WorldWideScience

Sample records for iaea national technical

  1. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  2. Improving technical support to IAEA safeguards

    International Nuclear Information System (INIS)

    Rundquist, D.

    1986-01-01

    Changes present new safeguards challenges and require that the entire safeguards process become more efficient. A development process has evolved at the Agency that aids in matching appropriate technology to the needs, primarily through the mechanism of voluntary Member States Support Programme, which gives IAEA access to many of the worlds finest nuclear laboratories. The function of these programs is discussed in this article with particular emphasis on the Agency's co-ordination role. Besides a description of the Member States Support Programme the problems involved (coordination and communication aspects) as well as the results achieved are indicated. The support is categorized under the following headlines: 1) Information and expertise; 2) Instrumentation, methods and techniques; 3) Training; 4) Test and calibration facilities. As mentioned in the article Member States also benefit from the Support Programme. Other means of technical support such as multi-national co-operation programmes and bilateral research agreements are mentioned

  3. IAEA Technical Meeting on Status of IAEA Fast Reactor Knowledge Preservation Initiative. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the technical meeting were to: • exchange information between the Member States/International Organizations on national and international initiatives addressing knowledge preservation and data retrieval/collection in the field of fast neutron systems; • present and discuss the Member States’/International Organizations’ policies and conditions for releasing to the IAEA both publicly available and confidential information on fast neutron systems; • collect data on fast neutron systems provided by participating Member States/International Organizations and encourage participants to contribute in data collection; • provide recommendations for further IAEA initiatives in the field of fast reactor knowledge preservation

  4. IAEA Technical Cooperation and the NPT

    International Nuclear Information System (INIS)

    Barretto, Paulo M.C.; Cetto, Ana Maria

    2005-01-01

    The NPT rests on three interlinked pillars: cooperation in peaceful uses of nuclear energy, verified nuclear non-proliferation, and nuclear disarmament. This article looks specifically at the first pillar and its linkage with the second one. Non-nuclear weapon States are the vast majority of NPT Parties. The right of NPT Parties to have access to information, exchange of equipment and materials is explicitly recognized in Article IV of the Treaty. This Article stipulates that all Parties of the Treaty undertake to facilitate and have the right to participate in the fullest possible exchange of equipment, materials and scientific and technological information for the peaceful uses of nuclear energy. A successful campaign after the 1995 NPT Review Conference increased the NPT membership from 178 to near universality, and today 189 States are Parties to the Treaty. In the same period the IAEA's membership increased from 127 to 138. Today all IAEA Member States are participating in the Agency's Technical Cooperation Programme (TCP) in varying mixed capacities of donors or recipients. The IAEA, although not referred to in Article IV of the NPT, plays a major role in planning and implementing multilateral cooperation stipulated in the Treaty. It encourages and assists research, development and application of atomic energy; it provides technical advice, training, materials, services and equipment; fosters exchange of scientific and technical information; develops standards and guidelines for the appropriate utilization of nuclear technology and materials, and builds strategic partnerships to increase the leverage of the limited resources available. At all times, the Agency seeks to support the use of nuclear technology in a way that is safe for humans and the environment. All these activities are related to key statutory functions of the IAEA. Efforts to assist Member States are impressive. Since its inception in 1957, the Agency has provided direct assistance valued at

  5. IAEA Technical Meeting on Status of IAEA Fast Reactor Knowledge Preservation Initiative. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In response to needs expressed by Member States and within a broader IAEA-wide effort in nuclear knowledge preservation, the IAEA has been carrying out a dedicated initiative on Fast Reactor Data Knowledge Preservation (FRKP). The main objectives of the FRKP initiative are to: • Halt the on-going loss of information related to Fast Reactors (FR); • Collect, retrieve, preserve and make accessible already existing data and information on FR. These objectives require the implementation of activities supporting digital document archival, exchange, search and retrieval and facilitating, by developing and using suitable standards and IT tools, the knowledge preservation over the next decades. To this purpose the IAEA has developed the Fast Reactor Knowledge Organization System (FRKOS), a web-based application employing IAEA methodology and approach for categorization of FR knowledge domain, which allows creating a comprehensive and well-structured international inventory of fast reactor data and information provided by different Member States. The resulting Web Portal is established and maintained by the IAEA. The IAEA knowledge preservation initiatives and tools in the field of fast neutron systems - which were presented and very well received during the recent IAEA Fast Reactor and Related Fuel Cycles Conference (FR13) - are supposed to be of interest for national nuclear authorities, regulators, scientific and research organizations, commercial companies and all other stakeholders involved in fast reactor activities at national or international level. The objectives of the technical meeting were to: • Exchange information between the member states/international organizations on national and international initiatives addressing knowledge preservation and data retrieval/collection in the field of fast neutron systems; • Present and discuss the member states’/international organizations’ policies and conditions for releasing to the IAEA both publicly

  6. IAEA technical committee meeting on pellet injection

    International Nuclear Information System (INIS)

    1993-01-01

    The IAEA Technical Committee Meeting on Pellet Injection, May 10-12, 1993, at the Japan Atomic Energy Research Institute, Naka, Ibaraki-ken, Japan, was held to review the latest results on pellet injection and its effects on plasma confinement. In particular, topics included in the meeting include (i) pellet ablation and particle fueling results, (ii) pellet injection effects on confinement, including improved confinement modes, edge effects, magnetohydrodynamic activity and impurity transport, and (iii) injector technology and diagnostics using pellets. About 30 experts attended and 23 papers were presented. Refs, figs and tabs

  7. Summary of IAEA technical committee meeting on impurity control

    International Nuclear Information System (INIS)

    Itoh, Kimitaka.

    1989-03-01

    Presentations given in the IAEA technical committee meeting on impurity control (held in JAERI from 13 to 15 February, 1989) are summarized, putting the emphasis on the physics modelling of the plasma related to the impurity production and confinement. (author)

  8. Statement by IAEA and Iran Following Technical Talks in Tehran

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Following technical talks between IAEA and Iranian experts in Tehran today, here is the text of a joint statement read by Tero Varjoranta, IAEA Deputy Director General and Head of the Department of Safeguards, and H.E. Ambassador Reza Najafi of the Islamic Republic of Iran: ''Iran and the IAEA held constructive technical discussions to follow up the Joint Statement that was signed earlier today. ''At this meeting, preliminary arrangements to begin implementation of the six measures listed in the Annex to the Joint Statement were discussed. This will include a technical visit in the near future to the Heavy Water Production Plant at Arak. Future meetings at the working level will finalise the details of implementation. ''Further discussion will be held at the next technical meeting, scheduled for 11 December in Vienna.'' (IAEA)

  9. A technical analysis of the IAEA nuclear safeguards

    International Nuclear Information System (INIS)

    Yoon, J. W.

    1998-01-01

    In the post-Cold War era, the threats of horizontal nuclear proliferation emerge as the forefront security issue while the nuclear arms races among existing nuclear weapon states reduce to a remarkable extent. In this context, there arises lots of research attention to the IAEA nuclear safeguards which have been viewed as the core of international monitoring on the clandestine nuclear activities of potential proliferators. However, previous attention tended to highlight the political aspects of the IAEA nuclear safeguards, centering on the possibilities and limitations of the IAEA's inspection authority. In contrast, this paper purports to focus on the technical aspects of the IAEA nuclear safeguards, so it can show the intrinsic problems of those safeguards in stemming the proliferation of nuclear weapons. This paper mainly deals with the technical objectives and options of the IAEA nuclear safeguards, the technical indices of clandestine nuclear activities, and some measures to improve the efficacy of the IAEA nuclear safeguards. Hopefully, this paper is expected to lead us to approach the issue of the North Korean nuclear transparency from the technical perspective as well as the political one

  10. IAEA technical co-operation activities in the 1990s

    International Nuclear Information System (INIS)

    1995-01-01

    The desire to extend the many benefits of the peaceful uses of nuclear technology to all countries led as long ago as 1957 to the establishment of the IAEA and to immediate introduction of a technical co-operation programme. In the more than thirty years that have passed since that time, the potential applications of nuclear techniques have greatly expanded. Over the period, many of the applications have moved from research laboratories into hospitals, farms and industrial enterprises. The direct resources made available to the IAEA by its Member States to support technology transfer processes have grown rapidly since the late 1950s. The current trends in the technical co-operation activities of the IAEA and some examples of projects supported by the IAEA are briefly presented in this document

  11. Future strategies on IAEA activities and technical cooperation programmes

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Hong, Young Don

    1998-10-01

    This study provides basic background information about the establishment of the IAEA, its mission, major activities, General Conference , and Board of Governors, structure and functions of the Secretariat. The IAEA Mid-term plan, to be implemented in the years 1998 - 2003, includes the enhancement of its functional effectiveness, analysis of the changing developments, adjustment of its priorities, and evaluation of its programmes, are describes in full detail. This plan is divided into 6 major areas ; nuclear power and the fuel cycle, nuclear applications, nuclear, radiation and radwaste safety, verification and security of nuclear material, management of technical cooperation for development, policy making, coordination and support. It is also expected that the IAEA plan provides an opportunity to understand the future directions of IAEA programmes and its operational philosophy, thus greatly contributing to Koreas establishment of its own future directions for expanded cooperation with the IAEA, and urges to device effective domestic strategies. This plan will also contribute to the evaluation of Koreas responsibility as a member of the Board of Governors as well as enhance Koreas role as an Advisory Group Member. It is expected that this study is useful for nuclear-related organizations wishing to establish basic directions for the efficient implementation of IAEA technical cooperation programs in the future. (author). 16 refs., 6 tabs., 16 figs

  12. IAEA Technical Co-operation activities: Africa

    International Nuclear Information System (INIS)

    Bakr, A.A.

    1976-01-01

    In 1975 Tanzania became the newest African Member State of the International Atomic Energy Agency, bringing the total African membership of the Agency up to 25 countries. The other African Member States are: Algeria; United Republic of Cameroon; Egypt; Ethiopia; Gabon; Ghana; Ivory Coast; Kenya; Liberia; Libyan Arab Republic; Madagascar; Mali; Mauritius; Morocco; Niger; Nigeria; Senegal; Sierra Leone; South Africa; Sudan; Tunisia; Uganda; Zaire; Zambia. Membership of the Agency entitles these countries to receive assistance both from the Regular Programme of the Agency and from UNDP resources, while non-Member States in the region only receive Agency assistance financed from the latter source. Any attempt to look at the technical co-operation programme in Africa must start by stressing the wide differences between African countries in their level of scientific and technical development ranging from countries with advanced atomic energy programmes to countries just crossing the threshold towards the peaceful use of nuclear energy. Perhaps the most striking and marked difference is in the quality and number of nuclear energy scientists and technologists available. In view of this, the technical assistance programme in the African context has been a selective one, guided by considerations of pragmatism and responsiveness to particular requirements of the different individual countries and not by any doctrinaire or ready-made strategy for assistance. (author)

  13. Assessing Interventions: IAEA Technical Cooperation Enhances Nutrition Programmes

    International Nuclear Information System (INIS)

    Aning, Kwaku

    2014-01-01

    Malnutrition — in all its forms — is a significant development challenge, affecting childhood health, workplace productivity, and national health programmes in countries around the world. While the effects of undernutrition are well recognized, there is less recognition of the fact that the long term impact of obesity or inappropriate nutrition can also be very damaging to health and to national economies. Increasingly, countries around the world are taking action to implement nutritional or physical activity interventions designed to improve the future health of children, as well as the health of their populations in general. Such interventions may include the promotion of exclusive breastfeeding, school breakfast or lunch programmes, nutrition awareness campaigns, food fortification, and investment in sports activities and facilities. The IAEA, through its Technical Cooperation (TC) programme, is working with its Member States to help them to assess the efficiency and effectiveness of such intervention programmes, in order to ensure that government efforts are having the desired effect, and that resources are being well applied. For such assessments, reliable data are essential, and it is here that nuclear science and technology come into play

  14. IAEA technical co-operation and the NPT

    International Nuclear Information System (INIS)

    Velez Ocon, C.

    1985-01-01

    The IAEA technical co-operation programme promotes nuclear techniques and technologies in the developing countries. The Statute, the NPT, and the Revised Guiding Principles all reflect the desire of countries to foster an international climate where it will be unacceptable for a non-nuclear-weapon State to indulge in the development of military nuclear technology and reprehensible for States possessing this technology to offer it to others

  15. IAEA program of regional technical cooperation in Asia

    International Nuclear Information System (INIS)

    Airey, P.L.

    1986-01-01

    A list of project activities of the IAEA's Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology (RCA) for Asia and the Pacific regions is presented. They cover the fields of food and agriculture, industry, medicine and nuclear science. Activities under the United Nations Development Program (UNDP) Industrial Project are summarised

  16. IAEA co-ordinated technical support programme to the NIS

    International Nuclear Information System (INIS)

    Olsen, R.; Murakami, K.; Blacker, C.; Sharma, S.K.

    1999-01-01

    With most Newly Independent States (NIS) of the former Soviet Union becoming parties to the Non-Proliferation Treaty as Non-Nuclear Weapon States, there has been an acute need in these states for considerable assistance for the establishment of the necessary structure and resources to ensure that their commitments to non-proliferation are fully implemented in a timely manner. A number of IAEA Member States have offered and are now providing assistance to the NIS on a bilateral level to set up an appropriate State System of Accounting and Control (SSAC) which includes Import/Export Control and Physical Protection of Nuclear Material in each state. The IAEA and these Member States established the Co-ordinated Technical Support Programme (CTSP) to ensure that the support given to the NIS was done in a co-ordinated and transparent manner and to avoid duplication of effort. The IAEA has played a coordinating role for the past 5 years by helping to identify detailed needs in individual States, by providing a platform for Member States to identify areas where they could provide the optimum support, and in developing and preparing the Co-ordinated Technical Support Plans. The IAEA organises annual meetings in Vienna attended by all donor and recipient countries to review the focus and implementation status of the co-ordinated technical support activities. A position statement is made by each donor and recipient country, and views and experiences are exchanged. The contents of the CTSPs and the role of the Agency in monitoring the progress of the individual tasks are reviewed in this paper. A summary comparing the implementation status of the Programme by each country is presented. (author)

  17. Outlook for the IAEA's technical co-operation programme

    International Nuclear Information System (INIS)

    Samiei, Massoud

    1998-01-01

    This is a slide presentation dealing with the following subjects: - the IAEA's programmes; - the technical co-operation programme; - past trends in the TC programme; - new initiatives in TC; - TC programme profile; - perspectives for the future. The major programmes conducted by IAEA are concerning: - nuclear power and fuel cycle; - nuclear applications; - nuclear, radiation and waste safety, nuclear verification and security material; - management of technical co-operation; - policy making, coordination and support. In relation with the IAEA role in development process the author presents the legal framework for TC, the programme structure, and programme areas, resources, budgets, cycle, approval and implementation. Two plots regarding the recipients with and without NPP's are displayed for the period 1980-1994. Also, according to the status of the member states (without and with nuclear power programme) the programme priorities are presented. For the first case these are: radiation and waste safety, food and agriculture, water resources management human health and nutrition, human resources development, environmental protection and industrial applications. For the second case there are mentioned: radiation and nuclear safety, nuclear power operation and maintenance management, radioactive waste management, environment protection and sustainable energy options. Concerning the regional distribution the following figures are given for 1997: West Asia, 9%; Europe, 18%; Inter-regional, 11%; Africa, 24%; Latin America, 21%; East Asia and Pacific, 17%. In conclusion, the hope is expressed that the value of Technical Co-operation Programme would be seen not only in the successful transfer of technology but also, in the way that the nuclear technologies may satisfy demands for sustainable development by having a lasting impact on the life of the majority in a cost effective and environmentally sound manner

  18. A review of IAEA's technical co-operation programme

    International Nuclear Information System (INIS)

    Samiei, M.

    2004-01-01

    Full text: The Technical Co-operation (TC) Programme is part of the Agency's mandate 'to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' The IAEA's role under this Programme is that of a scientific and technical agency making a discrete but significant contribution to sustainable development goals through the transfer of nuclear science and technology. TC is a high impact programme focusing on development needs with about 800 active projects annually with a budget of over $70M, 30% of which is targeted on training and capacity building in over 100 Member States. Since 1970, over 80,000 scientists and specialists from developing countries have been trained in nuclear science and technology and in nuclear power and safety. A number of trends in the world at large will be likely to influence the Agency's TC programme in the next several years: The use of nuclear technologies in developing countries is growing as local infrastructures improve and technology transfer increases, especially among developing countries; Some countries and institutions are becoming more self-reliant as viable markets develop for nuclear technology, based on an increased awareness of their benefits; As facilities age, safe strategies for life extension and for decommissioning are assuming increasing importance, while there is some renewed positive attention to nuclear power in several parts of the world. Concern is increasing related to the potential for malicious acts involving nuclear facilities or unsecured nuclear and other radioactive material. As the nuclear workforce ages, the management of nuclear knowledge is gaining increasing importance, including the need to maintain the safety and security of nuclear installations and their continued reliable operation. It is difficult to forecast precisely how these trends will influence the assistance requested by Member States, but it is already clear that there will be increased

  19. The IAEA technical Co-operation a partner in development in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    El-Saiedi, A [International Atomic Energy Agency, Vienna (Austria). Div. of Public Information

    1995-10-01

    Each country was to find means of achieving sustainable development, and for this, technology within a framework of regional and international co-operation are of utmost importance. The IAEA plays a major role in promoting nuclear technologies for development. Highlights of the IAEA`s technical cooperation programme are given in this paper.

  20. Report on the IAEA technical meeting on network of nuclear reaction data centres

    Energy Technology Data Exchange (ETDEWEB)

    Schwerer, O [International Atomic Energy Agency, Nuclear Data Section, Vienna (Austria); Henriksson, H [NEA Data Bank, Issy-les-Moulineaux (France)

    2005-01-15

    This report summarizes the IAEA Technical Meeting on the Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting), held at the Brookhaven National Laboratory, Upton, NY, USA from 4-7 October 2004. The meeting was attended by 20 participants from 11 co-operating data centres of six Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, status reports of the participating data centres, and a revised technical protocol for the cooperation of the network. (author)

  1. Report on the IAEA technical meeting on network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Schwerer, O.; Henriksson, H.

    2005-01-01

    This report summarizes the IAEA Technical Meeting on the Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting), held at the Brookhaven National Laboratory, Upton, NY, USA from 4-7 October 2004. The meeting was attended by 20 participants from 11 co-operating data centres of six Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, status reports of the participating data centres, and a revised technical protocol for the cooperation of the network. (author)

  2. IAEA Technical Co-operation activities: Asia and the Pacific

    International Nuclear Information System (INIS)

    Nuguid, C.P.

    1975-01-01

    During the period 1970-1974 the IAEA provided country programme assistance (expert services, equipment and supplies, and fellowship training) to 17 countries in the geographic region designated as 'Asia and the Pacific' by the United Nations Development Programme (UNDP), namely, to Afghanistan; Bangladesh; Burma; Cambodia; China, Republic of; Hong Kong; India; Indonesia; Iran; Korea, Republic of; Malaysia; Pakistan; the Philippines; Republic of South Viet-Nam; Singapore and Thailand. In addition, representatives of Laos and Nepal have attended Agency-organized short-term training projects, such as seminars and training courses. (author)

  3. IAEA technical meeting on 'Technical aspects of atomic and molecular data processing and exchange'. Summary report

    International Nuclear Information System (INIS)

    Humbert, Denis

    2004-03-01

    The proceedings of the IAEA Advisory Group Meeting on 'Technical Aspects of Atomic and Molecular Data Processing and Exchange' (17th Meeting of A+M Data Centres and ALADDIN Network), held on 6-7 October, 2003 in Vienna, Austria are briefly described. The meeting conclusions and recommendations on the priorities in A+M data compilation and evaluation, and on the technical aspects of data processing, exchange, and distribution are also presented. (author)

  4. A strategy study on the effective participation in the IAEA technical cooperation programmes

    International Nuclear Information System (INIS)

    Chung, Joon Keuk; Choi, P. H.; Kim, K. P.; Hong, Y. D.; Lee, J. K.; Kim, Y. M.; Chung, H. S.; Han, B. O.; Seo, M. W.; Chung, J. M.

    1997-12-01

    The objectives of this research are to seek the most effective means of participation in implementing IAEA technical cooperation programs, to seek and establish a desirable role for Korea in these program, to predict future opportunities among IAEA programs, to enhance the status of Korea within the international society and to keep up with rapidly changing international nuclear developments in effective and positive ways. Participation in IAEA programs are to coincide with our efforts to upgrade and achieve self-reliance in nuclear technology. Seven activities should be considered in Korea's future directions regarding the IAEA. These include strengthening our diplomatic activities, expanding coordinated research programs (CRP's), domestic personnel becoming IAEA staff members, encouraging domestic experts to participate as members of IAEA advisory groups, increasing participation in international meetings, implementing footnote a/ projects, strengthening cooperation with the IAEA-operational research laboratories and actively implementing technology transfer to developing countries and encouraging IAEA fellowships. (author). 57 refs., 74 tabs., 17 figs

  5. Challenges in Implementing IAEA National Nuclear Safety Knowledge Platforms

    International Nuclear Information System (INIS)

    Samba, R.N.; Simo, A.

    2016-01-01

    Full text: Integrated Management Systems and human resource development of nuclear knowledge have always been a challenge for developing countries. NRPA staff when trained by IAEA return and restitute with all colleagues the themes acquired in nuclear knowledge. NRPA became a member of Forum for Nuclear Regulatory Bodies in Africa (FNRBA) in 2009. FNRBA organized with IAEA a workshop from 14th to 18th October 2013 in Nairobi, Kenya on Knowledge Safety Network. NRPA of Cameroon created the first National Nuclear Portail under FNRBA. This was linked to other national websites. During the IAEA review missions, most counterparts took opportunity from the thermatic site to share information and develop advance reference materials. The IAEA Integrated Regulatory Review Service (IRRS) team also shared materials that could not be transferred through email with national counterparts using the Global Nuclear Safety and Security Network (GNSSN) sharepoint website due to large file sizes.The regulatory documents have been uploaded on the platform and can be accessed through FNRBA and NRPA website (www.anrp.cm). UN organizations implementing projects in Cameroon are also linked to the platform. The action plans and progress reports for IAEA/AFRA projects are also available. Moreover, NRPA regulatory activities and licensing sources are available on this platform. (author

  6. The international cooperation year - Technical assistance through IAEA

    International Nuclear Information System (INIS)

    1965-01-01

    In 1964, sixty-two countries benefited from the Agency's technical assistance programme, which involved an actual expenditure of more than 3 million dollars (including some payments against obligations incurred in previous years). This represents an increase of 29 percent over the amount of $2,423,000. spent in 1963. In addition to funds provided from the Agency's own resources and from the United Nations Expanded Programme of Technical Assistance, many gifts in kind - equipment, fellowships, and expert services - were supplied through the Agency, to a value of $708,000

  7. The international ISOE programme. ISOE IAEA technical centre activities

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1996-01-01

    The objective of the sub-programme on Occupational Radiation Protection in the International Atomic Energy Agency, IAEA, is to promote a harmonized approach to optimizing occupational radiation protection by developing guidelines for controlling radiation doses in the workplace and on current occupational radiation protection techniques. A significant part of this programme is the provision of assistance to developing member states to bring their radiation safety infrastructure to an appropriate level for the usage of radiation in the state. In consistence with these objectives the IAEA has been involved with the ISOE programme from its inception and has contributed actively to its growth. In 1993 an arrangement was agreed between the IAEA and the Nuclear Energy Agency, NEA, by which the IAEA co-sponsors ISOE inviting those IAEA member states which are not members of the NEA to participate cost-free in the programme. (author)

  8. Summary report on [IAEA] technical meeting of the International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Dunaeva, S.; Otsuka, N.; Schwerer, O.

    2009-08-01

    An IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres was held at the IAEA Headquarters in Vienna from 25 to 26 May 2009. The meeting was attended by 23 participants from 13 cooperating data centres. A summary of the meeting is given in this report, along with the conclusions, actions, and status report of the participating data centres. (author)

  9. The IAEA technical Co-operation a partner in development in Latin America

    International Nuclear Information System (INIS)

    El-Saiedi, A.

    1995-01-01

    Each country was to find means of achieving sustainable development, and for this, technology within a framework of regional and international co-operation are of utmost importance. The IAEA plays a major role in promoting nuclear technologies for development. Highlights of the IAEA's technical cooperation programme are given in this paper

  10. United States Program for Technical assistance to IAEA Standards

    International Nuclear Information System (INIS)

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ''Knowledge Acquisition Skills'' in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively

  11. IAEA technical co-operation with least developed Member States. Special evaluation

    International Nuclear Information System (INIS)

    1993-01-01

    The main purposes of this evaluation were to: Review the overall situation with regard to IAEA technical co-operation with least developed Member States, including specific conditions in nuclear-related activities prevailing in these countries, approaches and practices used by the IAEA in providing assistance to LDCs, and the main results of the co-operation in question. Identify any adjustments to technical co-operation with LDC Member States that may strengthen this activity

  12. The last twenty years of the IAEA technical cooperation on the uranium production cycle in Argentina

    International Nuclear Information System (INIS)

    Lopez, L.

    2014-01-01

    Since 1993, the National Atomic Energy Commission (Argentina) has been involved in several IAEA Technical Cooperation Projects at interregional, regional and national levels, covering different aspects of the uranium production cycle. The TC referred projects can be listed as follows: - INT 2/015 “Supporting Uranium Exploration Resource Augmentation and Production Using Advanced Techniques” (2012 – Present). - RLA 3/006 - 010 “Upgrading of Uranium Exploration, Exploitation and Yellowcake Production Techniques taking Environmental Problems into Account” (2007 - Present). - ARG 2/014 “Development and Strengthening of the Uranium Mining Cycle Human Resources” (2012 – Present). - ARG 3/012 - 014 "Geology favourability, production feasibility and environmental impact assessment of uranium deposits exploitable by the in situ leaching technology (ISL)'' (2007 - Present). - ARG 3/009 “Development and use of biological techniques for uranium production (ARG 3/009)” (2003 - 2006). - ARG 3/008 “Prospection of uranium and other elements using gamma-ray spectrometry surveys” (2001 – 2005). - ARG 3/007 “Uranium Favorability and Exploration in Argentina” (1993 - 1997). It can be considered that the role of the technological transfer by the IAEA has been highly relevant for increasing the capability of strategically plan and more efficiently carry out the uranium production cycle projects in Argentina. (author)

  13. A strategy study on the effective participation in the IAEA technical cooperation programmes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Joon Keuk; Choi, P. H.; Kim, K. P.; Hong, Y. D.; Lee, J. K.; Kim, Y. M.; Chung, H. S.; Han, B. O.; Seo, M. W.; Chung, J. M

    1997-12-01

    The objectives of this research are to seek the most effective means of participation in implementing IAEA technical cooperation programs, to seek and establish a desirable role for Korea in these program, to predict future opportunities among IAEA programs, to enhance the status of Korea within the international society and to keep up with rapidly changing international nuclear developments in effective and positive ways. Participation in IAEA programs are to coincide with our efforts to upgrade and achieve self-reliance in nuclear technology. Seven activities should be considered in Korea`s future directions regarding the IAEA. These include strengthening our diplomatic activities, expanding coordinated research programs (CRP`s), domestic personnel becoming IAEA staff members, encouraging domestic experts to participate as members of IAEA advisory groups, increasing participation in international meetings, implementing footnote a/ projects, strengthening cooperation with the IAEA-operational research laboratories and actively implementing technology transfer to developing countries and encouraging IAEA fellowships. (author). 57 refs., 74 tabs., 17 figs

  14. Report on the IAEA technical meeting of the International Network of Nuclear Reaction Data Centres

    Energy Technology Data Exchange (ETDEWEB)

    Schwerer, O; Dunaeva, S [International Atomic Energy Agency, Nuclear Data Section, Vienna (Austria); org, S Dunaeva@iaea [eds.

    2007-11-15

    An IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres was held at IAEA Headquarters, Vienna, Austria, from 8 to 10 October 2007. The meeting was attended by 19 participants from 11 cooperating data centres of six Member States and two international organizations. A summary of the meeting is given in this report, along with the conclusions, actions, and status reports of the participating data centres. (author)

  15. Report on the IAEA technical meeting on the network of nuclear reaction data centres

    Energy Technology Data Exchange (ETDEWEB)

    Schwerer, O [International Atomic Energy Agency, Nuclear Data Section, Vienna (Austria)

    2006-02-15

    Results of the IAEA Technical meeting on the Network of Nuclear Reaction Data Centres held at the IAEA Headquarters, Vienna, Austria, 12 to 14 October 2005, are summarized in this report. The meeting was attended by 16 participants from 11 co-operating data centres of six Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, and status reports of the participating data centres. (author)

  16. Report on the IAEA technical meeting on network of nuclear reaction data centres

    Energy Technology Data Exchange (ETDEWEB)

    Schwerer, O [IAEA Nuclear Data Section, Vienna (Austria)

    2006-12-15

    An IAEA Technical Meeting on the Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting) was held at IAEA Headquarters, Vienna, Austria, from 25 to 28 September 2006. The meeting was attended by 19 participants from 10 cooperating data centres of six Member States and two international organizations. A summary of the meeting is given in this report, along with the conclusions, actions, and status reports of the participating data centres. (author)

  17. Report on the IAEA technical meeting on the network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Schwerer, O.

    2006-02-01

    Results of the IAEA Technical meeting on the Network of Nuclear Reaction Data Centres held at the IAEA Headquarters, Vienna, Austria, 12 to 14 October 2005, are summarized in this report. The meeting was attended by 16 participants from 11 co-operating data centres of six Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, and status reports of the participating data centres. (author)

  18. Report on the IAEA technical meeting on network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Schwerer, O.

    2006-12-01

    An IAEA Technical Meeting on the Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting) was held at IAEA Headquarters, Vienna, Austria, from 25 to 28 September 2006. The meeting was attended by 19 participants from 10 cooperating data centres of six Member States and two international organizations. A summary of the meeting is given in this report, along with the conclusions, actions, and status reports of the participating data centres. (author)

  19. Report on the IAEA technical meeting of the International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Schwerer, O.; Dunaeva, S.; S.Dunaeva@iaea.org

    2007-11-01

    An IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres was held at IAEA Headquarters, Vienna, Austria, from 8 to 10 October 2007. The meeting was attended by 19 participants from 11 cooperating data centres of six Member States and two international organizations. A summary of the meeting is given in this report, along with the conclusions, actions, and status reports of the participating data centres. (author)

  20. Summary Report on IAEA Technical Meeting on the International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Otsuka, Naohiko

    2011-07-01

    This report summarizes the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres, held at the IAEA Headquarters in Vienna, Austria from 23 - 24 May 2011. The meeting was attended by 25 participants from 13 cooperating data centres of nine Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, the lists of working papers and presentations presented at the meeting. (author)

  1. IAEA Safeguards and technical support programs: POTAS in the 1990s

    International Nuclear Information System (INIS)

    Kessler, C.J.

    1991-01-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) has since 1978 provided technology and technical assistance to the IAEA to support its nuclear safeguards activities. The present level of support, $6.9 million per year, equals 10% of the Department of Safeguards annual budget. During the next decade, the International Atomic Energy Agency (IAEA) will face new technical challenges in carrying out its verification activities. To help the IAEA acquire the technology and other technical support that it will require in the 1990s, POTAS expects to continue its assistance, both in the areas established in the past and in additional areas dictated by newly identified IAEA safeguards requirements. This paper will look at the political and policy context within which the Department of Safeguards, and hence POTAS, operates, and how that context is expected to evolve over the next decade. The roles and functions of POTAS will be identified and discussed in terms of their historical evolution. Lastly, the paper will consider how POTAS is expected to change during the 1990s, both to maintain effectiveness in existing roles and functions, and to meet the challenge of the changing policy context. 5 refs

  2. The role of International Atomic Energy Agency (IAEA) Technical Cooperation (TC) programs in enhancing socioeconomic development in Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Salih, A Y.S. [Development Studies and Research Institute, University of Khartoum, Khartoum (Sudan)

    2006-04-15

    The main objective of this study is to reflect the role of nuclear Techniques in development through the IAEA provision of the technical cooperation (TC) projects in Sudan, and to show their impact on socio-economic activities, improvement of infrastructures, technology transfer, and whether the targeted institutes become economically self-reliant. This study as an analytical study uses secondary sources, namely reports from IAEA and coordinators of the projects. The study also uses primary data received mainly through conducting interviews with stake holders. The study has come out with some main findings: that the IAEA technical assistances played a major role in addressing pressing issues such as socio-economic development, sustainable development and management of different fields related to application of nuclear technology. The TC assistance depends on the local component of the country, also it depends on Sudan payments of it is annual share to the IAEA technical cooperation. The important role played by Sudan Atomic Energy Commission (SAEC) in its capacity as the national coordinating body with respect to Technical Cooperation (TC) is highly appreciated. The total number of projects increased rapidly from 16 projects in 1959 to 55 projects in 2005 in different fields includes human health, agriculture, animal production, waste management, water resources, ... etc. The TC projects are associated with the country's development programmes framework (CPF) and support socio-economic activities. The management of TC projects activated at the national level were successful and have significant impact, particularly in human heath, agriculture, instrumentation and Non Destructive Testing. All the TC projects provided their funds mainly from IAEA, and assistance received from IAEA is highly effective. Sudan TC Programme had achieved a high implementation rate, where most of the projects attained their objectives, showing good results in socio-economic and infra

  3. The role of International Atomic Energy Agency (IAEA) Technical Cooperation (TC) programs in enhancing socioeconomic development in Sudan

    International Nuclear Information System (INIS)

    Salih, A.Y.S.

    2006-04-01

    The main objective of this study is to reflect the role of nuclear Techniques in development through the IAEA provision of the technical cooperation (TC) projects in Sudan, and to show their impact on socio-economic activities, improvement of infrastructures, technology transfer, and whether the targeted institutes become economically self-reliant. This study as an analytical study uses secondary sources, namely reports from IAEA and coordinators of the projects. The study also uses primary data received mainly through conducting interviews with stake holders. The study has come out with some main findings: that the IAEA technical assistances played a major role in addressing pressing issues such as socio-economic development, sustainable development and management of different fields related to application of nuclear technology. The TC assistance depends on the local component of the country, also it depends on Sudan payments of it is annual share to the IAEA technical cooperation. The important role played by Sudan Atomic Energy Commission (SAEC) in its capacity as the national coordinating body with respect to Technical Cooperation (TC) is highly appreciated. The total number of projects increased rapidly from 16 projects in 1959 to 55 projects in 2005 in different fields includes human health, agriculture, animal production, waste management, water resources, ... etc. The TC projects are associated with the country's development programmes framework (CPF) and support socio-economic activities. The management of TC projects activated at the national level were successful and have significant impact, particularly in human heath, agriculture, instrumentation and Non Destructive Testing. All the TC projects provided their funds mainly from IAEA, and assistance received from IAEA is highly effective. Sudan TC Programme had achieved a high implementation rate, where most of the projects attained their objectives, showing good results in socio-economic and infra

  4. Technical, environmental and regulatory aspects of waste management and their reflection in the IAEA programme

    International Nuclear Information System (INIS)

    Richter, D.K.

    1982-01-01

    Within the IAEA training course on waste management this paper is intended to overview technological, radiological, encironmental, regulatory and institutional aspects of importance in establishing a waste management policy for nuclear power programmes; the objectives and results of IAEA activities in this field; and some current issues from a national and international perspective with special consideration on the needs of countries embarking on nuclear power. (orig./RW)

  5. Papers presented at the IAEA technical committee meeting on H-mode physics

    International Nuclear Information System (INIS)

    TCV team

    1995-11-01

    The two papers contained in this report deal with ohmic H-modes and effect on confinement of edge localized modes in the TCV tokamak. They were presented by the TCV team at the 1995 IAEA technical committee meeting on H-mode physics. figs., tabs., refs

  6. IAEA technical committee meeting on research using small fusion devices (abstracts)

    International Nuclear Information System (INIS)

    1999-12-01

    The thirteenth IAEA technical committee meeting on research using small fusion devices are held in Chengdu, P. R. China on 18-20 Oct. , 1999. 41 articles are received and the content includes toroidal systems, helical systems, plasma focus, diagnostic systems, theory and modeling, improving confinement, numerical simulation, innovative concepts and others

  7. IAEA Technical co-operation. A partner in development. Nuclear science serving people

    International Nuclear Information System (INIS)

    Kinley, D.; Perez Vargaz, J.

    1997-01-01

    This issue contains descriptions of IAEA technical cooperation programs in a variety of disciplines and locations. It includes articles on the eradication of Tsetse flies in Africa, biofertilizers for agriculture, new strains of rice, water resource management, pollution control for a sustainable environment, nuclear medicine, and ensuring nuclear reactor safety

  8. Quality assurance measures applicable to IAEA anomaly and discrepancy resolution (ISPO Task D.52). Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Harms, N.L.; Smith, B.W.

    1984-11-01

    The International Atomic Energy Agency (IAEA) safeguards program provides assurance to the international community that nations comply with their commitments for the peaceful use of nuclear energy. This assurance is based on the capabilities of the IAEA safeguards program to detect diversion of nuclear material. Anomalies and discrepancies, which occur in the event of a diversion or concealment, are detected as part of the IAEA safeguards program. Anomalies and discrepancies normally result from innocent causes and it is the purpose of the resolution process to determine the significance of them. The IAEA is instituting quality assurance measures for the IAEA inspection process. This paper reviews the anomaly and discrepancy resolution process and describes quality control measures which are the basis for quality assurance. 13 references, 6 tables

  9. Private sector involvement in the US program of technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Epel, L.; Maise, G.; Reisman, A.; Skalyo, J.

    1995-01-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) relies on technical expertise found in the U. S private and public sectors. Since 1993, the international Safeguards Project Office (ISPO) has sought to increase the role of the private sector in POTAS. ISPO maintains and continues to develop a database of US companies interested in providing technical expertise to the IAEA. This database is used by ISPO to find appropriate contractors to respond to IAEA requests for technical assistance when the assistance can be provided by the private sector. The private sector is currently providing support in the development of equipment, training, and procedure preparation. POTAS also supports the work of private consultants. This paper discusses ISPO's efforts to identify suitable vendors and discusses conditions that hinder more substantial involvement by the private sector. In addition, the paper will discuss selected projects that are currently in progress and identify common problems that impede the progress and success of tasks performed by the private sector

  10. Report on the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Forrest, R.; Dunaeva, S.; Otsuka, N.

    2010-07-01

    This report summarizes the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting), held at the Japan Nuclear Reaction Data Centre, Hokkaido University, Sapporo, Japan, from 20 - 23 April 2010. The meeting was attended by 27 participants from 12 cooperating data centres of seven Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, the lists of working papers and presentations presented at the meeting. This report summarizes the IAEA Technical Meeting of the International Network of Nuclear Reaction Data Centres (biennial Data Centre Heads Meeting), held at the Japan Nuclear Reaction Data Centre, Hokkaido University, Sapporo, Japan, from 20 - 23 April 2010. The meeting was attended by 27 participants from 12 cooperating data centres of seven Member States and two International Organizations. The report contains a summary of the meeting, the conclusions and actions, the lists of working papers and presentations presented at the meeting. (author)

  11. Report on the IAEA technical meeting on network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Pronyaev, V.G.; Schwerer, O.; Nichols, A.L.

    2002-08-01

    An IAEA Technical Meeting on the Network of Nuclear Reaction Data Centres (and the biennial Data Centre Heads' Meeting) was held at the OECD Nuclear Energy Agency, Issy-les-Moulineaux (near Paris), France, from 27 to 30 May 2002. The meeting was attended by 21 participants from 12 co-operating data centres of six Member States and two international organizations. This report contains the meeting summary, conclusions and actions, status reports of the participating data centres, and working papers considered. (author)

  12. Japanese contributions to IAEA INTOR workshop, phase two A, part 2 chapter VII: technical benefit

    International Nuclear Information System (INIS)

    Itoh, Shin-ichi; Iida, Hiromasa; Tomabechi, Ken; Tone, Tatsuzo; Fujisawa, Noboru.

    1985-07-01

    This report corresponds to Chapter VII of Japanese contribution report to IAEA INTOR Workshop, Phase Two A, Part 2. The purpose of technical benefit study is to examine the implications of having different manufacturers fabricate components of a major system of INTOR. A systematic examinations of advantages and disadvantages of designing and fabricating major INTOR components in the frame of one international joint projects is performed. (author)

  13. IAEA technical committee on advances in inertial confinement systems

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1980-01-01

    In the United Kingdom there is no national inertial confinement programme directed towards civil reactor use. The programme for Controlled Fusion Research, which forms part of the UKAEA Research Group activities, is located at the Culham Laboratory. At this centre, fusion research is devoted entirely to magnetic confinement systems. A fraction of the total effort involves the development and use of powerful lasers for diagnostic purposes, for toroidal plasma refuelling schemes, for basic studies of laser-plasma interactions, highly-ionised atoms and XUV light gain experiments, and for certain commercial applications. Within the universities there is a widespread interest in laser systems and laser-plasma interactions. The substantial research facilities in the Laser Division of the Rutherford Laboratory (SRC) provides a focus for these activities. These lasers are operated as a university users' facility. A two beam, neodymium in phosphate, glass laser (operating at 0.6 TW/beam, but presently being upgraded) is the Rutherford Laboratory's major laser system for implosion and compression studies. Sophisticated radiation diagnostics are a feature of this work. In a single-beam mode, the glass laser has been used for a great deal of laser-plasma interaction physics e.g. non-linear absorption, inhibited heat conduction and harmonic self-generation. Atomic structure of highly-ionised atoms, plasma line broadening and XUV light gain experiments are also active research topics. Concurrent with upgrading the glass laser facility to 6 x 1 TW beams, experiments on harmonic conversion of the output to 2ω 0 , 4ω 0 are being pursued. Electron beam-pumped, rare-gas halide, eximer systems operating in the blue region of the spectrum are also being investigated. The universities provide a considerable back-up for the work at the Rutherford Laser Division. (J.P.N.)

  14. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  15. Scientific and technical information as a source for IAEA safeguards state evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, M.; Feldman, Y.; Ferguson, M. [International Atomic Energy Agency, Vienna (Austria)

    2014-07-01

    The IAEA Department of Safeguards is continually working to refine its methodologies and procedures for the analysis of information relevant to the evaluation of the nuclear fuel cycle in States that have safeguards agreements with the IAEA. This analysis is required to achieve an understanding of States' nuclear-related activities against which a State's declarations are evaluated for correctness as well as completeness, and to provide credible assurances on the peaceful uses of nuclear material in the State. To achieve this end, diversification of sources and comparison for consistency among available information is essential to ensure an accurate assessment of a State's nuclear activities. Open sources of information on scientific and technical (S&T) developments and research provide the Department of Safeguards with an enhanced basis to evaluate the technical capabilities of States. These information sources are regularly and systematically assessed to provide information about industrial capabilities, patenting activities and research and development activities in States as reflected through published scientific and technical literature. Using such sources, in addition to other, long-established safeguards information sources, helps the IAEA to draw soundly-based safeguards conclusions. The utility of this category of information in terms of the State evaluation process lies primarily in the comparison with other sources of information, especially State-declared information, and in the assessment of consistency of all safeguards-relevant information regarding nuclear fuel cycle technologies and activities in a State. The current paper aims to describe the use of S&T literature, how information from different sources is consolidated, how it is analysed and how it contributes in the overall process of State evaluation in the IAEA Department of Safeguards. (author)

  16. IAEA's technical co-operation programme and its role in assisting member states in the safe utilisation of nuclear power

    International Nuclear Information System (INIS)

    Reed, J.

    2000-01-01

    In this contribution the author deals with the technical co-operation projects of the IAEA. The Agency's technical co-operation programme is a most welcome mechanism for the transfer of nuclear technology, and to developing countries it is certainly the most attractive side of the Agency, since it is through this programme that the IAEA can contribute to the solution of their problems through the provision of know-how, technology and training. (authors)

  17. United States Program for Technical assistance to IAEA Standards. Concept Paper: Knowledge Acquisition, Skills training for enhanced IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ``Knowledge Acquisition Skills`` in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively.

  18. Establishment of strengthening technical cooperation system through the IAEA advisory committee

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Hwan; Lee, H. Y.; Kim, Y. T. and others

    2001-03-01

    The International Atomic Energy Agency(IAEA) operates seventeen(17) Standing Advisory Groups(SAG) and nine(9) International Working Groups(IWG). Korean experts are currently participating in most of these advisory groups, but there is something yet to improve especially in faithful reflection of Korean nuclear policy as well as a systematic and effective utilization technical information received in the committee meetings. Therefore, it is necessary firstly to analyze results and systematic follow-up of technology developments for each IAEA committee group to solidate activities of Korean members. Based on these analyses, we can hence support administratively Korean members to do faithful reflection of Korean nuclear policy. In addition, a scheme for systematic management of the information should be drawn up for use of these information effectively for nuclear power projects, R and D, safety regulation, and establishment of nuclear policy in Korea.

  19. Establishment of strengthening technical cooperation system through the IAEA advisory committee

    International Nuclear Information System (INIS)

    Kim, Si Hwan; Lee, H. Y.; Kim, Y. T. and others

    2001-03-01

    The International Atomic Energy Agency(IAEA) operates seventeen(17) Standing Advisory Groups(SAG) and nine(9) International Working Groups(IWG). Korean experts are currently participating in most of these advisory groups, but there is something yet to improve especially in faithful reflection of Korean nuclear policy as well as a systematic and effective utilization technical information received in the committee meetings. Therefore, it is necessary firstly to analyze results and systematic follow-up of technology developments for each IAEA committee group to solidate activities of Korean members. Based on these analyses, we can hence support administratively Korean members to do faithful reflection of Korean nuclear policy. In addition, a scheme for systematic management of the information should be drawn up for use of these information effectively for nuclear power projects, R and D, safety regulation, and establishment of nuclear policy in Korea

  20. Technical Workshop on Remediation of Radioactive Contamination in Agriculture, IAEA Headquarters, Vienna, Austria, 17-18 October 2016

    International Nuclear Information System (INIS)

    2017-01-01

    The year 2016 marks the fifth anniversary of the accident at the Fukushima Daiichi nuclear power plant (NPP) and the 30th anniversary of the accident at the Chernobyl NPP. A Technical Workshop on Remediation of Radioactive Contamination in Agriculture was coorganised by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the National Agriculture and Food Research Organization of Japan (NARO) and held at the IAEA headquarters, Vienna, Austria from 17 to 18 October 2016. Over 100 experts from around the world participated in the event. All presentations and discussions focused on research results and practical experience from Japan and from countries affected by Chernobyl NPP accident. This event was a great success in promoting and sharing knowledge and experience related to remediation of radioactive contamination in food and agriculture. From an agricultural perspective, the impacts of these two major accidents are related to caesium radionuclides, specifically "1"3"7Cs, which is a relatively long lived isotope with a half-life of some thirty years. Research and technical efforts to remediate and ameliorate the impact of radioactivity on agricultural production aim to minimize and prevent contamination of foods and other commodities, and further to assist the social and economic recovery of affected rural communities by enabling sustainable production. However, these efforts are not widely appreciated outside the affected areas

  1. Technical Aspects of Atomic and Molecular Data Processing and Exchange, 22nd Meeting of the A+M Data Centres Network. Summary Report of an IAEA Technical Meeting

    International Nuclear Information System (INIS)

    Chung, Hyun-Kyung

    2013-12-01

    This report summarizes the proceedings of the IAEA Technical Meeting on ''Technical Aspects of Atomic and Molecular Data Processing and Exchange'' (22nd Meeting of the A+M Data Centres Network) on 4-6 September 2013. Twelve participants from 8 data centres of 6 Member States attended the three-day meeting held at the IAEA Headquarters in Vienna. The report includes discussions on the data issues, meeting conclusions and recommendations and the abstracts of presentations presented in the meeting. (author)

  2. IAEA Technical Meeting on Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA, within the framework of its Nuclear Energy Department’s Technical Working Group on Fast Reactors (TWG-FR), assists Member States activities in fast reactors technology development areas by providing an umbrella for information exchange [topical Technical Meetings (TMs), Workshops and large Conferences] and collaborative R&D [Coordinated Research Projects (CRPs)]. The Technical meeting on “Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors” was held from 21 – 22 December 2011 in Vienna, addressing Member States’ expressed needs of information exchange in the field of advanced fast reactor design features, with particular attention to innovative heat exchangers and steam generators. The Objective of the TM is to provide a global forum for in-depth information exchange and discussion on the most advanced concepts of heat exchangers and steam generators for fast reactors. More specifically, the objectives are: · Review of the status of advanced fast reactor development activities with special emphasis on design and performance of heat exchangers and steam generators; · Discuss requirements for innovative heat exchangers and steam generators; · Present results of studies and conceptual designs for innovative heat exchangers and steam generators; · Provide recommendations for international collaboration under the IAEA aegis. The meeting agenda of the meeting is in Annex I

  3. IAEA International Database on Irradiated Nuclear Graphite Properties. 7th meeting of the Technical Steering Committee

    International Nuclear Information System (INIS)

    Humbert, D.; Wickham, A.J.

    2005-06-01

    This report summarizes the Consultant Meeting '7th Meeting of the Technical Steering Committee for the International Database on Irradiated Nuclear Graphite Properties' held on 16-17 March 2005 at the IAEA Headquarters, Vienna, Austria. The purposes of the meeting were to review the matters and actions identified in the previous meeting, undertake a review of the current status of the database and to make recommendations for actions for the next year. The purposes of the meeting were fully met. This report contains the current status of the identified actions as well as a summary of the recommendations on enhancements to the database. (author)

  4. IAEA technical meeting on nuclear data library for advanced systems - Fusion devices

    International Nuclear Information System (INIS)

    Forrest, R.; Mengoni, A.

