WorldWideScience

Sample records for hz electric currents

  1. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz)

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    This paper is the French translation of an article from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, entitled 'Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz To 100 kHz)'. In This document, guidelines are established for the protection of humans exposed to electric and magnetic fields in the low-frequency range of the electromagnetic spectrum. The general principles for the development of ICNIRP guidelines are published elsewhere (ICNIRP 2002). For the purpose of this document, the low-frequency range extends from 1 Hz to 100 kHz. Above 100 kHz, effects such as heating need to be considered, which are covered by other ICNIRP guidelines. However, in the frequency range from 100 kHz up to approximately 10 MHz protection from both, low frequency effects on the nervous system as well as high frequency effects need to be considered depending on exposure conditions. Therefore, some guidance in this document is extended to 10 MHz to cover the nervous system effects in this frequency range. Guidelines for static magnetic fields have been issued in a separate document (ICNIRP 2009). Guidelines applicable to movement-induced electric fields or time-varying magnetic fields up to 1 Hz will be published separately. This publication replaces the low-frequency part of the 1998 guidelines (ICNIRP 1998). ICNIRP is currently revising the guidelines for the high-frequency portion of the spectrum (above 100 kHz). (authors)

  2. Computer simulation of induced electric currents and fields in biological bodies by 60 Hz magnetic fields

    International Nuclear Information System (INIS)

    Xi Weiguo; Stuchly, M.A.; Gandhi, O.P.

    1993-01-01

    Possible health effects of human exposure to 60 Hz magnetic fields are a subject of increasing concern. An understanding of the coupling of electromagnetic fields to human body tissues is essential for assessment of their biological effects. A method is presented for the computerized simulation of induced electric currents and fields in bodies of men and rodents from power-line frequency magnetic fields. In the impedance method, the body is represented by a 3 dimensional impedance network. The computational model consists of several tens of thousands of cubic numerical cells and thus represented a realistic shape. The modelling for humans is performed with two models, a heterogeneous model based on cross-section anatomy and a homogeneous one using an average tissue conductivity. A summary of computed results of induced electric currents and fields is presented. It is confirmed that induced currents are lower than endangerous current levels for most environmental exposures. However, the induced current density varies greatly, with the maximum being at least 10 times larger than the average. This difference is likely to be greater when more detailed anatomy and morphology are considered. 15 refs., 2 figs., 1 tab

  3. Electric and magnetic fields related to industrial current (50-60 Hz). Medical data and present day risk assessment

    International Nuclear Information System (INIS)

    Lambrozo, J.

    2008-01-01

    The questions about the possible health impacts of electric and magnetic fields from industrial current with a 50-60 Hz frequency have led to a remarkable risk assessment approach carried out at the international scale. Pluri-disciplinary and regularly revised collective expertises (US, UK, Sweden, France, Canada, International Agency for Research on Cancer (IARC), World Health Organization..) have integrated the results of epidemiological studies and experiments on animals and biological material. The synthesis of these works is a reassuring consensus which led to the publication in June 2007 of the monograph no 238 of the 'Environmental Health Criteria' collection of the World Health Organization in Geneva. (J.S.)

  4. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.

    Science.gov (United States)

    Cappon, Davide; D'Ostilio, Kevin; Garraux, Gaëtan; Rothwell, John; Bisiacchi, Patrizia

    2016-01-01

    In a masked prime choice reaction task, presentation of a compatible prime increases the reaction time to the following imperative stimulus if the interval between mask and prime is around 80-250 ms. This is thought to be due to automatic suppression of the motor plan evoked by the prime, which delays reaction to the imperative stimulus. Oscillatory activity in motor networks around the beta frequency range of 20 Hz is important in suppression of movement. Transcranial alternating current at 20 Hz may be able to drive oscillations in the beta range. To investigate whether transcranial alternating current stimulation (tACS) at 20 Hz would increase automatic inhibition in a masked prime task. As a control we used 10 Hz tACS. Stimulation was delivered at alpha (10 Hz) and beta (20 Hz) frequency over the supplementary motor area and the primary motor cortex (simultaneous tACS of SMA-M1), which are part of the BG-cortical motor loop, during the execution of the subliminal masked prime left/right choice reaction task. We measured the effects on reaction times. Corticospinal excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) evoked in the first dorsal interosseous muscle by transcranial magnetic stimulation (TMS) over M1. The 10 and 20-Hz tACS over SMA-M1 had different effects on automatic inhibition. The 20 Hz tACS increased the duration of automatic inhibition whereas it was decreased by 10 Hz tACS. Neurophysiologically, 20 Hz tACS reduced the amplitude of MEPs evoked from M1, whereas there was no change after 10 Hz tACS. Automatic mechanisms of motor inhibition can be modulated by tACS over motor areas of cortex. tACS may be a useful additional tool to investigate the causal links between endogenous brain oscillations and specific cognitive processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Alternating current electric field effects on neural stem cell viability and differentiation.

    Science.gov (United States)

    Matos, Marvi A; Cicerone, Marcus T

    2010-01-01

    Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1-10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers

  6. INFLUENCES OF 50HZ ELECTRIC FIELDS ON GROWTH AND MULTIPLICATION OF SOME MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    VOINA A.

    2016-07-01

    Full Text Available By dielectric spectroscopy and specific microbiological techniques have been studied the development (cell multiplication of Saccharomyces cerevisiae and Aspergillus niger growing and multiplication - both on culture media with sucrose and on those with starch. The experimental results have been revealed that the biochemical processes of the studied biomasses have significant changes in certain frequencies in the range 1 - 160Hz, characteristic of the different species/metabolized carbon source, respectively species/ metabolized carbon source/ development phase. It has also been found that in the case of Saccharomyces cerevisiae, the electric field of 50 Hz up to 20V/cm reduces the length of the LAG time and increases the growth rate of intensive increasing phase. Cultures of Aspergillus niger on culture medium with sucrose are stimulated (increasing the spores production by approx. 50% and reducing the maturity time of 50Hz signals up to 15V/cm. Electric fields higher than 30 V/cm in all media and investigated cultures carry on to the growth reduction / multiplication - up to a complete inhibition of growth at approx. 50V/cm

  7. Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention.

    Science.gov (United States)

    Hopfinger, Joseph B; Parsons, Jonathan; Fröhlich, Flavio

    2017-04-01

    Previous electrophysiological studies implicate both alpha (8-12 Hz) and gamma (>30 Hz) neural oscillations in the mechanisms of selective attention. Here, participants preformed two separate visual attention tasks, one endogenous and one exogenous, while transcranial alternating current stimulation (tACS), at 10 Hz, 40 Hz, or sham, was applied to the right parietal lobe. Our results provide new evidence for the roles of gamma and alpha oscillations in voluntary versus involuntary shifts of attention. Gamma (40 Hz) stimulation resulted in improved disengagement from invalidly cued targets in the endogenous attention task, whereas alpha stimulation (10 Hz) had no effect on endogenous attention, but increased the exogenous cuing effect. These findings agree with previous studies suggesting that right inferior parietal regions may be especially important for the disengagement of attention, and go further to provide details about the specific type of oscillatory neural activity within that brain region that is differentially involved in endogenous versus exogenous attention. Our results also have potential implications for the plasticity and training of attention systems.

  8. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Lucas, J.H.; Moore, G.T.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-10-24

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible behavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The first project evaluated the potentially aversive character of exposure to 60 Hz electric fields by determining the threshold intensity that produces escape or avoidance responses. The second project estimated the threshold intensity for detection threshold was 12 kV/m; the range of means was 6 to 16 kV/m. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. 131 refs., 87 figs., 123 tabs.

  9. The effects of high frequency current ripple on electric vehicle battery performance

    International Nuclear Information System (INIS)

    Uddin, Kotub; Moore, Andrew D.; Barai, Anup; Marco, James

    2016-01-01

    Highlights: • Experimental study into the impact of current ripple on li-ion battery degradation. • 15 cells exercised with 1200 cycles coupled AC–DC signals, at 5 frequencies. • Results highlight a greater spread of degradation for cells exposed to AC excitation. • Implications for BMS control, thermal management and system integration. - Abstract: The power electronic subsystems within electric vehicle (EV) powertrains are required to manage both the energy flows within the vehicle and the delivery of torque by the electrical machine. Such systems are known to generate undesired electrical noise on the high voltage bus. High frequency current oscillations, or ripple, if unhindered will enter the vehicle’s battery system. Real-world measurements of the current on the high voltage bus of a series hybrid electric vehicle (HEV) show that significant current perturbations ranging from 10 Hz to in excess of 10 kHz are present. Little is reported within the academic literature about the potential impact on battery system performance and the rate of degradation associated with exposing the battery to coupled direct current (DC) and alternating currents (AC). This paper documents an experimental investigation that studies the long-term impact of current ripple on battery performance degradation. Initial results highlight that both capacity fade and impedance rise progressively increase as the frequency of the superimposed AC current increases. A further conclusion is that the spread of degradation for cells cycled with a coupled AC–DC signal is considerably more than for cells exercised with a traditional DC waveform. The underlying causality for this degradation is not yet understood. However, this has important implications for the battery management system (BMS). Increased variations in cell capacity and impedance will cause differential current flows and heat generation within the battery pack that if not properly managed will further reduce battery life

  10. A 175 Hz / 188 Hz active filter for private power producers; Filtre actif 175 HZ/188 HZ pour producteurs autonomes

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, P.

    1996-12-31

    The connection of certain private electric power producers on the source station bus bars may disturb the 175 Hz or 188 Hz centralized control system signals, which carry tariff messages to the Electricite de France (EDF) grid clients. A new active filter has been developed by EDF and Schlumberger, which raise the tariff signal level at the bus bars by injection of a signal with the same frequency. A prototype has been tested in real conditions

  11. Effects of electrical water bath stunning current frequencies on the spontaneous electroencephalogram and somatosensory evoked potentials in hens.

    Science.gov (United States)

    Raj, A B M; O'Callaghan, M

    2004-04-01

    1. The effectiveness of water bath electrical stunning of chickens with a constant root mean square (rms) current of 100 mA per bird delivered for 3 s using 100, 200, 400, 800 and 1500 Hz sine wave alternating current (AC) was investigated in layer hens. The quantitative changes occurring in the electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) were used to determine the effectiveness of stunning. The changes occurring in the EEG were evaluated using Fast Fourier Transformations (FFT) and the SEPs were averaged to determine whether they were present or abolished. 2. The results of FFT indicated that stunning of chickens with a constant rms current of 100 mA per bird using 100 or 200 Hz induced epileptiform activity in all the hens, immediately followed by a reduction in the total (2 to 30 Hz) and relative (13 to 30 Hz) power contents in the EEG frequency bands indicative of unconsciousness and insensibility. The SEPs were abolished in the majority of hens stunned with 100 Hz and all the hens stunned with 200 Hz. 3. By contrast, stunning using 400, 800 or 1500 Hz failed to induce epileptiform activity in all the birds, the total and relative power contents in the EEG frequency bands showed a substantial increase, rather than reduction, and the SEPs were also retained in the majority of chickens. It is therefore suggested that stunning using these frequencies failed to stun them satisfactorily. In these birds, occurrence of a painful arousal, rather than unconsciousness, could not be ruled out. 4. It is therefore suggested that water bath electrical stunning of chickens with a minimum rms current of 100 mA per bird delivered using 100 or 200 Hz would be adequate to ensure bird welfare under commercial conditions, provided both the carotid arteries in the neck are severed at slaughter. On humanitarian and bird welfare grounds, a rms current of greater than 100 mA per bird should be applied whilst using frequencies of 400 Hz or more of sine wave AC

  12. Possible health effects of 50/60 Hz electric and magnetic fields: review of proposed mechanisms

    International Nuclear Information System (INIS)

    Wood, A.W.

    1992-01-01

    There is inconclusive evidence from both epidemiological and laboratory studies that fields similar to those produced by electrical power transmission lines may contribute to certain diseases including cancer. There are several objections to a hypothesis of a direct causative link, based on identifying a mechanism of interaction. One is that the energy density of the fields is several orders of magnitude smaller than that associated with random thermal motion in biological tissue. Secondly, the induced currents are many times smaller than endogenous currents associated with normal membrane processes. A comparison of current densities and characteristics associated with field-related phenomena such as electro sensitivity in species of fish, night-time melatonin depression in rodents, limb regeneration in amphibians and magnetophosphenes in humans reveals little that can be of use in determining a 'response metric'. Nevertheless, guide-lines for the general public are in fact based on this quantity, for immediate effects at least. Indeed, currents induced by the electric component of environmental 50 Hz fields are of similar magnitude to those induced by the magnetic component, yet epidemiological studies have identified surrogates of the latter as the significant exposure metric in relation to cancer incidence. Proposed mechanisms, many of which are still at the 'working hypothesis' stage, are compared with experimental evidence. Some conflict with epidemiological evidence, itself not strong, but becoming stronger, is apparent. 131 refs., 6 figs

  13. Current densities in a pregnant woman model induced by simultaneous ELF electric and magnetic field exposure

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2008-01-01

    The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded

  14. Effects of 60 Hz electric fields on operant and social stress behavior of nonhuman primates. Quarterly technical progress report No. 20, September 28-December 20, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.

    1986-01-03

    This research program will evaluate the aversive character of exposure to 60 Hz electric fields by determining the threshold intensity which produces avoidance or escape responses, will estimate the threshold intensity for detection of 60 Hz electric fields, will assess effects of chronic exposure to 60 Hz electric fields on the performance of two operant conditioning tasks, fixed ratio and differential reinforcement of low rate responding, will investigate, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. In all experiments, the electric fields will be described, characterized, and controlled to account for recognized artifacts associated with high intensity 60 Hz electric fields and the health of all subjects will be described using the methods of primate veterinary medicine.

  15. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.

    Directory of Open Access Journals (Sweden)

    Lisa Marshall

    Full Text Available Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz during non-rapid eye movement sleep (NonREM sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies.

  16. Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, Peter

    2006-01-01

    This paper describes the development of 2 mm resolution hybrid voxel-mathematical models of the pregnant female. Mathematical models of the developing foetus at 8-, 13-, 26- and 38-weeks of gestation were converted into voxels and combined with the adult female model, NAOMI. This set of models was used to calculate induced current densities and electric fields in the foetus from applied 50 Hz magnetic and electric fields. The influence of foetal tissue conductivities was investigated and implications for electromagnetic field guidelines discussed

  17. Fault Detection based on MCSA for a 400Hz Asynchronous Motor for Airborne Applications

    Directory of Open Access Journals (Sweden)

    Steffen Haus

    2013-01-01

    Full Text Available Future health monitoring concepts in different fields of engineering require reliable fault detection to avoid unscheduled machine downtime. Diagnosis of electrical induction machines for industrial applications is widely discussed in literature. In aviation industry, this topic is still only rarely discussed.A common approach to health monitoring for electrical induction machines is to use Motor Current Signature Analysis (MCSA based on a Fast Fourier Transform (FFT. Research results on this topic are available for comparatively large motors, where the power supply is typically based on 50Hz alternating current, which is the general power supply frequency for industrial applications.In this paper, transferability to airborne applications, where the power supply is 400Hz, is assessed. Three phase asynchronous motors are used to analyse detectability of different motor faults. The possibility to transfer fault detection results from 50Hz to 400Hz induction machines is the main question answered in this research work. 400Hz power supply frequency requires adjusted motor design, causing increased motor speed compared to 50Hz supply frequency. The motor used for experiments in this work is a 800W motor with 200V phase to phase power supply, powering an avionic fan. The fault cases to be examined are a bearing fault, a rotor unbalance, a stator winding fault, a broken rotor bar and a static air gap eccentricity. These are the most common faults in electrical induction machines which can cause machine downtime. The focus of the research work is the feasibility of the application of MCSA for small scale, high speed motor design, using the Fourier spectra of the current signal.Detectability is given for all but the bearing fault, although rotor unbalance can only be detected in case of severe damage level. Results obtained in the experiments are interpreted with respect to the motor design. Physical interpretation are given in case the results differ

  18. Human exposure standards in the frequency range 1 Hz To 100 kHz: the case for adoption of the IEEE standard.

    Science.gov (United States)

    Patrick Reilly, J

    2014-10-01

    Differences between IEEE C95 Standards (C95.6-2002 and C95.1-2005) in the low-frequency (1 Hz-100 kHz) and the ICNIRP-2010 guidelines appear across the frequency spectrum. Factors accounting for lack of convergence include: differences between the IEEE standards and the ICNIRP guidelines with respect to biological induction models, stated objectives, data trail from experimentally derived thresholds through physical and biological principles, selection and justification of safety/reduction factors, use of probability models, compliance standards for the limbs as distinct from the whole body, defined population categories, strategies for central nervous system protection below 20 Hz, and correspondence of environmental electric field limits with contact currents. This paper discusses these factors and makes the case for adoption of the limits in the IEEE standards.

  19. The effects of body posture, anatomy, age and pregnancy on the calculation of induced current densities at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, P.; Findlay, R.

    2010-01-01

    This paper presents calculations of the induced current density in the body at 50 Hz from applied electric and magnetic fields. An extensive ensemble of 25 voxel models has been used to investigate the effects of body posture, anatomy, age and pregnancy. This set includes six adult models, eight child models and seven pregnant female models at various stages of gestation. The four postures investigated in the HPA adult model, NORMAN, were the standard position with the arms at the side, with the arms vertically above the head, the arms horizontally to the side and sitting. (authors)

  20. Feasibility Study of a 400 Hz, 4160 Volt 3-Phase Electrical Power Distribution System

    Science.gov (United States)

    1977-02-25

    as a potential suppliex _, the electrical equip- ment checked below which will be required for the 400 HZ power systems. A full disclosure of...1580 49 I or J 748 100 1780 1850 48 1 or J 10001 12Y2 1950 2030 48 1 or J 1092 150 2400 2495 53 I or J 1285 200 2850 2960 50 : ifr J 1875 225 3105

  1. Transcutaneous electrical nerve stimulator of 5000 Hz frequency provides better analgesia than that of 100 Hz frequency in mice muscle pain model

    Directory of Open Access Journals (Sweden)

    Hung-Tsung Hsiao

    2017-04-01

    Full Text Available Transcutaneous electrical nerve stimulators (TENSs have been proved to be effective in muscle pain management for several decades. However, there is no consensus for the optimal TENS program. Previous research demonstrated that a 100 Hz TENS (L-TENS provided better analgesia than a conventional TENS ( 100 Hz TENS with a 100 Hz TENS. We used a 5000 Hz (5 kHz frequency TENS (M-TENS and an L-TENS to compare analgesic effect on a mice skin/muscle incision retraction model. Three groups of mice were used (sham, L-TENS, and M-TENS and applied with different TENS programs on Day 4 after the mice skin/muscle incision retraction model; TENS therapy was continued as 20 min/d for 3 days. Mice analgesic effects were measured via Von Frey microfilaments with the up–down method. After therapy, mice spinal cord dorsal horn and dorsal root ganglion (DRG were harvested for cytokine evaluation (tumor necrosis factor-α and interleukin-1β with the Western blotting method. Our data demonstrated that the M-TENS produced better analgesia than the L-TENS. Cytokine in the spinal cord or DRG all expressed lower than that of the sham group. However, there is no difference in both cytokine levels between TENSs of different frequencies in the spinal cord and DRG. We concluded that the M-TENS produced faster and better mechanical analgesia than the L-TENS in the mice skin/muscle incision retraction model. Those behavior differences were not in accordance with cytokine changes in the spinal cord or DRG.

  2. Design of current source for multi-frequency simultaneous electrical impedance tomography

    Science.gov (United States)

    Han, Bing; Xu, Yanbin; Dong, Feng

    2017-09-01

    Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.

  3. Effects of 60 Hz electric fields on operant and social stress behaviors of nonhuman primates: Projects 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W.R.; Coelho, A.M. Jr.; Easley, S.P.; Orr, J.L.; Smith, H.D.; Taylor, L.L.; Tuttle, M.L.

    1987-01-01

    The objective of this program is to investigate, using the baboon as a nonhuman primate surrogate for the human, possible hehavioral effects associated with exposure to high intensity 60 Hz electric fields. Results from this program, along with information from experiments conducted elsewhere, will be used by the Department of Energy (DOE) to estimate and evaluate the likelihood of deleterious consequences resulting from exposure of humans to the electric fields associated with power transmission over high voltage lines. This research program consists of four major research projects, all of which have been successfully completed. The third project assessed, in separate experiments conducted at 30 and 60 kV/m, effects of chronic exposure to electric fields on the performance of two operant conditioning tasks, fixed ratio (FR), and differential reinforcement of low rate (DRL). In the same two experiments, the fourth project investigated, using the systematic quantitative observational sampling methods of primatology, the possible stress-inducing effects of chronic exposure to 60 Hz electric fields on the behavior of baboons living in small social groups. This volume contains only appendices for projects 3 and 4. 81 figs., 67 tabs.

  4. Electric Current Solves Mazes

    Science.gov (United States)

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  5. The Effects of 10 Hz Transcranial Alternating Current Stimulation on Audiovisual Task Switching

    Directory of Open Access Journals (Sweden)

    Michael S. Clayton

    2018-02-01

    Full Text Available Neural oscillations in the alpha band (7–13 Hz are commonly associated with disengagement of visual attention. However, recent studies have also associated alpha with processes of attentional control and stability. We addressed this issue in previous experiments by delivering transcranial alternating current stimulation at 10 Hz over posterior cortex during visual tasks (alpha tACS. As this stimulation can induce reliable increases in EEG alpha power, and given that performance on each of our visual tasks was negatively associated with alpha power, we assumed that alpha tACS would reliably impair visual performance. However, alpha tACS was instead found to prevent both deteriorations and improvements in visual performance that otherwise occurred during sham & 50 Hz tACS. Alpha tACS therefore appeared to exert a stabilizing effect on visual attention. This hypothesis was tested in the current, pre-registered experiment by delivering alpha tACS during a task that required rapid switching of attention between motion, color, and auditory subtasks. We assumed that, if alpha tACS stabilizes visual attention, this stimulation should make it harder for people to switch between visual tasks, but should have little influence on transitions between auditory and visual subtasks. However, in contrast to this prediction, we observed no evidence of impairments in visuovisual vs. audiovisual switching during alpha vs. control tACS. Instead, we observed a trend-level reduction in visuoauditory switching accuracy during alpha tACS. Post-hoc analyses showed no effects of alpha tACS in response time variability, diffusion model parameters, or on performance of repeat trials. EEG analyses also showed no effects of alpha tACS on endogenous or stimulus-evoked alpha power. We discuss possible explanations for these results, as well as their broader implications for current efforts to study the roles of neural oscillations in cognition using tACS.

  6. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

    2016-01-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

  7. 50-60 Hz electric and magnetic field effects on cognitive function in humans: A review

    International Nuclear Information System (INIS)

    Crasson, M.

    2003-01-01

    This paper reviews the effect of 50-60 Hz weak electric, magnetic and combined electric and magnetic field exposure on cognitive functions such as memory, attention, information processing and time perception, as determined by electroencephalographic methods and performance measures. Overall, laboratory studies, which have investigated the acute effects of power frequency fields on cognitive functioning in humans are heterogeneous, in terms of both electric and magnetic field (EMF) exposure and the experimental design and measures used. Results are inconsistent and difficult to interpret with regard to functional relevance for possible health risks. Statistically significant differences between field and control exposure, when they are found, are small, subtle, transitory, without any clear dose-response relationship and difficult to reproduce. The human performance or event related potentials (ERPs) measures that might specifically be affected by EMF exposure, as well as a possible cerebral structure or function that could be more sensitive to EMF, cannot be better determined. (author)

  8. Muscle oxygenation of vastus lateralis and medialis muscles during alternating and pulsed current electrical stimulation.

    Science.gov (United States)

    Aldayel, Abdulaziz; Muthalib, Makii; Jubeau, Marc; McGuigan, Michael; Nosaka, Kazunori

    2011-05-01

    This study compared between alternating and pulsed current electrical muscle stimulation (EMS) for muscle oxygenation and blood volume during isometric contractions. Nine healthy men (23-48 years) received alternating current EMS (2500 Hz) modulated at 75 Hz on the knee extensors of one leg, and pulsed current EMS (75 Hz) for the other leg separated by 2 weeks in a randomised, counter-balanced order. Pulse duration (400 μs), on-off ratio (5-15 s) and other stimulation parameters were matched between conditions and 30 isometric contractions were induced at the knee joint angle of 100° (0° full extension). Changes in tissue oxygenation index (∆TOI) and total hemoglobin volume (∆tHb) of vastus lateralis and medialis muscles over 30 contractions were assessed by a near-infrared spectroscopy, and were compared between conditions by a two-way repeated measures ANOVA. Peak torque produced during EMS increased over 30 contractions in response to the increase in the stimulation intensity for pulsed current, but not for the alternating current EMS. The torque during each isometric contraction was less stable in alternating than pulsed current EMS. The changes in ∆TOI amplitude during relaxation phases and ∆tHb amplitude were not significantly different between conditions. However, the decreases in ∆TOI amplitude during contraction phases from baseline were significantly (P < 0.05) greater for the pulsed current than alternating current from the 18th contraction (-15.6 ± 2.3 vs. -8.9 ± 1.8%) to 30th contraction (-10.7 ± 1.8 vs. -4.8 ± 1.5%). These results suggest that the muscles were less activated in the alternating current EMS when compared with the pulsed current EMS.

  9. Normal Values and Reproducibilitiy of Electric Current Perception Threshold in Sensory Fibers

    Directory of Open Access Journals (Sweden)

    Reza Salman-Roghani

    2006-04-01

    Full Text Available Objective: Routine electrodiagnosis (EMG-NCS has some shortcomings in the evaluation of peripheral nervous system, auch as autonomous nervous system evaluation, in pure sensory radiculopathies and acute hyperesthetic stages of neuropathies. Quantitative sensory testings such as current perception threshold (CPT with electrical stimulations are suggested for above mentioned pathologies. Ttest results should be compared with a normal value of similar identical population. This study is conducted to determine normal value and reproducibility of CPT in the Iranian population. Materials & Methods: Fifty normal volunteers (32 men, 18 woman in the range of 20-40 years without exclusion criteria (such as neuro- musculoskeletal disorders, diabetes mellitus and alcoholism were recruited with simple randomized selection and CPT test was conducted on C8 (4th finger and L5 (1st Toedermatomes. To determine test’s reproducibility, 6 persons (4 men, 2 women were examined 3 times a day, 2 day per week. Collected data were analyzed to determine mean and standard deviation. Results: Normal values of CPT test was defined as one standard deviation from mean of our CPT data. These values are in C8 dermatome 2000 Hz: 2.04± 47 250 Hz: 0.75±0.25 5 Hz: 0.76±0.3 and for L5 dermatome 2000Hz: 2.83± 0.73 250 Hz: 1.24 ± 45 5Hz: 0.76± 0.3 To determine our results reproducibility and reliability, Alpha- cronbach (existed in SPSS software was used and %98.5 & 99% were obtained for C8 & L5 dermatomes respectively. Conclusion: Our findings are about C8 & L5 dermatomes which could be used as a normal Values for such dermatomes. Regarding to its good correlation with international results we can use international references as a normal Valueswith consideration of each clinic’s reproducibility should be assessed individually.

  10. Interim guidelines on limits of exposure to 50/60 Hz electric and magnetic fields (1989)

    International Nuclear Information System (INIS)

    1989-12-01

    Public concern is growing and in many countries regulatory and advisory agencies have been requested to evaluate possible adverse effects of extremely low frequency electromagnetic fields on human health (Grandolfo and Vecchia, 1989). From a review of the scientific literature it is apparent that gaps exist in our knowledge and more data need to be collected to answer unresolved questions concerning biological effects of exposure to these fields. On the other hand, analysis of the existing literature does not provide evidence that exposure at present day levels has a public health impact which would require corrective action. In several countries there is an ongoing controversy between proponents of restrictive protective measures and advocates of technological growth leading to an increase in exposure levels. It thus appeared that there was a need for guidelines on exposure limits based on a objective analysis of currently available knowledge. These guidelines are intended to protect the health of humans from the potentially harmful effects of exposure to electric and magnetic fields at frequencies of 50/60 Hz, and are primarily based on established or predicted effects. 43 refs., 1 tab

  11. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air

    Science.gov (United States)

    Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš

    2018-04-01

    Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.

  12. Students’ mental model in electric current

    Science.gov (United States)

    Pramesti, Y. S.; Setyowidodo, I.

    2018-05-01

    Electricity is one of essential topic in learning physics. This topic was studied in elementary until university level. Although electricity was related to our daily activities, but it doesn’t ensure that students have the correct concept. The aim of this research was to investigate and then categorized the students’ mental model. Subject consisted of 59 students of mechanical engineering that studied Physics for Engineering. This study was used a qualitative approach that used in this research is phenomenology. Data were analyzed qualitatively by using pre-test, post-test, and investigation for discovering further information. Three models were reported, showing a pattern which related to individual way of thinking about electric current. The mental model that was discovered in this research are: 1) electric current as a flow; 2) electric current as a source of energy, 3) electric current as a moving charge.

  13. [National system of protection against electromagnetic fields 0 Hz-300 GHz in the light of current legal regulations].

    Science.gov (United States)

    Aniołczyk, Halina

    2006-01-01

    Exposure to electromagnetic fields (EMF) occurs when man is exposed to the effect of electric, magnetic and electromagnetic fields and contact currents different from those resulting from physiological processes in the organism or other natural phenomena. In Poland, the system of protection against EMF has been functioning for over 35 years. In 2001, when the Minister of Labor and Social Policy issued the regulation introducing the maximum admissible intensities (MAI) for electromagnetic fields and radiation within the range of 0 Hz-300 GHz, the system was directed mainly towards evaluation of exposure to EMF occurring in the occupational environment. The system is linked via MAI values with human protection in the natural environment. In this paper, the background, principles and the range of the national system of protection against EMF and its monitoring are presented. The project of implementation of EU directives, following Poland's accession to the European Union is also discussed.

  14. The 2 Hz and 15 Hz electroacupuncture induced reverse effect on autonomic function in healthy adult using a heart rate variability analysis

    Directory of Open Access Journals (Sweden)

    Bor-An Jia

    2011-10-01

    Full Text Available The purpose of the present study was to investigate effect of electro-acupuncture (EA at different frequencies on autonomic function. Twenty healthy adult volunteers were studied, and underwent 4 sessions of EA (sham, 2 Hz, 15 Hz, and 50 Hz. Sham, 2 Hz, 15 Hz, and 50 Hz EA was applied to the bilateral Leg Three Li (足三里 zú sān lǐ, ST-36 and Upper Great Hollow (上巨虛 shàng jù xū, ST-37 acupoints. The intensity of electrical stimulation was adjusted to obtain visible twitching of the anterior tibial muscle about 2.0-2.5 mA except sham without electrical stimulation. The components of heart rate variability (HRV and blood pressure were measured before EA (BLP, EA (EAP, and post-EA periods (PEP. The results indicated that the natural logarithmic high frequency power (lnHF of HRV was greater during PEP than during the BLP in the 2 Hz EA sessions. The natural logarithmic low frequency power (lnLF of HRV was greater during the PEP than during the BLP in 15 Hz EA sessions, suggesting that 2 Hz EA apply to Leg Three Li (足三里 zú sān lǐ, ST-36 and Upper Great Hollow (上巨虛 shàng jù xū, ST-37 acupoints increased vagal activity, whereas 15 Hz EA increased sympathetic activity.

  15. Computational thermodynamics in electric current metallurgy

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Qin, R.S.

    2015-01-01

    . The method has been validated against the analytical solution of current distribution and experimental observation of microstructure evolution. It provides a basis for the design, prediction and implementation of the electric current metallurgy. The applicability of the theory is discussed in the derivations.......A priori derivation for the extra free energy caused by the passing electric current in metal is presented. The analytical expression and its discrete format in support of the numerical calculation of thermodynamics in electric current metallurgy have been developed. This enables the calculation...... of electric current distribution, current induced temperature distribution and free energy sequence of various phase transitions in multiphase materials. The work is particularly suitable for the study of magnetic materials that contain various magnetic phases. The latter has not been considered in literature...

  16. Physiologic response of rats to cold stress after exposure to 60-Hz electric fields

    International Nuclear Information System (INIS)

    Hilton, D.I.; Phillips, R.D.; Free, M.J.; Lang, L.L.; Chandon, J.H.; Kaune, W.T.

    1978-01-01

    In two experiments, the responses of the hypothalamo-pituitary-adrenal, thermoregulatory and cardiovascular systems were assessed in rats subjected to cold stress after exposure to uniform 60-Hz electric fields of 100 kV/m for one month. In the first experiment, plasma corticosterone levels were measured following exposure or sham exposure with the animals maintained at room temperature (∼23 deg). Corticosterone levels were also measured in rats subjected to cold stress (-13 deg. for one hour) immediately after the exposure period. Plasma corticosterone levels in the cold-stressed animals were significantly higher than in those kept at room temperature; however, there were no significant differences between exposed and sham-exposed animals for either the ambient or cold-stress situations. The second experiment followed the same field exposure and cold-stress protocol, only measurements of heart rate, deep colonic temperature and skin temperature were made before, during and after cold-stressing. The results for exposed and sham-exposed animals were essentially identical, failing to demonstrate any effect of electric field exposure on thermoregulatory and cardiovascular response to cold stress. (author)

  17. Electric Currents along Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    Ioannis Contopoulos

    2017-10-01

    Full Text Available Astrophysical black holes and their surrounding accretion disks are believed to be threaded by grand design helical magnetic fields. There is strong theoretical evidence that the main driver of their winds and jets is the Lorentz force generated by these fields and their associated electric currents. Several researchers have reported direct evidence for large scale electric currents along astrophysical jets. Quite unexpectedly, their directions are not random as would have been the case if the magnetic field were generated by a magnetohydrodynamic dynamo. Instead, in all kpc-scale detections, the inferred electric currents are found to flow away from the galactic nucleus. This unexpected break of symmetry suggests that a battery mechanism is operating around the central black hole. In the present article, we summarize observational evidence for the existence of large scale electric currents and their associated grand design helical magnetic fields in kpc-scale astrophysical jets. We also present recent results of general relativistic radiation magnetohydrodynamic simulations which show the action of the Cosmic Battery in the vicinity of astrophysical black holes.

  18. Relationships between the Birkeland currents, ionospheric currents, and electric fields

    International Nuclear Information System (INIS)

    Bleuler, E.; Li, C.H.; Nisbet, J.S.

    1982-01-01

    Calculations are made of the currents and electric fields in the ionosphere by using a global model of the electron densities including conjugate coupling along field lines. Incoherent scatter and rocket measurements of high-latitude electron densities have been used to derive realistic variations of the polar conductivities as a function of magnetic activity. The Birkeland currents have been specified in terms of three indices, the total current into and out of the hemisphere, the ratio of the magnitudes of the currents in the AM and PM sectors, R/sub ap/ , and R 12 , the ratio of the magnitudes of the currents in region 1 and 2. The relationship between these parameters of the Birkeland current systems and the auroral electrojet indices AE, AL, and AU is examined as well as the polar cap potential and the electric field at lower latitudes. The cusp currents have been modeled in relation to the interplanetary magnetic field and calculations are given of their effect on electric field and current patterns. One aim of this study is to produce a mathematical model of the currents, electric fields and energy inputs produced by field aligned currents that is consistent with, and specifiable in terms of, measured geophysical indices

  19. Observations of 50/60 Hz Power Line Radiation in the Low Latitude Ionosphere Detected by the Electric Field Instrument on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R. F., Jr.; Freudenreich, H. T.; Simoes, F. A.; Liebrecht, M. C.; Farrell, W.

    2017-12-01

    One of the most ubiquitous forms of EM radiation emanating from the earth's surface is that of power line radiation. Associated with AC electric power generation, such emissions are typically launched along conducting power lines that may travel hundreds, or even thousands of km, from generating stations. The fundamental frequencies of such emissions are characteristically 50 Hz or 60 Hz, depending on the regional standards for power generation/consumption. The frequency of this radiation is well below that of the plasma frequency of the ionosphere (typically several MHz) and hence is expected to reflect back to the earth and propagate in the waveguide formed by the earth's surface and the bottom ledge of the ionosphere, typically near 100 km. Given that such power lines are widespread on the exposed lithosphere, the leakage of some ELF emissions associated with electric power generation might nevertheless be expected in the ionosphere, in the same manner in which a small fraction of the power associated with ELF Schumann resonances and lightning sferics have been shown to penetrate into the ionosphere. We present direct measurements of 50/60 Hz power line radiation detected by in situ probes on an orbiting satellite in the earth's ionosphere. The data were gathered by the Vector Electric Field Investigation (VEFI) tri-axial double probe detector flown on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS was launched in April, 2008 into a low latitude (13 deg inclination) orbit with perigee and apogee of 400 km and 850 km, respectively. The electric field wave data were gathered by ELF receivers comprised of two orthogonal broadband channels sampled at 512 s/sec each, and digitized with 16 bit A/D converters. The data show distinct 60 Hz emissions while the satellite sampled within the Brazilian sector whereas distinct 50 Hz emissions were detected over India. Other, less distinct, emissions were observed over Africa and southeast Asia

  20. Compact 4-kHz XeF-laser with multisectional discharge gap

    Science.gov (United States)

    Andramanov, A. V.; Kabaev, S. A.; Lazhintsev, Boris V.; Nor-Arevyan, Vladimir A.; Selemir, V. D.

    2005-03-01

    An electric-discharge XeF-laser with a pulse repetition rate up to 4 kHz was developed. The laser electrode unit was made on the basis of plate-like electrodes with inductive-capacity discharge stabilization. The narrow discharge width laser energy was 3 mJ by using He/Xe/NF3 and Ne/Xe/NF3 mixtures at the total pressure of 0.8 atm and 1.2 atm, respectively. The maximum laser efficiency was ~ 0.73% The gas flow was formed with the help of a diametrical fan rotated by the direct-current motor with 80 W power. The gas velocity of 20 m/s in the interelectrode gap was achieved. The laser pulse energy for a pulse repetition rate up to 3.5...4 kHz was virtually equal to the laser pulse energy in the infrequently-repeating-pulse regime. The average output power of 12 W at the pulse repetition rate of 4 kHz was achieved. The relative root-mean-square pulse-to-pulse variation of the output energy σ = 2.5% was reached.

