards; physical protection and illicit trafficking; destructive analysis for safeguards; the additional protocol; innovative safeguards approaches; IAEA verification and nuclear disarmament; environmental sampling; safeguards experience; safeguards equipment; panel discussion on development of state systems of accountancy and control; information analysis in the strengthened safeguard system; satellite imagery and remote monitoring; emerging IAEA safeguards issues; verification technology for nuclear disarmament; the IAEA and the future of nuclear verification and security

  6. National viewpoints: Views on strengthened safeguards from Australia, Cuba and South Africa

    Biggs, I.; Saburido, E.F.; Mxakato-Diseko, N.J.

    1999-01-01

    This paper presents views of Australia, Cuba and South Africa concerned with strengthened safeguards regime. Australia has been involved with the IAEA safeguards system since the first plenary meeting of the Conference on the IAEA Statute in 1956, joined the NPT in 1973 and began concluding bilateral safeguards agreements in 1977. Australia has the greatest respect for the IAEA coordinated efforts started in 1998 to strengthen and integrate the safeguards system. Cuba has always attached special importance to nuclear safeguards activities, recognizing their high priority as well as the important role they have in respect to international disarmament and security. South Africa supports the efforts in strengthening the safeguards activities and remains hopeful that the international community will address the challenges posed by the Trilateral Initiative between Russian federation, USA and IAEA in a mature and cooperative way

  7. Prospects for regional safeguards systems - State-level Approach

    Peixoto, O.J.M.

    2013-01-01

    The increased co-operation with Regional Safeguard's System (RSAC) is a relevant tool for strengthening effectiveness and improving the efficiency of the international safeguard. The new safeguards system that emerges from the application of the Additional Protocol (INFCIRC/540) and the full use of State-level Concept is a challenge and an opportunity for effectively incorporate RSAC into the international safeguards scheme. The challenge is to deter