    2008-04-01

    A Technical Meeting on 'Nuclear Data Library for Advanced Systems - Fusion Devices' was held at the IAEA Headquarters in Vienna from 31 October to 2 November 2007. The main objective of the initiative has been to define a proposal and detailed plan of activities for a Co-ordinated Research Project on this subject. Details of the discussions which took place at the meeting, including a review of the current activities in the field, a list of recommendations and a proposed timeline schedule for the CRP are summarized in this report. (author)

  5. IAEA technical meeting on fissile material strategies for sustainable nuclear energy

    International Nuclear Information System (INIS)

    Ganguly, Chaitanyamoy; Koyama, Kazutoshi

    2005-01-01

    A Technical Meeting (TM) on 'Fissile Material Management Strategies for Sustainable Nuclear Energy' was organized by the International Atomic Energy Agency (IAEA) in Vienna from 12 to 15 September 2005. Prior to the TM, three Working Groups (WG) composed of experts from 10 countries prepared Key Issues papers on: 1) Uranium Demand and Supply through 2050; 2) Back-end Fuel Cycle Options; and 3) Sustainable Nuclear Energy beyond 2050: Cross-cutting Issues. Some 36 papers, including 3 key issue papers, were presented during the TM in 3 different sessions. The present paper summarizes the deliberations of the TM. (author)

  6. Funding for the 2ND IAEA technical meeting on fusion data processing, validation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2017-06-02

    The International Atomic Energy Agency (IAEA) will organize the second Technical Meeting on Fusion Da Processing, Validation and Analysis from 30 May to 02 June, 2017, in Cambridge, MA USA. The meeting w be hosted by the MIT Plasma Science and Fusion Center (PSFC). The objective of the meeting is to provide a platform where a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolation needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucial for a knowledge based understanding of the physical processes governing the dynamics of these plasmas. The meeting will aim at fostering, in particular, discussions of research and development results that set out or underline trends observed in the current major fusion confinement devices. General information on the IAEA, including its mission and organization, can be found at the IAEA websit Uncertainty quantification (UQ) Model selection, validation, and verification (V&V) Probability theory and statistical analysis Inverse problems & equilibrium reconstru ction Integrated data analysis Real time data analysis Machine learning Signal/image proc essing & pattern recognition Experimental design and synthetic diagnostics Data management

  7. A Planning Study for the Enhancement of National Nuclear Transparency through the Voluntary Contribution to IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Maeng Ho; Oh, K. B.; Lee, H. M. (and others)

    2006-12-15

    This study investigated the experts' opinions and a case study of typical country in order to enhance international transparency and confidence for national nuclear policy and its activities. And direction and strategies for strengthening cooperation with IAEA through various voluntary contribution into IAEA activities, was also investigated as well as long term strategic road map. It is important to strengthen the nuclear diplomacy in order to increase transparency of Korean nuclear activities through the establishment of nation-wide collaborative systems as well as systematic and long term based implementation of positive measures and actions. At the same time, it is also required to strengthen cooperation with IAEA through voluntary contribution program into relevant IAEA activities as well as establishing national long term strategies and road map.

  8. A Planning Study for the Enhancement of National Nuclear Transparency through the Voluntary Contribution to IAEA

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Oh, K. B.; Lee, H. M.

    2006-12-01

    This study investigated the experts' opinions and a case study of typical country in order to enhance international transparency and confidence for national nuclear policy and its activities. And direction and strategies for strengthening cooperation with IAEA through various voluntary contribution into IAEA activities, was also investigated as well as long term strategic road map. It is important to strengthen the nuclear diplomacy in order to increase transparency of Korean nuclear activities through the establishment of nation-wide collaborative systems as well as systematic and long term based implementation of positive measures and actions. At the same time, it is also required to strengthen cooperation with IAEA through voluntary contribution program into relevant IAEA activities as well as establishing national long term strategies and road map

  9. Report on the IAEA consultants' meeting on the co-ordination of nuclear reaction data centres (technical aspects)

    Energy Technology Data Exchange (ETDEWEB)

    Schwerer, O [International Atomic Energy Agency, Nuclear Data Section, Vienna (Austria)

    2001-07-01

    This report summarizes the results of the IAEA Consultants' Meeting on the Co-ordination of Nuclear Reaction Data Centres (Technical Aspects), held at the IAEA Headquarters, Vienna, Austria, 28 to 30 May 2001. The meeting was attended by 16 participants from 10 co-operating data centres from six Member States and two International Organizations. The report contains a meeting summary, the conclusions and actions, progress and status reports of the participating data centres and working papers considered at the meeting. (author)

  10. Nuclear knowledge management - The role of the IAEA and its Technical Cooperation programme

    International Nuclear Information System (INIS)

    Ahmad, I.

    2004-01-01

    The paper presents the essentials of sound knowledge management, including NKM: capturing and storing relevant data; conversion of tacit knowledge to explicit knowledge; use information to develop knowledge; networking; building knowledge management culture. An overview is made of the various departments of the IAEA their role from the perspective of KM. It is stated that in addition to consolidating KM-related activities in the departments, there is a need to develop a central focal point, specially to devise strategies for meeting the expected shortages of young professionals and harmonizing and enhancing the training activities. Another area should be strengthening and modernizing INIS and national information services

  11. Proceedings of the 6th IAEA Technical Committee meeting on energetic particles in magnetic confinement systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The sixth IAEA Technical Committee Meeting was organized by Japan Atomic Energy Research Institute. It was held at Naka, JAERI during October 12-14, 1999. The previous meetings of this series, formerly entitled 'Alpha Particles in Fusion Research', were held biennially in Kiev (1989), Aspenas (1991), Trieste (1993), Princeton (1995), and Abingdon (1997). The scope of the meeting covered theoretical and experimental work on alpha particle physics, transport of energetic particles, effects of energetic particles on fusion plasma, related collective phenomena, runaway electrons in disruption and diagnostics on energetic particles. The TCM was attended by over 60 participants. Twenty seven papers were presented orally and 19 papers as posters. This proceedings include 37 contributed papers in the meeting. (J.P.N.)

  12. Establishment of A+M Computer Code Network. Summary report of IAEA technical meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2006-01-01

    Eleven international experts on computational aspects of atomic and molecular data for fusion energy research participated in a technical meeting arranged to discuss the establishment of an A and M Computer Code Network, and held at IAEA Headquarters on 23-25 May 2005. Each participant reviewed the current status of their own speciality and current lines of research, as well as anticipated needs in new data for nuclear fusion energy research. A preliminary method for making these valuable resources more readily available was outlined, and implementation will proceed. Several of the computational tools presented are already available through Internet connections. All the goals of the meeting were achieved, and every participant indicated a desire to see more collaboration and cooperation in fulfilling the A and M data needs for fusion. The discussions, conclusions and recommendations of the meeting are briefly described in this report. (author)

  13. Proceedings of the 6th IAEA Technical Committee meeting on energetic particles in magnetic confinement systems

    International Nuclear Information System (INIS)

    2000-03-01

    The sixth IAEA Technical Committee Meeting was organized by Japan Atomic Energy Research Institute. It was held at Naka, JAERI during October 12-14, 1999. The previous meetings of this series, formerly entitled 'Alpha Particles in Fusion Research', were held biennially in Kiev (1989), Aspenas (1991), Trieste (1993), Princeton (1995), and Abingdon (1997). The scope of the meeting covered theoretical and experimental work on alpha particle physics, transport of energetic particles, effects of energetic particles on fusion plasma, related collective phenomena, runaway electrons in disruption and diagnostics on energetic particles. The TCM was attended by over 60 participants. Twenty seven papers were presented orally and 19 papers as posters. This proceedings include 37 contributed papers in the meeting. (J.P.N.)

  14. Technical cooperation of Tajikistan and IAEA in the field of weapons of mass destruction non-proliferation

    International Nuclear Information System (INIS)

    Salomov, Dzh.A.; Mirsaidov, I.U.

    2010-01-01

    Full text: Republic of Tajikistan is a member of IAEA from 2001. Starting from that period the International Atomic Energy Agency (IAEA) renders assistance to Tajikistan in rehabilitation of sites contaminated in result uranium extraction, strengthens the regulatory authority infrastructure, IAEA through national projects supported Tajikistan by new equipment for Scientific Centre of Oncology under Ministry of Health of the Republic of Tajikistan; new nuclear medicine department is established under Institute of Gastroenterology. Different equipment for identification of soil erosion, diagnosis of brucellosis decease among animals as well as for medical and industry diagnosis were received. Technical cooperation of Tajikistan with IAEA especially is successful on monitoring of uranium tailing dumps of Northern Tajikistan, which facilitates to weapons of mass destruction non-proliferation regime. During 2005-2008 two national and two regional projects were implemented with the following tasks: elaboration of regulatory basis and decision making process with the purpose of evaluation of residual radioactive substances influence on former sites on uranium extraction and reprocessing; assessment of carried out rehabilitation measures; ensuring the compliance international safety norms; action plan development on reducing the residual radioactive substances influence on population and rendering assistance to sustainable development. Seminars and practical training session and personnel training efficiently were carried out, resource base of State Enterprise Vostokredmet was strengthened by equipment, fellowship and scientific visits were organized and etc. In Dushanbe and Chkalovsk a number of seminars were organized. The participants attending those seminars were representatives of regulatory authority and industry. The program of seminars and practical training sessions were targeted for advance training of participants and better understanding of planning issues as

  15. New representative of the Director-General of the IAEA to the United Nations

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives information about Mr. Kwaku Aning (Ghana) who was nominated as the Representative of the Director-General of the IAEA to the United Nations and as Director of its Office at the United Nations Headquarters in New York, USA, as of 1 February 2000

  16. PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    Science.gov (United States)

    Takizuka, Tomonori

    2008-07-01

    This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in

  17. Technical Aspects of Atomic and Molecular Data Processing and Exchange, 21. Meeting of the A+M Data Centres Network. Summary Report of an IAEA Technical Meeting

    International Nuclear Information System (INIS)

    Chung, H.-K.

    2011-11-01

    This report summarizes the proceedings of the IAEA Technical Meeting on 'Technical Aspects of Atomic and Molecular Data Processing and Exchange' (21st Meeting of the A+M Data Centres Network) on 7-9 September 2011. Fourteen participants from 12 data centres of 7 Member States and 2 International Organizations attended the three-day meeting held at the IAEA Headquarters in Vienna. The report includes discussions on the data issues, meeting conclusions and recommendations and the abstracts of presentations presented in the meeting. (author)

  18. Technical Aspects of Atomic and Molecular Data Processing and Exchange, 21. Meeting of the A+M Data Centres Network. Summary Report of an IAEA Technical Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.-K., E-mail: H.Chung@iaea.org [IAEA, Atomic and Molecular Data Unit, Vienna (Austria)

    2011-11-15

    This report summarizes the proceedings of the IAEA Technical Meeting on 'Technical Aspects of Atomic and Molecular Data Processing and Exchange' (21st Meeting of the A+M Data Centres Network) on 7-9 September 2011. Fourteen participants from 12 data centres of 7 Member States and 2 International Organizations attended the three-day meeting held at the IAEA Headquarters in Vienna. The report includes discussions on the data issues, meeting conclusions and recommendations and the abstracts of presentations presented in the meeting. (author)

  19. The IAEA perspective on international and national radioactive waste management information systems

    International Nuclear Information System (INIS)

    Csullog, G.W.; Falck, W.E.; Miaw, S.T.W.

    2001-01-01

    Full text: Over the last decade, two significant developments have taken place relative to international and national information systems for radioactive waste management: (1) The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management came into force 2001.06.18. It establishes commonly shared safety objectives and sets out the specific obligations of Contracting Parties aimed at achieving those objectives. Adherence to these national obligations will be monitored through an international process of peer review by the other Contracting Parties. Each Contracting Party must prepare a report on the measures taken to meet its obligations under the Joint Convention, which will be distributed for review by all Contracting Parties. In review meetings, each national report will be discussed along with the comments and questions from other Contracting Parties. (2) Agenda 21 was issued from the United Nations Conference on Environment and Development that was held June 1992 in Rio de Janeiro. The IAEA was assigned the responsibility to develop Indicators of Sustainable Development (ISD) for radioactive waste management. Among other issues, the ISD are to be developed according to the following criteria: primarily national in scale or scope, relevant to the objective of assessing progress towards sustainable development, and dependent on data that are readily available or available at a reasonable cost to benefit ratio, adequately documented, of known quality and updated at regular intervals. Both the reporting requirements under the Joint Convention and in support of the ISD will likely rely on nationally-based information about radioactive waste management programmes and organizations, activities, plans, policies, relevant laws and regulations and waste inventories. The full or partial use of international radioactive waste information systems to assist reporting is a matter to be decided by Contracting Parties and

  20. Data Evaluation for Atomic, Molecular and Plasma Material Interaction Processes in Fusion. Summary Report of a Joint IAEA-NFRI Technical Meeting

    International Nuclear Information System (INIS)

    Chung, Hyun-Kyung

    2012-12-01

    This report summarizes the proceedings of the Joint IAEA-NFRI Technical Meeting on 'Data Evaluation for Atomic, Molecular and Plasma Material Interaction Processes in Fusion' on 4-7 September 2012. Twenty five participants from 10 Member States and two from the IAEA attended the four-day meeting held at the Daejeon Convention Center in Daejeon, Republic of Korea hosted by the National Fusion Research Institute (NFRI) in conjunction with the 8th International Symposium on Standard Reference Data. The report includes discussions on the issues of the critical assessment of fundamental data required for fusion and plasma applications, meeting conclusions and recommendations. The abstracts of presentations presented in the meeting are attached in the Appendix. (author)

  1. Uncertainty Assessment for Theoretical Atomic and Molecular Scattering Data. Summary Report of a Joint IAEA-ITAMP Technical Meeting

    International Nuclear Information System (INIS)

    Chung, Hyun-Kyung; Bartschat, Klaus; Tennyson, Jonathan; Schultz, David R.

    2014-10-01

    This report summarizes the proceedings of the Joint IAEA-ITAMP Technical Meeting on “Uncertainty Assessment for Theoretical Atomic and Molecular Scattering Data” on 7-9 July 2014. Twenty-five participants from ten Member States and one from the IAEA attended the three-day meeting held at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, USA and hosted by the Institute of Theoretical Atomic, Molecular and Optical Physics (ITAMP). The report includes discussions on the issues of uncertainty estimates for theoretical atomic and molecular scattering data. The abstracts of presentations presented in the meeting are attached in the Appendix. (author)

  2. Report on the IAEA technical meeting on co-ordination of the network of nuclear reaction data centres

    International Nuclear Information System (INIS)

    Schwerer, O.

    2003-08-01

    Results of the IAEA Technical Meeting on the Co-ordination of the Network of Nuclear Reaction Data Centres held at the IAEA Headquarters, Vienna, Austria, 17 to 19 June 2003, are summarised in this report. The meeting was attended by 14 participants from 9 cooperating data centres of five member states and two International Organizations. A meeting summary, the conclusions and actions, progress and status reports of the participating data centres, and working papers considered at the meeting, are given in the relevant sections. (author)

  3. TECHNICAL TRAINING SEMINAR: National Instruments

    CERN Multimedia

    Monique Duval

    2004-01-01

    From 9:30 to 12:00 and from 13:00 to 16:00 hrs - Council Chamber, Salle B, Salle des Pas Perdus National Instruments (NI) on Tour 2004 Claudia Jüngel, Evrem Yarkin, Joel Clerc, Hervé Baour / NATIONAL INSTRUMENTS The special event NI on Tour 2004, run in Germany, Austria and Switzerland, will be at CERN on March 30. Technical seminars and free introductory courses will be offered all day long in the Council Chamber, Salle B, and Salle des Pas Perdus (buildings 61 and 503). Data acquisition systems on PCs, industrial measurement and control techniques, advanced LabVIEW software and PXI instrumentation, and system components for tests and automation will be presented. Walk-in courses will address DIAdem, LabVIEW and data acquisition. Language: English and French Free seminars and courses, no registration Organisers: Rolf Stampfli / IT-CO / 78102 & 160367 / Rolf.Stampfli@cern.ch Davide Vitè / HR-PMD-ATT / 75141 Davide.Vite@cern.ch For more information and the complete event programme, please visit the...

  4. Certified Reference Material IAEA-448: Soil from Oil Field Contaminated with Technically Enhanced Radium-226

    International Nuclear Information System (INIS)

    2013-01-01

    To ensure reliable evaluation of potential radiological hazards and proper decision making related to radiation protection measures, the IAEA, through the IAEA Environment Laboratories, supports Member State laboratories in their efforts to maintain readiness and to improve the quality of analytical results. It does so by producing reference materials, by developing standardized methods for sample collection and analysis, and by conducting interlaboratory comparisons and proficiency tests as tools for external quality control of analytical results. The problem of naturally occurring radioactive material (NORM) contamination is known to be widespread, occurring in oil and gas production facilities throughout the world. It has become a subject of attention in many IAEA Member States. In response to this radiological concern, facilities in many Member States have been characterizing the nature and extent of NORM in oil and gas installations and in the surrounding environment, evaluating the potential for exposure to workers and the public, and developing methods for properly managing these relatively high massic activity residues. Within this context, the IAEA Environment Laboratories, in cooperation with the Atomic Energy Commission of Syria, an IAEA Collaborating Centre, have prepared a new certified reference material of soil contaminated with NORM, identified as IAEA-448, certified for the massic activity of 226Ra. This report presents the methodologies used for the production and certification of IAEA-448

  5. Study on the strategy of participation in CRP and effective technical cooperation with the IAEA

    International Nuclear Information System (INIS)

    Kim, Myung Ro; Choi, P. H.; Kim, K. P.; Shim, J. S.; Shim, M. W.; Min, D.Y.

    2003-07-01

    This project aims to promote the participation from Korea in the IAEA CRP, and provide the CRP projects being undertaken in Korea with R and D funds. In order to achieve these goals, this project supported 24 CRP projects with 50,000,000 won in total. In addition, an analysis on the IAEA CRP announcement for 2003 was undertaken by this project, and promoted participation in the the CRP. As a result, 29 new CRP proposals for 2003 were submitted to the IAEA Finally, some recommendations on the CRP strategy of Korea were proposed

  6. 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herbert L.; Breizman, Boris N.

    2014-02-21

    The 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems took place in Austin, Texas (7–11 September 2011). This meeting was organized jointly with the 5th IAEA Technical Meeting on Theory of Plasma Instabilities (5–7 September 2011). The two meetings shared one day (7 September 2011) with presentations relevant to both groups. Some of the work reported at these meetings was then published in a special issue of Nuclear Fusion [Nucl. Fusion 52 (2012)]. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presented at the meeting. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the ‘viewing’ of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptily and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from symmetry breaking due to finite coil number or magnetic field imperfections introduced by diagnostic or test modules. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self

  7. Outcome and Perspectives from the First IAEA International Technical Meeting on Statistical Methodologies for Safeguards

    International Nuclear Information System (INIS)

    Norman, C.; Binner, R.; Peter, N. J.; Wuester, J.; Zhao, K.; Krieger, T.; Walczak-Typke, A.C.; Richet, S.; Portaix, C.G.; Martin, K.; Bonner, E.R.

    2015-01-01

    Statistical and probabilistic methodologies have always played a fundamental role in the field of safeguards. In-field inspection approaches are based on sampling algorithms and random verification schemes designed to achieve a designed detection probability for defects of interest (e.g., missing material, indicators of tampering with containment and other equipment, changes of design). In addition, the evaluation of verification data with a view to drawing soundly based safeguards conclusions rests on the application of various advanced statistical methodologies. The considerable progress of information technology in the field of data processing and computational capabilities as well as the evolution of safeguards concepts and the steep increase in the volume of verification data in the last decades call for the review and modernization of safeguards statistical methodologies, not only to improve the efficiency of the analytical processes but also to address new statistical and probabilistic questions. Modern computer-intensive approaches are also needed to fully exploit the large body of verification data collected over the years in the increasing number and diversifying types of nuclear fuel cycle facilities in the world. The first biennial IAEA International Technical Meeting on Statistical Methodologies for Safeguards was held in Vienna from the 16 to 18 October 2013. Recommendations and a working plan were drafted which identify and chart necessary steps to review, harmonize, update and consolidate statistical methodologies for safeguards. Three major problem spaces were identified: Random Verification Schemes, Estimation of Uncertainties and Statistical Evaluation of Safeguards Verification Data for which a detailed list of objectives and actions to be taken were established. Since the meeting, considerable progress was made to meet these objectives. The actions undertaken and their outcome are presented in this paper. (author)

  8. Hot Cell Post-Irradiation Examination and Poolside Inspection of Nuclear Fuel. Proceedings of the IAEA-HOTLAB Technical Meeting

    International Nuclear Information System (INIS)

    2013-04-01

    The growing operational requirements for nuclear fuel, such as longer fuel cycles, higher burnups and wider use of transient regimes, require more robust fuel designs and more radiation resistant materials. Development of such advanced fuels is only possible with testing and analysis of their performance and application of adequate post-irradiation examination (PIE) methods and techniques. In addition, operational feedback data from poolside and PIE facilities are absolutely necessary for verification of fuel modelling codes and analysis of fuel failure mechanisms. For these reasons, the International Atomic Energy Agency (IAEA) has supported the international exchange of knowledge and sharing of best practices in the application of modern destructive and non-destructive methods of investigation of highly radioactive materials through a series of technical meetings (TMs), the last of which was held in 2006 in Buenos Aires. Since 1963, similar meetings, initially at the European level, have been organized by the Hot Laboratories and Remote Handling Working Group (HOTLAB), a partner in the development of the IAEA's Post Irradiation Examination Facilities Database (PIEDB), part of the IAEA's Integrated Nuclear Fuel Cycle Information System. With this successful partnership in mind, in 2010 the IAEA Technical Working Group on Fuel Performance and Technology recommended that a joint IAEA-HOTLAB TM be held on 'Hot Cell Post-Irradiation Examination and Pool-Side Inspection of Nuclear Fuel', covering questions relevant to the IAEA sub-programmes on 'Nuclear Power Reactor Fuel Engineering' and 'Management of Spent Fuel from Nuclear Power Reactors'. The TM was held on 23-27 May 2011, in Smolenice, Slovakia, with the participation of a large number of interested organizations and comprehensive coverage of major PIE and poolside inspection issues relating to both operation and storage of fuel for nuclear power reactors. The proceedings, summaries and conclusions of that joint

  9. IAEA Technical Meeting on Innovative Heat Exchanger and Steam Generator Designs for Fast Reactors. Presentations

    International Nuclear Information System (INIS)

    2011-01-01

    concepts incorporating innovative systems and components, as well as advanced fuel and fuel cycle technologies. In particular, innovative heat exchangers and steam generators are key to significanly reduce the capital cost of the NSSS of the fast reactors. The IAEA, within the framework of its Nuclear Energy Department’s Technical Working Group on Fast Reactors (TWG-FR), assists Member States activities in these technology development areas by providing an umbrella for information exchange [topical Technical Meetings (TMs), Workshops and large Conferences] and collaborative R&D [Coordinated Research Projects (CRPs)]. This topical TM is addressing Member States’ expressed information exchange needs in the field of advanced fast reactor design features, with particular attention to innovative heat exchangers and steam generators

  10. The nuclear techniques and IAEA

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The International atomic energy agency (IAEA) and its member states help hundred of development projects using nuclear science and technology. Specialists are sent in centers and research laboratories as counselors or speaker, activities of collective and personal training are organised with national institutes, material is supplied for research works or technical projects executed locally. (N.C.)

  11. A Strategic Study for the enhancement of national nuclear transparency through the extra-contribution to IAEA

    International Nuclear Information System (INIS)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Lee, K. S.; Kim, Y. L.; Kim, K. K.; Park, J. H.; Lee, Y. D.

    2007-12-01

    This study suggested the framework and the action plan in order to enhance international transparency and confidence for national nuclear policy and its activities. And direction and strategies for strengthening cooperation with IAEA through various voluntary contribution into IAEA activities, was also investigated as well as long term strategic road map. It is important to strengthen the nuclear diplomacy in order to increase transparency of Korean nuclear activities through the establishment of nation-wide collaborative systems as well as systematic and long term based implementation of positive measures and actions. At the same time, it is also required to strengthen cooperation with IAEA through extra- contribution program into relevant IAEA activities as well as establishing national long term strategies

  12. A Strategic Study for the enhancement of national nuclear transparency through the extra-contribution to IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Lee, K. S.; Kim, Y. L.; Kim, K. K.; Park, J. H.; Lee, Y. D

    2007-12-15

    This study suggested the framework and the action plan in order to enhance international transparency and confidence for national nuclear policy and its activities. And direction and strategies for strengthening cooperation with IAEA through various voluntary contribution into IAEA activities, was also investigated as well as long term strategic road map. It is important to strengthen the nuclear diplomacy in order to increase transparency of Korean nuclear activities through the establishment of nation-wide collaborative systems as well as systematic and long term based implementation of positive measures and actions. At the same time, it is also required to strengthen cooperation with IAEA through extra- contribution program into relevant IAEA activities as well as establishing national long term strategies.

  13. Trilateral Initiative: IAEA authentication and national certification of verification equipment for facilities with classified forms of fissile material

    International Nuclear Information System (INIS)

    Haas, Eckard; Sukhanov, Alexander; Murphy, John

    2001-01-01

    Full text: Within the framework of the Trilateral Initiative, technical challenges have arisen due to the potential of the International Atomic Energy Agency (IAEA) monitoring fissile material with classified characteristics, as well as the IAEA using facility or host country supplied monitoring equipment. In monitoring material with classified characteristics, it is recognized that the host country needs to assure that classified information is not made available to the IAEA inspectors. Thus, any monitoring equipment used to monitor material with classified characteristics has to contain information security capabilities, such as information barriers. But likewise in using host-country-supplied monitoring equipment, regarding the material being monitored the IAEA has to have confidence that the information provided by the equipment is genuine and can be used by the IAEA in fulfilling its obligation to derive conclusions based on independent verification measures. Thus the IAEA needs to go through the process of authenticating the monitoring equipment. In the same way the host country needs to go through the process to assure itself that the monitoring equipment integrated with an information barrier will not divulge any classified information about an inspected sensitive item. Both processes require on large extent identical measures, but partially also may conflict with each other. The fact that monitoring equipment needs to exhibit information security throughout its lifecycle while at the same time be capable of being authenticated necessitates the need for creative technical approaches to be pursued. (author)

  14. IAEA International Database on Irradiated Nuclear Graphite Properties. Summary report of consultants' meeting. 12. meeting of the Technical Steering Committee

    International Nuclear Information System (INIS)

    Chung, H.K.; Wickham, A.J.

    2010-02-01

    The 12th Meeting of the Technical Steering Committee for the International Database on Irradiated Nuclear Graphite Properties was held on 12-13 November 2009 at the IAEA Headquarters, Vienna, Austria. All discussions, recommendations and actions of this Consultants' Meeting are recorded in this report. The purposes of the meeting were to review the matters and actions identified in the previous meeting, undertake a review of the current status of the database, and make recommendations for action over the next year. This report contains the status of the identified actions as well as a summary of the recommendations on enhancements to the database. (author)

  15. International Atomic Energy Agency publications. Publications catalogue 2001-2002, including IAEA technical documents

    International Nuclear Information System (INIS)

    2002-09-01

    This catalogue lists all sales publications of the IAEA issued and forthcoming between January 2001 and September 2002. Most Agency publications are issued in English, though some are also available in Arabic, Chinese, French, Russian or Spanish. The lists all publications by subject category, in alphabetical order within each category

  16. IAEA and the stimulation to the nuclear technology and technics for development

    International Nuclear Information System (INIS)

    Adede, A.O.

    1983-01-01

    The IAEA stimulate the utilization of nuclear technology in developing countries for peaceful uses. In this context, some research projects about production and conservation of food and fly combat are presented. The Arcal project and INIS information system are described [pt

  17. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  18. Technical aspects of atomic and molecular data processing and exchange, 20. meeting of the A+M Data Centres and ALADDIN Network. Summary report of an IAEA technical meeting

    International Nuclear Information System (INIS)

    Humbert, D.; Braams, B.J.

    2010-01-01

    The proceedings of the IAEA Advisory Group Meeting on Technical Aspects of Atomic and Molecular Data Processing and Exchange (20th Meeting of A+M Data Centres Network), 7-9 September 2009 at IAEA Headquarters in Vienna, are summarized. The meeting conclusions and recommendations on priorities in A+M data compilation and evaluation and on technical aspects of data processing and exchange are also presented. (author)

  19. First principles based transport theory. Report on the IAEA technical committee meeting held at Kloster Seeon, Germany, 21-23 June 1999

    International Nuclear Information System (INIS)

    Biskamp, D.; Nuehrenberg, J.; Diamond, P.H.; Garbet, X.; Lin, Z.; Rogers, R.N.

    2000-01-01

    This IAEA Technical Committee Meeting on plasma transport theory was organized jointly by the Max-Planck-Institute for Plasma Physics, Garching, and the IAEA, Vienna. It took place on 21-23 June 1999 in Kloster Seeon, Germany. The topics were: 1. Turbulent transport in the tokamak core plasma; 2. Turbulence suppression, shear amplification and transport bifurcation dynamics; 3. Turbulence transport in the tokamak edge plasma; 4. Global aspects of turbulent transport in tokamak plasmas; 5. Neoclassical transport, in particular in stellarators

  20. The WCO/IAEA technical committee meeting to develop guidance related to illicit trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Weil, L [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    1997-07-01

    Following the initiative of the Director General of the International Atomic Energy Agency, Dr. Hans Blix, of September 1995 and the subsequent resolution of the 38. session of the General Conference, the IAEA and the World Customs Organization jointly undertook action to deal with the problems that can be caused by the illicit movement of radioactive materials. The ``Illicit Trafficking Programme``, co-sponsored by the two organizations aims at developing close co-operation between the Member States` radiation and nuclear safety competent authorities and their border control and customs authority counterparts. The main elements of this programme are: (1) the development of a guidance document covering the prevention and detection of unauthorized movements of radioactive materials as well as the proper response to such activities; (2) the definition of the terms for a pilot study to test border monitoring equipment under field conditions; and (3) the creation of an IAEA/WCO training module for border control and customs officers.

  1. The WCO/IAEA technical committee meeting to develop guidance related to illicit trafficking

    International Nuclear Information System (INIS)

    Weil, L.

    1997-07-01

    Following the initiative of the Director General of the International Atomic Energy Agency, Dr. Hans Blix, of September 1995 and the subsequent resolution of the 38. session of the General Conference, the IAEA and the World Customs Organization jointly undertook action to deal with the problems that can be caused by the illicit movement of radioactive materials. The ''Illicit Trafficking Programme'', co-sponsored by the two organizations aims at developing close co-operation between the Member States' radiation and nuclear safety competent authorities and their border control and customs authority counterparts. The main elements of this programme are: (1) the development of a guidance document covering the prevention and detection of unauthorized movements of radioactive materials as well as the proper response to such activities; (2) the definition of the terms for a pilot study to test border monitoring equipment under field conditions; and (3) the creation of an IAEA/WCO training module for border control and customs officers

  2. Improving the Database for Physical and Chemical Sputtering. Summary Report of an IAEA Technical Meeting

    International Nuclear Information System (INIS)

    Braams, B. J.

    2013-02-01

    Seven experts and IAEA staff convened in Vienna to review the existing database for physical and chemical sputtering of fusion wall materials and to make recommendations about priorities for further work. Recommendations were made about database needs for pure and mixed Be, C and W wall material for the processes of physical and chemical sputtering, reflection, penetration and trapping and also for effects of surface and material microstructure. The proceedings and recommendations of the meeting are summarized here. (author)

  3. Radioactive waste management services. Safety and technical advisory services available from the IAEA

    International Nuclear Information System (INIS)

    2000-09-01

    This brochure provides updated information about the services and assistance the International Atomic Energy Agency (IAEA) is able to render, upon request by Member States, in the area of radioactive waste management. The ultimate objective is to ensure that all wastes are managed safely and in a way which protects both individual and the environment, now and in the future. The IAEA is the sole global international organization with the statutory authority to establish safety standards for the protection of health against exposure to ionizing radiation. These include safety standards for radioactive waste management. A comprehensive set of such standards is being established, and continuously updated, under the Agency's aegis, which lay out the requirements for the safe management of all types of radioactive waste. The Agency has a further statutory obligation ro provide for the application of these standards at the request of States. The safety of radioactive waste management is not attainable through safety standards alone but requires special technology. An additional function of the IAEA is thus to foster the transfer of technology among States, including the specific technology needed to ensure safe radioactive waste management

  4. Technical results of Y-12/IAEA field trial of remote monitoring system

    International Nuclear Information System (INIS)

    Corbell, B.H.; Whitaker, J.M.; Welch, J.

    1997-01-01

    A Remote Monitoring System (RMS) field trial has been conducted with the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. The RMS included a variety of Sandia, Oak Ridge, and Aquila sensor technologies which provide containment seals, video monitoring, radiation asset measurements, and container identification data to the on-site DAS (Data Acquisition System) by way of radio-frequency and Echelon LonWorks networks. The accumulated safeguards information was transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines. The technologies tested in the remote monitoring environment are the RadCouple, RadSiP, and SmartShelf sensors from the ORSENS (Oak Ridge Sensors for Enhancing Nuclear Safeguards) technologies; the AIMS (Authenticated Item Monitoring System) motion sensor (AMS), AIMS fiber-optic seal (AFOS), ICAM (Image Compression and Authentication Module) video surveillance system, DAS (Data Acquisition System), and DIRS (Data and Image Review Station) from Sandia; and the AssetLAN identification tag, VACOSS-S seal, and Gemini digital surveillance system from Aquila. The field trial was conducted from October 1996 through May 1997. Tests were conducted during the monthly IAEA Interim Inventory Verification (IIV) inspections for evaluation of the equipment. Experience gained through the field trials will allow the technologies to be applied to various monitoring scenarios

  5. Preliminary considerations on developing IAEA technical safeguards for LMFBR power systems

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1980-09-01

    Nuclear fuel cycles safeguards should be considered in the dynamic context of a world deployment of various reactor types and varying availability of fuel-cycle services. There will be a close interaction between thermal-reactor cycles and the future deployment of fast breeders. The quantitites of plutonium and the reprocessing, conversion, fabrication, and storage methods of the fuel for the fast breeders will have a significant impact on safeguards techniques. The approach to the fast breeder fuel cycle safeguards follows the general safeguards system approach proposed by the IAEA. Objective of IAEA safeguards is the detection of diversion of nuclear material and deterrence of such diversion. To achieve independent verification of material balance accountancy requires the capability to monitor inventory status and verify material flows and quantities of all nuclear materials subject to safeguards. Containment and surveillance measures are applied to monitor key measurement points, maintain integrity of material balance, and complement material accountancy. The safeguards study attempts to develop a generic reference IAEA Safeguards System and explores various system options using containment/surveillance and material accountancy instrumentation and integrated systems designs

  6. Technical support organization of national regulators: Challenges and strategy

    International Nuclear Information System (INIS)

    Mallick, S.A.; Maqbul, N.; Kanwal, S.; Hashmi, J.A.

    2007-01-01

    technical support organization called the 'Centre for Nuclear Safety' within PNRA to meet the future regulatory challenges. This paper discusses the objectives and organization of Centre for Nuclear Safety and the challenges that the centre is facing as the strategy being devised to meet those challenges. The paper includes a brief description of co-operation under an IAEA TC project titled 'Further Improvement of Nuclear Regulatory Infrastructure in Pakistan-(PAK/9/28)' which is an example of international co-operation in the establishment of technical support organization to enhance the regulatory effectiveness of the national regulator in Pakistan. (author)

  7. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  8. A Study on the IAEA Technical Exhibition on Growth and Development during Nuclear Half a Century in Korea

    International Nuclear Information System (INIS)

    Lee, E. J.; Min, B. J.; Han, K. W.; Nam, Y. M.; Joo, Y. C.; Won, J. Y.; Seo, M. W.; Kim, M. R.; Lee, J. K.

    2009-09-01

    The Republic of Korea is holding an exhibition to share the experience and relevant knowledge on the development of nuclear infrastructure including human resources with the IAEA Member States. It is on display at Booth No. 7-9, Ground Floor of Building C, VIC Rotunda for one week from 14 to 18 September 2009. The exhibition, under the theme 'Half a Century of Nuclear Energy Progress', puts emphasis on Korea's experience and knowledge accumulated in the course of implementing nuclear power projects particularly in the development of nuclear infrastructure including human resources through the past half century. The experience and knowledge could serve as an invaluable model to the IAEA Member States that are interested in nuclear power projects. This project covers development of display material for the exhibition as follows; - Development of 6 minute video images titled 'Half a Century of Nuclear Energy Progress' to be presented for the exhibition. - Development of panels titled 'Korean Experience on Nuclear Infrastructure Development', and 'Human Resources Development as Top Priority', - Selection of display materials, i.e., SMART Panel which is recently developed by the KAERI, 4+D Technology for Nuclear Systems Engineering which is developed by the Seoul National University, - Publication of exhibition brochure which explains the development of Korea's nuclear energy, Korea's experience with human resources development, and closer cooperation between Korea and the IAEA, - Publication of the exhibition invitation card

  9. IAEA film library

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    Most of the scientific and technical films shown during the Second Geneva Conference for the Peaceful Uses of Atomic Energy were donated to IAEA by the producing countries at the end of the Conference. They will form the basic stock for the Agency's loan service intended to provide atomic energy institutions in Member States with film material. A detailed catalogue of the films, classified according to subject and giving conditions of loan or purchase, is now being prepared. In addition to this, information on all films produced in Member Countries dealing with the peaceful uses cf atomic energy is being assembled. The documentary information contained in the films in IAEA's possession relates to the following subjects: national programmes; nuclear physics; accelerators; plasma and fusion; reactors (power, research, material testing and experimental); prospecting and mining; ore dressing; metallurgy; production of fuel elements; treatment of irradiated fuel elements; protection against radiation; detection and counting; uses of radiation in medicine, biochemistry, agriculture and industry; industrial application of nuclear explosions. Most of the commentaries are in the language of the producing country. A few films are available in a choice of two languages. The films donated to the Agency total 82, two of which have been produced in Canada, 13 in France, one in India, one in Romania, one in Spain, 14 in the United Kingdom, one in the Union of South Africa, 47 in the United States of America and two in the USSR: they are mostly illustrations of papers presented at the Second Geneva Conference. In arranging for the circulation of scientific and technical films IAEA wishes to help meet some of the training and information needs of Member States. It is hoped that all organizations producing films on the peaceful uses of atomic energy will entrust copies to the IAEA with a view to their widest possible circulation. In the meantime, the Agency's films have been given

  10. IAEA film library

    International Nuclear Information System (INIS)

    1959-01-01

    Most of the scientific and technical films shown during the Second Geneva Conference for the Peaceful Uses of Atomic Energy were donated to IAEA by the producing countries at the end of the Conference. They will form the basic stock for the Agency's loan service intended to provide atomic energy institutions in Member States with film material. A detailed catalogue of the films, classified according to subject and giving conditions of loan or purchase, is now being prepared. In addition to this, information on all films produced in Member Countries dealing with the peaceful uses cf atomic energy is being assembled. The documentary information contained in the films in IAEA's possession relates to the following subjects: national programmes; nuclear physics; accelerators; plasma and fusion; reactors (power, research, material testing and experimental); prospecting and mining; ore dressing; metallurgy; production of fuel elements; treatment of irradiated fuel elements; protection against radiation; detection and counting; uses of radiation in medicine, biochemistry, agriculture and industry; industrial application of nuclear explosions. Most of the commentaries are in the language of the producing country. A few films are available in a choice of two languages. The films donated to the Agency total 82, two of which have been produced in Canada, 13 in France, one in India, one in Romania, one in Spain, 14 in the United Kingdom, one in the Union of South Africa, 47 in the United States of America and two in the USSR: they are mostly illustrations of papers presented at the Second Geneva Conference. In arranging for the circulation of scientific and technical films IAEA wishes to help meet some of the training and information needs of Member States. It is hoped that all organizations producing films on the peaceful uses of atomic energy will entrust copies to the IAEA with a view to their widest possible circulation. In the meantime, the Agency's films have been given

  11. Forest health monitoring: 2007 national technical report

    Science.gov (United States)

    Barbara L. Conkling

    2011-01-01

    The Forest Health Monitoring Program produces an annual technical report that has two main objectives. The first objective is to present information about forest health from a national perspective. The second objective is to present examples of useful techniques for analyzing forest health data new to the annual national reports and new applications of techniques...

  12. Forest health monitoring: 2005 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2007-01-01

    The Forest Health Monitoring program's annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the Santiago Declaration. The results...

  13. Forest health monitoring: 2009 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The annual national technical report of the Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  14. Forest health monitoring: 2008 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report has three objectives: (1) to present forest health status and trends from a national or a multi-State regional perspective using a variety of sources, (2) to introduce new techniques for analyzing forest health data, and (3) to report results of recently completed evaluation monitoring...

  15. Forest health monitoring: 2006 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2009-01-01

    The Forest Health Monitoring Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the...

  16. Future direction for implementing the multilateral cooperation with the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Pyo; Hong, Young Don

    1999-03-01

    Korea has achieved remarkable results in the development of nuclear technology over the past years. Nuclear R and D programs have been actively pursued with the aim of enhancing nuclear technological capability to the level of nuclear advanced countries by early 2000. Worth noting is the fact that the IAEA has played an important role in facilitating Korea's acquisition of advanced nuclear technologies by participating in IAEA technical cooperation programmes, and technical cooperation with the IAEA has laid a firm groundwork for Korea to achieve self-reliance in nuclear technology. Technical cooperation with the IAEA should be steadily pursued so that Korea can play a leading role in the international nuclear arena in the years to come. Up to now, the study of major programmes and of the current status of overall technical cooperation projects, which have been implemented by the IAEA, has been insufficient. It should be noted that analysis of the assistance provided by the IAEA leaves something to be desired. In this regard, analyzing the current status of technical cooperation projects as well as recommending policy direction is required in a bid to implement IAEA technical cooperation projects systematically. Korea's status within the IAEA, including activities in the Advisory Committee and the current status of its participation in Coordinated Research Programmes (CRP) and other major programmes underway, is presented in this report. The policy direction for and implementation status of IAEA technical cooperation programmes are explained at length. The current status of technical cooperation programmes carried out in the 1997-1998 cycle and those to be implemented in the 1992-2000 cycle are also described in this report. Strategies for upgrading Korea's status within the IAEA as well as directions for nuclear cooperation through the IAEA were presented in this study to positively deal with rapid changes in the international nuclear arena and to

  17. Future direction for implementing the multilateral cooperation with the IAEA

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Hong, Young Don

    1999-03-01

    Korea has achieved remarkable results in the development of nuclear technology over the past years. Nuclear R and D programs have been actively pursued with the aim of enhancing nuclear technological capability to the level of nuclear advanced countries by early 2000. Worth noting is the fact that the IAEA has played an important role in facilitating Korea's acquisition of advanced nuclear technologies by participating in IAEA technical cooperation programmes, and technical cooperation with the IAEA has laid a firm groundwork for Korea to achieve self-reliance in nuclear technology. Technical cooperation with the IAEA should be steadily pursued so that Korea can play a leading role in the international nuclear arena in the years to come. Up to now, the study of major programmes and of the current status of overall technical cooperation projects, which have been implemented by the IAEA, has been insufficient. It should be noted that analysis of the assistance provided by the IAEA leaves something to be desired. In this regard, analyzing the current status of technical cooperation projects as well as recommending policy direction is required in a bid to implement IAEA technical cooperation projects systematically. Korea's status within the IAEA, including activities in the Advisory Committee and the current status of its participation in Coordinated Research Programmes (CRP) and other major programmes underway, is presented in this report. The policy direction for and implementation status of IAEA technical cooperation programmes are explained at length. The current status of technical cooperation programmes carried out in the 1997-1998 cycle and those to be implemented in the 1992-2000 cycle are also described in this report. Strategies for upgrading Korea's status within the IAEA as well as directions for nuclear cooperation through the IAEA were presented in this study to positively deal with rapid changes in the international nuclear arena and to efficiently

  18. Independent verification of a material balance at a LEU fuel fabrication plant. Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Sorenson, R.J.; McSweeney, T.I.; Hartman, M.G.; Brouns, R.J.; Stewart, K.B.; Granquist, D.P.

    1977-11-01

    This report describes the application of methodology for planning an inspection according to the procedures of the International Atomic Energy Agency (IAEA), and an example evaluation of data representative of low-enriched uranium fuel fabrication facilities. Included are the inspection plan test criteria, the inspection sampling plans, the sample data collected during the inspection, acceptance testing of physical inventories with test equipment, material unaccounted for (MUF) evaluation, and quantitative statements of the results and conclusions that could be derived from the inspection. The analysis in this report demonstrates the application of inspection strategies which produce quantitative results. A facility model was used that is representative of large low-enriched uranium fuel fabrication plants with material flows, inventory sizes, and compositions of material representative of operating commercial facilities. The principal objective was to determine and illustrate the degree of assurance against a diversion of special nuclear materials (SNM) that can be achieved by an inspection and the verification of material flows and inventories. This work was performed as part of the USA program for technical assistance to the IAEA. 10 figs, 14 tables

  19. IAEA Technical Co-operation activities: Asia and the Pacific. Workshop on training nuclear laboratory technicians

    International Nuclear Information System (INIS)

    Roeed, S.S.

    1976-01-01

    The workshop was held to exchange information on existing facilities and programmes in Asia and the Pacific for training nuclear laboratory technicians, to identify future training needs and to assess the need for IAEA's involvement in this field. As the participants outlined the requirements for nuclear laboratory technician training and the facilities available in their respective countries, it became evident that, in addition to the training of radioisotope laboratory technicians, they also wished to review the need for technician training for the operation of nuclear power plants and industrial application of atomic energy. The terms of reference of the workshop were extended accordingly. The opening address by Chang Suk Lee, the Korean Vice Minister of Science and Technology, noted the valuable contribution to quality control and other industrial uses that nuclear techniques have made in his country. He also reviewed the application of nuclear techniques in Korean agriculture and medicine. The participants explored various forms of co-operation that could be established between countries of the region. Exchange programmes, not only for students but also for expert teachers, and the exchange or loan of equipment were suggested. It was felt that some generalized training courses could be organized on a regional basis, and two countries advocated the setting up of a regional training centre. One suggestion was to arrange regional training courses in special fields that would move from one country to another. The need was felt for periodic regional meetings on training methods, course content and other questions relating to training of laboratory technicians. The IAEA was requested to act as a clearinghouse for information on available training facilities in the region and to advise on the curricula for technician training courses. The Agency was also asked to organize short courses for the training of instructors of technicians in the various fields of atomic

  20. Research Reactor Application for Materials under High Neutron Fluence. Proceedings of an IAEA Technical Meeting (TM-34779)

    International Nuclear Information System (INIS)

    2011-05-01

    Research reactors (RRs) have played, and continue to play, a key role in the development of the peaceful uses of nuclear energy and technology. The role of the IAEA is to assist Member States in the effective utilization of these technologies in various domains of research such as fundamental and applied science, industry, human health care and environmental studies, as well as nuclear energy applications. In particular, material testing reactors (MTRs), serve as unique tools in scientific and technological development and they have quite a wide variety of applications. Today, a large range of different RR designs exist when compared with power reactors and they also have different operating modes, producing high neutron fluxes, which may be steady or pulsed. Recently, an urgent need has arisen for the development of new advanced materials, for example in the nuclear industry, where RRs offer capacities for irradiation programmes. Besides the scientific and research activities and commercial applications, RRs are also used extensively for educational training activities for scientists and engineers. This report is a compilation of outputs of an IAEA Technical Meeting (TM-34779) held on Research Reactor Application for Materials under High Neutron Fluence. The overall objective of the meeting was to review typical applications of small and medium size RRs, such as material characterization and testing, neutron physics and beam research, neutron radiography and imaging as well as isotope production and other types of non-nuclear applications. Several issues were discussed during the meeting, in particular: (1) recent development of irradiation facilities, specific irradiation programmes and their implementation; (2) effective and optimal RR operation regimes for irradiation purposes; (3) sharing of best practices and existing technical knowledge; and (4) fostering of advanced or innovative technologies, e.g. information exchange and effective collaboration. This

  1. IAEA coordinated research project on improvement of technical measures to detect and respond to illicit trafficking of nuclear and other radioactive materials

    International Nuclear Information System (INIS)

    Abedin-Zadeh, R.; Abou-Zahra, A.; Weiss, B.

    2002-01-01

    Full text: Monitoring to detect the illicit trafficking of nuclear and other radioactive materials includes screening vehicles, cargo and individuals at borders to 1) detect smuggling of these materials; 2) locate, measure and characterize the source of radiation; and 3) fully characterize any confiscated material. Currently available instruments used for the field measurements are not optimized for this purpose and may not detect shielded plutonium and highly enriched uranium. Confiscated radioactive materials need to be characterized with macro- and microanalysis techniques to fully understand the significance of the material and to provide credible evidence in the event of prosecution of the traffickers. Although most States have national laboratories capable to determine the basic characteristics of such material, only a few member States have the sophisticated analytical capability necessary to perform proper forensics analysis. The coordinated research project on 'Improvement of Technical Measures to Detect and Respond to Illicit Trafficking of Nuclear and other Radioactive Materials' has been established to: Improve the detection capability and performance of hand-held and portable isotope measurement devices, including the technical and functional specifications for such devices; standardize procedures to examine suspicious packages and to assess the hazard of confiscated material; and develop recommendations and guidelines for establishing a system to provide nuclear forensics support to member States for the characterization of seized nuclear material. Related to the nuclear forensics support, it should be noted that with the inception of the Agency's nuclear security programme in 1995, the IAEA has offered the services of its laboratories in Seibersdorf and associated laboratories to assist States in analysing confiscated nuclear materials. Since 1993 the IAEA has received reports of over 300 cases of smuggling of nuclear and other radioactive materials

  2. Technical video documentation UN Security Council Resolution 687. 7. IAEA inspection in Iraq October 1991, IAEA inspection no. 8 Iraq November 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This video documents the 7th and 8th IAEA inspections to Iraq (A1 Tuwaitha, A1 Atheer, A1 Qa Qaa sites and A1 Hatteen High Explosive Test Site) and the destruction and removal of various equipment suitable for nuclear weapon development

  3. First generation of fusion power plants: Design and technology. Proceedings of the 2. IAEA technical meeting

    International Nuclear Information System (INIS)

    2008-01-01

    This series of meetings has been initiated under recommendation of the International Fusion Research Council for the IAEA and is expected to initiate, develop and mature ideas on fusion strategy that would be of benefit for all players. The present objectives of this meeting are to provide a forum to discuss concepts, technology and environmental aspects of future fusion power plants, the next step following ITER, their role in future energy mix and to assess a selection of urgent topics aiming at identifying the physics and the technological requirements that ITER and a fusion grade materials developing programme will have to address to support the construction of a DEMO(s) fusion power plant(s) prototype demonstrating viable economics. The meeting was organized in five sessions addressing five topics: - (PPCA) Power Plant Concepts and systems Analysis. - (MCP) Materials analysis/Components design/Plasma requirements - (NE) Non-Electric applications of fusion - (SESE) Social, Economic, Safety and Environmental aspects of fusion - (EP) Energy Policy, strategy and scenario for fusion development. A summary session took place at the end of the meeting. Thirty-three participants representing 12 Countries and 3 International Organizations were present at the meeting

  4. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  5. The IAEA and Y2K. The Agency's action plan on the year 2000 problem

    International Nuclear Information System (INIS)

    Cherif, H.S.; Winkels, J.

    1999-01-01

    The article describes the aims of it IAEA action plan concerned with Year 2000 (Y2K) problem and the results achieved during four years of work, including the technical documents dealing with the Y2K computer problem, published by IAEA. This include IAEA systems and operations, contingency plans, coordination in the United Nations system. Through the IAEA Internet site, a series of Web pages were developed by the Division of Public Information to co-ordinate the global exchange of information on the IAEA Y2K activities and related topics. The site is open to Member States and international organisations within and outside United Nations system

  6. Summary Report of an IAEA Technical Meeting on Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators

    International Nuclear Information System (INIS)

    Abriola, D.; Dimitriou, P.; Ricard-McCutchan, E.; Tuli, J.K.