  1. Low-frequency transient electric and magnetic fields coupling to child body

    International Nuclear Information System (INIS)

    Ozen, S.

    2008-01-01

    Much of the research related to residential electric and magnetic field exposure focuses on cancer risk for children. But until now only little knowledge about coupling of external transient electric and magnetic fields with the child's body at low frequency transients existed. In this study, current densities, in the frequency range from 50 Hz up to 100 kHz, induced by external electric and magnetic fields to child and adult human body, were investigated, as in residential areas, electric and magnetic fields become denser in this frequency band. For the calculations of induced fields and current density, the ellipsoidal body models are used. Current density induced by the external magnetic field (1 μT) and external electric field (1 V/m) is estimated. The results of this study show that the transient electric and magnetic fields would induce higher current density in the child body than power frequency fields with similar field strength. (authors)

  2. Analytical and experimental discussion of a circuit-based model for compact fluorescent lamps in a 60Hz power grid

    Directory of Open Access Journals (Sweden)

    Gabriel Alexis Malagon

    2015-06-01

    Full Text Available This article presents an analysis and discussion on the performance of a circuit-based model for Compact Fluorescent Lamps (CFL in a 120V 60Hz power grid. This model is proposed and validated in previous scientific literature for CFLs in 230V 50Hz systems. Nevertheless, the derivation of this model is not straightforward to follow and its performance in 120V 60Hz systems is a matter of research work. In this paper, the analytical derivation of this CFL model is presented in detail and its performance is discussed when predicting the current of a CFL designed to operate in a 120V 60Hz electrical system. The derived model is separately implemented in both MATLAB® and ATP-EMTP® software using two different sets of parameters previously proposed for 230V 50Hz CFLs. These simulation results are compared against laboratory measurements using a programmable AC voltage source. The measurements and simulations considered seven CFLs 110/127V 60Hz with different power ratings supplied by a sinusoidal (not distorted voltage source. The simulations under these conditions do not properly predict the current measurements and therefore the set of parameters and/or the model itself need to be adjusted for 120V 60Hz power grids.

  3. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  4. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current

    International Nuclear Information System (INIS)

    Spottorno, J; Rivero, G; Venta, J de la; Multigner, M; Alvarez, L; Santos, M

    2008-01-01

    The purpose of this work is to study the changes of the bioimpedance from its 'in vivo' value to the values measured in a few hours after the excision from the body. The evolution of electrical impedance with time after surgical extraction has been studied on two porcine organs: the liver and the kidney. Both in vivo and ex vivo measurements of electrical impedance, measuring its real and imaginary components, have been performed. The in vivo measurements have been carried out with the animal anaesthetized. The ex vivo measurements have been made more than 2 h after the extraction of the organ. The latter experiment has been carried out at two different stabilized temperatures: at normal body temperature and at the standard preservation temperature for transplant surgery. The measurements show a correlation between the biological evolution and the electrical bioimpedance of the organs, which increases from its in vivo value immediately after excision, multiplying its value by 2 in a few hours

  5. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current

    Energy Technology Data Exchange (ETDEWEB)

    Spottorno, J; Rivero, G; Venta, J de la [Instituto de Magnetismo Aplicado (ADIF-UCM-CSIC), PO Box 155, Las Rozas, Madrid 28230 (Spain); Multigner, M [Departamento de Fisica de Materiales, UCM, Ciudad Universitaria, 28040 Madrid (Spain); Alvarez, L; Santos, M [Centro de Investigacion Biomedica en Red en BioingenierIa, Biomateriales y Nanomedicina (CIBER-BBN), Madrid (Spain)

    2008-03-21

    The purpose of this work is to study the changes of the bioimpedance from its 'in vivo' value to the values measured in a few hours after the excision from the body. The evolution of electrical impedance with time after surgical extraction has been studied on two porcine organs: the liver and the kidney. Both in vivo and ex vivo measurements of electrical impedance, measuring its real and imaginary components, have been performed. The in vivo measurements have been carried out with the animal anaesthetized. The ex vivo measurements have been made more than 2 h after the extraction of the organ. The latter experiment has been carried out at two different stabilized temperatures: at normal body temperature and at the standard preservation temperature for transplant surgery. The measurements show a correlation between the biological evolution and the electrical bioimpedance of the organs, which increases from its in vivo value immediately after excision, multiplying its value by 2 in a few hours.

  6. Compact generator with semiconductor current interrupter, voltage to 300 kV and pulse repetition rate to 2 kHz

    International Nuclear Information System (INIS)

    Lyubutin, S.K.; Rukin, S.N.; Slovikovskij, B.G.

    2000-01-01

    Compact generator with a semiconductor current interrupter (SOS-diode), forming on the resistive load pulses with the amplitude up to 300 kV, duration from 30 up to 50 ns and the pulse sequence frequency 300 Hz by long operation and up to 2 kHz in the 30-second packet, is described. The generator contains a thyristor charge unit, magnetic compressor and inductive storage with a semiconductor current interrupter on the SOS-diode basis. The generator mean output capacity by the pulse maximum sequence frequency and 250 kV voltage equals 16 kw. The generator dimensions are 0.85 x 0.65 x 0.42 m, its mass equals approximately 115 kg [ru

  7. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Tonya M Moloney

    Full Text Available BACKGROUND: The primary motor cortex (M1 is an effective target of non-invasive cortical stimulation (NICS for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. OBJECTIVE: Here we investigate whether transcranial direct current stimulation (tDCS primed 1 Hz repetitive transcranial magnetic stimulation (rTMS modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. METHOD: 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. RESULTS: Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (p<0.001 with a parallel increase in pressure pain thresholds (p<0.01. In contrast, anodal tDCS-primed 1 Hz-rTMS resulted in a corresponding decrease in cortical excitability (p<0.05, with no significant effect on pressure pain. CONCLUSION: This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  8. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation.

    Science.gov (United States)

    Moloney, Tonya M; Witney, Alice G

    2014-01-01

    The primary motor cortex (M1) is an effective target of non-invasive cortical stimulation (NICS) for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. Here we investigate whether transcranial direct current stimulation (tDCS) primed 1 Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs) from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST) through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (ppain thresholds (ppain. This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.

  9. Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches

    Science.gov (United States)

    Seo, Sukho; Choi, Gyudong; Eom, Tae Jhoun; Lee, Bokwon; Lee, Soo Yeol

    2017-07-01

    The eddy current responses of Electrical Discharge Machining (EDM) notches and fatigue cracks are directly compared to verify the reliability of eddy current inspection. The fatigue crack growth tests using a constant load range control mode were conducted to obtain a variety of edge crack sizes, ranging from 0.9 to 6.6 mm for Al alloy and from 0.1 to 3 mm for Ti alloy. EDM notch specimens of Al and Ti alloys were accordingly prepared in lengths similar to that of the fatigued specimen. The crack length was determined by optical microscope and scanning electron microscope. The eddy current responses between the EDM and fatigued specimens with varying notch/crack length were examined using probe sensors at (100-500) kHz and (1-2) MHz for Al and Ti alloys, respectively. The results show a significant difference in the eddy current signal between the two specimens, based on the correlation between the eddy current response and notch/crack length. This suggests that eddy current inspection using the EDM reference specimen is inaccurate in determining the precise crack size, unless the eddy current response data base is obtained from a fatigue-cracked specimen.

  10. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells.

    Science.gov (United States)

    Lim, Ji-Hey; McCullen, Seth D; Piedrahita, Jorge A; Loboa, Elizabeth G; Olby, Natasha J

    2013-10-01

    Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.

  11. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  12. Analytical solutions of electric potential and impedance for a multilayered spherical volume conductor excited by time-harmonic electric current source: application in brain EIT

    International Nuclear Information System (INIS)

    Xiao Chunyan; Lei Yinzhao

    2005-01-01

    A model of a multilayered spherical volume conductor with four electrodes is built. In this model, a time-harmonic electric current is injected into the sphere through a pair of drive electrodes, and electric potential is measured by the other pair of measurement electrodes. By solving the boundary value problem of the electromagnetic field, the analytical solutions of electric potential and impedance in the whole conduction region are derived. The theoretical values of electric potential on the surface of the sphere are in good accordance with the experimental results. The analytical solutions are then applied to the simulation of the forward problem of brain electrical impedance tomography (EIT). The results show that, for a real human head, the imaginary part of the electric potential is not small enough to be ignored at above 20 kHz, and there exists an approximate linear relationship between the real and imaginary parts of the electric potential when the electromagnetic parameters of the innermost layer keep unchanged. Increase in the conductivity of the innermost layer leads to a decrease of the magnitude of both real and imaginary parts of the electric potential on the scalp. However, the increase of permittivity makes the magnitude of the imaginary part of the electric potential increase while that of the real part decreases, and vice versa

  13. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    Science.gov (United States)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  14. Animal experimentation contribution to the study of electric and magnetic fields (50/60 Hz) effects; Contribution de l`experimentation animale a l`etude des effets des champs electriques et magnetiques (50/60 Hz)

    Energy Technology Data Exchange (ETDEWEB)

    Lambrozo, J. [Electricite de France (EDF), 75 - Paris (France); Brugere, H. [Ecole Nationale Veterinaire d`Alfort, 94 - Maison-Alfort (France)

    1996-10-01

    Since 20 years, studies have been made on the biological effects of 50 / 60 Hz electric and magnetic fields, due to environmental exposure. Two topic have been studied, thanks to rat experimentation. For the first topic: mutagen and reproduction impacts, no obvious effect appeared. For the second one, concerning carcinogen effects for the different organs, a slight tumor promoting effect appeared with magnetic fields for cerebral cortex, and a slightly more significant one for mammary glands. (D.L.)

  15. Measurement of the exposure of the Swiss population to magnetic fields of 50 Hz power frequency and 16 2/3 Hz in railways

    International Nuclear Information System (INIS)

    Stratmann, M.; Wernli, C.

    1996-01-01

    All installations that generate, transmit, or use electric power cause electric and magnetic fields. Common to all types of sources is a strong dependence of the magnetic flux density on the distance to the source. However, this information is not sufficient to know to what degree various parts of the population are exposed to magnetic fields during the different periods of the day. For this reason a study was carried out to assess the typical exposure of the Swiss population to the magnetic fields of 50 Hz power frequency and to 16 2/3 Hz magnetic fields in railways. A method of data reduction that allows for the determination of frequency distribution and percentiles for any selection of measurements was applied. (author)

  16. A complete electrical hazard classification system and its application

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of

  17. Evaluation of electrical stunning of sea bass (Dicentrarchus labrax) in seawater and killing by chilling: wel;fare aspects, product quality and possibilities for implementation

    NARCIS (Netherlands)

    Lambooij, E.; Gerritzen, M.A.; Reimert, H.G.M.; Burggraaf, D.; Andre, G.; Vis, van de J.W.

    2008-01-01

    The objective was to assess neural, behavioural responses and product quality in farmed sea bass (Dicentrarchus labrax) upon electrical stunning in seawater. The electrical sinusoidal 50 Hz or pulse square wave alternating 133 Hz current induced a general epileptiform insult with a current of

  18. Electric current-driven migration of electrically neutral particles in liquids

    International Nuclear Information System (INIS)

    Zhang, Xinfang; Qin, Rongshan

    2014-01-01

    We design and experimentally demonstrate a migration of electrically neutral particles in liquids driven by electric current according to the discrepancies of their electrical conductivities. A force from electric current to electrically neutral particles has been identified to drive the particles toward the lateral surface from the centre of suspension via three distinguishable zones, namely, pushing, trapping, and expelling zones. The driving force can overtake gravity in practical cases. The property of the force is found neither similar to that of the force in electromagnetophoresis nor similar to that of the electromigration force in terms of direction and magnitude. An expression for the force at the pushing zone has been developed based on the numerical calculation of the thermodynamics of suspension fluids. The excellent agreement between numerical calculations and experimental data demonstrates that our calculation provides fundamental and predictive insight into particles separation from the liquids. Therefore, it is possible to use the force in many engineering applications such as separation of particles according to the differences of their electrical conductivities

  19. Using high sampling rate (10/20 Hz) altimeter data for the observation of coastal surface currents: A case study over the northwestern Mediterranean Sea

    Science.gov (United States)

    Birol, Florence; Delebecque, Caroline

    2014-01-01

    Satellite altimetry, measuring sea surface heights (SSHs), has unique capabilities to provide information about the ocean dynamics. In this paper, the skill of the original full rate (10/20 Hz) measurements, relative to conventional 1-Hz data, is evaluated in the context of coastal studies in the Northwestern Mediterranean Sea. The performance and the question of the measurement noise are quantified through a comparison with different tide gauge sea level time series. By applying a specific processing, closer than 30 km to the land, the number of valid data is higher for the 10/20-Hz than for the 1-Hz observations: + 4.5% for T/P, + 10.3 for Jason-1 and + 13% for Jason-2. By filtering higher sampling rate measurements (using a 30-km cut-off low-pass Lanczos filter), we can obtain the same level of sea level accuracy as we would using the classical 1-Hz altimeter data. The gain in near-shore data results in a better observation of the Liguro-Provençal-Catalan Current. The seasonal evolution of the currents derived from 20-Hz data is globally consistent with patterns derived from the corresponding 1-Hz observations. But the use of higher frequency altimeter measurements allows us to observe the variability of the regional flow closer to the coast (~ 10-15 km from land).

  20. Electric current arising from unpolarized polyvinyl formal

    Indian Academy of Sciences (India)

    Unknown

    An appreciable electric current is observed in a system consisting of a polyvinyl formal (PVF) film in a sandwich ... Electric current; open circuit voltage; water activated phenomenon; plasticization effect. 1. Introduction ... either the trapping parameters or the distribution of the ..... For this reason contact potential drop between.

  1. Electric currents in cosmic plasmas

    International Nuclear Information System (INIS)

    Alfven, H.

    1977-05-01

    Since the beginning of the century physics has been dualistic in the sense that some phenomena are described by a field concept, others by a particle concept. This dualism is essential also in the physics of cosmical plasmas: some phenomena should be described by a magnetic field formalism, others by an electric current formalism. During the first period of evolution of cosmic plasma physics the magnetic field aspect has dominated, and a fairly exhaustive description has been given of those phenomena--like the propagation of waves--which can be described in this way. We have now entered a second period which is dominated by a systematic exploration of the particle (or current) aspect. A survey is given of a number of phenomena which can be understood only from the particle aspect. These include the formation of electric double layers, the origin of explosive events like magnetic substorms and solar flares, and further, the transfer of energy from one region to another. A useful method of exploring many of these phenomena is to draw the electric circuit in which the current flows and study its properties. A number of simple circuits are analyzed in this way. (author)

  2. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  3. Impact Analysis of Electrical Current Characteristics in Relay Function for Electrical and Electronic Protection

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawadi Hasim

    2013-01-01

    This paper is to study effect of electrical current on relay reaction, which has coil and switch inside the relay. An analysis on the electrical current will be conducted to determine current limitation for relay activation purpose. The result of analysis showing that current characteristic of relay and applied load will present their affect to the relay function performance. Finding from this result will bring the idea to develop a suitable design circuit for electrical and electronic protection. (author)

  4. EV drivetrain inverter with V/HZ optimization

    Science.gov (United States)

    Gritter, David J.; O'Neil, Walter K.

    1986-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

  5. Electric properties of biodiesel in the range from 20 Hz to 20 MHz. Comparison with diesel fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Prieto, L.E. [Grupo de Energias Renovables, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, Buenos Aires, 1063 (Argentina); Sorichetti, P.A. [Laboratorio de Sistemas Liquidos, Facultad de Ingenieria, Universidad de Buenos Aires, Buenos Aires (Argentina); Romano, S.D. [Grupo de Energias Renovables, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, Buenos Aires, 1063 (Argentina); CONICET: Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, Buenos Aires, 1033 (Argentina)

    2008-07-15

    Determination of electric properties at the different steps of biodiesel (BD) production contributes to a better understanding of the influence of the variables. Measurements of complex permittivity and conductivity make possible to survey efficiently the diverse steps of the industrial-scale production process, from the conditioning of the raw material to the quality control of the final product. Moreover, electrical measurements are 'non-destructive' and require relatively small sample volumes. In this work, complex permittivity spectra of BD and DF from 20 Hz to 20 MHz are presented. Experimental data were taken in a range of temperatures from 25 to 75 C, measured with an accuracy of {+-}0.1 C. The measuring system used in this work requires a sample volume of 25cm{sup 3} and gives the real part of permittivity ({epsilon}{sup '}) with an accuracy better than 1%. Dielectric loss (tg{delta}) can be measured between 10{sup -2} and 10{sup 2}. (author)

  6. Measurement of AC electrical characteristics of SSC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Smedley, K.M.; Shafer, R.E.

    1992-01-01

    Experiments were conducted to measure the AC electrical characteristics of SSC superconducting dipole magnets over the frequency range of 0.1 Hz to 10 kHz. A magnet equivalent circuit representing the magnet DC inductance, eddy current losses, coil-to-ground and turn-to-turn capacitance, was synthesized from the experimental data. This magnet equivalent circuit can be used to predict the current ripple distribution along the superconducting magnet string and can provide dynamic information for the design of the collider current regulation loop

  7. Electric current model of magnetosphere

    International Nuclear Information System (INIS)

    Alfen, H.

    1979-05-01

    A dualism between the field and the particle approach exists also in plasma physics. A number of phenomena, such as the formation of double layers and the energy transport form one region to another, can be understood only by the particle (electric current) description. Hence a translation of the traditional field description into a particle (electric current) description is essential. Such a translation has earlier been made for the heliosphere. The purpose of this paper is to outline a similar application to the magnetosphere, focussing on the energy transfer from the solar wind. As a first approximation a magnetic field consisting of a dipole field and homogeneous magnetic field is used whereas in a second approximation the configuration is more realistic. (author)

  8. Magnetic storm effects in electric power systems and prediction needs

    Science.gov (United States)

    Albertson, V. D.; Kappenman, J. G.

    1979-01-01

    Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.

  9. Computational assessment of pregnant woman models exposed to uniform ELF-magnetic fields: compliance with the European current exposure regulations for the general public and occupational exposures at 50 Hz

    International Nuclear Information System (INIS)

    Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo; Douglas, Mark; Capstick, Myles; Kuster, Niels

    2016-01-01

    The Recommendation 1999/529/EU and the Directive 2013/35/EU suggest limits for both general public and occupational exposures to extremely low-frequency magnetic fields, but without special limits for pregnant women. This study aimed to assess the compliance of pregnant women to the current regulations, when exposed to uniform MF at 50 Hz (100 μT for EU Recommendation and 1 and 6 mT for EU Directive). For general public, exposure of pregnant women and fetus always resulted in compliance with EU Recommendation. For occupational exposures, (1) Electric fields in pregnant women were in compliance with the Directive, with exposure variations due to fetal posture of 40 % in head tissues, (3) Electric fields in fetal CNS tissues of head are above the ICNIRP 2010 limits for general public at 1 mT (in 7 and 9 months gestational age) and at 6 mT (in all gestational ages). (authors)

  10. Electric fields and monopole currents in compact QED

    International Nuclear Information System (INIS)

    Zach, M.; Faber, M.; Kainz, W.; Skala, P.

    1995-01-01

    The confinement in compact QED is known to be related to magnetic monopoles. Magnetic currents form a solenoid around electric flux lines between a pair of electric charges. This behaviour can be described by the dual version of Maxwell-London equations including a fluctuating string. We use a definition of magnetic monopole currents adjusted to the definition of the electric field strength on a lattice and get good agreement for field and current distributions between compact QED and the predictions of dual Maxwell-London equations. Further we show that the monopole fluctuations in the vacuum are suppressed by the flux tube. ((orig.))

  11. Probing electric and magnetic fields with a Moiré deflectometer

    Science.gov (United States)

    Lansonneur, P.; Bräunig, P.; Demetrio, A.; Müller, S. R.; Nedelec, P.; Oberthaler, M. K.

    2017-08-01

    A new contact-free approach for measuring simultaneously electric and magnetic field is reported, which considers the use of a low energy ion source, a set of three transmission gratings and a position sensitive detector. Recently tested with antiprotons (Aghion et al., 2014) [1] at the CERN Antiproton Decelerator facility, this paper extends the proof of principle of a moiré deflectometer (Oberthaler et al., 1996) [2] for distinguishing electric from magnetic fields and opens the route to precision measurements when one is not limited by the ion source intensity. The apparatus presented, whose resolution is mainly limited by the shot noise is able to measure fields as low as 9 mVm-1 Hz-1/2 for electric component and 100 μG Hz-1/2 for the magnetic component. Scaled to 100 nm pitch for the gratings, accessible with current state-of-the-art technology [3], the moiré fieldmeter would be able to measure fields as low as 22 μVm-1 Hz-1/2 and 0.2 μG Hz-1/2.

  12. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    International Nuclear Information System (INIS)

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.I.; Wilson, B.W.

    1988-02-01

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats and the findings are generally consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations. 15 refs., 1 fig., 1 tab

  13. Study on Electric field assisted low frequency (20 kHz) ultrasonic spray

    Science.gov (United States)

    Chae, Ilkyeong; Seong, Baekhoon; Marten, Darmawan; Byun, Doyoung

    2015-11-01

    Ultrasonic spray is one of the fabulous techniques to discharge small size of droplets because it utilizes ultrasonic vibration on nozzle. However, spray patterns and size of ejected droplet is hardly controlled in conventional ultrasonic spray method. Therefore, here we present electric field assisted ultrasonic spray, which combined conventional technique with electric field in order to control spray pattern and droplet size precisely. Six kinds of various liquid (D.I water, Ethanol, Acetone, Iso-propanol, Toluene, Hexane) with various dielectric constants were used to investigate the mechanism of this method. Also, PIV (Particle Image Velocimetry) was used and various variables were obtained including spray angle, amplitude of liquid vibration, current, and size distribution of ejected droplets. Our electric field assisted ultrasonic spray show that the standard deviation of atomized droplet was decreased up to 39.6%, and it shows the infinite possibility to be utilized in various applications which require precise control of high transfer efficiency. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014-023284).

  14. Modification of genetic effect of gamma irradiation by electric current

    International Nuclear Information System (INIS)

    Grigor'eva, N.N.; Shakhbazov, V.G.

    1985-01-01

    The effect of direct electric current of different value and polarity on genetic sequences of γ-irradiation of Vicia faba seedlings has been studied. The previously found modifying effect of direct electric current is confirmed. The extent and character of this effect depend on the value and polarity of current as well as time between irradiation and electric effects. Current effect modes having no effect on irradiated seedlings protecting cells from injury and the modes aggravating radiation effect have been found. At certain modes the effects of direct electric current on irradiated seedlings changes in the rearrangement spectrum are observed, particularly the number of bridges is increased

  15. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long...... an associated electric source connected to a set of input terminals. This is obtained by the two or more electric swiches being connected and controlled to short-circuit the input terminals during a part of a switching period. Further, a low pass filter with a capacitor and an inductor are provided to low pass...

  16. Electric current sensors: a review

    International Nuclear Information System (INIS)

    Ripka, Pavel

    2010-01-01

    The review makes a brief overview of traditional methods of measurement of electric current and shows in more detail relatively new types of current sensors. These include Hall sensors with field concentrators, AMR current sensors, magneto-optical and superconducting current sensors. The influence of the magnetic core properties on the error of the current transformer shows why nanocrystalline materials are so advantageous for this application. Built-in CMOS current sensors are important tools for monitoring the health of integrated circuits. Of special industrial value are current clamps which can be installed without breaking the measured conductor. Parameters of current sensors are also discussed, including geometrical selectivity. This parameter specific for current sensors means the ability to suppress the influence of currents external to the sensor (including the position of the return conductor) and also suppress the influence on the position of the measured conductor with respect to the current. (topical review)

  17. Note: a high-sensitivity current sensor based on piezoelectric ceramic Pb(Zr,Ti)O3 and ferromagnetic materials.

    Science.gov (United States)

    He, Wei; Li, Ping; Wen, Yumei; Zhang, Jitao; Yang, Aichao; Lu, Caijiang

    2014-02-01

    An electric current sensor using piezoelectric ceramic Pb(Zr,Ti)O3 (PZT) sandwiched between two high permeability cuboids and two NdFeB magnets is presented. The magnetic field originating from an electric wire is augmented by the high permeability cuboids. The PZT plate experiences an enhanced magnetic force and generates voltage output. When placed with a distance of d = 5.0 mm from the wire, the sensor shows a flat sensitivity of ∼5.7 mV/A in the frequency range of 30 Hz-80 Hz and an average sensitivity of 5.6 mV/A with highly linear behavior in the current range of 1 A-10 A at 50 Hz.

  18. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  19. Electric current - frequency converter

    International Nuclear Information System (INIS)

    Kumahara, Tadashi; Kinbana, Setsuro.

    1967-01-01

    Herein disclosed is an improved simple electric current-frequency converter, the input current and output frequency linearity of which is widened to a range of four to five figures while compensating, for temperature. The converter may be used for computor processing and for telemetering the output signals from a nuclear reactor. The converter is an astable multivibrator which includes charging circuits comprising emitter-voltage compensated NPN transistors, a charged voltage detecting circuit of temperature compensated field effect transistors, and a transistor switching circuit for generating switching pulses independent of temperature. The converter exhibited a 0.7% frequency change within a range of 5 - 45 0 C and less than a 0.1% frequency drift after six hours of operation when the input current was maintained constant. (Yamaguchi, T.)

  20. Eddy current analysis by BEM utilizing loop electric and surface magnetic currents as unknowns

    International Nuclear Information System (INIS)

    Ishibashi, Kazuhisa

    2002-01-01

    The surface integral equations whose unknowns are the surface electric and magnetic currents are widely used in eddy current analysis. However, when the skin depth is thick, computational error is increased especially in obtaining electromagnetic fields near the edge of the conductor. In order to obtain the electromagnetic field accurately, we propose an approach to solve surface integral equations utilizing loop electric and surface magnetic currents as unknowns. (Author)

  1. High current capacity electrical connector

    International Nuclear Information System (INIS)

    Bettis, E.S.; Watts, H.L.

    1976-01-01

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a ''sandwiched'' configuration in which a conductor plate contacts the busses along major surfaces clamped between two stainless steel backing plates. The conductor plate is provided with contact buttons in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors

  2. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    Science.gov (United States)

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  3. Electric current distribution of a multiwall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taiwan (China); Chen, Yu-Jyun [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2016-07-15

    The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriers can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.

  4. Energy-Saving Sintering of Electrically Conductive Powders by Modified Pulsed Electric Current Heating Using an Electrically Nonconductive Die

    Science.gov (United States)

    Ito, Mikio; Kawahara, Kenta; Araki, Keita

    2014-04-01

    Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.

  5. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  6. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  7. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. 50 Hz electric field effects on protein carbonyl (PCO), heme oxygenase-1 (HO-1) and hydroxyproline levels

    International Nuclear Information System (INIS)

    Ozgur, Elcin; Goknur, Guler; Seyhan, Nesrin

    2008-01-01

    Full text: Non-ionizing electromagnetic field (EMF) radiation sources, such as power lines and other Extremely Low Frequency (ELF) sources have become one of the most ubiquitous components of the spectrum of the human environment, and the possibility that they may have hazardous effects on human health is a major a public concern. Although it is well documented that EMFs have biological effects, the degree to which these exposures constitute a human health hazard is not clear yet. Today relation between production of oxidative stress resulted by reactive oxygen species and electrical stimulus, also the protective effects of antioxidant treatments are mentioned in many researches. In this study, it was aimed to determine both oxidation of proteins and protein collagen levels under 50 Hz 12 kV/m vertical Electric (E) Field exposure and the N-Acetylcysteine (NAC) administration which is a well-known antioxidant. To this end, protein carbonyl levels (PCO) as bio-markers of oxidative stress and Heme oxygenase-1 (HO-1), an enzyme that catalyzes the degradation of heme analyzed to figure out the protein oxidation. Hydroxyproline level, a major component of the protein collagen was measured in order to express the level of collagen in lung tissue. Guinea pigs, weighted 250-300 g, were used in the study. A total forty male guinea pigs were randomly divided into four groups which are composed of 10 guinea pigs each for groups: 1) Group I (Sham); 2) Group II (NAC-administrated group); 3) Group III (E Field Exposure group); 4) Group IV (NAC administrated + E Field exposed group). One week exposure period for 8 hours per daily was conducted for each exposure groups (Group III, Group IV ). The electric field exposure period was from 9 a.m. to 5 p.m. After the last exposure day, the guinea pigs were anesthetized by the injection of ketamine and xylazine. The guinea pigs were killed by decapitation. Statistical analyses were carried out using SPSS software (SPSS 11.5 for windows

  9. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    Science.gov (United States)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15

  10. Ferrite-free high power electrodeless fluorescent lamp operated at a frequency of 160-1000 kHz

    International Nuclear Information System (INIS)

    Popov, Oleg A; Chandler, Robert

    2002-01-01

    An electrodeless ferrite-free fluorescent lamp of a closed-loop type ('tokamak') was studied at a driving frequency, f = 160-1000 kHz, and power of 100-250 W. The inductive discharge was ignited in the mercury-argon mixture with the help of an induction coil of several (7-15) turns made from multiple-strand (Litz) wire. The discharge parameters - current, resistance, and electric field - were calculated using the transformer model of an RF inductive discharge. They were found to be close to those measured in a plasma of a 'tokamak'-type lamp operated at the same frequency and RF power but with the use of the ferrite cores. The ferrite-free lamp had high luminous efficacy as high as 85 LPW at a frequency, f>200 kHz, and power of 100-200 W. Such a high efficacy is attributed to low coil power losses ( 90%

  11. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2015-06-01

    Full Text Available In this paper, an interleaved high-power zero-current-switching (ZCS onboard charger (OBC based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs. The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output voltage and current are very large. Furthermore, a novel hybrid control method combining pulse frequency modulation (PFM and pulse width modulation (PWM together is presented to ensure a driving frequency higher than 10 kHz, and this will reduce the unexpected inner resonant power flow and decrease the total harmonic distortion (THD of the input current under a light load at the end of the charging process. Finally, a prototype is established, and experiments are carried out. According to the experimental results, the conversion efficiency is higher than 93.5%, the THD about 4.3% and power factor (PF 0.98 under the maximum power output condition. Besides, a three-stage charging process is also carried out the experimental platform.

  12. Measuring Electrical Current: The Roads Not Taken

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2011-01-01

    Recently I wrote about the standard Weston meter movement, that is at the heart of all modern analogue current measurements. Now I will discuss other techniques used to measure electric current that, despite being based on valid physical principles, are largely lost in technological history.

  13. Stress-induced electric current fluctuations in rocks: a superstatistical model

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local

  14. Optical Remote Sensing of Electric Fields Above Thunderstorms

    Science.gov (United States)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  15. A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop

    NARCIS (Netherlands)

    Wu, R.; Makinwa, K.A.A.; Huijsing, J.H.

    2009-01-01

    This paper presents a chopper instrumentation amplifier for interfacing precision thermistor bridges. For high CMRR and DC gain, the amplifier employs a three-stage current-feedback topology with nested-Miller compensation. By chopping both the input and intermediate stages of the amplifier, a 1 mHz

  16. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  17. Electrical Current Flow and Cement Hydration : Implications on Cement-Based Microstructure

    NARCIS (Netherlands)

    Susanto, A.; Peng, G; Koleva, D.A.; van Breugel, K.

    2016-01-01

    Stray current is an electrical current “leakage” from metal conductors and electrical installations. When it flows through cement-based materials, electrical energy is converted to thermal energy that causes increasing temperature due to Joule heating phenomena. The aim of this paper is to shed

  18. Economic impacts of current harmonic from nonlinear loads on residential electricity distribution networks; Impactos economicos dos harmonicos de corrente das cargas nao lineares em redes eletricas de distribuicao residenciais

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Carlos Henrique

    2010-04-15

    To achieve more efficient energy use, power electronics systems (PES) may be employed. However, this introduce nonlinear loads into the system by generating undesired frequencies that are harmonic in relation to (multiples of) the fundamental frequency (60 Hz in Brazil). Consequently, devices using PES (power electronics systems) are more efficient but also contribute significantly to degradation of power quality. Besides this, both the conventional rules on design and operation of power systems and the usual premises followed in energy efficiency programs (without mentioning the electricity consumed by the devices themselves) consider the sinusoidal voltage and current waveforms at the fixed fundamental frequency (60 Hz in Brazil) of the power grid. Thus, analysis of electricity consumption reductions in energy efficiency programs that include the use of PES considers the reduction of kWh to the final consumer but not the additional losses caused by the increase in harmonic distortion. This dissertation investigates this problem by exploring a case study of the ownership and use of television sets (TV sets) to estimate the economic impacts of residential PES on a mainly residential electricity distribution system. (author)

  19. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 701124 (China); Huang, Zhongliang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  20. High current density, cryogenically cooled sliding electrical joint development

    International Nuclear Information System (INIS)

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025

  1. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    Science.gov (United States)

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system.

  2. ELECTRICAL EQUIVALENT CIRCUIT OF BIOLOGICAL OBJECTS OF VEGETABLE

    Directory of Open Access Journals (Sweden)

    I. M. Golev

    2014-01-01

    Full Text Available Summary.The results of measurements of complex biological tissues electrical resistance of vegetable origin are presented. The measurements were performed at T=296 K in the frequency range from 5 to 500 kHz. As the electrodes were covered with tin (purity of 99.9% copper plates.. Experimentally investigated the following objects: samples parenchymal tissue of Apple in the form of cylinders with a diameter of 20 mm and a length of 20 mm; Apple juice, obtained by mechanical destruction of cells; pressed Apple pulp (juice content of not more than 20%obtained by the centrifugal separation, which destroyed the system of cells. For plant tissue with a holistic system of cells in the field 103 - 105 Hz is observed pronounced minimum angle of phase shift. In the absence of cells and its value is greatly reduced .The equivalent electrical circuit fabrics are considered. The calculation of all its elements is made. The equivalent capacitance of the electrical double layer at the interface of metal measuring electrode and extracellular fluid is element of C1 . The electrical resistance of this layer alternating current is characterized by the element R1 . Chain parallel connected resistance and capacitance describes the system of plant cells. The capacitance C2 is due to the electrical capacity of the cell membranes, and the resistance R2 is the electrical resistance of the membranes and intracellular space.The coincidence of experimental and calculated data in a frequency range of more than 103 Hz satisfactory. In the region of lower frequencies is observed differences. This may be due to the specific behavior of the electrical double layer. However, in the frequency region where the electrical properties of the cell structure of the investigated tissue match good, which proves the validity of the considered equivalent circuit. It is shown that the value of the complex electrical impedance of vegetable tissue in the frequency range from 103 Hz to 105

  3. Resonant fields created by spiral electric currents in Tokamaks

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Caldas, I.L.

    1985-01-01

    The influence of the resonant magnetic perturbations, created by electric currents in spirals, on the plasma confinement in a tokamak with circular section and large aspect ratio is investigated. These perturbations create magnetic islands around the rational magnetic surface which has the helicity of the helicoidal currents. The intensities of these currents are calculated in order to the magnetic islands reach the limiter or others rational surfaces, what could provoke the plasma disrupture. The electric current intensities are estimated, in two spiral sets with different helicities, which create a predominantly stocastic region among the rational magnetic surfaces with these helicities. (L.C.) [pt

  4. Optical sensors for the measurement of electric current and voltage

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W R; Hulshof, H J.M.; Laurensse, I J; van der Wey, A H

    1987-01-01

    Optical sensors for the measurement of electrical current and voltage were developed for application in electric power systems. The current sensor, based on the Faraday effect in a monomode glass fiber, and the voltage sensor, based on the transverse Pockels effect in a crystal, are demonstrated in wide-band (10 MHz) interference-free measurements of pulsed currents and impulse voltages.

  5. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2013-01-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...... implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications...

  6. Electric field distribution and current emission in a miniaturized geometrical diode

    Science.gov (United States)

    Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng

    2017-06-01

    We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.

  7. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    International Nuclear Information System (INIS)

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  8. 20 kHz, 25 kVA node power transformer

    Science.gov (United States)

    Hussey, S.

    1989-01-01

    The electrical and mechanical design information and the electrical and thermal testing performed on the 440-208-V rms, 20-kHz, 25-kVa prototype node transformer are summarized. The calculated efficiency of the node transformer is 99.3 percent based on core loss and copper loss test data, and its maximum calculated load regulation is 0.7 percent. The node transformer has a weight of 19.7 lb and has a power density of 0.8 lb/kW. The hot-spot temperature rise is estimated to be 33 C above the cold plate mounting base. This proof-of-concept transformer design is a viable candidate for the space station Freedom application.

  9. Electric field effect on the critical current of SNS-contact

    International Nuclear Information System (INIS)

    Rakhmanov, A.L.; Rozhkov, A.V.