    2013-08-01

    Biennial meetings of the International Network of Nuclear Structure and Decay Data (NSDD) evaluators are held under the auspices of the IAEA. The Network consists of evaluation groups and data service centres in several countries. This Network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration are included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS). The results represent the recommended 'best values' for the various nuclear structure and decay data properties. These data and bibliographic details are also available through the World Wide Web, CD-ROM, wall charts of the nuclides, Nuclear Wallet Cards and other such media. The US efforts are coordinated by the Coordinating Committee of the US Nuclear Data Program. The ENSDF master database is maintained by the US National Nuclear Data Centre at Brookhaven National Laboratory, and these data are also available from other distribution centres including the IAEA Nuclear Data Section. Biennial meetings of the Network are sponsored by the IAEA Nuclear Data Section, and have the following objectives: (a) coordination of the work of all centres and groups participating in the compilation, evaluation and dissemination of NSDD; (b) maintenance of and improvements to the standards and rules governing NSDD evaluations; (c) review of the development and common use of computerized systems and databases maintained specifically for this activity. In those meetings detailed studies and discussions are undertaken over a five-day period. This document represents a summary of the Network meeting held at the Kuwait Foundation for the Advancement of Sciences (KFAS), Safat, Kuwait, from 27 to 31 January 2013. Thirty-six nuclear data specialists from seventeen countries attended this meeting to

  7. Summary Report of an IAEA Technical Meeting on Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators

    Energy Technology Data Exchange (ETDEWEB)

    Abriola, D.; Dimitriou, P. [IAEA Nuclear Data Section, Vienna (Austria); Ricard-McCutchan, E.; Tuli, J. K. [Brookhaven National Laboratory, Upton, NY (United States)

    2013-08-15

    Biennial meetings of the International Network of Nuclear Structure and Decay Data (NSDD) evaluators are held under the auspices of the IAEA. The Network consists of evaluation groups and data service centres in several countries. This Network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration are included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS). The results represent the recommended 'best values' for the various nuclear structure and decay data properties. These data and bibliographic details are also available through the World Wide Web, CD-ROM, wall charts of the nuclides, Nuclear Wallet Cards and other such media. The US efforts are coordinated by the Coordinating Committee of the US Nuclear Data Program. The ENSDF master database is maintained by the US National Nuclear Data Centre at Brookhaven National Laboratory, and these data are also available from other distribution centres including the IAEA Nuclear Data Section. Biennial meetings of the Network are sponsored by the IAEA Nuclear Data Section, and have the following objectives: (a) coordination of the work of all centres and groups participating in the compilation, evaluation and dissemination of NSDD; (b) maintenance of and improvements to the standards and rules governing NSDD evaluations; (c) review of the development and common use of computerized systems and databases maintained specifically for this activity. In those meetings detailed studies and discussions are undertaken over a five-day period. This document represents a summary of the Network meeting held at the Kuwait Foundation for the Advancement of Sciences (KFAS), Safat, Kuwait, from 27 to 31 January 2013. Thirty-six nuclear data specialists from seventeen countries attended this meeting to

  8. IAEA Technical committee meeting on methods used in design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    Vitikainen, E.; Silfverberg, P.

    1985-01-01

    The meeting was held in Espoo, Finland and hosted by the Technical Research Centre of Finland (VTT), and was arranged to report and discuss design methods, licensing practise, operational experience as well as economic aspects connectied with spent fuel storage. This report contains session summaries by the session chairmen and the papers presented at the meeting

  9. Regional technical cooperation model project, IAEA - RER/2/2004 ''quality control and quality assurance for nuclear analytical techniques'

    International Nuclear Information System (INIS)

    Arikan, P.

    2002-01-01

    An analytical laboratory should produce high quality analytical data through the use of analytical measurements that is accurate, reliable and adequate for the intended purpose. This objective can be accomplished in a cost-effective manner under a planned and documented quality system of activities. It is well-known that serious deficiencies can occur in laboratory operations when insufficient attention is given to the quality of the work. It requires not only a thorough knowledge of the laboratory's purpose and operation, but also the dedication of the management and operating staff to standards of excellence. Laboratories employing nuclear and nuclear-related analytical techniques are sometimes confronted with performance problems which prevent them from becoming accepted and respected by clients, such as industry, government and regulatory bodies, and from being eligible for contracts. The International Standard ISO 17025 has been produced as the result of extensive experience in the implementation of ISO/IEC Guide 25:1990 and EN 45001:1989, which replaces both of them now. It contains all of the requirements that testing and calibration laboratories must meet if they wish to demonstrate that they operate a quality system that is technically competent, and are able to generate technically valid results. The use of ISO 17025 should facilitate cooperation between laboratories and other bodies to assist in the exchange of information and experience, and in the harmonization of standards and procedures. IAEA model project RER/2/004 entitled 'Quality Assurance/Quality Control in Nuclear Analytical Techniques' was initiated in 1999 as a Regional TC project in East European countries to assist Member State laboratories in the region to install a complete quality system according to the ISO/IEC 17025 standard. 12 laboratories from 11 countries plus the Agency's Laboratories in Seibersdorf have been selected as participants to undergo exercises and training with the

  10. The decommissioning of WWER type nuclear power plants. Final report on an IAEA regional technical co-operation project

    International Nuclear Information System (INIS)

    2000-01-01

    Numerous WWER-440 nuclear power plants are in operation in central and eastern Europe and a small number have already been shut down. In addition to reactors already shut down, many other reactors will reach the end of their design lifetime in a few years and become candidates for decommissioning. It is unfortunate that little consideration was devoted to decommissioning of WWER-440 reactors at the plant design and construction stage, and little emphasis was placed on planning for decommissioning. It is within this context that the IAEA launched a regional technical co-operation project in 1994 with the aim of providing guidance on planning and management of decommissioning for WWERs. The project, which had a duration of four years (1995-1998), included the organization of workshops and scientific visits to countries having WWERs and other countries where active decommissioning projects were under way. Eventually, participants suggested the consolidation of expert guidance and collective opinions into a TECDOC, which was drafted by both designated participants from project recipient countries and invited experts. The TECDOC has the aim of serving as a stimulus for all concerned parties in central and eastern European countries to initiate concrete decommissioning planning, including assessment of existing and required resources for the eventual implementation of decommissioning plans. In addition, the regional technical co-operation project has managed to bring together in this TECDOC a number of good practices that could be useful in WWER-440 decommissioning

  11. Short report of the national programme presented at the IAEA IWGFPT in Vienna, 3-5 February 1981

    International Nuclear Information System (INIS)

    Knudsen, P.

    1981-01-01

    This note was prepared as one of the introductory contributions at the IAEA Specialists' Meeting on ''High Burnup in Power Reactor Fuel'' at Mol, 24-27 March 1981. Consequently, emphasis was placed on investigations where high burnups, here defined as approximately 30,000 MWD/tU or above, have been achieved. It should also be borne in mind that the reporting on national programs at the meetings of the International Working Group on Water Reactor Fuel Performance and Technology (IWG-FPT) of the IAEA is informal; it was not attempted to take detailed notes during the meeting, the present overview is, therefore, mainly based on those contributions where hand-outs were available. The various undertakings are mentioned alphabetically countrywise, according to IAEA practice

  12. Technical aspects of atomic and molecular data processing and exchange. 19. meeting of the A+M Data Centres and ALADDIN Network. Summary report of an IAEA technical meeting

    International Nuclear Information System (INIS)

    Humbert, D.

    2008-05-01

    The proceedings of the IAEA Technical Meeting on Technical Aspects of Atomic and Molecular Data Processing and Exchange (19th Meeting of A+M Data Centres and ALADDIN Network), held on 3-5 October, 2007 in Vienna, Austria, are briefly described. Conclusions and recommendations are presented concerning various proposed projects and their priorities involving A+M data compilation and evaluation and technical aspects of data processing, exchange, and distribution. (author)

  13. Summary report of IAEA technical meeting on technical aspects of atomic and molecular data processing and exchange - 18th meeting of the A+M Data Centres and ALADDIN Network

    International Nuclear Information System (INIS)

    Hubert, D.

    2006-01-01

    The IAEA Technical Meeting on 'Technical Aspects of Atomic and Molecular Data Processing and Exchange - 18th Meeting of A+M Data Centres and ALADDIN Network' was held on 10-11 October 2005, in Vienna, Austria. The discussions and presentations focused on the priorities in A+M data compilation and evaluation, and are summarized in this report. Conclusions and recommendations on the technical aspects of data processing, exchange and distribution are also presented. (author)

  14. Tracking Nutritional Progress: IAEA Capacity Building Programmes

    International Nuclear Information System (INIS)

    Slater, Christine

    2014-01-01

    Kuwait: The IAEA has helped to establish a body composition assessment suite at the Kuwait Institute for Scientific Research. Facilities include an isotope ratio mass spectrometer for analysis of deuterium and oxygen-18 enrichment, and dual energy X ray absorptiometry for assessment of bone mineral content. Botswana: The IAEA has helped to establish facilities for analysis of deuterium enrichment by Fourier transform infrared (FTIR) spectrometry at the National Food Technology Research Centre (NFTRC). Ecuador: Through national and regional technical cooperation projects, the IAEA has helped to establish facilities for analysis of deuterium enrichment by FTIR spectrometry in 17 Latin American countries, including Ecuador. Costa Rica: With the help of the IAEA, the University of Costa Rica has established a laboratory for the assessment of body composition using deuterium dilution techniques

  15. Abstracts of 4. IAEA technical meeting on the theory of plasma instabilities

    International Nuclear Information System (INIS)

    2009-05-01

    The Fourth IAEA-TM on Theory of Plasma Instabilities provided a forum for open discussion on theoretical and computational physics issues relevant to burning plasma. The meeting covered linear and non-linear theory and simulation of plasma instabilities, including core/edge turbulence, magneto-hydrodynamic (MHD) process, high energy particle driven dynamics and their effects on plasma confinement. Special attention was paid to the multi-scale interaction dynamics in better understanding the burning plasma and also to the modeling of such complex physical processes. The meeting also organized a panel session to discuss the prospect of plasma theory and simulation for future fusion research for the ITER ERA. Young scientists were enthusiastically encouraged to enjoy this session which may stimulate the research for the future. The meeting covered the following topics: (1) Overview: State of the art and importance of multi-scale physics for understanding burning plasmas; (2) Linear and nonlinear instabilities and their theoretical/computational methodologies including critical gradient problem and comparison with experiments; (3) Core/edge turbulent transport including momentum transport, turbulence-profile interaction and barrier formation, etc and their theoretical/ computational understandings; (4) Magneto-hydrodynamic (MHD) instability including energetic particle physics and their impact on confinement in burning plasmas; (5) Physics and modeling of multi-scale interactions and their impact on the plasma performance and control. Those topics were discussed with close relevance to key experimental results. A panel session 'Theoretical Plasma Physics for the ITER ERA' was organized under interdisciplinary aspects with other fields such as astrophysics and fluid dynamics. Each of the abstracts available has been indexed separately

  16. IAEA technical documents (TECDOCs) 1992-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2003-02-01

    This catalogue lists all technical documents (TECDOCs) of the International Atomic Energy Agency issued between 1 January 1992 and 31 December 2002. It is divided into two parts. The first part lists all documents in numerical order, starting with the most recent publication. The second part lists all documents by subject category, in alphabetical order within each category. Most publications are issued in English, although some are also available in other languages

  17. Report on the IAEA technical meeting on application libraries for ADS and transmutation

    International Nuclear Information System (INIS)

    Stanculescu, S.; Trkov, A.

    2004-12-01

    Highlights of the technical meeting are given with respect to the source of evaluated nuclear data, codes for ADS analysis with associated application libraries, content of these libraries, and the procedure for producing them. Participants debated their requirements and formulated an action plan, with work divided between four sub-groups: review/analysis of ADS benchmarks; selection of evaluated nuclear data files; preparation of the cross-section libraries; and benchmarking. Specific tasks were assigned with deadlines. (author)

  18. IAEA International Database on Irradiated Nuclear Graphite Properties. 6th meeting of the Technical Steering Committee

    International Nuclear Information System (INIS)

    Humbert, D.; Wickham, A.J.

    2004-12-01

    This report summarizes the Consultant Meeting 6th Meeting of the Technical Steering Committee for the International Database on Irradiated Nuclear Graphite Properties' held on 16-17 September 2004 at Plas Tan-Y-Bwlch, Maentwrog, Gwynedd, UK. The purposes of the meeting were to review the matters and actions identified in the previous meeting, undertake a review of the current status of the database and to make recommendations for actions for the next year. The purposes of the meeting were fully met. This report contains the current status of the identified actions as well as a summary of the recommendations on enhancements to the database. (author)

  19. IAEA technical meeting: Assess and co-ordinate modelling needs and data providers. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2004-05-01

    This report briefly describes the proceedings, conclusions and recommendations of the Technical Meeting to 'Assess and Co-ordinate Modelling Needs and Data Providers', held on 4-5 December 2003. Eight international experts on atomic and molecular data related to fusion energy research activities participated in the meeting. Each participant reviewed the current status of their own speciality and current lines of research as well as anticipated needs in new data for nuclear fusion energy research. Current CRPs on related topics were reviewed. In light of current research activities and anticipated data needs for fusion, a detailed set of tasks appropriate for a new CRP was developed. This meeting completely fulfilled the specified goals. (author)

  20. Advancing the Agenda. IAEA Technical Co-operation in support of the Earth Summit's Agenda 21

    International Nuclear Information System (INIS)

    Garner, Andy W.; Wedekind, Lothar

    2001-09-01

    The Earth Summit took place in September 2002 in Johannesburg, South Africa to discuss the far-reaching goals of Agenda 21 - an ambitious and comprehensive plan of action covering all spheres of social, economic, and human development affecting our environment. The Summit - officially named the World Summit on Sustainable Development - was expected to attract more than 60,000 national and international delegates, including heads of State and leaders of major organizations and institutes. Agenda 21 was among the documents that governments adopted at the first Earth Summit in 1992, officially known as the UN Conference on Environment and Development, held in Rio de Janeiro, Brazil

  1. The contribution of nuclear-related technical cooperation to national development

    International Nuclear Information System (INIS)

    Cook, D.

    1988-01-01

    The present situation of nuclear technical assistance and the IAEA's programs are reviewed. The perspectives of the developing and of the developed countries are discussed. Australia's aid administrators have been showing an increasing preference for administering its nuclear technical assistance through the Regional Cooperation Agreement for Asia and the Pacific (RCA), because of its direct benefits to the countries in the region, its flexibility, its emphasis on training, and its cooperative nature. The RCA also benefits from IAEA management and IAEA and United Nations Development Program funding. Two examples of Australia's successful RCA activities are the 1988 radiation protection training course held in Sydney and one of the many individual projects within the 1980-86 RCA hydrology program - the application of radioisotope tracer techniques to locating the seepage areas in the Pedu dam in Kedah State, Malaysia. Australia's experience has shown that project design, successful training of the right people, adequate infrastructure in both donor and recipient countries, and detailed post-project evaluation are the keys to successful project implementation. The RCA has achieved wide recognition as a successful tool in nuclear-related technology transfer

  2. Steady-state operation of magnetic fusion devices: Plasma control and plasma facing components. Report on the IAEA technical committee meeting held at Fukuoka, 25-29 October 1999

    International Nuclear Information System (INIS)

    Engelmann, F.

    2000-01-01

    An IAEA Technical Committee Meeting on Steady-State Operation of Magnetic Fusion Devices - Plasma Control and Plasma Facing Components was held at Fukuoka, Japan, from 25 to 29 October 1999. The meeting was the second IAEA Techical Committee Meeting on the subject, following the one held at Hefei, China, a year earlier. The meeting was attended by over 150 researchers from 10 countries

  3. IAEA technical committee meeting: 10th meeting of the IFRC subcommittee on atomic and molecular data for fusion. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R K

    1999-01-01

    This report describes briefly the proceedings and the conclusions and recommendations of the 10th Meeting of the Subcommittee on Atomic and Molecular Data for Fusion of the International Fusion Research Council held on May 27-28, 1998 at the IAEA Headquarters in Vienna, Austria. The report includes also the Executive Summary of the Subcommittee from this Meeting which was communicated to the IAEA Director General, and is appended with the Report on Activities of IAEA A+M Data Unit for the period July 1996 - May 1998. (author)

  4. IAEA technical committee meeting: 12th meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R E.H. [International Atomic Energy Agency, Vienna (Austria)

    2000-12-01

    This report briefly describes the proceedings, conclusions and recommendations of the 12th Meeting of the Subcommittee on Atomic and Molecular Data for Fusion of the International Fusion Research Council held on May 8-9, 2000 at the IAEA Headquarters in Vienna Austria. The report includes the Executive Summary of the Subcommittee from this Meeting which was communicated to the IAEA Director General as well as the report on the activities of the IAEA Atomic and Molecular Data Unit for the period June 1999 - May 2000. (author)

  5. IAEA technical committee meeting: 11th meeting of the IFRC subcommittee on atomic and molecular data for fusion. Summary report

    International Nuclear Information System (INIS)

    Janev, R.K.

    1999-05-01

    Brief description of the proceedings, conclusions and recommendations of the 11th Meeting of the Subcommittee on Atomic, Molecular (A+M) and Plasma-Material Interaction (PMI) Data for Fusion of the IAEA International Fusion Research Council (IFRC), held on May 3-4, 1999, at the IAEA Headquarters in Vienna, Austria, is provided. The report includes also the Executive Summary from the meeting and is appended with the Report on Activities of IAEA A+M/PMI Data Unit for the period May 1998 - May 1999. (author)

  6. Summary Report from the Technical Meeting Toward a New Evaluation of Neutron Standards, 8-12 July 2013, IAEA, Vienna

    International Nuclear Information System (INIS)

    Pronyaev, V.G.; Carlson, A.D.; Capote Noy, R.

    2013-07-01

    Updated standards evaluations for national cross section libraries (e.g. ENDF/B, JENDL, CENDL and JEFF) are needed as new versions of those libraries are anticipated. Also improvements made in the database and evaluation techniques for the standards can suggest that a new version of a library should be undertaken. A collaboration supported by an IAEA Data Development Project, was established in 2008 after the completion of the last standards evaluation in 2006. Before this project was initiated, there were very long periods between standards evaluations that can now be significantly shortened. The anticipation is that a new standards evaluation can be available whenever one is needed by a major evaluation library. The main objectives of this project are to continuously and critically review new experiments for inclusion in the standards database, and to consider extensions in energy of some of the standards. Other goals are to study improved evaluation procedures and codes for performing the evaluations, maintain those codes, and investigate inclusion of reference data that are not as well-known as the standards but are being widely used as reference in relative measurements of certain types of cross sections. Also included is an effort to improve evaluations of 235 U thermal and 252 Cf spontaneous fission neutron spectra. (author)

  7. Improving artificial breeding of cattle and buffalo in Asia. Guidelines and recommendations. A manual prepared under the framework of an IAEA Technical Cooperation Regional RCA Project on 'Improving Animal Productivity and Reproductive Efficiency', with technical support of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

    International Nuclear Information System (INIS)

    2005-11-01

    The International Atomic Energy Agency (IAEA) and the Regional Cooperative Agreement for Asia and the Pacific Region (RCA), with technical support of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, implemented a Technical Cooperation (TC) project entitled Improving Animal Productivity and Reproductive Efficiency. The dual objectives of this project are (a) strengthening and extending the field applications of Urea Molasses Multinutrient Blocks (UMMB) and other feed supplementation strategies, and (b) monitoring and improving the reproductive management and fertility of smallholder dairy cattle subjected to Artificial Insemination (AI). The radioimmunoassay (RIA) for measurement of progesterone in milk and use of the computer database AIDA (Artificial Insemination Database Application) play important roles in the success of the latter objective. The first meeting to plan project activities was held in January 1999 in Yangon, Myanmar and the second meeting to review progress and develop further work plans was held in February 2000 in Kuala Lumpur, Malaysia. The latter meeting concluded that the procedures currently used by different Asian countries for evaluation of breeding bulls should be standardized and unified protocols developed for ensuring quality control of semen during processing, storage and field use. It was recommended that this should be accomplished through a regional workshop of national consultants. A workshop of national consultants from 10 RCA Member States was therefore held in April 2002 in Faisalabad, Pakistan, to consider and discuss the following aspects and arrive at a consensus on the best procedures and practices to be adopted to suit conditions and needs in developing countries of Asia: - Selection, management and health control of AI bulls; - Semen technologies from collection through processing to storage; - Delivery and follow-up of field AI services to farmers The IAEA has also supported a similar project in

  8. The fourth UNDP/RCA/IAEA/meeting of national co-ordinators for radiation technology. Report

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the Meeting were to provide information for the Terminal Report of the joint UNDP/RCA/IAEA project RAS/92/073 and to look into future activities under the Radiation Technology project. The main achievements of this Meeting are: The Meeting reviewed the implementation of all radiation technology sub-projects and agreed that all of them were successful but not yet equally developed among RCA Member States. The Meeting recommended to have three projects carried out in the form of Co-ordinated Research Programs and requested the IAEA to find new ways to implement the organized in RCA Member States to carry these CRPs out. Figs, tabs

  9. Development of the national report of the Mexican United States for the Convention on Nuclear Safety of the IAEA

    International Nuclear Information System (INIS)

    Ruiz L, P.

    2006-01-01

    In this work the content of the National Report of the Mexican United States in it revision 2 is presented, which was presented for it exam by the member countries of the Convention on Nuclear Safety, in April, 2005. The conclusion of this Report, with base in the existent objective evidence, is that the Laguna Verde Central continues maintaining a level of similar safety to that of other nuclear power plants of its type, not existing conditions at the moment that they can be identified as adverse for a sure operation and that, therefore, plans don't exist to advance the closing of this installation, before the end of its useful life. The questions that the member countries formulated to the Report of Mexico, the answers that were provided to these questions, as well as the conclusions of the 3 Exam Meeting of April, 2005 are also included. The next National Report, in it revision 3, it will cover the period from the January 1, 2004 to December 31, 2006, it was developed from January to August, 2007, it delivered to the IAEA on September of the same year and it was presented in the IAEA Headquarters (IAEA) in the 4 Exam Meeting on April, 2008. (Author)

  10. Sections prepared for inclusion in an IAEA technical document handbook on Designing and Implementing a Physical Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Mark K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Two major sections were drafted (each with several subsections) for the IAEA dealing with designing and implementing a Physical Protection System (PPS). Areas addressed were Search Systems and the evaluation of PPS effectiveness.

  11. Roles of isotopic techniques in human nutrition evaluations. Report of an IAEA consultants' meeting

    International Nuclear Information System (INIS)

    1996-01-01

    A nutrition consultants' meeting was convened by the IAEA for an advice on technical and programmatic issues related to isotope based nutritional evaluations. The salient recommendation from the consultants was for the IAEA to try to inaugurate a multi-national programme for using isotopes in evaluations that would have substantial practical relevance to public health policy. 6 refs

  12. Roles of isotopic techniques in human nutrition evaluations. Report of an IAEA consultants` meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    A nutrition consultants` meeting was convened by the IAEA for an advice on technical and programmatic issues related to isotope based nutritional evaluations. The salient recommendation from the consultants was for the IAEA to try to inaugurate a multi-national programme for using isotopes in evaluations that would have substantial practical relevance to public health policy. 6 refs.

  13. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1980-02-01

    The necessity for statistical inference procedures arises because of time and cost limitations imposed on inspection activities, and also because of inherent limitations of inspection measurement instruments and techniques. This manual produces statistical concepts and techniques in the field of nuclear material control

  14. Progress of the radioactive waste management at the Dalat Nuclear Research Institute and the role of an IAEA technical co-operation project in this process

    International Nuclear Information System (INIS)

    Nang, N.T.; Ngoc, O.V.; Nhu Thuy, T.T.; Nghi, D.V.; Thu, N.T.

    2002-01-01

    At present, the main radioactive waste generator in Vietnam is the Dalat Nuclear Research Institute (DNRI). For safe management of radioactive waste generated from this nuclear center, in 1982 Soviet specialists newly constructed one combined technology system for low level radioactive waste management. The existing system consists of two main parts, a Liquid Radioactive Waste Treatment Station and a Storage/Disposal Facility. The liquid treatment station can in principle meet the needs for this nuclear center but disposal technology and storage/disposal facilities are not good enough both with respect to safety and economy, especially the storage/disposal facility placed in Dalat, the tourist city. In order to help DNRI and Vietnam to solve the radioactive waste management problem, the IAEA Technical Co-operation (TC) project VIE/9/007 was implemented in Vietnam. The facilities and IAEA experts provided under this project gradually help to develop radioactive waste management at DNRI, Vietnam. This paper outlines progress under way in the management of the radioactive waste at the Nuclear Research Institute (NRI), Dalat, Vietnam, and the role of the IAEA Technical Co-operation (TC) project in this process. (author)

  15. Strengthening the infrastructure for RI applications in cooperation with the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Hong, Young Don; Kim, Seung Yun; Kim, Kyoung Pyo; Lee, Jeong Kong

    2000-12-01

    The future direction for nuclear cooperation should be implemented with the aim of enhancing the status of Korea within the international society as well as carrying out the established national nuclear policy goal. Strategies for implementing cooperation with the IAEA were described into four separate parts; 'strategies for strengthening cooperation in general areas', 'strategies for implementing IAEA technical cooperation programs', 'strategies for implementing IAEA CRP programs' and 'Strategies for effective participation in the area of radiation and RI application'. As for strategies for implementing IAEA technical cooperation programs, i) expanding domestic personnel's entering into the IAEA ii) establishment of a liaison office for support of IAEA technical cooperation iii) expanding domestic experts entering into member of consultation group for a director-general of the IAEA and more participation in the international meetings iv) cooperation with IAEA's Seibersdorf Laboratories. For the strengthening of IAEA technical cooperation, strategies for effective implementation of technical cooperation programs such as i) strengthening role of national TC liaison officer ii) strengthening application of Model Project concept iii) Implementing End-user oriented programs iv) Establishment of measure to increase the TC implementation rate v) hosting of fellowship, scientific visitors, support for expert mission, were presented. Strategies for expanding domestic participation in the IAEA technical cooperation programs were also described for producing the benefits from implementing the IAEA technical cooperation programs. As for strategies for implementing the IAEA CRP programs, i) measures for active participation in the IAEA CRP programs and ii) measures for gradual participation in the IAEA CRP programs were separately described. To maximize the utilization of HANARO, a multi-purpose research reactor, the on

  16. Strengthening the infrastructure for RI applications in cooperation with the IAEA

    International Nuclear Information System (INIS)

    Park, Kyung Bae; Hong, Young Don; Kim, Seung Yun; Kim, Kyoung Pyo; Lee, Jeong Kong

    2000-12-01

    The future direction for nuclear cooperation should be implemented with the aim of enhancing the status of Korea within the international society as well as carrying out the established national nuclear policy goal. Strategies for implementing cooperation with the IAEA were described into four separate parts; 'strategies for strengthening cooperation in general areas', 'strategies for implementing IAEA technical cooperation programs', 'strategies for implementing IAEA CRP programs' and 'Strategies for effective participation in the area of radiation and RI application'. As for strategies for implementing IAEA technical cooperation programs, i) expanding domestic personnel's entering into the IAEA ii) establishment of a liaison office for support of IAEA technical cooperation iii) expanding domestic experts entering into member of consultation group for a director-general of the IAEA and more participation in the international meetings iv) cooperation with IAEA's Seibersdorf Laboratories. For the strengthening of IAEA technical cooperation, strategies for effective implementation of technical cooperation programs such as i) strengthening role of national TC liaison officer ii) strengthening application of Model Project concept iii) Implementing End-user oriented programs iv) Establishment of measure to increase the TC implementation rate v) hosting of fellowship, scientific visitors, support for expert mission, were presented. Strategies for expanding domestic participation in the IAEA technical cooperation programs were also described for producing the benefits from implementing the IAEA technical cooperation programs. As for strategies for implementing the IAEA CRP programs, i) measures for active participation in the IAEA CRP programs and ii) measures for gradual participation in the IAEA CRP programs were separately described. To maximize the utilization of HANARO, a multi-purpose research reactor, the on-going development and development project are actively

  17. The History and Evolution of the IAEA Technical Assistance Programme on Decommissioning and the International Decommissioning Network as its Highest Point

    International Nuclear Information System (INIS)

    Laraia, M.

    2009-01-01

    Around the world, but particularly in developing Member States, there are disused nuclear facilities or those approaching the end of their useful lives, for which appropriate decommissioning steps have not been taken, primarily due to limited technical and financial resources or competing priorities. In line with its mission to encourage safe and peaceful applications of nuclear energy, the International Atomic Energy Agency (IAEA) systematically covers the technical, regulatory, radiation protection, planning, management, and economic aspects related to the decommissioning of nuclear installations. The IAEA's overall objective of the decommissioning programme is to assist its Member States in developing the required expertise, equipment, and programmes so that they can decommission their nuclear facilities in a safe, timely, and cost-effective manner. Technical Cooperation (TC) with Member States having limited resources is commonly provided in the form of workshops, expert missions, equipment design and procurement, training courses, fellowships and scientific visits. Key examples are provided in this paper to illustrate the start, evolution and current status of TC activities and typical mechanisms by which such activities are implemented. Many of world's nuclear facilities are small and widely distributed geographically, e.g. ∼300 aging or shut-down research reactors. Requests for assistance to address this issue from Member States exceed the capability of IAEA (and others) to deliver. However, integrating individual initiative into a designed-for-purpose network may compensate for these limitations. A new IAEA initiative amongst organizations from both potential 'donor' and 'recipient' Member States has taken the form of an 'International Decommissioning Network (IDN)'. The objectives of the IDN are to improve the flow of knowledge and experience amongst those engaged in decommissioning, and specifically to enhance the 'user-oriented' focus for all IAEA

  18. News from IAEA Headquarters

    International Nuclear Information System (INIS)

    1966-01-01

    Full text: Two more countries have joined the Agency - Panama and Jordan - bringing IAEA membership up to 96. Mr. Ginige Richard Walter de Silva (Ceylon) has been appointed Director of the Division of Conference and General Services of the Agency. Born in 1911 at Nugegeda, Ceylon, Mr. de Silva obtained his B.Sc. in Physics at London University and his M.A. in Physics and Mathematics at Cambridge University. He has had a long career in the Civil Service, mainly in the administrative, commercial and finance branches of government. Mr.de Silva took over from Mr. Arthur E. Barrett, Chief of the Conference and Engineering Services, who had been Acting Director of the Division for a long period of time, and who will be leaving the Agency later this year to take up work elsewhere. From the early days of IAEA in 1957, Mr. Barrett has been closely associated with the establishment of the Agency's temporary headquarters in Vienna. He has been in charge of the planning and design of the technical facilities for the various conference installations and responsible for the servicing of all the General Conference sessions since 1958. In fact, Mr. Barrett has played an essential part in the creation of the Vienna Congress Centre in the former Hofburg Imperial Palace. Educated at Cambridge and London Universities, Mr. Barrett has had some 35 years of public service, first in the BBC in London and subsequently with the United Nations in New York. (author)

  19. News from IAEA Headquarters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-15

    Full text: Two more countries have joined the Agency - Panama and Jordan - bringing IAEA membership up to 96. Mr. Ginige Richard Walter de Silva (Ceylon) has been appointed Director of the Division of Conference and General Services of the Agency. Born in 1911 at Nugegeda, Ceylon, Mr. de Silva obtained his B.Sc. in Physics at London University and his M.A. in Physics and Mathematics at Cambridge University. He has had a long career in the Civil Service, mainly in the administrative, commercial and finance branches of government. Mr.de Silva took over from Mr. Arthur E. Barrett, Chief of the Conference and Engineering Services, who had been Acting Director of the Division for a long period of time, and who will be leaving the Agency later this year to take up work elsewhere. From the early days of IAEA in 1957, Mr. Barrett has been closely associated with the establishment of the Agency's temporary headquarters in Vienna. He has been in charge of the planning and design of the technical facilities for the various conference installations and responsible for the servicing of all the General Conference sessions since 1958. In fact, Mr. Barrett has played an essential part in the creation of the Vienna Congress Centre in the former Hofburg Imperial Palace. Educated at Cambridge and London Universities, Mr. Barrett has had some 35 years of public service, first in the BBC in London and subsequently with the United Nations in New York. (author)

  20. The Science of Nuclear Safety and Security. IAEA Backs the Work of Technical and Scientific Support Organizations in Safety and Security

    International Nuclear Information System (INIS)

    Verlini, Giovanni

    2011-01-01

    Expertise in physical protection and accounting of nuclear and other radioactive material in use, storage and transport, and the associated facilities, as well as experience in the maintenance of systems, equipment and associated software used for effective border monitoring and for radiological threat assessment, are the fundaments of safety and security. This knowledge is developed through technical and scientific support organizations (TSOs), neutral and official organizations that provide the basis for decisions and activities regarding nuclear and radiation safety. The quality of the technical and scientific expertise provided by TSOs to the nuclear industry and their contribution to effective regulatory systems are of fundamental importance. For many years, the IAEA has been supporting the work of TSOs, by helping the TSOs promote their technical competence, transparency and observance of ethical principles.

  1. 14th meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion. Summary report of IAEA technical meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Peacock, N.J.

    2006-01-01

    The 14th Meeting of the Subcommittee on Atomic and Molecular Data for Fusion of the International Fusion Research Council was held on 24-25 June 2004, at the IAEA Headquarters in Vienna, Austria. Subcommittee members reviewed the work of the Atomic and Molecular Data Unit over the two-year period from June 2002 to June 2004, and made recommendations that covered the 2005-2006 budget cycle. The proceedings, conclusions and recommendations of the meeting are briefly described in this report, along with a short summary of the activities of the IAEA Atomic and Molecular Data Unit of the Nuclear Data Section from June 2002 to June 2004. (author)

  2. Summary report of IAEA technical meeting: 15. meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Peacock, N.J.

    2007-02-01

    The 15th Meeting of the Subcommittee on Atomic and Molecular Data for Fusion of the International Fusion Research Council was held on 20-21 April 2006, at the IAEA Headquarters in Vienna, Austria. Work of the Atomic and Molecular Data Unit for the period 2004-2006 was reviewed, and recommendations were made for the 2008-2009 budget cycle. The proceedings, conclusions and recommendations of the Subcommittee meeting are briefly described in this report. Specific recommendations of the Subcommittee from this meeting, as well as the report on the activities of the IAEA Atomic and Molecular Data Unit for the period June 2004 - March 2006, are also included. (author)

  3. IAEA meeting: International conference of national regulatory authorities with competence in the safety of radiation sources and the security of radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Englefield, Chris [UK INTERPOL Environmental Crime (Radioactive Substances) Sub-Group, Environment Agency (United Kingdom)

    2001-06-01

    The meeting was the outcome of one of the actions arising from an IAEA sponsored meeting held in Dijon in 1998 on these issues. The action plan included inter alia the production of a 'Code of Conduct' (published December 2000), the production of a scheme for the 'Categorisation of Sources' (published December 2000) and a meeting to share experience and knowledge about the issues of illicit or inadvertent movements of radioactive materials across international borders. This was the major focus of the meeting held in Buenos Aires. The meeting was attended by 130 delegates representing 70 countries, the EU and the IAEA. This means that over half of the 131 IAEA Member States were present, a measure of the level of significance that is attached to the initiating issue of 'illicit trafficking'.The meeting was chaired by Dan Beninson (Argentina) and the Technical Secretariat was led by Alfonso Bilbao of IAEA. I attended as the UK delegate, in my capacity as Chairman of the UK INTERPOL Environmental Crime (Radioactive Substances) Sub-Group. The national papers were so numerous that it is not practicable to try to summarise them all here. However, a general impression will be given. The majority of papers submitted explained the regulatory structures extant in the speakers' home countries. It was useful to understand the level of development of regulatory arrangements in the Member States represented. These ranged from the highly developed such as those of EU Member States, the US and some South American states, to the very simple. In some cases, speakers frankly admitted that regulatory systems were virtually non-existent, but that as IAEA Members, their countries were ready and willing to improve their arrangements, with the assistance of IAEA . Some general conclusions may be derived: (i) A personal view is that IAEA and Member States have not clarified their risk assessment thinking: as RP practitioners we tend to concentrate on

  4. Training tissue bank operators: the International Atomic Energy Agency (IAEA)/National University of Singapore (NUS) 10 years of experience.

    Science.gov (United States)

    Nather, A; Phillips, G O; Morales Pedraza, Jorge; Lee, Chris C W

    2009-05-01

    National University of Singapore (NUS) was appointed by IAEA to become IAEA/NUS Regional Training Centre (RTC) for Asia and the Pacific region in September 1996. The Government of Singapore (represented by the Ministry of Environment) with the National Science and Technology Board as the funding agency awarded a grant of S$225,500 to build a new purpose-built tissue bank to be the Regional Training Centre. National University Hospital provided a space of 2,000 square feet for this purpose. The first Diploma Course was launched on 3 November 1997 with 17 candidates with the first NUS Diploma Examination being held in October 1998. Between November 1997 and April 2007, a total of nine courses were conducted by RTC with a total of 180 tissue bank operators, 133 from Asia and the Pacific region (13 countries including 2 from Iran), 14 from Africa (Algeria, Egypt, Libya, Egypt, South Africa and Zambia), 6 from Latin America (Brazil, Chile, Cuba, Peru and Uruguay), 9 from Europe (Greece, Slovakia, Poland, Ukraine) and 2 from Australia. The last batch (ninth batch) involved twenty students registered in April 2007 and will be due to sit for the terminal examination only in April 2008.

  5. Summary report of consultants meeting on IAEA International Database on Irradiated Nuclear Graphite Properties. 11. meeting of the Technical Steering Committee

    International Nuclear Information System (INIS)

    Humbert, D.; Wickham, A.J.

    2009-05-01

    The 11th Meeting of the Technical Steering Committee for the International Database on Irradiated Nuclear Graphite Properties was held on 25-26 March 2009 at the IAEA Headquarters, Vienna, Austria. All discussions, recommendations and actions of this Consultants' Meeting are recorded in this report. The purposes of the meeting were to review the matters and actions identified in the previous meeting, undertake a review of the current status of the database, and make recommendations for action over the next year. This report contains the status of the identified actions as well as a summary of the recommendations on enhancements to the database. (author)

  6. Summary report of consultants' meeting - IAEA International Database on Irradiated Nuclear Graphite Properties. 8th meeting of the Technical Steering Committee

    International Nuclear Information System (INIS)

    Humbert, D.; Wickham, A.J.

    2006-05-01

    The '8th Meeting of the Technical Steering Committee for the International Database on Irradiated Nuclear Graphite Properties' was held on 15-16 March 2006 at the IAEA Headquarters, Vienna, Austria. All discussions, recommendations and actions of this Consultants' Meeting are recorded in this report. The purposes of the meeting were to review the matters and actions identified in the previous meeting, undertake a review of the current status of the database and make recommendations for actions for the next year. This report contains the current status of the identified actions as well as a summary of the recommendations on enhancements to the database. (author)

  7. Technical implementation in support of the IAEA's remote monitoring field trial at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Corbell, B.H.; Moran, B.W.; Pickett, C.A.; Whitaker, J.M.; Resnik, W.; Landreth, D.

    1996-01-01

    A remote monitoring system (RMS) field trial will be conducted for the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. Remote monitoring technologies are being evaluated to verify their capability to enhance the effectiveness and timeliness of IAEA safeguards in storage facilities while reducing the costs of inspections and burdens on the operator. Phase one of the field trial, which involved proving the satellite transmission of sensor data and safeguards images from a video camera activated by seals and motion sensors installed in the vault, was completed in September 1995. Phase two involves formal testing of the RMS as a tool for use by the IAEA during their tasks of monitoring the storage of nuclear material. The field trial to be completed during early 1997 includes access and item monitoring of nuclear materials in two storage trays. The RMS includes a variety of Sandia, Oak Ridge, and Aquila sensor technologies that provide video monitoring, radiation attribute measurements, and container identification to the on-site data acquisition system (DAS) by way of radio-frequency and Echelon LONWorks networks. The accumulated safeguards information will be transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines

  8. IAEA technical meeting: 13th meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Peacock, N.J.

    2002-11-01

    This report briefly describes the proceedings, conclusions and recommendations of the 13th Meeting of the Subcommittee on Atomic and Molecular Data for Fusion of the International Fusion Research Council held on 24-25 June, 2002 at the IAEA Headquarters in Vienna Austria. The report includes an Executive Summary of the Subcommittee from this Meeting. (author)

  9. A Study on the Promotion of the Participation in the IAEA Cooperative Research Programme and the Enhancement of Technical Cooperation

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Juhn, P. E.; Shim, J. S.; Kang, S. B.; Choi, P. H.; Kim, M. R.; Seo, M. W.; Lee, J. K.; Cho, C.; Jung, S. H.

    2005-12-01

    The trend of the IAEA major programmes for 2004-2005 and their major changes were reviewed and a planning direction for the 2006-2007 programmes was analyzed. Also, major stumbling blocks for a future participation in the CRP and the areas in which Korea can take initiatives in the future were identified by analyzing the current status of the 2004 IAEA CRP. Various efforts such as an earlier receipt of information about an application for next year, publication and distribution of an application guide book, holding an explanation session to provide guidance on drafting an application and the complementary application documents have been made to increase the number of applications and an effective project management to increase the acceptance rate, has been conducted. Especially, active and efficient promotion activities for new participations in the CRP have maximized the effects for enhancing the participation in the CRP through posting the CPR application information on the domestic nuclear related organizations web sites. It is expected that the suggested recommendations such as an analysis of the benefits from a participation in the program, ways to expand participation in the new projects and its effective operation will be a great asset for establishing a nuclear policy in the future. In addition, the analysis of problems which are barriers to applications for a new program by analyzing the current status of the CRP programs that the IAEA has already implemented or is now implementing will be utilized for understanding which areas the IAEA will focus on and in identifying the projects which Korea should play a leading role in their implementation, thus leading to an increase in the acceptance rate of Korea's applications to the IAEA CRP program

  10. Co-ordination of the international network of nuclear structure and decay data evaluators. Summary report of an IAEA technical meeting

    Energy Technology Data Exchange (ETDEWEB)

    Pronyaev, V G; Nichols, A L; Tuli, J [eds.

    2004-03-01

    The IAEA Nuclear Data Section convened the 15th meeting of the Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 10-14 November 2003. This meeting was attended by 23 scientists from 11 Member States concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, the recommendations, data centre reports and the various proposals considered, modified and agreed by the participants are contained within this document. Nuclear data are essential to the development, implementation and maintenance of all nuclear technologies. The international network of Nuclear Structure and Decay Data (NSDD) Evaluators is sponsored by the IAEA, and consists of evaluation groups and data service centers in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets. The results represent the recommended 'best values' for the various nuclear structure and decay data parameters. Recommended values are made available to users by means of various media, such as the world wide web, CD-ROMs, wall charts of the nuclides, handbooks, nuclear wallet cards and others. Participants discussed a wide range of technical matters, and the recommendations of improving the quality of NSDD evaluations. A list of actions was also prepared for implementation during the course of the next two years. NSDD members prepared many recommendations for the IAEA and the major evaluation centers, which are aimed at improving the technical support towards the network and streamlining the organization of work. These consensus conclusions include: the development and exchange of programming products; revision of

  11. Development and field evaluation of animal feed supplementation packages. Proceedings of the final review meeting of an IAEA Technical Co-operation Regional AFRA Project

    International Nuclear Information System (INIS)

    2002-06-01

    Inadequate nutrition is one of the major constraints limiting livestock production in African countries. The ruminants in the smallholder sector depend on natural pasture and fibrous crop residues for their survival, growth, reproduction and production. Since quality and quantity of the natural pasture vary with season, animals dependent on it are subjected to nutritional stress in the dry season when feed resources are senesced and in short supply leading to decreased animal productivity. The main objective of the IAEA Technical Co-operation Regional AFRA Project 11-17 (RAF/5/041) was the improvement of ruminant livestock production in AFRA Member States. It had two main components: (a) the development and dissemination of cost-effective and sustainable feed supplementation packages which are based on locally available feed resources; and (b) establishment of the 'Self-coating Radioimmunoassay' technique for measuring progesterone in the milk and blood of ruminants. The project has developed a number of feed supplementation packages using feed resources available on-farm and by-products from agro-industrial processes. The packages involve the use of multi-nutrient blocks containing molasses and urea or poultry litter, ensilage of fibrous crop residues with poultry litter, leguminous fodder, mineral blocks etc. These packages have been evaluated on-station and on-farm to assess their potential to enhance productivity of ruminants. The cost-benefit ratio for feeding supplementation packages has been established. As a result of their use, income of the farmers has been shown to increase substantially. Needless to say, the scientists, agricultural extension officers, policy makers and the governments must work hand-in-hand to capitalize on this and ensure wider application and extension of the packages, and develop strategies for sustaining them. Radioimmunoassay for progesterone has been used in this project mainly for the assessment of ovarian activity in order to

  12. 78 FR 29239 - Final Priority; Technical Assistance To Improve State Data Capacity-National Technical Assistance...

    Science.gov (United States)

    2013-05-20

    ... Assistance To Improve State Data Capacity--National Technical Assistance Center To Improve State Capacity To... Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State... (FY) 2013 and later years. We take this action to focus attention on an identified national need to...

  13. Achievements of the IAEA technical working group on life management of nuclear power plants (TWG-LMNPP) under the chairmanship of Acad. Myrddin Davies

    International Nuclear Information System (INIS)

    Kang, K.-S.; Tipping, Philip

    2004-01-01

    This meeting, organised by CRISM-PROMETEY in St Petersburg, Russia, is held to honour the memory of Academician Myrddin Davies, who passed away due to a tragic road accident on 11 March 2003 in Stretton, England. Academician Myrddin Davies started technical collaboration with the IAEA in the early 1980s, and in 1985 became chairman of the International Working Group on Reliability of Reactor Pressure Components (IWG-RRPC). Under his chairmanship this grew to become the Technical Working Group on Life Management of Nuclear Power Plants (TWG-LMNPP) covering broader issues and with world wide collaboration. An insight to the creation, working methods and achievements of the TWG-LMNPP is given in this paper. Acad. Myrddin Davies was a competent chairman at many specialist meetings, major conferences hosted by IAEA, other European organizations and Nuclear Engineering International activities. The direction given to the TWG-LMNPP by Acad. Myrddin Davies is shown to have made a significant contribution to the safe use of nuclear energy. Major contributions to nuclear technology of the TWG-LMNPP, during the Chairmanship of Myrddin Davies, are thus cited

  14. Fifty years of Technical Cooperation

    International Nuclear Information System (INIS)

    2007-01-01

    The International Atomic Energy Agency (IAEA) was established in Vienna in 1957. The Statute of the IAEA, approved by 81 nations, founded the organization on three pillars: nuclear verification; safety and security; and the transfer of technology. Today, these three pillars still remain at the heart of the organization's work. However, the way in which the IAEA carries out this work, particularly with regard to technology transfer, has changed greatly over the years. When the IAEA opened for business, nuclear science and technology were in their infancy. Many Member States had no nuclear capacity at all. The IAEA's 'technical assistance' programme, as it was then known, was modest. Early projects were small in scale and short lived, focusing mainly on building human capacities and creating institutions and facilities that would support the introduction of nuclear technology in a safe and effective manner. Today, the picture is more complex. Instead of merely offering assistance, the IAEA focuses on cooperation for sustainable socioeconomic development, building on the skills and infrastructure that Member States have acquired over the past five decades. Member States are full partners in the process, guiding the IAEA's technical cooperation activities, setting national and regional priorities, and offering training opportunities and technical support to the IAEA and to other Member States. Technical cooperation between developing countries is facilitated and supported through regional cooperative agreements. Regional centres of expertise play an important role in sharing the benefits of nuclear science and technology among Member States

  15. The IAEA/WHO TLD postal programme for radiotherapy hospitals

    International Nuclear Information System (INIS)

    Izewska, J.; Andreo, P.

    2000-01-01

    Since 1969 the International Atomic Energy Agency (IAEA), together with the World Health Organization (WHO), has performed postal TLD audits to verify the calibration of radiotherapy beams in developing countries. A number of changes have recently been implemented to improve the efficiency of the IAEA/WHO TLD programme. The IAEA has increased the number of participants and reduced significantly the total turn-around time to provide results to the hospitals within the shortest possible time following the TLD irradiations. The IAEA has established a regular follow-up programme for hospitals with results outside acceptance limits of ±5%. The IAEA has, over 30 years, verified the calibration of more than 3300 clinical photon beams at approximately 1000 radiotherapy hospitals. Only 65% of those hospitals who receive TLDs for the first time have results within the acceptance limits, while more than 80% of the users that have benefited from a previous TLD audit are successful. The experience of the IAEA in TLD audits has been transferred to the national level. The IAEA offers a standardized TLD methodology, provides Guidelines and gives technical back-up to the national TLD networks. The unsatisfactory status of the dosimetry for radiotherapy, as noted in the past, is gradually improving however, the dosimetry practices in many hospitals in developing countries need to be revised in order to reach adequate conformity to hospitals that perform modern radiotherapy in Europe, USA and Australia. (author)

  16. EDITORIAL: Special issue containing papers presented at the 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems Special issue containing papers presented at the 11th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    Science.gov (United States)

    Kolesnichenko, Ya.

    2010-08-01

    The history of fusion research resembles the way in which one builds skyscrapers: laying the first foundation stone, one thinks about the top of the skyscraper. At the early stages of fusion, when it became clear that the thermonuclear reactor would operate with DT plasma confined by the magnetic field, the study of the `top item'—the physics of 3.5 MeV alpha particles produced by the DT fusion reaction—was initiated. The first publications on this topic appeared as long ago as the 1960s. At that time, because the physics of alpha particles was far from the experimental demand, investigations were carried out by small groups of theoreticians who hoped to discover important and interesting phenomena in this new research area. Soon after the beginning of the work, theoreticians discovered that alpha particles could excite various instabilities in fusion plasmas. In particular, at the end of the 1960s an Alfvén instability driven by alpha particles was predicted. Later it turned out that a variety of Alfvén instabilities with very different features does exist. Instabilities with perturbations of the Alfvénic type play an important role in current experiments; it is likely that they will affect plasma performance in ITER and future reactors. The first experimental manifestation of instabilities excited by superthermal particles in fusion devices was observed in the PDX tokamak in 1983. In this device a large-scale instability—the so called `fishbone instability'—associated with ions produced by the neutral beam injection resulted in a loss of a large fraction of the injected energy. Since then, the study of energetic-ion-driven instabilities and the effects produced by energetic ions in fusion plasmas has attracted the growing attention of both experimentalists and theorists. Recognizing the importance of this topic, the first conference on fusion alpha particles was held in 1989 in Kyiv under the auspices of the IAEA. The meeting in Kyiv and several

  17. 16. meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion. Summary report of an IAEA technical meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2008-11-01

    The 16th meeting of the Subcommittee on Atomic and Molecular (A and M) Data for Fusion of the International Fusion Research Council was held on 17-18 April 2008, at the IAEA Headquarters in Vienna, Austria. Activities of the Atomic and Molecular Data Unit for the period 2006-2008 were reviewed, and recommendations were made for the 2010-2011 programme and budget cycle. The discussions, conclusions and recommendations of the Subcommittee meeting are briefly described in this report. Specific recommendations of the Subcommittee from this meeting, as well as the report on the activities of the IAEA Atomic and Molecular Data Unit for the period May 2006 - March 2008, are also included. Of specific concern is the loss of three key personnel early in the upcoming budget cycle, including the A and M Data Unit Head (Dr. R.E.H. Clark), the Section Head for the Nuclear Data Section (Dr. A.L. Nichols), and the Data Unit coordinator for the computational facilities and databases (Dr. D. Humbert). Timely replacements of these key individuals are critical for the continued effective operation of the Atomic and Molecular Data Unit. (author)

  18. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  19. Organisation and structures of nuclear industry in different countries, the IAEA nuclear power profiles

    International Nuclear Information System (INIS)

    Spiegelberg-Planer, R.; Juhn, P.E.; Gueorguiev, B.

    1996-01-01

    One of the most important aims of the IAEA is to support national efforts promoting improvements in the safe, reliable and economic performance of nuclear power plants. IAEA also provides an international forum for exchange, collection and dissemination of information in many areas related to nuclear energy. In most of the analyses promoted by the IAEA there are a wide variation of differences in the institutional, technical, energy and economic area from country to country which have a substantial impact on those analyses and should be considered. In 1994, the IAEA started the preparation of a technical document and a data base, which comprise of a comprehensive information package on the industrial and organisational aspects of nuclear power and which is planned to be made available through the INTERNET by the end of 1997. The work performed by the IAEA in co-operation with the Member States and the current status of the project is presented. (R.P.)

  20. The IAEA Technical Cooperation Programme as a Knowledge Multiplier Mechanism for Nuclear Medicine — The Case of the Nuclear Medicine Knowledge Network in Argentina

    International Nuclear Information System (INIS)

    Belinco, M.; Boado Montero, G.; Di Lorenzo, D.; De Rose, G.

    2015-01-01

    This poster aims at: – Highlighting the relevance of the conformation of a Nuclear Medicine (NM) Network; – Shedding light on the influence of the IAEA TCP on the Network; – Emphasizing on the role of women as decision-makers in NM. CNEA together with the MINPLAN led the creation of the NM Network which now assembles 20 institutions. Its main purposes are: to strengthen ties among institutions; to federalize, spread and exchange knowledge in NM; to standardise protocols; to enhance interdisciplinary work and to harmonise the levels of capacity building nationally. These goals are reached through collaboration, teaching and research activities; already being attained through training in new Centers and the expansion of NM poles throughout the country within the framework of the National Programme of NM. NM has been a strategic area of the nuclear sector in Argentina since its beginning. There are three essential milestones for this continuity and for the establishment of this Network: NM as a state policy; the institutional policy within CNEA and the permanent support and acknowledgment from the IAEA. The geographic and demographic features of Argentina call for a federal working scheme such as the one carried out by CNEA; this has been replicated in a six-decade-networking among NM institutions and enhanced by including NM in the Public Health agenda. The IAEA TCP plays a key role as a knowledge multiplier mechanism in NM by supporting the creation of networks and endorsing the CPF 2014–2021 which fosters this cooperation link. Since 1976, thanks to the TCP, 456 people were trained and over 40 projects were financed in this area. Regarding female participation in NM, no gender barriers were observed, since the main decision-makers in this field are women, who handle issues sensitively, considering the direct impact NM has on people’s daily lives. (author)

  1. IAEA Director General to Visit Iran

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: IAEA Director General Yukiya Amano will travel to Tehran on 10 November 2013 to meet senior Iranian leaders on Monday, 11 November 2013, with the aim of strengthening dialogue and cooperation. Separately, as previously announced, IAEA and Iranian experts will meet in Tehran on Monday to discuss technical issues. IAEA)

  2. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  3. Stress Tests Worldwide - IAEA Nuclear Safety Action Plan

    International Nuclear Information System (INIS)

    Lyons, J.E.

    2012-01-01

    The IAEA nuclear safety action plan relies on 11 important issues. 1) Safety assessments in light of the Fukushima accident: the IAEA secretariat will develop a methodology for stress tests against specific extreme natural hazards and will provide assistance for their implementation; 2) Strengthen existing IAEA peer reviews; 3) Emergency preparedness and response; 4) National Regulatory bodies in terms of independence and adequacy of human and financial resources; 5) The development of safety culture and scientific and technical capacity in Operating Organizations; 6) The upgrading of IAEA safety standards in a more efficient way; 7) A better implementation of relevant conventions concerning nuclear safety and nuclear accidents; 8) To provide a broad assistance on safety standard for countries embarking on a nuclear power program; 9) To facilitate the use of available information, expertise and techniques concerning radiation protection; 10) To enhance the transparency of nuclear industry; and 11) To promote the cooperation between member states in nuclear safety. (A.C.)

  4. Penobscot Indian Nation: Final technical report

    International Nuclear Information System (INIS)

    1986-01-01

    The Penobscot Nations' comment document is composed of six (6) major sections which were researched by the various consultants (names and titles listed in the document): (A) Legal, (B) Cultural, (C) Geologic, (D) Hydrogeologic, (E) Environmental, and (F) General

  5. Energy and nuclear power planning using the IAEA`s ENPEP computer package. Proceedings of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Regional (Europe) Technical Co-operation Project on the Study of Energy Options Using the IAEA Planning Methodologies was first implemented by the IAEA in 1995. The project aims at improving national capabilities for energy, electricity and nuclear power planning and promoting regional co-operation among participating countries in the European region. The project includes the organization of workshops, training activities at the regional and national levels, scientific visits, etc. The proceedings of a workshop held in Warsaw, Poland, from 4 to 8 September 1995 are contained herein. The workshop had as a basic objective the analysis of the specific problems encountered by the represented countries during application of the IAEA`s ENPEP package in the conduct of national studies and to provide a forum for further co-operation among participating countries. A second objective of the workshop was to make proposals for future activities to be organized within the project. This publication is intended to serve as reference for the users of the IAEA`s ENPEP package, as well as for energy and electricity planners in general. Refs, figs, tabs.

  6. The trends of NDT technologies - IAEA experience

    International Nuclear Information System (INIS)

    Khan, A. A.; Einav, I.

    2003-01-01

    Non destructive testing (NDT) is an essential technology for quality control leading to more reliable and safer industrial as well as nuclear plants. This was the main reason for the IAEA to undertake the promotion of this technology in the world. Through its regional and technical assistance programmes the NDT technology programmes encompass approximately more than 80 developing countries. The main focus of the NDT programme has been the creation of core groups of personnel able to undertake education, training and certification of NDT personnel and provision of NDT services to industries, creation of national certifying bodies, issuance of national standards compatible with ISO 9712 and the establishment of Professional NDT Societies. The programme has met a great success in most of the Member States. The paper will review the programmes of the IAEA in the field of NDT and provide an assessment of the present status of NDT technology development both in the developing as well as developed countries. (Author)

  7. Technical Education and Vocational Training in Developing Nations

    Science.gov (United States)

    Okolie, Ugochukwu Chinonso, Ed.

    2017-01-01

    Severe economic depression and the difficulty to acquire employment with adequate income have significant impact on a nation's social welfare. The need to provide ample educational opportunities is more imperative than ever, particularly in emerging economies. "Technical Education and Vocational Training in Developing Nations" is a…

  8. IAEA advisory group meeting on technical aspects of atomic and molecular data processing and exchange (15. meeting of the A+M data centres and ALADDIN network). Summary report

    International Nuclear Information System (INIS)

    Stephens, J.A.

    1999-12-01

    The proceedings of the IAEA Advisory Group Meeting on 'Technical Aspects of Atomic and Molecular Data Processing and Exchange' (15th Meeting of A+M Data Centres and ALADDIN Network), held on September 13-14, 1999 in Vienna, Austria are briefly described. The meeting conclusions and recommendations on the priorities in A+M data compilation and evaluation, and on the technical aspects of data processing, exchange, and distribution are also presented. (author)

  9. IAEA advisory group meeting on 'Technical Aspects of Atomic and Molecular Data Processing and Exchange' (14th meeting of the A + M data centres and ALADDIN network). Summary report

    International Nuclear Information System (INIS)

    Stephens, A.

    1998-01-01

    The proceedings of the IAEA Advisory Group Meeting on ''Technical Aspects of Atomic and Molecular Data Processing and Exchange (14th Meeting of A + M Data Centres and ALADDIN Network)'', held on July 21-22, 1997 in Vienna, Austria are briefly described. The meeting conclusions and recommendations on the priorities in A + M data compilation and evaluation, and on the technical aspects of data processing and exchange are also presented. The document includes 15 reports from various Data Centres

  10. IAEA advisory group meeting on technical aspects of atomic and molecular data processing and exchange (16. meeting of the A+M Data Centres and ALADDIN network). Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J A [ed.

    2001-12-01

    The proceedings of the IAEA Advisory group meeting on technical aspects of atomic and molecular data processing and exchange (16. meeting of A+M Data centers and ALADDIN Network), held on September 10-11, 2001 in Vienna, Austria are briefly described. The meeting conclusions and recommendations on the priorities in A+M data compilation and evaluation, and on the technical aspects of data processing, exchange and distribution are also presented. (author)

  11. Containment and surveillance -- A principle IAEA safeguards measure

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1997-01-01

    In October 1954, the Statue of the IAEA (International Atomic Energy Agency) had been signed by 70 nations. The Agency was established in 1957, and at the end of its first year of operation 130 professionals were employed in all departments. By the end of 1990, the number of professionals in the Safeguards Department had increased to over 270, over 200 of whom are designated inspectors. One of the unique features of the IAEA which directly interfaces with Member States is that of on-site inspections by international officials of the IAEA. This growth cycle, spanning some 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. This paper addresses the specific subject of technical means to maintain continuity of knowledge between inspection intervals--classically referred to as Containment and Surveillance

  12. 77 FR 46658 - Proposed Priority; Technical Assistance To Improve State Data Capacity-National Technical...

    Science.gov (United States)

    2012-08-06

    ... Assistance To Improve State Data Capacity--National Technical Assistance Center To Improve State Capacity To... and later years. We take this action to focus attention on an identified national need to provide TA to improve the capacity of States to meet the data collection requirements of the Individuals with...

  13. IAEA at a glance

    International Nuclear Information System (INIS)

    Kinley, D. III

    1997-12-01

    The publication briefly describes the 'peaceful universe' and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  14. IAEA at a glance

    Energy Technology Data Exchange (ETDEWEB)

    Kinley, D III

    1997-12-01

    The publication briefly describes the `peaceful universe` and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  15. IAEA yearbook 1996

    International Nuclear Information System (INIS)

    1996-09-01

    Part A of the Yearbook describes the role played by the IAEA in helping to advance sustainable development by the transfer of nuclear and radiation technology. The introduction to this section this year discusses the application of quality assurance practices to this important work. The main article describes new planning procedures that are being adopted to ensure that these technical co-operation activities are of significant and practical benefit to the States concerned. The work routinely carried out by the IAEA on the development and dissemination of nuclear and radiation techniques covers a wide range of subjects - the practical aspects of physics and chemistry, hydrology, industrial applications, human health, and food and agriculture. Part B of the Yearbook concentrates on food irradiation and the use of nuclear monitoring techniques in programmes for improving human nutrition. Part C of the Yearbook deals with nuclear power and its fuel cycle and waste management technology. The section on nuclear power describes developments during 1995 in a wide range of countries. It also details the IAEA's work on the comparative health and environmental impacts of different types of energy systems. Of particular interest this year in the fuel cycle area is the report of the downturn in world uranium activities that has lasted for more than 15 years may be coming to an end. In the waste management section, emphasis is given to the technology of environmental restoration of sites after contamination resulting from past nuclear activities. A discussion of different aspects of the safety of nuclear power and of the uses of radiation is to be found in Part D, The Nuclear Safety Review. As in previous years, Part E of the IAEA Yearbook 1996 deals with the IAEA's major contribution to the non-proliferation regime - international safeguards. Part E also contains a description of IAEA activities designed to assist Member States in preventing trafficking in nuclear materials

  16. Turkish experience with the use of IAEA planning models

    International Nuclear Information System (INIS)

    Fikret, H.

    1997-01-01

    Most of the IAEA planning methodologies for energy and electricity planning have been transferred to Turkey as part of Technical Co-operation projects on the subject matter. The transfer has been supplemented by adequate training to national experts through their participation in the above projects and in the training courses on these models organized by the IAEA. The experience gathered in the use of these models in Turkey is described in this paper, highlighting how the models are imbedded in the country's planning procedure for energy and electricity matters. (author). 7 figs, 6 tabs

  17. Turkish experience with the use of IAEA planning models

    Energy Technology Data Exchange (ETDEWEB)

    Fikret, H [Ministry of Energy and Natural Resouces, Ankara (Turkey)

    1997-09-01

    Most of the IAEA planning methodologies for energy and electricity planning have been transferred to Turkey as part of Technical Co-operation projects on the subject matter. The transfer has been supplemented by adequate training to national experts through their participation in the above projects and in the training courses on these models organized by the IAEA. The experience gathered in the use of these models in Turkey is described in this paper, highlighting how the models are imbedded in the country`s planning procedure for energy and electricity matters. (author). 7 figs, 6 tabs.

  18. A study on the establishment of national nuclear foreign policy with reference to nuclear export control system, strategy toward IAEA, and NPT review conferences

    International Nuclear Information System (INIS)

    Choi, Young Myung; Nam, Jang Soo; Lee, Han Myung

    1990-02-01

    The objectives of this study are follows: suggestion for i) our future nuclear development directions, ii) establishment of national export control system, iii) establishment of strategy toward IAEA, and suggestion of our standpoints toward the 4th NPT review conference. This study proposes the following; 1) It is desirable that nuclear power generation strategy is propelled under the premise of economics and proven technology. And international cooperation in connection with the nuclear fuel cycle should be reinforced. 2) It is recommened that nuclear export control system should be government-led. 3) Our country needs to make efforts in increasing the number of Korean staff in the IAEA, and to establish permanent mission which is wholly responsible for the IAEA affairs, and to construct a system which deals with nuclear foregin activities. 4) It is desirable that the basic position of our country toward the 4th NPT review conference should be : i) to urge parties to the NPT to conclude safeguards agreement with IAEA as early as possible, ii) to request nuclear suppliers to mitigate their nuclear technology for peaceful uses to nuclear developing countries, and iii) to urge nuclear weapon states to make further efforts for nuclear disarmament. (author)

  19. Study on Formulating Policy and Strategies for IAEA TC Program

    International Nuclear Information System (INIS)

    Min, B. J.; Lee, M. K.; Shin, J. Y.

    2010-10-01

    The objectives of this study is to provide recommendations for formulating adequate policy and strategies for IAEA-TC programme as being of a donor Member State and to guide directions to facing the challenges of changing the status from IAEA-TC recipient to donor country. In addition, this study gives recommendations and feedbacks to the IAEA-TC programmer: how it has contributed to nation's nuclear technology development in the past on one hand and how the country has contributed to it on the other. Besides, this study also conducted to identify the following impacts expected: termination of on-going National TC projects, discontinuation of TC-based technical advices, sponsored fellowship and scientific visits for capacity building opportunities, and limitation in participations of various regional projects due to termination of IAEA financial support. In terms of financial aspect, this study has also performed to assess the nation's annual financial contribution (Technical Cooperation (TC) Fund: 1,67 million dollars in 2008) by comparing the experiences of other OECD countries cases. In conclusion, it is expected that the results of this study will contribute to develop appropriate measures in order to maximize the benefits for future national nuclear technology development and in addition, to explore the possibilities to extend the nuclear technology export market potentials

  20. Status and trends in IAEA safety standards

    International Nuclear Information System (INIS)

    Lipar, M.

    2004-01-01

    While safety is a national responsibility, international standards and approaches to safety promote consistency and facilitate international technical co-operation and trade, and help to provide assurance that nuclear and radiation related technologies are used safely. The standards also provide support for States in meeting their international obligations. One general international obligation is that a State must not pursue activities that cause damage in another State. More specific obligations on Contracting States are set out in international safety related conventions. The internationally agreed IAEA safety standards provide the basis for States to demonstrate that they are meeting these obligations. These standards are founded in the IAEA's Statute, which authorizes the Agency to establish standards of safety for nuclear and radiation related facilities and activities and to provide for their application. The safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment. (orig.) [de

  1. IAEA technical meeting on integrating analog and digital instrumentation and control systems in hybrid main control rooms at nuclear power plants. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    issues apply to new build projects as well. Technical experts and managers from the field of instrumentation and control, process control, human factors engineering, licensing, and computer applications are invited to a Technical Meeting dealing with all important aspects of control room modernization projects. The subject of the present technical meeting was suggested by the members of the IAEA Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI) and supported by a number of IAEA meetings on NPP I and C Systems. Additional information on the Technical Working Group, and on the activities of the IAEA Division of Nuclear Power is available on The purpose of the meeting is to provide an international forum for presentations and discussions of experience with various aspects of the integration of analog and digital instrumentation and control systems in hybrid main control rooms, as applicable to both existing plants and planned (or in-progress) new plant builds. Promising new technologies and future trends in development will be also discussed. The meeting is intended for experts and managers in the I and C field from nuclear power utilities, vendor companies, licensing bodies, research organizations and academic institutions.

  2. IAEA coaches new entrants

    International Nuclear Information System (INIS)

    Jouette, I.

    2016-01-01

    IAEA provides new entrants in nuclear electricity production with a broad and integrated range of services. The aim is to make the new entrant full aware of the commitments and obligations linked to the development of a civil nuclear program. IAEA offers a 3-step approach. The first step assesses the elements the new entrants has to take into account to launch a nuclear program. The second step deals with the preliminary works before the construction starts but after the political decision to launch a nuclear program has been taken. At the end of the second step the national authorities are able to launch tenders and negotiate contracts for the construction of a nuclear power plant. The third step is dedicated to the necessary activities to implement the first nuclear power plant. The end of the third step means that national authorities are able to issue exploitation licenses for operating nuclear power stations. All along the IAEA accompaniment numerous meetings are scheduled in which IAEA experts meet the 3 organisations that represent the new entrant: the government, the plant operator and the national safety authority. An important element of the first step is to help the country to assess the necessary human resource in terms of qualified staff. (A.C.)

  3. The 1978 National Fire-Danger Rating System: technical documentation

    Science.gov (United States)

    Larry S. Bradshaw; John E. Deeming; Robert E. Burgan; Jack D. Cohen

    1984-01-01

    The National Fire-Danger Rating System (NFDRS), implemented in 1972, has been revised and reissued as the 1978 NFDRS. This report describes the full developmental history of the NFDRS, including purpose, technical foundation, and structure. Includes an extensive bibliography and appendixes.

  4. IAEA technical meeting on atomic and plasma-material interaction data for fusion science technology. Summary report

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2003-10-01

    The proceedings and conclusions of the Technical Meeting on 'Atomic and Plasma- Material Interaction Data for Fusion Science Technology' held in Juelich, Germany on October 28-31 are summarized. During the course of the meetings working groups were formed to review the status of specific areas of atomic, molecular and material physics of relevance to fusion and to make recommendations on data needs in fusion from these areas. The reports of those working groups are summarized and the complete reports included as appendices. This meeting brought together over fifty leading scientists in fusion related data. Results of research in a number of topics were presented and very useful discussions were held. The meeting was extremely successful. (author)

  5. Improving artificial breeding of cattle in Africa. Guidelines and recommendations. A manual prepared under the framework of an IAEA technical cooperation regional AFRA project on increasing and improving milk and meat production

    International Nuclear Information System (INIS)

    2005-04-01

    The International Atomic Energy Agency (IAEA) and the African Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology (AFRA), with technical support from the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, implemented a technical cooperation project entitled Improving and Increasing Milk and Meat Production. The objectives of this project were to be achieved by (a) assessing the performance of existing artificial insemination (AI) programmes for small-scale dairy farmers and identifying constraints; (b) formulating and assisting in the implementation of remedial measures including appropriate strategies; (c) establishing sustainable routine non-pregnancy diagnosis (N-PD) and related services to farmers; and (d) harmonizing managerial and field practices and sharing of expertise within the region. The radioimmunoassay (RIA) for measurement of progesterone in milk and blood of cattle and use of the computer database AIDA (Artificial Insemination Database Application) are important components of an integrated approach to these activities. The project commenced in 1999 and, in addition to other national and regional activities, two meetings were held specifically to address objective (d) above: - Task Force Meeting on Training of Artificial Insemination (AI) Technicians, Field Assessment of Fertility and Database Management, November 1999 in Pretoria, South Africa. - Task Force Meeting to Harmonize Procedures for Selection and Management of AI Bulls and Use of Semen Technology in African Countries, May 2001 in Arusha, Tanzania. The meeting in Tanzania provided a comprehensive overview of the current practices being adopted for selection and management of AI bulls and use of semen technology in five African countries, and compared these with international practices. It also provided an opportunity for participants to discuss technical issues related to provision of improved breeding services to

  6. The National Technical Association: A Hallmark for Access and Success

    Science.gov (United States)

    Jearld, A., Jr.

    2017-12-01

    Minority Technical Organizations (MTO) are under-utilized as a valuable resource that can help develop the next generation of scientists and engineers. For over 90 years, the National Technical Association (NTA) (www.ntaonline.org) has been the premiere technical association for scientists, engineers, architects, technologist, educators, and technical business entrepreneurs for people of color, offering professional development, mentoring and awards recognition to technical professionals. NTA and its partners are developing a diverse workforce by emphasizing enhanced access opportunities to skills development for youth among underrepresented STEM populations. Established in 1925 by Charles Summer Duke, the first African American to receive an engineering degree from Harvard University, NTA served as the model organization for more than 40 other minority technical organizations that began forming in the 1970's. NTA has served as consultants to the US government on the status of African Americans in science and engineering. The first technical organization to establish community based technical mentoring programs targeting minorities, NTA shares information and assists institutions in identifying minority talent. Members developed the first science and engineering curriculum at Historically Black Colleges and Universities (HBCU's), and are working to produce more students with geoscience degrees to ensure greater career placement with increased minority participation in the geosciences. NTA addresses the lack of access, support, and the need for networking through the longest running annual conference for technical practitioners of color. A hallmark of NTA has been access and success through inter-organizational collaborations with communities of scholars, highly experienced professionals and students to discuss the definition of what is successful geoscience education, research, and employment.

  7. IAEA Assistance in the development of new research reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Borio di Tigliole, Andrea; Bradley, Ed; Zhukova, Anastasia; Adelfang, Pablo [International Atomic Energy Agency, Research Reactor Section, Vienna (Austria); Shokr, Amgad [International Atomic Energy Agency, Research Reactor Safety Section, Vienna (Austria); Ridikas, Danas [International Atomic Energy Agency, Physics Section, Vienna (Austria)

    2015-08-15

    A research reactor (RR) project is a major undertaking that requires careful preparation, planning, implementation and investment in time, money, and human resources. In recent years, the interest of IAEA Member States in developing RR programmes has grown significantly, and currently, several Member States are in different stages of new RR projects. The majority of these countries are building their first RR as a key national facility for the development of their nuclear science and technology programmes, including nuclear power. In order to support Member States in such efforts, the IAEA in 2012 published the Nuclear Energy Series Report No. NP-T-5.1 on Specific Considerations and Milestones for a Research Reactor Project. To provide further support, the IAEA also published a document to assist Member States in the preparation of the bid invitation specification for the purchase of a RR. The IAEA will also continue to provide assistance for human resources development of the Member States establishing their first RR, and to facilitate sharing experience and knowledge among Member States through its programmatic activities including expert mission services, technical meetings, training courses and workshops addressing relevant technical and safety topics. This paper presents the IAEA assistance and services provided to the Member States considering new RRs, with particular emphasis on those establishing their first RR, including elaboration on the services mentioned above.

  8. ICT in supporting Nuclear Malaysia as National Technical Support Organization

    International Nuclear Information System (INIS)

    Saaidi Ismail; Siti Nurbahyah Hamdan; Mohd Fauzi Haris

    2011-01-01

    Information and communication technology (ICT) services are basic requirements in any organization during this information age. ICT is proven as a powerful enabler in organization due to its unique characteristics that improve communication, collaboration, and the exchange of information to strengthen and create new economic and social networks. As Malaysian Nuclear Agency is moving towards Technical Support Organization (TSO), the importance of ICT cannot simply be ignored. Being a TSO for national Nuclear Power Plant (NPP), Nuclear Malaysia is responsible for providing the technical and scientific basis for decisions and activities regarding nuclear technology and radiation safety. As a TSO, Nuclear Malaysia should utilize and collaborate data and information available from it activities and programs and use it to expedite the implementation of national NPP. Technical support also responsible to contribute an excellent operation by providing technical inputs and support for optimizing NPP component (such as plant procedures, operation and maintenance, technical assistance, training etc). These tasks can be performed more effectively and efficiently with the help of appropriate ICT services and solution. Therefore, the deployment and implementation of appropriate ICT requirement shall be made to fulfill agency needs. As initial step, existing ICT facilities should be reassessed. This is because the capacity of existing ICT services is very limited in terms of manpower, infrastructure, and applications. This paper however, will briefly discuss only to the requirement gap on existing ICT manpower and infrastructure with the requirement needed for TSO. The facts then will be used to improve ICT manpower and infrastructure in Nuclear Malaysia to provide reliable and high availability of technical support for national NPP. (author)

  9. Technical basis of safeguards

    International Nuclear Information System (INIS)

    Buechler, C.

    1975-01-01

    Definition of nuclear materials control. Materials accountancy and physical control as technical possibilities. Legal possibilities and levels of responsibility: material holders, national and international authority. Detection vs. prevention. Physical security and containment surveillance. Accountancy: materials balance concept. Materials measurement: inventory taking, flow determination. IAEA safeguards; verification of operator's statement. (HP) [de

  10. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  11. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  12. Pulsed power safety and technical training at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Zawadzkas, G.A.; Donovan, G.L.; Mikkelson, K.A.; Sharpe, A.W.; Johnston, R.R.

    1987-01-01

    The expansion of pulsed power applications research at Sandia National Labs requires increasing technician-level support from individuals trained in high voltage, short pulse technology. Large superpower generators need a broad-based training curriculum in all aspects of accelerator operation to satisfy recent Department of Energy (DOE) desires for formal certification of accelerator operators. This paper discusses the status of Sandia's safety and technical training program in pulsed power technology directed mainly towards high school graduate and technical school level students. Present safety training methodology requires that hazards for experimental facilities are identified first, a specific curriculum is then tailored to individuals' background experiences and hazards involved with their current assignments. In the technical training program, certification requirements are being established and a coursework program has been initiated in which subjects are organized into two sections. The first covers electrical principles and physical properties of pulsed power components. The second presents various support-type subsystems for accelerators

  13. IAEA introduction

    International Nuclear Information System (INIS)

    Zeman, A.

    2009-01-01

    The Physics Section supports the IAEA Member States regarding utilization of: Accelerators; Research reactors; Cross-cutting material research; Controlled fusion. The activities in the field of material science include studies of present NPP structural materials; investigation of degradation mechanisms and contribution to research programs of new materials, as well as education and training activities. The Section is participating in the coordinated research projects 'Accelerator Simulation and Theoretical Modeling of Radiation Effects' (Jointly NA-NE) and 'Benchmarking of advanced materials pre-selected for innovative nuclear reactors' (Jointly NA and NE)

  14. Capacity building in nuclear science and technology through the IAEA fellowship and scientific visit programme for Malaysia

    International Nuclear Information System (INIS)

    Saliza Jam; Ainul Hayati Daud

    2005-01-01

    Malaysia participates actively in the IAEA Technical Co-operation Programme (TCP) since it becomes a member to IAEA in 1969. The primary objective of the programme is to assist member states in achieving self-reliance in nuclear science and technology by strengthening human resource and the institutions. Human resource development has always been considered to be the most important sector cross-cutting all national programme areas. One of the technical assistance offers under the IAEA Technical Co-operation Programme (TCP) is the fellowship and scientific visits programme. This report analyses the development of capacity building in Malaysia through the IAEA fellowship and scientific visit programme during the period of 2003-2005. It also describes the success and challenges encountered during the implementation of the programme. (Author)

  15. Proceedings of the sixth technical committee meeting organized by the IAEA and held in Vienna, Austria, 8-11 June 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The Technical Committee on Thermal Reactor Safety Research held its sixth meeting from 8-11 June 1987 at the Agency's Headquarters in Vienna. It was attended by 25 participants representing 18 countries and 2 international organizations. With respect to exchange on national research activities the committee members presented their most recent achievements in the area of nuclear safety research. A separate abstract was prepared for each of their presentations. Refs, figs and tabs

  16. The IAEA at work

    International Nuclear Information System (INIS)

    2004-03-01

    Fifty years ago, Dwight Eisenhower stood before the United Nations to offer both a warning and a vision. The knowledge to build an atomic bomb was in the hands of rival powers and would soon be shared by many countries, the President said. It was time to create a U.N. body that could ensure that the new technology served no military purpose. It was time, moreover, to 'devise methods whereby this fissionable material would be allocated to serve the peaceful pursuits of mankind' in agriculture, medicine and other peaceful activities. Eisenhower foresaw a world safe from the destructive power of atomic fission but gaining from its technological advances. Half a century later, the world continues to witness his foresight through the work of the International Atomic Energy Agency (IAEA). The IAEA aims at four formidable goals: safeguarding nuclear nonproliferation; enhancing the security of nuclear facilities and radioactive materials; ensuring the safety of nuclear technologies; and promoting nuclear science to meet human needs. As the world's 'nuclear watchdog,' the IAEA's impartial inspectorate verifies the peaceful uses of nuclear energy in scores of countries. By joining the Agency's strengthened safeguards system and concluding an Additional Protocol, countries can assure the world-and the IAEA can verify-that their nuclear activities are not used for weapons purposes. True to Eisenhower's vision, the power of the atom is being tapped for many human benefits, especially in the world's less developed nations. Extreme poverty remains a profound problem today: some 1.2 billion people in the developing world survive marginally on less that US$1 per day. Another 2.8 billion struggle on less than US$2 per day. The IAEA is mobilizing nuclear science to help address these pressing needs. From managing water better, to controlling pests and diseases, to protecting the environment, the IAEA is helping poor countries make sizeable advances. At the same time, the IAEA works

  17. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators. Summary report of an IAEA technical meeting

    International Nuclear Information System (INIS)

    Abriola, D.; Tuli, J.K.

    2009-10-01

    The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. (author)

  18. Summary Report of an IAEA Technical Meeting on Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators

    Energy Technology Data Exchange (ETDEWEB)

    Abriola, D [IAEA Nuclear Data Section, Vienna (Austria); Nichols, A L [Departments of Physics, University of Surrey, Guildford (United Kingdom); Tuli, J K [Brookhaven National Laboratory, Brookhaven, Upton, NY (United States)

    2011-10-15

    The 19th meeting of the International Network of Nuclear Structure and Decay Data Evaluators was convened at the IAEA Headquarters, Vienna, from 4 to 8 April 2011, by the staff members of IAEA, Nuclear Data Section. This meeting was attended by 35 scientists from 20 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, data centre reports, various proposals considered, modified and agreed by the participants, and recommendations/conclusions are presented within this document. (author)

  19. Summary Report of an IAEA Technical Meeting on Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators

    International Nuclear Information System (INIS)

    Abriola, D.; Nichols, A.L.; Tuli, J.K.

    2011-10-01

    The 19th meeting of the International Network of Nuclear Structure and Decay Data Evaluators was convened at the IAEA Headquarters, Vienna, from 4 to 8 April 2011, by the staff members of IAEA, Nuclear Data Section. This meeting was attended by 35 scientists from 20 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, data centre reports, various proposals considered, modified and agreed by the participants, and recommendations/conclusions are presented within this document. (author)

  20. 19th Meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion. Summary Report of an IAEA Technical Meeting

    International Nuclear Information System (INIS)

    Braams, Bastiaan J.

    2014-07-01

    The International Fusion Research Council (IFRC) Subcommittee on Atomic and Molecular Data met at IAEA Headquarters in Vienna on 28-29 April 2014 to review the work of the Atomic and Molecular Data Unit (AMDU) within the Nuclear Data Section. The subcommittee heard presentations on the Unit’s activities in the years 2012 and 2013 and discussed priorities for database development and evaluation, coordinated research projects and other meetings, and presentation on the web and elsewhere of the work of the Unit. The IFRC Subcommittee offers the following specific recommendations. • For Coordinated Research Projects in the area of plasma-material interaction highest priority goes to a CRP on erosion and tritium retention for steel surfaces, with emphasis on the kinds of low- or reduced-activation steels that may be used in a reactor. • In the area of atomic and molecular data it is recommended to initiate a new CRP on data for charge exchange processes related to neutral beams. The main topic of interest will be beam interaction with core plasma, but processes relevant to generation of the beam may also be included. • Data for plasma interaction with liquid metals gallium and tin, certain salts and possibly also aluminium, are needed in order to assess uses of these materials in a reactor environment. For a CRP this topic has lower priority than one on steel surfaces, but it is recommended as a good topic for a Technical Meeting. • The Unit should organize again, in 2014 or early 2015, a large “decennial” meeting on atomic, molecular and plasma-material interaction data for fusion science and technology to bring together fusion scientists users of A+M+PMI data and atomic, molecular and materials scientists data producers. • The Unit has the mission to provide internationally recommended and evaluated data for atomic, molecular and plasma-material interaction process and related materials structure properties for fusion science and technology; this is

  1. International Atomic Energy Agency (IAEA) Activity on Technical Influence of High Burnup UOX and MOX Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    Lovasic, Z.; Einziger, R.

    2009-01-01

    This paper briefly reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on spent fuel management. These data will provide information on the impacts, regarding spent fuel management, for those countries operating light-water reactors (LWR)s and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. These properties are reviewed. The effects of these property changes on wet and dry storage, transportation, reprocessing, re-fabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. Data gaps were also identified during this investigation. The pros and cons of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed.. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, re-fabrication, and

  2. Technical handbook on the National Arrangements for Incidents involving Radioactivity. NAIR technical handbook

    International Nuclear Information System (INIS)

    McColl, N.P.; Kruse, P.

    2002-01-01

    This Technical Handbook contains information for radiation specialists participating in the National Arrangements for Incidents involving Radioactivity (NAIR). Together with the NAIR Users Handbook 2000 edition, it updates and replaces the NAIR Handbook published in 1995. The Users Handbook was designed for those who might seek assistance through NAIR, principally the police or other emergency services. Both Handbooks are reproduced on the NRPB website (www.nrpb.org) and are available from NRPB

  3. The IAEA and Control of Radioactive Sources

    International Nuclear Information System (INIS)

    Dodd, B.

    2004-01-01

    The presentation discusses the authoritative functions and the departments of the IAEA, especially the Department of Nuclear Safety and Security and its Safety and Security of Radiation Sources Unit. IAEA safety series and IAEA safety standards series inform about international standards, provide underlying principles, specify obligations and responsibilities and give recommendations to support requirements. Other IAEA relevant publications comprise safety reports, technical documents (TECDOCs), conferences and symposium papers series and accident reports. Impacts of loss of source control is discussed, definitions of orphan sources and vulnerable sources is given. Accidents with orphan sources, radiological accidents statistic (1944-2000) and its consequences are discussed. These incidents lead to development of the IAEA guidance. The IAEA's action plan for the safety of radiation sources and the security of radioactive material was approved by the IAEA Board of Governors and the General Conference in September 1999. This led to the 'Categorization of Radiation Sources' and the 'Code of Conduct on the Safety and Security of Radioactive Sources'. After 0911 the IAEA developed a nuclear security plan of activities including physical protection of nuclear material and nuclear facilities, detection of malicious activities involving nuclear and other radioactive materials, state systems for nuclear material accountancy and control, security of radioactive material other than nuclear material, assessment of safety and security related vulnerability of nuclear facilities, response to malicious acts, or threats thereof, adherence to and implementation of international agreements, guidelines and recommendations and nuclear security co-ordination and information management. The remediation of past problems comprised collection and disposal of known disused sources, securing vulnerable sources and especially high-risk sources (Tripartite initiative), searching for

  4. 77 FR 47495 - Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting-National...

    Science.gov (United States)

    2012-08-08

    ... Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical... 34 CFR Chapter III [CFDA Number 84.373Z] Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical Assistance Center on Early Childhood...

  5. Directory of IAEA databases

    International Nuclear Information System (INIS)

    1992-12-01

    This second edition of the Directory of IAEA Databases has been prepared within the Division of Scientific and Technical Information (NESI). Its main objective is to describe the computerized information sources available to staff members. This directory contains all databases produced at the IAEA, including databases stored on the mainframe, LAN's and PC's. All IAEA Division Directors have been requested to register the existence of their databases with NESI. For the second edition database owners were requested to review the existing entries for their databases and answer four additional questions. The four additional questions concerned the type of database (e.g. Bibliographic, Text, Statistical etc.), the category of database (e.g. Administrative, Nuclear Data etc.), the available documentation and the type of media used for distribution. In the individual entries on the following pages the answers to the first two questions (type and category) is always listed, but the answers to the second two questions (documentation and media) is only listed when information has been made available

  6. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    Energy Technology Data Exchange (ETDEWEB)

    Goke, Sarah Hayes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  7. Directory of IAEA databases

    International Nuclear Information System (INIS)

    1991-11-01

    The first edition of the Directory of IAEA Databases is intended to describe the computerized information sources available to IAEA staff members. It contains a listing of all databases produced at the IAEA, together with information on their availability

  8. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  9. The IAEA inspectorate, including new requirements

    International Nuclear Information System (INIS)

    Alston, W.

    1998-01-01

    The basic purpose of the IAEA safeguards system is 'timely detection of diversion of significant quantities of nuclear material'. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  10. The IAEA inspectorate, including new requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alston, W [International Atomic Energy Agency, Department of Safeguards, Division of Operations A, Vienna (Austria)

    1999-12-31

    The basic purpose of the IAEA safeguards system is `timely detection of diversion of significant quantities of nuclear material`. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  11. Technical meeting to 'Review of national programmes on fast reactors and accelerator driven systems (ADS)'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    36th Annual Meeting of the Technical Working Group on Fast Reactors, the IAEA Technical Meeting (TM) on 'Review of National Programmes on Fast Reactors and Accelerator Driven Systems (ADS)', hosted by the Korean Atomic Energy Research Institute (KAERI) was attended by TWG-FR Members and Advisers from the following Member States (MS) and International Organizations: Brazil, France, Germany, India, Japan, the Republic of Kazakhstan, the Republic of Korea, the Russian Federation, the United Kingdom, the United States of America, and the OECD/NEA. The objectives of the meeting were to: 1) exchange information on the national programmes on Fast Reactors (FR) and Accelerator Driven Systems (ADS); 2) review the progress since the 35th TWG-FR Annual Meeting, including the status of the actions; 3) consider meeting arrangements for 2003 and 2004; 4) review the Agency's co-ordinated research activities in the field of FRs and ADS, as well as co-ordination of the TWG-FR's activities with other organizations. The participants made presentations on the status of the respective national programmes on FR and ADS development. A summary of the highlights for the period since the 35th TWG-FR Annual Meeting

  12. 17th Meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion. Summary Report of an IAEA Technical Meeting

    International Nuclear Information System (INIS)

    Braams, B.J.

    2012-06-01

    The 17th meeting of the Subcommittee on Atomic and Molecular Data of the International Fusion Research Council (IFRC) was held on 27-28 April 2010 at IAEA Headquarters in Vienna, Austria. Activities of the Atomic and Molecular Data Unit for the period 2006-2008 were reviewed, and recommendations were made for the 2010-2011 budget cycle. The proceedings, conclusions and recommendations of the Subcommittee meeting are briefly described in this report. Specific recommendations of the Subcommittee from this meeting, as well as the report on the activities of the IAEA Atomic and Molecular Data Unit for the period May 2006 - March 2008, are also included. (author)

  13. Special issue containing papers presented at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (7-11 September 2011) Special issue containing papers presented at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (7-11 September 2011)

    Science.gov (United States)

    Berk, H. L.

    2012-09-01

    The topic of the behaviour of energetic alpha particles in magnetic fusion confined plasmas is perhaps the ultimate frontier plasma physics issue that needs to be understood in the quest to achieve controlled power from the fusion reaction in magnetically confined plasmas. The partial pressure of alpha particles in a burning plasma will be ~5-10% of the total pressure and under these conditions the alpha particles may be prone to develop instability through Alfvénic interaction. This may lead, even with moderate alpha particle loss, to a burn quench or severe wall damage. Alternatively, benign Alfvénic signals may allow the vital information to control a fusion burn. The significance of this issue has led to extensive international investigations and a biannual meeting that began in Kyiv in 1989, followed by subsequent meetings in Aspenäs (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007) and Kyiv (2009). The meeting was initially entitled 'Alpha Particles in Fusion Research' and then was changed during the 1997 meeting to 'Energetic Particles in Magnetic Confinement Systems' in appreciation of the need to study the significance of the electron runaway, which can lead to the production of energetic electrons with energies that can even exceed the energy produced by fusion products. This special issue presents some of the mature interesting work that was reported at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was held in Austin, Texas, USA (7-11 September 2011). This meeting immediately followed a related meeting, the 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (5-7 September 2011). The meetings shared one day (7 September 2011) with presentations relevant to both groups. The presentations from most of the participants, as well as some preliminary versions of papers, are available at the

  14. Role of the IAEA in the radiological protection of patients

    International Nuclear Information System (INIS)

    Ortiz Lopez, P.; Wrixon, A.D.; Meghzifene, A.; Izewska, J.

    2001-01-01

    The paper discusses the role of the IAEA in relation to the radiological protection of patients. Within the IAEA there are two major programmes which have an impact on the protection of the patient. Firstly, patient protection is part of the programme on radiation safety; secondly, the human health programme contains a number of activities related to quality assurance (QA), and these also contribute to the protection of patients. A function of the IAEA, as stipulated in its Statute, is 'to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property' and to provide for the application of these standards...'. There are three different levels of the IAEA Safety Standards: Safety Fundamentals, Safety Requirements and Safety Guides. The Standards are supported by other documents such as Safety Reports. There are five means used by the IAEA in providing for the application of the Standards: co-ordinating research, promoting education and training, providing assistance, fostering information exchange and rendering services to its Member States. All these means are used in the programme on radiological protection of patients as described in the paper. The IAEA is assisting its Member Sates in the development and implementation of QA programmes. These activities help disseminate not only the technical knowledge but also the basic ingredients of the QA culture. The IAEA assistance is directed at: (1) national regulatory bodies for the establishment of a regulatory framework which complies with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; (2) standards laboratories for metrological traceability; and (3) end users at medical institutions for the development and implementation of QA programmes

  15. Selection and Breeding of Cattle in Asia: Strategies and Criteria for Improved Breeding. Prepared under the Framework of an RCA Project with the Technical Support of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture

    International Nuclear Information System (INIS)

    2009-10-01

    The International Atomic Energy Agency (IAEA) and the Regional Cooperative Agreement for Asia and the Pacific Region (RCA), with the technical support of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, implemented a Technical Cooperation (TC) project entitled Integrated Approach for Improving Livestock Production Using Indigenous Resources and Conserving the Environment (RAS/5/044). The 23 project counterparts and the IAEA technical officer, based on the lack of standard practices in the region with regard to selection of cattle for breeding purposes, and the need to properly manage the genetic resources within each country for improving the productivity of the existing stock while maintaining the unique and beneficial genetic characteristics of the indigenous breeds, agreed during the first meeting to request the IAEA to recruit a group of experts with the task of preparing guidelines for the selection and breeding of cattle and buffalo on the Asian continent. To address these recommendations, an experts meeting on Selection Criteria for Breeding Heifers was organized and held in Mymensingh, Bangladesh. The meeting was hosted by the Faculty of Veterinary Science of the Bangladesh Agricultural University (BAU) from 6 to 10 February 2006. It was attended by six foreign experts and two local experts, and was supported by the technical officer of RAS/5/044. The experts from countries participating in RAS/5/044 gave presentations on the current state of cattle breeding in their countries and two experts working in industrialized countries within the region (New Zealand and Australia) informed the participants about the existing cattle breeding programmes in their respective countries and offered their perspectives on how similar approaches could be transferred to the Member States participating in RAS/5/044. All experts also made a field visit to a prominent dairy-producing region, to experience at first-hand some of the current programmes

  16. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators; Summary Report of an IAEA Technical Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Abriola, D.; Tuli, J.

    2009-03-23

    The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. The International Network of Nuclear Structure and Decay Data (NSDD) Evaluators holds biennial meetings under the auspices of the IAEA, and consists of evaluation groups and data service centres in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS).

  17. IAEA's role in nuclear desalination

    International Nuclear Information System (INIS)

    Khamis, I.; )

    2010-01-01

    Currently, several Member States have shown interest in the utilization of the nuclear energy for seawater desalination not only because recent studies have demonstrated that nuclear desalination is feasible, but also economical and has been already demonstrated in several countries. Therefore, the article will provide a highlight on sea water desalination using nuclear energy as a potential for a sustainable development around the world and the IAEA role in this regards. Special emphasis is placed on past, present, and future nuclear desalination experience in various IAEA Member States. The International Atomic Energy Agency (IAEA) role could be summarized in facilitating cutting-edge developments in the area of seawater desalination using nuclear energy, and establishing a framework for facilitating activities in Member States through information exchange and provision of technical assistance. (author)

  18. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  19. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  20. IAEA and food irradiation

    International Nuclear Information System (INIS)

    Machi, Sueo

    1995-01-01

    IAEA was founded in 1957. 122 countries take part in it. It is operated with the yearly ordinary budget of about 20 billion yen and the technical cooperation budget of about 6 billion yen and by 2200 personnel. Its two important roles are the promotion of the peaceful utilization of atomic energy and the prevention of nuclear proliferation. The activities of IAEA are shown. The cooperation with developing countries and the international research cooperation program are the important activities. The securing of foods is an urgent subject, and the utilization of radiation and isotopes has been promoted, aiming at sustaining agriculture. The necessity of food irradiation is explained, and at present, commercial food irradiation is carried out in 28 countries including Japan. The irradiation less than 10 kGy does not cause poisonous effect in any food, according to JECFI. The new international agreement is expected to be useful for promoting the international trade of irradiated foods. The international cooperation for the spread of food irradiation and the public acceptance of food irradiation are reported. (K.I.)

  1. 18th Meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion. Summary Report of an IAEA Technical Meeting

    International Nuclear Information System (INIS)

    Braams, B.J.

    2013-12-01

    The 18th meeting of the Subcommittee on Atomic and Molecular Data of the International Fusion Research Council (IFRC) was held on 26-27 April 2012 at IAEA Headquarters in Vienna, Austria. Activities of the Atomic and Molecular Data Unit for the period 2010-2012 were reviewed and recommendations were made for continuig activitiees in 2012-2013 and for new projects in the 2014-2015 budget cycle. The proceedings, conclusions and recommendations of the Subcommittee meeting are briefly described in this report. Specific recommendations of the Subcommittee from this meeting, as well as the report on the activities of the IAEA Atomic and Molecular Data Unit for the period May 2010 - April 2012, are also included. (author)

  2. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators. Summary report of an IAEA Technical Meeting

    International Nuclear Information System (INIS)

    Nichols, A.L.; Tuli, J.K.

    2007-09-01

    The IAEA Nuclear Data Section convened the 17th meeting of the International Network of Nuclear Structure and Decay Data Evaluators in St. Petersburg, Russian Federation, 11-15 June 2007. This meeting was attended by 27 scientists from 13 Member States concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. (author)

  3. Repositioning Technical and Vocational Education and Training (TVET) for Youths Employment and National Security in Nigeria

    Science.gov (United States)

    Ogbunaya, T. C.; Udoudo, Ekereobong S.

    2015-01-01

    The paper focused on repositioning Technical and Vocational Education and Training (TVET) for youth's employment and national security in Nigeria. It examined briefly the concepts of technical vocational education and training (TVET), youths, unemployment and national security as well as the effects of unemployment on national security in Nigeria.…

  4. IAEA inspections and Iraq's nuclear capabilities

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1992-04-01

    It is reported that IAEA teams have been investigating Iraq's nuclear capabilities since May 1991 and following the Gulf War under terms of United Nations Security Council Resolution 687 directed at eliminating Iraq's weapons of mass destruction and means to produce and use them. A chronology of the events as well as the IAEA plan of further actions are described

  5. IAEA yearbook 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The IAEA Yearbook 1991 contains the following 6 chapters: Transfer of Nuclear Technology; Applications of Nuclear Techniques and Research (Also published separately as Part B of the IAEA Yearbook 1991); Nuclear Power, Nuclear Fuel Cycle and Waste Management (Also published separately as Part C of the IAEA Yearbook 1991); Nuclear Safety Review (Also published separately as Part D of the IAEA Yearbook 1991); IAEA Safeguards; The IAEA (operating framework and functions). A separate abstract and indexing was provided for each chapter. Refs, figs and tabs

  6. The IAEA moves forward

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-15

    At the opening of the Ninth Regular Session of the Agency's General Conference in Tokyo on 21 September, the Director General, Dr. Sigvard Eklund, made a brief survey of some of the current developments in the Agency's activities. The implementation of the Special Fund project for the eradication in Central America of the Mediterranean Fruit Fly by using the sterile male technique has commenced. This project is technically directed by the Joint IAEA/FAO Division of Atomic Energy in Agriculture. This division will also implement the latest project entrusted to the Agency by the Special Fund concerning the establishment in Turkey of a pilot plant for grain disinfestation by radiation. It is anticipated that this pilot plant will demonstrate successfully the feasibility and economic practicability of using radiation on a commercial scale to eliminate considerable losses of stored grain by damage inflicted by insect pests

  7. Problems encountered in embodying the principles of ICRP-26 and the revised IAEA safety standards into UK national legislation

    International Nuclear Information System (INIS)

    Beaver, P.F.

    1979-01-01

    This paper describes the United Kingdom procedures and format for safety legislation and goes on to show how the necessary legislation for radiological protection will fit into the general framework. The United Kingdom, as a member of the European Community and EURATOM, is bound to implement the Euratom Directive on radiological protection within the next few years. The latest draft of the Directive takes account of the recommendations of ICRP-26 and further, a recent draft of the revised IAEA Basic Safety Standards is a composite of both the Directive and ICRP-26. Thus, the effect of embodying the principles of the Directive is to embody the principles of ICRP-26 and the Basic Safety Standards. Some of the problems which have been met are described and in particular there is discussion of the problems arising from the incorporation of the three ICRP-26 facets of dose control, namely justification, optimization and limitation, into a legislative package. The UK system of evolving safety legislation now requires considerable participation by all the parties affected (or by their representatives). This paper indicates that the involvement of persons affected, coupled with a legislative package which consists of a hierarchy of (a) regulations; (b) codes of practice; and (c) guidance notes, will result in the fundamental principles of ICRP-26 being incorporated into UK legislation in a totally acceptable way. (author)

  8. Newsbriefs www.iaea.org. January 2002

    International Nuclear Information System (INIS)

    2002-01-01

    In this newsbrief the topics covered include: categories of risk, nuclear materials, nuclear facilities, and radioactive sources; a special session of IAEA experts meeting on the subject; financing the prevention of terrorism; nuclear security discussed by the IAEA Board of Governors; technical cooperation for security; use of electron beam scanning for mail safety; sustainable development; radioactive waste management; health programs in Latin America; landmine cleanup; clean water programmes

  9. Brief Introduction of Chinese National Technical Committee for Standardization on Radio Interference

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Chinese Nationa Technical Committee for Standardization on Radio Interference(SAC/TC79),ESTABLISHED IN 1986,is the national technical organization relating to different departments for standardization,with responsibility for technical research of electromagnetic compatibility as well as the management of each subcommittee.