    1995-01-01

    Electric field effect on the SNS-contact critical current is investigated in the Ginzburg-Landau theory approximation. It is shown that the electric field may cause a notable increase of the contact critical current especially if the sample temperature is close to the temperature of a superconducting transition of T sc normal layer. Electric field effect is increased with the reduction of film thickness, but it can strong enough for thick films as well at temperature close to T sc . 11 refs.; 4 figs

  10. Electric currents induced by twisted light in Quantum Rings.

    Science.gov (United States)

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  11. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  12. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  13. An application of residual current protective device at electrical installation

    International Nuclear Information System (INIS)

    Firman Silitonga

    2008-01-01

    In an electrical installation, a protection for overload and short circuit are always to be installed. In addition to the installation, it is necessary to be installed a protection device for residual current because both the short circuit and the overload device protection will not work for the residual current. The quantity of the residual current must be defined first at any electrical installation to define an appropriate residual current protection so that not every residual current will break the circuit down. This paper will explain a method how to install a residual protection device for 3500 VA or more at TN and TT of earthing system. (author)

  14. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    International Nuclear Information System (INIS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed

  15. Comportamento da impedância elétrica dos tecidos biológicos durante estimulação elétrica transcutânea Electrical impedance behavior of biological tissues during transcutaneous electrical stimulation

    Directory of Open Access Journals (Sweden)

    VJ Bolfe

    2007-04-01

    Full Text Available OBJETIVO: Analisar a impedância elétrica dos tecidos biológicos durante estimulação elétrica em diferentes segmentos, faces e freqüências da corrente, aumentando-se a distância intereletrodos. MÉTODO: 20 voluntárias, idade média 23 ± 2,25anos e índice de massa corporal 20,65 ± 1,44kg/m², permaneceram em decúbito, sendo um eletrodo posicionado proximalmente às interlinhas articulares do punho e tornozelo, anterior e posteriormente, ou à espinha ilíaca póstero-superior, e outro eletrodo distanciado seqüencialmente em 10, 20, 30 e 40cm. Foram aplicadas duas correntes (100us e 10mA, uma de 100Hz (BF e outra de 2000Hz modulada em 100% da amplitude para 100Hz (MF, com intervalo mínimo de 7 dias. A impedância foi calculada, indiretamente, pela Lei de Ohm, a partir da intensidade aplicada e da tensão elétrica captada em sistema composto por osciloscópio digital (TDS 210, Tektronix® e gerador de corrente constante (Dualpex 961, Quark®. Para análise estatística, aplicou-se Anova-F e Kruskal-Wallis com post hoc (SNK, teste de Friedman e coeficiente de correlação de Spearman, considerando pOBJECTIVE: To analyze the electrical impedance of biological tissues during electrical stimulation in relation to different segments, surfaces and current frequencies, with increasing distance between electrodes. METHOD: 20 female volunteers of mean age 23 ± 2.25 years and mean body mass index 20.65 ± 1.44 kg/m² were positioned in decubitus with one electrode placed proximally to the wrist and ankle joint lines, anteriorly and posteriorly, or on the posterosuperior iliac spine, and the other electrode was placed at distance of 10, 20, 30 and 40 cm, sequentially. Two currents (100 us and 10 mA were applied: one at 100 Hz (LF and the other at 2000 Hz modulated at 100% of the amplitude for 100 Hz (MF, with a minimum interval of seven days. The impedance was calculated indirectly using Ohm's Law, from the applied intensity and the

  16. Gender differences in current received during transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Michael eRussell

    2014-08-01

    Full Text Available Low current transcranial electrical stimulation is an effective but somewhat inconsistent tool for augmenting neuromodulation. In this study, we used 3D MRI guided electrical transcranial stimulation (GETS modeling to estimate the range of current intensities received at cortical brain tissues. Combined T1, T2, Proton Density MRIs from 24 adult subjects (12 male and 12 female were modeled with virtual electrodes placed at F3, F4, C3 and C4. Two sizes of electrodes 20 mm round and 50 x 45 mm square were examined at 0.5, 1 and 2 mA input currents. The intensity of current received was sampled in a one centimeter sphere placed at the cortex directly under each scalp electrode. There was a tenfold range in the current received by individuals. A large gender difference was observed with female subjects receiving significantly less current at targeted parietal cortex than male subjects when stimulated at identical current levels (P <0.05. Larger electrodes delivered somewhat larger amounts of current then the smaller ones (P <0.01. Electrodes in the frontal regions delivered less current than those in the parietal region (P<0.05. There were large individual differences in current levels the subjects received. Analysis of the cranial bone showed that the gender difference and the frontal parietal differences are due to differences in cranial bone. Males have more cancellous parietal bone and females more dense parietal bone (p<0.01. These differences should be considered when planning transcranial electrical stimulation studies and call into question earlier reports of gender differences due to hormonal influences.

  17. Comparison of all-electric secondary power systems for civil transport

    Science.gov (United States)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  18. Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun

    Science.gov (United States)

    Fursyak, Yu. A.; Abramenko, V. I.

    2017-12-01

    Part of the "free" magnetic energy associated with electrical current systems in the active region (AR) is released during solar flares. This proposition is widely accepted and it has stimulated interest in detecting electrical currents in active regions. The vertical component of an electric current in the photosphere can be found by observing the transverse magnetic field. At present, however, there are no direct methods for calculating transverse electric currents based on these observations. These calculations require information on the field vector measured simultaneously at several levels in the photosphere, which has not yet been done with solar instrumentation. In this paper we examine an approach to calculating the structure of the square of the density of a transverse electrical current based on a magnetogram of the vertical component of the magnetic field in the AR. Data obtained with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) for the AR of NOAA AR 11283 are used. It is shown that (1) the observed variations in the magnetic field of a sunspot and the proposed estimate of the density of an annular horizontal current around the spot are consistent with Faraday's law and (2) the resulting estimates of the magnitude of the square of the density of the horizontal current {j}_{\\perp}^2 = (0.002- 0.004) A2/m4 are consistent with previously obtained values of the density of a vertical current in the photosphere. Thus, the proposed estimate is physically significant and this method can be used to estimate the density and structure of transverse electrical currents in the photosphere.

  19. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  20. Bilateral 5 Hz transcranial alternating current stimulation on fronto-temporal areas modulates resting-state EEG.

    Science.gov (United States)

    D'Atri, Aurora; Romano, Claudia; Gorgoni, Maurizio; Scarpelli, Serena; Alfonsi, Valentina; Ferrara, Michele; Ferlazzo, Fabio; Rossini, Paolo Maria; De Gennaro, Luigi

    2017-11-15

    Rhythmic non-invasive brain stimulations are promising tools to modulate brain activity by entraining neural oscillations in specific cortical networks. The aim of the study was to assess the possibility to influence the neural circuits of the wake-sleep transition in awake subjects via a bilateral transcranial alternating current stimulation at 5 Hz (θ-tACS) on fronto-temporal areas. 25 healthy volunteers participated in two within-subject sessions (θ-tACS and sham), one week apart and in counterbalanced order. We assessed the stimulation effects on cortical EEG activity (28 derivations) and self-reported sleepiness (Karolinska Sleepiness Scale). θ-tACS induced significant increases of the theta activity in temporo-parieto-occipital areas and centro-frontal increases in the alpha activity compared to sham but failed to induce any online effect on sleepiness. Since the total energy delivered in the sham condition was much less than in the active θ-tACS, the current data are unable to isolate the specific effect of entrained theta oscillatory activity per se on sleepiness scores. On this basis, we concluded that θ-tACS modulated theta and alpha EEG activity with a topography consistent with high sleep pressure conditions. However, no causal relation can be traced on the basis of the current results between these rhythms and changes on sleepiness.

  1. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  2. The current perception threshold among rice farmers in Muda, Kedah and fishermen in Setiu, Terengganu

    International Nuclear Information System (INIS)

    Syarif Husin Lubis; Uttaman ABdullah; Nezrul Hisham Abdul Ghani; Mohd Rafaai Mohd Jamil; Salmaan Hussain Inayat Hussain

    2002-01-01

    A cross sectional study was conducted to investigate the effects of pesticide exposure on the current perception threshold (CPT) among 148 rice farmers in the Muda area Kedah and 85 fishermen in Setiu, Terengganu. The duration of pesticide exposure among the farmers was between 5 to 20 years. The CPT values were measured using a portable constant current electric nerve stimulator Neurometer CPT/Eagle, on the index finger (median digital nerve) and the great toe (perineal digital nerve) with three neuro selective frequency range (2000 Hz, 250 Hz, and 5 Hz). The CPT values were significantly elevated among farmers for all frequencies (2000 Hz, 250 Hz and 5 Hz) for both measurement sites (index finger and great toe). The range of the probability was between P<0.002 and P<0.0001. The selective involvement of the large diameter myelinated sensory fibres (2000 Hz and 250 Hz) and small diameter unmyelinated sensory fibres (5 Hz) were reflective of toxic peripheral neuropathy in exposed farmers. The CPT on the media nerve and perineal nerve between exposed farmers and none exposed fishermen is significantly different and thus the measurement of CPT can be used as a marker to determine and monitor the effects of pesticide exposure among the farmers. (Author)

  3. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.

    Science.gov (United States)

    Zhang, Mingji; Or, Siu Wing

    2018-02-14

    A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.

  4. Electric conductivity and bootstrap current in tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Wang Maoquan

    1996-12-01

    A modified Ohm's law for the electric conductivity calculation is presented, where the modified ohmic current can be compensated by the bootstrap current. A comparison of TEXT tokamak experiment with the theories shows that the modified Ohm's law is a more close approximation to the tokamak experiments than the classical and neoclassical theories and can not lead to the absurd result of Z eff <1, and the extended neoclassical theory would be not necessary. (3 figs.)

  5. Design and development of electrical impedance tomography system with 32 electrodes and microcontroller

    Science.gov (United States)

    Ansory, Achmad; Prajitno, Prawito; Wijaya, Sastra Kusuma

    2018-02-01

    Electrical Impedance Tomography (EIT) is an imaging method that is able to estimate electrical impedance distribution inside an object. This EIT system is developed by using 32 electrodes and microcontroller based module. From a pair of electrodes, sinusoidal current of 3 mA is injected and the voltage differences between other pairs of electrodes are measured. Voltage measurement data are then sent to MATLAB and EIDORS software; the data are used to reconstruct two dimensions image. The system can detect and determine the position of a phantom in the tank. The object's position is accurately reconstructed and determined with the average shifting of 0.69 cm but object's area cannot be accurately reconstructed. The object's image is more accurately reconstructed when the object is located near to electrodes, has a larger size, and when the current injected to the system has a frequency of 100 kHz or 200kHz.

  6. Electric current precedes emergence of a lateral root in higher plants.

    Science.gov (United States)

    Hamada, S; Ezaki, S; Hayashi, K; Toko, K; Yamafuji, K

    1992-10-01

    Stable electrochemical patterns appear spontaneously around roots of higher plants and are closely related to growth. An electric potential pattern accompanied by lateral root emergence was measured along the surface of the primary root of adzuki bean (Phaseolus angularis) over 21 h using a microelectrode manipulated by a newly developed apparatus. The electric potential became lower at the point where a lateral root emerged. This change preceded the emergence of the lateral root by about 10 h. A theory is presented for calculating two-dimensional patterns of electric potential and electric current density around the primary root (and a lateral root) using only data on the one-dimensional electric potential measured near the surface of the primary root. The development of the lateral root inside the primary root is associated with the influx of electric current of about 0.7 muA.cm(-2) at the surface.

  7. Electric and magnetic fields in medicine and biology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Papers Include: The effects of low frequency (50 Hz) magnetic fields on neuro-chemical transmission in vitro; Morphological changes in E Coli subjected to DC electrical fields; An investigation of some claimed biological effects of electromagnetic fields; Electrical phenomena and bone healing - a comparison of contemporary techniques; Clinical evaluations of a portable module emitting pulsed RF energy; The design, construction and performance of a magnetic nerve stimulator; The principle of electric field tomography and its application to selective read-out of information from peripheral nerves; Applied potential tomography - clinical applications; Impendance imaging using a linear electrode array; Mathematics as an aid to experiment: human body currents induced by power frequency electric fields; Effects of electric field near 750KV transmission line and protection against their harmful consequences; Leukemia and electromagnetic fields: a case-control study; Overhead power lines and childhood cancer; Magnetic measurement of nerve action currents - a new intraoperative recording technique; The potential use of electron spin resonance or impedance measurement to image neuronal electrical activity in the human brain

  8. Electrical Versus Optical: Comparing Methods for Detecting Terahertz Radiation Using Neon Lamps

    Science.gov (United States)

    Slocombe, L. L.; Lewis, R. A.

    2018-05-01

    Terahertz radiation impinging on a lit neon tube causes additional ionization of the encapsulated gas. As a result, the electrical current flowing between the electrodes increases and the glow discharge in the tube brightens. These dual phenomena suggest two distinct modes of terahertz sensing. The electrical mode simply involves measuring the electrical current. The optical mode involves monitoring the brightness of the weakly ionized plasma glow discharge. Here, we directly compare the two detection modes under identical experimental conditions. We measure 0.1-THz radiation modulated at frequencies in the range 0.1-10 kHz, for lamp currents in the range 1-10 mA. We find that electrical detection provides a superior signal-to-noise ratio while optical detection has a faster response. Either method serves as the basis of a compact, robust, and inexpensive room-temperature detector of terahertz radiation.

  9. Succession of cable bacteria and electric currents in marine sediment

    DEFF Research Database (Denmark)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper Urup

    2014-01-01

    conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15[thinsp]mm of the sediment, and after 21 days the filament density peaked with a total......][mu]m, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30[thinsp]mm, the electric...... current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement...

  10. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  11. Turning Noise into Signal: Utilizing Impressed Pipeline Currents for EM Exploration

    Science.gov (United States)

    Lindau, Tobias; Becken, Michael

    2017-04-01

    Impressed Current Cathodic Protection (ICCP) systems are extensively used for the protection of central Europe's dense network of oil-, gas- and water pipelines against destruction by electrochemical corrosion. While ICCP systems usually provide protection by injecting a DC current into the pipeline, mandatory pipeline integrity surveys demand a periodical switching of the current. Consequently, the resulting time varying pipe currents induce secondary electric- and magnetic fields in the surrounding earth. While these fields are usually considered to be unwanted cultural noise in electromagnetic exploration, this work aims at utilizing the fields generated by the ICCP system for determining the electrical resistivity of the subsurface. The fundamental period of the switching cycles typically amounts to 15 seconds in Germany and thereby roughly corresponds to periods used in controlled source EM applications (CSEM). For detailed studies we chose an approximately 30km long pipeline segment near Herford, Germany as a test site. The segment is located close to the southern margin of the Lower Saxony Basin (LSB) and part of a larger gas pipeline composed of multiple segments. The current injected into the pipeline segment originates in a rectified 50Hz AC signal which is periodically switched on and off. In contrast to the usual dipole sources used in CSEM surveys, the current distribution along the pipeline is unknown and expected to be non-uniform due to coating defects that cause current to leak into the surrounding soil. However, an accurate current distribution is needed to model the fields generated by the pipeline source. We measured the magnetic fields at several locations above the pipeline and used Biot-Savarts-Law to estimate the currents decay function. The resulting frequency dependent current distribution shows a current decay away from the injection point as well as a frequency dependent phase shift which is increasing with distance from the injection

  12. Comparison of all-electric secondary power systems for civil subsonic transports

    Science.gov (United States)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  13. Human exposure to a 60 Hz, 1800 micro tesla magnetic field: a neuro behavioral study; Exposition humaine a un champ magnetique de 1 800 microtesla a 60 Hz: une etude neurocomportementale

    Energy Technology Data Exchange (ETDEWEB)

    Legros, A.; Corbacio, M.; Prato, F.S.; Thomas, A.W. [Lawson Health Research Institute and University of Western Ontario, St Joseph Health' s Care (Canada); Beuter, A. [Laboratoire IMS Institut de Polytechnique de Bordeaux, Universite de Bordeaux, 33 (France); Goulet, D. [Hydro-Quebec TransEnergie, Montreal (Canada); Lambrozo, J.; Souques, M. [Electricite de France, Service des Etudes Medicales, 75 - Paris (France); Plante, M. [Hydro-Quebec, Direction Sante et securite, Montreal (Canada)

    2010-05-15

    The effects of time-varying magnetic fields (MF) on humans have been actively investigated for the past three decades. One important unanswered question that scientists continue to investigate is the potential for MF exposure to have acute effects on human biology. Different strategies have been used to tackle this question using various physiological, neuro-physiological and behavioral indicators. For example, researchers investigating electro-encephalography (EEG) have reported that Extremely Low Frequency (ELF, < 300 Hz) MF can increase the resting occipital alpha rhythm (8-12 Hz) [1, 2]. Interestingly, other studies have demonstrated that human motor behavior can be modulated by ELF MF exposure, reporting that such an exposure can reduce anteroposterior standing balance oscillations [3, 4] or decrease physiological tremor intensity [5]. However, the main limitation in this domain is the difficulty of reproducing the results. A possible reason for this is the large variety of experimental approaches employed. Therefore, the aim of this project is to investigate the effects of a 60 Hz, 1800 muT MF exposure on physiological (i.e. heart rate and peripheral blood perfusion), neuro-physiological (brain electrical activity), and behavioral (postural oscillations, voluntary motor functions, and physiological tremor) aspects in humans using a single experimental procedure.Though the results from this study suggest a subtle reduction of human standing balance as well as a subtle increase of physiological tremor amplitude with MF exposure, no effect appeared on other investigated parameters, suggesting that one hour of 60 Hz, 1800 muT MF exposure may modulate human involuntary motor control without being detected in the electrical activity of the brain. (authors)

  14. Domain wall manipulation in magnetic nanotubes induced by electric current pulses

    International Nuclear Information System (INIS)

    Otálora, J A; López-López, J A; Landeros, P; Núñez, A S

    2012-01-01

    We propose that the injection of electric currents can be used to independently manipulate the position and chirality of vortex-like domain walls in metallic ferromagnetic nanotubes. We support this proposal upon theoretical and numerical assessment of the magnetization dynamics driven by such currents. We show that proper interplay between the tube geometry, magnitude of the electric current and the duration of a current pulse, can be used to manipulate the position, velocity and chirality of a vortex domain wall. Our calculations suggest that domain wall velocities greater than 1 km s -1 can be achieved for tube diameters of the order of 30 nm and increasing with it. We also find that the transition from steady to precessional domain wall motion occurs for very high electric current densities, of the order of 10 13 A m -2 . Furthermore, the great stability displayed by such chiral magnetic configurations, and the reduced Ohmic loses provided by the current pulses, lead to highly reproducible and efficient domain wall reversal mechanisms.

  15. Fetal exposure to low frequency electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R; Leitgeb, N; Pediaditis, M [Institute of Clinical Engineering, Graz University of Technology, Inffeldgasse 18, 8010 Graz (Austria)

    2007-02-21

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  16. Fetal exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2007-01-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary

  17. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    International Nuclear Information System (INIS)

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  18. Investigation of the Relationship Between Electrical Stimulation Frequency and Muscle Frequency Response Under Submaximal Contractions.

    Science.gov (United States)

    Papcke, Caluê; Krueger, Eddy; Olandoski, Marcia; Nogueira-Neto, Guilherme Nunes; Nohama, Percy; Scheeren, Eduardo Mendonça

    2018-03-25

    Neuromuscular electrical stimulation (NMES) is a common tool that is used in clinical and laboratory experiments and can be combined with mechanomyography (MMG) for biofeedback in neuroprostheses. However, it is not clear if the electrical current applied to neuromuscular tissues influences the MMG signal in submaximal contractions. The objective of this study is to investigate whether the electrical stimulation frequency influences the mechanomyographic frequency response of the rectus femoris muscle during submaximal contractions. Thirteen male participants performed three maximal voluntary isometric contractions (MVIC) recorded in isometric conditions to determine the maximal force of knee extensors. This was followed by the application of nine modulated NMES frequencies (20, 25, 30, 35, 40, 45, 50, 75, and 100 Hz) to evoke 5% MVIC. Muscle behavior was monitored by the analysis of MMG signals, which were decomposed into frequency bands by using a Cauchy wavelet transform. For each applied electrical stimulus frequency, the mean MMG spectral/frequency response was estimated for each axis (X, Y, and Z axes) of the MMG sensor with the values of the frequency bands used as weights (weighted mean). Only with respect to the Z (perpendicular) axis of the MMG signal, the stimulus frequency of 20 Hz did not exhibit any difference with the weighted mean (P = 0.666). For the frequencies of 20 and 25 Hz, the MMG signal displayed the bands between 12 and 16 Hz in the three axes (P frequencies from 30 to 100 Hz, the muscle presented a higher concentration of the MMG signal between the 22 and 29 Hz bands for the X and Z axes, and between 16 and 34 Hz bands for the Y axis (P frequency, because their frequency contents tend to mainly remain between the 20- and 25-Hz bands. Hence, NMES does not interfere with the use of MMG in neuroprosthesis. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. A 7.8 kV nanosecond pulse generator with a 500 Hz repetition rate

    Science.gov (United States)

    Lin, M.; Liao, H.; Liu, M.; Zhu, G.; Yang, Z.; Shi, P.; Lu, Q.; Sun, X.

    2018-04-01

    Pseudospark switches are widely used in pulsed power applications. In this paper, we present the design and performance of a 500 Hz repetition rate high-voltage pulse generator to drive TDI-series pseudospark switches. A high-voltage pulse is produced by discharging an 8 μF capacitor through a primary windings of a setup isolation transformer using a single metal-oxide-semiconductor field-effect transistor (MOSFET) as a control switch. In addition, a self-break spark gap is used to steepen the pulse front. The pulse generator can deliver a high-voltage pulse with a peak trigger voltage of 7.8 kV, a peak trigger current of 63 A, a full width at half maximum (FWHM) of ~30 ns, and a rise time of 5 ns to the trigger pin of the pseudospark switch. During burst mode operation, the generator achieved up to a 500 Hz repetition rate. Meanwhile, we also provide an AC heater power circuit for heating a H2 reservoir. This pulse generator can be used in circuits with TDI-series pseudospark switches with either a grounded cathode or with a cathode electrically floating operation. The details of the circuits and their implementation are described in the paper.

  20. Standardization of calibration of clinic dosemeters using electric currents and charges

    International Nuclear Information System (INIS)

    Peres, Marcos Antonio de Lima

    1999-09-01

    Clinical dosimeters used in radiotherapy are calibrated in Latin American countries, including Brazil, as a complete 'system, i.e., ionization chamber and electrometer together. Some countries, as European ones, and USA calibrate them by component, i.e., ionisation chamber apart from electrometer. This method is more advantageous than the previous one, since it makes possible the automation of the calibration process, allowing the acquisition of data related to the chamber and the electrometer measurements independently, as well as the substitution of one of the components, in case of failure. This work proposes a method for standardisation of low intensity electric charge and currents in order to implement electric calibration of electrometers. This will make possible the implementation of a by components calibration technique, by components, of clinical dosimeters in Brazil. The results obtained with the calibration by components prove that the proposed method of standardisation of low electric charges and currents is viable. The difficulties found for the generation and measurement of low intensity electric charges and currents and the procedures adopted for the calibration by components are presented. Additionally, a current source was built to yield reference electric charges that will make possible the quality control clinical dosimeters. This source will also allow the user to identify the defective components of the dosimeters, through a simple verification test. (author)

  1. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan; Chung, Suk-Ho; Cha, Min

    2016-01-01

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  2. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan

    2016-06-24

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  3. 100-Hz Electroacupuncture but not 2-Hz Electroacupuncture is Preemptive Against Postincision Pain in Rats.

    Science.gov (United States)

    Silva, Marcelo Lourenço; Silva, Josie Resende Torres; Prado, Wiliam Alves

    2016-08-01

    Preemptive analgesia involves introducing an analgesic before noxious stimulation. Electroacupuncture (EA) activates descending mechanisms that modulate nociceptive inputs into the spinal dorsal horn. This study evaluated whether preoperative EA is more effective than postoperative EA in reducing incision pain in rats. The nociceptive threshold to mechanical stimulation was utilized to examine the effects of an intraperitoneal injection of saline (0.1 mL/kg) or naloxone (1 mg/kg) on antinociception induced by a 20-minute period of 2-Hz or 100-Hz EA applied to the Zusanli (ST36) and Sanyinjiao (SP6) acupoints before surgical incision, or 10 minutes after or 100 minutes after surgical incision of the hind paw. The extent of mechanical hyperalgesia after the incision was significantly attenuated by the application of 100-Hz EA preoperatively, but not by its application at 10 minutes or 100 minutes postoperatively. By contrast, 2-Hz EA was effective against postoperative hyperalgesia when applied 10 minutes or 100 minutes after surgery but not when it was applied preoperatively. Only the effect of 2-Hz EA applied 10 minutes after surgery was sensitive to naloxone. The present study showed for the first time that 100-Hz EA, but not 2-Hz EA, exerts a nonopioidergic preemptive effect against postincision pain in rats. Copyright © 2016. Published by Elsevier B.V.

  4. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    Energy Technology Data Exchange (ETDEWEB)

    Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Sedin, A. A.; Tugushev, V. I. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  5. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    International Nuclear Information System (INIS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-01-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz

  6. Metamorphosis of helical magnetorotational instability in the presence axial electric current

    OpenAIRE

    Priede, Jānis

    2014-01-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical ...

  7. Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Chien, Chia-ling

    2018-02-20

    Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.

  8. The electric field of a current-carrying conductor

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1991-01-01

    A subject concerning the relativistic invariance of the Gauss theorem has been discussed. The appearance of the electric field around the neutral conductor after excitation of current in it doesn't signify the change of its charge. 8 refs.; 1 fig

  9. Stripping demolition of concrete by applying electric current through reinforcing bars

    International Nuclear Information System (INIS)

    Nakagawa, Wahei; Kumegawa, Sadatsune

    1995-01-01

    The presence of reinforcing bars in reinforced concrete structures is an obstruction hindering the smooth progress of demolition works. The electric heating method is, on the other hand, a demolition technique of unique concept since it adopts the bars to help the demolition of reinforced concrete structures. This technique has the following advantages for demolition: 1) the more densely a structure is reinforced with bars, the greater is the effect of the electric heating, 2) demolition after heating produces little dust, and 3) electric heating of reinforcing bars causes no damage to the portions of concrete not subjected to electric current. The present paper describes the procedures and results of a series of experiments we conducted to verify the efficiency of the electric heating method. In this method, a low-voltage high-current is run through reinforcing bars existing in a concrete structure, inducing intense heat in the bars which in its turn brings about cracks in the surrounding concrete mass, facilitating secondary demolition by hammer picks or other means. The experiments were performed on full-scale biological shield wall mock-ups of a BWR and a small nuclear reactor. The experiments revealed that these excellent features of the electric heating method are worth utilizing in stripping demolition of radioactivated regions of biological shield walls in nuclear power plants. The electric heating method is currently being adopted and shows effective results in partial demolition works in diaphragm wall shafts where starting/arriving holes are to be fixed for shield machines without damaging surrounding portions. (author)

  10. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    Science.gov (United States)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  11. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  12. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  13. Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz).

    Science.gov (United States)

    Shynkaryk, Mykola V; Ji, Taehyun; Alvarez, Valente B; Sastry, Sudhir K

    2010-09-01

    The ohmic heating (OH) rate of peaches was studied at fixed electric field strength of 60 V.cm⁻¹, square-shaped instant reversal bipolar pulses, and frequencies varying within 50 Hz to 1 MHz. Thermal damage of tissue was evaluated from electrical admittivity. It showed that the time for half disruption (τ(T)) of tissue was required more than 10 h at temperatures below 40 °C. However, cellular thermal disruption occurred almost instantly (τ(T) 90 °C). Electrical conductivity σ(o) and admittivity σ(o)* of tissue at T(o)= 0 °C and their temperature coefficients (m, m*) were calculated. For freeze-thawed tissues, σ and σ* as well as m and m* were nearly indifferent to the frequency. However, for the intact tissue, both σ(o), σ(o)* and m, m* were frequency dependent. For freeze-thawed product, the power factor (P) was approximately equal to 1 and indifferent to the frequency and temperature. On the other hand, strong frequency dependence was observed for intact tissue with the minimum P approximately equal to 0.68 in the range of tens of kHz. The time required to reach a target temperature t(f) was evaluated. The t(f) increased with frequency up to the middle of the range of tens of kHz and thereafter continuously decreased. Samples exposed to the low-frequency electric field demonstrated faster electro-thermal damage rates. The textural relaxation data supported more intense damage kinetics at low-frequency OH. It has been demonstrated that a combination of high-frequency OH with pasteurization at moderate temperature followed by rapid cooling minimizes texture degradation of peach tissue. In this study, we investigated the electric field frequency effect on the rate of OH of peaches. It was shown that the time required for reaching the target temperature is strongly dependent upon the frequency. Samples exposed to low-frequency OH demonstrated higher electro-thermal damage rates. It has been shown that the combination of high-frequency OH with

  14. A Retrospective Chart Review of 10 Hz Versus 20 Hz Repetitive Transcranial Magnetic Stimulation for Depression

    Directory of Open Access Journals (Sweden)

    Kristie L. DeBlasio

    2012-12-01

    Full Text Available We performed a retrospective chart review to examine the progress of patients with depression who received different frequencies of repetitive transcranial magnetic stimulation (rTMS delivered to the left dorsolateral prefrontal cortex (DLPFC. rTMS is a safe and effective alternative treatment for patients with various psychological and medical conditions. During treatment, a coil delivering a time-varying magnetic pulse placed over the scalp penetrates the skull, resulting in clinical improvement. There were 47 patients and three distinct treatment groups found: 10 Hz, 20 Hz, and a separate group who received both frequencies (10/20 Hz. The primary outcome indicator was the difference in Beck Depression Inventory–II (BDI-II scores. Secondary outcomes included categorical indicators of remission, response, and partial response rates as assessed with the BDI-II. In all 3 groups, the majority of patients had depression that remitted, with the highest rate occurring in the 20 Hz group. There were similar response rates in the 10 Hz and 20 Hz groups. There were no patients in the 10/20 Hz group whose depression responded and the highest partial response and nonresponse rates occurred in this group. Although within-group differences were significant from baseline to end of treatment, there were no between-group differences.

  15. Effects of polar field-aligned currents on the distribution of the electric field and current in the middle and low latitudes ionosphere

    International Nuclear Information System (INIS)

    Maekawa, Koichiro

    1978-01-01

    According to the analysis of the magnetic records from the Triad satellite, it has been found that there are two regions of the field-aligned current of magnetospheric origin along the auroral oval; Region 1 in higher latitude and Region 2 in lower latitude. These currents seem to have important effect on the distribution of electric field and current in the ionosphere, in addition to the Sq electric field and current of ionospheric origin. The global current systems generated by the field-aligned current were calculated, using some simplified ionospheric models. The effect of the field-aligned current on the distribution of electric field and current of the ionosphere at middle and low latitudes was investigated. (Yoshimori, M.)

  16. Aggregation of Electric Current Consumption Features to Extract Maintenance KPIs

    Science.gov (United States)

    Simon, Victor; Johansson, Carl-Anders; Galar, Diego

    2017-09-01

    All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs) from the electric current signal. Depending on the time window, sampling frequency and type of analysis, different indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or consumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine's future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.

  17. Metamorphosis of helical magnetorotational instability in the presence of axial electric current.

    Science.gov (United States)

    Priede, Jānis

    2015-03-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.

  18. Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2009-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.

  19. Practical aspects of the use of three-phase alternating current electric machines in electricity storage system

    Science.gov (United States)

    Ciucur, Violeta

    2015-02-01

    Of three-phase alternating current electric machines, it brings into question which of them is more advantageous to be used in electrical energy storage system by pumping water. The two major categories among which are given dispute are synchronous and the asynchronous machine. To consider the synchronous machine with permanent magnet configuration because it brings advantages compared with conventional synchronous machine, first by removing the necessary additional excitation winding. From the point of view of loss of the two types of machines, the optimal adjustment of the magnetic flux density is obtained to minimize the copper loss by hysteresis and eddy currents.

  20. Pharmacologic versus direct-current electrical cardioversion of atrial flutter and fibrillation

    NARCIS (Netherlands)

    Van Gelder, IC; Tuinenburg, AE; Schoonderwoerd, BS; Tieleman, RG; Crijns, HJGM

    1999-01-01

    Conversion of atrial flutter and atrial fibrillation (AF) can be achieved by either pharmacologic or direct-current (DC) electrical cardioversion. DC electrical cardioversion is more effective and restores sinus rhythm instantaneously; however, general anesthesia is necessary, which can cause severe

  1. Development of a “Current Energy Mix Scenario” and a “Electricity as Main Energy Source Scenario” for electricity demand up to 2100

    Directory of Open Access Journals (Sweden)

    Mário J. S. Brito

    2014-06-01

    Full Text Available In this work, we develop a model to forecast world electricity production up to 2100. We analyze historical data for electricity production, population and GDP per Capita for the period 1900–2008. We show that electricity production follows general trends. First, there is an electricity intensity target of 0.20-0.25 kWh per unit of GDP (US$2012 as economies mature, except in countries traditionally relying heavily on renewable electricity (hydroelectricity, for whom this target ranges between 0.50 to 0.80 kWh per unit GDP. Also, countries that belong to the same region tend to follow the evolution of electricity production and GDP/Capita of a regional “modelcountry”. Equations that describe the behavior of these model countries are used to forecast electricity production per capita up to 2100 under a low and a high scenario for the evolution of GDP per Capita. For electricity production two main scenarios were set: “Current Energy MixScenario” and “Electricity as Main Energy Source Scenario”, with two additional sub scenarios considering slightly different electric intensities. Forecasts up to 2100 yield a demand forelectricity production 3.5 to 5 times higher than the current production for the “Current EnergyMix Scenario” and about 9 to 14 times for the “Electricity as Main Energy Source Scenario”. Forecasts for the “Current Energy Mix Scenario” matched well with forecasts from IEA/EIA (International Energy Agency/ Energy Information Administration while the forecasts for the“Electricity as the Main Energy Source Scenario” are much higher than current predictions.

  2. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    International Nuclear Information System (INIS)

    Huang, Han-Chie; Lin, Kwang-Lung; Wu, Albert T.

    2016-01-01

    This study presented the disruption of the Sn and Ag_3Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10"3 A/cm"2 with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag_3Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10"1"7/m"2. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  3. Environmental assessment of current and future Swiss electricity supply options

    International Nuclear Information System (INIS)

    Bauer, Christian; Heck, Thomas; Hirschberg, Stefan; Dones, Roberto

    2008-01-01

    Options for near future electricity supply are currently one of the main topics in the Swiss energy policy debate. Contrary to the total energy demand per capita the trend of rising electricity demand per capita is still visible. This paper presents a comparative environmental assessment of a broad portfolio of current and future electricity generation technologies including nuclear, fossil, and renewable power plants with their associated energy chains. The evaluation, based on Life Cycle Assessment (LCA), is carried out quantifying ten different environmental indicators, grouped in the categories greenhouse gas emissions, consumption of resources, waste, and impact on ecosystems. Hydropower shows minimal environmental impacts for all indicators; for other systems, the picture is diverse. The comparison of non-aggregated indicators allows preliminary conclusions about the environmental performance of the assessed systems. Establishing ranking of technologies calls for aggregating the indicators, which can be done by weighting of the indicators based on individual or stakeholder group preferences, either within a Multi-Criteria Decision Analysis (MCDA) framework or with Life Cycle Impact Assessment (LCIA) methods. Calculating total costs of electricity by adding external costs due to impacts on human health and ecosystems to the electricity production costs poses another option for ranking of technologies. (authors)

  4. Dynamically tuned magnetostrictive spring with electrically controlled stiffness

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-03-01

    This paper presents the design and testing of an electrically controllable magnetostrictive spring that has a dynamically tunable stiffness (i.e., a magnetostrictive Varispring). The device enables in situ stiffness tuning or stiffness switching for vibration control applications. Using a nonlinear electromechanical transducer model and an analytical solution of linear, mechanically induced magnetic diffusion, Terfenol-D is shown to have a faster rise time to stepped voltage inputs and a significantly higher magnetic diffusion cut-off frequency relative to Galfenol. A Varispring is manufactured using a laminated Terfenol-D rod. Further rise time reductions are achieved by minimizing the rod’s diameter and winding the electromagnet with larger wire. Dynamic tuning of the Varispring’s stiffness is investigated by measuring the Terfenol-D rod’s strain response to dynamic, compressive, axial forces in the presence of sinusoidal or square wave control currents. The Varispring’s rise time is \\lt 1 ms for 1 A current switches. Continuous modulus changes up to 21.9 GPa and 500 Hz and square wave modulus changes (dynamic {{Δ }}E effect) up to 12.3 GPa and 100 Hz are observed. Stiffness tunability and tuning bandwidth can be considerably increased by operating about a more optimal bias stress and improving the control of the electrical input.

  5. Reconstitution of Biological Molecular generators of electric current. Bacteriorhodopsin.

    Science.gov (United States)

    Drachev, L A; Frolov, V N; Kaulen, A D; Liberman, E A; Ostroumov, S A; Plakunova, V G; Semenov, A Y; Skulachev, V P

    1976-11-25

    1. Photoinduced generation of electric current by bacteriorhodopsin, incorporated into the planar phospholipid membrane, has been directly measured with conventional electrometer techniques. 2. Two methods for bacteriorhodopsin incorporation have been developed: (a) formation of planar membrane from a mixture of decane solution of phospholipids and of the fraction of violet fragments of the Halobacterium halobium membrane (bacteriorhodopsin sheets), and (b) adhesion of bacteriorhodopsin-containing reconstituted spherical membranes (proteoliposomes) to the planar membrane in the presence of Ca2+ or some other cations. In both cases, illumination was found to induce electric current generation directed across the planar membrane, an effect which was measured by macroelectrodes immersed into electrolyte solutions on both sides of the membrane. 3. The maximal values of the transmembrane electric potential were of about 150 mV at a current of about 10(-11) A. The electromotive force measured by means of counterbalancing the photoeffect by an external battery, was found to reach the value of 300 mV. 4. The action spectrum of the photoeffect coincides with the bacteriorhodopsin absorption spectrum (maximum about 570 nm). 5. Both components of the electrochemical potential of H+ ions (electric potential and delta pH) across the planar membrane affect the bacteriorhodopsin photoelectric response in a fashion which could be expected if bacteriorhodopsin were a light-dependent electrogenic proton pump. 6. La3+ ions were shown to inhibit operation of those bacteriorhodopsin which pump out H+ ions from the La3+-containing compartment. 7. The photoeffect, mediated by proteoliposomes associated with thick planar membrane, is decreased by gramicidin A at concentrations which do not influence the planar membrane resistance in the light. On the contrary, a protonophorous uncoupler, trichlorocarbonylcyanidephenylhydrazone, decreases the photoeffect only if it is added at a

  6. Investigating students' view on STEM in learning about electrical current through STS approach

    Science.gov (United States)

    Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study aims to investigate Grade 11 students' views on Science Technology Engineering Mathematics (STEM) with the integration of learning about electrical current based on Science Technology Society (STS) approach [8]. The participants were 60 Grade 11 students in Demonstration Secondary School, Khon Kaen University, Khon Kaen Province, Thailand. The methodology is in the respect of interpretive paradigm. The teaching and learning about Electrical Current through STS approach carried out over 6 weeks. The Electrical Current unit through STS approach was developed based on framework[8] that consists of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision making, and (5) socialization stage. To start with, the question "what if this world is lack of electricity" was challenged in the class in order to move students to find the problem of how to design Electricity Generation from Clean Energy. Students were expected to apply scientific and other knowledge to design of Electricity Generation. Students' views on STEM were collected during their learning by participant' observation and students' tasks. Their views on STEM were categorized when they applied their knowledge for designing the Electricity Generation. The findings indicated that students cooperatively work to solve the problem when applying knowledge about the content of Science and Mathematics and processing skill of Technology and Engineering. It showed that students held the integration of science, technology, engineering and mathematics to design their possible solutions in learning about Electrical Current. The paper also discusses implications for science teaching and learning through STS in Thailand.