  10. IAEA TECDOC 055 Outline

    Energy Technology Data Exchange (ETDEWEB)

    Shull, Doug [Gregg Protection Services, Palm Beach Gardens, FL (United States)

    2015-07-13

    An outline of suggestions for updating a version of IAEA-TECDOC-1276 is provided. This update will become IAEA-TECDOC-055, titled ''IAEA handbook for designing and implementing physical protection systems for nuclear material and nuclear facilities.''

  11. Optimizing IAEA Safeguards

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  12. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  13. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators. Summary report of an IAEA technical meeting

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L; Tuli, J K [International Atomic Energy Agency, Nuclear Data Section, Vienna (Austria)

    2005-09-15

    The IAEA Nuclear Data Section convened the 16th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the Department of Physics and Astronomy, McMaster University, Hamilton, Canada, 6-10 June 2005. This meeting was attended by 33 scientists from 12 Member States concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. (author)

  14. IAEA and International Science and Technology Center sign cooperative agreement

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA and the International Science and Technology Center (ISTC) today signed an agreement that calls for an increase in cooperation between the two organizations. The memorandum of understanding seeks to amplify their collaboration in the research and development of applications and technology that could contribute to the IAEA's activities in the fields of verification and nuclear security, including training and capacity building. IAEA Safeguards Director of Technical Support Nikolay Khlebnikov and ISTC Executive Director Adriaan van der Meer signed the Agreement at IAEA headquarters in Vienna on 22 October 2008. (IAEA)

  15. Staying one step ahead: An IAEA inspector fits the picture

    International Nuclear Information System (INIS)

    Bohannon, J.

    2006-01-01

    At 29, Nangonya, an engineer, is the nuclear inspector at the International Atomic Energy Agency (IAEA). Like any scientific research discipline, nuclear inspection requires a blend of science and technical knowledge and a sceptical mindset. But a career in nuclear inspection also demands detective and diplomatic skills sharp enough to handle sensitive political issues. Nangonya joined the IAEA in 2002 by taking the Agency's Safeguards Traineeship Programme, a foundation course on nuclear technology open only to nationals from developing countries. After finishing the year-long programme, Nangonya applied for an IAEA nuclear inspector position-he got it-and then undertook the three-month training course that all newly hired inspectors complete. Most of Nangonya's training covered the subjects that might be expected: the ins and outs of the nuclear fuel cycle, how to verify that each and every reported gram of plutonium and uranium are where they are supposed to be, and how to spot signs of illicit activity. Every year, IAEA hires 15 to 30 nuclear inspectors, typically in their 30s, many with backgrounds far removed from nuclear physics. An inspection team needs a combination of backgrounds. Inspectors come with a range of expertise, from physics, engineering, and chemistry to computer science and even biology; samples from plants and animals often play a role in detecting unreported nuclear materials. But apart from technical expertise, there are also crucial social and psychological skills to be learned, and this is where nuclear inspection diverges most from academic science. Nuclear inspectors must learn to trust their colleagues, but during their training they must learn not to trust others. Careful diplomacy, not covert intrigue, is the modus operandi. Even when nuclear inspectors turn up bad news, such as the recent discovery of what may be a secret nuclear programme in Iran, inspectors are not enforcers. When findings have been confirmed, the IAEA Director

  16. RANET technical guidelines: Interim technical guidelines for national assistance capabilities. Emergency preparedness and response. Date effective: 1 January 2007

    International Nuclear Information System (INIS)

    2006-12-01

    The publication is issued as an attachment to EPR-RANET (2006) and has the same status. It provides administrative and technical guidelines for National Assistance Capabilities and enters into effect on 1 January 2007. Additional technical guidelines are under development by assistance work group under international Action Plan for Strengthening the International Preparedness and Response System for Nuclear and Radiological Emergencies. As these are finalised they will be included in this document

  17. IAEA Helps Remove Highly Radioactive Material from Five South American Countries

    International Nuclear Information System (INIS)

    2018-01-01

    The International Atomic Energy Agency (IAEA) has helped remove 27 disused highly radioactive sources from five South American countries in a significant step forward for nuclear safety and security in the region. It was the largest such project ever facilitated by the IAEA. The material, mainly used for medical purposes such as treating cancer and sterilizing instruments, was transported to Germany and the United States for recycling. Canada, where some of the sources were manufactured, funded the project upon requests for IAEA support from Bolivia, Ecuador, Paraguay, Peru and Uruguay. The sealed Cobalt-60 and Caesium-137 sources pose safety and security risks when no longer in use, according to Raja Adnan, Director of the IAEA’s Division of Nuclear Security. “The removal of this large number of radioactive sources has significantly reduced those risks in the five countries,” Adnan said. In recent years, the IAEA has assisted Bosnia and Herzegovina, Cameroon, Costa Rica, Honduras, Lebanon, Morocco, Tunisia and Uzbekistan in the removal of disused sources. The South American operation was the largest the IAEA has so far coordinated in terms of both the number of highly radioactive sources and countries involved. While nuclear safety and security are national responsibilities, the IAEA helps Member States upon request to meet these responsibilities through training, technical advice, peer reviews and other advisory services. Such efforts may include support for Member States in implementing the safe and cost-effective recovery, conditioning, storage, disposal or transportation of disused sealed radioactive sources (DSRS).

  18. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  19. Fostering member state implementation of the IAEA's transport regulations

    International Nuclear Information System (INIS)

    Brittinger, M.T.M.; Wangler, M.E.

    2004-01-01

    Based on a 1959 mandate from the United Nations Economic and Social Council, international safety requirements are embodied in the ''Regulations for the Safe Transport of Radioactive Material'' that were first published by the International Atomic Energy Agency in 1961 and revised in 1967, 1973, 1985 and 1996 to keep them abreast of scientific and technical developments. The requirements are incorporated into the regulatory documents of the International Civil Aviation Organization for air transport, and the International Maritime Organization for marine transport. As the requirements of the latter documents are legally-binding for the member states of the corresponding organizations, the IAEA safety requirements thus also become mandatory in those countries. The same situation applies for the surface modes in Europe, by means of the regulatory documents of the European Community for rail, road and inland waterways. Nevertheless, the IAEA has not relaxed its efforts to ensure that its Transport Regulations stay abreast of scientific and technical developments; on the contrary, it has been undertaking a regular and vigorous review of its safety requirements, and continues to do so with the assistance of Member States and relevant international organizations. Beyond providing the regulatory basis for the safe transport of radioactive material, however, the IAEA also offers a work programme under which it assists Member States in complying with the regulatory requirements. This assistance comes in the form of providing training on the safety requirements, and publishing documents that facilitate the exchange of information

  20. Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013) Special section containing papers presented at the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems (Beijing, China, 17-20 September 2013)

    Science.gov (United States)

    Lin, Z.

    2014-10-01

    In magnetic fusion plasmas, a significant fraction of the kinetic pressure is contributed by superthermal charged particles produced by auxiliary heating (fast ions and electrons) and fusion reactions (a-particles). Since these energetic particles are often far away from thermal equilibrium due to their non-Maxwellian distribution and steep pressure gradients, the free energy can excite electromagnetic instabilities to intensity levels well above the thermal fluctuations. The resultant electromagnetic turbulence could induce large transport of energetic particles, which could reduce heating efficiency, degrade overall plasma confinement, and damage fusion devices. Therefore, understanding and predicting energetic particle confinement properties are critical to the success of burning plasma experiments such as ITER since the ignition relies on plasma self-heating by a-particles. To promote international exchanges and collaborations on energetic particle physics, the biannual conference series under the auspices of the International Atomic Energy Agency (IAEA) were help in Kyiv (1989), Aspenas (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007), Kyiv (2009), and Austin (2011). The papers in this special section were presented at the most recent meeting, the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was hosted by the Fusion Simulation Center, Peking University, Beijing, China (17-20 September 2013). The program of the meeting consisted of 71 presentations, including 13 invited talks, 26 oral contributed talks, 30 posters, and 2 summary talks, which were selected by the International Advisory Committee (IAC). The IAC members include H. Berk, L.G. Eriksson, A. Fasoli, W. Heidbrink, Ya. Kolesnichenko, Ph. Lauber, Z. Lin, R. Nazikian, S. Pinches, S. Sharapov, K. Shinohara, K. Toi, G. Vlad, and X.T. Ding. The conference program

  1. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa's participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  2. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa`s participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  3. Role of Slovakia within the IAEA Decommissioning Related Activities

    International Nuclear Information System (INIS)

    Michal, V.; Stubna, M.

    2009-01-01

    Slovakia has a long-term experience with the IAEA decommissioning related activities as a recipient of Agency assistance and then as a country offering assistance to others. Background, short 'history' and current status of Slovakian national technical cooperation (TC) projects SLR/4/008 'Robotic Technologies for Decontamination and Decommissioning of the Bohunice A1 NPP' and SLR/3/002 'Management of Radioactive Waste from the A1 Nuclear Power Plant Decommissioning' will be described in paper. The first TC project SLR/4/008 was solved by the main Slovakian counterpart, company VUJE, Inc., from 2001 to 2006. Second TC project SLR/3/002 is ongoing with extension to 2011. Thanks to the implementation of a long-term large-scale 'Project of the A1 NPP Decommissioning - Stage I' (1996-2007), financed by Slovak National Nuclear Account (decommissioning fund), as well as implementation of the IAEA TC national projects a comprehensive know-how in the field of D and D and RAW management was obtained. Moreover, technologies and facilities necessary for implementation of decommissioning and RAW management projects were developed. Thanks to this development Slovakia offers donor assistance to other countries in subjected fields through IAEA TC program. The type and scope of assistance for Armenia, Bulgaria, Egypt, Latvia, Lithuania and The Ukraine is described in the paper. The above-mentioned national projects are not only activities of Slovakia within the IAEA TC program. Regional TC project RER/3/005 'Support in Planning the Decommissioning of Nuclear Power Plants and Research Reactors' has been ongoing from 2007 with accepted extension to 2011. About nine countries from Eastern and Central Europe participate in the project (for the NPPs part) and Slovakia plays the role of LCC (Leading Country Coordinator). On the basis of suggestion of Nuclear Regulatory Authority of the Slovak Republic, VUJE is the coordinator of the regional project. Moreover, Slovakia would be the

  4. IAEA safety glossary. Terminology used in nuclear safety and radiation protection, multilingual 2007 edition, including the IAEA safety fundamentals [no. SF-1

    International Nuclear Information System (INIS)

    2008-10-01

    The IAEA Safety Glossary defines and explains technical terms used in the IAEA Safety Standards and other safety related IAEA publications, and provides information on their usage.The publication is multilingual and covers the six official IAEA languages,, Arabic, Chinese, English, French, Russian and Spanish. It has been in use since April 2000. The 2007 Edition is a revised and updated version. The primary purpose of the publication is to harmonize terminology and usage in the IAEA Safety Standards. It is a source of information for users of the IAEA Safety Standards and other safety related IAEA publications and provides guidance for the drafters and reviewers of publications, including IAEA technical officers and consultants, and members of technical committees, advisory groups, working groups and bodies for the endorsement of safety standards

  5. Clarifying the role of the IAEA

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    The IAEA has many roles in promoting the role of nuclear energy for peaceful purposes. The most significant role that the IAEA undertakes is the development and application of safeguards to nuclear material, other material, equipment and facilities; this work consumes about 35% of the IAEA budget. The authority, procedures and limitations for the application of safeguards were described together with the relationship between the IAEA and the States where safeguards are in effect. Claims that the IAEA is not adequately fulfilling its safeguard role are usually based on misunderstandings of its role and authority. The IAEA's relationship to inspected States is not adversarial, regulatory, or guarding. It provides assurance to all States that peaceful nuclear activities are not diverted to a military program and in so doing enhances the reputation of States to whom safeguards are applied. Safeguards would be only one of many factors that would be involved in a States embarking on a military nuclear program. If proliferation of nuclear weapons occurs, this may be due in entirety or in part to these other factors. Many States could now undertake a military program but do not do so, because of their enlightened viewpoint that such activities are not in their own, or the world's best interests. However, any trend to further proliferation of nuclear weapons could be diminished by: -a lessening of political and economic tension between States, -restrictions on the supply of required technology, equipment, and material, and -an effective IAEA safeguard regime. There has been a regrettable trend to politicization in the direction and operation of the IAEA. It is hoped that this trend will be reversed and that IAEA will return to its earlier more technical role. There is a pressing need for the general public and governments to more fully understand the IAEA's role and its limitations

  6. IAEA safeguards and classified materials

    International Nuclear Information System (INIS)

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  7. International Nuclear Officials Discuss IAEA Peer Reviews of Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    2011-01-01

    Board of Governors meeting in November. ''The strong support expressed by senior regulators for the IAEA peer reviews of the nuclear regulatory framework and their concrete proposals for improvement will contribute significantly to the effective implementation of the IAEA Nuclear Safety Action Plan,'' said Denis Flory, IAEA Deputy Director General for Nuclear Safety and Security. ''There was a general recognition that these peer reviews provide national nuclear regulators with an objective view of their strengths and weaknesses and contribute to the continuous strengthening of nuclear safety.'' Background IRRS missions are designed to strengthen and enhance the effectiveness of the national nuclear regulatory infrastructure of States, while recognizing the ultimate responsibility of each State to ensure safety in this area. The reviews are invited by individual Member States, who undergo a rigorous self-assessment in advance of the mission. In accordance with the approved IAEA Nuclear Safety Action Plan the host nations are encouraged to invite a follow-up mission within 3 years. Nineteen nations have hosted IRRS reviews since the service became available in 2006, and there have been two lessons-learned workshops, in 2007 and 2008. The IRRS reviews consider regulatory, technical and policy issues, with comparisons against IAEA Safety Standards and, where appropriate, good practices elsewhere. During an IRRS mission, recommendations and suggestions are offered to the host country. Recommendations are related to items of direct relevance to safety as referenced in IAEA Safety Requirements, while suggestions relate to items not essential to compliance with international standards, but which might enhance the effectiveness of the national nuclear and radiation safety regime and/or improve the organization or performance of the regulatory body. Commendable good practices may be identified and documented for consideration by other States. (IAEA)

  8. Comparative Study on Research Reactor Design Requirements between IAEA and Korea

    International Nuclear Information System (INIS)

    Chang, Won Joon; Yune, Young Gill; Song, Myung Ho; Cho, Seung Ho

    2013-01-01

    This study has identified the gaps in the safety requirements for design of research reactors of Korea comparing with those of the IAEA. The review results showed that the gaps have arisen mainly from the following aspects: - The differences in the characteristics of design and operation between power reactor and research reactor - Enhancement of the level of safety of nuclear reactor facility - Consideration of advanced safety technologies. The review results will be utilized to reflect the IAEA safety requirements for design of research reactors into those of Korea, which will contribute to enhancing the level of safety and improving the technical standards of research reactors of Korea. The IAEA safety standards encompass international consensus to strengthen the nuclear safety and to reflect the latest advancement of nuclear safety technologies. Also, they provide reliable means to ensure the effective fulfillment of obligations under the various international safety conventions. Many countries have adopted the IAEA safety standards as their national standards in nuclear regulations. Since Korea has exported research reactor technologies abroad these days and will continue to export them in the future, it is desirable to harmonize domestic safety requirements for research reactor with those of the IAEA. The KINS (Korea Institute of Nuclear Safety) has performed a review of the IAEA safety requirements for design of research reactors comparing with those of Korea. The purpose of this comparative study is to harmonize the safety requirements for the design of research reactors of Korea with those of the IAEA as a member state of the IAEA, and to encompass global efforts to enhance the nuclear safety and to reflect the latest advancement of nuclear safety technologies into the safety requirements for the design of research reactors of Korea. Design requirements for structures, systems, and components of research reactors important to safety, which are required to

  9. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  10. Recruiting experts for technical assistance rogramme

    International Nuclear Information System (INIS)

    1974-01-01

    One of the objectives of the IAEA is the provision of technical assistance to its Member States to carry out their peaceful nuclear activities more efficiently and safely. This involves looking for and supplying experts, equipment and fellowships. Since 1958 the Agency has provided the services of more than 1800 experts valued at $11.5 million, 4300 fellowships valued at $14.3 million, and equipment worth $10.8 million. The efficiency of the programme can only be increased by a more prompt consideration of proposals forwarded by the Agency, and the continuing co-operation from national Governments and private institutions. The IAEA recruits an average of 200 experts a year to implement its Regular Technical Assistance Programme. These projects are financed by voluntary contributions from Member States, and by the United Nations Development Programme for those projects for which the IAEA is the executing agency

  11. Contribution of the Member State Support Programmes to IAEA safeguards

    International Nuclear Information System (INIS)

    Fortakov, V.; Gardiner, D.; Rautjaervi, J.

    1999-01-01

    Over the last twenty years, Member States of the International Atomic Energy Agency (IAEA) have provided invaluable technical support to IAEA Safeguards. This support has covered practically all aspects of traditional safeguards activities and also those activities recently proposed and introduced for strengthening the safeguards system. As of August 1997, there were fourteen Member States, plus EURATOM, with active programmes in support of IAEA safeguards and the activities conducted under these Member State Support Programmes (MSSPs) are currently valued at an annual twenty million dollars of extra-budgetary contribution to the IAEA. The overall administration in the IAEA of the support programmes is the responsibility of Support Programmes Administration (SPA) in the Safeguards Division of Technical Services. This paper describes the roles and the contributions of the MSSPs, the functions of the MSSP administration activities, and the vital importance the IAEA attaches to the MSSPs. (author)

  12. Role of IAEA in introduction of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Skjoeldebrand, R.; Csik, B.J.; Bennett, L.L.; Charpentier, J.P.

    1986-10-01

    The planning of nuclear power programmes in developing countries must be seen as an integral part of a rational and coherent long-term energy and general development policy. Consequently decisions to be taken by a country and the formulation of appropriate development programmes must be based on detailed comparative energy demand and supply analyses, economic optimizations of electricity supply systems, assessments of the infrastructure requirements, identification of possible constraints to nuclear power development in the country, and consideration of its alternatives. Since many years the International Atomic Energy Agency (IAEA) has had a broad programme for assistance in nuclear power planning and implementation in developing countries, and the individual elements of a comprehensive programme have been developed. The IAEA's demand model MAED and generating system optimization model WASP, which have been widely adopted around the world, are basic planning methodologies used in the IAEA's assistance in this field, supplemented by the IAEA's long-standing experience in nuclear power planning and infrastructure development. The IAEA's assistance in infrastructure assessment and development focusses on subjects which are not normally covered in bilateral agreements, i.e., planning activities before bilateral agreements and contracts, pre-contract activities and project supervision and control activities (e.g.: project management and QA). Manpower development work, usually a high priority in developing countries, includes interregional training courses and also the establishment of training nationally under technical co-operation and UNDP projects which increasingly have broader scopes within coherent national manpower development programmes. (author)

  13. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  14. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-06-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAEA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  15. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  16. IAEA Technical co-operation. A partner in development. Nuclear science serving people; La cooperation technique de l`AIEA. Un partenariat pour le developpement. La science nucleaire au service de l`humanite; La cooperacion tecnica del OIEA. Un socio para el desarrollo. La ciencia nuclear al servicio de la gente; Tekhnicheskoe sotrudnichestvo magateh. Partner v tselyakh razvitiya. Yadernaya nauka na sluzhbe chelovechestva

    Energy Technology Data Exchange (ETDEWEB)

    Kinley, D; Perez Vargaz, J

    1998-12-31

    This issue contains descriptions of IAEA technical cooperation programs in a variety of disciplines and locations. It includes articles on the eradication of Tsetse flies in Africa, biofertilizers for agriculture, new strains of rice, water resource management, pollution control for a sustainable environment, nuclear medicine, and ensuring nuclear reactor safety

  17. IAEA Clarification on Syria

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Director General Amano has been quoted in a news story as saying today that a site in Syria allegedly destroyed by Israel was a nuclear reactor under construction. The Director General did not say that the IAEA has reached the conclusion that the site was definitely a nuclear reactor. The IAEA continues to seek further information on the nature of the Dair Alzour site. (IAEA)

  18. The IAEA's role in international information exchange

    International Nuclear Information System (INIS)

    Brittinger, M.T.M.; Selling, H.A.

    1993-01-01

    The International Atomic Energy Agency strives to foster the exchange of scientific and technical information in the transport safety area through a dual work programme covering the development and maintenance of the Regulations for the Safe Transport of Radioactive Material, on the one hand, and their implementation, on the other. Under the implementation aspect of its transport safety programme the IAEA takes advantage of the increased availability of mass storage media and the equipment to access them to use databases for information exchange. Information is collected on the identification of national competent authorities, package approval certificates, events in radioactive material transport, research and development, shipments, and exposure data. Data on national competent authorities and the package approval certificates that they issue is updated and disseminated annually to all Member States. Research in progress is described in a document that is published every two years. Databases on events, shipments and radiation exposure are in the development phase. Member States experience difficulty in obtaining the appropriate information and thus, the reporting periods for these subject areas are extended. Information gathered through these activities serve as regulatory aids to the national competent authorities responsible in the Member States for the transport of radioactive material, both internationally and nationally. In addition, it is useful in support of the continuous review and revision process of the transport Regulations and their supporting documents. (J.P.N.)

  19. The role of the IAEA in the London Convention 1972 on Dumping of Wastes at Sea

    International Nuclear Information System (INIS)

    Telleria, Diego; Berkovsky, Volodymyr; Jova Sed, Luis; Louvat, Didier

    2008-01-01

    Full text: The Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter was adopted after an Inter-Governmental Conference, held in London in 1972, following the principles for environmental protection enunciated in the Report of the United Nations Conference on Human Environment, held the same year in Stockholm. The IAEA has been involved since the early days of the London Convention when the Contracting Parties designated the IAEA as the competent international authority in matters related to sea disposal of radioactive waste, providing technical advice and services. The IAEA developed, for the Convention, the definition of 'radioactive wastes or radioactive matters unsuitable for dumping at sea' (e.g., high level radioactive waste) and recommended the technical basis applicable by the national authorities to issue special permits for those radioactive materials which could be dumped (mainly low and intermediate level radioactive waste, properly conditioned and 'de minimis' quantities). However, in 1985, based more on political reasons than on the existing radiation protection principles and policies, the Contracting Parties to the London Convention introduced a 'voluntary moratorium' on the disposal of low level radioactive wastes at sea, and later in 1993, a total ban of radioactive waste disposal at sea. The IAEA continues to support the objectives of the London Convention by providing scientific advice. Since 1989, at the request of the Contracting Parties, the IAEA has developed and maintained global databases on radioactive waste disposed of at sea in the past and on accidents and losses at sea involving radioactive material. The purpose of these databases is to serve as the basis for radiological impact assessment on the marine environment. The last revised reports on the above mentioned inventories were published in 1999 and in 2001 respectively. The databases are currently in the process of being updated. The paper presents

  20. Implementing the global plan of action. IAEA's programme for improving children's health and nutrition

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency is working to ensure improved health for all, particularly children and women, in partnership with its 132 Member States, other United Nations organizations, and donors. Its programme of technical activities is fully supportive of the recommendations adopted in 1990 by the international community during the World Summit for Children, particularly the statement 'enhancement of children's health and nutrition is a first duty'. (IAEA)

  1. Implementing the global plan of action. IAEA's programme for improving children's health and nutrition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The International Atomic Energy Agency is working to ensure improved health for all, particularly children and women, in partnership with its 132 Member States, other United Nations organizations, and donors. Its programme of technical activities is fully supportive of the recommendations adopted in 1990 by the international community during the World Summit for Children, particularly the statement 'enhancement of children's health and nutrition is a first duty'. (IAEA)

  2. Consultancy Meeting on Preparation of the Final Technical Document of the IAEA CRP on Analytical and Experimental Benchmark Analysis of Accelerator Driven Systems

    International Nuclear Information System (INIS)

    2014-01-01

    With the objective to study the major physics phenomena of the spallation source and its coupling to a subcritical system, between 2005 and 2010 the IAEA carried out a Coordinated Research Project (CRP) called “Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems (ADS)”. The CRP was contributed by 27 institutions from 18 Member States (Argentina, Belarus, Belgium, Brazil, China, France, Germany, Greece, Hungary, Italy, Japan, Netherlands, Poland, Russian Federation, Spain, Sweden, Ukraine and the USA), which performed a number of analytical and experimental benchmark activities. The main objective of the CRP was to develop, verify and validate calculation tools able to perform detailed ADS calculations, from the high energy proton beam to thermal neutron energies. The purpose of this meeting was to: - Collect and review all the available contributions produced by the CRP participants; - Define structure and content of the final TECDOC; - Assemble the first draft of the TECDOC; - Identify important missing parts; - Distribute tasks and responsibilities for drafting and editing the different sections and sub-sections of the TECDOC; - Agree on the time schedule for the TECDOC finalization, review and publication. The participants were requested to contribute to all the foreseen tasks

  3. Comparison of best estimate methods for judging design margins of advanced water-cooled reactors. Proceedings of a IAEA technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Technical Committee Meeting on Significance of design and Operational Margins for advanced Water Cooled Reactor Systems were: to provide an international forum for presentation and discussion of recent results on best estimate methods for judging design margins of mentioned reactors; to identify and describe the technical features of best estimate methods for predicting margins and to provide input for a status report on a comparison of best estimate methods for assessing margins in different countries and organisations. Participants from thirteen countries presented fifteen papers describing their methods, state of art and experiences. Each of those is presented here by a separate abstract

  4. Comparison of best estimate methods for judging design margins of advanced water-cooled reactors. Proceedings of a IAEA technical committee meeting. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The objectives of the Technical Committee Meeting on Significance of design and Operational Margins for advanced Water Cooled Reactor Systems were: to provide an international forum for presentation and discussion of recent results on best estimate methods for judging design margins of mentioned reactors; to identify and describe the technical features of best estimate methods for predicting margins and to provide input for a status report on a comparison of best estimate methods for assessing margins in different countries and organisations. Participants from thirteen countries presented fifteen papers describing their methods, state of art and experiences. Each of those is presented here by a separate abstract Refs, figs, tabs

  5. IAEA education and training in radiation protection, transport and waste safety-status and new developments for sustainability

    International Nuclear Information System (INIS)

    Sadagopan, G.; Mrabit, K.; Wheatley, J.

    2008-01-01

    IAEA 's education and training activities in radiation, transport and waste safety follow the IAEA vision, strategy and resolutions of its annual General Conferences and reflect the latest IAEA standards and guidance. IAEA prepared a Strategic Approach to Education and Training in Radiation and Waste Safety (Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in Member States, which was endorsed by the GC(45)/RES/10C in 2001. In implementing the strategy, IAEA is organising training events at the regional level and assisting the Member States at the national level by providing them the exemplary quality of training material developed at the IAEA. This work will continue ensuring its completeness in all areas of radiation safety. An Inter Centre Network between the Agency and regional, collaborating national training centres is established to facilitate information exchange, improve communication and dissemination of training material. There is a challenge to enhance the technical capability of the Member States to reach sustainability. This is intended through organising number of Train the Trainers events to develop a pool of qualified trainers. The new developments include establishing E-learning, developing a syllabus for training of Radiation Protection Officers and training materials, information materials for radiation workers. These are aimed at assisting Member States attain self sustainability. (author)

  6. IAEA activities on education and training in radiation and waste safety: Strategic approach for a sustainable system

    International Nuclear Information System (INIS)

    Mrabit, Khammar; Sadagopan; Geetha

    2003-01-01

    The statutory safety functions of the International Atomic Energy Agency (IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. The IAEA education and training activities follows the resolutions of its General Conferences and reflects the latest IAEA standards and guidance. In response to GC(44)/RES/13, the IAEA prepared a 'Strategic Approach to Education and Training in Radiation and Waste Safety' aiming at establishing, by 2010, sustainable education a training programmes in Member States. This Strategy was endorsed by General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States' national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. In the last General Conference 2002, the IAEA was urged to continue to implement the Strategy, including the convening of the Steering Committee. The first Technical Committee meeting took place during the week 25-29 November 2002. (author)

  7. The IAEA '97 Pacific Ocean expedition

    International Nuclear Information System (INIS)

    Povinec, P.P.; Huynh-Ngoc, L.; Liong Wee Kwong, L.

    1999-01-01

    The International Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL) started in 1995 a five-year project 'Research on World-wide Marine Radioactivity', generously supported by the Government of Japan. In the framework of the project, IAEA-MEL conducted the 'IAEA '97 Pacific Ocean Expedition' to the NW Pacific Ocean from 21 October to 20 November, 1997. The objectives of the expedition were to provide new data on the current marine radioactivity in order to compare them with data sets obtained during national and international surveys at sites used for radioactive waste dumping or nuclear bomb testing in the NW Pacific Ocean and its marginal seas

  8. 76 FR 35864 - Proposed Priority; Special Demonstration Programs-National Technical Assistance Projects To...

    Science.gov (United States)

    2011-06-20

    ... have national significance and improve the performance of State vocational rehabilitation (VR) agencies... Centers, the American Indian Vocational Rehabilitation Technical Assistance Center, and the Independent... of each priority as absolute, competitive preference, or invitational through a notice in the Federal...

  9. Heavy water reactors: Status and projected development. Part II. Final draft of a report to be published in the IAEA technical reports series. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    In 1996, the 40th General Conference of the IAEA approved the establishment of a new International Working Group (IWG) on Advanced Technologies for Heavy Water Reactors (HWR). At its first meeting, held in June 1997, the IWG-HWR advised the Agency to prepare a TECDOC to present: a) the status of HWR advanced technology in the areas of economics, safety and fuel cycle flexibility and sustainable development; and b) the advanced technology developments needed in the following two decades to achieve the vision of the advanced HWR. The IAEA convened two consultancies and two Advisory Group Meetings to prepare the TECDOC. One of the consultancies was on 'Fuel Cycle Flexibility and Sustainable Development'; the second was on 'Passive Safety Features of HWRs Status and Projected Advances'. The members of the IWG-HWR collectively agreed on the essential features that the development of HWRs must emphasize. These 'drivers' are: improved economics: the fundamental requirement for all successful high technology developments to advance, is real economic improvements, consistent with improved quality; enhanced safety: to meet increasingly stringent requirements to satisfy the regulatory authorities, the public and the operators, an evolutionary safety path will be followed, incorporating advanced passive safety concepts where it is feasible and sensible to do so; sustainable development: the high neutron economy of HWRs results in a reactor that can burn natural uranium at high utilization, utilize spent fuel from other reactor types, and, through various recycle strategies including use of thorium, extend fissile fuel resources into the indefinite future. The objectives of this document are: to present the status of HWR technology; to document the safety characteristics of current HWR designs and the potential enhancements; to present a 'vision' of the long-term development of the HWR for use into the next century as an electricity source that is sustainable and flexible and

  10. Heavy water reactors: Status and projected development. Part I. Final draft of a report to be published in the IAEA technical reports series. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    In 1996, the 40th General Conference of the IAEA approved the establishment of a new International Working Group (IWG) on Advanced Technologies for Heavy Water Reactors (HWR). At its first meeting, held in June 1997, the IWG-HWR advised the Agency to prepare a TECDOC to present: a) the status of HWR advanced technology in the areas of economics, safety and fuel cycle flexibility and sustainable development; and b) the advanced technology developments needed in the following two decades to achieve the vision of the advanced HWR. The IAEA convened two consultancies and two Advisory Group Meetings to prepare the TECDOC. One of the consultancies was on 'Fuel Cycle Flexibility and Sustainable Development'; the second was on 'Passive Safety Features of HWRs Status and Projected Advances'. The members of the IWG-HWR collectively agreed on the essential features that the development of HWRs must emphasize. These 'drivers' are: improved economics: the fundamental requirement for all successful high technology developments to advance, is real economic improvements, consistent with improved quality; enhanced safety: to meet increasingly stringent requirements to satisfy the regulatory authorities, the public and the operators, an evolutionary safety path will be followed, incorporating advanced passive safety concepts where it is feasible and sensible to do so; sustainable development: the high neutron economy of HWRs results in a reactor that can burn natural uranium at high utilization, utilize spent fuel from other reactor types, and, through various recycle strategies including use of thorium, extend fissile fuel resources into the indefinite future. The objectives of this document are: to present the status of HWR technology; to document the safety characteristics of current HWR designs and the potential enhancements; to present a 'vision' of the long-term development of the HWR for use into the next century as an electricity source that is sustainable and flexible and

  11. IAEA safety glossary. Terminology used in nuclear safety and radiation protection. 2007 ed

    International Nuclear Information System (INIS)

    2007-01-01

    In developing and establishing standards of safety for protecting people and the environment from harmful effects of ionizing radiation and for the safety of facilities and activities that give rise to radiation risks, clear communication on scientific and technical concepts is essential. The principles, requirements and recommendations that are established and explained in the IAA's safety standards and elaborated upon in other publications must be clearly expressed. To this end, this Safety Glossary defines and explains technical terms used in IAEA safety standards and other safety related publications, and provides information on their usage. The primary purpose of the Safety Glossary is to harmonize terminology and usage in the IAEA safety standards for protecting people and the environment from harmful effects of ionizing radiation, and in their application. Once definitions of terms have been established, they are, in general, intended to be observed in safety standards and other safety related publications and in the work of the IAEA Department of Nuclear Safety and Security generally. The achievement of consistently high quality in its publications contributes to the authority and credibility of the IAEA, and thus to its influence and effectiveness. High quality in publications and documents is achieved not only by review to ensure that the relevant requirements are met, but also by managing their preparation so as to achieve high quality in their drafting. The Safety Glossary provides guidance primarily for the drafters and reviewers of safety standards, including IAEA technical officers and consultants and bodies for the endorsement of safety standards. The Safety Glossary is also a source of information for users of IAEA safety standards and other safety and security related IAEA publications and for other IAEA staff - notably writers, editors, translators, revisers and interpreters. Users of the Safety Glossary, in particular drafters of national

  12. IAEA Capacity Building in Nuclear Techniques for Environmental Sustainability; Asistencia del OIE A en la creacion de capacidad para el empleo de tecnicas nucleares en aras de la sostenibilidad ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Aabha [International Atomic Energy Agency, Division of Public Information, Vienna (Austria)

    2013-09-15

    The IAEA helps Member States use nuclear technology for a broad range of applications: from generating electricity to increasing food production, from fighting cancer to managing freshwater resources and protecting coastal areas and the ocean. Assistance provided through IAEA capacity building projects addresses specific national and regional problems. Expertise in the application of nuclear technology and knowledge of good practices are transferred via training activities, information exchange, coordinated research projects and the technical cooperation programme.

  13. Statement to the 46th regular session of the IAEA General Conference 2002. Vienna, 16 September 2002

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2002-01-01

    In his Statement to the forty-six regular session of the General Conference of the IAEA, the Director General of the Agency highlighted some of the IAEA's activities and challenges in the fields of: nuclear operation and construction; radioactive waste management; nuclear applications; radiotherapy; sterile insect technique; water resources management; international co-operation and conventions; establishment of global safety standards; radiation protection; management of nuclear knowledge; safeguards; implementation of United Nations Security Council resolutions relating to Iraq; convention on the physical protection of nuclear material. He also discussed the Agency's technical co-operation programme and the Agency management

  14. Statement to the 46th regular session of the IAEA General Conference 2002. Vienna, 16 September 2002

    Energy Technology Data Exchange (ETDEWEB)

    ElBaradei, M [International Atomic Energy Agency, Vienna (Austria)

    2002-09-16

    In his Statement to the forty-six regular session of the General Conference of the IAEA, the Director General of the Agency highlighted some of the IAEA's activities and challenges in the fields of: nuclear operation and construction; radioactive waste management; nuclear applications; radiotherapy; sterile insect technique; water resources management; international co-operation and conventions; establishment of global safety standards; radiation protection; management of nuclear knowledge; safeguards; implementation of United Nations Security Council resolutions relating to Iraq; convention on the physical protection of nuclear material. He also discussed the Agency's technical co-operation programme and the Agency management.

  15. The United States National Climate Assessment - Alaska Technical Regional Report

    Science.gov (United States)

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  16. IAEA occupational radiation protection programme: current status

    International Nuclear Information System (INIS)

    Deboodt, P.; Mrabit, K.

    2006-01-01

    As stated in Art.III.A.6 of its Statute, the International Atomic Energy Agency (commonly referred to as the Agency) is authorized to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property (including such standards for labour conditions), and to provide for the application of these standards to its own operation as well as to the operations making use of materials, services, equipment, facilities, and information made available by the Agency or at its request or under its control or supervision. The Agency s Occupational Radiation Protection Programme aims at harmonizing infrastructures for the control of radiation exposure of workers and for optimizing radiation protection in situation s of exposures due to external radiation and intakes of radionuclides from both artificial and natural sources of radiation. Under its regular and technical cooperation programmes, the Agency has been assigning high priority to both the establishment of safety standards for labour conditions and for the application of these standards through, Interalia, direct assistance under its technical cooperation (TC) programme, the rendering of services, the promotion of education and training, the fostering of information exchange and the coordination of research and development. The purpose of this paper is to present the current status and future IAEA activities in support of occupational radiation protection. (authors)

  17. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    Science.gov (United States)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  18. IAEA safety fundamentals: the safety of nuclear installations and the defence in depth concept

    International Nuclear Information System (INIS)

    Aro, I.

    2005-01-01

    This presentation is a replica of the similar presentation provided by the IAEA Basic Professional Training Course on Nuclear Safety. The presentation utilizes the IAEA Safety Series document No. 110, Safety Fundamentals: the Safety of Nuclear Installations. The objective of the presentation is to provide the basic rationale for actions in provision of nuclear safety. The presentation also provides basis to understand national nuclear safety requirements. There are three Safety Fundamentals documents in the IAEA Safety Series: one for nuclear safety, one for radiation safety and one for waste safety. The IAEA is currently revising its Safety Fundamentals by combining them into one general Safety Fundamentals document. The IAEA Safety Fundamentals are not binding requirements to the Member States. But, a very similar text has been provided in the Convention on Nuclear Safety which is legally binding for the Member State after ratification by the Parliament. This presentation concentrates on nuclear safety. The Safety Fundamentals documents are the 'policy documents' of the IAEA Safety Standards Series. They state the basic objectives, concepts and principles involved in ensuring protection and safety in the development and application of atomic energy for peaceful purposes. They will state - without providing technical details and without going into the application of principles - the rationale for actions necessary in meeting Safety Requirements. Chapter 7 of this presentation describes the basic features of defence in depth concept which is referred to in the Safety Fundamentals document. The defence in depth concept is a key issue in reaching high level of safety specifically at the design stage but as the reader can see the extended concept also refers to the operational stage. The appendix has been taken directly from the IAEA Basic Professional Training Course on Nuclear Safety and applied to the Finnish conditions. The text originates from the references

  19. Protecting safeguards information / Division of technical support

    International Nuclear Information System (INIS)

    2002-01-01

    This DVD contains two films representing the key aspects of the IAEA Department of Safeguards. 'Protecting Safeguards Information' is a narrative/fiction film which presents the Agency's information handling and protection measures. A security representative from a fictional nation receives a briefing on the procedures and methods used by the Department. These techniques will assure member states that the information they provide to the Agency is kept safe and confidential. 'Division of Technical Support' is a non-fiction documentary which presents a detailed look at the technical capabilities and management techniques used by the Agency in nuclear material accountancy. The film covers many aspects of safeguards equipment and techniques including: NDA and DA instruments, seals, surveillance, training, development and maintenance. Taken together, these films provide an introduction and overview to many important aspects of the IAEA Department of Safeguards. (IAEA)

  20. Energy and nuclear power planning using the IAEA's ENPEP computer package. Proceedings of a workshop

    International Nuclear Information System (INIS)

    1997-09-01

    The Regional (Europe) Technical Co-operation Project on the Study of Energy Options Using the IAEA Planning Methodologies was first implemented by the IAEA in 1995. The project aims at improving national capabilities for energy, electricity and nuclear power planning and promoting regional co-operation among participating countries in the European region. The project includes the organization of workshops, training activities at the regional and national levels, scientific visits, etc. The proceedings of a workshop held in Warsaw, Poland, from 4 to 8 September 1995 are contained herein. The workshop had as a basic objective the analysis of the specific problems encountered by the represented countries during application of the IAEA's ENPEP package in the conduct of national studies and to provide a forum for further co-operation among participating countries. A second objective of the workshop was to make proposals for future activities to be organized within the project. This publication is intended to serve as reference for the users of the IAEA's ENPEP package, as well as for energy and electricity planners in general. Refs, figs, tabs

  1. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste between 2002 and 2007 which was followed in the years 2005-2010 by a more specific CRP on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. In parallel the status of the ADS technology for high level waste transmutation has been the focus of a study carried out by all the national and international organizations with an active programme on ADS, under the guidance of the IAEA Technical Working Group on Fast Reactors and ADS (TWG-FR). Finally, the benchmark analysis of two BN-600 reactor cores loaded with MOX fuel containing weapons-grade Pu and MOX fuel containing Pu and minor actinides from spent LWR fuel have been recently published. This paper will present the main results of these P and T activities as well as some new initiatives which have been discussed in recent meetings of the Technical Working Group on Nuclear Fuel Cycle Options (TWGNFCO) and TWG-FR. (authors)

  2. Implementing and Evaluating a National Certification Technical Skills Examination: The Colorectal Objective Structured Assessment of Technical Skill.

    Science.gov (United States)

    de Montbrun, Sandra; Roberts, Patricia L; Satterthwaite, Lisa; MacRae, Helen

    2016-07-01

    To implement the Colorectal Objective Structured Assessment of Technical skill (COSATS) into American Board of Colon and Rectal Surgery (ABCRS) certification and build evidence of validity for the interpretation of the scores of this high stakes assessment tool. Currently, technical skill assessment is not a formal component of board certification. With the technical demands of surgical specialties, documenting competence in technical skill at the time of certification with a valid tool is ideal. In September 2014, the COSATS was a mandatory component of ABCRS certification. Seventy candidates took the examination, with their performance evaluated by expert colorectal surgeons using a task-specific checklist, global rating scale, and overall performance scale. Passing scores were set and compared using 2 standard setting methodologies, using a compensatory and conjunctive model. Inter-rater reliability and the reliability of the pass/fail decision were calculated using Cronbach alpha and Subkoviak methodology, respectively. Overall COSATS scores and pass/fail status were compared with results on the ABCRS oral examination. The pass rate ranged from 85.7% to 90%. Inter-rater reliability (0.85) and reliability of the pass/fail decision (0.87 and 0.84) were high. A low positive correlation (r= 0.25) was seen between the COSATS and oral examination. All individuals who failed the COSATS passed the ABCRS oral examination. COSATS is the first technical skill examination used in national surgical board certification. This study suggests that the current certification process may be failing to identify individuals who have demonstrated technical deficiencies on this standardized assessment tool.

  3. IAEA Newsbriefs. V. 15, no. 4(89). Oct-Nov 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This issue gives information about the following topics: IAEA 2000 General Conference; IAEA Board for 2000-2001; Scientific forum on radioactive waste management: turning options into solutions; the Director General's statement to the General Conference; National case studies on nuclear power and sustainable development; Progress toward IAEA verification under Trilateral Initiative with Russia and the USA; Uranium production and the environment; IAEA publications; States joining international conventions in nuclear fields; Upcoming IAEA international symposia and seminars, and other short information

  4. IAEA Newsbriefs. V. 15, no. 4(89). Oct-Nov 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This issue gives information about the following topics: IAEA 2000 General Conference; IAEA Board for 2000-2001; Scientific forum on radioactive waste management: turning options into solutions; the Director General's statement to the General Conference; National case studies on nuclear power and sustainable development; Progress toward IAEA verification under Trilateral Initiative with Russia and the USA; Uranium production and the environment; IAEA publications; States joining international conventions in nuclear fields; Upcoming IAEA international symposia and seminars, and other short information.

  5. The next twenty years - IAEA's role

    International Nuclear Information System (INIS)

    Tape, G.F.

    1977-01-01

    The twentieth anniversary of an institution is an appropriate time to look back and to ask what has been achieved. It is also an appropriate time to look ahead and to ask what should be the mission for the future. How can the strengths of the International Atomic Energy Agency (IAEA) be best utilized, what new opportunities should be seized upon, and what challenges should the IAEA be prepared to meet in the next twenty years? Forward planning is a very necessary activity in today's world. There are so many demands on national or institutional resources that careful analysis of options is necessary to establish priorities and ultimately to provide for implementation. But such planning must be done carefully with full appreciation for the validity and sensitivity of the input assumptions and data. Furthermore, today's plan, while setting goals and directions, cannot be so inflexible that it cannot be responsive to ever-changing political, economic and technical constraints or opportunities. Thus in looking ahead, the plan must contain provisions for flexibility to provide for further modifications in the light of ever-changing knowledge, attitudes, and world conditions. The experience of the past five years in the energy field, and especially in nuclear energy, underscores this need. In looking ahead for the next twenty years, we are attempting to describe the International Atomic Energy Agency and its role through the twentieth century. In doing so, we are automatically laying the base for the Agency's work going into the twenty-first century. In short, we are trying to visualize a programme that can serve the coming generation and, in doing so, creating a base from which the needs of the succeeding generation can be met. This is a large order and the crystal ball is less than clear. (author)

  6. 78 FR 47210 - National Practitioner Data Bank and Privacy Act; Exempt Records System; Technical Correction

    Science.gov (United States)

    2013-08-05

    ... reference cited in the Privacy Act regulations. The National Practitioner Data Bank (NPDB) system of records... DEPARTMENT OF HEALTH AND HUMAN SERVICES 45 CFR Part 5b RIN 0906-AA97 National Practitioner Data Bank and Privacy Act; Exempt Records System; Technical Correction AGENCY: Health Resources and Services...

  7. Good Governance and Happiness in Nations: Technical Quality Precedes Democracy and Quality Beats Size

    NARCIS (Netherlands)

    J.C. Ott (Jan Cornelis)

    2010-01-01

    textabstractAverage happiness differs markedly across nations and there appears to be a system in these differences. This paper considers the role of quality of governance, and in particular the role of technical quality as opposed to democratic quality. A comparison of 127 nations in 2006 shows

  8. IAEA Newsbriefs. V. 10, no. 3(69). Nov-Dec 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This issue gives brief information on the following topics: IAEA Director General Addresses United Nations, IAEA Board of Governors' December Meetings, UN General Assembly Commends Work of IAEA, Oceanographic Investigations of Radioactive Pollution, Cancer Radiotherapy Using Heavy Charged Particles, Highlights of the 1995 IAEA General Conference, Director General's Statement to 1995 IAEA General Conference, General Conference Scientific Programme, Countries Invited to More Widely Apply INES Scale, Safety Meeting on Kozloduy in Bulgaria, Selection of Dry Storage Technologies for Spent Fuel, India Presents Sculpture to the IAEA, IAEA Seminars and Symposia, and other short information

  9. The IAEA as a publisher

    International Nuclear Information System (INIS)

    1965-01-01

    One of the largest publishing enterprises in Vienna has developed in then Agency, incidental to its function of disseminating scientific information. The Agency recently completed its sixth year of scientific publication of literature dealing with the peaceful uses of atomic energy. Quite early in the history of IAEA, this work grew to considerable dimensions. In 1959 the programme consisted of two volumes in the Proceedings series, one in the Safety series, and four Technical Directories, making a total in that year of 18 000 books, in addition to those prepared for free distribution. In the following year, as Agency meetings and other activities developed, the list was much longer consisting of six volumes in the Proceedings series, two in the Safety series, two in the Technical Directory series, eight in the Review series, two in the Bibliographical series, three panel reports, one volume in the legal series and the first issue of 'Nuclear Fusion'. The total number of volumes sold was 24 000, in addition to the large number for free distribution. Thereafter, there was some difficulty in keeping up with the expanding demands, and some arrears of contract printing began to accumulate. It was therefore decided to introduce internal printing of Agency publications. The adoption of the 'cold type' method in 1962 led to considerable savings and faster production. During 1963, printing and binding equipment was installed which rendered the Agency independent of contractual services. Current policy is to print and bind internally all IAEA publications except the journal, 'Nuclear Fusion', Average annual production now consists of about twenty volumes of the proceedings of scientific meetings, six technical directories (the Directory of Nuclear Reactors has been published in its fifth edition), several bibliographies and numerous technical reports

  10. IAEA Response and Assistance Network. Date Effective: 1 September 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') have undertaken to cooperate between themselves and with the IAEA to facilitate the timely provision of assistance in the case of a nuclear accident or radiological emergency, in order to mitigate its consequences. In September 2000, the General Conference of the IAEA, in resolution GC(44)/RES/16, encouraged Member States ''to implement instruments for improving their response, in particular their contribution to international response, to nuclear and radiological emergencies'' as well as ''to participate actively in the process of strengthening international, national and regional capabilities for responding to nuclear and radiological emergencies and to make those capabilities more consistent and coherent''. As part of the IAEA's strategy for supporting the practical implementation of the Assistance Convention, in 2000 the IAEA Secretariat established a global Emergency Response Network (ERNET) of teams suitably qualified to respond to nuclear or radiological emergencies rapidly and, in principle, on a regional basis. The IAEA Secretariat published IAEA Emergency Response Network - ERNET (EPR-ERNET) in 2000, which set out the criteria and requirements to be met by members of the network. An updated edition was published in 2002. The Second Meeting of the Representatives of Competent Authorities Identified under the Convention on Early Notification of a Nuclear Accident and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, held in Vienna in June 2003, recommended that the IAEA Secretariat convene a Technical Meeting to formulate recommendations aimed at improving participation in the network. Participants in a Technical Meeting held in March 2004 developed a new concept for the network and a completely new draft of the publication. In July 2005, the Third Meeting of Competent Authorities

  11. Computerization of the Botswana National Library Service. Restricted Technical Report.

    Science.gov (United States)

    Underwood, Peter C.

    This report discusses the scope for and feasibility of introducing automated systems into the Botswana National Library Service (BNLS). The study was undertaken at the request of BNLS and was conducted by an outside consultant who interviewed staff, read internal documents and reports, and studied patterns of work. Topics of the report include:…

  12. IAEA support of international research and development of materials for sustainable energy applications

    International Nuclear Information System (INIS)

    Zeman, Andrej; Kaiser, Ralf; Simon, Aliz

    2013-01-01

    Full-text:The key mandate of the International Atomic Energy Agency (IAEA) is to promote the peaceful application of nuclear science and technology, verification as well as nuclear safety in the world. This includes a number of activities which aim to support the Member States and stimulate international cooperation in order for sustainable development. During the last 35 years, a well-established mechanism called the Coordinated Research Projects (CRP) has been effectively used to stimulate international research and scientific interaction among the Member States, covering various topics in the nuclear science and technology. Besides direct support of, so called coordinated research, the IAEA is also involved in organizing a number of highly specific international conferences and technical meetings which help to provide a broader platform for the specialist and experts in dedicated areas of nuclear science and technology. In view of support for renewable energy and its application, the IAEA organized series of meetings in 2009 (IEA France), 2010 (UQTR Canada) and 2011 (ANL USA) in order to discuss the scientific and technical issues of particular of national research initiatives related to the hydrogen storage and conversion technologies. All selected outputs of the meetings were published in a technical document publication series which are available to all member states. More recent initiatives are focus on the key nuclear techniques which are extremely valuable in research and development of new innovative materials, methods and technologies, characterization and performance testing of functional materials for innovative energy technologies and their application in sustainable energy sources (nuclear and non-nuclear). It is also important to underline that these programmatic activities are an integral part of the IAEA program on the Road to Rio+20: Applying Nuclear Technology for Sustainable Development. The paper summarizes the IAEA actions relevant to the

  13. Radiation and waste safety: Strengthening national capabilities

    International Nuclear Information System (INIS)

    Barretto, P.; Webb, G.; Mrabit, K.

    1997-01-01

    For many years, the IAEA has been collecting information on national infrastructures for assuring safety in applications of nuclear and radiation technologies. For more than a decade, from 1984-95, information relevant to radiation safety particularly was obtained through more than 60 expert missions undertaken by Radiation Protection Advisory Teams (RAPATs) and follow-up technical visits and expert missions. The RAPAT programme documented major weaknesses and the reports provided useful background for preparation of national requests for IAEA technical assistance. Building on this experience and subsequent policy reviews, the IAEA took steps to more systematically evaluate the needs for technical assistance in areas of nuclear and radiation safety. The outcome was the development of an integrated system designed to more closely assess national priorities and needs for upgrading their infrastructures for radiation and waste safety

  14. 34 CFR 412.1 - What is the National Network for Curriculum Coordination in Vocational and Technical Education?

    Science.gov (United States)

    2010-07-01

    ... Coordination in Vocational and Technical Education? 412.1 Section 412.1 Education Regulations of the Offices of... EDUCATION NATIONAL NETWORK FOR CURRICULUM COORDINATION IN VOCATIONAL AND TECHNICAL EDUCATION General § 412.1 What is the National Network for Curriculum Coordination in Vocational and Technical Education? The...

  15. Training the IAEA Inspectors

    International Nuclear Information System (INIS)

    Potterton, L.

    2010-01-01

    Newly recruited safeguards inspectors take to the field. There are currently 250 inspectors and every year the IAEA runs an introductory course on the safeguards systems for the organisation's newly appointed inspectors.

  16. IAEA Monitors Marine Radioactivity

    International Nuclear Information System (INIS)

    Dixit, Aabha; Kaiser, Peter

    2013-01-01

    The IAEA assists Member States in using scientific tools to precisely identify and track nuclear and nonnuclear contaminants, as well as to investigate their biological effects on the marine ecosystem

  17. Revised IAEA Code of Conduct on the Safety and Security of Radioactive Sources

    International Nuclear Information System (INIS)

    Wheatley, J. S.

    2004-01-01

    The revised Code of Conduct on the Safety and Security of Radioactive Sources is aimed primarily at Governments, with the objective of achieving and maintaining a high level of safety and security of radioactive sources through the development, harmonization and enforcement of national policies, laws and regulations; and through the fostering of international co-operation. It focuses on sealed radioactive sources and provides guidance on legislation, regulations and the regulatory body, and import/export controls. Nuclear materials (except for sources containing 239Pu), as defined in the Convention on the Physical Protection of Nuclear Materials, are not covered by the revised Code, nor are radioactive sources within military or defence programmes. An earlier version of the Code was published by IAEA in 2001. At that time, agreement was not reached on a number of issues, notably those relating to the creation of comprehensive national registries for radioactive sources, obligations of States exporting radioactive sources, and the possibility of unilateral declarations of support. The need to further consider these and other issues was highlighted by the events of 11th September 2001. Since then, the IAEA's Secretariat has been working closely with Member States and relevant International Organizations to achieve consensus. The text of the revised Code was finalized at a meeting of technical and legal experts in August 2003, and it was submitted to IAEA's Board of Governors for approval in September 2003, with a recommendation that the IAEA General Conference adopt it and encourage its wide implementation. The IAEA General Conference, in September 2003, endorsed the revised Code and urged States to work towards following the guidance contained within it. This paper summarizes the history behind the revised Code, its content and the outcome of the discussions within the IAEA Board of Governors and General Conference. (Author) 8 refs

  18. IAEA activities on steam generator life management

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Lyssakov, V.; Trampus, P.

    2002-01-01

    The International Atomic Energy Agency (IAEA) carries out a set of activities in the field of Nuclear Power Plant (NPP) life management. Main activities within this area are implemented through the Technical Working Group on Life Management of NPPs, and mostly concentrated on studies of understanding mechanisms of degradation and their monitoring, optimisation of maintenance management, economic aspects, proven practices of and approaches to plant life management including decommissioning. The paper covers two ongoing activities related to steam generator life management: the International Database on NPP Steam Generators and the Co-ordinated Research Project on Verification of WWER Steam Generator Tube Integrity (WWER is the Russian designed PWR). The lifetime assessment of main components relies on an ability to assess their condition and predict future degradation trends, which to a large extent is dependent on the availability of relevant data. Effective management of ageing and degradation processes requires a large amount of data. Several years ago the IAEA started to work on the International Database on NPP Life Management. This is a multi-module database consisting of modules such as reactor pressure vessels materials, piping, steam generators, and concrete structures. At present the work on pressure vessel materials, on piping as well as on steam generator is completed. The paper will present the concept and structure of the steam generator module of the database. In countries operating WWER NPPs, there are big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment. Responding to the need for a co-ordinated research to compare eddy current testing results with destructive testing using pulled out tubes from WWER steam generators, the IAEA launched this project. The main objectives of the project are to summarise the operating experiences of WWER

  19. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  20. Characterization and management of radioactive sodium and other reactor components as input data for the decommissioning of liquid metal-cooled fast reactors. A compilation of data produced of data produced by members of the IAEA technical working group on fast reactors (TWG-FR) at two consultancies and one technical committee meeting. Working material

    International Nuclear Information System (INIS)

    2002-01-01

    A number of liquid metal cooled fast reactors (LMFRs) are in operation and, some have already been shut down; other reactors will reach the end of their design lifetime in a few years and become candidates for decommissioning. It is unfortunate that little consideration was devoted to decommissioning of reactors at the plant design and construction stage. It is with this focus that the Technical Working Group on Fast Reactors (TWGFR) recommended that the IAEA organize the exchange of information on LMFRs decommissioning technology. It was pointed out that the decommissioning of small sodium-cooled reactors has shown that there are two basic differences between thermal and fast reactors decommissioning: on the one side, the treatment and disposal of radioactive sodium coolant, and on the other side, the management of reactor components, for which the structural materials are activated in depth by fast neutrons. To this end, a Technical Committee Meeting on Sodium Removal and Disposal from LMFRs in Normal Operation and in the framework of Decommissioning (Aix-en-Provence, France, November 1997) and two Consultancies on Decommissioning of the Kazakh BN-350 LMFR (Vienna, Austria, October 1996; Obninsk, Russian Federation, February 1998) were convened by the IAEA. These Meetings brought together a group of experts from France, Russia, Kazakhstan, the UK, and the USA to exchange information on, and to review current technical knowledge and experience in the management of radioactive coolant and reactor components following closing of LMFRs, as well as their design features and operating experience relevant for decommissioning procedures. The report provides general and detailed information on activation characteristics of the primary coolant; treatment and disposal of the spent sodium; removal of the residual sodium deposits and decontamination; the activation characteristics of the reactor components and the management of the latter. The recurring theme is finding

  1. European Commission and IAEA Celebrate 30 Years Co-operation on Nuclear Safeguards

    International Nuclear Information System (INIS)

    2011-01-01

    reprocessing plant in Japan and is now being installed in other facilities in Europe - Secure Sealing: During the last 30 years, the Seal and Identification Laboratory (SILab) of the JRC developed and produced ultrasonic bolt seals requested by the IAEA in order to seal underwater nuclear spent fuel assemblies. In 2011, after a training session at JRC in Ispra, Italy, a joint team of inspectors from the IAEA and EURATOM Safeguards and the European Commission's Directorate-General for Energy successfully sealed the first nuclear fuel bundles produced by the Cernavoda II reactor in Romania. Joint Research Centre (JRC): The JRC is the European Commission's in-house science service. Its mission is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union policies. The JRC serves the common interest of the Member States, while being independent of special interests, whether private or national. International Atomic Energy Agency (IAEA): The IAEA serves as the world's foremost intergovernmental forum for scientific and technical co-operation in the peaceful use of nuclear technology. Established as an autonomous organization under the United Nations (UN) in 1957, the IAEA carries out programmes to maximize the useful contribution of nuclear technology to society while verifying its peaceful use. (IAEA)

  2. Advanced training course on state systems of accounting for and control of nuclear materials. Volume I. Program for technical assistance to IAEA safeguards

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Schneider, R.A.

    1979-01-01

    Purpose of the course was to provide practical training in the implementation and operation of a national system of accounting for and control of nuclear materials in a bulk processing facility, in the context of international safeguards. This course extends the training received in the basic course on State Systems of Accounting for and Control of Nuclear Materials to a practical, illustrative example utilizing the Exxon Nuclear low enriched uranium fabrication plant. Volume I of this manual contains the text of the presentations following the outline of the syllabus. Sample problems and answers are also included, along with some visual aids

  3. IAEA fundamental standards for protection against radiation

    International Nuclear Information System (INIS)

    1981-01-01

    The Governor's Counsel of the IAEA has just approved the revision of existing norms, previously prepared in cooperation with the ILO, WHO and OECD. The revised norms represent a great advance in the efforts to reduce risks for which there is no threshold value. A further initiative of the IAEA is the program of radiation protection standards for nuclear power stations. They form the first international instructions for a normalised basis of safety in nuclear power stations. The need for exchange of information was emphasised at the International Conference in Stockholm in 1980. The existing safety norms were considered adequate at the time. The IAEA activities in the field of standards, advice and technical help, exchange of information and training and emergency planning are also mentioned. (Auth.)

  4. The IAEA's WorldAtom Internet site: International news and information services

    International Nuclear Information System (INIS)

    Kyd, D.R.

    2000-01-01

    The International Atomic Energy Agency (IAEA) provides news and public information services via the Internet through its WorldAtom home page. The page is accessible at www.iaea.org/worldatom. Following are brief highlights of the items available on the site by clicking Press Centre, Reference Centre, or other links: Daily Press Review: Summaries of selected news items pertaining to global nuclear developments and the IAEA's work are provided each day, drawing upon a wide range of global media sources. IAEA NewsBriefs: Regularly featured are updates about IAEA activities related to areas of safety, technology transfer, and nuclear safeguards. Meetings and training courses: News about IAEA-sponsored symposia, seminars, and other meetings, as well as information about international meetings on atomic energy sponsored by other organizations, are updated on a daily basis. Press releases and statements: All IAEA press releases and media advisories since 1995 are accessible on the site. Topical and feature pages: In-depth coverage and links to information resources within and outside the IAEA are regularly given to selected topics of high international interest involving the IAEA. IAEA publications: listings and overviews of IAEA technical reports, safety standards, and other publications are updated as they are issued. Scientific and technical information: WorldAtom includes links (Reference Centre) to the International Nuclear Information System, IAEA's extensive bibliographic database of references and resources, to the nuclear database, and to departmental pages at IAEA that focus on IAEA programs and activities. IAEA documents: Electronic versions of official IAEA documents are added as they are issued. These documents include the texts and status lists of international conventions under IAEA auspices; IAEA information circulars to member states; IAEA annual reports (since 1995); and background reports and documents for the IAEA General Conference related to

  5. Statement on Iran by the IAEA Spokesperson

    International Nuclear Information System (INIS)

    2018-01-01

    Full text: In December 2015, IAEA Director General Yukiya Amano presented the Final Assessment on past and present outstanding issues regarding Iran’s nuclear programme to the IAEA Board of Governors. In the report, the Agency assessed that, before the end of 2003, an organizational structure was in place in Iran suitable for the coordination of a range of activities relevant to the development of a nuclear explosive device. Although some activities took place after 2003, they were not part of a coordinated effort. The Agency’s overall assessment was that a range of activities relevant to the development of a nuclear explosive device were conducted in Iran prior to the end of 2003 as a coordinated effort, and some activities took place after 2003. The Agency also assessed that these activities did not advance beyond feasibility and scientific studies, and the acquisition of certain relevant technical competences and capabilities. The same report stated that the Agency had no credible indications of activities in Iran relevant to the development of a nuclear explosive device after 2009. Based on the Director General’s report, the Board of Governors declared that its consideration of this issue was closed. In line with standard IAEA practice, the IAEA evaluates all safeguards-relevant information available to it. However, it is not the practice of the IAEA to publicly discuss issues related to any such information. (author)

  6. India National Gas Hydrate Program Expedition 02 Technical Contributions

    Science.gov (United States)

    Collett, T. S.; Kumar, P.; Shukla, K. M.; Nagalingam, J.; Lall, M. V.; Yamada, Y.; Schultheiss, P. J.; Holland, M.; Waite, W. F.

    2017-12-01

    The National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India. The primary objective of this expedition was the exploration and discovery of highly saturated gas hydrate occurrences in sand reservoirs that would be targets of future production testing. The first 2 months of the expedition were dedicated to logging while drilling (LWD) operations with a total of 25 holes being drilled and logged. The next 3 months were dedicated to coring operations at 10 of the most promising sites. NGHP-02 downhole logging, coring and formation pressure testing have confirmed the presence of large, highly saturated, gas hydrate accumulations in coarse-grained sand-rich depositional systems throughout the Krishna-Godavari Basin within the regions defined during NGHP-02 as Area-B, Area-C, and Area-E. The nature of the discovered gas hydrate occurrences closely matched pre-drill predictions, confirming the project developed depositional models for the sand-rich depositional facies in the Krishna-Godavari and Mahanadi Basins. The existence of a fully developed gas hydrate petroleum system was established in Area-C of the Krishna-Godavari Basin with the discovery of a large slope-basin interconnected depositional system, including a sand-rich, gas-hydrate-bearing channel-levee prospect at Sites NGHP-02-08 and -09. The acquisition of closely spaced LWD and core holes in the Area-B L1 Block gas hydrate accumulation have provided one of the most complete three-dimensional petrophysical-based views of any known gas hydrate reservoir system in the world. It was concluded that Area-B and Area-C in the area of the greater Krishna-Godavari Basin contain important world-class gas hydrate accumulations and represent ideal sites for consideration of future gas hydrate production testing.

  7. The IAEA Accident Management Programme

    International Nuclear Information System (INIS)

    Kabanov, L.; Jankowski, M.; Mauersberger, H.

    1993-01-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.)

  8. The IAEA Accident Management Programme

    Energy Technology Data Exchange (ETDEWEB)

    Kabanov, L.; Jankowski, M.; Mauersberger, H. (International Atomic Energy Agency, Vienna (Austria))

    1993-02-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.).

  9. Is not the universality of implementation of IAEA rules as difficult to maintain as it was to obtain

    International Nuclear Information System (INIS)

    Grenier, M.

    1989-07-01

    IAEA recommendations on the safe transport of radioactive materials succeded in their task to uniformize the applicable rules for national and international transport. Problems set up by this carriage evolve with technical progress, nuclear knowledge and implementation development. This report tries to see under what conditions, the harmony obtained at one given date could be maintained and kept with the passing time, through the necessary adaptations in the field of the making up of the general rules, and in the practical applications

  10. Report of the IAEA/RCA-NDT education project

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, Kiichi; Terada, Kunio; Ohtani, Kiyoshi; Niwa, Noboru

    1988-11-01

    The Japan Non-Destructive Test (NDT) Association has been carried out an NDT technical education project with support from IAEA. Phase I of the project was successfully completed last year. The present report briefly outlines the second five-year plan (Phase II) to be carried out under the project. The project was first established in 1981 after receiving a request from IAEA to provide NDT education for participants from the RCA countries (13 countries in Asian and Pacific area). Phase I was mainly designed to provide lectures on NDT techniques. Prior to the start of Phase II, the International Education Subcommittee was established in December 1986 to take the leadership in carrying out Phase II of the project. In addition, the NDT Expert Working Group (formally called Advisory Group) has been installed which consists of representative from Japan. Australia India and Singapore. The Group held nine meetings during Phase I. Three lecture meetings at Singapore and another three at Tokyo were held to provide education according to a plan developed by the Group. It has been decided that Japan be support the lecture meetings to be held during Phase II. To conduct such meetings, a group comprising all of the National Coordinators from the RCA countries was set up to replace the Working Group. The National Coordinator Conference was held four times since its establishment. (N.K.).

  11. Report of the IAEA/RCA-NDT education project

    International Nuclear Information System (INIS)

    Ooka, Kiichi; Terada, Kunio; Ohtani, Kiyoshi; Niwa, Noboru.

    1988-01-01

    The Japan Non-Destructive Test (NDT) Association has been carried out an NDT technical education project with support from IAEA. Phase I of the project was successfully completed last year. The present report briefly outlines the second five-year plan (Phase II) to be carried out under the project. The project was first established in 1981 after receiving a request from IAEA to provide NDT education for participants from the RCA countries (13 countries in Asian and Pacific area). Phase I was mainly designed to provide lectures on NDT techniques. Prior to the start of Phase II, the International Education Subcommittee was established in December 1986 to take the leadership in carrying out Phase II of the project. In addition, the NDT Expert Working Group (formally called Advisory Group) has been installed which consists of representative from Japan. Australia India and Singapore. The Group held nine meetings during Phase I. Three lecture meetings at Singapore and another three at Tokyo were held to provide education according to a plan developed by the Group. It has been decided that Japan be support the lecture meetings to be held during Phase II. To conduct such meetings, a group comprising all of the National Coordinators from the RCA countries was set up to replace the Working Group. The National Coordinator Conference was held four times since its establishment. (N.K.)

  12. IAEA education and training programs in radiation technology

    International Nuclear Information System (INIS)

    Ma Zueteh

    1995-01-01

    In order to assist the promotion of the industrial application of isotopes and radiation in Southeast Asia and Pacific region, the regional IAEA/UNDP/RCA project was formed in 1982. Phase 1 was 1982-1986, Phase 2 was 1987-1991, and now it entered Phase 3, 1993-1997. 15 countries joined the project, and now the donor countries expanded to five or more including Japan, Australia, China, ROK and India. Radiation technology is one of the subprojects of the regional project, aiming at transferring this technology from developed countries to developing countries and promoting to industrialize this technology. For the purpose, technical personnel and their skill are essential, and IAEA supports and supplements the educational and training program in developing countries. Executive management seminar (EMS), national workshop (NW), regional training course (RTC) and national training courses (NTCs) are the main components of this education program. The contents of these components are explained, and the activities which were carried out so far under them are reported. (K.I.)

  13. Progress report of Sandia National Laboratories (SNL) contribu- tion to IAEA CRP F11016 on ?Utilization of ion accelerators for studying and modeling of radiation induced defects in semicon- ductors and insulators? 3rd RCM.

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, Gyorgy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    This report presents the results of Sandia National Laboratories’ (SNL) contribution to IAEA CRP F11016 as mostly raw data. The goal of this CRP is to study the effects of radiation on semiconductors and insulators with the emphasis on the effect of displacement damage due to MeV energy ions on the performance of semiconductor detectors and microelectronic devices. SNL is tasked with performing electrical characterization, irradiation, and IBIC, DLTS, C-­V measurements on devices used in the CRP, as well as calculating damage and ionization profiles for modeling.

  14. National Institute of Justice Center Requirements Definition, Technical Assistance, Agile Test and Evaluation and Cyber Science Analysis

    National Research Council Canada - National Science Library

    Frantz, Frederick

    2003-01-01

    This task provided for assembly, definition, and completion of technical enhancements in coordination with the National Law Enforcement and Corrections Technology Center -Northeast Region (NLECTC-NE...

  15. A window on⋯ the national food institute, technical university of Denmark

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    2011-01-01

    The National Food Institute is an institute of the Technical University of Denmark. The Institute has a staff of 400, out of which approximately 275 hold an academic degree. It is divided into five Divisions; Chemistry, Toxicology, Microbiology, Nutrition, Industrial Food Research, and a Manageme...... composition database. The results of the research activities forms part of the evidence-base used to give advice to national and international authorities....

  16. IAEA activities in support of rising expectation to the role of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Omoto, A.

    2006-01-01

    The Paris Conference N uclear energy for the 21st Century , which was held in March 2005 organized by the IAEA, is a strong indication of the interest in the role of nuclear power. At this conference, rising expectations were indicated as representatives from many countries expressed recognition of the potential of nuclear energy to meet their energy needs in a sustainable manner. A similar indication was recognized by the June 2004 Conference held by the IAEA in Obninsk, Russia, to celebrate 50 years of nuclear electricity production. Many developing countries that currently do not operate a nuclear power plant are expressing their view that nuclear power is an important option in their energy planning in order to alleviate energy price instability, to secure long-term energy supply and to achieve an energy mix that assures sustainability. India, China and other developing countries in Asia have ambitious nuclear power deployment programmes in order to support growing energy demand and per capita energy consumption. The IAEA has a mandate to secure the benefit of the peaceful use of nuclear technology for sustainability while working against the misuse of nuclear material. Under this mandate, many guidance documents have been prepared and various technical cooperation projects are carried out to support energy planning and infrastructure building to prepare for and to sustain nuclear power operation. Basically, the IAEA can provide support by four types of activities; a) helping the process in various stages, b) helping informed decision-making through providing analytical tools and publishing technical documents, and c) reducing institutional impediments through regional cooperation, multi-national arrangement and others; and d) supporting collaborative assessments and research toward development of nuclear plants and their applications. The paper describes the observed rising expectation and the IAEA's activities in response to the rising expectation of the role

  17. The 1996 meeting of the national technical workgroup on mixed waste thermal treatment

    International Nuclear Information System (INIS)

    1996-01-01

    The National Technical Workgroup on Mixed Waste Thermal Treatment held its annual meeting in Atlanta Georgia on March 12-14, 1996. The National Technical Workgroup (NTW) and this meeting were sponsored under an interagency agreement between EPA and DOE. The 1996 Annual Meeting was hosted by US DOE Oak Ridge Operations in conjunction with Lockheed Martin Energy Systems - Center for Waste Management. A new feature of the annual meeting was the Permit Writer Panel Session which provided an opportunity for the state and federal permit writers to discuss issues and potential solutions to permitting mixed waste treatment systems. In addition, there was substantial discussion on the impacts of the Waste Combustion Performance Standards on mixed waste thermal treatment which are expected to proposed very soon. The 1996 meeting also focussed on two draft technical resource documents produced by NTW on Waste Analysis Plans and Compliance Test Procedures. Issues discussed included public involvement, waste characterization, and emission issues

  18. 77 FR 43616 - Office of the Assistant Secretary for Office of Disability Employment Program, National Technical...

    Science.gov (United States)

    2012-07-25

    ... Center will utilize social media and other electronic tools to influence its target audience of youth as..., foster care, transportation, mental health, vocational rehabilitation and others on effective practices..., National Technical Assistance and Demonstration Center on Preparing Youth With Disabilities for Employment...

  19. The standards of Radiation Protection of IAEA

    International Nuclear Information System (INIS)

    Butragueno, J. L.

    2000-01-01

    Nuclear Safety and Radiation Protection are technological disciplines whose international character have been recognised since the very beginning. Safety culture and the defense in depth criterium address in the same way this international collaboration. The International Atomic Energy Agency, with headquater in Vienna, is specially sensitive to this aspect and a significant amount of resources has been dedicated to the promotion of a closer international collaboration through the promotion of two complementary programs: the Convention on Nuclear Safety and the Convention on Rad waste Management, and the reconstruction of a great piramide of standards, that staring with Fundamental Principles, is followed with a set of Basic Safety Standards and completed with Safety Requirements and additional technical information, that provide practical ways to implement the Fundamental Principles. This article describe briefly the RASS Program of the IAEA (Radiation Safety Standards) and the work of the Technical Committees established to assess the Director General of the IAEA in this task. (Author)

  20. National intercomparison on in vivo measurement of Iodine-131 in the thyroid within a Brazilian Internal Dosimetry Laboratory Network - IAEA PROJECT BRA9055; Intercomparacao nacional de medicao in vivo de Iodo-131 na tireoide - Projeto TC IAEA BRA 9055

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Dantas, A.L.A.; Lucena, E.A., E-mail: bmdantas@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro (Brazil); Cardoso, J.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ramos, M.A.P.; Sa, M.S. [Eletrobras Eletronuclear, Angra dos Reis, RJ (Brazil); Alonso, T.C.; Silva, T.V.; Oliveira, C.M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Lima, F.F.; Oliveira, M.L.; Lacerda, I.V.B. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fajgelj, A. [International Atomic Energy Agency (IAEA), Vienna (Austria)

    2013-08-15

    In 2011, in Brazil, a National Intercalibration and Intercomparison exercise on in vivo measurement of iodine-131 in the thyroid was carried out in the scope of the Project IAEABRA9055 'Establishing a National Laboratory Network for Internal Individual Monitoring'. The exercise was conducted by the Institute for Radiation Protection and Dosimetry (IRD) and the Institute for Nuclear and Energetic Research (IPEN), from National Nuclear Energy Commission (CNEN). The objectives of the exercise were to (i) update information on current instrumentation resources available in the in vivo monitoring laboratories in operation in Brazil and to (ii) verify the reliability of the results of measurements of iodine-131 in thyroid provided by those laboratories. The procedure consisted on the measurement of a neck-thyroid anthropomorphic phantom provided by the In Vivo Monitoring Laboratory of IRD, containing two barium-133 standard sources certified by the National Laboratory for Metrology of Ionizing Radiation. Each participant should measure the phantom in a period of five days. The five laboratories are located in the States of Rio de Janeiro, Sao Paulo, Minas Gerais and Pernambuco, in the following Institutions: Institute for Radiation Protection and Dosimetry, Nuclear Power Station Almirante Alvaro Alberto, Center for the Development of Nuclear Technology, Institute for Nuclear and Energetic Research, and Regional Center for Nuclear Sciences. The results reported included: activity measured, minimum detectable activity, accuracy and precision. The performance of the laboratories was evaluated according to the criteria suggested by ANSI 13.30 indicating their capacity to provide reliable results of iodine-131 content in the thyroid. (author)

  1. The recent international situation on the transport of radioactive material and IAEA 2003 transport conference

    International Nuclear Information System (INIS)

    Tani, Hiroshi

    2003-01-01

    Since the creation of the United Nations, the international community initiated efforts to harmonize international practices for the safe transport of hazardous goods, including radioactive material. And, IAEA is playing a key role in fostering the establishment of transport regulations on radioactive material. This current worldwide system of regulatory control has achieved an excellent safety record. However, some concerns still remain regarding the transport of radioactive material, as the discussion of this topic at IAEA General Conferences in the last few years. IAEA Transport conference planed as a forum in which to better understand these concerns, and to answer relevant underlying questions. At the same time, outside these technical areas, discussions also covered related issues such as liability resulting from an accident during the transport and communication between concerned governments, and between these governments and the public at large. The International Conference on the Safety of Transport of Radioactive Material took place in Vienna, Austria, from 7 to 11 July 2003. There were 534 nominated participants from 82 States, 9 intergovernmental organizations (IGOs), and 5 non-governmental organizations (NGOs), and there were 132 contributed and invited papers. By this report, I report the recent international situation on the transport of radioactive material and result of the IAEA 2003 Transport Conference. (author)

  2. IAEA ASSET service - A KANUPP perspective

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Ghafoor, M [Karachi Nuclear Power Plant (Pakistan)

    1997-12-31

    IAEA has been providing ASSET Service since 1986. It is a mechanism for drawing and disseminating specific and generic lesson from a significant event. Like many other operating organizations, KANUPP has also benefited from its in-depth technical exchange experience which has resulted in significant improvement in the level of operation safety. The ASSET mission, which visited KANUPP in connection with fuelling machine locking problem in 1989, triggered many actions which were responsible for improvement of overall safety of the plant.

  3. IAEA ASSET service - A KANUPP perspective

    International Nuclear Information System (INIS)

    Abdul Ghafoor, M.

    1996-01-01

    IAEA has been providing ASSET Service since 1986. It is a mechanism for drawing and disseminating specific and generic lesson from a significant event. Like many other operating organizations, KANUPP has also benefited from its in-depth technical exchange experience which has resulted in significant improvement in the level of operation safety. The ASSET mission, which visited KANUPP in connection with fuelling machine locking problem in 1989, triggered many actions which were responsible for improvement of overall safety of the plant

  4. Inspections talks with IAEA again broken off

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    North Korea again appears likely to resist more detailed safeguards inspections of its disputed nuclear facilities by the International Atomic Energy Agency. The country's loner status was reinforced during the IAEA General Conference in September, when no other nation joined North Korea in voting against the placement of the inspection issue on the conference's agenda

  5. Safety of RBMK reactors: Setting the technical framework

    International Nuclear Information System (INIS)

    Lederman, L.

    1996-01-01

    This article reviews major efforts for improving the safety of RBMK reactors through a co-operative IAEA programme initiated in 1992. Specifically covered are technical findings of safety reviews related to the design and operation of the plants, and the documentation of findings through an Agency database intended to facilitate the technical co-ordination of ongoing national and international efforts for improving RBMK safety

  6. The IAEA laboratories

    International Nuclear Information System (INIS)

    1973-01-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  7. IAEA Safety Standards

    International Nuclear Information System (INIS)

    2016-09-01

    The IAEA Safety Standards Series comprises publications of a regulatory nature covering nuclear safety, radiation protection, radioactive waste management, the transport of radioactive material, the safety of nuclear fuel cycle facilities and management systems. These publications are issued under the terms of Article III of the IAEA’s Statute, which authorizes the IAEA to establish “standards of safety for protection of health and minimization of danger to life and property”. Safety standards are categorized into: • Safety Fundamentals, stating the basic objective, concepts and principles of safety; • Safety Requirements, establishing the requirements that must be fulfilled to ensure safety; and • Safety Guides, recommending measures for complying with these requirements for safety. For numbering purposes, the IAEA Safety Standards Series is subdivided into General Safety Requirements and General Safety Guides (GSR and GSG), which are applicable to all types of facilities and activities, and Specific Safety Requirements and Specific Safety Guides (SSR and SSG), which are for application in particular thematic areas. This booklet lists all current IAEA Safety Standards, including those forthcoming

  8. The IAEA laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  9. IAEA Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives for this presentation are to describe the method that the IAEA uses to determine a sampling plan for nuclear material measurements; describe the terms detection probability and significant quantity; list the three nuclear materials measurement types; describe the sampling method applied to an item facility; and describe multiple method sampling.

  10. IAEA Director General to Visit Iran

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The Director General of the IAEA, Yukiya Amano, will travel to Tehran this Sunday, 20 May 2012, to discuss issues of mutual interest with high Iranian officials. In the course of his one-day working visit, on Monday 21 May 2012 the Director General will meet the Secretary of Iran's Supreme National Security Council, His Excellency Saeed Jalili, and other senior representatives of the Iranian government. Herman Nackaerts, Deputy Director General for Safeguards, and Rafael Mariano Grossi, Assistant Director General for Policy, will accompany the Director General. (IAEA)

  11. IAEA support for operating nuclear reactors

    International Nuclear Information System (INIS)

    Akira, O.

    2010-01-01

    The IAEA programme, under the pillar of science and technology, provides support to the existing fleet of nuclear power plants (NPPs) for excellence in operation, support to new countries for infrastructure development, stimulating technology innovation for sustainable development and building national capability. Practical activities include methodology development, information sharing and providing guidance documents and state-of-the-art reports, networking of research activities, and review services using guidance documents as a basis of evaluation. This paper elaborates more on the IAEA's activities in support of the existing fleet of nuclear power plants

  12. What is the IAEA? Programmes and activities that maximize the contribution of nuclear technology to society, while verifying its peaceful use

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) serves as the world's foremost international governmental forum for scientific and technical co-operation in the peaceful use of nuclear technology. Established as an autonomous organization under the United Nations (UN) in 1957, the IAEA represents the culmination of international efforts to make a reality of US President Eisenhower's proposal in his 'Atoms for Peace' speech to the UN General Assembly in 1953. He envisioned the creation of an international body to control and develop the use of atomic energy. Today, the Agency's broad spectrum of services, programmes, and activities is based on the needs of its 130 Member States

  13. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-06-01

    commonly used, for instance, in shielding on radioactive sources used in hospitals. Other radioactive material, such as most radioactive sources and isotopes used in medicine, industry, agriculture, and water resource management, are not the subject of safeguards and need not be reported to the IAEA under safeguards agreements. Reporting depends on the level of nuclear activity in the country. Declarations pursuant to safeguards agreements and additional protocols for States that do not have nuclear facilities are expected to be short and simple. The IAEA has prepared a document, available upon request, which provides guidance on the reporting requirements for such States. More elaborate guidelines have been prepared for States that do have nuclear facilities subject to routine safeguards inspections. Through its activities in the field, the IAEA seeks to verify the correctness and completeness of States' reports and declarations regarding nuclear material. Each State with a comprehensive safeguards agreement is required to establish and maintain a State system of accounting for and control of nuclear material (SSAC), which is the national authority formally designated to keep track of nuclear material and activities in the country. For all States with safeguards agreements in force, the IAEA draws an annual conclusion on the non-diversion of nuclear material and other items placed under safeguard. The IAEA's focal point for the negotiation of safeguards agreements and additional protocols, and the amendment of SQPs, is the Office of External Relations and Policy Coordination. Once a State has decided to conclude such an agreement and/or protocol, or amend its SQP, the IAEA can help the country with the implementation of related legal and technical requirements. The appendix of this publication informs how to conclude a comprehensive Safeguards Agreement and/or an Additional Protocol and provides 3 model notification letters for (a) conclusion of a safeguards agreement, a

  14. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-04-01

    commonly used, for instance, in shielding on radioactive sources used in hospitals. Other radioactive material, such as most radioactive sources and isotopes used in medicine, industry, agriculture, and water resource management, are not the subject of safeguards and need not be reported to the IAEA under safeguards agreements. Reporting depends on the level of nuclear activity in the country. Declarations pursuant to safeguards agreements and additional protocols for States that do not have nuclear facilities are expected to be short and simple. The IAEA has prepared a document, available upon request, which provides guidance on the reporting requirements for such States. More elaborate guidelines have been prepared for States that do have nuclear facilities subject to routine safeguards inspections. Through its activities in the field, the IAEA seeks to verify the correctness and completeness of States' reports and declarations regarding nuclear material. Each State with a comprehensive safeguards agreement is required to establish and maintain a State system of accounting for and control of nuclear material (SSAC), which is the national authority formally designated to keep track of nuclear material and activities in the country. For all States with safeguards agreements in force, the IAEA draws an annual conclusion on the non-diversion of nuclear material and other items placed under safeguard. The IAEA's focal point for the negotiation of safeguards agreements and additional protocols, and the amendment of SQPs, is the Office of External Relations and Policy Coordination. Once a State has decided to conclude such an agreement and/or protocol, or amend its SQP, the IAEA can help the country with the implementation of related legal and technical requirements. The appendix of this publication informs how to conclude a comprehensive Safeguards Agreement and/or an Additional Protocol and provides 3 model notification letters for (a) conclusion of a safeguards agreement, a

  15. The IAEA and non-proliferation: is quiescence progress

    International Nuclear Information System (INIS)

    Herron, L.W.

    1983-01-01

    The purpose of this paper is to evaluate the current status of more important non-proliferation aspects affecting or involving the IAEA. The questions dealt with cover in particular the Non-Proliferation Treaty, the Tlatelolco Treaty, the Committee on Assurances of Supply established by the IAEA in 1980 and the International Plutonium Storage Study prepared by an IAEA expert group. The author concludes that in a number of areas involving this Agency, recent considerable activity at both political and technical levels has produced few tangible results althrough the situation is not static. (NEA) [fr

  16. Water partnerships: IAEA regional projects for Africa TAP expertise

    International Nuclear Information System (INIS)

    Boussaha, A.; Kastens, R.F.

    2000-01-01

    Issues of water scarcity are on the top of governmental agendas. The efforts of the IAEA's African Member States to address these issues rely upon increasingly complex requirements for analytical tools, technologies and institutional capacities. National programmes in water resources management are receiving growing attention and a large number of bilateral and multilateral development partners are actively involved in providing technical and financial support. Applications of nuclear techniques in the field of hydrology constitute important, and sometimes unique tools for obtaining critical information needed for water resources management. In most cases, isotope hydrology methodologies provide a qualitative definition or solution of the hydrological problem while in certain circumstances, quantification of hydrological parameters are enabled only by the application of these methodologies. Such information is essential for determining the long-term productive capacity of an aquifer, protecting vulnerable recharge areas from pollution, or limiting saltwater intrusion. Isotopes also provide useful data for constraining and validating groundwater models used for water management

  17. NIRS inaugurated as IAEA Collaborating Centre. Its presence and function

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Watanabe, Naoyuki; Sakai, Kazuo; Kamada, Tadashi; Imai, Reiko; Fujibayashi, Yasuhisa; Nakane, Takeshi; Burkart, W.; Chhem, R.; Matsuura, Shojiro

    2010-01-01

    The feature article is the collection of documents commemorating the 2010 designation of National Institute of Radiological Sciences (NIRS) as one of International Atomic Energy Agency (IAEA) Collaborating Centres (CC) again, involving 4 introductory chapters containing 9 sections in total. The IAEA-CC concept, essentially for the 4-year project, started to globally give shape by designating 3 organizations in some countries in 2004, NIRS as a CC worked from 2006 and the present designation is the renewed one. There are 17 IAEA-CCs at present. The title of Chapter 1 of the article is the same as above title by NIRS President and of Chapter 2, ''IAEA-CC scheme'' by NIRS Senior Specialist/ professor of Gunma Pref. College of Health Sciences/ former IAEA staff. Chapter 3 entitled ''Research Development of Next Four Years in Three Collaboration Areas'', contains 3 topics of the very areas mainly responsible to the project, of biological effect and mechanism of low dose radiation by NIRS Director of Res. Center for Radiation Protection, IAEA-CC plan (radiotherapy) by the Director for Charged Particle Therapy, and IAEA-CC activity and research at Molecular Imaging Center by its Director. Chapter 4 entitled ''Expectation to NIRS'' contains four topics; Expectations for the reinforcement of collaboration with IAEA whose new priority is cancer control by the Japanese Ambassador Extraordinary and Plenipotentiary in Vienna; Welcoming NIRS to join IAEA-CC network (an interview with IAEA Deputy Director General and Head of Nuclear Sciences and Applications); Honoured to invite NIRS to establish a new partnership with IAEA (an interview with IAEA Director of Division of Human Health, Dept. of Nuclear Sciences and Applications); Expectation to NIRS in peaceful use of nuclear and radiation by President of the Nuclear Safety Research Association. (T.T.)

  18. IAEA Newsbriefs. V. 10, no. 2(68). Jun-Jul 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This issue gives brief information on the following topics: IAEA General Conference opens in September in Vienna, IAEA Board of Governors' June meetings (Safeguards proposals, Technical cooperation, Radiation safety, Radioactive waste management, Liability for nuclear damage, IAEA regular budget for 1996), NPT Conference reaffirms support for IAEA roles, Director General addresses NPT Conference, Seminar on nuclear waste management in Russian Federation, Safety Reviews of Medzamor in Armenia, Update on Nuclear Safety Convention, Cuba and Brazil: Public information seminars, India: Donation to the IAEA Laboratories, Simulated emergency tests global procedures, INIS: Happy Anniversary, China hosts international isotope conference, Nuclear power: Status and outlook, and other short information

  19. Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-18

    This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

  20. Fostering member state implementation of the IAEA's transport regulations

    Energy Technology Data Exchange (ETDEWEB)

    Brittinger, M.T.M.; Wangler, M.E. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Based on a 1959 mandate from the United Nations Economic and Social Council, international safety requirements are embodied in the ''Regulations for the Safe Transport of Radioactive Material'' that were first published by the International Atomic Energy Agency in 1961 and revised in 1967, 1973, 1985 and 1996 to keep them abreast of scientific and technical developments. The requirements are incorporated into the regulatory documents of the International Civil Aviation Organization for air transport, and the International Maritime Organization for marine transport. As the requirements of the latter documents are legally-binding for the member states of the corresponding organizations, the IAEA safety requirements thus also become mandatory in those countries. The same situation applies for the surface modes in Europe, by means of the regulatory documents of the European Community for rail, road and inland waterways. Nevertheless, the IAEA has not relaxed its efforts to ensure that its Transport Regulations stay abreast of scientific and technical developments; on the contrary, it has been undertaking a regular and vigorous review of its safety requirements, and continues to do so with the assistance of Member States and relevant international organizations. Beyond providing the regulatory basis for the safe transport of radioactive material, however, the IAEA also offers a work programme under which it assists Member States in complying with the regulatory requirements. This assistance comes in the form of providing training on the safety requirements, and publishing documents that facilitate the exchange of information.

  1. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plimpton, Kathryn D [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Kari L. M [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brunette, Jeremy Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McGehee, Ellen D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building to create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.

  2. The IAEA Regional Training Course on Regulatory Control of Radiation Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Materials of the IAEA Regional Training Course contains 8 presented lectures. Authors deals with regulatory control of radiation sources. The next materials of the IAEA were presented: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. (IAEA-TECDOC-1067); Safety assessment plants for authorization and inspection of radiation sources (IAEA-TECDOC-1113); Regulatory authority information system RAIS, Version 2.0, Instruction manual

  3. IAEA biological reference materials

    International Nuclear Information System (INIS)

    Parr, R.M.; Schelenz, R.; Ballestra, S.

    1988-01-01

    The Analytical Quality Control Services programme of the IAEA encompasses a wide variety of intercomparisons and reference materials. This paper reviews only those aspects of the subject having to do with biological reference materials. The 1988 programme foresees 13 new intercomparison exercises, one for major, minor and trace elements, five for radionuclides, and seven for stable isotopes. Twenty-two natural matrix biological reference materials are available: twelve for major, minor and trace elements, six for radionuclides, and four for chlorinated hydrocarbons. Seven new intercomparisons and reference materials are in preparation or under active consideration. Guidelines on the correct use of reference materials are being prepared for publication in 1989 in consultation with other major international producers and users of biological reference materials. The IAEA database on available reference materials is being updated and expanded in scope, and a new publication is planned for 1989. (orig.)

  4. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  5. Explaining technical change in a small country the Finnish national innovation system

    CERN Document Server

    Vuorinen, Pentti

    1994-01-01

    Technical change is produced by the interaction of a large number of technical, economic, social and institutional factors. One of the starting points is the concept of national innovation systems. The aim of this book is to take Finland as an example illustrating the challenges faced by small countries. The characteristics and performance of the Finnish national innovation system of the last couple of decades are analyzed. The Finnish experience is put in a broader context by comparing it with a few other countries. The development paths possible in the near future are assessed. According to the results, many problems remain despite favourable developments in several technology indicators. The rigidities of the social institutions created during the 1970s and 1980s seem to have become obstacles for economic and technological development. There are fairly large differences between the countries studied, and even between the culturally and historically close Nordic countries. However,Finland and Sweden seem to...

  6. Association Euratom - Risø National Laboratory, Technical University of Denmark - Annual Progress Report 2007

    DEFF Research Database (Denmark)

    Michelsen, Poul; Korsholm, Søren Bang; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the pla......The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction...... phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007....

  7. Functioning of the IPSN Crisis Technical Center (CTC) inside the Crisis National Organisation

    International Nuclear Information System (INIS)

    Cernes, A.

    1995-01-01

    A forethought about the organization and counter-actions to follow in case of reactor accident crisis has been carried out by the French nuclear partners (operators and public authorities). This forethought has led to the creation of a Crisis National Organization which determines the responsibilities and missions of each partner. Inside this organization, the IPSN (Institute for Nuclear Protection and Safety) plays the role of technical support and expert for the Safety Authority. To carry out these missions, a Crisis Technical Center has been installed for ten years in Fontenay-aux-Roses CEA center. This document is a presentation of the CTC activities and evolutions in the framework of the existing National Organization. The main axes along which this activity will evolve in the future are summarized. (J.S.). 3 figs

  8. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kerr, G.D.; Mei, G.T.

    1993-08-01

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident

  9. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  10. National policies for technical change: Where are the increasing returns to economic research?

    OpenAIRE

    Pavitt, Keith

    1996-01-01

    Improvements over the past 30 years in statistical data, analysis, and related theory have strengthened the basis for science and technology policy by confirming the importance of technical change in national economic performance. But two important features of scientific and technological activities in the Organization for Economic Cooperation and Development countries are still not addressed adequately in mainstream economics: (i) the justification of public fundi...

  11. National Alliance for Advanced Biofuels and Bio-Products Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Jose A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baxter, Ivan [US Dept. of Agriculture (USDA)., Washington, DC (United States); Brown, Judith [Univ. of Arizona, Tucson, AZ (United States); Carleton, Michael [Matrix Genetics, Seattle, WA (United States); Cattolico, Rose Anne [Univ. of Washington, Seattle, WA (United States); Taraka, Dale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Detter, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devarenne, Timothy P. [Texas Agrilife Research, College Station, TX (United States); Dutcher, Susan K. [Washington Univ., St. Louis, MO (United States); Fox, David T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodenough, Ursula [Washington Univ., St. Louis, MO (United States); Jaworski, Jan [Donald Danforth Plant Science Center, St. Louis, MO (United States); Kramer, David [Michigan State Univ., East Lansing, MI (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCormick, Margaret [Matrix Genetics, Seattle, WA (United States); Merchant, Sabeeha [Univ. of California, Los Angeles, CA (United States); Molnar, Istvan [Univ. of Arizona, Tucson, AZ (United States); Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pellegrini, Matteo [Univ. of California, Los Angeles, CA (United States); Polle, Juergen [City Univ. (CUNY), NY (United States). Brooklyn College; Sabarsky, Martin [Cellana, Inc., San Diego, CA (United States); Sayre, Richard T. [New Mexico Consortium, Los Alamos, NM (United States); Starkenburg,, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stormo, Gary [Washington Univ., St. Louis, MO (United States); Twary, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Clifford J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Pat J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yuan, Joshua S. [Texas Agrilife Research, College Station, TX (United States); Arnold, Bob [Univ. of Arizona, Tucson, AZ (United States); Bai, Xuemei [Cellana, Inc., San Diego, CA (United States); Boeing, Wiebke [New Mexico State Univ., Las Cruces, NM (United States); Brown, Lois [Texas Agrilife Research, College Station, TX (United States); Gujarathi, Ninad [Reliance Industries Limited, Mumbai (India); Huesemann, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lammers, Pete [New Mexico State Univ., Las Cruces, NM (United States); Laur, Paul [Eldorado Biofuels, Santa Fe, NM (United States); Khandan, Nirmala [New Mexico State Univ., Las Cruces, NM (United States); Parsons, Ronald [Solix BioSystems, Fort Collins, CO (United States); Samocha, Tzachi [Texas Agrilife Research, College Station, TX (United States); Thomasson, Alex [Texas Agrilife Research, College Station, TX (United States); Unc, Adrian [New Mexico State Univ., Las Cruces, NM (United States); Waller, Pete [Univ. of Arizona, Tucson, AZ (United States); Bonner, James [Clarkson Univ., Potsdam, NY (United States); Coons, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernando, Sandun [Texas Agrilife Research, College Station, TX (United States); Goodall, Brian [Valicor Renewables, Dexter, MI (United States); Kadam, Kiran [Valicor Renewables, Dexter, MI (United States); Lacey, Ronald [Texas Agrilife Research, College Station, TX (United States); Wei, Liu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marrone, Babs [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikolov, Zivko [Texas Agrilife Research, College Station, TX (United States); Trewyn, Brian [Colorado School of Mines, Golden, CO (United States); Albrecht, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Capareda, Sergio [Texas Agrilife Research, College Station, TX (United States); Cheny, Scott [Diversified Energy, Gilbert, AZ (United States); Deng, Shuguang [New Mexico State Univ., Las Cruces, NM (United States); Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cesar, Granda [Terrabon, LLC, Bryan, TX (United States); Hallen, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lupton, Steven [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Lynch, Sharry [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Marchese, Anthony [Colorado State Univ., Fort Collins, CO (United States); Nieweg, Jennifer [Albemarle Catilin, Ames, IA (United States); Ogden, Kimberly [Univ. of Arizona, Tucson, AZ (United States); Oyler, James [Genifuel, Salt Lake City, UT (United States); Reardon, Ken [Colorado State Univ., Fort Collins, CO (United States); Roberts, William [North Carolina State Univ., Raleigh, NC (United States); Sams, David [Albemarle Catilin, Ames, IA (United States); Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States); Silks, Pete [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archibeque, Shawn [Colorado State Univ., Fort Collins, CO (United States); Foster, James [Texas Agrilife Research, College Station, TX (United States); Gaitlan, Delbert [Texas Agrilife Research, College Station, TX (United States); Lawrence, Addison [Texas Agrilife Research, College Station, TX (United States); Lodge-Ivey, Shanna [New Mexico State Univ., Las Cruces, NM (United States); Wickersham, Tyron [Texas Agrilife Research, College Station, TX (United States); Blowers, Paul [Univ. of Arizona, Tucson, AZ (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Downes, C. Meghan [New Mexico State Univ., Las Cruces, NM (United States); Dunlop, Eric [Pan Pacific Technologies Pty. Ltd., Adelaide (Australia); Frank, Edward [Argonne National Lab. (ANL), Argonne, IL (United States); Handler, Robert [Michigan Technological Univ., Houghton, MI (United States); Newby, Deborah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pienkos, Philip [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, James [Texas Agrilife Research, College Station, TX (United States); Seider, Warren [Univ. of Pennsylvania, Philadelphia, PA (United States); Shonnard, David [Michigan Technological Univ., Houghton, MI (United States); Skaggs, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The main objective of NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. The approach was to address technology development across the entire value chain of algal biofuels production, from selection of strains to cultivation, harvesting, extraction, fuel conversion, and agricultural coproduct production. Sustainable practices and financial feasibility assessments ununderscored the approach and drove the technology development.

  12. The Philippine National Progress Report on IAEA Project RAS/09/062: Promoting and Maintaining Regulatory Infrastructure for the Control of Radiation Sources

    International Nuclear Information System (INIS)

    Borras, A.

    2016-01-01

    In line with the report of the Director General on “Measures to Strengthen International Cooperation in Nuclear, Radiation, Transport and Waste Safety” during the 2014 IAEA General Conference [1], this report aims to share the accomplishments and achievements of the above mentioned project and its impact to the effectiveness and efficiency of NRD-PNRI on delivering their regulatory functions in the country translating to the fulfilment of the PNRI’s mandate. Also, it aims to project the perceive challenges of a regulator with the emerging state of the art industrial and medical nuclear technologies in the country. This could possibly serve as model processes for other countries especially in the Asia and the Pacific Region or globally as a whole. A regional comparative report under the framework of the project could emanate from this report.

  13. Use of national metrological references of dose absorbed in water and application of the IAEA TRS nr 398 dosimetry protocol to high energy photon beams. BNM-LNHB-LCIE-SFPM working group

    International Nuclear Information System (INIS)

    Chauvenet, B.; Delaunay, F.; Dolo, J.M.; Le Roy, G.; Bridier, A.; Francois, P.; Sabattier, R.