  7. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  8. Petroleum electrical properties characterization; Caracterizaco de propriedades eletricas de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ueti, Edson; Sens, Marcio Antonio [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], e-mail: ueti@cepel.br

    2006-07-01

    Presently, petroleum wells consist predominantly of heavy type petroleum, that is submitted to decantation and separation of water, through desalinisation process. If this process is not efficient, the metallic piping will be severely corroded during refining. Hence, the knowledge of petroleum electric properties is essential for optimizing the separation of water from petroleum, by indicating its humidity in laboratory testing conditions. The present work shows an experimental procedure based on disposable cells for electric characterization of liquid polymeric materials. The use of standard cells is unfeasible, due to the petroleum physical characteristics. The procedures for the evaluation of electric properties shown in this work are applied for dielectric constant values up to 200 kHz, as well as for the electric conductivity in direct current and the electrical strength in industrial frequency. (author)

  9. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  10. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan (China)

    2016-03-21

    This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  11. AGGREGATION OF ELECTRIC CURRENT CONSUMPTION FEATURES TO EXTRACT MAINTENANCE KPIs

    Directory of Open Access Journals (Sweden)

    Victor SIMON

    2017-07-01

    Full Text Available All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs from the electric current signal. Depending on the time window, sampling frequency and type of analysis, differ-ent indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or con-sumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine’s future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.

  12. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    Science.gov (United States)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  13. Human exposure to a 60 Hz, 1800 micro tesla magnetic field: a neuro behavioral study

    International Nuclear Information System (INIS)

    Legros, A.; Corbacio, M.; Prato, F.S.; Thomas, A.W.; Beuter, A.; Goulet, D.; Lambrozo, J.; Souques, M.; Plante, M.

    2010-01-01

    The effects of time-varying magnetic fields (MF) on humans have been actively investigated for the past three decades. One important unanswered question that scientists continue to investigate is the potential for MF exposure to have acute effects on human biology. Different strategies have been used to tackle this question using various physiological, neuro-physiological and behavioral indicators. For example, researchers investigating electro-encephalography (EEG) have reported that Extremely Low Frequency (ELF, < 300 Hz) MF can increase the resting occipital alpha rhythm (8-12 Hz) [1, 2]. Interestingly, other studies have demonstrated that human motor behavior can be modulated by ELF MF exposure, reporting that such an exposure can reduce anteroposterior standing balance oscillations [3, 4] or decrease physiological tremor intensity [5]. However, the main limitation in this domain is the difficulty of reproducing the results. A possible reason for this is the large variety of experimental approaches employed. Therefore, the aim of this project is to investigate the effects of a 60 Hz, 1800 μT MF exposure on physiological (i.e. heart rate and peripheral blood perfusion), neuro-physiological (brain electrical activity), and behavioral (postural oscillations, voluntary motor functions, and physiological tremor) aspects in humans using a single experimental procedure.Though the results from this study suggest a subtle reduction of human standing balance as well as a subtle increase of physiological tremor amplitude with MF exposure, no effect appeared on other investigated parameters, suggesting that one hour of 60 Hz, 1800 μT MF exposure may modulate human involuntary motor control without being detected in the electrical activity of the brain. (authors)

  14. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  15. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  16. NASA Rat Acoustic Tolerance Test 1994-1995: 8 kHz, 16 kHz, 32 kHz Experiments

    Science.gov (United States)

    Mele, Gary D.; Holley, Daniel C.; Naidu, Sujata

    1996-01-01

    Adult male Sprague-Dawley rats were exposed to chronic applied sound (74 to 79 dB, SPL) with octave band center frequencies of either 8, 16 or 32 kHz for up to 60 days. Control cages had ambient sound levels of about 62 dB (SPL). Groups of rats (test vs. control; N=9 per group) were euthanized after 0. 5. 14, 30, and 60 days. On each euthanasia day, objective evaluation of their physiology and behavior was performed using a Stress Assessment Battery (SAB) of measures. In addition, rat hearing was assessed using the brain stem auditory evoked potential (BAER) method after 60 days of exposure. No statistically significant differences in mean daily food use could be attributed to the presence of the applied test sound. Test rats used 5% more water than control rats. In the 8 kHz and 32 kHz tests this amount was statistically significant(P less than .05). This is a minor difference of questionable physiological significance. However, it may be an indication of a small reaction to the constant applied sound. Across all test frequencies, day 5 test rats had 6% larger spleens than control rats. No other body or organ weight differences were found to be statistically significant with respect to the application of sound. This spleen effect may be a transient adaptive process related to adaptation to the constant applied noise. No significant test effect on differential white blood cell counts could be demonstrated. One group demonstrated a low eosinophil count (16 kHz experiment, day 14 test group). However this was highly suspect. Across all test frequencies studied, day 5 test rats had 17% fewer total leukocytes than day 5 control rats. Sound exposed test rats exhibited 44% lower plasma corticosterone concentrations than did control rats. Note that the plasma corticosterone concentration was lower in the sound exposed test animals than the control animals in every instance (frequency exposure and number of days exposed).

  17. How to fit demand side management (DSM) into current Chinese electricity system reform?

    International Nuclear Information System (INIS)

    Yu Yongzhen

    2012-01-01

    DSM is one of the best and most practical policy tools available to China for balancing environmental protection and economic growth. The new round of electricity system reform provides a good opportunity to consolidate and integrate DSM policy and expedite its development and implementation. DSM policy can be upgraded by incorporating it into the current electricity system reform. Comparing the potential acceleration of electricity price reform with the possibility of imposing a System Benefit Charge (SBC), the author argues that support for a SBC would be much easier to gather among policymakers and stakeholders in a short time and would have a much better policy effect in the current situation. The author discusses three kinds of price discrimination related to the DSM development in China: time-based electricity pricing, electricity price discrimination for industrial structure adjustment in China (Fujian Province as a case), and direct power purchases by large customers and preferential tariff policy. These can be well designed to be combined with DSM and energy efficiency policy. - Highlights: ► Elements of DSM have been in place since 1993, but without even and reinforced policy. ► DSM can be upgraded by fitting it into current Chinese electricity system reform. ► Both electricity price reform and SBC would mean increases in electricity payment. ►Imposing SBC is much easier and better than speeding up electricity price reform. ► Three kinds of price discrimination can be well designed to be combined with DSM.

  18. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    Science.gov (United States)

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.

    2018-01-01

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge--realization of lasing with electrical injection--remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.

  19. Kirchhoff and Ohm in action: solving electric currents in continuous extended media

    Science.gov (United States)

    Dolinko, A. E.

    2018-03-01

    In this paper we show a simple and versatile computational simulation method for determining electric currents and electric potential in 2D and 3D media with arbitrary distribution of resistivity. One of the highlights of the proposed method is that the simulation space containing the distribution of resistivity and the points of external applied voltage are introduced by means of digital images or bitmaps, which easily allows simulating any phenomena involving distributions of resistivity. The simulation is based on the Kirchhoff’s laws of electric currents and it is solved by means of an iterative procedure. The method is also generalised to account for media with distributions of reactive impedance. At the end of this work, we show an example of application of the simulation, consisting in reproducing the response obtained with the geophysical method of electric resistivity tomography in presence of soil cracks. This paper is aimed at undergraduate or graduated students interested in computational physics and electricity and also researchers involved in the area of continuous electric media, which could find a simple and powerful tool for investigation.

  20. Backup of renewable energy for an electrical island: case study of Israeli electricity system--current status.

    Science.gov (United States)

    Fakhouri, A; Kuperman, A

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources.

  1. Monitoring audiometry for occupational hearing loss: A case for eliminating 500 Hz

    Science.gov (United States)

    Stephenson, Mark

    2003-04-01

    Audiometric monitoring is an important element in hearing conservation programs. Nearly every existing hearing conservation standard dictate that hearing thresholds should be measured at specific frequencies, and that 500 Hz be among those frequencies tested. Actual and estimated noise-induced permanent threshold shifts were evaluated as a function of exposure duration and exposure level. The results demonstrate 500 Hz to be of little value in assessing noise-induced hearing loss for typical industrial noise exposures of up to 40 years, at least for time-weighted average exposures of up to 100 dBA. Furthermore, few hearing conservation programs currently require audiometric monitoring to be performed in an environment that meets ANSI standards for maximum permissible background noise levels. This is particularly likely to compromise hearing testing at 500 Hz. As a result, this paper argues against the need for testing at 500 Hz, and recommends it be eliminated as a required test frequency in audiometric monitoring for noise-induced occupational hearing loss.

  2. Finite element modelling of electric currents in AC submerged arc furnaces

    CSIR Research Space (South Africa)

    Mc Dougall, I

    2007-01-01

    Full Text Available and the power ratings is not a hindrance. 2. MATHEMATICAL FORMULATION As the frequency of the current is low, the quasi-static form of Maxwell’s equations is solved. (1) (2) (3) (4) where E denotes the electric field intensity, H the magnetic field... of Electric Currents in AC Submerged Arc Furnaces 637 REFERENCES [1] Bermudez, A., Muniz, M.C., Pena, F. , Bullon, J., “ Numerical Computation of the Electromagnetic Field in the Electrodes of a Three-Phase Arc Furnace”, Int. Jnl for Numerical Methods...

  3. The residential electricity sector in Denmark: A description of current conditions

    DEFF Research Database (Denmark)

    Kitzing, Lena; Katz, Jonas; Schröder, Sascha Thorsten

    We provide an overview of the current conditions and framework for residential electricity consumption in Denmark. This includes a general overview of the sector, the retail market and the regulatory framework. We describe the regulations currently in place and changes which have been decided...... in the area, which are listed in the Glossary towards the end of the report. We also attach a list and description of the major sources of information and data that can be obtained and downloaded for analysis of the Danish residential electricity sector....

  4. Analysis of critical thinking ability in direct current electrical problems solving

    Science.gov (United States)

    Hartono; Sunarno, Widha; Sarwanto; Arya Nugraha, Dewanta

    2017-11-01

    This study concern on analyzing the ability of students in critical thinking skills on the subject matter of direct current electricity. Samples were taken using purposive random sampling consisted of 32 students of grade XI, Multimedia 1, SMK Negeri 3 Surakarta in academic year 2016/2017. This study used descriptive quantitative method. The data were collected using tests and interviews regarding the subject matter of direct current electricity. Based on the results, students are getting some difficulties in solving problem in indicator 4. The average of students’ correct answer is 62.8%.

  5. On the presence of electric currents in the solar atmosphere. I - A theoretical framework

    Science.gov (United States)

    Hagyard, M.; Low, B. C.; Tandberg-Hanssen, E.

    1981-01-01

    The general magnetic field above the solar photosphere is divided by an elementary analysis based on Ampere's law into two parts: a potential field due to electric currents below the photosphere and a field produced by electric currents above the photosphere combined with the induced mirror currents. The latter, by symmetry, has a set of field lines lying in the plane taken to be the photosphere which may be constructed from given vector magnetograph measurements. These field lines also represent all the information on the electric currents above the photosphere that a magnetograph can provide. Theoretical illustrations are given, and implications for data analysis are discussed.

  6. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors

    International Nuclear Information System (INIS)

    Jun-Qing, Zhao; Shi-Zhu, Qiao; Zhen-Feng, Jia; Ning-Yu, Zhang; Yan-Ju, Ji; Yan-Tao, Pang; Ying, Chen; Gang, Fu

    2008-01-01

    We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations. With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions. The results show that the SCD inhibits the current polarization. Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices

  7. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System

    Directory of Open Access Journals (Sweden)

    James Avery

    2017-01-01

    Full Text Available A highly versatile Electrical Impedance Tomography (EIT system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication.

  8. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    Science.gov (United States)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  9. Rethinking Sediment Biogeochemistry After the Discovery of Electric Currents

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2015-01-01

    The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted...

  10. An "Off-the-Shelf" System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy.

    Science.gov (United States)

    Neal, Robert E; Kavnoudias, Helen; Thomson, Kenneth R

    2015-06-01

    Irreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators. We describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator. Accuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues. This system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents-sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  11. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    Science.gov (United States)

    Fakhouri, A.; Kuperman, A.

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  12. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  13. Ipsilateral masking between acoustic and electric stimulations.

    Science.gov (United States)

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  14. Modification of genetic effect of gamma-irradiation by electric current

    International Nuclear Information System (INIS)

    Grigor'eva, N.N.; Shakhbazov, V.G.

    1983-01-01

    The effect of direct current of different polarity on genetic sequels of #betta#-radiation of Vicia faba seedlings is studied. It is established that weak current might modify genetic sequels of #betta#-radiation. Protective current effect on irradiated meristem cells of seedlings manifests at negative polarization of the meristem before radiation and at positive polarization-after radiation. Modifying effect of electric current is brought about at the expense of redistribution of anions and cations between the meristem and other root zones

  15. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  16. Neurovegetative disturbances in workers exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Bortkiewicz, A.; Gadzicka, E.; Zmyslony, M.; Szymczak, W.

    2006-01-01

    Since the circulatory and nervous systems are composed of of electrically excitable tissues, it is plausible that they can be stimulated by electromagnetic fields (EMF). No clinical studies have as been carried out to explain whether and how occupational exposure to 50 Hz EMF can influence the neurovegetative regulation of the cardiovascular function. The present project was undertaken to assess the the autonomic function in workers occupationally exposed to 50 Hz EMF, by analyzing the heart rate variability. The study group comprised 63 workers of switchyard substations, aged 22-67 years (39.2±10.0 years), and the control group 42 workers of radio link stations, aged 20-68 years (40.7±9.2 years), employed at workposts free from EMF exposure. The age range and employment duration in both groups did not differ significantly. To assess the neurovegetative regulation of the cardiac function, heart rate variability HRV) analysis was made based on 512 normal heart beats recorded at rest. The analysis, performed using fast Fourier transformation, concerned the time - and frequency-domain HRV parameters. Power spectrum in the very low (VLF), low (LF) and high (HF) frequency bands was determined. The relative risk of decreased HRV (STD R-R ) was significantly higher in the study group than in control (65% vs. 47%). It was concluded that occupational exposure to 50 Hz EMF could influence the neurovegetative regulation of the cardiovascular system. (author)

  17. Resistive Fault Current Limiter Prototypes: Mechanical and Electrical Analyses

    International Nuclear Information System (INIS)

    Martini, L; Arcos, I; Bocchi, M; Brambilla, R; Dalessandro, R; Frigerio, A; Rossi, V

    2006-01-01

    The problem of excessive short-circuit currents has become an important issue for power systems operators and there are clear indications for a growing interest in superconducting fault current limiter devices for MV and HV grids. In this work, we report on both simulation and electrical testing on single-phase SFCL prototypes developed in the framework of an Italian RTD project to be completed with a 3-phase SFCL unit by the end of 2005

  18. Benchmarking electrical methods for rapid estimation of root biomass.

    Science.gov (United States)

    Postic, François; Doussan, Claude

    2016-01-01

    To face climate change and subsequent rainfall instabilities, crop breeding strategies now include root traits phenotyping. Rapid estimation of root traits in controlled conditions can be achieved by using parallel electrical capacitance and its linear correlation with root dry mass. The aim of the present study was to improve robustness and efficiency of methods based on capacitance and other electrical variables, such as serial/parallel resistance, conductance, impedance or reactance. Using different electrode configurations and stem contact electrodes, we have measured the electrical impedance spectra of wheat plants grown in pots filled with three types of soil. For each configuration, parallel capacitance and other linearly independent electrical variables were computed and their quality as root dry mass estimator was evaluated by a 'sensitivity score' that we derived from Pearson's correlation coefficient r and linear regression parameters. The highest sensitivity score was obtained by parallel capacitance at an alternating current frequency of 116 Hz in three-terminal configuration. Using a clamp, instead of a needle, as a stem electrode did not significantly affect the capacitance measurements. Finally, in handheld LCR meter equivalent conditions, capacitance had the highest sensitivity score and determination coefficient (r (2) = 0.52) at 10 kHz frequency. Our benchmarking of linear correlations between different electrical variables and root dry mass enables to determine more coherent practices for ensuring a sensitive and robust root dry mass estimation, including in handheld LCR meter conditions. This would enhance the value of electrical capacitance as a tool for screening crops in relation with root systems in breeding programs.

  19. Low Current Surface Flashover for Initiation of Electric Propulsion Devices

    Science.gov (United States)

    Dary, Omar G.

    There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a

  20. Evolution of mechanical properties of ultrafine grained 1050 alloy annealing with electric current

    International Nuclear Information System (INIS)

    Cao, Yiheng; He, Lizi; Zhang, Lin; Zhou, Yizhou; Wang, Ping; Cui, Jianzhong

    2016-01-01

    The tensile properties and microstructures of 1050 aluminum alloy prepared by equal channel angular pressing at cryogenic temperature (cryoECAP) after electric current annealing at 90–210 °C for 3 h were investigated by tensile test, electron back scattering diffraction (EBSD) and transmission electron microscopy (TEM). An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C, due to a significant decrease in the density of mobile dislocations after annealing, and thus a higher yield stress is required to nucleate alternative dislocation sources during tensile test. The electric current can enhance the motion of dislocations, lead to a lower dislocation density at 90–150 °C, and thus shift the peak annealing temperature from 150 °C to 120 °C. Moreover, the electric current can promote the migration of grain boundaries at 150–210 °C, result in a larger grain size at 150 °C and 210 °C, and thus causes a lower yield stress. The sample annealed with electric current has a lower uniform elongation at 90–120 °C, and the deviation in the uniform elongation between samples annealed without and with electric current becomes smaller at 150–210 °C. - Highlights: • An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C. • The d. c. current can enhance the motion of dislocations at 90–150 °C, and thus shift the peak annealing temperature from 150 °C to 120 °C. • The d. c. current can promote the grain growth at 150–210 °C, and thus cause a lower yield stress. • The DC annealed sample has a lower uniform elongation at 90–120 °C.

  1. Electroacupuncture most effectively elicits depressor and bradycardic responses at 1 Hz in humans.

    Science.gov (United States)

    Nakahara, Hidehiro; Kawada, Toru; Ueda, Shin-ya; Kawai, Eriko; Yamamoto, Hiromi; Sugimachi, Masaru; Miyamoto, Tadayoshi

    2016-02-01

    Acupuncture stimulation is known to act on the autonomic nervous system and elicits depressor and bradycardic effects. However, previous studies on humans did not conduct quantitative analyses on optimal acupuncture conditions such as the stimulation frequency and duration to achieve maximum depressor and bradycardic effects. The aim of the present study was to investigate the effects of varying stimulation frequencies of electroacupuncture on time-dependent changes in blood pressure and heart rate in humans. Twelve healthy volunteers participated in the study. An acupuncture needle was inserted at the Ximen acupoint (PC4 according to WHO nomenclature), located at the anterior aspect of the forearm. An electrical stimulation was delivered through the acupuncture needle at an intensity of 1 V, pulse width of 5 ms, and stimulation frequencies of 0.5, 1, 5, and 10 Hz in a random order. The duration of electroacupuncture was 6 min, during which blood pressure and heart rate responses were monitored. Group-averaged data indicated that 1-Hz electroacupuncture decreased blood pressure and heart rate. Blood pressure was significantly decreased from the prestimulation baseline value of 86.6 ± 2.9 to 81.4 ± 2.3 mmHg during 4-6 min of 1-Hz electroacupuncture (mean ± SE, P < 0.01). Heart rate was also significantly decreased (from 66.2 ± 2.0 to 62.7 ± 1.7 beats/min, P < 0.01). These results provide fundamental evidence that bradycardiac and depressor responses are effectively produced by electrical acupuncture in humans.

  2. The study of human bodies' impedance networks in testing leakage currents of electrical equipments

    Science.gov (United States)

    Zhang, Zhaohui; Wang, Xiaofei

    2006-11-01

    In the testing of electrical equipments' leakage currents, impedance networks of human bodies are used to simulate the current's effect on human bodies, and they are key to the preciseness of the testing result. This paper analyses and calculates three human bodies' impedance networks of measuring electric burn current, perception or reaction current, let-go current in IEC60990, by using Matlab, compares the research result of current effect thresholds' change with sine wave's frequency published in IEC479-2, and amends parameters of measuring networks. It also analyses the change of perception or reaction current with waveform by Multisim.

  3. Measuring electric conductivity in liquid metals by eddy current method

    International Nuclear Information System (INIS)

    Zhuravlev, S.P.; Ostrovskij, O.I.; Grigoryan, V.A.

    1982-01-01

    Technique permitting to apply the method of vertiginous currents for investigation of electric conductivity of metal melts in the high temperature range is presented. Interferences affecting accuracy of measurements are specified and ways of their removing are pointed out. Scheme of measuring and design of the facility are described. Results of measuring electric resistance of liquid Fe, Co, Ni obtained for the first time by this method are presented. The data obtained agree with the results of measurements conducted by the method of the rotating magnetic field. Difference in absolute values of electric resistance in parallel experiments for each metal does not exceed 4%

  4. Current training initiatives at Nuclear Electric plc

    International Nuclear Information System (INIS)

    Fowler, C.D.

    1993-01-01

    Nuclear Electric, one of the three generating companies to emerge from the demise of the U.K.'s Central Electricity Generating Board (CEGB), owns and operates the commercial nuclear power stations in England and Wales. The U.K. government proscribed further construction beyond Sizewell B, the United Kingdom's first pressurized water reactor (PWR) station, pending the outcome of a review of the future of nuclear power to be held in 1994. The major challenges facing Nuclear Electric at its formation in 1990 were therefore to demonstrate that nuclear power is safe, economical, and environmentally acceptable and to complete the PWR station under construction on time and within budget. A significant number of activities were started that were designed to increase output, reduce costs, and ensure that the previous excellent safety standards were maintained. A major activity was to reduce the numbers of staff employed, with a recognition from the outset that this reduction could only be achieved with a significant human resource development program. Future company staff would have to be competent in more areas and more productive. This paper summarizes some of the initiatives currently being pursued throughout the company and the progress toward ensuring that staff with the required competences are available to commission and operate the Sizewell B program in 1994

  5. Electric field control photo-induced Hall currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-10-15

    We generate spin-polarized carrier populations in GaAs and low temperature-grown GaAs (LT-GaAs) by circularly polarized optical beams and pull them by external electric fields to create spin-polarized currents. In the presence of the optically generated spin currents, anomalous Hall currents with an enhancement with increasing doping are observed and found to be almost steady in moderate electric fields up to {approx}120 mV {mu}m{sup -1}, indicating that photo-induced spin orientation of electrons is preserved in these systems. However, a field {approx}300 mV {mu}m{sup -1} completely destroys the electron spin polarization due to an increase of the D'yakonov-Perel' spin precession frequency of the hot electrons. This suggests that high field carrier transport conditions might not be suitable for spin-based technology with GaAs and LT-GaAs. It is also demonstrated that the presence of the excess arsenic sites in LT-GaAs might not affect the spin relaxation by Bir-Aronov-Pikus mechanism owing to a large number of electrons in n-doped materials.

  6. Increase of energy efficiency of testing of traction electric machines of direct and pulsating current

    Directory of Open Access Journals (Sweden)

    A.M. Afanasov

    2015-03-01

    Full Text Available The results of the analysis of the effect of the load current of traction electric machines when tested for heating on the total electricity consumption for the test are presented. It is shown that increase of load current at the heating test permits to significantly reduce the consumption of electrical energy, and reduce the testing time without reducing its quality.

  7. Tuning Coler Magnetic Current Apparatus with Magneto-Acoustic Resonance

    Science.gov (United States)

    Ludwig, Thorsten

    An attempt was made to tune the Coler magnetic current apparatus with the magneto acoustic resonance of the magnetic rods. Measurements with a replica of the famous Coler "Magnetstromapparat" were conducted. In order to tune the acoustic, magnetic and electric resonance circuits of the Coler device the magneto-acoustic resonance was measured with a frequency scan through a function generator and a lock-in amplifier. The frequency generator was powering a driving coil, while the lock-in was connected to a pickup coil. Both coils were placed on a magnetic rod. Resonances were observed up to the 17th harmonic. The quality Q of the observed resonances was 270. To study the magneto-acoustic resonance in the time domain a pair of Permendur rods were employed. The magneto-acoustic resonances of the Permendur rods were observed with an oscilloscope. Spectra of the magneto acoustic resonance were measured for the Permendur rods and for a Coler replica magnet in the frequency range from 25 kHz to 380 kHz. The next step was to bring the resonances of the Permendur rods close together so that they overlap. The 10thharmonic was chosen because it was close to the 180 kHz that Hans Coler related to ferromagnetism. Further more magneto-acoustic coupling between the Permendur rods was studied. Finally the question was explored if Hans Coler converted vacuum fluctuations via magnetic and acoustic resonance into electricity. There is a strong connection between magnetism and quantum field zero point energy (ZPE). An outlook is given on next steps in the experiments to unveil the working mechanism of the Coler magnetic current apparatus.

  8. Comparing microbubble cavitation at 500 kHz and 70 kHz related to micellar drug delivery using ultrasound.

    Science.gov (United States)

    Diaz de la Rosa, Mario A; Husseini, Ghaleb A; Pitt, William G

    2013-02-01

    We have previously reported that ultrasonic drug release at 70kHz was found to correlate with the presence of subharmonic emissions. No evidence of drug release or of the subharmonic emissions were detected in experiments at 500kHz. In an attempt to understand the difference in drug release behavior between low- and mid-frequency ultrasound, a mathematical model of a bubble oscillator was developed to explore the difference in the behavior of a single 10-μm bubble under 500- and 70-kHz ultrasound. The dynamics were found to be fundamentally different; the 500-kHz bubble follows a period-doubling route to chaos while a 70-kHz bubble follows an intermittent route to chaos. We propose that this type of "intermittent subharmonic" oscillation behavior is associated with the drug release observed experimentally. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Solar flares through electric current interaction

    International Nuclear Information System (INIS)

    De Jager, C.

    1988-01-01

    The fundamental hypothesis by Alfven and Carlqvist (1967) that solar flares are related to electrical currents in the solar chromosphere and low corona is investigated in the light of modern observations. The authors confirm the important role of currents in solar flares. There must be tens of such current loops (flux threads) in any flare, and this explains the hierarchy of bursts in flares. The authors summarize quantitative data on energies, numbers of particles involved and characteristic times. A special case is the high-energy flare: this one may originate in the same way as less energetic ones, but it occurs in regions with higher magnetic field strength. Because of the high particle energies involved their emission seats live only very briefly; hence the area of emission coincides virtually with the seat of the instability. These flares are therefore the best examples for studying the primary instability leading to the flare. Finally, the authors compare the merits of the original Alfven-Carlqvist idea (that flares originate by current interruption) with the one that they are due to interaction (reconnection) between two or more fluxthreads. The authors conclude that a final decision cannot yet by made, although the observed extremely short time constants of flare bursts seem to demand a reconnection-type instability rather than interruption of a circuit

  10. Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth's ionosphere in frequency range 1-60 Hz

    Science.gov (United States)

    Dudkin, Fedir; Korepanov, Valery; Dudkin, Denis; Pilipenko, Vyacheslav; Pronenko, Vira; Klimov, Stanislav

    2015-07-01

    The power line emission (PLE) 50/60 Hz and the Schumann resonance (SR) harmonics were detected by the use of a compact electrical field sensor of length 0.42 m during microsatellite Chibis-M mission in years 2012-2014. The initial orbit of Chibis-M has altitude 500 km and inclination 52°. We present the space distribution of PLE and its connections with the possible overhead power lines. PLE has been recorded both in the shade and sunlit parts of the orbits as opposed to SR which have been recorded only in the nightside of the Earth. The cases of an extra long distance of PLE propagation in the Earth's ionosphere and increased value of SR Q factor have been also observed. These results should stimulate the ionosphere model refinement for ultralow frequency and extremely low frequency electromagnetic wave propagation as well as a study on new possibility of the ionosphere diagnostics.

  11. Study of the electric Held in HTS tape caused by perpendicular AC magnetic field

    International Nuclear Information System (INIS)

    Roiberg, V; Kopansky, F.

    2004-01-01

    Full Text: In a previous work we studied the influence of AC magnetic fields on voltage-currents (V-I) characteristics of high temperature superconducting (HTS) multi filament BSCC0-2223 tapes. It was found that AC magnetic fields perpendicular to the ab plane (the wide surface of the tape) cause a linear decrease of the critical current (IC) with amplitude of the AC magnetic field. The degradation of IC in .AC field was explained by the geometrical model according to which the transport current floe: is confined to the central zone of the tape where .AC field does not penetrate. For deeper understanding of the observed phenomena we carried out a study of the time dependence of the electric field during the cycle of AC field. At the same time we expanded the frequency range to low frequencies down to 1 Hz. The main results of the work are as following. 1. The time modulation of the electric field E in the HTS tape carrying transport DC current has the double frequency relating to AC magnetic field. 2. In field amplitudes less than 70 G the electric field modulation decreases with increasing frequency in opposite to its well-pronounced increase in higher AC field amplitudes. Alcove 70 G, the electric field increases with increasing the frequency of the external magnetic field. The wave forms of the electric field are different in both amplitudes ranges. 3. E-I curves of the tape in low amplitudes are frequency independent and coincide with E-l curves in AC field with intensity equal to the AC field amplitude. 4. In high AC field amplitudes, a strong dependence of the E-I curves on frequency is observed in the frequency range of 1-40 Hz and no dependence is observed in higher frequencies. Our results suggest that a combination of the geometrical model with flux creep concepts is necessary for a better understanding of the electric field behavior in our measurement conditions

  12. The choice of design speed for PWR turbines for 50 Hz generating systems

    International Nuclear Information System (INIS)

    Harris, F.R.; Kalderon, D.

    1983-01-01

    Turbines for use with water-cooled reactors, by virtue of their large output, coupled to their larger steam flow per unit output than for fossil-fuelled units, require large total blade exhaust areas; this has led to the adoption of 1800 rpm as the design speed where generation is at 60 Hz, but for generation at 50 Hz both 1500 rpm and 3000 rpm turbines can be deployed over a wide range of outputs. The paper points out why half-speed units, universal for generation at 60 Hz, are often uneconomic for 50 Hz generation. Full-speed and half-speed machines are compared in size, weight, constructional features, reliability, and efficiency. Taking into account economic practice in selection of condenser pressures, the available cooling water temperatures, and also the current and foreseeable turbine blade annulus areas, combinations of outputs and cooling water temperatures where each type of turbine is likely to be economically preferable are identified. (author)

  13. Electrical stimulation promotes regeneration of injured oculomotor nerves in dogs

    Directory of Open Access Journals (Sweden)

    Lei Du

    2016-01-01

    Full Text Available Functional recovery after oculomotor nerve injury is very poor. Electrical stimulation has been shown to promote regeneration of injured nerves. We hypothesized that electrical stimulation would improve the functional recovery of injured oculomotor nerves. Oculomotor nerve injury models were created by crushing the right oculomotor nerves of adult dogs. Stimulating electrodes were positioned in both proximal and distal locations of the lesion, and non-continuous rectangular, biphasic current pulses (0.7 V, 5 Hz were administered 1 hour daily for 2 consecutive weeks. Analysis of the results showed that electrophysiological and morphological recovery of the injured oculomotor nerve was enhanced, indicating that electrical stimulation improved neural regeneration. Thus, this therapy has the potential to promote the recovery of oculomotor nerve dysfunction.

  14. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by

  15. Plasma antennas driven by 5–20 kHz AC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiansen, E-mail: 67093058@qq.com; Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng [Merchant Marine College, Shanghai Maritime University, Shanghai, 201306 (China)

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  16. Electric fields and field-aligned current generation in the magnetosphere

    International Nuclear Information System (INIS)

    Alexeev, I.I.; Belenkaya, E.S.; Kalegaev, V.V.; Lyutov, Yu.G.

    1993-01-01

    The authors present a calculation of the electric potential, field-aligned currents, and plasma convection caused by the penetration of the solar wind electric field into the magnetosphere. Ohm's law and the continuity equation of ionospheric currents are used. It is shown that the large-scale convection system is reversed in the plasma sheet flanks. In this region the plasma flow is antisunward earthward of the neutral line and sunward tailward of it. The interplanetary magnetic field (IMF) B z dependences on the dimension of the magnetopause open-quotes windowsclose quotes which are intersected by open field lines, on the potential drop across the polar cap, and on the distance to the neutral line are determined. Because of the IMF effect and the effect of seasonal or daily variations of the geomagnetic field which violate its symmetry relative to the equatorial plane, there may arise a potential drop along field lines which causes field-aligned currents. The values and directions of these currents, the field-aligned potential drop, and a self-consistent solution for the potential at the ionosphere level for high field-aligned conductivity have been determined. 41 refs., 7 figs

  17. Computer-simulation movie of ionospheric electric fields and currents for a magnetospheric substorm life cycle. Technical note

    International Nuclear Information System (INIS)

    Kamide, Y.; Matsushita, S.

    1980-07-01

    Numerical solution of the current conservation equation gives the distributions of electric fields and currents in the global ionosphere produced by the field-aligned currents. By altering ionospheric conductivity distributions as well as the field-aligned current densities and configurations to simulate a magnetospheric substorm life cycle, which is assumed to last for five hours, various patterns of electric fields and currents are computed for every 30-second interval in the life cycle. The simulated results are compiled in the form of a color movie, where variations of electric equi-potential curves are the first sequence, electric current-vector changes are the second, and fluctuations of the electric current system are the third. The movie compresses real time by a factor of 1/180, taking 1.7 minutes of running time for one sequence. One of the most striking features of this simulation is the clear demonstration of rapid and large scale interactions between the auroral zone and middle-low latitudes during the substorm sequences. This technical note provides an outline of the numerical scheme and world-wide contour maps of the electric potential, ionospheric current vectors, and the equivalent ionospheric current system at 5-minute intervals as an aid in viewing the movie and to further detailed study of the 'model' substorms

  18. Measurement of 50 Hz magnetic fields in some Norwegian households

    International Nuclear Information System (INIS)

    Karlsen, J.; Johnsson, A.

    1987-01-01

    An examination of 50 Hz magnetic fields has been made in ten different Norwegian dwellings. The aim was to measure the general background level of the 50 Hz magnetic fields. The investigation followed a protocol also used in Swedish measurements, and direct comparisons are therefore possible. A portable, commercial coil instrument was used. In september 1986 and January 1987 the magnetic fields in living rooms, sleeping rooms, and kitchens were measured according to the standardized procedure. Current consumption and temperature at the time of the measurements were also recorded. A clear correlation was noted between the magnetic field values and the current consumption. The mean values of the magnetic fields in the living rooms, sleeping rooms and kitchens, were 12 nT, 11 nT and 160 nT, respectively. The living and sleeping room values can be regarded as very low, and they are much lower than corresponding Swedish values. The kitchen values in the two countries seem, however, to be of the same order of magnitude. The report discusses the need for additional measurements in Norwegian houses

  19. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  20. Determination of the electrical characteristics of protective coatings and deposits on metals in media with low electrical conductivity

    International Nuclear Information System (INIS)

    Ovcharenko, V.I.; Koroleva, E.V.; Fedorova, A.N.; Sereda, G.A.

    1987-01-01

    This paper presents the results of a theoretical analysis and experimental determination of the electrical and associated protective characteristics of poorly conducting layers on metals, modeling both oxide and hydroxide deposits on the inner surfaces of the equipment as well as films of protective coatings. The analysis is performed using the linear low-frequency ac current (10 -3 -10 -6 Hz) method, which is based on the determination of the impedance Z, the admittance Y = 1/Z, the complex capacitance C = Y/j omega, where omega is the circular frequency of the alternating current, the complex dielectric constant epsilon, the tangent of the dielectric-loss angle tan δ and other quantities associated with them

  1. Effects of A 60 Hz Magnetic Field of Up to 50 milliTesla on Human Tremor and EEG: A Pilot Study.

    Science.gov (United States)

    Davarpanah Jazi, Shirin; Modolo, Julien; Baker, Cadence; Villard, Sebastien; Legros, Alexandre

    2017-11-24

    Humans are surrounded by sources of daily exposure to power-frequency (60 Hz in North America) magnetic fields (MFs). Such time-varying MFs induce electric fields and currents in living structures which possibly lead to biological effects. The present pilot study examined possible extremely low frequency (ELF) MF effects on human neuromotor control in general, and physiological postural tremor and electroencephalography (EEG) in particular. Since the EEG cortical mu-rhythm (8-12 Hz) from the primary motor cortex and physiological tremor are related, it was hypothesized that a 60 Hz MF exposure focused on this cortical region could acutely modulate human physiological tremor. Ten healthy volunteers (age: 23.8 ± 4 SD) were fitted with a MRI-compatible EEG cap while exposed to 11 MF conditions (60 Hz, 0 to 50 mT rms , 5 mT rms increments). Simultaneously, physiological tremor (recorded from the contralateral index finger) and EEG (from associated motor and somatosensory brain regions) were measured. Results showed no significant main effect of MF exposure conditions on any of the analyzed physiological tremor characteristics. In terms of EEG, no significant effects of the MF were observed for C1, C3, C5 and CP1 electrodes. However, a significant main effect was found for CP3 and CP5 electrodes, both suggesting a decreased mu-rhythm spectral power with increasing MF flux density. This is however not confirmed by Bonferroni corrected pairwise comparisons. Considering both EEG and tremor findings, no effect of the MF exposure on human motor control was observed. However, MF exposure had a subtle effect on the mu-rhythm amplitude in the brain region involved in tactile perception. Current findings are to be considered with caution due to the small size of this pilot work, but they provide preliminary insights to international agencies establishing guidelines regarding electromagnetic field exposure with new experimental data acquired in humans exposed to high m

  2. Rectifying the Optical-Field-Induced Current in Dielectrics: Petahertz Diode.

    Science.gov (United States)

    Lee, J D; Yun, Won Seok; Park, Noejung

    2016-02-05

    Investigating a theoretical model of the optical-field-induced current in dielectrics driven by strong few-cycle laser pulses, we propose an asymmetric conducting of the current by forming a heterojunction made of two distinct dielectrics with a low hole mass (m_{h}^{*}≪m_{e}^{*}) and low electron mass (m_{e}^{*}≪m_{h}^{*}), respectively. This proposition introduces the novel concept of a petahertz (10^{15}  Hz) diode to rectify the current in the petahertz domain, which should be a key ingredient for the electric signal manipulation of future light-wave electronics. Further, we suggest the candidate dielectrics for the heterojunction.

  3. Operation and Thermal Modeling of the ISIS H– Source from 50 to 2 Hz Repetition Rates

    CERN Document Server

    Pereira, H; Lettry, J

    2013-01-01

    CERN’s Linac4 accelerator H− ion source, currently under construction, will operate at a 2 Hz repetition rate, with pulse length of 0.5 ms and a beam current of 80 mA. Its reliability must exceed 99 % with a mandatory 3 month uninterrupted operation period. A Penning ion source is successfully operated at ISIS; at 50 Hz repetition rate it reliably provides 55 mA H− pulses of 0.25 ms duration over 1 month. The discharge plasma ignition is very sensitive to the temperatures of the discharge region, especially of its cathode. The investigation by modeling and measurement of operation parameters suitable for arc ignition and H− production at 2 Hz is of paramount importance and must be understood prior to the implementation of discharge ion sources in the Linac4 accelerator. In its original configuration, the ISIS H− source delivers beam only if the repetition rate is above 12.5 Hz, this paper describes the implementation of a temperature control of the discharge region aiming at lower repetition rate op...

  4. Principle of the electrically induced Transient Current Technique

    Science.gov (United States)

    Bronuzzi, J.; Moll, M.; Bouvet, D.; Mapelli, A.; Sallese, J. M.

    2018-05-01

    In the field of detector development for High Energy Physics, the so-called Transient Current Technique (TCT) is used to characterize the electric field profile and the charge trapping inside silicon radiation detectors where particles or photons create electron-hole pairs in the bulk of a semiconductor device, as PiN diodes. In the standard approach, the TCT signal originates from the free carriers generated close to the surface of a silicon detector, by short pulses of light or by alpha particles. This work proposes a new principle of charge injection by means of lateral PN junctions implemented in one of the detector electrodes, called the electrical TCT (el-TCT). This technique is fully compatible with CMOS technology and therefore opens new perspectives for assessment of radiation detectors performances.

  5. Development of a 50-60 Hz thermally switched superconducting rectifier

    NARCIS (Netherlands)

    Chevtchenko, O.A.; ten Kate, Herman H.J.; Krooshoop, Hendrikus J.G.; Markovsky, N.V.; Mulder, G.B.J.; Mulder, G.B.J.

    1993-01-01

    A full-wave thermally switched superconducting rectifier, able to operate directly from the mains at the 50-60-Hz frequency, has been developed. Typical design output values of this device are a current of 300 A, a voltage of up to 1 V, an average power of up to 100 VA, and an efficiency better than

  6. Electrical conductivity of polytetrafluoroethylene in dc and ac electric fields under continuous electron bombardment

    International Nuclear Information System (INIS)

    Khatipov, S.A.; Turdybekov, K.M.; Milinchuk, V.K.

    1993-01-01

    A study has been made of the time of the radiation current density in dc and ac (10 2 -5-10 3 Hz) electric fields (10 3 -5-10 5 V/cm) at temperatures from 80 to 393 K and dose rates from 5-10 3 Gy/sec, for PTFE films (50-180 μm) with various thermal prehistories, when exposed to continuous bombardment by 9-MeV electrons. It has been shown that the experimental results cannot be interpreted from the standpoint of free-charge conduction; they can be explained qualitatively within the framework of concepts of inhomogeneous ionization of the substance, due to the formation of short tracks

  7. Transcranial alternating current stimulation (tACS

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2013-06-01

    Full Text Available Transcranial alternating current stimulation (tACS seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency or desynchronize (e.g. by the application of several frequencies cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the ripple range induces intensity dependent inhibition or excitation in the motor cortex most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.

  8. The current situation and mid-term prospects for European electricity markets

    International Nuclear Information System (INIS)

    Helm, Dieter

    2013-01-01

    This analysis of the current situation and mid-term prospects for European electricity markets presents: the objectives of energy policy, the historical legacy, the attempts at European integration and the Internal Energy Market (IEM), the coming of the Climate Change Package, the impact of the world economic and Euro-zone crises, the impact of shale gas and the new world of fossil fuel abundance, the impact of renewables on emissions, the impact of renewables on electricity markets, the EU emissions trading system (EU ETS) and the renewables and the electricity markets, the coming of capacity crunch in some cases, the capacity markets, the return of central buyers and national energy policies, and what is to be done for the world electricity markets

  9. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný, J.

    2014-10-06

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  10. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Vý borný , K.; Zemen, J.; Mašek, J.; Manchon, Aurelien; Wunderlich, J.; Sinova, Jairo; Jungwirth, T.

    2014-01-01

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  11. In Vitro Assessment of Electric Currents Increasing the Effectiveness of Vancomycin Against Staphylococcus epidermidis Biofilms.

    Science.gov (United States)

    Haddad, Peter A; Mah, Thien-Fah; Mussivand, Tofy

    2016-08-01

    Biofilms are communities of bacteria that can cause infections which are resistant to the immune system and antimicrobial treatments, posing a significant threat for patients with implantable and indwelling medical devices. The purpose of our research was to determine if utilizing specific parameters for electric currents in conjunction with antibiotics could effectively treat a highly resistant biofilm. Our study evaluated the impact of 16 μg/mL of vancomycin with or without 22 or 333 μA of direct electric current (DC) generated by stainless steel electrodes against 24-, 48-, and 72-h-old Staphylococcus epidermidis biofilms formed on titanium coupons. An increase in effectiveness of vancomycin was observed with the combination of 333 μA of electric current against 48-h-old biofilms (P value = 0.01) as well as in combination with 22 μA of electric current against 72-h-old biofilms (P value = 0.04); 333 μA of electric current showed the most significant impact on the effectiveness of vancomycin against S. epidermidis biofilms demonstrating a bioelectric effect previously not observed against this strain of bacteria. © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. An “Off-the-Shelf” System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Robert E., E-mail: Robert.Neal@alfred.org.au; Kavnoudias, Helen; Thomson, Kenneth R. [The Alfred Hospital, Radiology Research Unit, Department of Radiology (Australia)

    2015-06-15

    IntroductionIrreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators.MethodsWe describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator.ResultsAccuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues.ConclusionsThis system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents—sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  13. Electric and magnetic fields at extremely low frequencies

    International Nuclear Information System (INIS)

    Anderson, L.E.; Kaune, W.T.

    1989-01-01

    Whole-body exposure to extremely low frequency (ELF, 30-300 Hz) electric fields may involve effects related to stimulation of the sensory apparatus at the body surface (hair vibration, possible direct neural stimulation) and effects within the body caused by the flow of current. Magnetic fields may interact predominantly by the induction of internal current flow. Biological effects observed in a living organism may depend on the electric fields induced inside the body, possibly on the magnetic fields penetrating into the body, and on the fields acting at the surface of the body. Areas in which effects have been observed often appear to be associated with the nervous system, including altered neuronal excitability and neurochemical changes, altered hormone levels, changes in behavioural responses, and changes in biological rhythms. No studies unequivocably demonstrate deleterious effects of ELF electric or magnetic field exposure on mammalian reproduction and development, but several suggest such effects. Exposure to ELF electric and magnetic fields does produce biological effects. However, except for fields strong enough to induce current densities above the threshold for the stimulation of nerve tissues, there is no consensus as to whether these effects constitute a hazard to human health. Human data from epidemiological studies, including reported effects on cancer promotion, congenital malformations, reproductive performance and general health, though somewhat suggestive of adverse health effects, are not conclusive. 274 refs, 13 figs, 6 tabs

  14. Electric control of emergent magnonic spin current and dynamic multiferroicity in magnetic insulators at finite temperatures

    Science.gov (United States)

    Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.

    2018-04-01

    Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.

  15. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  16. Electrical properties of a new sulfur-containing polymer for optoelectronic application

    Science.gov (United States)

    ElAkemi, ElMehdi; Jaballah, Nejmeddine; Ouada, Hafedh Ben; Majdoub, Mustapha

    2015-06-01

    An original polythiophene derivative was characterized to develop the optoelectronic properties of sulfur-containing π-conjugated polymer. The optical properties of the polymer were investigated by UV-visible absorption spectroscopy and atomic force microscopy. Investigations of the electrical characteristics of polymer diodes are reported. We present current-voltage characteristics and impedance spectroscopy measurements performed on partially sulfur-containing thin films in sandwich structure ITO/sulfur-containing polymer/Al. The conduction mechanisms in these layers are identified to be a space-charge-limited current. The AC electrical transport of the sulfur-containing polymer is studied as a function of frequency (100 Hz-10 MHz) and temperature in impedance spectroscopy analyses. We interpreted Cole-Cole plots in terms of the equivalent circuit model as a single parallel resistance and a capacitance network in series with a relatively small resistance. The evolution of the electrical parameters deduced from fitting of the experimental data is discussed.

  17. [Extensive injuries due to high-tension electrical current].

    Science.gov (United States)

    Tomásek, D; Königová, R; Snupárek, Z

    1989-03-01

    The authors submit a case of severe injury with high tension electric current. They emphasize the necessity of prevention of this injury which occurs most frequently when transformer stations are not adequately safeguarded, in case of inadequate protection when approaching trolley wires on the railway track, and when safety principles are not respected during work on the railway. The authors draw attention to the importance of immediate resuscitation and multidisciplinary comprehensive care.

  18. A current to voltage converter for cryogenics using a CMOS operational amplifier

    International Nuclear Information System (INIS)

    Hayashi, K; Saitoh, K; Shibayama, Y; Shirahama, K

    2009-01-01

    We have constructed a versatile current to voltage (I-V) converter operating at liquid helium temperature, using a commercially available all-CMOS OPamp. It is valuable for cryogenic measurements of electrical current of nano-pico amperes, for example, in scanning probe microscopy. The I-V converter is thermally linked to liquid helium bath and self-heated up to 10.7 K. We have confirmed its capability of a transimpedance gain of 10 6 V/A and a bandwidth from DC to 200 kHz. In order to test the practical use for a frequency-modulation atomic force microscope, we have measured the resonance frequency shift of a quartz tuning fork at 32 kHz. In the operation of the I-V converter close to the sensor at liquid helium temperature, the signal-to-noise ratio has been improved to a factor of 13.6 compared to the operation at room temperature.

  19. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.

    Science.gov (United States)

    Shen, Wei; Han, Weijian; Wallington, Timothy J

    2014-06-17

    China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.

  20. IMPROVING MODEL OF CHANNEL AIRBORN ELECTRICAL POWER SYSTEM OF ALTERNATING CURRENT

    Directory of Open Access Journals (Sweden)

    Yu. P. Artemenko

    2015-01-01

    Full Text Available This article is devoted to math modeling of channel of alternating current airborne electrical power-supply system. Mathematical modeling of generator, voltage regulator, constant speed drive is considered.

  1. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  2. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  3. COOMET pilot comparison 473/RU-a/09: Comparison of hydrophone calibrations in the frequency range 250 Hz to 200 kHz

    Science.gov (United States)

    Yi, Chen; Isaev, A. E.; Yuebing, Wang; Enyakov, A. M.; Teng, Fei; Matveev, A. N.

    2011-01-01

    A description is given of the COOMET project 473/RU-a/09: a pilot comparison of hydrophone calibrations at frequencies from 250 Hz to 200 kHz between Hangzhou Applied Acoustics Research Institute (HAARI, China)—pilot laboratory—and Russian National Research Institute for Physicotechnical and Radio Engineering Measurements (VNIIFTRI, Designated Institute of Russia of the CIPM MRA). Two standard hydrophones, B&K 8104 and TC 4033, were calibrated and compared to assess the current state of hydrophone calibration of HAARI (China) and Russia. Three different calibration methods were applied: a vibrating column method, a free-field reciprocity method and a comparison method. The standard facilities of each laboratory were used, and three different sound fields were applied: pressure field, free-field and reverberant field. The maximum deviation of the sensitivities of two hydrophones between the participants' results was 0.36 dB. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCAUV-KCWG.

  4. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    Science.gov (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  5. Spectral Induced Polarization of Low-pH Concrete. Influence of the Electrical Double Layer and Pore Size

    Science.gov (United States)

    Leroy, P. G.; Gaboreau, S.; Zimmermann, E.; Hoerdt, A.; Claret, F.; Huisman, J. A.; Tournassat, C.

    2017-12-01

    Low-pH concretes are foreseen to be used in nuclear waste disposal. Understanding their reactivity upon the considered host-rock is a key point. Evolution of mineralogy, porosity, pore size distribution and connectivity can be monitored in situ using geophysical methods such as induced polarization (IP). This electrical method consists of injecting an alternating current and measuring the resulting voltage in the porous medium. Spectral IP (SIP) measurements in the 10 mHz to 10 kHz frequency range were carried out on low-pH concrete and cement paste first in equilibrium and then in contact with a CO2 enriched and diluted water. We observed a very high resistivity of the materials (> 10 kOhm m) and a strong phase shift between injected current and measured voltage (superior to 40 mrad and above 100 mrad for frequencies > 100 Hz). These observations were modelled by considering membrane polarization with ion exclusion in nanopores whose surface electrical properties were computed using a basic Stern model of the cement/water interface. Pore size distribution was deduced from SIP and was compared to the measured ones. In addition, we observed a decrease of the material resistivity due to the dissolution of cement in contact with external water. Our results show that SIP may be a valuable method to monitor the mineralogy and the petrophysical and transport properties of cements.

  6. Stability of carbon-bearing phases in coal on the passage of weak electric current

    International Nuclear Information System (INIS)

    Pivnyak, G.G.; Sobolev, V.V.; Baskevich, A.S.

    2012-01-01

    According to data of the electron paramagnetic resonance, infrared spectroscopy, X-ray analysis, and other methods, mobile radicals and gas have formed in coal on the passage of weak electric current. The quantum-mechanical estimation of the stability of coal organic mass components under the action of weak electric current is offered. It is established that the hydrocarbon and carbon chains are the most probable phase which is destroyed the first.

  7. STATISTIC, PROBABILISTIC, CORRELATION AND SPECTRAL ANALYSES OF REGENERATIVE BRAKING CURRENT OF DC ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    A. V. Nikitenko

    2014-04-01

    Full Text Available Purpose. Defining and analysis of the probabilistic and spectral characteristics of random current in regenerative braking mode of DC electric rolling stock are observed in this paper. Methodology. The elements and methods of the probability theory (particularly the theory of stationary and non-stationary processes and methods of the sampling theory are used for processing of the regenerated current data arrays by PC. Findings. The regenerated current records are obtained from the locomotives and trains in Ukraine railways and trams in Poland. It was established that the current has uninterrupted and the jumping variations in time (especially in trams. For the random current in the regenerative braking mode the functions of mathematical expectation, dispersion and standard deviation are calculated. Histograms, probabilistic characteristics and correlation functions are calculated and plotted down for this current too. It was established that the current of the regenerative braking mode can be considered like the stationary and non-ergodic process. The spectral analysis of these records and “tail part” of the correlation function found weak periodical (or low-frequency components which are known like an interharmonic. Originality. Firstly, the theory of non-stationary random processes was adapted for the analysis of the recuperated current which has uninterrupted and the jumping variations in time. Secondly, the presence of interharmonics in the stochastic process of regenerated current was defined for the first time. And finally, the patterns of temporal changes of the correlation current function are defined too. This allows to reasonably apply the correlation functions method in the identification of the electric traction system devices. Practical value. The results of probabilistic and statistic analysis of the recuperated current allow to estimate the quality of recovered energy and energy quality indices of electric rolling stock in the

  8. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  9. Programmable, very low noise current source

    Science.gov (United States)

    Scandurra, G.; Cannatà, G.; Giusi, G.; Ciofi, C.

    2014-12-01

    We propose a new approach for the realization of very low noise programmable current sources mainly intended for application in the field of low frequency noise measurements. The design is based on a low noise Junction Field Effect Transistor (JFET) acting as a high impedance current source and programmability is obtained by resorting to a low noise, programmable floating voltage source that allows to set the sourced current at the desired value. The floating voltage source is obtained by exploiting the properties of a standard photovoltaic MOSFET driver. Proper filtering and a control network employing super-capacitors allow to reduce the low frequency output noise to that due to the low noise JFET down to frequencies as low as 100 mHz while allowing, at the same time, to set the desired current by means of a standard DA converter with an accuracy better than 1%. A prototype of the system capable of supplying currents from a few hundreds of μA up to a few mA demonstrates the effectiveness of the approach we propose. When delivering a DC current of about 2 mA, the power spectral density of the current fluctuations at the output is found to be less than 25 pA/√Hz at 100 mHz and less than 6 pA/√Hz for f > 1 Hz, resulting in an RMS noise in the bandwidth from 0.1 to 10 Hz of less than 14 pA.

  10. Electricity sector in Mexico. Current status. Contribution of renewable energy sources

    International Nuclear Information System (INIS)

    Cancino-Solorzano, Yoreley; Villicana-Ortiz, Eunice; Gutierrez-Trashorras, Antonio J.; Xiberta-Bernat, Jorge

    2010-01-01

    The challenge facing the world electricity sector is the cost incurred in maintaining the system and seeing to the environmental effects it causes. In Mexico the grid is supplied by thermal plants fed by oil products. Its great potential of renewable energies clearly shown in studies by national and international scholars has led the government to become more committed to take advantage of these energies. The goal is to reduce dependence on fossil fuels to generate electricity and to reduce the emission of greenhouse gases. In this article we analyse the current state of renewable energies, the conditions needed to foster them and the legislative changes already introduced to promote their greater part in the national electricity grid. (author)

  11. Electricity sector in Mexico. Current status. Contribution of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Cancino-Solorzano, Yoreley [Departamento de Ing. Electrica-Electronica, Instituto Tecnologico de Veracruz, Calzada Miguel A. de Quevedo 2779, 91860 Veracruz (Mexico); Villicana-Ortiz, Eunice; Gutierrez-Trashorras, Antonio J.; Xiberta-Bernat, Jorge [Departamento de Energia, Escuela Tecnica Superior de Ingenieros de Minas, Universidad de Oviedo, C/Independencia, 13, 2a Planta, 33004 Oviedo (Spain)

    2010-01-15

    The challenge facing the world electricity sector is the cost incurred in maintaining the system and seeing to the environmental effects it causes. In Mexico the grid is supplied by thermal plants fed by oil products. Its great potential of renewable energies clearly shown in studies by national and international scholars has led the government to become more committed to take advantage of these energies. The goal is to reduce dependence on fossil fuels to generate electricity and to reduce the emission of greenhouse gases. In this article we analyse the current state of renewable energies, the conditions needed to foster them and the legislative changes already introduced to promote their greater part in the national electricity grid. (author)

  12. Modeling And Simulation Of Electrical Prevenion System Using Arduino Uno,Gsm Modem, And Acs712 Current Sensor

    Science.gov (United States)

    Khair, Ummul; Jabbar Lubis, Abdul; Agustha, Indra; Dharmawati; Zulfin, M.

    2017-12-01

    The current electricity needs is very primary, all objects including electronics require power, it encourages people not to be able to save electricity so the theft of electric power would be done. The use of ACS712 current sensor as the sensor with arduino uno would find out the power consumption continuously and prevent the theft of electricity because of the use of electricity which has been determined by PLN and the people fetl that it is not enough for every house, so the author made a tool for prevention of theft of electric power by using the arduino uno, buzzer, ACS712 current sensor, lcd, and relay then the power usage can be controlled according to the use to prevent the occurrence of theft of electricity so the use can be seen directly on the lcd 16x2and GSM modem to give information to employees of PLN so that it can reduceelectrical theft by the public.

  13. The electrical properties of auditory hair cells in the frog amphibian papilla.

    Science.gov (United States)

    Smotherman, M S; Narins, P M

    1999-07-01

    The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.

  14. Modelling chloride penetration in concrete using electrical voltage and current approaches

    Directory of Open Access Journals (Sweden)

    Juan Lizarazo-Marriaga

    2011-03-01

    Full Text Available This paper reports a research programme aimed at giving a better understanding of the phenomena involved in the chloride penetration in cement-based materials. The general approach used was to solve the Nernst-Planck equation numerically for two physical ideal states that define the possible conditions under which chlorides will move through concrete. These conditions are named in this paper as voltage control and current control. For each condition, experiments and simulations were carried out in order to establish the importance of electrical variables such as voltage and current in modelling chloride transport in concrete. The results of experiments and simulations showed that if those electrical variables are included as key parameters in the modelling of chloride penetration through concrete, a better understanding of this complex phenomenon can be obtained.

  15. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation

    Science.gov (United States)

    Knoblich, Günther; Dunne, Laura; Keller, Peter E.

    2017-01-01

    Abstract Synchronous movement is a key component of social behavior in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared with anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals’ (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. PMID:28119510

  16. Design of optoelectronic system to meter of electrical current to the habitation house

    International Nuclear Information System (INIS)

    Camas, J.; Flores, M.; Anzuelo, G.; Garcia, C.; Juarez, N.; Torres, W.; Mota, R.

    2009-01-01

    In this work, we present an optoelectronic digital meter of electrical current. The development of this design is described step by step with diagram to blocks. The advantage over conventional meters of CFE (Comision Federal de electricidad) and the design proposed are analyzed. Information in the optoelectronic design is controlled by Microcontroller PIC16F877. This Microcontroller uses an external crystal as an oscillator with a 4 MHz frequency. The information is shown in a LCD (Liquid Crystal Display). In addition, to quantify the electrical current was necessary an interruption of light. (Author)

  17. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Wenyang Zhang

    2018-04-01

    Full Text Available This paper proposes an electric power self-supply module for the wireless sensor network (WSN sensor node. The module includes an electromagnetic vibration energy harvester based on micro-electro-mechanical system (MEMS technology and a processing circuit. The vibration energy harvester presented in this paper is fabricated by an integrated microfabrication process and consists of four similar and relatively independent beam vibration elements. The main functions of the processing circuit are to convert the output of the harvester from unstable alternating current (AC to stable direct current (DC, charge the super capacitor, and ensure the stable output of the super capacitor. The preliminary test results of the harvester chip show that the chip can output discontinuous pulse voltage, and the range of the voltage value is from tens to hundreds of millivolts in the vibration frequency range of 10–90 Hz. The maximum value that can be reached is 563 mV (at the vibration frequency of 18 Hz. The results of the test show that the harvester can output a relatively high voltage, which can meet the general electric power demand of a WSN sensor node.

  18. NICER Discovers mHz Oscillations and Marginally Stable Burning in GS 1826-24

    Science.gov (United States)

    Strohmayer, Tod E.; Gendreau, Keith C.; Keek, Laurens; Bult, Peter; Mahmoodifar, Simin; Chakrabarty, Deepto; Arzoumanian, Zaven; NICER Science Team

    2018-01-01

    To date, marginally stable thermonuclear burning, evidenced as mHz X-ray flux oscillations, has been observed in only five accreting neutron star binaries, 4U 1636-536, 4U 1608-52, Aql X-1, 4U 1323-619 and Terzan 5 X-2. Here we report the discovery with NASA's Neutron Star Interior Composition Explorer (NICER) of such oscillations from the well-known X-ray burster GS 1826-24. NICER observed GS 1826-24 on 9 September, 2017 for a total exposure of about 4 ksec. Timing analysis revealed highly significant oscillations at a frequency of 8.2 mHz in two successive pointings. The oscillations have a fractional modulation amplitude of approximately 3% for photon energies less than 6 keV. The observed frequency is consistent with the range observed in the other mHz QPO systems, and indeed is slightly higher than the frequency measured in 4U 1636-536 below which mHz oscillations ceased and unstable burning (X-ray bursts) resumed. We discuss the mass accretion rate dependence of the oscillations as well as the X-ray spectrum as a function of pulsation phase. We place the observations in the context of the current theory of marginally stable burning and briefly discuss the potential for constraining neutron star properties using mHz oscillations.

  19. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  20. A current to voltage converter for cryogenics using a CMOS operational amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K; Saitoh, K; Shibayama, Y; Shirahama, K [Department of Physics, Keio University, Yokohama 223-8522 (Japan)], E-mail: khayashi@a2.keio.jp

    2009-02-01

    We have constructed a versatile current to voltage (I-V) converter operating at liquid helium temperature, using a commercially available all-CMOS OPamp. It is valuable for cryogenic measurements of electrical current of nano-pico amperes, for example, in scanning probe microscopy. The I-V converter is thermally linked to liquid helium bath and self-heated up to 10.7 K. We have confirmed its capability of a transimpedance gain of 10{sup 6} V/A and a bandwidth from DC to 200 kHz. In order to test the practical use for a frequency-modulation atomic force microscope, we have measured the resonance frequency shift of a quartz tuning fork at 32 kHz. In the operation of the I-V converter close to the sensor at liquid helium temperature, the signal-to-noise ratio has been improved to a factor of 13.6 compared to the operation at room temperature.

  1. Investigation of electrically exploded large area foil for current switching

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Boyko, A.M.; Kostyukov, V.N.; Kuzyaev, A.I.; Kulagin, A.A.; Mamyshev, V.I.; Mezhevov, A.B.; Nechaev, A.I.; Petrukhin, A.A.; Protasov, M.S.; Shevtsov, V.I.; Yakubov, V.B.

    1990-01-01

    The possibility of microsecond ∼40 MA current switching from EMG into a quasiconstant inductive load by an electrically exploded foil is investigated. The copper foil of large area, S ∼ 10 4 cm 2 , was placed between thin-walled insulators into a coaxial transmission line (TL). This paper shows a conceptual device scheme. To feed a foil opening switch (FOS), a disc explosive magnetic generator (DEMG) with 20 μs current rise time was employed. An inductive coaxial load was connected to a FOS at a moment, that was close to the foil vaporization start by means of an axisymmetric explosive current commutator (ECC)

  2. Modification of the genetic effect of gamma irradiation by electric current

    International Nuclear Information System (INIS)

    Grigor'eva, N.N.; Shakhbazov, V.G.

    1985-01-01

    The authors study the effect of direct current of varying strength and polarity on the genetic damage due to gamma irradiation of Vicia faba seedlings. The modificational effect of direct current observed earlier is confirmed here. The extent and nature of this effect depends on the strength and polarity of the current as well as interval between irradiation and exposure to the electric field. Conditions having no effect on the irradiated seedlings, those protecting the cells from damage and enhancing the irradiation effect, are identified

  3. A wireless wearable surface functional electrical stimulator

    Science.gov (United States)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  4. Structure and electrical properties of (La, Zn) Co-doped BiFeO3 thin films prepared by using chemical solution deposition

    Science.gov (United States)

    Kim, Y. J.; Kim, H. J.; Kim, J. W.; Raghavan, C. M.; Kim, S. S.

    2012-08-01

    We prepared pure BiFeO3 (BFO) and (Bi0.9La0.1)(Fe0.975Zn0.025)O3- δ (BLFZO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BLFZO thin film. The leakage current density of the BLFZO thin film was four orders of magnitude lower than that of the pure BFO, 4.17 × 10-7 A/cm2 at 100 kV/cm. The remnant polarization (2 P r ) and the coercive electric field (2 E c ) of the BLFZO thin film were 97 µC/cm2 and 903 kV/cm at an applied electric field of 972 kV/cm and at a frequency of 1 kHz, and the values decreased with increasing measurement frequency to 63 µC/cm2 and 679 kV/cm at 10 kHz, respectively. Also, after 1.44 × 1010 cycles, a better fatigue endurance was observed in the BLFZO thin film, which was 90% of its initial value. We also confirmed that the remnant polarization (2 P r ) and the coercive electric field (2 E c ) were fairly saturated above a measurement frequency of 15 kHz for the BLFZO thin film.

  5. On the Nature of Electric Current in the Electrospinning Process

    Directory of Open Access Journals (Sweden)

    Baturalp Yalcinkaya

    2013-01-01

    Full Text Available The electric currents between electrodes in the electrospinning process are based on the movement of charge carriers through the spinning space. The majority of the charge carriers are formed by ionization of the air close to the metallic needle and to the polymer jet. The salt contained in the polymer solution contributes to the concentration of charge carriers, depending on its amount. The conductivity of polymer jets does not significantly affect the current since the jets do not link the electrodes.

  6. Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film

    Science.gov (United States)

    Das, Amit Kumar; Meikap, Ajit Kumar

    2017-12-01

    In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.

  7. Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film

    Science.gov (United States)

    Das, Amit Kumar; Meikap, Ajit Kumar

    2018-06-01

    In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.

  8. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  9. Experimental Investigation on Electric Current-Aided Laser Stake Welding of Aluminum Alloy T-Joints

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-11-01

    Full Text Available In the present study, aluminum alloy T-joints were welded using the laser stake-welding process. In order to improve the welding quality of the T-joints, an external electric current was used to aid the laser stake-welding process. The effects of the process parameters on the weld morphology, mechanical properties, and microstructure of the welded joints were analyzed and discussed in detail. The results indicate that the aided electric current should be no greater than a certain maximum value. Upon increasing the aided electric current, the weld width at the skin and stringer faying surface obviously increased, but there was an insignificant change in the penetration depth. Furthermore, the electric current and pressing force should be chosen to produce an expected weld width at the faying surface, whereas the laser power and welding speed should be primarily considered to obtain an optimal penetration depth. The tensile shear specimens failed across the faying surface or failed in the weld zone of the skin. The specimens that failed in the weld of the skin could resist a higher tensile shear load compared with specimens that failed across the faying surface. The microstructural observations and microhardness results demonstrated that the tensile shear load capacity of the aluminum alloy welded T-joint was mainly determined by the weld width at the faying surface.

  10. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  11. Effects of Induced Electric Fields on Tissues and Cells

    Science.gov (United States)

    Sequin, Emily Katherine

    . Moreover, the first eddy current image of the interface region between tumor and normal tissues is presented. Secondly, the effects of induced electric fields on cell motility are explored as cell motility plays an important role in both cancer metastasis and the healing of chronic wounds. Human keratinocyte migration in a wound healing assay was reduced by about 50% under the influence of a 1 Hz induced electric field with a maximum field strength of approximately 34.3 microV/cm. A modified Transwell migration assay was developed to study to migration of metastatic breast cancer cells under the influence of an induced electric field at 100 kHz and maximum field strength of 11.2 microV/cm. It was shown that low frequency, low magnitude, noncontact electric fields can overcome the effects of the chemoattractants SDF1aalpha and EGF. This suggests a possible therapeutic benefit for the treatment of metastatic cancer with non-invasive, induced electric fields. In essence, this work has laid the foundation for exploring the use of non-contact, induced electric fields to study the properties of tissues and cells. These findings support the further development of eddy current technology into a tool useful in the operating room for surgeons seeking information on surgical margin quality. Furthermore, the modifications to standard migration assays offer new ways to study cell motility.

  12. A current-pulsed power supply with rapid rising and falling edges for magnetic perturbation coils on the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Yan, M.X.; Rao, B.; Ding, Y.H.; Hu, Q.M.; Hu, F.R.; Li, D.; Li, M.; Ji, X.K.; Xu, G.; Zheng, W.; Jiang, Z.H.

    2017-01-01

    Highlights: • The power supply is required to have rapid rising and falling edges. • A modified topology based on the buck chopper of current-pulsed power supply is presented and analyzed. • An entity meeting the electrical requirements has been constructed. • The spike voltage of IGBT is qualitatively analyzed. - Abstract: This study presents the design and principle of a current-pulsed power supply (CPPS) for the tearing mode (TM) feedback control of the J-TEXT tokamak. CPPS is a new method of stabilizing large magnetic islands and accelerating mode rotation through the use of modulated magnetic perturbation. In this application, continuous magnetic perturbation pulse trains with frequency of 1 kHz to kHz, amplitude of 0.25 G, and duty ratio of 20%–50% are required generating via in-vessel magnetic coils. A modified topology based on buck chopper is raised to satisfy the demands of inductive load. This modified topology is characterized by high frequency, rapid rising and falling edges, and large amplitude of current pulses. Appropriate RCD snubber circuit is applied to protect the Insulated Gate Bipolar Transistor (IGBT) switch device. Equipment with peak current that reaches 1 kA, frequency that ranges from 1 kHz to 3 kHz, and rising and falling time within 100 μs was constructed and applied to physical experiment.

  13. A current-pulsed power supply with rapid rising and falling edges for magnetic perturbation coils on the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, M.X. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Rao, B., E-mail: borao@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Y.H.; Hu, Q.M.; Hu, F.R.; Li, D.; Li, M.; Ji, X.K.; Xu, G.; Zheng, W.; Jiang, Z.H. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2017-02-15

    Highlights: • The power supply is required to have rapid rising and falling edges. • A modified topology based on the buck chopper of current-pulsed power supply is presented and analyzed. • An entity meeting the electrical requirements has been constructed. • The spike voltage of IGBT is qualitatively analyzed. - Abstract: This study presents the design and principle of a current-pulsed power supply (CPPS) for the tearing mode (TM) feedback control of the J-TEXT tokamak. CPPS is a new method of stabilizing large magnetic islands and accelerating mode rotation through the use of modulated magnetic perturbation. In this application, continuous magnetic perturbation pulse trains with frequency of 1 kHz to kHz, amplitude of 0.25 G, and duty ratio of 20%–50% are required generating via in-vessel magnetic coils. A modified topology based on buck chopper is raised to satisfy the demands of inductive load. This modified topology is characterized by high frequency, rapid rising and falling edges, and large amplitude of current pulses. Appropriate RCD snubber circuit is applied to protect the Insulated Gate Bipolar Transistor (IGBT) switch device. Equipment with peak current that reaches 1 kA, frequency that ranges from 1 kHz to 3 kHz, and rising and falling time within 100 μs was constructed and applied to physical experiment.

  14. Smart grids in the colombian electric system: Current situation and potential opportunities

    Directory of Open Access Journals (Sweden)

    William Mauricio Giral Ramírez

    2017-07-01

    Full Text Available Context: This paper focuses on providing a functional analysis of smart grids, with the purpose of establishing a framework to identify the main characteristics of the current electric interconnection system in Colombia. It also names the positive incentives proposed by the Colombian government to support both research and development projects that implement non-conventional energy sources and promoting energy management based on efficiency. Method: An architecture model that describes the components interoperability of a smart grid is presented using a descriptive methodology. Results: The results include a list of the objectives established by the Colombian public and private entities related to energy development, specially focusing on the opportunities to provide some kind of artificial intelligence to the current electrical system. Conclusions: It is necessary for the Colombian energy system to supply the energy demand considering electrical safety, social equity, and the minimum environmental impact. These restrictions impose new challenges for the energy system itself: From a technical point of view, the traditional electrical grid must be outfitted with the characteristics of a smart grid, and from a legal perspective, it is essential to generate a clear regulatory framework that promotes the development of this type of technology.

  15. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.

    Science.gov (United States)

    Cox, Brian; Mutel, Christopher L; Bauer, Christian; Mendoza Beltran, Angelica; van Vuuren, Detlef P

    2018-04-17

    The future environmental impacts of battery electric vehicles (EVs) are very important given their expected dominance in future transport systems. Previous studies have shown these impacts to be highly uncertain, though a detailed treatment of this uncertainty is still lacking. We help to fill this gap by using Monte Carlo and global sensitivity analysis to quantify parametric uncertainty and also consider two additional factors that have not yet been addressed in the field. First, we include changes to driving patterns due to the introduction of autonomous and connected vehicles. Second, we deeply integrate scenario results from the IMAGE integrated assessment model into our life cycle database to include the impacts of changes to the electricity sector on the environmental burdens of producing and recharging future EVs. Future EVs are expected to have 45-78% lower climate change impacts than current EVs. Electricity used for charging is the largest source of variability in results, though vehicle size, lifetime, driving patterns, and battery size also strongly contribute to variability. We also show that it is imperative to consider changes to the electricity sector when calculating upstream impacts of EVs, as without this, results could be overestimated by up to 75%.

  16. Effects on atmospherics at 6 kHz and 9 kHz recorded at Tripura during the India-Pakistan Border earthquake

    Directory of Open Access Journals (Sweden)

    S. S. De

    2010-04-01

    Full Text Available The outcome of the results of some analyses of electromagnetic emissions recorded by VLF receivers at 6 kHz and 9 kHz over Agartala, Tripura, the North-Eastern state of India (Lat. 23° N, Long. 91.4° E during the large earthquake at Muzaffarabad (Lat. 34.53° N, Long. 73.58° E at Kashmir under Pakistan have been presented here. Spiky variations in integrated field intensity of atmospherics (IFIA at 6 and 9 kHz have been observed 10 days prior (from midnight of 28 September 2005 to the day of occurrence of the earthquake on 8 October 2005 and the effect continued, decayed gradually and eventually ceased on 16 October 2005. The spikes distinctly superimposed on the ambient level with mutual separation of 2–5 min. Occurrence number of spikes per hour and total duration of their occurrence have been found remarkably high on the day of occurrence of the earthquake. The spike heights are higher at 6 kHz than at 9 kHz. The results have been explained on the basis of generation of electromagnetic radiation associated with fracture of rocks, their subsequent penetration into the Earth's atmosphere and finally their propagation between Earth-ionosphere waveguide. The present observation shows that VLF anomaly is well-confined between 6 and 9 kHz.