    2003-01-01

    Metrological references of dose absorbed in water for high energy photon beams used in radiotherapy have been elaborated during the past years by national calibration laboratories, and these new references are the basis of recent dosimetry protocols. However, the passage from metrological references of air kerma to dose absorbed in water, as well as the practical application of new calibration opportunities for dosemeters in high energy X ray beams requires a specific attention to maintain the consistency of dose measurement references over the hospital site. In this respect, this guide aims at the application of these metrological references. It proposes recommendations for the application of metrological references in terms of dose absorbed in water on the hospital site with reference to their determination conditions and to the implementation of the new IAEA dosimetry protocol (TRS nr 398). Thus, this guide proposes an overview of metrological references in French calibration laboratories, presents calibration methods (air kerma in a cobalt 60 gamma photon beam, dose absorbed in water) and a comparison with the IAEA TRS 277 dosimetry protocol. It addresses various practical aspects, and discusses uncertainties

  14. [Formulation of technical specification for national survey of Chinese materia medica resources].

    Science.gov (United States)

    Guo, Lan-Ping; Lu, Jian-Wei; Zhang, Xiao-Bo; Zhao, Run-Huai; Zhang, Ben-Gang; Sun, Li-Ying; Huang, Lu-Qi

    2013-04-01

    According to the process of the technical specification (TS) design for the fourth national survey of the Chinese materia medica resources (CMMR), we analyzed the assignment and objectives of the national survey and pointed out that the differences about CMMR management around China, the distribution of CMMR and their habitat, the economic and technological level, and even enthusiasm and initiative of the staff, etc. are the most difficult points for TS design. And we adopt the principle of combination of the mandatory and flexibility in TS design. We fixed the key points which would affect the quality of national survey first, then proposed the framework of TS which including 3 parts of organization and 11 parts of technique itself. The framework will serve and lead the TS preparation, which will not only provide an action standard to the national survey but will also have a profound influence to the popularization and application of the survey technology of CMMR. [Key words

  15. The joint FAO and IAEA programme

    International Nuclear Information System (INIS)

    Fried, M.; Lamm, C.G.

    1981-01-01

    In 1964 the FAO and IAEA decided to establish a joint programme for the specific purpose of assisting Member States in applying nuclear techniques to develop their food and agriculture. As a result, the Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy and Agriculture Development was established. The objectives of this joint FAO/IAEA programme are to exploit the potential of isotopes and radiation applications in research and development to increase and stabilize agriculture production, to reduce production costs, to improve the quality of food, to protect agricultural products from spoilage and losses, and to minimize pollution of food and agricultural environment. The activities of the joint programme, which are briefly described, can be grouped under three main headings: co-ordination and support of research; technical assistance including training; and dissemination of information. Tables are shown giving a breakdown of 311 research contracts and agreements held with institutes in Member States and 86 technical assistance projects in 46 developing countries, providing training, expertise and specialized equipment

  16. Global developments for advanced reactors and the role of the IAEA

    International Nuclear Information System (INIS)

    Kupitz, Juergen; Cleveland, John

    1999-01-01

    To assure that nuclear power can meet world energy needs in the near and medium term, considerable development activities are being carried out for each major reactor line, building on the large experience base. The programmes of global development activities for advanced nuclear power plants, and nuclear desalination are described. As an international forum for exchange of scientific and technical information, the IAEA plays a role in bringing together experts for a world-wide exchange of information about national programmes, trends in safety and user requirements, the impact of safety objectives on plant design, and the co-ordination of research programmes in advanced reactor technology. 15 refs

  17. IAEA Activities on Education and training in Radiation and Waste Safety: Strategic approach for a sustainable system

    International Nuclear Information System (INIS)

    Marabit, K.; Sadagopan, G.

    2003-01-01

    The statutory safety functions of the International Atomic Energy(IAEA) include the establishment of and provision for the application of safety standards for protection of health, life and property against ionizing radiation. The safety standards are based on the presumption that a national infrastructure is in place, enabling the Government to discharge its responsibilities for protection and safety. Education and training is an essential element of the infrastructure. the IAEA education and training activities follow the resolutions of its General Conference and reflect the latest IAEA standards and guidance. Several General Conference resolutions have emphasized the importance of education and training (e. g. GC(XXXV)/RES/552 in 1991; GC(XXXVI)/RES/584 in 1992; GC(43)/RES/13 in 1999 and more recently GC(44)/RES/13 in 2000). In response to GC(44)/RES/13, the IAEA prepared a Strategic Approach to Education and Training in Radiation and Waste Safety (Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in its Member States. This Strategy was endorsed by the General Conference resolution GC(45)/RES/10C that, inter alia, urged the Secretariat to implement the Strategy on Education and Training, and to continue to strengthen, subject to available resources, its current effort in this area, and in particular to assist Member States national, regional and collaborating centres in conducting such education and training activities in the relevant official languages of the IAEA. A technical meeting was held in Vienna in March 2002 and concluded with an action plan for implementing the strategy up to 2010, the immediate action being the formation of a Steering Committee by the middle of 2002. This Steering Committee has the general remit to advise on the development and implementation of the strategy, as well as monitoring its progress. The first technical meeting of the Steering Committee took place on 25

  18. The Role of IAEA in Coordinating Research and Transferring Technology in Radiation Chemistry and Processing of Polymers

    International Nuclear Information System (INIS)

    Haji Saeid, M.

    2006-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through Technical Cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The CRP brings together typically 10 - 15 groups of participants to share and complement core competencies and work on specific areas of development needed to benefit from an emerging radiation technique and its applications. The technical cooperation (TC) programme helps Member States realize their development priorities through the application of appropriate radiation technology. TC builds national capacities through training, expert advice and delivery of equipment. The impact of the IAEA's efforts is visible by the progress noticeable in adoption of radiation technology and/or growth in the range of activities in several MS in different regions. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. A number of technical cooperation projects have been implemented in this field to strengthen the capability of developing Member States and to create awareness in the industries about the technical

  19. Sources of technical assistance

    International Nuclear Information System (INIS)

    Laue, H.J.

    1977-01-01

    This paper shows examples of technical assistance programmes within bilateral cooperation agreements between the Federal Republic of Germany and a number of developing countries of very different characteristics and summarizes the possibilities of technical assistance granted by international organizations, such as IAEA, UNDP, etc. A basic requirement for a successful transfer of technology is a high knowledge level of the indigenous scientists and engineers. Therefore, programmes for training and education and for information exchange are presented. Based on these, the means and methods of planning, performance and quality assurance are explained by practical examples and are related to the progress achieved in the use of nuclear energy and in establishing a national industry in the developing countries. (orig.) [de

  20. IAEA education and training in radiation protection,transport and waste - new developments and challenges towards sustainability

    International Nuclear Information System (INIS)

    Sadagopan, G.; Mrabit, K.

    2006-01-01

    IAEA education and training activities follow the resolutions of its General Conferences and reflects the latest IAEA standards and guidance. IAEA prepared a 'Strategic Approach to Education and Training in Radiation and Waste Safety' (Strategy on Education and Training) aiming at establishing, by 2010, sustainable education and training programmes in Member States, which was endorsed by the GC(45)/R.E.S./10 C in 2001. In implementing the strategy, IAEA is organizing training events in the regional level and assisting the Member States at the national level by providing them with exemplary quality of training material developed at the Agency. This work will continue ensuring its completeness in all areas of radiation protection. An Inter Centre Network between the Agency and regional, collaborating national training centres is established to facilitate information exchange, improve communication and dissemination of training material. There is a challenge to enhance the technical capability of the Member States to reach sustainability. This is intended through organizing number of Train the Trainers workshops to develop a pool of qualified trainers. The syllabus for training of Radiation Protection Officers is developed and a protocol document for educational and training appraisal (E.d.u.T.A.) is developed. The new developments include web enabling the approved training packages and establish E.learning and carrying out E.d.u.T.A. missions, aimed at identifying training needs in Member States and support them to build their own training strategy. These activities are aimed at assisting Member States attain self sustainability. (authors)

  1. Statement to the forty-fourth regular session of the IAEA General Conference 2000. IAEA General Conference. Vienna, 18 September 2000

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2000-01-01

    In his Statement on the forty-fourth regular session of the General Conference of the IAEA, the Director General of the Agency highlighted IAEA's achievements in connection with its major functions: as catalyst for the development and transfer of nuclear technology (nuclear power, nuclear fuel cycle and waste management, preservation of nuclear expertise, nuclear science and applications, laboratory and research activities, future challenges in nuclear technology), as a recognized authority on nuclear safety (international conventions, establishment of international standards, safety services, early shutdown of nuclear power plants, decommissioning issues, Kursk submarine accident, future challenges in nuclear safety), and as an instrument for the verification of nuclear non-proliferation (safeguards agreements and additional protocols, implementation of United Nations Security Council Resolutions relating to Iraq, safeguards agreement with the Democratic People's Republic of Korea, application of IAEA Safeguards in the Middle East, other verification activities, security of material, future challenges in verification. He also discussed the Agency's technical co-operation programme and the Agency management for maximum efficiency and effectiveness, and the new outreach policy

  2. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  3. Operating Experience from Events Reported to the IAEA Incident Reporting System for Research Reactors

    International Nuclear Information System (INIS)

    2015-03-01

    Operating experience feedback is an effective mechanism in providing lessons learned from events and the associated corrective actions to prevent them, helping to improve safety at nuclear installations. The Incident Reporting System for Research Reactors (IRSRR), which is operated by the IAEA, is an important tool for international exchange of operating experience feedback for research reactors. The IRSRR reports contain information on events of safety significance with their root causes and lessons learned which help in reducing the occurrence of similar events at research reactors. To improve the effectiveness of the system, it is essential that national organizations demonstrate an appropriate interest for the timely reporting of events important to safety and share the information in the IRSRR database. At their biennial technical meetings, the IRSRR national coordinators recommended collecting the operating experience from the events reported to the IRSRR and disseminating it in an IAEA publication. This publication highlights the root causes, safety significance, lessons learned, corrective actions and the causal factors for the events reported to the IRSRR up to September 2014. The publication also contains relevant summary information on research reactor events from sources other than the IRSRR, operating experience feedback from the International Reporting System for Operating Experience considered relevant to research reactors, and a description of the elements of an operating experience programme as established by the IAEA safety standards. This publication will be of use to research reactor operating organizations, regulators and designers, and any other organizations or individuals involved in the safety of research reactors

  4. IAEA Director General to visit Libya

    International Nuclear Information System (INIS)

    2003-01-01

    Full text: Dr. Mohamed ElBaradei announced today that he will visit the Libyan Arab Jamahiriya (Libya) in the immediate future with a team of senior IAEA technical experts. 'The purpose of my visit will be to initiate an in-depth process of verification of all of Libya's past and present nuclear activities', Dr. ElBaradei said in a news conference. 'We shall define the corrective actions that need to be taken and consult on the necessary steps to eliminate any weapons related activities.' The announcement follows a meeting held in Vienna on 20 December 2003 between Dr. ElBaradei and H.E. Engineer Matooq Mohamed Matooq, Assistant Secretary for Services Affairs of the General People's Committee of Libya. In that meeting, Mr. Matooq informed Dr. ElBaradei of Libya's decision to eliminate 'materials, equipments and programmes which lead to the production of internationally proscribed weapons'. The Agency was also informed that Libya had been engaged for more than a decade in the development of a uranium enrichment capability. This included importing natural uranium and centrifuge and conversion equipment and the construction of now dismantled pilot scale centrifuge facilities. Some of these activities should have been, but were not, reported to the IAEA under Libya's Safeguards Agreement with the IAEA. Mr. Matooq stated, however, that Libya's nuclear enrichment programme was at an early stage of development and that no industrial scale facility had been built, nor any enriched uranium produced. Libya has asked the IAEA to ensure through verification that all of Libya's nuclear activities will henceforth be under safeguards and exclusively for peaceful purposes. In that regard, Libya has agreed to take the necessary steps to conclude an Additional Protocol to its NPT Safeguards Agreement, which will provide the IAEA with broader inspection rights, and to pursue with the IAEA a policy of full transparency and active co-operation. Dr. ElBaradei said, 'Libya's decision to

  5. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  6. IAEA Post Irradiation Examination Facilities Database

    International Nuclear Information System (INIS)

    Jenssen, Haakon; Blanc, J.Y.; Dobuisson, P.; Manzel, R.; Egorov, A.A.; Golovanov, V.; Souslov, D.

    2005-01-01

    The number of hot cells in the world in which post irradiation examination (PIE) can be performed has diminished during the last few decades. This creates problems for countries that have nuclear power plants and require PIE for surveillance, safety and fuel development. With this in mind, the IAEA initiated the issue of a catalogue within the framework of a coordinated research program (CRP), started in 1992 and completed in 1995, under the title of ''Examination and Documentation Methodology for Water Reactor Fuel (ED-WARF-II)''. Within this program, a group of technical consultants prepared a questionnaire to be completed by relevant laboratories. From these questionnaires a catalogue was assembled. The catalogue lists the laboratories and PIE possibilities worldwide in order to make it more convenient to arrange and perform contractual PIE within hot cells on water reactor fuels and core components, e.g. structural and absorber materials. This catalogue was published as working material in the Agency in 1996. During 2002 and 2003, the catalogue was converted to a database and updated through questionnaires to the laboratories in the Member States of the Agency. This activity was recommended by the IAEA Technical Working Group on Water Reactor Fuel Performance and Technology (TWGFPT) at its plenary meeting in April 2001. The database consists of five main areas about PIE facilities: acceptance criteria for irradiated components; cell characteristics; PIE techniques; refabrication/instrumentation capabilities; and storage and conditioning capabilities. The content of the database represents the status of the listed laboratories as of 2003. With the database utilizing a uniform format for all laboratories and details of technique, it is hoped that the IAEA Member States will be able to use this catalogue to select laboratories most relevant to their particular needs. The database can also be used to compare the PIE capabilities worldwide with current and future

  7. IAEA team to visit North Korean nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    A technical team from the IAEA will visit nuclear facilities in the Nyongbyon area of the Democratic People's Republic of Korea (DPRK) from 15-19 January. The visit will include the Isotope Production Laboratory, an installation that the DPRK has stated was involved in the early stages of development of their nuclear programme. Since 1993, the IAEA has been unable to fully implement its comprehensive safeguards agreement with the DPRK, and has been therefore unable to verify the completeness and correctness of the DPRK's initial 1992 declaration of its nuclear inventory. In May 2001, the IAEA proposed to the DPRK concrete steps that need to be carried out in that verification process, and indicated its readiness to start implementing these measures immediately. At a technical meeting between the DPRK and the IAEA in November 2001, the DPRK did not agree to promptly start to implement those proposals, citing the delay in implementation of the USA/DPRK Agreed Framework as the principal reason for declining. However, the DPRK did agree to a visit, not an inspection, by IAEA inspectors to the Isotope Production Laboratory. The DPRK withdrew its membership from the Agency in June 1994. The Director General encourages the DPRK to normalize its relations with the IAEA including resumption of full safeguards inspections

  8. IAEA Newsbriefs. V. 13, no. 4(81). Oct-Nov 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This issue gives brief information on the following topics: IAEA General Conference Concludes in Vienna, Newly Elected IAEA Board of Governors, Director General Highlights Major Work Ahead, Statement to UN General Assembly, More States Accept Strengthened Safeguards Measures, Status of Additional Protocols, Signings at IAEA General Conference, USA Backs International Nuclear Fusion Project, September Meeting on Trilateral Initiative, Results From IAEA-Supported Projects, Database of Nuclear Medicine Best Practices, 1999 Seminar on Radiopharmaceuticals in Medical Treatment, International Symposium on Marine Pollution in Monaco, Safeguards Support From France and United Kingdom, Nuclear Inspections in Iraq, States Move to Join International Safety Conventions, Safety of Radiation Sources and Security of Radioactive Materials, Technical Team Trained in IAEA-Supported Project, Scientific Forum on Water Issues, International Scientific and Technical Meetings, New IAEA Books, and other short information

  9. Communication of technical information to lay audiences. [National Waste Terminal Storage (NWTS) program

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, J.E.; Stamm, K.R.; Jackson, K.M.; Moore, J.

    1978-05-01

    One of the objectives of the National Waste Terminal Storage (NWTS) Program is to provide terminal storage facilities for commercial radioactive wastes in various geologic formations at multiple locations in the United States. The activities performed under the NWTS Program will affect regional, state, and local areas, and widespread public interest in this program is expected. Since a large part of the NWTS Program deals with technical information it was considered desirable to initiate a study dealing with possible methods of effectively transmitting this technical information to the general public. This study has the objective of preparing a state-of-the-art report on the communication of technical information to lay audiences. The particular task of communicating information about the NWTS Program to the public is discussed where appropriate. The results of this study will aid the NWTS Program in presenting to the public the quite diverse technical information generated within the program so that a widespread, thorough public understanding of the NWTS Program might be achieved. An annotated bibliography is included.

  10. Exposure due to radon in homes - an IAEA perspective

    International Nuclear Information System (INIS)

    Navratilova-Rovenska, K.; Boal, T.; Colgan, T.

    2014-01-01

    the development of training material; the implementation of regional Technical Cooperation projects that include training courses and workshops; and the provision of expert missions to Member States to provide advice on the development of national radon action plans. (authors)

  11. IAEA nuclear security program

    Energy Technology Data Exchange (ETDEWEB)

    Ek, D. [International Atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  12. IAEA nuclear security program

    International Nuclear Information System (INIS)

    Ek, D.

    2006-01-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  13. Scientific forum - The future role of the IAEA

    International Nuclear Information System (INIS)

    2008-01-01

    trajectories. In certain spheres of activity it is the acknowledged lead actor globally, namely in verification of the fulfilment of non-proliferation commitments. In other areas, like in assessing nuclear energy as part of the global energy sector, the Agency plays an important role as the place in the world where long-term visions, strategies, innovation and nuclear planning can be discussed and be condensed into a shared view of all Member States on the nuclear future. The Agency also assists States in developing infrastructural requirements, energy assessments that support decision making. In such tasks it works alongside other inter-governmental bodies, academic and professional institutions, industry groups and NGOs. While safety and security are national responsibilities, the development of international safety standards and nuclear security norms based on best practices is a key Agency role. In yet other areas, such as the entire spectrum of development assistance, the role the Agency plays is strategic but modest, making specific targeted contributions in activities where nuclear techniques have a comparative advantage. The most relevant messages that were heard in the course of this Scientific Forum and which are vital from the point of view of the Agency's dual mission for development and security were the following: (1) The nuclear landscape is changing. In modern organizations there is no success without a strategic framework, where a shared vision is a critical focal point giving shape and direction to the organization's future. The world needs the Agency to plan to stay ahead of the curve and should provide it with the required mandate, strengthened capabilities and necessary resources; (2) The Agency needs to provide more technical assistance to individual Member States, working through the transfer of technology, decision making support, planning tools, capacity and knowledge building and R and D coordination; (3) The Agency needs to work towards enhancing

  14. FAO/IAEA research and training in soil fertility at the IAEA's Seibersdorf Laboratories

    International Nuclear Information System (INIS)

    Zapata, F.; Hardarson, G.

    1989-01-01

    The Soil Science Unit of the Agency's Seibersdorf Laboratories provides invaluable research and development support for the co-ordinated research programmes and field technical co-operation projects co-ordinated by the soil fertility, irrigation, and crop production section of the Joint Division of the IAEA and FAO. This article describes how nuclear technology in soil and plant sciences is being developed and transferred through various mechanisms to help countries establish better conditions for crop and livestock production

  15. 48 CFR 801.602-80 - Legal and technical review-Office of Construction and Facilities Management and National Cemetery...

    Science.gov (United States)

    2010-10-01

    ...-Office of Construction and Facilities Management and National Cemetery Administration. 801.602-80 Section... Responsibilities 801.602-80 Legal and technical review-Office of Construction and Facilities Management and National Cemetery Administration. An Office of Construction and Facilities Management or National Cemetery...

  16. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  17. IAEA progress report. Highlights of report to ECOSOC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-07-15

    explains that its resources for carrying out these activities are of three kinds: (a) voluntary financial contributions to the General Fund, (b) donations in kind made by Member States in the form of the services of experts, of fellowships and scholarships at national institutions, and of equipment, etc., and (c) funds made available to the Agency as a result of its participation in the United Nations Expanded Programme of Technical Assistance (EPTA). A joint IAEA/FAO training course is to be held at Cornell University from 20 July to 10 September 1959, in co-operation with the US Government and Cornell University. This will be the first international training course on radioisotope techniques designed specifically for the needs of the research worker in agriculture, fishery, forestry and nutrition. Regarding equipment and supplies, the report states: 'Owing to the highly technical nature of nuclear energy, a number of requests for technical assistance experts are supplemented by requests for equipment'

  18. A National Needs Assessment to Identify Technical Procedures in Vascular Surgery for Simulation Based Training

    DEFF Research Database (Denmark)

    Nayahangan, L J; Konge, L; Schroeder, T V

    2017-01-01

    to identify technical procedures that vascular surgeons should learn. Round 2 was a survey that used a needs assessment formula to explore the frequency of procedures, the number of surgeons performing each procedure, risk and/or discomfort, and feasibility for simulation based training. Round 3 involved...... eliminated, resulting in a final prioritised list of 19 technical procedures. Conclusion A national needs assessment using a standardised Delphi method identified a list of procedures that are highly suitable and may provide the basis for future simulation based training programs for vascular surgeons......Objectives and background Practical skills training in vascular surgery is facing challenges because of an increased number of endovascular procedures and fewer open procedures, as well as a move away from the traditional principle of “learning by doing.” This change has established simulation...

  19. Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54

    Energy Technology Data Exchange (ETDEWEB)

    Shield, Stephen Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dai, Zhenxue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-18

    Meteorological inputs are an important part of subsurface flow and transport modeling. The choice of source for meteorological data used as inputs has significant impacts on the results of subsurface flow and transport studies. One method to obtain the meteorological data required for flow and transport studies is the use of weather generating models. This paper compares the difference in performance of two weather generating models at Technical Area 54 of Los Alamos National Lab. Technical Area 54 is contains several waste pits for low-level radioactive waste and is the site for subsurface flow and transport studies. This makes the comparison of the performance of the two weather generators at this site particularly valuable.

  20. Advances in heavy water reactor technology. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    This IAEA meeting addressed both the status of national programmes and technical topics including advances in plant and system design and new plant features, development of pressure tube technologies, fuel and fuel cycle options, computer code development and verification, and safety and accident analysis

  1. IAEA Board of Governors approves IAEA action plan to combat nuclear terrorism

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA Board of Governors today approved in principal an action plan designed to upgrade worldwide protection against acts of terrorism involving nuclear and other radioactive materials. In approving the plan, the Board has recognized that the first line of defense against nuclear terrorism is the strong physical protection of nuclear facilities and materials. 'National measures for protecting nuclear material and facilities are uneven in their substance and application,' the IAEA says. 'There is wide recognition that the international physical protection regime needs to be strengthened.'

  2. IAEA Delivers Report on Nuclear Power Development to Belarus Deputy Prime Minister

    International Nuclear Information System (INIS)

    2012-01-01

    commissioning two nuclear power plant units by 2020. In July 2012, Belarus signed a construction contract with Atomstroyexport of the Russian Federation for two 1 170 megawatt-electric (MWe) units as well as fuel supply, take-back of spent fuel, training and other services. Belarus has utilized two other IAEA services to help prepare its national nuclear program: an Energy Planning Analysis from 2007 to 2010, and a Nuclear Energy System Assessment from 2010 to 2011. This year's INIR mission to Belarus was the seventh INIR mission conducted by the IAEA. The INIR mission was conducted under an IAEA technical cooperation project. (IAEA)

  3. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  4. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  5. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  6. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  7. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    Persson, L.

    1993-01-01

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  8. IAEA meeting report of the consultants' meeting on safety improvements of WWER-440 model 230 nuclear power plants

    International Nuclear Information System (INIS)

    1998-05-01

    In 1992 the identification and ranking of safety issues for WWER-440/230 NPPs were completed. Some 100 safety issues have been identified and ranked according to their safety impact on the plant's defence in depth. The IAEA work was based on a conceptual design review and a series of safety review missions to each one of the four sites (Bohunice, Kozloduy, Novovoronezh and Kola) where WWER-440/230 NPPs were in operation. Results were published by the IAEA in February and May 1992. Since the initial publications the IAEA has continued its activities and conducted a number of follow-up missions and technical visits to the NPP sites to review the status of implementation of safety upgradings. In September of 1994 a Consultants Meeting (CM) was held in Vienna to consolidate all the information available to the AEA. The results of that meeting were included in the report WWER-SC-107. During 1995-1997 further information became available from technical visits conducted by the IAEA at the four sites. Therefore, in February 1998 the IAEA convened a CM in Vienna to prepare an up-to-date report on the status of safety improvements at WWER-440/230 NPPs. This report contains the results of that meeting. It reviews the status of remedial actions implemented at each plant in response to the safety issues originally identified in the IAEA reports and the remaining safety concerns. For convenience the issues are presented under broad titles related to: integrity of barriers (Section 2); performance of basic functions (Section 3); performance of supporting functions (Section 4); internal hazards (Section 5); external hazards (Section 6); accident analysis (Section 7); operational functions (Section 8); Section 9 provides an overview of the results of PSA studies performed and under way. Section 10 provides specific information on the status of Armenia NPP. It is presented separately because the IAEA assistance to this plant was provided in the framework of the national technical co

  9. Quality standards: Comparison between IAEA 50-C/SG-Q and ISO 9001:2000

    International Nuclear Information System (INIS)

    2002-01-01

    The International Atomic Energy Agency (IAEA) has the statutory mandate to seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world. As part of the activities to achieve its objectives, the IAEA is authorized to establish standards of safety for the protection of health and the minimization of danger to life and property. The standards of safety developed by the IAEA are recommendations for use by its Member States in the framework of national regulations for the safe utilization of nuclear energy. Such standards should be considered as nuclear safety regulatory documents. The standards developed by the International Organization for Standardization (ISO) are complementary technical documents emphasizing industrial application and contractual aspects. Regarding the quality assurance topic, the IAEA developed the publication Safety Series No. 50-C/SG-Q, Quality Assurance for Safety in Nuclear Power Plants and other Nuclear Installations, which is mostly used directly or indirectly to establish the nuclear safety requirements at the nuclear utility-regulator interface. The ISO 9001:2000 standard, Quality Management Systems Requirements, is often used to define the quality management system requirements at the utility-supplier interface. The relationship between the IAEA and ISO quality standards is growing in significance owing to their increasing impact upon utilities (owners/operators of nuclear facilities) and their contractors/suppliers. The relationship between the IAEA and ISO standards is considered critical in particular with respect to contractors/suppliers with a small range of nuclear supplies. These contractors-suppliers are not always willing to prepare special quality assurance programmes based on nuclear safety standards. On the other hand, these contractors/suppliers may be qualified on the basis of the ISO quality standard. In any case, for delivering nuclear items and services the

  10. IAEA Nobel Peace Prize cancer and nutrition fund

    International Nuclear Information System (INIS)

    Kinley, D. III

    2006-05-01

    The Norwegian Nobel Committee awarded the 2005 Nobel Peace Prize to the IAEA and Director General ElBaradei in equal shares. The IAEA and its Director General won the 2005 Peace Prize for their efforts to prevent nuclear energy from being used for military purposes and to ensure that nuclear energy for peaceful purposes is used in the safest possible way. The IAEA Board of Governors subsequently decided that the IAEA's share of the prestigious prize would be used to create a special fund for fellowships and training to improve cancer control and childhood nutrition in the developing world. This fund is known as the 'IAEA Nobel Peace Prize Cancer and Nutrition Fund'. The money will be dedicated to enhancing human resources in developing regions of the world for improved cancer control and childhood nutrition. In the area of cancer control, the money will be spent on establishing regional cancer training institutes for the training of new doctors, medical physicists and technologists in radiation oncology to improve cancer treatment and care, as part of the IAEA's Programme of Action for Cancer Therapy (PACT). In the realm of nutrition, the focus of the Fund will be on capacity building in the use of nuclear techniques to develop interventions to contribute to improved nutrition and health for children in the developing world. Fund-supported fellowship awards will target young professionals, especially women, from Member States, through the IAEA's Technical Cooperation (TC) Programme. Alongside such awards, regional events will be organized in Africa, Asia and Latin America in cancer control and nutrition during 2006. The IAEA Secretariat is encouraging Member States and donors to contribute to the IAEA Nobel Peace Prize Cancer and Nutrition Fund by providing additional resources, in cash and in-kind

  11. Improvements to the IAEA`s electric generation expansion model

    Energy Technology Data Exchange (ETDEWEB)

    Stoytchev, D; Georgiev, S [Committee of Energy, Sofia (Bulgaria)

    1997-09-01

    This paper deals with the implementation of the IAEA`s planning approach and software in Bulgaria. The problems encountered in the process are summarized, with emphasis on two of the limitations of the electric generation expansion model (WASP). The solutions found by Bulgarian experts to overcome these problems are also described, together with some comparative results of the tests performed. (author).

  12. A National Needs Assessment to Identify Technical Procedures in Vascular Surgery for Simulation Based Training.

    Science.gov (United States)

    Nayahangan, L J; Konge, L; Schroeder, T V; Paltved, C; Lindorff-Larsen, K G; Nielsen, B U; Eiberg, J P

    2017-04-01

    Practical skills training in vascular surgery is facing challenges because of an increased number of endovascular procedures and fewer open procedures, as well as a move away from the traditional principle of "learning by doing." This change has established simulation as a cornerstone in providing trainees with the necessary skills and competences. However, the development of simulation based programs often evolves based on available resources and equipment, reflecting convenience rather than a systematic educational plan. The objective of the present study was to perform a national needs assessment to identify the technical procedures that should be integrated in a simulation based curriculum. A national needs assessment using a Delphi process was initiated by engaging 33 predefined key persons in vascular surgery. Round 1 was a brainstorming phase to identify technical procedures that vascular surgeons should learn. Round 2 was a survey that used a needs assessment formula to explore the frequency of procedures, the number of surgeons performing each procedure, risk and/or discomfort, and feasibility for simulation based training. Round 3 involved elimination and ranking of procedures. The response rate for round 1 was 70%, with 36 procedures identified. Round 2 had a 76% response rate and resulted in a preliminary prioritised list after exploring the need for simulation based training. Round 3 had an 85% response rate; 17 procedures were eliminated, resulting in a final prioritised list of 19 technical procedures. A national needs assessment using a standardised Delphi method identified a list of procedures that are highly suitable and may provide the basis for future simulation based training programs for vascular surgeons in training. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  13. National Council on Radiation Protection and Measurements semiannual technical progress report, March 1989--August 1989

    International Nuclear Information System (INIS)

    Ney, W.R.

    1991-01-01

    This semiannual technical progress report is for the period 1 March 1989 through 31 August 1989. This National Council on Radiation Protection and Measurements (NCRP) program is designed to provide recommendations for radiation protection based on scientific principles. During this period several reports were published covering the topics of occupational radiation exposure, medical exposure, radon control, dosimetry, and radiation protection standards. Accomplishments of various committees are also reported; including the committees on dental x-ray protection, radiation safety in uranium mining and milling, ALARA, instrumentation, records maintenance, occupational exposures of medical personnel, emergency planning, and others. (SM)

  14. Academic substance and location: The national technical university of Athens' five-year program

    DEFF Research Database (Denmark)

    Spyrou, Kostas J.; Psaraftis, Harilaos N.

    2014-01-01

    The National Technical University of Athens (NTUA) established a small Department of Naval Architecture and Marine Engineering in 1969, within the School of Mechanical and Electrical Engineering. Today, it is organized in four divisions, ship design and maritime transport, ship and marine...... hydrodynamics, marine structures, and marine engineering. To be awarded an engineering diploma in Greece, one has to spend a minimum of five years. The program at NTUA has also 10 semesters, out of which nine are dedicated to course study while the tenth is spend on the writing of a thesis. There is no tuition...

  15. IAEA Nobel Peace fund schools for nutrition. Combating child malnutrition

    International Nuclear Information System (INIS)

    2007-01-01

    fight against malnutrition by providing technical expertise in the use of stable isotope techniques in the development and evaluation of nutritional interventions. Stable isotope techniques have been used as research tools in nutrition for many years. However, the application of these techniques in nutrition programme development and evaluation is a relatively new approach, where the IAEA has a unique opportunity to contribute. Stable isotope techniques add value by increasing the sensitivity and specificity of measurements as compared to conventional techniques. The IAEA has supported numerous activities in infant nutrition where stable isotope techniques have been applied. These include projects to measure human milk intake in breast-fed infants, muscle mass in lactating mothers, and bioavailability of iron in infants and young children. IAEA Nobel Prize Fund Schools for Nutrition. The Norwegian Nobel Committee awarded the 2005 Nobel Peace Prize to the IAEA and Director General ElBaradei in equal shares. The IAEA's Board of Governors subsequently decided that the IAEA's share of the prestigious prize would be used to fund fellowships and training to improve cancer management and childhood nutrition in the developing world. In nutrition, the IAEA Nobel Cancer and Nutrition Fund is focused on capacity building in the use of nuclear techniques to develop and evaluate interventions to contribute to improved nutrition and health for children. Fund-supported fellowship awards are targeting young professionals, especially women, from developing countries, through the IAEA's Technical Cooperation (TC) Programme. Alongside such awards, regional events - IAEA Nobel Peace Prize Fund Schools for Nutrition - have been organized in Africa, Asia and the Pacific and in Latin America during 2006 and 2007. The aims of the IAEA Nobel Peace Prize Fund Schools in Nutrition are to: raise awareness of the IAEA's activities in human nutrition; and disseminate information about the usefulness

  16. New IAEA training initiatives in the field of radioactive waste management

    International Nuclear Information System (INIS)

    Ormai, P.; Kinker, J.

    2014-01-01

    More than 50 Member States have requested assistance from the International Atomic Energy Agency (IAEA) to help them develop the necessary competencies and skills that will allow them to implement technically viable, safe, secure and cost-effective radioactive waste management (RWM) solutions. At the present time the IAEA provides numerous opportunities for the training of managers and experts representing national programmes, regulatory bodies, and organizations related to RWM, and staff of national regulatory bodies responsible for licensing and inspection of such facilities, either through bilateral agreements or through the mechanism of thematic networks. The training events may be lecture based or comprise hands-on training, or may be a combination of the two. However, it is recognised that there are some limitations in the current approach. In order to overcome these limitations, the IAEA is committed to identify and utilise alternative and more cost effective avenues for the delivery of its training. To this end a decision has been made to develop a comprehensive RWM curriculum that jointly covers aspects of both safety and technology with an appropriate balance and that ensures that the two dimensions are delivered in a complimentary and consistent manner, including integration where appropriate. The training materials that will result from the development of the curriculum will be delivered through the medium of the internet and personal computers (eLearning) and also through extended face-face courses to be delivered in Regional Centres of Learning (which are still to be established). The curriculum will be developed collaboratively between the IAEA, international experts and the learning centres. (orig.)

  17. New IAEA training initiatives in the field of radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Ormai, P.; Kinker, J. [International Atomic Energy Agency, Vienna (Austria). Waste Technology Section

    2014-03-15

    More than 50 Member States have requested assistance from the International Atomic Energy Agency (IAEA) to help them develop the necessary competencies and skills that will allow them to implement technically viable, safe, secure and cost-effective radioactive waste management (RWM) solutions. At the present time the IAEA provides numerous opportunities for the training of managers and experts representing national programmes, regulatory bodies, and organizations related to RWM, and staff of national regulatory bodies responsible for licensing and inspection of such facilities, either through bilateral agreements or through the mechanism of thematic networks. The training events may be lecture based or comprise hands-on training, or may be a combination of the two. However, it is recognised that there are some limitations in the current approach. In order to overcome these limitations, the IAEA is committed to identify and utilise alternative and more cost effective avenues for the delivery of its training. To this end a decision has been made to develop a comprehensive RWM curriculum that jointly covers aspects of both safety and technology with an appropriate balance and that ensures that the two dimensions are delivered in a complimentary and consistent manner, including integration where appropriate. The training materials that will result from the development of the curriculum will be delivered through the medium of the internet and personal computers (eLearning) and also through extended face-face courses to be delivered in Regional Centres of Learning (which are still to be established). The curriculum will be developed collaboratively between the IAEA, international experts and the learning centres. (orig.)

  18. The WMO/IAEA rapid data exchange system in support of the early notification convention

    International Nuclear Information System (INIS)

    Asculai, E.; Mildner, S.

    1990-01-01

    Following the adoption, in September 1986, of the Convention on Early Notification of a Nuclear Accident, the IAEA and the WMO began work on the development of a methodology for the rapid dissemination of information and data following a nuclear accident. Expert Group meetings defined the data and information which needs to be disseminated, under the requirements of the Conventions. The Global Telecommunication System (GTS) of the WMO was identified as the suitable technical means of transmission since it combines immediate availability during times of emergency, rapidity of transmission and permanent connections to all Member States through their National Meteorological Centres. In order to utilize the GTS, special procedures and transmission formats have to be observed ad a specific code was jointly developed by WMO and IAEA to make the message Language-independent. Relevant instructions were issued in the WMO/IAEA Manual on the use of the WMO-GTS for the Early Notification Conventions. National arrangements for access by competent authorities to the information provided under the Early Notification Convention and for the provision of basic radiological data are of critical importance. Preparations are being made to provide specialized analyses and predictions on the atmospheric transport of radionuclides using the GTS and other means. The format and number of special output products is being specified in accordance with the requirements of the Member States. Requirements for meteorological and radiological data need to be kept under review in the light of model developments. The IAEA is presently engaged in the production of a software package for the coding/decoding of the data transmission

  19. IAEA safeguards and non-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R J.S.

    1995-02-01

    An overview is given of efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this `Full Scope Safeguards` on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear weapon applications.

  20. IAEA safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1995-02-01

    An overview is given of the efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the exclusively peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this 'Full Scope Safeguards' on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear

  1. Nuclear power information at the IAEA

    International Nuclear Information System (INIS)

    Spiegelberg-Planer, R.

    1999-01-01

    The reliable and adequate supply of energy, and especially electricity, is necessary not only for economic development but, for economic and political stability. Since its establishment in the second half of the 20th century, nuclear power has evolved from the research and development stage to a mature industry that supplies more than 17% of the world's total electricity. Well designed, constructed and operated nuclear power plants have proved to be reliable, safe and economic. Although many countries are heavily reliant on nuclear power, in the last decade, expansion of nuclear power has been almost stagnating in the Western industrialized world, experiencing a low growth in Eastern Europe and expanding only in East Asia. On one side, one of the most important aims of the IAEA is to support the national effort to improve the nuclear power generation and to assist in promoting improvements in their safe, reliable and economic performance. On the other side, the IAEA also provides the only truly international forum for exchange, collection and dissemination of information in many areas related to nuclear energy. The Power Reactor Information System, PRIS, is one fundamental tool for these activities. The PRIS database is managed by the staff of the Nuclear Power Division in the IAEA. In the scope of PRIS various publications and reports have been published, as well as the IAEA has been satisfying request from Member States ranging from simple query to complex analysis. This paper presents an overview of the status of nuclear power world-wide and the related IAEA activities on collecting and disseminating nuclear power information. (author)

  2. Nuclear power information at the IAEA

    International Nuclear Information System (INIS)

    Spiegelberg-Planer, R.

    2001-01-01

    The reliable and adequate supply of energy, and especially electricity, is necessary not only for economic development but, for economic and political stability. Since its establishment in the in the second half of the 20th century, nuclear power has evolved from the research and development stage to a mature industry that supplies more than 17% of the world's total electricity. Well designed, constructed and operated nuclear power plants have proved to be reliable, safe and economic. Although many countries are heavily reliant on nuclear power, in the last decade, expansion of nuclear power has been almost stagnating in the Western industrialized world, experiencing a low growth in Eastern Europe and expanding only in East Asia. On one side, one of the most important aims of the IAEA is to support the national effort to improve the nuclear power generation and to assist in promoting improvements in their safe, reliable and economic performance. On the other side, the IAEA also provides the only truly international forum for exchange, collection and dissemination of information in many areas related to nuclear energy. The Power Reactor Information System, PRIS, is one fundamental tool for these activities. The PRIS database is managed by the staff of the Nuclear Power Division in the IAEA. In the scope of PRIS various publications and reports have been published, as well as the IAEA has been satisfying request from Member States ranging from simple query to complex analysis. This paper presents an overview of the status of nuclear power world-wide and the related IAEA activities on collecting and disseminating nuclear power information. (author)

  3. Directory of IAEA databases. 3. ed.

    International Nuclear Information System (INIS)

    1993-12-01

    This second edition of the Directory of IAEA Databases has been prepared within the Division of Scientific and Technical Information. Its main objective is to describe the computerized information sources available to staff members. This directory contains all databases produced at the IAEA, including databases stored on the mainframe, LAN's and PC's. All IAEA Division Directors have been requested to register the existence of their databases with NESI. For the second edition database owners were requested to review the existing entries for their databases and answer four additional questions. The four additional questions concerned the type of database (e.g. Bibliographic, Text, Statistical etc.), the category of database (e.g. Administrative, Nuclear Data etc.), the available documentation and the type of media used for distribution. In the individual entries on the following pages the answers to the first two questions (type and category) is always listed, but the answer to the second two questions (documentation and media) is only listed when information has been made available

  4. Quality assurance for IAEA inspection planning

    International Nuclear Information System (INIS)

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed

  5. [Analysis of the technical efficiency of hospitals in the Spanish National Health Service].

    Science.gov (United States)

    Pérez-Romero, Carmen; Ortega-Díaz, M Isabel; Ocaña-Riola, Ricardo; Martín-Martín, José Jesús

    To analyse the technical efficiency and productivity of general hospitals in the Spanish National Health Service (NHS) (2010-2012) and identify explanatory hospital and regional variables. 230 NHS hospitals were analysed by data envelopment analysis for overall, technical and scale efficiency, and Malmquist index. The robustness of the analysis is contrasted with alternative input-output models. A fixed effects multilevel cross-sectional linear model was used to analyse the explanatory efficiency variables. The average rate of overall technical efficiency (OTE) was 0.736 in 2012; there was considerable variability by region. Malmquist index (2010-2012) is 1.013. A 23% variability in OTE is attributable to the region in question. Statistically significant exogenous variables (residents per 100 physicians, aging index, average annual income per household, essential public service expenditure and public health expenditure per capita) explain 42% of the OTE variability between hospitals and 64% between regions. The number of residents showed a statistically significant relationship. As regards regions, there is a statistically significant direct linear association between OTE and annual income per capita and essential public service expenditure, and an indirect association with the aging index and annual public health expenditure per capita. The significant room for improvement in the efficiency of hospitals is conditioned by region-specific characteristics, specifically aging, wealth and the public expenditure policies of each one. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Introductory statement. IAEA Board of Governors. Vienna, 10 September 2001

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2001-01-01

    In his speech to open the IAEA General Conference, the Director General spoke on a broad range of IAEA interests including: Safety of Research Reactors, Radiological protection of Patients, Safety of Radiation Sources, Environmental Restoration of of Areas Affected by Radioactive Residues, Transport Safety, Plan for Protecting Public Water Economically, Servicing Immediate Human Needs, Security of Nuclear Material, Status of the Safeguards Agreement with the Democratic People's Republic of Korea, and Implementation of United Nations Security Council Resolutions Relating to Iraq

  7. IAEA Nobel Prize money fights cancer crisis in Latin America

    International Nuclear Information System (INIS)

    2007-01-01

    established in 2004 to help developing nations combat the growing cancer crisis. Building on the IAEA's 30 years of expertise in promoting radiotherapy, PACT's goal is to help develop more cancer treatment facilities and provide the trained personnel who can operate them in the world's developing regions and ensure that they are integrated into comprehensive cancer control programmes. 'PACT is building partnerships with the WHO and other international cancer-control organisations so that the battle against cancer can be waged at country level,' says the Head of PACT, Massoud Samiei. 'This entails a broad multi-disciplinary approach that includes cancer prevention, early detection, diagnosis, treatment and palliation and, more importantly, education and training of professionals.' The IAEA's share of the 2005 Nobel Peace Prize award is also being devoted to training personnel from developing countries in the fight against cancer and malnutrition. Current estimates suggest that several billion US$ are needed if the cancer crisis in low and middle-income nations is to be contained effectively. Initial funding for PACT comes from the IAEA and several non-traditional donors. PACT seeks to raise donor awareness of the cancer problem to mobilize new resources and enable developing countries to introduce, expand or improve their cancer control planning and programming, to provide services in a sustainable manner. The meeting opens at 09.00 on Monday, 23 April, at Roffo Hospital. At 10.45, there will be a press conference/panel discussion with opening session speakers. These include: Juan Antonio Casas-Zamora, Director, Division for Latin America, Department of Technical Cooperation, IAEA; Massoud Samiei, Head, PACT Programme Office, Programme of Action for Cancer Therapy (PACT), IAEA; Jose Antonio Pages, PAHO/WHO Representative, Argentina; R. Sankaranarayanan, Head, Screening Group, International Agency for Research on Cancer (IARC); Elmer Huerta, President-elect, American Cancer

  8. IAEA Nobel Prize money fights cancer crisis in Latin America

    International Nuclear Information System (INIS)

    2007-01-01

    established in 2004 to help developing nations combat the growing cancer crisis. Building on the IAEA's 30 years of expertise in promoting radiotherapy, PACT's goal is to help develop more cancer treatment facilities and provide the trained personnel who can operate them in the world's developing regions and ensure that they are integrated into comprehensive cancer control programmes. 'PACT is building partnerships with the WHO and other international cancer-control organisations so that the battle against cancer can be waged at country level,' says the Head of PACT, Massoud Samiei. 'This entails a broad multi-disciplinary approach that includes cancer prevention, early detection, diagnosis, treatment and palliation and, more importantly, education and training of professionals.' The IAEA's share of the 2005 Nobel Peace Prize award is also being devoted to training personnel from developing countries in the fight against cancer and malnutrition. Current estimates suggest that several billion US$ are needed if the cancer crisis in low and middle-income nations is to be contained effectively. Initial funding for PACT comes from the IAEA and several non-traditional donors. PACT seeks to raise donor awareness of the cancer problem to mobilize new resources and enable developing countries to introduce, expand or improve their cancer control planning and programming, to provide services in a sustainable manner. The meeting opens at 09.00 on Monday, 23 April, at Roffo Hospital. At 10.45, there will be a press conference/panel discussion with opening session speakers. These include: Juan Antonio Casas-Zamora, Director, Division for Latin America, Department of Technical Cooperation, IAEA; Massoud Samiei, Head, PACT Programme Office, Programme of Action for Cancer Therapy (PACT), IAEA; Jose Antonio Pages, PAHO/WHO Representative, Argentina; R. Sankaranarayanan, Head, Screening Group, International Agency for Research on Cancer (IARC); Elmer Huerta, President-elect, American Cancer

  9. IAEA fellows report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-04-15

    More than 500 scientists and technicians had completed their studies abroad under IAEA's fellowship programme at the end of 1961. At the same time, some 300 fellows were studying at universities, research institutions and atomic energy establishments in Member States. It is the policy of the Agency to keep in touch with fellows also after their training has been completed and they have returned home to put into practice what they have learnt during their time of study. The short reports which most of the former fellowship holders send to the Agency's secretariat give a good indication of the usefulness of the training and the extent to which the newly acquired knowledge is being constructively absorbed in the fellow's native country

  10. IAEA Nuclear Security - Achievements 2002-2011

    International Nuclear Information System (INIS)

    2012-03-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes is real. This calls for a collective commitment to the control of, and accountancy for, material, as well as to adequate levels of protection in order to prevent criminal or unauthorized access to the material or associated facilities. Sharing of knowledge and experience, coordination among States and collaboration with other international organizations, initiatives and industries supports an effective international nuclear security framework. In 2001, the Board of Governors tasked the IAEA with improving nuclear security worldwide. The report that follows provides an overview of accomplishments over the last decade and reflects the importance that States assign to keeping material in the right hands. The IAEA has established a comprehensive nuclear security programme, described first in the Nuclear Security Plan of 2002-2005 and subsequently in the second plan of 2006- 2009. Activities included developing internationally accepted nuclear security guidance, supporting international legal instruments, protecting material and facilities, securing transport and borders, detecting and interdicting illicit nuclear trafficking, strengthening human resource capacity and preparing response plans should a nuclear security event occur. The IAEA has begun the implementation of its third Nuclear Security Plan, to be completed at the end of 2013. This approach to nuclear security recognizes that an effective national nuclear security regime builds on a number of factors: the implementation of relevant international legal instruments; IAEA guidance and standards; information protection; physical protection; material accounting and control; detection of, and response to, trafficking in such material; national response plans and contingency measures. Implemented in a systematic manner, these building blocks make up a sustainable national nuclear security regime and contribute to global

  11. Recent IAEA Achievements in the Field of Fast Reactors and Presentation of the Scope and Objectives of the Meeting

    International Nuclear Information System (INIS)

    Monti, Stefano

    2013-01-01

    Scope of the Technical Meeting: • Fast reactors deployment scenario are intensely being assessed worldwide, taking into consideration the main technical aspects and requirements, the different marked drivers including resource utilization, fuel cycle options, waste management, economic competitiveness and proliferation issues. • The theme of fast reactor deployment, scenarios and economics has been largely debated during the recent IAEA FR13 conference; Several papers discussed the economics of fast reactors from different national and regional perspectives. • This technical meeting addresses Member States’ expressed need for information exchange in the field, with the aim of identifying the main open issues and launching possible activities under the IAEA’s aegis. Main Objectives of the Meeting: • Identify issues and technical features that affect capital and energy production costs of fast reactors and related fuel cycle facilities. • Present FR concepts with enhanced economic characteristics, as well as innovative technical solutions that have the potential to reduce the capital costs of FR and related fuel cycle facilities. • Present energy models and advanced tools for the cost assessment of innovative fast reactors and associated nuclear fuel cycles. • Discuss the results of studies and on-going R&D activities that address cost reduction and the future economic competitiveness of fast reactors; and • Identify R&DT needs in the field, also in view of new IAEA initiatives to help and support Member States in improving the economic competitiveness of fast reactors and associated nuclear fuel cycles

  12. IAEA Activities in Nuclear Security, 18 April 2013, Delft, The Netherlands

    International Nuclear Information System (INIS)

    Amano, Y.

    2013-01-01

    I am pleased to take part in this event marking the launch of the new Masters Programme in Nuclear Security at the Reactor Institute Delft. The Institute has been an IAEA Collaborating Centre for nearly four years. Our two organisations have worked closely together in training and research, as well as in areas such as establishing quality management systems at nuclear analytical laboratories in IAEA Member States. The launch of the new Masters Programme in Nuclear Security by the Delft University of Technology marks a new stage in our cooperation. Four other European universities are also taking part in the programme: the University of Oslo, the Technical University of Vienna, the Brandenburg University of Applied Sciences, and the University of Manchester Dalton Nuclear Institute. I am pleased that the syllabus for the course has been developed from the IAEA's Educational Programme in Nuclear Security. I commend this effort to train a new generation of experts who can help to improve global nuclear security. Strengthening nuclear security throughout the world remains a challenge for all of us. National governments have primary responsibility for nuclear security, but international cooperation is vital.

  13. The radioactive waste management at IAEA laboratories

    International Nuclear Information System (INIS)

    Deron, S.; Ouvrard, R.; Hartmann, R.; Klose, H.