  17. Stored Energy of Coupled Electric and Magnetic Currents and the Lower Bound on Q

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2015-01-01

    —New expressions for the stored energy and radiated power of an arbitrary combination of electric and magnetic currents in free space are presented. These expressions enable the calculation of the fundamental lower bound on Q for arbitraryshaped electrically small antennas of finite size....

  18. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  19. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    Directory of Open Access Journals (Sweden)

    Lorena M Coronado

    Full Text Available The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.

  20. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  1. Harmonic currents circulation in electrical networks simulation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Em-Mamlouk, W.M. [MEP, Cairo (Egypt); El-Sharkawy, M.A. [Shams Univ., Cairo (Egypt). Dept. of Electrical Power and Machines; Mostafa, H.E. [Jazan Univ., Jazan (Saudi Arabia). Electrical Dept.

    2009-07-01

    A detailed harmonic flow analysis for a 13-bus balanced industrial distribution system was presented. The aim of the study was to determine the influence of harmonic sources in various branches of the system on voltage and current waveforms before disruptions to the utility supply system occurred. The current harmonic contents of an adjustable speed drive (ASD) were studied under various loading conditions. The test system was simulated using a standard study test system. Harmonic effects from multiple sources were investigated, and voltage distortion on the different buses was monitored. The study demonstrated that while the harmonic loads circulated harmonic currents in all system branches, no harmonic source was directly connected to the system buses. Many of the investigated cases exceeded allowable voltage total harmonic distortion and or current total harmonic distortion standards set by the Institute of Electrical and Electronic Engineers (IEEE). It was concluded that active harmonic filters should be used to prevent the effects of harmonic current circulation at different buses on neighbouring loads within a system. 8 refs., 11 tabs., 15 figs.

  2. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    Directory of Open Access Journals (Sweden)

    Lin Yang

    Full Text Available Frequency-difference electrical impedance tomography (fdEIT reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz. In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  3. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    Science.gov (United States)

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  4. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar

    2017-01-01

    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  6. Development of high electrical resistance persistent current switch for high speed energization system

    International Nuclear Information System (INIS)

    Jizo, Y.; Furuta, Y.; Nakashima, H.

    1986-01-01

    Japanese National Railways is now developing a superconducting magnetically-levitated train system. A persistent current switch is incorporated in the super-conducting magnet used in the magnetically-levitated train. In recent years, the switch has been required to have higher electrical resistance during its off-state in order to realize the high speed energization/de-energization system of the superconducting magnets. The system aims to decrease evaporation volume of liquid helium during the energization/de-energization of the magnet, by means of energizing the superconducting magnet with high current increasing/decreasing rate. Consequently, it would be possible to decrease the dependence of the on-board magnet system upon the ground cooling system. Through the development of a stable superconductive wire material and a coil structure for the persistent current switch using many small model switches which were produced in order to improve their current carrying capacities, the authors have succeeded in manufacturing the high electrical resistance persistent current switch whose electrical resistance was 5 ohms. The switch, of cylindrical shape, has a diameter of about 100mm, a length of about 100mm. These 5 ohm PCSs are now functioning in stable conditions being incorporated in the superconducting magnets of No.2 vehicle of MLU001 at the JNR's Miyazaki test track. Further, the authors are now developing the PCS of still higher resistance values, such as 50 ohms, through studies for stabilization in structural aspects of the winding and obtaining results therefrom

  7. Electrical stimulation of gut motility guided by an in silico model

    Science.gov (United States)

    Barth, Bradley B.; Henriquez, Craig S.; Grill, Warren M.; Shen, Xiling

    2017-12-01

    Objective. Neuromodulation of the central and peripheral nervous systems is becoming increasingly important for treating a diverse set of diseases—ranging from Parkinson’s Disease and epilepsy to chronic pain. However, neuromodulation of the gastrointestinal (GI) tract has achieved relatively limited success in treating functional GI disorders, which affect a significant population, because the effects of stimulation on the enteric nervous system (ENS) and gut motility are not well understood. Here we develop an integrated neuromechanical model of the ENS and assess neurostimulation strategies for enhancing gut motility, validated by in vivo experiments. Approach. The computational model included a network of enteric neurons, smooth muscle fibers, and interstitial cells of Cajal, which regulated propulsion of a virtual pellet in a model of gut motility. Main results. Simulated extracellular stimulation of ENS-mediated motility revealed that sinusoidal current at 0.5 Hz was more effective at increasing intrinsic peristalsis and reducing colon transit time than conventional higher frequency rectangular current pulses, as commonly used for neuromodulation therapy. Further analysis of the model revealed that the 0.5 Hz sinusoidal currents were more effective at modulating the pacemaker frequency of interstitial cells of Cajal. To test the predictions of the model, we conducted in vivo electrical stimulation of the distal colon while measuring bead propulsion in awake rats. Experimental results confirmed that 0.5 Hz sinusoidal currents were more effective than higher frequency pulses at enhancing gut motility. Significance. This work demonstrates an in silico GI neuromuscular model to enable GI neuromodulation parameter optimization and suggests that low frequency sinusoidal currents may improve the efficacy of GI pacing.

  8. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Science.gov (United States)

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  9. Current searches for the electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Miranda, P.C.

    1985-01-01

    The two most sensitive experiments currently searching for a neutron electric dipole moment (ILL, France and LNPI. USSR) ared described. The present upper limit on the neutron EDM is /dsub(n)/ -25 e.cm at the 90% confidence level. An improvement on this limit by about one order of magnitude is expected in the near future. 5 refs.

  10. A Novel Magnetic Resonance Imaging (MRI) Approach for Measuring Weak Electric Currents Inside the Human Brain

    DEFF Research Database (Denmark)

    Göksu, Cihan

    of individual ohmic conductivity values may open up the possibility of creating more realistic and accurate head models, which may ameliorate the simulations and practical use of NIBS techniques. Magnetic resonance current density imaging (MRCDI) and magnetic resonance electrical impedance tomography (MREIT......Knowing the electrical conductivity and current density distribution inside the human brain will be useful in various biomedical applications, i.e. for improving the efficiency of non-invasive brain stimulation (NIBS) techniques, the accuracy of electroencephalography (EEG......) and magnetoencephalography (MEG) source localization, or localization of pathological tissues. For example, the accuracy of electric field simulations for NIBS techniques is currently reduced by assigning inaccurate ohmic conductivity values taken from literature to different brain tissues. Therefore, the knowledge...

  11. A primary method for the complex calibration of a hydrophone from 1 Hz to 2 kHz

    Science.gov (United States)

    Slater, W. H.; E Crocker, S.; Baker, S. R.

    2018-02-01

    A primary calibration method is demonstrated to obtain the magnitude and phase of the complex sensitivity for a hydrophone at frequencies between 1 Hz and 2 kHz. The measurement is performed in a coupler reciprocity chamber (‘coupler’) a closed test chamber where time harmonic oscillations in pressure can be achieved and the reciprocity conditions required for a primary calibration can be realized. Relevant theory is reviewed and the reciprocity parameter updated for the complex measurement. Systematic errors and corrections for magnitude are reviewed and more added for phase. The combined expanded uncertainties of the magnitude and phase of the complex sensitivity at 1 Hz were 0.1 dB re 1 V μ Pa-1 and  ± 1\\circ , respectively. Complex sensitivity, sensitivity magnitude, and phase measurements are presented on an example primary reference hydrophone.

  12. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    Science.gov (United States)

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.

  13. Analysis of electric current flow through the HTc multilayered superconductors

    Science.gov (United States)

    Sosnowski, J.

    2016-02-01

    Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.

  14. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate.

    Science.gov (United States)

    Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D

    2016-02-01

    The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated

  15. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Science.gov (United States)

    Zhang, Zheng-Zhong; Shen, Rui; Sheng, Li; Wang, Rui-Qiang; Wang, Bai-Gen; Xing, Ding-Yu

    2011-04-01

    A single-molecule magnet (SMM) coupled to two normal metallic electrodes can both switch spin-up and spin-down electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  16. Silicone Substrate with Collagen and Carbon Nanotubes Exposed to Pulsed Current for MSC Osteodifferentiation

    Directory of Open Access Journals (Sweden)

    Daniyal Jamal

    2017-01-01

    Full Text Available Autologous human adipose tissue-derived mesenchymal stem cells (MSCs have the potential for clinical translation through their induction into osteoblasts for regeneration. Bone healing can be driven by biophysical stimulation using electricity for activating quiescent adult stem cells. It is hypothesized that application of electric current will enhance their osteogenic differentiation, and addition of conductive carbon nanotubes (CNTs to the cell substrate will provide increased efficiency in current transmission. Cultured MSCs were seeded and grown onto fabricated silicone-based composites containing collagen and CNT fibers. Chemical inducers, namely, glycerol phosphate, dexamethasone, and vitamin C, were then added to the medium, and pulsatile submilliampere electrical currents (about half mA for 5 cycles at 4 mHz, twice a week were applied for two weeks. Calcium deposition indicative of MSC differentiation and osteoblastic activity was quantified through Alizarin Red S and spectroscopy. It was found that pulsed current significantly increased osteodifferentiation on silicone-collagen films without CNTs. Under no external current, the presence of 10% (m/m CNTs led to a significant and almost triple upregulation of calcium deposition. Both CNTs and current parameters did not appear to be synergistic. These conditions of enhanced osteoblastic activities may further be explored ultimately towards future therapeutic use of MSCs.

  17. Electric Current Transmission Through Tissues of the Vestibular Labyrinth of a Patient: Perfection of the Vestibular Implant

    Science.gov (United States)

    Demkin, V. P.; Shchetinin, P. P.; Melnichuk, S. V.; Kingma, H.; Van de Berg, R.; Pleshkov, M. O.; Starkov, D. N.

    2018-03-01

    An electric model of current transmission through tissues of the vestibular labyrinth of a patient is suggested. To stimulate directly the vestibular nerve in surgical operation, terminations of the electrodes are implanted through the bone tissue of the labyrinth into the perilymph in the vicinity of the vestibular nerve. The biological tissue of the vestibular labyrinth surrounding the electrodes and having heterogeneous composition possesses conductive and dielectric properties. Thus, when a current pulse from the vestibular implant is applied to one of the electrodes, conductive disturbance currents may arise between the electrodes and the vestibular nerves that can significantly deteriorate the direct signal quality. To study such signals and to compensate for the conductive disturbance currents, an equivalent electric circuit with actual electric impedance properties of tissues of the vestibular system is suggested, and the time parameters of the conductive disturbance current transmission are calculated. It is demonstrated that these parameters can reach large values. The suggested electric model and the results of calculations can be used for perfection of the vestibular implant.

  18. Electrical Spectroscopy of Permo-Triassic Sandstone From the United Kingdom

    Science.gov (United States)

    Scott, J.; Barker, R.

    2003-12-01

    Electrical spectroscopy measurements in the range of mHz to kHz have been made on the dominantly red Permo-Triassic sandstone from the United Kingdom. Samples have been selected from borehole cores from all of the main outcrop areas of sandstone and represent a wide variety of lithologies. This sandstone is an important aquifer for several major cities including Manchester and Birmingham. The samples have been fully saturated with sodium chloride brines and a synthetic groundwater solution that is higher in calcium and magnesium ions than sodium and which closely matches the cation concentrations of the groundwater at Birmingham. Electrical measurements were made using a four-electrode arrangement of silver-silver chloride electrodes. Most of the electrical spectra show a clear, slightly asymmetric, electrical relaxation phenomenon with relaxation peaks in the range of 0.001 Hz to 20 Hz. These relaxation phenomena can be fitted very well by a generalised Cole-Cole model. The relaxation time from this model is found to correlate closely with the dominant pore-throat size from mercury injection. Normalising the chargeability, Cole-Cole m parameter, by the conductivity gives a polarisation magnitude which correlates well with the pore surface to volume ratio (SPOR) for sandstone samples with an even distribution of surface coating clays. The information obtained from the electrical spectra is very useful. The pore-throat size is important in controlling the permeability and in particular the flow of non-aqueous phase fluids. The pore surface area has links to the sorbtion properties of the rock, which are important in estimating contaminant transport. The electrical spectra also provide a useful fingerprint of individual lithologies which could be used for correlation between boreholes or outcrops.

  19. Sodium current inhibition by nanosecond pulsed electric field (nsPEF)--fact or artifact?

    NARCIS (Netherlands)

    Verkerk, Arie O.; van Ginneken, Antoni C. G.; Wilders, Ronald

    2013-01-01

    In two recent publications in Bioelectromagnetics it has been demonstrated that the voltage-gated sodium current (I(Na)) is inhibited in response to a nanosecond pulsed electric field (nsPEF). At the same time, there was an increase in a non-inactivating "leak" current (I(leak)), which was

  20. Vaccine profile of herpes zoster (HZ/su) subunit vaccine.

    Science.gov (United States)

    Cunningham, Anthony L; Heineman, Thomas

    2017-07-01

    Herpes zoster (HZ) causes an often severe and painful rash in older people and may be complicated by prolonged pain (postherpetic neuralgia; PHN) and by dissemination in immune-compromised patients. HZ results from reactivation of latent varicella-zoster virus (VZV) infection, often associated with age-related or other causes of decreased T cell immunity. A live attenuated vaccine boosts this immunity and provides partial protection against HZ, but this decreases with age and declines over 8 years. Areas covered: A new HZ subunit (HZ/su) vaccine combines a key surface VZV glycoprotein (E) with a T cell-boosting adjuvant system (AS01 B ) and is administered by two intramuscular injections two months apart. Expert commentary: HZ/su showed excellent efficacy of ~90% in immunocompetent adults ≥50 and ≥70 years of age, respectively, in the ZOE-50 and ZOE-70 phase III controlled trials. Efficacy was unaffected by advancing age and persisted for >3 years. Approximately 9.5% of subjects had severe, but transient (1-2 days) injection site pain, swelling or redness. Compliance with both vaccine doses was high (95%). The vaccine will have a major impact on HZ management. Phase I-II trials showed safety and immunogenicity in severely immunocompromised patients. Phase III trial results are expected soon.

  1. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    Science.gov (United States)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  2. Additional Energy Losses from Asymmetric and Non-Sinusoidal Current in an Electrical Facility and Methods of their Reduction

    Directory of Open Access Journals (Sweden)

    Tarasov Evgeniy V.

    2015-01-01

    Full Text Available Influence of the asymmetry and higher harmonics of current on the operation of an electrical facility is analyzed. The level of additional losses from the asymmetric and non-sinusoidal currents is evaluated for a 110 kV electrical network in the Siberian Region of the Russian Federation. Methods for reducing the additional energy losses in the electrical facility are suggested.

  3. Additional Energy Losses from Asymmetric and Non-Sinusoidal Current in an Electrical Facility and Methods of their Reduction

    OpenAIRE

    Tarasov, Evgeny Vladimirovich; Bulyga, Leonid Leonidovich; Ushakov, Vasily Yakovlevich; Kharlov, Nikolay Nikolaevich

    2015-01-01

    Influence of the asymmetry and higher harmonics of current on the operation of an electrical facility is analyzed. The level of additional losses from the asymmetric and non-sinusoidal currents is evaluated for a 110 kV electrical network in the Siberian Region of the Russian Federation. Methods for reducing the additional energy losses in the electrical facility are suggested.

  4. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  5. A MODEL FOR THE ELECTRICALLY CHARGED CURRENT SHEET OF A PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, C. R.; Antiochos, S. K.; Black, C. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Timokhin, A. N., E-mail: c.richard.devore@nasa.gov [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-03-10

    Global-scale solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star, bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity—an electric current sheet—consisting of generally nonneutral plasma. We have developed a self-consistent model for the internal equilibrium structure of the sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris and Hoh to allow for net electric charge. The resulting equations for the electromagnetic field are solved analytically and numerically. Our results show that the internal thermal pressure needed to establish equilibrium force balance, and the associated effective current-sheet thickness and magnetization, can differ by orders of magnitude from the Harris/Hoh charge-neutral limit. The new model provides a starting point for kinetic or fluid investigations of instabilities that can cause magnetic reconnection and flaring in pulsar magnetospheres.

  6. Effects of Electrical Current on Fungal and Bacterial Removal from Water

    Directory of Open Access Journals (Sweden)

    Seyyede Anahita Hoseini

    2016-07-01

    Full Text Available Removing pathogens from water to prevent the spread of water-borne diseases is of great importance. The present study was designed and implemented to investigate the effects of electric current on Staphylococcus aureus bacteria, Escherichia coli, and the Candida albicans yeast. For this purpose, nutrient Agar and Sabouraud Dextrose Agar were used as the media to activate the bacteria and yeasts, respectively. Part of the colony from each medium was taken into an experimental tube to prepare suspensions. The number of microorganisms in 1 cc of each suspension was calculated at time zero and the suspension was poured into the electrolysis container. Samples of the microbial suspensions were taken in triplicates after 5 ,10, 15, 20, 25, and 30 minutes and transferred into the culture medium. Measurements were recorded upon completion of  the incubation period. It was found that the bacteria and the yeast could be killed using a voltage of 16.5 v and a current of mA such that the number of E. coli decreased significantly after 25 and 30 minutes. The results indicate that each microorganism species exhibits its own charateristic sensitivity  to electrical current so that increased voltage and/or prolonged exposure to the current will have a higher inhibitory effect on the growth of most species of microorganism.

  7. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat.

    Science.gov (United States)

    Zheng, Thomas W; O'Brien, Terence J; Kulikova, Sofya P; Reid, Christopher A; Morris, Margaret J; Pinault, Didier

    2014-03-01

    A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model.

    Science.gov (United States)

    van der Borden, Arnout J; Maathuis, Patrick G M; Engels, Eefje; Rakhorst, Gerhard; van der Mei, Henny C; Busscher, Henk J; Sharma, Prashant Kumar

    2007-04-01

    Pin tract infections of external fixators used in orthopaedic reconstructive bone surgery are serious complications that can eventually lead to periostitis and osteomyelitis. In vitro experiments have demonstrated that bacteria adhering to stainless steel in a biofilm mode of growth detach under the influence of small electric currents, while remaining bacteria become less viable upon current application. Therefore, we have investigated whether a 100microA electric current can prevent signs of clinical infection around percutaneous pins, implanted in the tibia of goats. Three pins were inserted into the lateral right tibia of nine goats, of which one served for additional frame support. Two pins were infected with a Staphylococcus epidermidis strain of which one pin was subjected to electric current, while the other pin was used as control. Pin sites were examined daily. The wound electrical resistance decreased with worsening of the infection from a dry condition to a purulent stage. After 21 days, animals were sacrificed and the pins taken out. Infection developed in 89% of the control pin sites, whereas only 11% of the pin sites in the current group showed infection. These results show that infection of percutaneous pin sites of external fixators in reconstructive bone surgery can be prevented by the application of a small DC electric current.

  9. Computational dosimetry for grounded and ungrounded human models due to contact current

    International Nuclear Information System (INIS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-01-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm 2 . (paper)

  10. Induced electric currents in the Alaska oil pipeline measured by gradient, fluxgate, and SQUID magnetometers

    Science.gov (United States)

    Campbell, W. H.; Zimmerman, J. E.

    1979-01-01

    The field gradient method for observing the electric currents in the Alaska pipeline provided consistent values for both the fluxgate and SQUID method of observation. These currents were linearly related to the regularly measured electric and magnetic field changes. Determinations of pipeline current were consistent with values obtained by a direct connection, current shunt technique at a pipeline site about 9.6 km away. The gradient method has the distinct advantage of portability and buried- pipe capability. Field gradients due to the pipe magnetization, geological features, or ionospheric source currents do not seem to contribute a measurable error to such pipe current determination. The SQUID gradiometer is inherently sensitive enough to detect very small currents in a linear conductor at 10 meters, or conversely, to detect small currents of one amphere or more at relatively great distances. It is fairly straightforward to achieve imbalance less than one part in ten thousand, and with extreme care, one part in one million or better.

  11. Effect of electric and magnetic fields on current-voltage characteristics of a lyotropic liquid crystal

    International Nuclear Information System (INIS)

    Minasyants, M.Kh.; Badalyan, G. G.; Shahinian, A. A.

    1997-01-01

    The effect of electric and magnetic fields on current-voltage characteristics is studied for the lamellar phase in the lyotropic liquid-crystal sodium pentadecylsulfonate (SPDS)-water and lecithin-water systems. It has been found that the current-voltage characteristics of both systems have hysteresis. In the case of ionogenic SPDS, the hysteresis is formed due to ion current caused by the spatial reorientation of domains consisting of parallel lamellar fragments; in the case of lecithin, whose molecules contain dipoles, the hysteresis is formed due to the spatial reorientation of domains caused by the interaction of the resultant dipole moment of the domains with the electric field. It is shown that the introduction into lamellae of cetylpyridine bromide, which has an intrinsic magnetic moment, changes the resultant magnetic moment of domains and, thus, also the hysteresis loop of the current-voltage characteristic. The systems studied show the 'memory' effect with respect to both the electric and magnetic fields. Field-induced processes of domain reorientation were recorded by the method of small-angle x-ray scattering

  12. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    Science.gov (United States)

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  13. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    Science.gov (United States)

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-23

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  14. Characterization of carbon fiber polymer matrix composites subjected to simultaneous application of electric current pulse and low velocity impact

    Science.gov (United States)

    Hart, Robert James

    2011-12-01

    The use of composite materials in aerospace, electronics, and wind industries has become increasingly common, and these composite components are required to carry mechanical, electrical, and thermal loads simultaneously. A unique property of carbon fiber composites is that when an electric current is applied to the specimen, the mechanical strength of the specimen increases. Previous studies have shown that the higher the electric current, the greater the increase in impact strength. However, as current passes through the composite, heat is generated through Joule heating. This Joule heating can cause degradation of the composite and thus a loss in strength. In order to minimize the negative effects of heating, it is desired to apply a very high current for a very short duration of time. This thesis investigated the material responses of carbon fiber composite plates subjected to electrical current pulse loads of up to 1700 Amps. For 32 ply unidirectional IM7/977-3 specimens, the peak impact load and absorbed energy increased slightly with the addition of a current pulse at the time of an impact event. In 16 ply cross-ply IM7/977-2 specimens, the addition of the current pulse caused detrimental effects due to electrical arcing at the interface between the composite and electrodes. Further refinement of the experimental setup should minimize the risk of electrical arcing and should better elucidate the effects of a current pulse on the impact strength of the specimens.

  15. Electrical design of a high current density air-core reversed-field pinch ''ZTP''

    International Nuclear Information System (INIS)

    Reass, W.A.; Cribble, R.F.; Melton, J.G.

    1983-01-01

    This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented

  16. Electrical design of a high current density air-core reversed-field pinch ZTP

    International Nuclear Information System (INIS)

    Reass, W.A.; Melton, J.G.; Gribble, R.F.

    1983-01-01

    This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented

  17. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  18. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    International Nuclear Information System (INIS)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z.

    2004-01-01

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10 -14 m/√Hz, decreasing with frequency approximately as 1/ν. Seismic noise contamination is not observed above a few Hz

  19. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z

    2004-02-23

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10{sup -14} m/{radical}Hz, decreasing with frequency approximately as 1/{nu}. Seismic noise contamination is not observed above a few Hz.

  20. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band

    Institute of Scientific and Technical Information of China (English)

    Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko

    2007-01-01

    Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.

  1. Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Urrutia, J.M.; Rousculp, C.L.

    1995-01-01

    Electromagnetic properties of current pulses carried by whistler wave packets are obtained from a basic laboratory experiment. While the magnetic field and current density are described in the preceding companion paper (Part III), the present analysis starts with the electric field. The inductive and space charge electric field contributions are separately calculated in Fourier space from the measured magnetic field and Ohm's law along B 0 . Inverse Fourier transformation yields the total electric field in space and time, separated into rotational and divergent contributions. The space-charge density in whistler wave packets is obtained. The cross-field tensor conductivity is determined. The frozen-in condition is nearly satisfied, E+v e xB congruent 0. The dissipation is obtained from Poynting's theorem. The waves are collisionally damped; Landau damping is negligible. A radiation resistance for the electrode is determined. Analogous to Poynting's theorem, the transport of helicity is analyzed. Current helicity is generated by a flow of helicity between pulses traveling in opposite directions which carry opposite signs of helicity. Helicity is dissipated by collisions. These observations complete a detailed description of whistler/current pulses which can occur in various laboratory and space plasmas. copyright 1995 American Institute of Physics

  2. A Historical Analysis of Electric Currents in Textbooks: A Century of Influence on Physics Education.

    Science.gov (United States)

    Stocklmayer, Susan; Treagust, David

    1994-01-01

    Analyzes the presentations of electric current in physics textbooks. Concludes that from 1891 to 1991 most textbooks used a fluid model, which predated Faraday, for explaining direct-current circuits. (PR)

  3. Current fluctuation of electron and hole carriers in multilayer WSe{sub 2} field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho-Kyun; Jin, Jun Eon; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); Kim, Yong Jin; Kim, Young Keun [Department of Materials Science and Engineering, Korea University, Seoul 02481 (Korea, Republic of); Shin, Minju [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); IMEP-LAHC, Grenoble INP-MINATEC, 3 Parvis Louis Neel, 38016 Grenoble (France)

    2015-12-14

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe{sub 2} field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe{sub 2} FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (S{sub I}) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NS{sub I}) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  4. Synthesis and electrical characterization of Graphene Oxide films

    International Nuclear Information System (INIS)

    Yasin, Muhammad; Tauqeer, T.; Zaidi, Syed M.H.; San, Sait E.; Mahmood, Asad; Köse, Muhammet E.; Canimkurbey, Betul; Okutan, Mustafa

    2015-01-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ ac of the films was observed to be varied with angular frequency, ω as ω S , with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  5. Electrical current mediated interconversion between graphene oxide to reduced grapene oxide

    Science.gov (United States)

    Teoh, H. F.; Tao, Y.; Tok, E. S.; Ho, G. W.; Sow, C. H.

    2011-04-01

    In this work, we demonstrate that graphene oxide (GO) can be reversibly converted to reduced-graphene-oxide (rGO) through the use of electric current. Strong electric field could cause ionization of water molecules in air to generate H+ ions at cathode, causing GO to be reduced. When the bias is reversed, the same electrode becomes positive and OH- ions are produced. According to Le Chatelier Principle, it then favors the reverse reaction, converting rGO back to GO, GO+2H++2e-=>rGO+H2O. X-ray spectroscopy and Raman spectroscopy were carried to verify the conversion reversibility in the reversed process.

  6. Mechanical, electrical and microstructural properties of cement-based materials in conditions of stray current flow

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Copuroglu, O.; Van Beek, C.; Van Breugel, K.

    2013-01-01

    This investigation presents a comparative study on mechanical properties, electrical resistivity and microstructure of mortar under DC current, compared to mortar in rest (no current) conditions. Monitoring was performed from 24h after casting until 84 days of cement hydration. A current density

  7. Electrical and hydrodynamic characterization of a high current pulsed arc

    International Nuclear Information System (INIS)

    Sousa Martins, R; Chemartin, L; Zaepffel, C; Lalande, Ph; Soufiani, A

    2016-01-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine–Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs. (paper)

  8. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  9. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI

    NARCIS (Netherlands)

    Marcotti, Walter; Corns, Laura F.; Goodyear, Richard J.; Rzadzinska, Agnieszka K.; Avraham, Karen B.; Steel, Karen P.; Richardson, Guy P.; Kros, Corne J.

    2016-01-01

    The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they

  10. Interpretation of electrokinetic measurements with porous films: role of electric conductance and streaming current within porous structure.

    Science.gov (United States)

    Yaroshchuk, Andriy; Luxbacher, Thomas

    2010-07-06

    It is shown that in tangential electrokinetic measurements with porous films the porous structure makes contribution not only to the cell electric conductance (as demonstrated previously) but also to the observed streaming current. Both of these contributions give rise to dependences of streaming-potential and streaming-current coefficients on the channel height. However, due to the combined contribution of two phenomena, the dependence of streaming-potential coefficient on the channel height may be rather complicated and not allow for simple extrapolation. At the same time, the dependences of streaming-current coefficient and cell electric conductance on the channel height turn out linear and can be easily extrapolated to zero channel heights. This enables one to determine separately the contributions of external surface of porous film and of its porous structure to the streaming current and of the channel and porous structure to the cell electric conductance. This procedure is illustrated by the measurements of tangential electrokinetic phenomena and electric conductance with Millipore mixed-cellulose membrane filters of various average pore sizes (from 0.025 to 5 mum) in the so-called adjustable-gap cell of SurPASS electrokinetic instrument (Anton Paar GmbH). The design of this cell allows for easy and quasi-continuous variation of channel height as well as accurate determination of cell electric conductance, streaming-current coefficient, and channel height (from the cell hydraulic permeability). The quality of linear fits of experimental data has been found to be very good, and thus, the extrapolation procedures were quite reliable and accurate. Zeta-potentials could be determined of both external film and internal pore surfaces. It is demonstrated that the porous structures make considerable contributions to both streaming-current coefficient and cell electric conductance especially in the case of filters with larger pores. It is also found that, rather

  11. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek; Park, Daegeun; Cha, Min; Park, Jeong; Chung, Suk-Ho

    2016-01-01

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames

  12. Frequency analysis of DC tolerant current transformers

    International Nuclear Information System (INIS)

    Mlejnek, P; Kaspar, P

    2013-01-01

    This article deals with wide frequency range behaviour of DC tolerant current transformers that are usually used in modern static energy meters. In this application current transformers must comply with European and International Standards in their accuracy and DC tolerance. Therefore, the linear DC tolerant current transformers and double core current transformers are used in this field. More details about the problems of these particular types of transformers can be found in our previous works. Although these transformers are designed mainly for power distribution network frequency (50/60 Hz), it can be interesting to understand their behaviour in wider frequency range. Based on this knowledge the new generations of energy meters with measuring quality of electric energy will be produced. This solution brings better measurement of consumption of nonlinear loads or measurement of non-sinusoidal voltage and current sources such as solar cells or fuel cells. The determination of actual power consumption in such energy meters is done using particular harmonics component of current and voltage. We measured the phase and ratio errors that are the most important parameters of current transformers, to characterize several samples of current transformers of both types

  13. Electric charging/discharging characteristics of super capacitor, using de-alloying and anodic oxidized Ti-Ni-Si amorphous alloy ribbons.

    Science.gov (United States)

    Fukuhara, Mikio; Sugawara, Kazuyuki

    2014-01-01

    Charging/discharging behaviors of de-alloyed and anodic oxidized Ti-Ni-Si amorphous alloy ribbons were measured as a function of current between 10 pA and 100 mA, using galvanostatic charge/discharging method. In sharp contrast to conventional electric double layer capacitor (EDLC), discharging behaviors for voltage under constant currents of 1, 10 and 100 mA after 1.8 ks charging at 100 mA show parabolic decrease, demonstrating direct electric storage without solvents. The supercapacitors, devices that store electric charge on their amorphous TiO2-x surfaces that contain many 70-nm sized cavities, show the Ragone plot which locates at lower energy density region near the 2nd cells, and RC constant of 800 s (at 1 mHz), which is 157,000 times larger than that (5 ms) in EDLC.

  14. Design, manufacture, and calibration of Foucault current sensors

    Science.gov (United States)

    Chailleux, H.; Choffy, J. P.; Molinero, I.

    1990-09-01

    The development and production of Foucalt current sensors for low frequencies (between 1 and 3 kHz) is described. These sensors are to be used in fault detection of sheet assemblies between 1 and 5 mm in thickness. Nine sensors are produced. Three coils without a central core demonstrate that the ferrite core improves the magnetic coupling between the sensor and the panel studied by approximately 50 percent, and the detection of a fault by about 14 dB. The electric characteristics measured by means of an impedance meter seem to provide good indication of the quality of the sensors during both production and operating phases.

  15. Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas

    International Nuclear Information System (INIS)

    Tao, Jun; Lu, Qiang; Dong, Changqing; Du, Xiaoze; Dahlquist, Erik

    2015-01-01

    Highlights: • ECR technique was proposed to convert biomass gasification tar model compounds. • Electric current enhanced the reforming efficiency remarkably. • The highest toluene conversion reached 99.9%. • Ni–CeO 2 /γ-Al 2 O 3 exhibited good stability during the ECR performance. - Abstract: Electrochemical catalytic reforming (ECR) technique, known as electric current enhanced catalytic reforming technique, was proposed to convert the biomass gasification tar into syngas. In this study, Ni–CeO 2 /γ-Al 2 O 3 catalyst was prepared, and toluene was employed as the major feedstock for ECR experiments using a fixed-bed lab-scale setup where thermal electrons could be generated and provided to the catalyst. Several factors, including the electric current intensity, reaction temperature and steam/carbon (S/C) ratio, were investigated to reveal their effects on the conversion of toluene as well as the composition of the gas products. Moreover, toluene, two other tar model compounds (benzene and 1-methylnaphthalene) and real tar (tar-containing wastewater) were subjected to the long period catalytic stability tests. All the used catalysts were analyzed to determine their carbon contents. The results indicated that the presence of electric current enhanced the catalytic performance remarkably. The toluene conversion reached 99.9% under the electric current of 4 A, catalytic temperature of 800 °C and S/C ratio of 3. Stable conversion performances of benzene, 1-methylnaphthalene and tar-containing wastewater were also observed in the ECR process. H 2 and CO were the major gas products, while CO 2 and CH 4 were the minor ones. Due to the promising capability, the ECR technique deserves further investigation and application for efficient tar conversion

  16. Discovery of decaHz flaring in SAX J1808.4-3658

    Directory of Open Access Journals (Sweden)

    Bult P.

    2014-01-01

    Full Text Available We report on the discovery of strong decaHz flaring in the early decay of two out of five outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658. The decaHz flaring switches on and, after ~3 days, off again, on a time scale of 1-2 hours. When the flaring is present, the total 0.05-10 Hz variability has a fractional rms amplitude of 20 to 30 percent, well in excess of the 8 to 12 percent rms broad-band noise usually seen in power spectra of SAX J1808 in this frequency range. Coherent 401 Hz pulsations are seen throughout the observations in which the decaHz flaring is detected. We find that the absolute amplitude of the pulsations varies with the flux modulation of the decaHz flaring, indicating that the flaring is caused by an accretion rate modulation already present in the accretion flow prior to matter entering the accretion funnel. We suggest that the decaHz flaring is the result of the Spruit-Taam instability [1]. This instability arises when the inner accretion disk approaches co-rotation. The rotation of the stellar magnetosphere then acts as a propeller, suppressing accretion onto the neutron star. A matter reservoir forms in the inner accretion disk, which episodically empties onto the neutron star, causing flares at a decaHz timescale. A similar explanation was proposed earlier for 1 Hz flaring occurring late in three of five outbursts, mutually exclusive with the decaHz flaring. The 1 Hz flaring was observed at luminosities a factor 5 to 10 below where we see the decaHz flaring. That a different branch of the Spruit-Taam instability could also act at the much higher luminosity levels of the decaHz flaring had recently been predicted by D’Angelo & Spruit [2, 3]. We discuss these findings in the context of the parameters of the Spruit-Taam-d’Angelo model of the instability. If confirmed, after millisecond pulsations, 1 Hz and decaHz flaring would be another diagnostic of the presence of a magnetosphere in accreting low

  17. Servo-controlled hind-limb electrical stimulation for short-term arterial pressure control.

    Science.gov (United States)

    Kawada, Toru; Shimizu, Shuji; Yamamoto, Hiromi; Shishido, Toshiaki; Kamiya, Atsunori; Miyamoto, Tadayoshi; Sunagawa, Kenji; Sugimachi, Masaru

    2009-05-01

    Autonomic neural intervention is a promising tool for modulating the circulatory system thereby treating some cardiovascular diseases. In 8 pentobarbital-anesthetized cats, it was examined whether the arterial pressure (AP) could be controlled by acupuncture-like hind-limb electrical stimulation (HES). With a 0.5-ms pulse width, HES monotonically reduced AP as the stimulus current increased from 1 to 5 mA, suggesting that the stimulus current could be a primary control variable. In contrast, the depressor effect of HES showed a nadir approximately 10 Hz in the frequency range between 1 and 100 Hz. Dynamic characteristics of the AP response to HES approximated a second-order low-pass filter with dead time (gain: -10.2 +/- 1.6 mmHg/mA, natural frequency: 0.040 +/- 0.004 Hz, damping ratio 1.80 +/- 0.24, dead time: 1.38 +/- 0.13 s, mean +/- SE). Based on these dynamic characteristics, a servo-controlled HES system was developed. When a target AP value was set at 20 mmHg below the baseline AP, the time required for the AP response to reach 90% of the target level was 38 +/- 10 s. The steady-state error between the measured and target AP values was 1.3 +/- 0.1 mmHg. Autonomic neural intervention by acupuncture-like HES might provide an additional modality to quantitatively control the circulatory system.

  18. A wireless batteryless in vivo EKG and core body temperature sensing microsystem with 60 Hz suppression technique for untethered genetically engineered mice real-time monitoring.

    Science.gov (United States)

    Chaimanonart, Nattapon; Young, Darrin J

    2009-01-01

    A wireless, batteryless, and implantable EKG and core body temperature sensing microsystem with adaptive RF powering for untethered genetically engineered mice real-time monitoring is designed, implemented, and in vivo characterized. A packaged microsystem, exhibiting a total size of 9 mm x 7 mm x 3 mm with a weight of 400 mg including a pair of stainless-steel EKG electrodes, is implanted in a mouse abdomen for real-time monitoring. A low power 2 mm x 2 mm ASIC, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT)-based temperature sensor, an RF power sensing circuit, an RF-DC power converter, an 8-bit ADC, digital control circuitry, and a 433 MHz FSK transmitter, is powered by an adaptively controlled external RF energy source at 4 MHz to ensure a stable 2V supply with 156microA current driving capability for the overall microsystem. An electrical model for analyzing 60 Hz interference based on 2-electrode and 3-electrode configurations is proposed and compared with in vivo evaluation results. Due to the small laboratory animal chest area, a 60 Hz suppression technique by employing input termination resistors is chosen for two-EKG-electrode implant configuration.

  19. Electricity generation in the world and Ukraine: Current status and future developments

    Directory of Open Access Journals (Sweden)

    Alexander Zvorykin

    2017-11-01

    Full Text Available Electricity generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electricity can be generated from: 1 non-renewable energy sources such as coal, natural gas, oil, and nuclear; and 2 renewable energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. However, the major energy sources for electricity generation in the world are: 1 thermal power – primarily using coal (~40% and secondarily natural gas (~23%; 2 “large” hydro power plants (~17% and 3 nuclear power from various reactor designs (~11%. The rest of the energy sources for electricity generation is from using oil (~4% and renewable sources such as biomass, wind, geothermal and solar (~5%, which have just visible impact in selected countries. In addition, energy sources, such as wind and solar, and some others, like tidal and wave-power, are intermittent from depending on Mother Nature. And cannot be used alone for industrial electricity generation. Nuclear power in Ukraine is the most important source of electricity generation in the country. Currently, Ukrainian Nuclear Power Plants (NPPs generate about 45.5% of the total electricity followed with coal generation ‒ 38%, gas generation 9.6% and the rest is based on renewable sources, mainly on hydro power plants – 5.9%. Nuclear-power industry is based on four NPPs (15 Pressurized Water Reactors (PWRs including the largest one in Europe ‒ Zaporizhzhya NPP with about 6,000 MWel gross installed capacity. Two of these 15 reactors have been built and put into operation in 70-s, ten in 80-s, one in 90-s and just two in 2004. Therefore, based on an analysis of the world power reactors in terms of their maximum years of operation (currently, the oldest reactors are ~45-year old several projections have been made for future of the nuclear-power industry

  20. Electrodeposition of copper from a copper sulfate solution using a packed-bed continuous-recirculation flow reactor at high applied electric current

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2015-09-01

    Full Text Available The purpose of this study is mainly to investigate the performance of a packed-bed continuous-recirculation flow reactor at high applied electric current in removing copper, Cu(II, from simulated electrolyte by electrodeposition. The effects of pHo, circulation rate of flow, initial copper concentration, intensity of the applied current and the method of application of electric current, as to have a constant value during all the time of electrolysis or to be decreased with time, on copper electrodeposition and current efficiency are revealed. The results showed that the increase in pH (provided not lead to the deposition of Cu(OH2, initial concentration of the copper and flow rate increased the electrodeposition of copper as well as improved current efficiency. However, increasing intensity of the applied electric current led to an increase in the electrodeposition of copper and decreased electrical efficiency. It was also observed that reducing the intensity of applied electric current with time during the electrolysis process while maintaining other operating variables constant led to a significant reduction in the consumption of electrical energy used in the process of copper removal by electrodeposition; a reduction of 41.6% could be achieved.

  1. Electric emissions from electrical appliances

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intra-corporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration. (authors)

  2. The most intense electric currents in turbulent high speed solar wind

    Science.gov (United States)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  3. Electron acceleration observed by the FAST satellite within the IAR during a 3 Hz modulated EISCAT heater experiment

    Directory of Open Access Journals (Sweden)

    S. R. Cash

    2002-09-01

    Full Text Available A quantitative analysis is presented of the FAST satellite electric field and particle flux data during an EISCAT heating experiment run on 8 October 1998. Radio frequency heating, modulated at 3 Hz, launched ULF waves from the ionosphere into the lower magnetosphere. The ULF waves were observed in FAST data and constituted the first satellite detection of artificially excited Alfvénic ULF waves. The downward electron flux data for this event contain the first observations of electrons undergoing acceleration within the Ionospheric Alfvén Resonator (IAR due to parallel electric fields associated with an artificially stimulated Alfvén wave. The time history and spectral content of the observed down-ward electron fluxes is investigated by considering the effects of a localised parallel electric field. Furthermore, it is demonstrated that a power law electron energy distribution describes the time-variable observed fluxes better than a Maxwellian distribution.Key words. Ionosphere (active experiments; particle acceleration – Magnetospheric physics (electric fields

  4. Electron acceleration observed by the FAST satellite within the IAR during a 3 Hz modulated EISCAT heater experiment

    Directory of Open Access Journals (Sweden)

    S. R. Cash

    Full Text Available A quantitative analysis is presented of the FAST satellite electric field and particle flux data during an EISCAT heating experiment run on 8 October 1998. Radio frequency heating, modulated at 3 Hz, launched ULF waves from the ionosphere into the lower magnetosphere. The ULF waves were observed in FAST data and constituted the first satellite detection of artificially excited Alfvénic ULF waves. The downward electron flux data for this event contain the first observations of electrons undergoing acceleration within the Ionospheric Alfvén Resonator (IAR due to parallel electric fields associated with an artificially stimulated Alfvén wave. The time history and spectral content of the observed down-ward electron fluxes is investigated by considering the effects of a localised parallel electric field. Furthermore, it is demonstrated that a power law electron energy distribution describes the time-variable observed fluxes better than a Maxwellian distribution.

    Key words. Ionosphere (active experiments; particle acceleration – Magnetospheric physics (electric fields

  5. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    International Nuclear Information System (INIS)

    Volkov, M. S.; Gusev, Yu. P.; Monakov, Yu. V.; Cho, Gvan Chun

    2016-01-01

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed

  6. Electrical current at micro-/macro-scale of undoped and nitrogen-doped MWPECVD diamond films

    Science.gov (United States)

    Cicala, G.; Velardi, L.; Senesi, G. S.; Picca, R. A.; Cioffi, N.

    2017-12-01

    Chemical, structural, morphological and micro-/macro-electrical properties of undoped and nitrogen-(N-)doped diamond films are determined by X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopies, field emission scanning electron microscopy, atomic force microscopy, scanning capacitance microscopy (SCM) and two points technique for I-V characteristics, respectively. The characterization results are very useful to examine and understand the relationship among these properties. The effect of the nitrogen incorporation in diamond films is investigated through the evolution of the chemical, structural, morphological and topographical features and of the electrical behavior. The distribution of the electrical current is first assessed at millimeter scale on the surface of diamond films and then at micrometer scale on small regions in order to establish the sites where the carriers preferentially move. Specifically, the SCM images indicate a non-uniform distribution of carriers on the morphological structures mainly located along the grain boundaries. A good agreement is found by comparing the electrical currents at the micro- and macro-scale. This work aims to highlight phenomena such as photo- and thermionic emission from N-doped diamond useful for microelectronic engineering.

  7. Microbial interspecies electron transfer via electric currents through conductive minerals

    Science.gov (United States)

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2012-01-01

    In anaerobic biota, reducing equivalents (electrons) are transferred between different species of microbes [interspecies electron transfer (IET)], establishing the basis of cooperative behaviors and community functions. IET mechanisms described so far are based on diffusion of redox chemical species and/or direct contact in cell aggregates. Here, we show another possibility that IET also occurs via electric currents through natural conductive minerals. Our investigation revealed that electrically conductive magnetite nanoparticles facilitated IET from Geobacter sulfurreducens to Thiobacillus denitrificans, accomplishing acetate oxidation coupled to nitrate reduction. This two-species cooperative catabolism also occurred, albeit one order of magnitude slower, in the presence of Fe ions that worked as diffusive redox species. Semiconductive and insulating iron-oxide nanoparticles did not accelerate the cooperative catabolism. Our results suggest that microbes use conductive mineral particles as conduits of electrons, resulting in efficient IET and cooperative catabolism. Furthermore, such natural mineral conduits are considered to provide ecological advantages for users, because their investments in IET can be reduced. Given that conductive minerals are ubiquitously and abundantly present in nature, electric interactions between microbes and conductive minerals may contribute greatly to the coupling of biogeochemical reactions. PMID:22665802

  8. Demolition of RC structures by applying electric current through rebars

    International Nuclear Information System (INIS)

    Nakagawa, Wahei; Nishita, Itaru; Kasai, Yoshio.

    1987-01-01

    Recently, the dismantling works of reinforced concrete structures increased rapidly. On the other hand, in urban districts, the strict restriction of noise, vibration and dust is carried out, and the development of no vibration, no noise construction method is desired. The dismantling method by electrically heating reinforcing bars was developed for separating the surface layer of concrete radioactivated and contaminated in the dismantling works of nuclear power stations, but it can be applied also to the dismantling of general reinforced concrete structures. As the method of electrically heating reinforcing bars, there are direct electrifying method and induction heating method, and here, the direct electrifying method is discussed. When large current is passed directly through reinforcing bars in concrete as electric resistors, their temperature rises rapidly to about 450 deg C. As the result, the surrounding concrete cracks and loses the adhesion due to the dehydration. By striking lightly, the concrete separates, thus dismantling becomes easy. The preparation, electrode terminals, heating temperature, the cracking of concrete, the secondary breaking after heating, dust in dismantling and broken pieces, and the features and the fields of application of this method are reported. (Kako, I.)

  9. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  10. Ultrafast traveling wave dominates the electric organ discharge of Apteronotus leptorhynchus: an inverse modelling study.

    Science.gov (United States)

    Shifman, Aaron R; Longtin, André; Lewis, John E

    2015-10-30

    Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways.

  11. Should we be afraid of magnetic fields related to electricity?

    International Nuclear Information System (INIS)

    Souques, M.

    2009-01-01

    After having recalled that the main sources of 50 Hz electric field are high voltage lines while such a field around any electrical equipment is null because of a presence of insulation, the author comments the magnetic field level at the vicinity of common electrical equipment (refrigerator, hi-fi, computer, television, and so on) and at some distance (30 or 100 meters) of high-voltage and low-voltage lines. She comments the knowledge on the effects of exposure to a 50 Hz magnetic field, and recalls that a publication suggested in 1979 that there was a risk of leukaemia for children living close to electrical lines. More recent studies proposed to apply to magnetic fields an existing classification of products with respect to cancer risk (known, likely, possible, insufficient knowledge, not carcinogen). Some studies put the risk of leukaemia associated to magnetic fields into question again

  12. A critical appraisal of 'Shingrix', a novel herpes zoster subunit vaccine (HZ/Su or GSK1437173A) for varicella zoster virus.

    Science.gov (United States)

    Bharucha, Tehmina; Ming, Damien; Breuer, Judith

    2017-08-03

    HZ/Su, branded as 'Shingrix', is one of the newest vaccines to be submitted for multi-national regulatory approval. It is targeted to prevent shingles, a global concern with aging populations. A live attenuated vaccine for shingles has been available for over a decade, however it is contraindicated in specific subgroups of people, and there are added concerns regarding long-term immunogenicity. HZ/Su is the first subunit vaccine developed to protect against shingles. This paper provides a critical appraisal of current evidence regarding HZ/Su.

  13. Effects of contraction duration on low-frequency fatigue in voluntary and electrically induced exercise of quadriceps muscle in humans.

    Science.gov (United States)

    Ratkevicius, A; Skurvydas, A; Povilonis, E; Quistorff, B; Lexell, J

    1998-04-01

    The aims of this study were to investigate if low-frequency fatigue (LFF) dependent on the duration of repeated muscle contractions and to compare LFF in voluntary and electrically induced exercise. Male subjects performed three 9-min periods of repeated isometric knee extensions at 40% maximal voluntary contraction with contraction plus relaxation periods of 30 plus 60 s, 15 plus 30 s and 5 plus 10 s in protocols 1, 2 and 3, respectively. The same exercise protocols were repeated using feedback-controlled electrical stimulation at 40% maximal tetanic torque. Before and 15 min after each exercise period, knee extension torque at 1, 7, 10, 15, 20, 50 and 100 Hz was assessed. During voluntary exercise, electromyogram root mean square (EMGrms) of the vastus lateralis muscle was evaluated. The 20-Hz torque:100-Hz torque (20:100 Hz torque) ratio was reduced more after electrically induced than after voluntary exercise (P exercise, the decrease in 20:100 Hz torque ratio was gradually (P exercise, the decrease in 20:100 Hz torque ratio and the increase in EMGrms were greater in protocol 1 (P exercise and that the electrically induced exercise produced a more pronounced LFF compared to voluntary exercise of submaximal intensity. It is suggested that compensatory recruitment of faster-contracting motor units is an additional factor affecting the severity of LFF during voluntary exercise.

  14. A method for measuring the inductive electric field profile and noninductive current profiles on DIII-D

    International Nuclear Information System (INIS)

    Forest, C.B.; Luce, T.C.; Politzer, P.A.; Lao, L.L.; Kupfer, K.; Wroblewski, D.

    1994-07-01

    A new technique for determining the parallel electric field profile and noninductive current profile in tokamak plasmas has been developed and applied to two DIII-D tokamak discharges. Central to this technique is the determination of the current density profile, J(ρ), and poloidal flux, ψ(ρ), from equilibrium reconstructions. From time sequences of the reconstructions, the flux surface averaged, parallel electric field can be estimated from appropriate derivatives of the poloidal flux. With a model for the conductivity and measurements of T e and Z eff , the noninductive fraction of the current can be determined. Such a technique gives the possibility of measuring directly the bootstrap current profile and the noninductively driven current from auxiliary heating such as neutral beam injection or fast wave current drive. Furthermore, if the noninductively driven current is small or if the noninductive current profile is assumed to be known, this measurement provides a local test of the conductivity model under various conditions

  15. THE RATE OF CURRENT CHANGE DURING A SHORT CIRCUIT IN THE POWER CIRCUITS OF THE ELECTRIC ROLLING STOCK WITH REGARD TO EDDY CURRENTS

    Directory of Open Access Journals (Sweden)

    L. V. Dubinets

    2010-04-01

    Full Text Available In the article the issue of influence of vortical currents on rate of change of short circuit current is considered, a mathematical model for the calculation of short circuit currents in the traction mode in the power circuits of DC electric rolling stock is presented, and the research results are given.

  16. Enhancement of the electrical properties of (Eu,Zn) co-doped BiFeO3 thin films prepared by using chemical solution deposition

    Science.gov (United States)

    Kim, Youn-Jang; Kim, Jin Won; Kim, Hae Jin; Kim, Sang Su

    2013-04-01

    We prepared pure BiFeO3 (BFO) and (Bi0.9Eu0.1)(Fe0.975Zn0.025)O3-δ (BEFZO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BEFZO thin film. The leakage current density of the BEFZO thin film was three orders of magnitude lower than that of the pure BFO, 3.93 × 10-6 A/cm2 at 100 kV/cm. The remnant polarization (2 P r ) and the coercive electric field (2 E c ) of the BEFZO thin film were 42 µC/cm2 and 898 kV/cm at an applied electric field of 1000 kV/cm and at a frequency of 1 kHz and the values decreased with increasing measurement frequency to 18 µC/cm2 and 866 kV/cm at 10 kHz, respectively. Also, the fatigue endurances were evaluated at peak voltages of 8-10 V after 1.44 × 1010 cycles in the BEFZO thin films and were 70 ˜ 90% of the initial values. We also confirmed that the 2 P r was fairly saturated at measurement frequency about 30 kHz for the BEFZO thin film.

  17. Research of Influence of Noise Pollution on the Value of the Threshold Current Tangible

    Science.gov (United States)

    Khanzhina, Olga; Sidorov, Alexander; Zykina, Ekaterina

    2017-12-01

    Stable safety while working on electrical installations can be achieved by following the rules of the electrical safety. Today maximum permissible levels of touch voltage and electric current flow through any part of a person’s body are established by Russian Federation GOST system 12.1.038-82. Unfortunately, recommended by International Electrotechnical Commission (IEC) maximum allowable amount of electric current and voltage level do not take into account interaction between said electric current and other physical factors; noise, in particular. The influence of sound frequency and its pressure level on body resistance has been proven earlier in thesis by V.V. Katz. Studies of the noise effects on the value of the threshold current tangible have been renewed in laboratories of Life Safety Department in South Ural State University. To obtain reliable results, testing facility that includes anechoic chamber, sources of simulated voltages and noise and a set of recording instruments was designed and built. As a rule, noise influence on electrotechnical personnel varies depending on noise level or/and the duration of its impact. According to modern theories, indirect noise influence on various organs and systems through central nervous system has to be considered. Differential evaluation of noise pollution and its correlation with emerged effects can be obtained with the usage of the dose approach. First of all, there were conducted studies, in which frequency of the applied voltage (f) was to 50 Hz. Voltages and currents that caused sensations before and during 97 dB noise affections were measured. Obtained dependence led to questioning previous researches results of the necessity of reducing the amperage of tripping protection devices. At the same time electrical resistance changes of human body were being studied. According to those researches, no functional dependence between fluctuations in the magnitude of the resistance of human body to electric current flow

  18. What can the 50 Hz market learn from the 60 Hz market to avoid generator and exciter failures and damage?

    Energy Technology Data Exchange (ETDEWEB)

    Weigelt, Klaus [Brush Aftermarket, Ridderkerk (Netherlands). Global Engineering

    2012-07-01

    The economic significance of older turbo-sets lies primarily in their steadily increasing share of the total power generated worldwide. This is reflected by a trend in which plants originally built for base-load operation are increasingly being used for variable load or even continuous start-stop operation. This change occurred in the 60 Hz US market more than 25 years ago. The paper gives an overview about numerous solutions for refurbishment, life extension, retrofits and upgrades developed for generator rotors, stators and exciters. These are no prototype solutions, but solutions which already work reliably for the 60 Hz market for many years and which can be applied and adapted of the same problems of the 50 Hz market. (orig.)

  19. Magnetospheric electric fields and auroral oval

    Science.gov (United States)

    Laakso, Harri; Pedersen, Arne; Craven, John D.; Frank, L. A.

    1992-01-01

    DC electric field variations in a synchronous orbit (GEOS 2) during four substorms in the time sector 19 to 01 LT were investigated. Simultaneously, the imaging photometer on board DE 1 provided auroral images that are also utilized. Substorm onset is defined here as a sudden appearance of large electric fields. During the growth phase, the orientation of the electric field begins to oscillate some 30 min prior to onset. About 10 min before the onset GEOS 2 starts moving into a more tenuous plasma, probably due to a thinning of the current sheet. The onset is followed by a period of 10 to 15 min during which large electric fields occur. This interval can be divided into two intervals. During the first interval, which lasts 4 to 8 min, very large fields of 8 to 20 mV/m are observed, while the second interval contains relatively large fields (2 to 5 mV/m). A few min after the onset, the spacecraft returns to a plasma region of higher electron fluxes which are usually larger than before substorm. Some 30 min after onset, enhanced activity, lasting about 10 min, appears in the electric field. One of the events selected offers a good opportunity to study the formation and development of the Westward Traveling Surge (WST). During the traversal of the leading edge of the WTS (approximately 8 min) a stable wave mode at 5.7 mHz is detected.

  20. Discharge current characteristics as an 'electrical method' for glow discharge plasma diagnosis

    International Nuclear Information System (INIS)

    Toma, M.; Paraschivescu, Alina; Morminches, Anisoara

    2001-01-01

    In its simplest form, the glow discharge can be established by passing an electric current through gas between two electrodes. The gas and the electrodes are contained in an insulating envelope. In many technological applications, and not only, the plasma devices are often treated like a black box. There is a series of external parameters or control variables which can be adjusted to obtain a desired effect, namely, the operating voltage, gas pressure, gas nature, gas flow rate, magnetic field strength and magnetic field configuration, electric field geometry, interelectrode distance, and cathode characteristics. The discharge current can be controlled by each of the above control variables. The core idea of this work is the following: a lot of information about the phenomena from the discharge volume, at electrodes or at the discharge bounding wall surface, can be obtained knowing how the change of one of the control parameters influences the discharge current. The following regimes were analyzed: dark discharges (background ionization, saturation regime, Townsend regime, corona regime), glow discharge (the normal and abnormal discharge) and arc discharge (glow to arc transition, non-thermal arcs, thermal arcs). It was concluded that the nonlinearity in the shape of the discharge current characteristics as a function of an external control parameter, can be correlated with the elementary processes and the dynamics of different space charge structures generated in plasma devices. (authors)

  1. Evaluation of all-electric secondary power for transport aircraft

    Science.gov (United States)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  2. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    International Nuclear Information System (INIS)

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikić, Zoran

    2012-01-01

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

  3. Epilepsy provoked by television and video games: safety of 100-Hz screens.

    Science.gov (United States)

    Ricci, S; Vigevano, F; Manfredi, M; Kasteleijn-Nolst Trenité, D G

    1998-03-01

    Television (TV) and video games (VG) can provoke seizures in patients with photosensitive epilepsies. Flicker frequency is the most important factor in screen activation. We tested conventional 50-Hz versus 100-Hz monitors during TV viewing and VG playing in 30 photosensitive subjects, 23 of whom had a history of TV or VG seizures or both. Fifteen subjects' discharges were activated by 50-Hz TV; 17 by 50-Hz VG; and one by a 100-Hz screen. Thus, 100-Hz screens protect against screen activation.

  4. Current limitation by an electric double layer in ion laser discharges

    International Nuclear Information System (INIS)

    Torven, S.

    1977-12-01

    A theory for current limitation in ion laser discharges is investigated. The basic mechanism considered is saturation of the positive ion flux at an electric double layer by the limited flux of neutral atoms. The result is compared with a recently published synthesis of a large number of experimental data which agree well with those predicted by the double layer model

  5. Electric fields and currents induced in organs of the human body when exposed to ELF and VLF electromagnetic fields

    Science.gov (United States)

    King, Ronold W. P.; Sandler, Sheldon S.

    1996-09-01

    Formulas for the transverse components of the electric and magnetic fields of the traveling-wave currents of three different types of three-wire, three-phase high-voltage power lines and of a typical VLF transmitter are given. From them, exposure situations for the human body are chosen which permit the analytical determination of the total current induced in that body. With this, the fraction of the total axial current, the axial current density, and the axial electric field in each organ of the body are obtained at any desired cross section. The dimensions and conductivity of these organs must be known. The electric field so obtained is the average macroscopic field in which the cells in each organ are immersed when the whole body is exposed to a known incident field. It corresponds in vivo to the electric field used in vitro to expose cells in tissues.

  6. Block-Module Electric Machines of Alternating Current

    Science.gov (United States)

    Zabora, I.

    2018-03-01

    The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).

  7. Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents 1. Three-dimensional current flows associated with a substorm-intensified eastward electrojet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Untiedt, J.; Greenwald, R.A.

    1980-01-01

    Two-dimensional distributions of ground magnetic and ionospheric electric fields in the evening sector auroral oval have been simultaneously observed by the Scandinavian Magnetometer Array and the Scandinavian Twin Auroral Radar Experiment (Stare) radars, respectively, on February 15, 1977. They were associated with varying, substorm-intensified, eastward electrojet current systems of the western, middle, and eastern segment of the eastward electrojet. We conclude that the substorm-intensified eastward electroject was a nearly pure Hall current driven by northward electric fields. The observed eastward increase of the current in the western segment of the electrojet was due to a gradual enhancement of the Hall conductivity. Here, the electrojet was fed by a broad sheet of net downward field-aligned current. During one period, the eastern-terminating part of the eastward electrojet diverged up the field lines in a rather local area because of a strong longitudinal decrease in the northward-directed electric field. On another occasion, it diverged northward within the ionosphere and joined the westward-flowing current because of a rotation of the northward electric field with increasing latitude through west- to southward. These two observed mechanisms of current divergence in the region where eastward and westward electrojects coexist may shed some new light on the controversy over the existence of upward field-aligned current flow in the Harang discontinuity

  8. Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field

    International Nuclear Information System (INIS)

    Chao-Rong, Li; Shu-Wen, Li; Jie, Mei; Qing, Xu; Ying-Ying, Zheng; Wen-Jun, Dong

    2011-01-01

    A fascinating colloid phenomenon was observed in a specially designed template-assisted cell under an alternating electrical field. Most colloidal particles experienced the processes of aggregation, dispersion and climbing up to the plateaus of the patterns pre-lithographed on the indium tin oxide glass as the frequency of the alternating electrical field increased. Two critical frequencies f crit1 ≈ 15 kHz and f crit2 ≈ 40 kHz, corresponding to the transitions of the colloid behaviour were observed. When f < 15 kHz, the particles were forced to aggregate along the grooves of the negative photoresist patterned template. When 15 kHz < f < 40 kHz, the particle clusters became unstable and most particles started to disperse and were blocked by the fringes of the negative photoresist patterns. As the frequency increased to above 40 kHz, the majority of particles started to climb up to the plateaus of the patterns. Furthermore, the dynamics analysis for the behaviour of the colloids was given and we found out that positive or negative dielectrophoresis force, electrohydrodynamic force, particle—particle interactions and Brownian motion change with the frequency of the alternating electric field. Thus, changes of the related forces affect or control the behaviour of the colloids. (interdisciplinary physics and related areas of science and technology)

  9. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    Science.gov (United States)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  10. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  11. Ring current instabilities excited by the energetic oxygen ions

    International Nuclear Information System (INIS)

    Kakad, A. P.; Singh, S. V.; Lakhina, G. S.

    2007-01-01

    The ring current instabilities driven by the energetic oxygen ions are investigated during the magnetic storm. The electrons and protons are considered to have Maxwellian distributions, while energetic oxygen ions are having loss-cone distribution. Dispersion relation for the quasielectrostatic modes with frequencies ω>ω cp (proton cyclotron frequency) and propagating obliquely to the magnetic field is obtained. Dispersion relation is studied numerically for the storm time ring current parameters and it is found that these instabilities are most prominent during intense storms when the oxygen ions become the dominant constituents of the ring current plasma. For some typical storm-time ring current parameters, these modes can produce quasielectrostatic noise in the range of 17-220 Hz, thus providing a possible explanation of the electrostatic noise observed at the inner boundary of the ring current during magnetic storms. Further, these modes can attain saturation electric fields of the order of 100-500 μV/m, and therefore, are expected to scatter O + ions into the loss-cone giving rise to their precipitation into the atmosphere, thus contributing to the ring current decay

  12. Method of recovering oil from alum shales. [heating by electric currents

    Energy Technology Data Exchange (ETDEWEB)

    Wennerstrom, K G

    1918-06-04

    A method of treating alum shale and other bituminous shales in order to extract oil et cetera, is characterized by bringing the shale to a temperature at which it melts, and at which the necessary amount of heat is transferred to the molten shale to be distilled. The patent claim is characterized by heating the shale by means of electric current. The patent has one additional claim.

  13. Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Török, Tibor; Titov, Viacheslav S. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, James E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-09-01

    The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here, we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs: two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL shear between these two groups is much less pronounced, which suggests that the degree of current neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.

  14. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.

    Science.gov (United States)

    Petrofsky, J; Suh, H J; Fish, A; Hernandez, V; Abdo, A; Collins, K; Mendoza, E; Yang, T-N

    2008-01-01

    When electrical stimulation is used on wounds, the electrical current has difficulty penetrating areas where there is necrotic tissue. Further, for an irregularly shaped wound, current distribution is poor in some areas of the wound since conventional two-electrode delivery systems provide the greatest current in a line directly between the electrodes. A new stimulator and electrode system is described which uses three electrodes spaced around a wound to disperse current more evenly. The stimulator senses tissue impedance and then redirects current by altering its Thevenin's output impedance for each electrode; each of the three electrodes becomes the active one in sequence while the remaining are the sink electrodes. Eight subjects were examined to test the stimulator. Electrical stimulation was applied to the skin above the quadriceps muscle at currents of 15 mA in six subjects without wounds and in two subjects with wounds. The relationship between electrode position and current dispersion on the skin was examined with a two-electrode vs. a three-electrode system to set stimulation parameters for the computer. The results showed that the three-electrode system could (1) detect areas of the skin with high impedance; (2) compensate by altering the Thevenin's output impedance at each of the three electrodes to shift current to high impedance areas; (3) provide uniform current across the skin as assessed by skin current and blood flow measurements with a laser Doppler flow imager.

  15. Model study of the influence of solar wind parameters on electric currents and fields in middle atmosphere at high latitudes

    International Nuclear Information System (INIS)

    Tonev, P.; Velinov, P.

    2012-01-01

    The electric currents and fields in the strato/mesosphere and lower ionosphere are a result mainly of tropospheric electrical generators (thunderstorms and electrified clouds) which principally determine their global distributions and magnitudes. There are, however, additional sources, e.g. the solar wind (SW), whose contribution to these currents and fields is realized by SW-magnetosphere-ionosphere coupling. This last causes creation of large trans-polar electric potential difference VPC in each polar cap of ∼ 30–140 kV and of horizontal scale ∼ 3000 km which is realized through field-aligned currents (FAC) and is controlled by SW parameters. The potential difference VPC forces formation of closure currents in the dynamo-region. Our study by simulation shows that much smaller currents penetrate into the lower atmospheric regions and influence characteristics of the global atmospheric electrical circuit (GEC). Also, the downward mapping of the horizontal electric fields due to the potential difference VPC leads to creation of very small, but non-negligible vertical electric fields at sea level. They have been demonstrated experimentally as significant (up to few tens of per cent) SW-controlled modifications of the GEC electric characteristics at the ground, at polar latitudes. Our model, based on simulation of Maxwell’s equations in the region 0–160 km under steady-state conditions show that similar but relatively much larger SW-dominated modifications of GEC characteristics take place in the strato/mesosphere and lower ionosphere at polar and high latitudes

  16. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Science.gov (United States)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  17. Solar causes of the excitation of earth electric currents and of geomagnetic field disturbances

    International Nuclear Information System (INIS)

    Krivsky, L.

    1977-01-01

    A survey is given of the effects of solar activity on geomagnetic and geoelectric disturbances. Indexes are given showing changes in the magnetic field, the occurrence of calm geomagnetic days related to solar activity, proton solar flares and electrical currents in the high layers of the atmosphere in the polar region, powerfull solar activity and electric currents in the polar region, the time rise of shock waves in the development of proton flares and the boundaries of sector structures of the interplanetary magnetic field and its effect on the Earth. It is stated that the geoelectric and geomagnetic fields are affected by the discrete phenomena of solar activity and by the transition of the quasimagnetic sectors of interplanetary fields. (J.P.)

  18. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  19. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min; Lee, Yonggyu

    2012-01-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  20. Very-low-frequency and low-frequency electric and magnetic fields associated with electric shuttle bus wireless charging

    International Nuclear Information System (INIS)

    Tell, R. A.; Kavet, R.; Bailey, J. R.; Halliwell, J.

    2014-01-01

    Tests conducted to date at the University of Tennessee at Chattanooga (UTC) indicate that wireless charging of the Chattanooga Area Regional Transportation Authority's (CARTA) downtown shuttle bus, currently operating with off-board battery charging technology, offers significant improvements in performance and cost. The system operates at a frequency of 20 kHz and a peak power of 60 kW. Because the system's wireless charging is expected to occur during a nominal 3-min charging period with passengers on-board, the magnetic and electric fields associated with charging were characterised at UTC's Advanced Vehicle Test Facility and compared with established human exposure limits. The two most prominent exposure limits are those published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineers (IEEE). Both organisations include limits for groups who are trained (workers in specific industries) to be aware of electromagnetic environments and their potential hazards, as well as a lower set of limits for the general public, who are assumed to lack such awareness. None of the magnetic or electric fields measured either within or outside the bus during charging exceeded either the ICNIRP or the IEEE exposure limits for the general public. (authors)

  1. Dose-dependent suppression by ethanol of transient auditory 40-Hz response.

    Science.gov (United States)

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    2000-02-01

    Acute alcohol (ethanol) challenge is known to induce various cognitive disturbances, yet the neural basis of the effect is poorly known. The auditory transient evoked gamma-band (40-Hz) oscillatory responses have been suggested to be associated with various perceptual and cognitive functions in humans; however, alcohol effects on auditory 40-Hz responses have not been investigated to date. The objective of the study was to test the dose-related impact of alcohol on auditory transient evoked 40-Hz responses during a selective-attention task. Ten healthy social drinkers ingested, in four separate sessions, 0.00, 0. 25, 0.50, or 0.75 g/kg of 10% (v/v) alcohol solution. The order of the sessions was randomized and a double-blind procedure was employed. During a selective attention task, 300-Hz standard and 330-Hz deviant tones were presented to the left ear, and 1000-Hz standards and 1100-Hz deviants to the right ear of the subjects (P=0. 425 for each standard, P=0.075 for each deviant). The subjects attended to a designated ear, and were to detect the deviants therein while ignoring tones to the other ear. The auditory transient evoked 40-Hz responses elicited by both the attended and unattended standard tones were significantly suppressed by the 0.50 and 0.75 g/kg alcohol doses. Alcohol suppresses auditory transient evoked 40-Hz oscillations already with moderate blood alcohol concentrations. Given the putative role of gamma-band oscillations in cognition, this finding could be associated with certain alcohol-induced cognitive deficits.

  2. A 1microW 85nV/ radicalHz pseudo open-loop preamplifier with programmable band-pass filter for neural interface system.

    Science.gov (United States)

    Chang, Sun-Il; Yoon, Euisik

    2009-01-01

    We report an energy efficient pseudo open-loop amplifier with programmable band-pass filter developed for neural interface systems. The proposed amplifier consumes 400nA at 2.5V power supply. The measured thermal noise level is 85nV/ radicalHz and input-referred noise is 1.69microV(rms) from 0.3Hz to 1 kHz. The amplifier has a noise efficiency factor of 2.43, the lowest in the differential topologies reported up to date to our knowledge. By programming the switched-capacitor frequency and bias current, we could control the bandwidth of the preamplifier from 138 mHz to 2.2 kHz to meet various application requirements. The entire preamplifier including band-pass filters has been realized in a small area of 0.043mm(2) using a 0.25microm CMOS technology.

  3. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.

    Science.gov (United States)

    Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru

    2009-02-01

    A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.

  4. Benzodiazepine temazepam suppresses the transient auditory 40-Hz response amplitude in humans.

    Science.gov (United States)

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    1999-06-18

    To discern the role of the GABA(A) receptors in the generation and attentive modulation of the transient auditory 40-Hz response, the effects of the benzodiazepine temazepam (10 mg) were studied in 10 healthy social drinkers, using a double-blind placebo-controlled design. Three hundred Hertz standard and 330 Hz rare deviant tones were presented to the left, and 1000 Hz standards and 1100 Hz deviants to the right ear of the subjects. Subjects attended to a designated ear and were to detect deviants therein while ignoring tones to the other. Temazepam significantly suppressed the amplitude of the 40-Hz response, the effect being equal for attended and non-attended tone responses. This suggests involvement of GABA(A) receptors in transient auditory 40-Hz response generation, however, not in the attentive modulation of the 40-Hz response.

  5. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression

    Science.gov (United States)

    2018-01-01

    A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920

  6. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Kirch, K. [Paul Scherrer Institute, Villigen (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen (Switzerland); Bodek, K.; Zejma, J. [Jagellonian University, Cracow (Poland); Grujic, Z.; Kasprzak, M.; Weis, A. [University of Fribourg (Switzerland); Hélaine, V. [Laboratoire de Physique Corpusculaire, Caen (France); Paul Scherrer Institute, Villigen (Switzerland); Koch, H.-C. [Institut für Physik, Johannes-Gutenberg-Universität, Mainz (Germany); University of Fribourg (Switzerland); and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  7. Submerged electricity generation plane with marine current-driven motors

    Science.gov (United States)

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  8. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  9. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun; Koh, Eui Kwan

    2014-01-01

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  10. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  11. Subchronic Toxicities of HZ1006, a Hydroxamate-Based Histone Deacetylase Inhibitor, in Beagle Dogs and Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Xiaofang Zhang

    2016-11-01

    Full Text Available Histone deacetylase inhibitors (HDACIs, such as vorinostat and panobinostat, have been shown to have active effects on many hematologic malignancies, including multiple myeloma and cutaneous T-cell lymphoma. Hydroxamate-based (Hb HDACIs have very good toxicity profiles and are currently being tested in phases I and II clinical trials with promising results in selected neoplasms, such as bladder carcinoma. One of the Hb-HDACIs, HZ1006, has been demonstrated to be a promising drug for clinical use. The aim of our study was to determine the possible target of toxicity and to identify a non-toxic dose of HZ1006 for clinical use. In our studies, the repeated dosage toxicity of HZ1006 in Beagle dogs and Sprague Dawley (SD rats was identified. Dogs and rats received HZ1006 orally (0–80 and 0–120 mg/kg/day, respectively on a continuous daily dosing agenda for 28 days following a 14-day dosage-free period. HZ1006’s NOAEL (No Observed Adverse Effect Level by daily oral administration for dogs and rats was 5 mg/kg and 60 mg/kg, respectively, and the minimum toxic dose was 20 and 120 mg/kg, respectively. All the side effects indicated that the digestive tract, the male reproductive tract, the respiratory tract and the hematological systems might be HZ1006 toxic targets in humans. HZ1006 could be a good candidate or a safe succedaneum to other existing HDACIs for the treatment of some solid tumor and hematologic malignancies.