    1992-10-01

    The report gives a brief description of the nature of the radioactive wastes generated at the IAEA Laboratories in Seibersdorf, their origin and composition, their management and monitoring. The management of the radioactive waste produced at IAEA Laboratories in Seibersdorf is governed by the Technical Agreements of 1985 between the IAEA and the Austrian Health Ministry. In the period of 1982 to 1991 waste containers of low activity and radiotoxicity generated at laboratories other than the Safeguards Analytical Laboratory (SAL) were transferred to the FZS waste treatment and storage plant: The total activity contained in these drums amounted to < 65 MBq alpha activity; < 1030 MBq beta activity; < 2900 MBq gamma activity. The radioactive waste generated at SAL and transferred to the FZs during the same period included. Uranium contaminated solid burnable waste in 200 1 drums, uranium contaminated solid unburnable waste in 200 1 drums, uranium contaminated liquid unburnable waste in 30 1 bottles, plutonium contaminated solid unburnable waste in 200 1 drums. In the same period SAL received a total of 146 Kg uranium and 812 g plutonium and exported out of Austria, unused residues of samples. The balance, i.e.: uranium 39 kg, plutonium 133 g constitutes the increase of the inventory of reference materials, and unused residues awaiting export, accumulated at SAL and SIL fissile store as a result of SAL operation during this 10 year period. The IAEA reexports all unused residues of samples of radioactive and fissile materials analyzed at his laboratories, so that the amount of radioactive materials ending in the wastes treated and stored at FZS is kept to a minimum. 5 refs, 7 figs, 3 tabs

  14. IAEA activities in gas-cooled reactor technology development

    International Nuclear Information System (INIS)

    Cleveland, J.; Kupitz, J.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  15. Special symposium for the IAEA 50th anniversary: Global challenges for the future of nuclear energy and the IAEA

    International Nuclear Information System (INIS)

    2007-01-01

    The objective of the symposium was to review the 50 years history of the activities of the IAEA and the current status of nuclear power and fuel cycle in the world and discuss the future vision regarding development and safety of nuclear power and fuel cycle and international cooperation. Topics covered were nuclear power and fuel cycle, nuclear safety and security, non proliferation, and national, regional, and IAEA's challenges for the future

  16. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  17. 24. IAEA Fusion Energy Conference. Programme and Book of Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The International Atomic Energy Agency (IAEA) fosters the exchange of scientific and technical results in nuclear fusion research through its series of Fusion Energy Conferences. The 24th IAEA Fusion Energy Conference (FEC 2012) aims to provide a forum for the discussion of key physics and technology issues as well as innovative concepts of direct relevance to fusion as a source of nuclear energy. With a number of next-step fusion devices currently being implemented - such as the International Thermonuclear Experimental Reactor (ITER) in Cadarache, France, and the National Ignition Facility (NIF) in Livermore, USA - and in view of the concomitant need to demonstrate the technological feasibility of fusion power plants as well as the economical viability of this method of energy production, the fusion community is now facing new challenges. The resolution of these challenges will dictate research orientations in the present and coming decades. The scientific scope of FEC 2012 is, therefore, intended to reflect the priorities of this new era in fusion energy research. The conference aims to be a platform for sharing the results of research and development efforts in both national and international fusion experiments that have been shaped by these new priorities, and thereby help in pinpointing worldwide advances in fusion theory, experiments, technology, engineering, safety and socio-economics. Furthermore, the conference will also set these results against the backdrop of the requirements for a net energy producing fusion device and a fusion power plant in general, and will thus help in defining the way forward. With the participation of international organizations such as the ITER International Organization and EURATOM, as well as the collaboration of more than forty countries and several research institutes, including those working on smaller plasma devices, it is expected that this conference will, as in the past, serve to identify possibilities and means for a

  18. The regional (Europe) project on study of energy options using the IAEA planning methodologies

    International Nuclear Information System (INIS)

    Molina, P.

    1997-01-01

    As a means to assist developing IAEA Member States in the Europe region in the broad area of energy, electricity and nuclear power planning, a new project has been implemented as part of the IAEA Technical Cooperation Programme. This paper describes the major objectives of this regional TC project and the activities to be organized in order to provide the required assistance. Focus is made on the present workshop and the current activities sponsored by the IAEA for further developments of the IAEA planning tools for energy, electricity and nuclear power planning with emphasis on the Energy and Power Evaluation Program (ENPEP) and the Wien Automatic System Planning (WASP) packages. (author)

  19. IAEA Newsbriefs. V. 11, no. 4(73). Nov-Dec 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This issue gives brief information on the following topics: Director General Reviews Changing Global Nuclear Agenda, IAEA Board of Governors, Nuclear Safety Convention Enters into Force, Safeguarding Fissile Materials Released from Defense Programmes, Technical Support to Newly Independent States in Non-Proliferation Field, Analysis and Screening of Safety Events Team (ASSET), Nuclear Power and Sustainable Energy Development, General Conference Adopts Safeguards, Safety Resolutions, UN General Assembly Commends the IAEA, IAEA Publications, IAEA Meetings, India Donates Analytical Instruments, World Food Summit, Bangladesh Studies Pollution Levels, and other short information

  20. The regional (Europe) project on study of energy options using the IAEA planning methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Molina, P [Division of Nuclear Power, International Atomic Energy Agency, Vienna (Austria)

    1997-09-01

    As a means to assist developing IAEA Member States in the Europe region in the broad area of energy, electricity and nuclear power planning, a new project has been implemented as part of the IAEA Technical Cooperation Programme. This paper describes the major objectives of this regional TC project and the activities to be organized in order to provide the required assistance. Focus is made on the present workshop and the current activities sponsored by the IAEA for further developments of the IAEA planning tools for energy, electricity and nuclear power planning with emphasis on the Energy and Power Evaluation Program (ENPEP) and the Wien Automatic System Planning (WASP) packages. (author).

  1. IAEA support for the establishment of nuclear security education

    International Nuclear Information System (INIS)

    Braunegger-Guelich, Andrea; Rukhlo, Vladimir

    2010-01-01

    The threat of nuclear terrorism has not diminished. In response to the concerns of States, an international nuclear security framework has emerged through the establishment of a number of legally binding and non-binding international instruments which obligates or commits States to carry out a number of actions to protect against nuclear terrorism. In this context, the need for human resource development programmes in nuclear security was underscored at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors' Meetings. In the pursuit of this need, the IAEA has developed - together with academics and nuclear security experts from Member States - a technical guidance entitled IAEA Nuclear Security Series No. 12 - Educational Programme in Nuclear Security that consists of a model Master of Science (M.Sc.) and a certificate programme in nuclear security. The paper sets out IAEA efforts to support the establishment of nuclear security at educational institutions, underlines particularly the objective and content of the IAEA Nuclear Security Series No. 12 and discusses the efforts made by the IAEA to establish a network among educational and research institutions, and other stakeholders to enhance global nuclear security by developing, sharing and promoting excellence in nuclear security education. (orig.)

  2. Enhanced cooperation between IAEA and Republic of Korea on safeguards implementation at light water reactors

    International Nuclear Information System (INIS)

    Park, Wan-Sou; Kim, Byung-Koo; Yim, Seuk-Soon

    2001-01-01

    Full text: In Korea, national inspection has been initiated from the second half of 1997. From 1999, national inspection has been carried out for all nuclear facilities in Korea. In 2000, national inspections were performed successfully in 32 nuclear facilities including 12 PWRs, 4 CANDU reactors, 10 research facilities, 4 fuel fabrication plants and others. As the national inspection system settled down, both the IAEA and Korea were looking for possible ways of cooperation for mutual benefit. It was expected that considerable saving on inspection resources as well as more effective safeguards implementation could be achieved, if more enhanced cooperation work was realized. In 1999, the IAEA and Korea agreed to establish a working group for the enhanced cooperation between both sides. A working group, composed of experts from the IAEA and ROK, reviewed several options for enhanced cooperation on LWRs in Korea and suggested a measure for implementing the current safeguards approach for LWRs with remote monitoring. The basic concepts of the Enhanced Cooperation Scheme are: 1. The SSAC shall carry out all scheduled inspections for each facility for each year, while the Agency shall carry out the annual PIV and post-PIV, and a random selection of the remaining inspections; 2, The remote monitoring (RM) data necessary for technical and safeguards review shall be shared between the Agency and SSAC; 3. The IAEA shall bear the costs of purchasing RM equipment and communication operating costs from the central hub station in Korea to Vienna; the ROK will bear the costs of installing all RM equipment and communication operating costs from each LWR to the central hub station in Korea. Typically, around 8-9 inspections are performed for one LWR per annum under current safeguards approach; 1 pre-PIV, 1 PIV, 1 post-PIV, 3-4 interim inspections, fresh fuel receipts and simultaneous inspection. RM design includes 2 digital cameras (equipment hatch and spent fuel pond), VACOSS

  3. Final priority; technical assistance to improve state data capacity--National Technical Assistance Center to improve state capacity to accurately collect and report IDEA data. Final priority.

    Science.gov (United States)

    2013-05-20

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State Data Capacity program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2013 and later years. We take this action to focus attention on an identified national need to provide technical assistance (TA) to States to improve their capacity to meet the data collection and reporting requirements of the Individuals with Disabilities Education Act (IDEA). We intend this priority to establish a TA center to improve State capacity to accurately collect and report IDEA data (Data Center).

  4. IAEA specialist meeting on flow induced vibrations in fast breeder reactors, Paris, France, 22-24 October 1986

    International Nuclear Information System (INIS)

    Perez, M.A.

    1986-10-01

    The Specialists' Meeting on ''Flow Induced Vibrations in FBRs for LMFBR Applications'' was held in Paris under the auspices of the French CEA on 21-24 October 1982. The meeting was sponsored by the IAEA on the recommendation of the 14th Meeting of the IWGFR and was attended by 31 participants from France, the Federal Republic of Germany, India, Italy, Japan, the United Kingdom, the Union of Soviet Socialist Republics, the United States of America and one international organization (IAEA). The meeting was presided over by Pr. R.J. Gibert of France. After the first session on review of national positions in the subject field (7 papers), the meeting was divided into five technical sections as follows: fluid-structures interaction, calculation methods (3 papers); tubes bundles vibration and weir (4 papers); instability (6 papers); induced vibrations in the pumps (2 papers). A separate abstract was prepared for each of these papers

  5. Experts Complete IAEA Follow-up Review of Australia's Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Nuclear and radiation safety experts today concluded an eight-day mission to review the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the country's nuclear regulator. At the request of the Australian Government, the International Atomic Energy Agency (IAEA) assembled a peer-review team of five regulatory experts from as many nations and three IAEA staff members to conduct a follow-up assessment of an Integrated Regulatory Review Service (IRRS) mission conducted in 2007. This follow-up IRRS mission examined ARPANSA's progress in acting upon the recommendations and suggestions made during the 2007 IRRS mission and reviewed the areas of significant regulatory changes since that review. Both reviews covered safety regulatory aspects of all facilities and activities regulated by ARPANSA. IRRS team leader Kaare Ulbak, Chief Advisor of Denmark's National Institute of Radiation Protection, said: ''ARPANSA should be commended for the significant amount of efforts in addressing all the findings identified in the 2007 mission and for inviting this follow-up review.'' The review team found that ARPANSA has made significant progress toward improving its regulatory activities, as most of the findings identified in the 2007 report have been effectively addressed and therefore can be considered closed. Complementing the ARPANSA strengths identified during the 2007 mission, the 2011 IRRS team noted the following strengths: Response to the Tepco Fukushima Dai-ichi accident; High level of in-house technical expertise in radiation safety; Recognition of the need and willingness to re-organize ARPANSA; Timely development of the national sealed source register in good coordination with other relevant organizations; and Creation of the Australian clinical dosimetry service and the national dose reference levels database. The 2011 IRRS team also made recommendations and suggestions to further strengthen ARPANSA's regulatory system, including: Making full

  6. Contribution the ARCAL/IAEA project to the development the radiological protection in Latin America

    International Nuclear Information System (INIS)

    Medina Gironzini, Eduardo

    1998-01-01

    In this work is shown the radiological protection development in the Latin America region and the direct incidence that has had on the same one the technical cooperation impelled by the IAEA with ARCAL projects ARCAL

  7. Application of IAEA seals to spent-fuel cooling ponds at the Bruno Leuschner NPP, Greifswald

    International Nuclear Information System (INIS)

    Burmester, M.; Kahnmeyer, W.; Heidenreich, D; Kannenberg, D.

    1985-01-01

    A description is given of the technical appliances developed and routinely used at the Greifswald NPP to allow IAEA seals to be attached to the spent fuel cooling ponds as a whole or to their lower storage levels. (author)

  8. Quality assurance standards: comparison between IAEA 50-C/SG-Q and ISO 9001:1994

    International Nuclear Information System (INIS)

    2000-11-01

    The International Atomic Energy Agency (IAEA) and the International Organization for Standardization (ISO) agreement regarding the scope and coverage of documents published by both organizations points out that the standards of safety developed by the IAEA are recommendations for use by its Member States in the framework of national regulations for the safe utilization of nuclear energy. Such standards should be considered as nuclear safety regulatory documents. The standards developed by the ISO are complementary technical documents emphasizing industrial application and contractual aspects. Regarding the quality assurance topic, the IAEA standards 50-C/SG-Q are mostly used directly or indirectly to establish the nuclear safety requirements at the utility-regulatory interface. The industrial ISO 9001 standards have progressively been used to implement the quality assurance requirements at the interface utility-supplier. The relationship between both standards is growing in significance owing to the impact upon the owners/operators of nuclear facilities and their contractors/suppliers. The relationship between the IAEA and ISO standards is considered critical, in particular regarding suppliers with a small range of nuclear supplies. These organizations are not always willing to prepare special quality assurance programmes based on nuclear safety standards. On the other hand, these organizations may be qualified on the basis of the ISO quality assurance standards. In any case, for delivering nuclear items and services the quality assurance programme must comply with the requirements established in the nuclear safety regulatory standards. This implies that the utility-supplier will have to demonstrate that the acceptable degree of quality assurance in relation to nuclear safety is accomplished. This may be achieved by imposing additional requirements on the supplier over and above those contained within the ISO. In order to provide a description of the differences

  9. IAEA monitoring field trials workshop

    International Nuclear Information System (INIS)

    Ross, H.H.; Cooley, J.N.; Belew, W.L.

    1995-01-01

    Recent safeguards inspections in Iraq and elsewhere by the International Atomic Energy Agency (IAEA) have led to the supposition that environmental monitoring can aid in verifying declared and in detecting undeclared nuclear activities or operations. This assumption was most recently examined by the IAEA's Standing Advisory Group on Safeguards Implementation (SAGSI), in their reports to the IAEA Board of Governors. In their reports, SAGSI suggested that further assessment and development of environmental monitoring would be needed to fully evaluate its potential application to enhanced IAEA safeguards. Such an inquiry became part of the IAEA ''Programme 93+2'' assessment of measures to enhance IAEA safeguards. In March, 1994, the International Safeguards Group at Oak Ridge hosted an environmental monitoring field trial workshop for IAEA inspectors to train them in the techniques needed for effective environmental sampling. The workshop included both classroom lectures and actual field sampling exercises. The workshop was designed to emphasize the analytical infrastructure needed for an environmental program, practical sampling methods, and suggested procedures for properly planning a sampling campaign. Detailed techniques for swipe, vegetation, soil, biota, and water associated sampling were covered. The overall approach to the workshop, and observed results, are described

  10. The IAEA data base ageing of reactor pressure vessel steels and welds

    International Nuclear Information System (INIS)

    Gillemot, F.; Ianko, L.; Davies, L.M.

    1995-01-01

    This paper describes one aspect of the International Atomic Energy Agency (IAEA) data base, that is to do with the ageing of reactor pressure vessel (RPV) steels and welds. It describes the background and the need for and the benefits deriving from such an international data base encompassing a greater number of sources than currently incorporated in existing international and national data bases. The paper describes the organization of this data base and the controls necessary for data acquisition and control. The current state of progress is described. Membership of and participation in this project is given and data access is also described. The technical features of the data base are described in terms of the structure of the data base and the hardware and software. New features are proposed such as the inclusion of measured curve data and metallographic data. Technical aspects of data evaluation are also included. (author). 1 ref., 6 figs

  11. International Expert Team Concludes IAEA Peer Review of Poland's Regulatory Framework for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    2013-01-01

    the development of the nuclear power programme; and PAA's proactive approach to coordination with Poland's Office of Technical Inspection. The IRRS team made several recommendations and suggestions for PAA as it grows in the next few years, facing challenges and increasing demands as its nuclear power programme expands. To position PAA to address its growth, additional responsibilities, and the retirement of many senior managers, and to maintain its strong focus on safety for currently regulated facilities and activities, the IRRS team advised PAA to: Establish and frequently review that there is a clear link between PAA's organizational goals and objectives, and resource planning, such as staffing and strategies for external support; Consider strengthening and documenting PAA's management system; and Develop and strengthen internal guidance to document authorization processes, review, assessment and inspection procedures. In its preliminary report, the IAEA team's main conclusions have been conveyed to PAA. A final report will be submitted to the Government of Poland in about three months. PAA has informed the team that the final report will be made publicly available. The IAEA encourages nations to invite a follow-up IRRS mission about two years after the mission has been completed. Background The team reviewed the legal and regulatory framework for nuclear safety and addressed all facilities regulated by PAA. This was the 46th IRRS mission conducted by the IAEA. About IRRS Missions IRRS missions are designed to strengthen and enhance the effectiveness of the national nuclear regulatory infrastructure of States, while recognizing the ultimate responsibility of each State to ensure safety in this area. This is done through consideration of regulatory, technical and policy issues, with comparisons against IAEA safety standards and, where appropriate, good practices elsewhere. (IAEA)

  12. The Value of the Junior Professional Officer Program to the IAEA and its Member States

    International Nuclear Information System (INIS)

    Pepper, Susan E.; Scholz, Melissa; Irola, Gisele; Amundson, Steven

    2014-01-01

    Benefits: • Augmented human resource: • JPOs are a form of extrabudgetary support and supplement the human resources that are supported by the regular budget; • Efficiency: • JPOs perform basic, yet essential work, and free experience staff to concentrate on more complex activities; • Increased input to the recruitment process: • Former JPOs who apply for regular staff positions can be evaluated based on past performance. • Improved communication: • Former JPOs can improve communication by acting as points-of-contact between member states and the IAEA due to their knowledge of the IAEA; • Experience for future positions at the IAEA: • JPO positions provide job experience that qualifies them for regular staff positions. • Insight into IAEA: • Insight to programs, work environment, and technical needs; • JPOs learn the procedures and techniques used by the IAEA; • JPOs transfer knowledge from the IAEA to employers and co-workers

  13. IAEA inspectors complete verification of nuclear material in Iraq

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: At the request of the Government of Iraq and pursuant to the NPT Safeguards Agreement with Iraq, a team of IAEA safeguards inspectors has completed the annual Physical Inventory Verification of declared nuclear material in Iraq, and is returning to Vienna. The material - natural or low-enriched uranium - is not sensitive from a proliferation perspective and is consolidated at a storage facility near the Tuwaitha complex, south of Baghdad. This inspection was conducted with the logistical and security assistance of the Multinational Force and the Office of the UN Security Coordinator. Inspections such as this are required by safeguards agreements with every non-nuclear-weapon state party to the NPT that has declared holdings of nuclear material, to verify the correctness of the declaration, and that material has not been diverted to any undeclared activity. Such inspections have been performed in Iraq on a continuing basis. The most recent took place in June 2003, following reports of looting of nuclear material at the Tuwaitha complex; IAEA inspectors recovered, repackaged and resealed all but a minute amount of material. NPT safeguards inspections are limited in scope and coverage as compared to the verification activities carried out in 1991-98 and 2002-03 by the IAEA under Security Council resolution 687 and related resolutions. 'This week's mission was a good first step,' IAEA Director General Mohamed ElBaradei said. 'Now we hope to be in a position to complete the mandate entrusted to us by the Security Council, to enable the Council over time to remove all sanctions and restrictions imposed on Iraq - so that Iraq's rights as a full-fledged member of the international community can be restored.' The removal of remaining sanctions is dependent on completion of the verification process by the IAEA and the UN Monitoring, Verification and Inspection Commission (UNMOVIC). It should be noted that IAEA technical assistance to Iraq has been resumed over

  14. IAEA activities related to ITER

    International Nuclear Information System (INIS)

    Dolan, T.J.; Schneider, U.

    2001-01-01

    As agreed between the IAEA and the ITER Parties, special sessions are dedicated to ITER at the IAEA Fusion Energy Conferences. At the 18th IAEA Fusion Energy Conference, held on 4-10 October 2000 in Sorrento, Italy, in the Artsimovich-Kadomtsev Memorial opening session there were special lectures by Carlo Rubbia (President, ENEA, Italy), A. Arima (Japan), and E.P. Velikhov (Russia); an overview talk on ITER by R. Aymar (ITER Director); and a talk on the FTU experiment by F. Romanelli. In total, 573 participants from 34 countries presented 389 papers (including 11 post-deadline papers and the 4 summaries)

  15. IAEA Strategic Approach to E and T in Nuclear Safety 2013-2020

    International Nuclear Information System (INIS)

    Moracho Ramirez, Maria Josefa

    2014-01-01

    Integrated vision, common strategy - Education and training complementary approaches: Global approach - IAEA: Defining policies, frameworks and providing materials and support for E and T activities. Regional approach: Supporting IAEA Regional Networks, and Centres, providing E and T resources and expertise. National approach: Member States: Establishment and maintenance of HR and national E and T infrastructure

  16. High educational impact of a national simulation-based urological curriculum including technical and non-technical skills.

    NARCIS (Netherlands)

    Vries, A.H. de; Schout, B.M.A.; Merriënboer, J.J.G. van; Pelger, R.C.M.; Koldewijn, E.L.; Wagner, C.

    2017-01-01

    Background: Although simulation training is increasingly used to meet modern technology and patient safety demands, its successful integration within surgical curricula is still rare. The Dutch Urological Practical Skills (D-UPS) curriculum provides modular simulation-based training of technical

  17. Report of the National Technical Planning Group on Uranium Tailings Research

    International Nuclear Information System (INIS)

    Lapp, P.A.

    1981-09-01

    The National Technical Planning Group on Uranium Tailings Research was formed in 1980 to review present activities and plan a research program on the management of wastes after a mine and mill have shut down. At present there are more than 100 million tonnes of uranium tailings on the surface in Canada. Most of these are under management; however, some 8 million tonnes have been abandoned completely. The group concluded that: 1) there has been no systematic attempt to collect and organize the results of measurements already made on tailings; 2) there is an inadequate understanding of the processes that take place in tailings and in the pathways to the biosphere; 3) there is insufficient evidence on the extent of the long-term problem in the closeout of a uranium tailings basin; 4) there is a need to establish standardized measurement methodologies to improve the quality of data taken at different sites across Canada; 5) generic research and development on tailings disposal technology should be within the scope of a national program, whereas site-specific work is the purview of the mines and regulatory agencies; and 6) the uranium producers' contribution to the national tailings program should be their research on site-specific disposal alternatives. The first of these conclusions leads to the proposal to establish a national uranium tailings research program. The second suggests the need for a modelling program, the third and fourth for a national measurement program, and the remaining conclusions refer to disposal technologies research. The conclusions form the basis for a set of recommendations on uranium tailings research

  18. IAEA Completes First Ever Corporate Safety Review, at Czech Republic's CEZ

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) today completed a review of corporate safety performance at CEZ a.s., the largest national electricity company in the Czech Republic. For the first time since the Agency launched its Operational Safety Review Team (OSART) missions in 1982, the team addressed corporate aspects of a company in relation to nuclear safety. The team noted a series of good practices and proposed recommendations to strengthen some safety measures. Assembled at the request of the Government of the Czech Republic, the first ''Corporate OSART'' review, which ran from 30 September to 9 October 2013, addressed corporate aspects necessary to ensure the safe operation of the Dukovany and Temelin Nuclear Power Plants (NPPs). The mission included experts from Finland, France, Romania, USA and the IAEA. OSART services aim to improve operational safety at nuclear facilities by objectively assessing safety performance using the IAEA's Safety Standards and proposing recommendations for improvement where appropriate. The missions serve as a channel to exchange information and experience and provide Member States with good practices. A ''Corporate OSART'' is an OSART mission organized to review those centralized functions of the corporate organization of a utility with multiple nuclear plant sites and conventional plant sites that affect all the operational safety aspects of the nuclear power plants of this utility. ''OSART missions are one of the most important tools of the Agency to ensure better and wider implementation of the IAEA Safety Standards,'' said Denis Flory, Deputy Director General in the IAEA Department of Nuclear Safety and Security. ''Since 1982, we have conducted close to 200 safety review missions around the globe; however, this mission is the first of its kind because we focused on the corporate performance that is a necessity for a safe operation of NPPs,'' Flory added

  19. Chemistry and technology of radioactive waste management - the IAEA perspective

    International Nuclear Information System (INIS)

    Efremenkov, V.M.; )

    2003-01-01

    The paper refers the consideration of chemical composition of radioactive waste in selection of particular method and technology for waste treatment and conditioning, importance of physico-chemical parameters of waste processing techniques for optimisation of waste processing to produce waste form of appropriate quality. Consideration of waste chemistry is illustrated by several IAEA activities on radioactive waste management and by outlining the scope of some selected technical reports on different waste management subjects. Different components of the IAEA activities on radioactive waste management and on technology transfer are presented and discussed. (author)

  20. IAEA activities in the field of NPP life management

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Lyssakov, V.; Davies, L.M.

    1997-01-01

    The IAEA has established programmes in the field of Nuclear Plant Lifetime in the Division of Nuclear Power and the Fuel Cycle (NEPF) and also in the Division of Nuclear Safety. In the Division of NEPF the International Working Group on Life Management of Nuclear Power Plants carries out its activities within the IAEA Project A2.03 ''Nuclear Power Plant Life Management''. Activities under this project have produced a wealth of information by organizing specialists meeting, preparing technical publications on related topics and arranging co-ordinated research programmes with good results. The most recent development is a database which has been developed and is being maintained. 4 figs

  1. IAEA activities in the field of NPP life management

    Energy Technology Data Exchange (ETDEWEB)

    Gueorguiev, B; Lyssakov, V; Davies, L M

    1997-09-01

    The IAEA has established programmes in the field of Nuclear Plant Lifetime in the Division of Nuclear Power and the Fuel Cycle (NEPF) and also in the Division of Nuclear Safety. In the Division of NEPF the International Working Group on Life Management of Nuclear Power Plants carries out its activities within the IAEA Project A2.03 ``Nuclear Power Plant Life Management``. Activities under this project have produced a wealth of information by organizing specialists meeting, preparing technical publications on related topics and arranging co-ordinated research programmes with good results. The most recent development is a database which has been developed and is being maintained. 4 figs.

  2. Approaches for increasing the cooperation between Member States and IAEA under SSS

    International Nuclear Information System (INIS)

    Rheem, Karp-Soon; Park, Wan-Sou; Kim, Byung-Koo

    1997-01-01

    With introduction of the Strengthened Safeguards System (SSS), both the IAEA and Member States are concerned about the limited resources to carry out the SSS activity and the potential increase of additional cost and burdens. Even though the IAEA has recently prepared a procedure of the generalized New Partnership Approach (NPA), its wider application to the general Member States is difficult at the present time. For the generalized NPA necessitates that SSACs of the Member States have sufficient technical capability in safeguards to carry out the necessary activities. Unfortunately a few Member States seem to be qualified to have the sufficient technical capability that the IAEA desires. In this topic, a new approach to increase the cooperation between Member States and IAEA under SSS is proposed such that effective supports can be provided to all of its Member States that are not technically competent in terms of safeguards experience. This is realized by so called 'tunneling effort', meaning that desired goals are accomplished by efforts from both Member States and the IAEA. The Member States having high technical competence in safeguards provide technical assistance to the Member States that are not competent until they attain to a certain level in technical capability, while the IAEA provides the guidelines, and coordinates the process. The formal introduction of the Quality Control concept to the safeguards management is proposed as well so as to efficiently reduce burdens from the implementation of the SSS. (author)

  3. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2011-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  4. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2010-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  5. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S B; Michelsen, P K; Rasmussen, J J; Westergaard, C M [eds.

    2010-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  6. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2009-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  7. Impact of Nuclear Technology to the National Socio-Economy: Technical Support by Nuclear Malaysia

    International Nuclear Information System (INIS)

    Hazmimi Kasim; Ainul Hayati Daud; Jamal Khaer Ibrahim; Alawiah Musa

    2011-01-01

    In Malaysia, the development of nuclear technology began in the year 1972. More than 30 years of application, today, the technology made impact to the national socio-economy through contribution to GDP and; improving quality of life and enhanced societal well-being. The application of nuclear technology both in public and private agencies in industrial, medical and agricultural sectors were considered. In 2008, the impact of nuclear technology shows the contribution of 0.032% to the total GDP. Industry sector shows an increasing trend and is the highest contributor, while agriculture sector remains the lowest. In this regard, Malaysian Nuclear Agency (Nuclear Malaysia) played an important role as a technical support agency in nuclear technology, as a supplier and provider for the service, training and research for the industrial, medical and agricultural sectors. (author)

  8. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2009-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  9. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    International Nuclear Information System (INIS)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J.

    2008-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  10. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J. (eds.)

    2008-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  11. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  12. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2011-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  13. Relevant documents to IAEA regulations for the safe transport of radioactive materials

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.; Sabek, M.G.; Gomma, M.

    1998-01-01

    IAEA regulations for the safe transport of radioactive materials provide standards for insuring a high level of safety of people, property, and environment against radiation, contamination, and criticality hazards as well as thermal effects associated with the transport of radioactive materials. IAEA routinely publishes technical reports which are relevant to radioactive material transportation such as INTERTRAN, directory of transport packaging test facilities, and others. A case study was performed to assess the impact of transporting radioactive materials through the suez canal using the two computer codes namely INTERTRAN and RADTRAN-4 which are part of IAEA technical documents. A comparison of the results of these two codes is given

  14. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2004-01-01

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  15. New appointment at the IAEA

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives short information on the biography of Professor Dr. Werner Burkart from Germany who was appointed (as of July 2000) as Deputy Director General, Head of the Department of Nuclear Sciences and Applications, IAEA

  16. The IAEA Laboratories at Seibersdorf

    International Nuclear Information System (INIS)

    1987-01-01

    The film shows the history, development and activities at the IAEA's Laboratory in Seibersdorf. Recent developments in plant breeding and insect pest control (sterile insect technique) and training facilities for fellows from member states are presented

  17. International experts conclude IAEA peer review of Iran's safety regulation of Bushehr NPP

    International Nuclear Information System (INIS)

    2010-01-01

    effectiveness included the following: - The Government should support the prompt enactment of a law establishing INRA as an independent nuclear regulatory authority, as well as provide it with all authority and resources needed to carry out its functions. - The Government is encouraged to join the Convention on Nuclear Safety and the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. - INRA should replace the existing set of ad hoc regulatory requirements with a comprehensive system of national nuclear safety regulations. - The number and expertise of technical staff should be increased and career incentives should be established to attract and retain them. (IAEA)

  18. IAEA Nutrition Programmes Feed Global Development

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    As an organization, the IAEA has a statutory requirement to “accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.” Good nutrition is the cornerstone of good health and the development of nations. That’s why the IAEA is involved in nutrition. The IAEA’s Member States use nuclear methods to move their nutrition programmes forward. These nuclear techniques include the use of stable isotopes (which have no radioactivity) to better understand how nutrients are absorbed, utilized, or stored in the body. These very precise and powerful techniques can be safely and non-invasively used on everyone, from babies to the elderly, in order to determine nutritional status, and measure the effectiveness of nutrition programmes. Nuclear techniques often provide answers that are not available by any other means. By training Member States in the use of nuclear techniques for nutrition, the IAEA complements the work that these countries are doing with other international organizations and not-for-profit groups around the world to combat malnutrition in all its forms and to promote health

  19. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 8 June 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 8 June 1998. The following aspects from the Agency's activity are presented: nuclear testing, technical co-operation, programme and budget, safeguards, safeguards implementation report, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, security of material, measures to strengthen international co-operation in nuclear, radiation and waste safety, study of the radiological situation at the atolls of Mururoa and Fangataufa, and Agency's role in safety assessment of the Mochovce nuclear power plant

  20. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 14 September 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 14 September 1998. The following aspects from the Agency's activity are presented: nuclear safety, technical co-operation programme, safeguards and verification, fissile material treaty, nuclear material released from the military sector, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, and Agency's safeguards in the Middle East region

  1. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  2. New Seeds are Resistant to Wheat Stem Rust (Ug99) Multinational Programme Supported by FAO and IAEA

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: A multinational effort supported by the International Atomic Energy Agency and the U.N. Food and Agriculture Organization marked a key milestone this week when a Kenyan university debuted two new varieties of disease-resistant wheat to the nation's farmers. Over the past two days, thousands of Kenyan farmers have visited Eldoret University in western Kenya for a two-day agriculture fair highlighting the latest farming technologies. Supporting the development of the new varieties were the IAEA's Technical Cooperation Department and the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. They manage an interregional Technical Cooperation project to develop varieties of wheat that are resistant to a devastating type of fungus, causing a disease known as wheat stem rust. Wheat stem rust under control for over 30 years, but a resurgence of the disease was discovered in 1999 in Uganda that swiftly spread to neighbouring Kenya. The wheat stem rust, caused by the strain of the fungus known as Ug99, named after its place and year of origin, has since spread to Iran, Yemen and South Africa and threatens crops as far away as India as spores are carried by wind. Parasitic rusts threaten global wheat production, reducing plant growth and crop yields. The disease can destroy up to 70-100 percent of the yield of wheat crop if not prevented. 'Improving food security in developing countries through the use of nuclear techniques is an important priority of the IAEA', said IAEA Director General Yukiya Amano. 'I am pleased that we have been able to make an important contribution to fighting wheat rust'. 'Wheat rusts, particularly the Ug99 strain, are a major threat to food security because rust epidemics can result in devastating yield losses. This international project involving affected countries, plant scientists and breeders and international organizations is a major breakthrough. It clearly shows the benefits of FAO/IAEA collaboration and that

  3. Mass media and nuclear energy - IAEA's role

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1993-11-01

    The presentation covers the following areas: the wide spectrum of media outlets that the IAEA seeks to serve and their differing needs; the resources available to the IAEA for that purpose; the way in which IAEA endeavours to disseminate authoritative, reliable nuclear-related information to media; the exceptional role the IAEA may be called on to play in emergency situations

  4. Strategies and policies for nuclear power plant life management. Proceedings of the IAEA specialists meeting. Working document

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of the Specialists Meeting organized by the IAEA was to provide an international forum for discussing of recent results in national and utility experience in development of nuclear power plant life management programmes and their technical, regulatory and economic assessments. Plant life management requires detailed knowledge of ageing degradation of the components and the results of mitigation technologies. The basic conclusion includes the need of Guide on NPP Life management which should encompass: plant safety; plant availability; plant operating life extension; human resources policy; research and development needs

  5. The FAO/IAEA External Quality Assurance Programme (EQAP) and movement towards a generic veterinary diagnostic testing laboratory accreditation scheme. Report of an FAO/IAEA consultants meeting

    International Nuclear Information System (INIS)

    2002-01-01

    establish a network of national veterinary diagnostic testing laboratories that are recognized for their achievements in establishing QA systems and their proficiency in the use of specific diagnostic assays. This network would facilitate the exchange of epidemiological information and, in the current atmosphere of international and regional trade agreements, provide a greater opportunity to increase the share of developing countries in the international trade of livestock and livestock products. In February 1998, a Consultants' Meeting was convened to consider the design, impact, and proposals for future implementation of the current FAO/IAEA EQAP for Animal Disease Diagnosis and make recommendations with regard to its central purposes and future direction. In addition, the Consultants considered the broader question of a generic QA 'accreditation' scheme for veterinary diagnostic testing laboratories that could be made available through international, regional, or national organizations as appropriate to the country of interest. This broader discussion was stimulated by the fact that few developed and no developing countries have nationally organized schemes to measure and recognize the QA systems and technical competence of veterinary diagnostic testing laboratories, but that such a scheme is of vital importance to the quality of policy decisions and actions taken on national animal health issues and the international trade of livestock and livestock commodities. It followed that, in the Subprogramme's role as a Collaborating Centre to the Office International Epizooties (OIE, or World Animal Health Organization), it would be appropriate to consider the FAO/IAEA EQAP within the broader scope of an international scheme for veterinary diagnostic laboratory accreditation for two reasons: 1) to use information learned through the design and implementation of the FAO/IAEA EQAP to assist in the appropriate development of an international scheme and 2) to ensure that the FAO/IAEA

  6. IAEA Review for Gap Analysis of Safety Analysis Capability

    International Nuclear Information System (INIS)

    Basic, Ivica; Kim, Manwoong; Huges, Peter; Lim, B-K; D'Auria, Francesco; Louis, Vidard Michael

    2014-01-01

    improvement of nuclear safety in the participating host organization and host member countries. To achieve this goal, the EM is to establish a process of discussion and comparison of gap findings, which will lead to sharing of information, experience, strengths and weaknesses among the participants, and foster regional cooperation to improve the weaknesses and improve safety generally. The pilot mission was conducted from 28 October to 1 November for one week at the National Nuclear Agency (BATAN) in Indonesia by the mission team formulated with 6 international experts who have considerable knowledge and experience in the field of safety analysis such as the deterministic safety analysis (DSA) and probabilistic safety analysis (PSA). Some comments and recommendations were given to BATAN management to support the establishment and maintenance of safety analysis capability and human resource, organizational and training aspects. Those aspects are important as a measure of the progress being made and an indicator of areas in SATG within the framework of the Extra-budgetary Programme on the Safety of Nuclear Installations in Southeast Asia, the Pacific, and Far East Countries (the EBP-Asia) or other cooperation programme, such as the IAEA Technical Cooperation programme. Provided in 2013 the Review of Gap Analysis for BATAN (Indonesian Nuclear Safety Regulatory Body) could be good reference for all other newcomer countries which started or plans nuclear power plant installation. (authors)

  7. Opening Address [Technical Meeting/Workshop on Topical Issues on Infrastructure Development: Managing the Development of a National Infrastructure for Nuclear Power Plants, Vienna (Austria), 24-27 January 2012

    International Nuclear Information System (INIS)

    Bychkov, A.V.

    2012-01-01

    after the accident. The IAEA has taken a series of actions in response to the Fukushima accident, including the activation of the IAEA Incident and Emergency Centre immediately after the accident and sending several IAEA International Fact Finding Expert Missions to Japan. Currently, the IAEA is working hard to implement the IAEA Action Plan on Nuclear Safety, which was agreed at the Board of Governors last September. This Action Plan and its implementation will be explained later by my colleagues; I would like to point out that the development of the infrastructrure necessary for Member States embarking on nuclear power programme is one of the 12 areas covered in that action plan. I would like to stress that there is progress in Member States for the introduction of nuclear power. I had several opportunities in bilateral meetings to experience the commitment of senior officials in embarking countries. During the last two months, I visited two newcomer countries - Malaysia and UAE, and got first-hand information about their potential for a national nuclear program. During the side events of the last IAEA General Conference, senior officials from UAE, Turkey and Vietnam clearly expressed their commitments to nuclear power programmes with steady progress in the cooperation with vendor countries. I am impressed that these countries are working closely with vendor countries in developing the required physical infrastructure and human resources. Quite recently, I was informed that Belarus and Bangladesh had intergovernmental agreements with Russia to introduce nuclear power in their countries. So nuclear power remains an important option for energy supply. However, it is a fact that the public is concerned about nuclear safety, and several countries have experienced difficulties in national decisions to introduce nuclear power programmes. Although the situation differs among the countries, I hope that participants can learn good practices for public communication from the

  8. Is the IAEA's Safeguard Strategic Plan Sufficient?

    International Nuclear Information System (INIS)

    Sokolski, H.; Gilinsky, V.

    2015-01-01

    IAEA safeguards have much improved and the Safeguards Department is commendably planning to further its technical capabilities and to make full use of its authority. Will this be enough to keep countries from exploiting nuclear power programmes to develop nuclear weapons, or to be in a position to do so rapidly should they so decide? Depending on nuclear programmes developments worldwide, especially on expansions in enrichment and reprocessing, and on how international affairs unfold, the answer may well be no. The fundamental limitations on the Department's ability to prevent proliferation are not technical, but conceptual. The Department is clearly motivated to carry out its technical activities competently. Yet it takes a relatively passive view of its role in the worldwide development of nuclear power-whatever technology comes into use, and whoever deploys it, the Department promises to exert its best effort to safeguard. In our view the Department should be more open about what it can or cannot realistically safeguard, and therefore what technology is permissible for deployment in national programmes. The Department's Strategic Plan says at the outset that its verifications assist the Agency to fulfil its statutory objective to ''accelerate and enlarge the contribution of atomic energy. . . '' The Department should judge itself by how well it promotes international security, not by its contribution to expanding nuclear power use. The Department's Vision includes advancing toward a nuclear weapons free world. That vision should include keeping states from deploying technologies that put them within easy reach of nuclear weapons. Our paper will suggest how the Department might supplement its current plan to best accomplish this. (author)

  9. IAEA data base system for nuclear research reactors (RRDB)

    International Nuclear Information System (INIS)

    Lipscher, P.

    1986-01-01

    The IAEA Data Base System for Nuclear Research Reactors (RRDB) User's Guide is intended for the user who wishes to understand the concepts and operation of the RRDB system. The RRDB is a computerized system recording administrative, operational and technical data on all the nuclear research reactors currently operating, under construction, planned or shut down in IAEA Member States. The data is received by the IAEA from reactor centres on magnetic tapes or as responses to questionnaires. All the data on research, training, test and radioactive isotope production reactors and critical assemblies is stored on the RRDB system. A full set of RRDB programs (in NATURAL) are contained at the back of this Guide

  10. National Solar Radiation Data Base, Vol. 2 - Final Technical Report (1961-1990)

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, E. L.; Marion, W.; Myers, D.; Rymes, M.; Wilcox, S.

    1995-01-01

    This technical report explains the procedures used during the 4-year production of the National Solar Radiation Data Base (NSRDB) (1961-1990). It is the second volume in a two-volume report on the NSRDB. The first volume, User's Guide-National Solar Radiation Data Base, provides the information needed to use the data base products. Volume 2 concentrates on results from the R&D required to producea solar radiation data base that would represent a significant update of a previous data base (SOLMET). More than 90% of the data in the NSRDB were estimated using a model--the Meteorological/Statistical (METSTAT) model. Much of Volume 2 concerns the METSTAT model and the sources of its input data. In addition, it contains results of comparisons of the NSRBD with the previous SOLMET data base.Results of the model evaluations and data base comparisons favor the use of NSRDB data over SOLMET data to select optimum sites and estimate performance for solar energy systems. The report noted that to improve data on solar radiation, 'measured' data need to become the mainstav of future data bases.

  11. High educational impact of a national simulation-based urological curriculum including technical and non-technical skills.

    Science.gov (United States)

    de Vries, Anna H; Schout, Barbara M A; van Merriënboer, Jeroen J G; Pelger, Rob C M; Koldewijn, Evert L; Muijtjens, Arno M M; Wagner, Cordula

    2017-02-01

    Although simulation training is increasingly used to meet modern technology and patient safety demands, its successful integration within surgical curricula is still rare. The Dutch Urological Practical Skills (D-UPS) curriculum provides modular simulation-based training of technical and non-technical basic urological skills in the local hospital setting. This study aims to assess the educational impact of implementing the D-UPS curriculum in the Netherlands and to provide focus points for improvement of the D-UPS curriculum according to the participants. Educational impact was assessed by means of qualitative individual module-specific feedback and a quantitative cross-sectional survey among residents and supervisors. Twenty out of 26 Dutch teaching hospitals participated. The survey focussed on practical aspects, the D-UPS curriculum in general, and the impact of the D-UPS curriculum on the development of technical and non-technical skills. A considerable survey response of 95 % for residents and 76 % for supervisors was obtained. Modules were attended by junior and senior residents, supervised by a urologist, and peer teaching was used. Ninety percent of supervisors versus 67 % of residents judged the D-UPS curriculum as an important addition to current residency training (p = 0.007). Participants' aggregated general judgement of the modules showed a substantial percentage favorable score (M ± SE: 57 ± 4 %). The impact of training on, e.g., knowledge of materials/equipment and ability to anticipate on complications was high, especially for junior residents (77 ± 5 and 71 ± 7 %, respectively). Focus points for improvement of the D-UPS curriculum according to the participants include adaptation of the training level to residents' level of experience and focus on logistics. The simulation-based D-UPS curriculum has a high educational impact. Residents and supervisors consider the curriculum to be an important addition to current residency

  12. Improving livestock production using indigenous resources and conserving the environment. A publication prepared under the framework of a Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology for Asia and the Pacific project with technical support of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture

    International Nuclear Information System (INIS)

    2010-03-01

    Livestock farming is very important in Asia and the pacific region as a source of livelihood for resource poor farmers' - provision of food and food products and as a source of income. However, livestock productivity in many countries is below their genetic potential because of inadequate and imbalanced feeds and feeding, poor reproductive management and animal diseases exacerbated by lack of effective support services, such as animal husbandry extension, artificial insemination (AI) and/or veterinary services. The International Atomic Energy Agency (IAEA) and the Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology for Asia and the Pacific (RCA), with technical support of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, implemented a Technical Cooperation (TC) project entitled 'Integrated Approach for Improving Livestock Production using Indigenous Resources and Conserving the Environment' (RAS/5/044). The overall objective of the project was to improve livestock productivity through better nutritional and reproduction strategies while conserving the environment. The specific objectives were (i) to improve animal productivity and decrease emission of selected greenhouse gases, (methane and carbon dioxide) and selected nutrients (nitrogen and phosphorus) into the environment; and (ii) to identify and adopt better breeding strategies that would improve animal productivity. This publication contains research results presented by scientists during the final review meeting incorporating the contributions of the experts associated with RAS/5/044. It is hoped that this publication will help stimulate further discussion, research and development into ways of improving the efficiency and productivity of livestock thus leading to higher income for smallholder farmers in the region

  13. Safeguards surveillance equipment and data sharing between IAEA and a member state

    International Nuclear Information System (INIS)

    Park, Seung Sik

    1999-01-01

    Efficiency and reliability are two prongs of implementation of safeguards policy. Unattended surveillance is getting wide acceptance through its field trials and technical advances. In achieving goal of safeguards, new safeguards system should provide less intrusiveness than conventional inspection. Unattended surveillance data share will be a major issue among some countries that have own national inspection scheme in place in parallel with international safeguards to check the resources consuming incurred by the repeated installations. Nonetheless, the issue has not been focussed yet among the States concerned, especially for the country like Korea with national inspection in operation. For balanced development in safeguards regime between IAEA and Korea, sharing of unattended surveillance data with SSAC needs to be worked out in conjunction with the joint use of safeguards instruments that is in the process

  14. Nuclear Knowledge Management: the IAEA Approach

    International Nuclear Information System (INIS)

    Sbaffoni, M.; De Grosbois, J.

    2015-01-01

    Knowledge in an organization is residing in people, processes and technology. Adequate awareness of their knowledge assets and of the risk of losing them is vital for safe and secure operations of nuclear installations. Senior managers understand this important linkage, and in the last years there is an increasing tendency in nuclear organizations to implement knowledge management strategies to ensure that the adequate and necessary knowledge is available at the right time, in the right place. Specific and advanced levels of knowledge are clearly required to achieve and maintain technical expertise, and experience must be developed and be available throughout the nuclear technology lifecycle. If a nuclear organization does not possess or have access to the required technical knowledge, a full understanding of the potential consequences of decisions and actions may not be possible, and safety, security and safeguards might be compromised. Effective decision making during design, licencing, procurement, construction, commissioning, operation, maintenance, refurbishment, and decommissioning of nuclear facilities needs to be risk-informed and knowledge-driven. Nuclear technology is complex and brings with it inherent and unique risks that must be managed to acceptably low levels. Nuclear managers have a responsibility not only to establish adequate technical knowledge and experience in their nuclear organizations but also to maintain it. The consequences of failing to manage the organizations key knowledge assets can result in serious degradations or accidents. The IAEA Nuclear Knowledge Management (NKM) sub-programme was established more than 10 years ago to support Nuclear Organizations, at Member States request, in the implementation and dissemination of the NKM methodology, through the development of guidance and tools, and by providing knowledge management services and assistance. The paper will briefly present IAEA understanding of and approach to knowledge

  15. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  16. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  17. IAEA nuclear databases for applications

    International Nuclear Information System (INIS)

    Schwerer, Otto

    2003-01-01

    The Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA) provides nuclear data services to scientists on a worldwide scale with particular emphasis on developing countries. More than 100 data libraries are made available cost-free by Internet, CD-ROM and other media. These databases are used for practically all areas of nuclear applications as well as basic research. An overview is given of the most important nuclear reaction and nuclear structure databases, such as EXFOR, CINDA, ENDF, NSR, ENSDF, NUDAT, and of selected special purpose libraries such as FENDL, RIPL, RNAL, the IAEA Photonuclear Data Library, and the IAEA charged-particle cross section database for medical radioisotope production. The NDS also coordinates two international nuclear data centre networks and is involved in data development activities (to create new or improve existing data libraries when the available data are inadequate) and in technology transfer to developing countries, e.g. through the installation and support of the mirror web site of the IAEA Nuclear Data Services at IPEN (operational since March 2000) and by organizing nuclear-data related workshops. By encouraging their participation in IAEA Co-ordinated Research Projects and also by compiling their experimental results in databases such as EXFOR, the NDS helps to make developing countries' contributions to nuclear science visible and conveniently available. The web address of the IAEA Nuclear Data Services is http://www.nds.iaea.org and the NDS mirror service at IPEN (Brasil) can be accessed at http://www.nds.ipen.br/ (author)

  18. IAEA To Launch Centre On Ocean Acidification

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The International Atomic Energy Agency (IAEA) is to launch a new centre this summer to address the growing problem of ocean acidification. Operated by the Agency's Monaco Environmental Laboratories, the Ocean Acidification International Coordination Centre will serve the scientific community - as well as policymakers, universities, media and the general public - by facilitating, promoting and communicating global actions on ocean acidification. Growing amounts of carbon dioxide in the Earth's atmosphere are being absorbed in the planet's oceans which increases their acidity. According to the experts, ocean acidification may render most regions of the ocean inhospitable to coral reefs by 2050 if atmospheric carbon dioxide levels continue to increase. This could lead to substantial changes in commercial fish stocks, threatening food security for millions of people as well as the multi-billion dollar fishing industry. International scientists have been studying the effect and possible responses, and the new centre will help coordinate their efforts. ''During the past five years, numerous multinational and national research projects on ocean acidification have emerged and significant research advances have been made,'' said Daud bin Mohamad, IAEA Deputy Director General for Nuclear Sciences and Applications. ''The time is now ripe to provide international coordination to gain the greatest value from national efforts and research investments.'' The centre will be supported by several IAEA Member States and through the Peaceful Uses Initiative, and it will be overseen by an Advisory Board consisting of leading institutions, including the U.N. Intergovernmental Oceanographic Commission, the U.S. National Oceanic and Atmospheric Administration, the U.N. Food and Agriculture Organization, the Fondation Prince Albert II de Monaco, the OA-Reference User Group, as well as leading scientists and economists in the field. The new centre will focus on international

  19. IAEA safeguards and detection of undeclared nuclear activities

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.)

  20. IAEA safeguards and detection of undeclared nuclear activities

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.).