  12. Binaural Interaction Effects of 30-50 Hz Auditory Steady State Responses.

    Science.gov (United States)

    Gransier, Robin; van Wieringen, Astrid; Wouters, Jan

    Auditory stimuli modulated by modulation frequencies within the 30 to 50 Hz region evoke auditory steady state responses (ASSRs) with high signal to noise ratios in adults, and can be used to determine the frequency-specific hearing thresholds of adults who are unable to give behavioral feedback reliably. To measure ASSRs as efficiently as possible a multiple stimulus paradigm can be used, stimulating both ears simultaneously. The response strength of 30 to 50Hz ASSRs is, however, affected when both ears are stimulated simultaneously. The aim of the present study is to gain insight in the measurement efficiency of 30 to 50 Hz ASSRs evoked with a 2-ear stimulation paradigm, by systematically investigating the binaural interaction effects of 30 to 50 Hz ASSRs in normal-hearing adults. ASSRs were obtained with a 64-channel EEG system in 23 normal-hearing adults. All participants participated in one diotic, multiple dichotic, and multiple monaural conditions. Stimuli consisted of a modulated one-octave noise band, centered at 1 kHz, and presented at 70 dB SPL. The diotic condition contained 40 Hz modulated stimuli presented to both ears. In the dichotic conditions, the modulation frequency of the left ear stimulus was kept constant at 40 Hz, while the stimulus at the right ear was either the unmodulated or modulated carrier. In case of the modulated carrier, the modulation frequency varied between 30 and 50 Hz in steps of 2 Hz across conditions. The monaural conditions consisted of all stimuli included in the diotic and dichotic conditions. Modulation frequencies ≥36 Hz resulted in prominent ASSRs in all participants for the monaural conditions. A significant enhancement effect was observed (average: ~3 dB) in the diotic condition, whereas a significant reduction effect was observed in the dichotic conditions. There was no distinct effect of the temporal characteristics of the stimuli on the amount of reduction. The attenuation was in 33% of the cases >3 dB for

  13. Air puff-induced 22-kHz calls in F344 rats.

    Science.gov (United States)

    Inagaki, Hideaki; Sato, Jun

    2016-03-01

    Air puff-induced ultrasonic vocalizations in adult rats, termed "22-kHz calls," have been applied as a useful animal model to develop psychoneurological and psychopharmacological studies focusing on human aversive affective disorders. To date, all previous studies on air puff-induced 22-kHz calls have used outbred rats. Furthermore, newly developed gene targeting technologies, which are essential for further advancement of biomedical experiments using air puff-induced 22-kHz calls, have enabled the production of genetically modified rats using inbred rat strains. Therefore, we considered it necessary to assess air puff-induced 22-kHz calls in inbred rats. In this study, we assessed differences in air puff-induced 22-kHz calls between inbred F344 rats and outbred Wistar rats. Male F344 rats displayed similar total (summed) duration of air puff-induced 22 kHz vocalizations to that of male Wistar rats, however, Wistar rats emitted fewer calls of longer duration, while F344 rats emitted higher number of vocalizations of shorter duration. Additionally, female F344 rats emitted fewer air puff-induced 22-kHz calls than did males, thus confirming the existence of a sex difference that was previously reported for outbred Wistar rats. The results of this study could confirm the reliability of air puff stimulus for induction of a similar amount of emissions of 22-kHz calls in different rat strains, enabling the use of air puff-induced 22-kHz calls in inbred F344 rats and derived genetically modified animals in future studies concerning human aversive affective disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Humanizing the Teaching of Physics through Storytelling: The Case of Current Electricity

    Science.gov (United States)

    Hadzigeorgiou, Yannis

    2006-01-01

    The main purpose of this article is to discuss the potential role of storytelling in the teaching and learning of physics. I first present the main historical events concerning the discovery of current electricity by focusing on the Galvani-Volta controversy and the work of Michael Faraday. Then I outline a planning framework for teaching through…

  15. Electric current induced forward and anomalous backward mass transport

    International Nuclear Information System (INIS)

    Somaiah, Nalla; Sharma, Deepak; Kumar, Praveen

    2016-01-01

    Multilayered test samples were fabricated in form of standard Blech structure, where W was used as the interlayer between SiO 2 substrate and Cu film. Electromigration test was performed at 250 °C by passing an electric current with a nominal density of 3.9  ×  10 10 A m −2 . In addition to the regular electromigration induced mass transport ensuing from the cathode towards the anode, we also observed anomalous mass transport from the anode to the cathode, depleting Cu from the anode as well. We propose an electromigration-thermomigration coupling based reasoning to explain the observed mass transport. (letter)

  16. International comparison of 50/60 Hz power (1996-1999)

    CSIR Research Space (South Africa)

    Oldham, N

    2001-04-01

    Full Text Available An international comparison of 50/60 Hz power is described. The travelling standard was an electronic power transducer that was tested at 120 V, 5 A, 53 Hz, at five power factors (1.0, 0.5, and 0.0). Fifteen National Metrology Institutes (NMIs) from...

  17. A pre-heating method based on sinusoidal alternating current for lithium-ion battery

    Science.gov (United States)

    Fan, Wentao; Sun, Fengchun; Guo, Shanshan

    2018-04-01

    In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.

  18. Current status of research on power-frequency electric and magnetic fields of research

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Recent scientific literature has suggested a number of possible human health effects which might be associated with exposure to power frequency electric and magnetic fields. Several authoritative reviews of this subject have been published. currently, the major uncertainty and the major research effort is directed to the issue of these fields and cancer. Therefore, this review will be limited to examining the evidence relating prolonged power-frequency electric and magnetic field exposure to cancer in human populations. This paper reports that the CIGRE expert Group has assessed the research literature in the following areas: epidemiological evidence, animal studies, cellular effects, knowledge of mechanisms

  19. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    Science.gov (United States)

    Lovley, Derek R.; Nevin, Kelly P.

    2018-01-02

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  20. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R; Nevin, Kelly

    2015-11-03

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  1. Manifestations of electric currents in interstellar molecular clouds

    International Nuclear Information System (INIS)

    Carlqvist, P.; Gahm, G.F.

    1991-12-01

    We draw the attention to filamentary structures in molecular clouds and point out the existence of subfilaments of sinusoidal shape and also of helix-like structures. For two dark clouds, the Lynds 204 complex and the Sandqvist 187-188 complex (The Norma 'sword') we make a detailed study of such shapes and in addition we find the possible existence of helices wound around the main filaments. All these features are highly reminiscent of morphologies encountered in solar ascending prominences and in experiments in plasma physics and suggest the existence of electric currents and magnetic fields in these clouds. On the basis of a generalization of the Bennett pinch model, we derive the magnitudes of the currents expected to flow in the filaments. Values of column densities, magnetic field strengths, and direction of the fields are derived from observations. Magnetic fields with both toroidal and axial components are considered. This study shows that axial currents of the order of a few times 10 13 A are necessary for the clouds to be in equilibrium. The corresponding mean current densities are very small and even at the very low values of the fractional abundance of electrons encountered in these clouds, the mean electron velocities are of the order of 10 -2 -10 -5 m s -1 , much lower than the thermal velocities in the clouds. We suggest that helical structures may evolve as a result of various instabilities in the pinched clouds. We also call the attention to the kink intability in connection with the sinusoidal shapes. The existence of electromagnetically controlled features in the interstellar clouds can be tested by further observations. (au)

  2. Demand Response Within Current Electricity Wholesale Market Design

    OpenAIRE

    Ramos Gutierrez, Ariana Isabel; De Jonghe, Cedric; Six, Daan; Belmans, Ronnie

    2013-01-01

    The introduction of intermittent energy resources calls for the ability to modulate consumption patterns according to electricity availability. This paper provides a brief overview of the main electricity market design characteristics and places demand response within the framework of the existing timeline of market operation. The main differences between electricity markets lie in the price formation mechanisms where some markets pay-as- cleared and some pay- as- bid for the electricity tran...

  3. About increasing informativity of diagnostic system of asynchronous electric motor by extracting additional information from values of consumed current parameter

    Science.gov (United States)

    Zhukovskiy, Y.; Korolev, N.; Koteleva, N.

    2018-05-01

    This article is devoted to expanding the possibilities of assessing the technical state of the current consumption of asynchronous electric drives, as well as increasing the information capacity of diagnostic methods, in conditions of limited access to equipment and incompleteness of information. The method of spectral analysis of the electric drive current can be supplemented by an analysis of the components of the current of the Park's vector. The research of the hodograph evolution in the moment of appearance and development of defects was carried out using the example of current asymmetry in the phases of an induction motor. The result of the study is the new diagnostic parameters of the asynchronous electric drive. During the research, it was proved that the proposed diagnostic parameters allow determining the type and level of the defect. At the same time, there is no need to stop the equipment and taky it out of service for repair. Modern digital control and monitoring systems can use the proposed parameters based on the stator current of an electrical machine to improve the accuracy and reliability of obtaining diagnostic patterns and predicting their changes in order to improve the equipment maintenance systems. This approach can also be used in systems and objects where there are significant parasitic vibrations and unsteady loads. The extraction of useful information can be carried out in electric drive systems in the structure of which there is a power electric converter.

  4. In vitro effects of direct current electric fields on adipose-derived stromal cells.

    Science.gov (United States)

    Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B

    2010-06-18

    Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach

    Science.gov (United States)

    Akasofu, Syun-Ichi

    2017-10-01

    Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions. (1) The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above 10^{18} erg/s (10^{11} w). (2) The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy. (3) When the power reaches 3-5× 10^{18} erg/s (3-5× 10^{11} w) for about one hour and the stored magnetic energy reaches 3-5×10^{22} ergs (10^{15} J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density {≈}3× 10^{-12} A/cm2 and the total current {≈}106 A at 6 Re). As a result, the plasma sheet current is reduced. (4) The magnetosphere is thus deflated. The current reduction causes partial B/partial t > 0 in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both

  6. Biological effects of high strength electric fields on small laboratory animals. Annual report, April 1977--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Progress is reported on studies of the biological effects on mice and rats of exposure to 60-Hz electric fields. Results are reported on the effects of 30-day and 60-day exposures to 100 kV/m, 60-Hz electric fields on hematologic values, blood chemistry, and organ weights. With the possible exception of elevated blood platelet counts following 60-day exposures, there were no pathological changes observed in either mice or rats.

  7. A TRMM/GPM retrieval of the total mean generator current for the global electric circuit

    Science.gov (United States)

    Peterson, Michael; Deierling, Wiebke; Liu, Chuntao; Mach, Douglas; Kalb, Christina

    2017-09-01

    A specialized satellite version of the passive microwave electric field retrieval algorithm (Peterson et al., 2015) is applied to observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites to estimate the generator current for the Global Electric Circuit (GEC) and compute its temporal variability. By integrating retrieved Wilson currents from electrified clouds across the globe, we estimate a total mean current of between 1.4 kA (assuming the 7% fraction of electrified clouds producing downward currents measured by the ER-2 is representative) to 1.6 kA (assuming all electrified clouds contribute to the GEC). These current estimates come from all types of convective weather without preference, including Electrified Shower Clouds (ESCs). The diurnal distribution of the retrieved generator current is in excellent agreement with the Carnegie curve (RMS difference: 1.7%). The temporal variability of the total mean generator current ranges from 110% on semi-annual timescales (29% on an annual timescale) to 7.5% on decadal timescales with notable responses to the Madden-Julian Oscillation and El Nino Southern Oscillation. The geographical distribution of current includes significant contributions from oceanic regions in addition to the land-based tropical chimneys. The relative importance of the Americas and Asia chimneys compared to Africa is consistent with the best modern ground-based observations and further highlights the importance of ESCs for the GEC.

  8. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao, E-mail: egnever@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  9. Electric engineering introduction

    International Nuclear Information System (INIS)

    An, Byeong Won; Eom, Sang Ho

    1999-03-01

    It is divided into nine chapters, which includes electricity theory such as structure of material and current, nature of electricity, static, magnetic force and magnetic attraction, attraction of current and a storage battery, electric circuit on a direct current circuit, single phase circuit and 3-phase current circuit electricity machine like DC generator, DC motor, alternator, electric transformer, single-phase induction motor, 3-phase induction motor, synchronous motor, synchro electric machine, semiconductor such as diode, transistor, FET, UJT, silicon symmetrical switch, electronic circuit like smoothing circuit and Bistable MV. circuit, automatic control, measurement of electricity, electric application and safety.

  10. Electrical Tracking Formation on Silane Epoxy Resin under Various Contaminants

    Directory of Open Access Journals (Sweden)

    NFN Rochmadi

    2013-03-01

    Full Text Available Contamination at the surface of the insulator becomes a serious problem in power system operation, especially for the tropical area. Humidity and rainfall play an important role in wetness by the water at the surface of the insulator, which result in the presence of contaminant and leakage current flowing at the surface of the insulator. This leakage current will generate heat which occurs at the surface of an insulator, so that dry band area will be formed. This ultimately leads to flashover. This paper presents the influence of contaminants to leakage current and formation of electrical tracking at the surface of epoxy resin compound wit silicon rubber. The test was based on Inclined-Planed Tracking method with NH4Cl as contaminants. The industrial and coastal contaminants are used to explain the effect of contaminant at surface tracking process. The flow rate of contaminant was 0.3 ml/min. The 3.5 kV AC high voltage 50 Hz was applied to the top electrodes. It is found that industrial contamination resulting in the smallest surface leakage current is 327.6 mA. Also it is found that coastal contaminant (1420 mS/cm showed the severest damage at surface of test sample. Therefore, special treatment of the sample are needed under these conditions so that the material performance can be improved, especially against the electrical tracking.

  11. Design of a high-temperature superconductor current lead for electric utility SMES

    International Nuclear Information System (INIS)

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Rey, C.M.; Dixon, K.D.

    1995-01-01

    Current leads that rely on high-temperature superconductors (HTSs) to deliver power to devices operating at liquid helium temperature have the potential to reduce refrigeration requirements to levels significantly below those achievable with conventional leads. The design of HTS current leads suitable for use in near-term superconducting magnetic energy storage (SMES) is in progress. The SMES system has an 0.5 MWh energy capacity and a discharge power of 30 MW. Lead-design considerations include safety and reliability, electrical and thermal performance, structural integrity, manufacturability, and cost. Available details of the design, including materials, configuration, and performance predictions, are presented

  12. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    Science.gov (United States)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  13. Determination of salt content in various depth of pork chop by electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Kaltenecker, P; Szöllösi, D; Vozáry, E; Friedrich, L

    2013-01-01

    The salt concentration was determined inside of pork chop both by electrical impedance spectroscopy and by a conventional chemical method (according to Mohr). The pork chop in various depths (4 mm, 10 mm, 20 mm and 25 mm) was punctured with two stainless steel electrodes. The length of electrodes was 60 mm, and they were insulated along the length except 1 cm section on the end, so the measurement of impedance was realized in various depths. The magnitude and phase angle of impedance were measured with a HP 4284A and a HP 4285A LCR meters from 30 Hz up to 1 MHz and from 75 kHz up to 30 MHz frequency range, respectively at 1 V voltage. The distance between the electrodes was 1 cm. The impedance magnitude decreased as the salt concentration increased. The magnitude of open-short corrected impedance values at various frequencies (10 kHz, 100 kHz, 125 kHz, 1.1 MHz and 8 MHz) showed a good correlation with salt content determined by chemical procedure. The electrical impedance spectroscopy seems a prospective method for determination the salt concentration inside the meat in various depths during the curing procedure.

  14. Energy consumption of SO2 removal from humid air under electron beam and electric field influence

    International Nuclear Information System (INIS)

    Nichipor, H.; Radjuk, E.; Chmielewski, A.G.; Zimek, Z.

    1998-01-01

    The kinetic of SO 2 oxidation in humid air under influence of electron beam and electrical field was investigated by computer simulation method in steady state and pulse mode. SO 2 oxidation process was stimulated by radical and ion reactions. The calculation model has included 46 different particles and 160 chemical reactions. Gas mixture containing 1000 ppm of SO 2 concentration was investigated at temperature T=67 deg. C and pressure p=1 at. Water content was within the range 2-12%. Electron beam parameters were as follows: average beam current density 0.0032-3,2 mA/cm 2 , pulse duration 400 μs, repetition rate 50 Hz. Electrical field density was E/n =10 -15 Vcm 2 . Electrical pulse duration was changed within the range 5 x10 -7 -10 -5 s. The influence of the parameters of synchronized electron beam and electrical field pulses on energy deposition was under consideration. Energy cost of SO 2 removal on 90% level was estimated in steady state and pulse modes. It was found that total electron beam and electrical field energy losses in pulse mode are 6 times lower to compare with steady state conditions. The optimum of electrical field pulse duration from point of view minimum energy cost of SO 2 removal was found for different electron beam pulse current levels

  15. ELECTRIC MOTOR DIAGNOSTICS OF SWITCHES BASED ON THE NEURAL NETWORK DATA MODELING THE SPECTRAL DECOMPOSITION OF THE CURRENTS

    Directory of Open Access Journals (Sweden)

    O. M. Shvets

    2009-07-01

    Full Text Available The method of automated diagnostics of electric motors is offered. It uses a neural network revealing the electric motor faults on the basis of analysis of frequency spectrum of current flowing through the motor.

  16. Alarm pheromone does not modulate 22-kHz calls in male rats.

    Science.gov (United States)

    Muyama, Hiromi; Kiyokawa, Yasushi; Inagaki, Hideaki; Takeuchi, Yukari; Mori, Yuji

    2016-03-15

    Rats are known to emit a series of ultrasonic vocalizations, termed 22-kHz calls, when exposed to distressing stimuli. Pharmacological studies have indicated that anxiety mediates 22-kHz calls in distressed rats. We previously found that exposure to the rat alarm pheromone increases anxiety in rats. Therefore, we hypothesized that the alarm pheromone would increase 22-kHz calls in pheromone-exposed rats. Accordingly, we tested whether exposure to the alarm pheromone induced 22-kHz calls, as well as whether the alarm pheromone increased 22-kHz calls in response to an aversive conditioned stimulus (CS). Rats were first fear-conditioned to an auditory and contextual CS. On the following day, the rats were either exposed to the alarm pheromone or a control odor that was released from the neck region of odor-donor rats. Then, the rats were re-exposed to the aversive CS. The alarm pheromone neither induced 22-kHz calls nor increased 22-kHz calls in response to the aversive CS. In contrast, the control odor unexpectedly reduced the total number and duration of 22-kHz calls elicited by the aversive CS, as well as the duration of freezing. These results suggest that the alarm pheromone does not affect 22-kHz calls in rats. However, we may have found evidence for an appeasing olfactory signal, released from the neck region of odor-donor rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of contralateral noise on the 20-Hz auditory steady state response--magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Hajime Usubuchi

    Full Text Available The auditory steady state response (ASSR is an oscillatory brain response, which is phase locked to the rhythm of an auditory stimulus. ASSRs have been recorded in response to a wide frequency range of modulation and/or repetition, but the physiological features of the ASSRs are somewhat different depending on the modulation frequency. Recently, the 20-Hz ASSR has been emphasized in clinical examinations, especially in the area of psychiatry. However, little is known about the physiological properties of the 20-Hz ASSR, compared to those of the 40-Hz and 80-Hz ASSRs. The effects of contralateral noise on the ASSR are known to depend on the modulation frequency to evoke ASSR. However, the effects of contralateral noise on the 20-Hz ASSR are not known. Here we assessed the effects of contralateral white noise at a level of 70 dB SPL on the 20-Hz and 40-Hz ASSRs using a helmet-shaped magnetoencephalography system in 9 healthy volunteers (8 males and 1 female, mean age 31.2 years. The ASSRs were elicited by monaural 1000-Hz 5-s tone bursts amplitude-modulated at 20 and 39 Hz and presented at 80 dB SPL. Contralateral noise caused significant suppression of both the 20-Hz and 40-Hz ASSRs, although suppression was significantly smaller for the 20-Hz ASSRs than the 40-Hz ASSRs. Moreover, the greatest suppression of both 20-Hz and 40-Hz ASSRs occurred in the right hemisphere when stimuli were presented to the right ear with contralateral noise. The present study newly showed that 20-Hz ASSRs are suppressed by contralateral noise, which may be important both for characterization of the 20-Hz ASSR and for interpretation in clinical situations. Physicians must be aware that the 20-Hz ASSR is significantly suppressed by sound (e.g. masking noise or binaural stimulation applied to the contralateral ear.

  18. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  19. Effect of Electric-current Pulses on Grain-structure Evolution in Cryogenically Rolled Copper

    Science.gov (United States)

    2014-11-01

    severely deformed dilute aluminium alloy . Acta Mater. 56, 1619 (2008). 4. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin: Microstructural response...phase transformation and variant selection by electric current pulses in a Cu-Zn alloy . J. Mater. Res. 29, 975 (2014). 13. I.Sh. Valeev and Z.G

  20. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    2011-04-01

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  1. Sensory function assessment of the human male lower urinary tract using current perception thresholds.

    Science.gov (United States)

    Knüpfer, Stephanie C; Liechti, Martina D; Gregorini, Flavia; De Wachter, Stefan; Kessler, Thomas M; Mehnert, Ulrich

    2017-02-01

    To evaluate the feasibility and reliability of current perception threshold (CPT) measurement for sensory assessment of distinct locations in the male lower urinary tract (LUT). Twelve male subjects (>18 years) without LUT symptoms or medical comorbidities were eligible. CPTs were determined twice (interval: 7-20 days) at the bladder dome, trigone and the proximal, membranous, and distal urethra. Square wave electrical stimulation of 3 Hz/0.2 ms and 0.5 Hz/1 ms was applied using a transurethral 8F catheter placed under fluoroscopic control. Bladder volume was kept constant (60 mL) using a second 10F catheter. Repetitive measurements and reliability were assessed by analysis of variance (ANOVA) and intraclass correlation coefficient (ICC). The ANOVA revealed significant main effects for stimulation site (P = 0.008) and type of stimulation (P < 0.001) with lower CPTs for 0.5 Hz/1 ms compared to 3 Hz/0.2 ms. There was no significant effect for visit number (P = 0.061). CPTs were higher for bladder dome than for proximal (0.5 Hz/1 ms: P = 0.022; 3 Hz/0.2 ms: P = 0.022) and distal urethra (0.5 Hz/1 ms: P = 0.026; 3 Hz/0.2 ms: P = 0.030). Reliability of CPT measurements was excellent to good (ICC = 0.67-0.96) except for the bladder dome (5 Hz/1 ms: ICC = 0.45; 3 Hz/0.2 ms: ICC = 0.20) and distal urethra (3 Hz/0.2 ms: ICC = 0.57). CPTs can be reliably detected at different LUT locations. However, alert and compliant subjects are essential. CPTs of LUT may become a complementary assessment method providing information on responsiveness and sensitivity of afferent LUT nerves. This is especially relevant for urethral afferents, which are not covered by standard urodynamic investigations. Neurourol. Urodynam. 36:469-473, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. X-ray heating and the optical light curve of HZ Herculis

    International Nuclear Information System (INIS)

    Perrenod, S.C.; Shields, G.A.

    1975-01-01

    We discuss theoretically the optical light curve of HZ Her, the binary companion of the pulsed X-ray source Her X-1. Using model stellar atmospheres, we construct light curves that are in agreement with UBV photometry of HZ Her except for the sharpness of the minimum. Unlike previous authors, we find that heating of the photosphere of HZ Her by the observed X-ray flux is sufficient to explain the amplitude of the light variations in each color, if the X-ray emission persists at HZ Her throughout the 35-day ON-OFF CYCLE. We rule out a corona surrounding HZ Her as the source of the extra light near minimum, and we also rule out a model wherein the extra light is caused by a stellar wind that electron-scatters optical light emitted by the photosphere of the hot side of the star

  3. Economic impacts of power electronics on electricity distribution systems

    International Nuclear Information System (INIS)

    Duarte, Carlos Henrique; Schaeffer, Roberto

    2010-01-01

    To achieve more efficient energy use, power electronics (PEs) may be employed. However, these introduce nonlinear loads (NLLs) into the system by generating undesired frequencies that are harmonic in relation to (multiples of) the fundamental frequency (60 Hz in Brazil). Consequently, devices using PEs are more efficient but also contribute significantly to degradation of power quality. Besides this, both the conventional rules on design and operation of power systems and the usual premises followed in energy efficiency programs (without mentioning the electricity consumed by the devices themselves) consider the sinusoidal voltage and current waveforms at the fixed fundamental frequency of the power grid. Thus, analysis of electricity consumption reductions in energy efficiency programs that include the use of PEs considers the reduction of kWh to the final consumer but not the additional losses caused by the increase in harmonic distortion. This article contributes to a better understanding of this problem by reporting the results of a case study of the ownership and use of television sets (TV sets) to estimate the economic impacts of residential PEs on a mainly residential electricity distribution system. (author)

  4. MEDICAL ASPECTS AND HARMFUL EFFECTS OF 50HZ ELECTROMAGNETIC FILED ON BIOLOGICAL SISTEMS

    Directory of Open Access Journals (Sweden)

    Dušan Sokolović

    2003-10-01

    Full Text Available Exposure to electromagnetic field (EMF with extremely low frequency (ELF of 50Hz is very frequent nowadays. All frequency range of these fields are called electromagnetic smog.The aim of this experimental investigation was determination of ELF EMP influence on animals behavior, reproductive ability and oxidative stress as possible biological marker for EMP exposition.Wistar rats 4 months old were divided in experimental (4 female and 6 male animal and control group (4 female and 5 male. The experimental group was 45 days exposed to an electromagnetic field frequency 50 Hz, magnetic induction B=48 mT and intensity of electric field of E=50 V/m. Fertility is measured by number of newborn and biological effects were determined by observation of individual and collective behavior. Determination of increased oxidative stress was measured by quantity of malondialdehyde in brain homogenate.Aggresive behavior and visible panic reaction, disorientation and anxiosity were registered in experimental group. Increased oxydative stress was measured by significantly higher concentration of malondialdehyde in brain homogenate of experimental animals (4,89±0,65 nmol/mg prot. vs. control 2,72±0,42 nmol/mg prot., p<0.01. Impaired fertility was manifested through unsuccessful pregnancy of experimental animals. Exposition to ELF EMF induces disorders of central nervous sistem functions, increasing oxydative stress and impaired reproductive functions.

  5. The effect of high voltage pulsed electric field on water molecular

    Science.gov (United States)

    Fan, Xuejie; Bai, Yaxiang; Ren, Ziying

    2017-10-01

    In order to study the mechanism of high voltage pulsed electric field pre-treatment on the food drying technology. In this paper, water was treated with high pulse electric field (HPEF) in different frequency, and different voltage, then, the viscosity coefficient and the surface tension coefficient of the water were measured. The results showed that indicated that the viscosity coefficient and the surface tension coefficient of the treated water can be decreased, and while HPEF pre-treatment was applied for 22.5kV at a frequency of 50Hz and 70 Hz, the surface tension and the viscosity coefficient of the pre-treatment treatment were reduced 13.1% and 7.5%, respectively.

  6. Simulation and optimization of Corona Rings for 300 kV, 120 kHz RF transformer for 3 MeV, 30 kW DC accelerator

    International Nuclear Information System (INIS)

    Das, Swati H.; Dewangan, S.; Sharma, D.K.

    2015-01-01

    The 3 MeV, 30 kW Industrial DC Electron Beam Accelerator with a terminal voltage of 3 MV is designed, developed and housed inside the Electron Beam Centre (EBC) building at Kharghar, Navi Mumbai. The accelerator requires an input voltage of 150 kV-0-150 kV at 120 kHz which is generated by tuned air-core step- up toroidal transformer. The Transformer is rated for 6 kV-0-6 kV primary and 150 kV-0-150 kV secondary at 120 kHz working at 6 kg/cm''2 SF 6 gas environment. Secondary is wound over the perforated insulator former, To limit the electric stress to 5-7 kV/cm on the insulator surface and 120 kV/cm in SF 6 , transformer was simulated in CST EM studio for electric field analysis. Parametric simulations were done to optimize the dimensions and design of corona rings at the High voltage terminals. Simulation results are described in this paper briefly. (author)

  7. Strategy for improved frequency response of electric double-layer capacitors

    Science.gov (United States)

    Wada, Yoshifumi; Pu, Jiang; Takenobu, Taishi

    2015-10-01

    We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz-MHz) devices.

  8. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    International Nuclear Information System (INIS)

    Saario, T.; Paine, J.P.N.

    1995-01-01

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique

  9. Preparation of thin-film (Ba(0.5),Sr(0.5))TiO3 by the laser ablation technique and electrical properties

    Science.gov (United States)

    Yoon, Soon-Gil; Lee, Jai-Chan; Safari, A.

    1994-09-01

    The chemical composition and electrical properties were investigated for epitaxially crystallized (Ba(0.5),Sr(0.5))TiO3 (BST) films deposited on Pt/MgO and YBa2Cu3O(7-x) (YBCO)/MgO substrates by the laser ablation technique. Rutherford backscattering spectroscopy analysis shows that thin films on Pt/MgO have almost the same stoichiometric composition as the target material. Films deposited at 600 C exhibited an excellent epitaxial growth, a dielectric constant of 430, and a dissipation factor of 0.02 at 10 kHz frequency. They have a charge storage density of 40 fC/sq micron at an applied electric field of 0.15 MV/cm. Leakage current density of BST thin films on Pt/MgO was smaller than on YBCO/MgO. Their leakage current density is about 0.8 microA/sq cm at an applied electric field of 0.15 MV/cm.

  10. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  11. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    Science.gov (United States)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  12. Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites.

    Science.gov (United States)

    Liu, Xiao; Gilmore, Kerry J; Moulton, Simon E; Wallace, Gordon G

    2009-12-01

    The purpose of this work was to investigate for the first time the potential biomedical applications of novel polypyrrole (PPy) composites incorporating a large polyelectrolyte dopant, poly (2-methoxy-5 aniline sulfonic acid) (PMAS). The physical and electrochemical properties were characterized. The PPy/PMAS composites were found to be smooth and hydrophilic and have low electrical impedance. We demonstrate that PPy/PMAS supports nerve cell (PC12) differentiation, and that clinically relevant 250 Hz biphasic current pulses delivered via PPy/PMAS films significantly promote nerve cell differentiation in the presence of nerve growth factor (NGF). The capacity of PPy/PMAS composites to support and enhance nerve cell differentiation via electrical stimulation renders them valuable for medical implants for neurological applications.

  13. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  14. Lower hybrid current drive in the presence of electric field

    Directory of Open Access Journals (Sweden)

    Saveliev Alexander

    2017-01-01

    Full Text Available A new one-dimensional approach to the lower hybrid current drive (LHCD modelling in the presence of an inductive electric field is suggested in this paper. The approach is based on using time-dependent solutions of a well-known Fokker-Planck equation for the distribution function of fast electrons calculated concurrently with solving plasma transport equation in the Automated System for TRansport Analysis (ASTRA [1]. A good agreement between experimental and modelling results is demonstrated for an FT-2 [2] plasma shot. Also new formulae for the steady-state solution of this kinetic equation are found.

  15. Lower hybrid current drive in the presence of electric field

    Science.gov (United States)

    Saveliev, Alexander; Zakharov, Vladimir

    2017-10-01

    A new one-dimensional approach to the lower hybrid current drive (LHCD) modelling in the presence of an inductive electric field is suggested in this paper. The approach is based on using time-dependent solutions of a well-known Fokker-Planck equation for the distribution function of fast electrons calculated concurrently with solving plasma transport equation in the Automated System for TRansport Analysis (ASTRA) [1]. A good agreement between experimental and modelling results is demonstrated for an FT-2 [2] plasma shot. Also new formulae for the steady-state solution of this kinetic equation are found.

  16. Non-canonical spectral decomposition of random functions of the traction voltage and current in electric transportation systems

    Directory of Open Access Journals (Sweden)

    N.A. Kostin

    2015-03-01

    Full Text Available The paper proposes the non-canonical spectral decomposition of random functions of the traction voltages and currents. This decomposition is adapted for the electric transportation systems. The numerical representation is carried out for the random function of voltage on the pantograph of electric locomotives VL8 and DE1.

  17. Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation.

    Science.gov (United States)

    Kar, Kohitij; Duijnhouwer, Jacob; Krekelberg, Bart

    2017-03-01

    We previously showed that brief application of 2 mA (peak-to-peak) transcranial currents alternating at 10 Hz significantly reduces motion adaptation in humans. This is but one of many behavioral studies showing that weak currents applied to the scalp modulate neural processing. Transcranial stimulation has been shown to improve perception, learning, and a range of clinical symptoms. Few studies, however, have measured the neural consequences of transcranial current stimulation. We capitalized on the strong link between motion perception and neural activity in the middle temporal (MT) area of the macaque monkey to study the neural mechanisms that underlie the behavioral consequences of transcranial alternating current stimulation. First, we observed that 2 mA currents generated substantial intracranial fields, which were much stronger in the stimulated hemisphere (0.12 V/m) than on the opposite side of the brain (0.03 V/m). Second, we found that brief application of transcranial alternating current stimulation at 10 Hz reduced spike-frequency adaptation of MT neurons and led to a broadband increase in the power spectrum of local field potentials. Together, these findings provide a direct demonstration that weak electric fields applied to the scalp significantly affect neural processing in the primate brain and that this includes a hitherto unknown mechanism that attenuates sensory adaptation. SIGNIFICANCE STATEMENT Transcranial stimulation has been claimed to improve perception, learning, and a range of clinical symptoms. Little is known, however, how transcranial current stimulation generates such effects, and the search for better stimulation protocols proceeds largely by trial and error. We investigated, for the first time, the neural consequences of stimulation in the monkey brain. We found that even brief application of alternating current stimulation reduced the effects of adaptation on single-neuron firing rates and local field potentials; this mechanistic

  18. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    Science.gov (United States)

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  19. Modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz

    Science.gov (United States)

    Spiger, R. J.; Murphree, J. S.; Anderson, H. R.; Loewenstein, R. F.

    1976-01-01

    A sounding rocket-borne electron detector of high time resolution is used to search for modulation of auroral electron fluxes in the frequency range 50 kHz to 10 MHz and energy range 5-7 keV. Data were telemetered to ground via a 93-kHz subcarrier. A cross-correlation analysis of the data collected indicates low-level modulation near the detection threshold of the instrument. Two U-1 events are observed which are interpreted as indications of modulation. The two modulation events occur during a period of increasing flux for a region marking the boundary between two current sheets detected by the payload magnetometer. The strongest argument against interference contamination is the lack of any observable modulation at times other than those mentioned in the study.

  20. Current Capacity of Ag/Bi-2223 Wires for Rotating Electric Machinery

    International Nuclear Information System (INIS)

    Hussennether, Volker; Leghissa, Martino; Neumueller, Heinz-Werner

    2006-01-01

    With focus on the application in rotating electric machines we measured the dependence of current capacity of Ag/Bi-2223 wires on temperature and magnetic field. Even for wires stemming from a single manufacturer we observe a significant spread of wire properties. We study different temperature and magnetic field dependence by a parallel path model which allows for a quantitative analysis. The implications of experiments and modelling are discussed with regard to the further wire development and for application within windings

  1. Effects of the India–Pakistan border earthquake on the atmospherics at 6 kHz and 9 kHz recorded at Tripura

    Directory of Open Access Journals (Sweden)

    Sudarsan Barui

    2011-04-01

    Full Text Available The unusual variations observed in the records of the integrated field intensity of the atmospherics (IFIA at 6 kHz and 9 kHz at Agartala, Tripura, in the north-eastern state of India (latitude, 23˚ N; longitude, 91.4˚ E during the large earthquake on October 8, 2005 at Muzaffarabad (latitude, 34.53˚ N; longitude, 73.58˚ E in Kashmir in Pakistan are here analyzed. Spiky variations in the IFIA at 6 kHz and 9 kHz were observed several days previous to the day of the earthquake (from midnight, September 28, 2005. The effects persisted for some days, decayed gradually, and eventually ceased on October 31, 2005. The spikes are distinctly superimposed on the ambient level

  2. Fresh water disinfection by pulsed low electric field

    International Nuclear Information System (INIS)

    Zheng, C; Xu, Y; Liu, Z; Yan, K

    2013-01-01

    In this paper, we describe a pulsed low electric field process for water disinfection. Electric intensity of 0.6–1.7 kV cm −1 is applied. Experiments are performed with a 1.2 L axis-cylinder reactor. A bipolar pulsed power source with pulsed width of 25 μs and frequency of 100–3000 Hz is used. Water conductivity of 3–200 μs cm −1 is investigated, which can significantly affect pulsed voltage-current waveforms and injected energy. Energy per pulse rises with increased water conductivity. The initial E. Coli density and water conductivity are two major factors influencing the disinfection. No disinfection effect is performed with deionized water of 3 μs cm −1 . When water conductivity is 25 μs cm −1 and bacteria density is 10 4 –10 6 cfu ml −1 , significant disinfection effect is observed. More than 99% of the cells can be disinfected with an energy density of less than 70 J ml −1 , while water temperature is below 30 °C.

  3. A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz

    Science.gov (United States)

    Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun

    2017-12-01

    This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.

  4. Improved performance of microbial fuel cells enriched with natural microbial inocula and treated by electrical current

    International Nuclear Information System (INIS)

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun

    2013-01-01

    Microbial fuel cells (MFCs) are increasingly attracting attention as a sustainable technology as they convert chemical energy in organic wastes to electricity. In this study, the effects of different inoculum sources (river sediment, activated sludge and anaerobic sludge) and electrical current stimulation were evaluated using single-chamber air-cathode MFCs as model reactors based on performance in enrichment process and electrochemical characteristics of the reactors. The result revealed the rapid anodic biofilm development and substrate utilization of the anaerobic sludge-inoculated MFC. It was also found that the river sediment-inoculated MFC achieved the highest power output of 195 μW, or 98 mW m −2 , due to better developed anodic biofilm confirmed by scanning electron microscopy. The current stimulation enhanced the anodic biofilm attachment over time, and therefore reduced the MFC internal resistance by 27%, increased the electrical capacitance by four folds, and improved the anodic biofilm resilience against substrate deprivation. For mature MFCs, a transient application of a negative voltage (−3 V) improved the cathode activity and maximum power output by 37%. This improvement was due to the bactericidal effect of the electrode potential higher than +1.5 V vs. SHE, demonstrating a substantial benefit of treating MFC cathode after long-term operation using suitable direct electrical current. -- Highlights: •Voltage stimulation (+2 V) during inoculation reduced MFC internal resistance and improved biofilm resilience. •Voltage stimulation increased biofilm electrical capacitance by 5-fold. •Negative voltage stimulation (−3 V) enhanced the maximum power output by 37%. •River sediment MFC obtained higher power due to better anodic biofilm coverage. •Anaerobic sludge quickly developed anodic biofilm for MFC and quickly utilized volatile fatty acids

  5. Electrical characterization of atmospheric pressure dielectric barrier discharge in air

    International Nuclear Information System (INIS)

    Shrestha, P.; Subedi, D.P.; Joshi, U.M.

    2013-01-01

    This paper reports the electrical characterization of dielectric barrier discharge produced at atmospheric pressure using a high voltage power supply operating at 50Hz. The characteristics of the discharge have been studied under different values as such applied voltage and the electrode gap width. The results presented in this work can be helpful in understanding the influence of dielectric material on the nature of the discharge. An attempt has also been made to investigate the influence of ballast resistor on the magnitude of discharge current and also the density of micro-discharges. Our results indicated that with this power supply and electrode geometry, a relatively more homogenous discharge is observed for 3 mm spacing. (author)

  6. Electric fields and currents observed by S3-2 in the vicinity of discrete arcs

    International Nuclear Information System (INIS)

    Burke, W.J.

    1984-01-01

    The high time resolution of the electric and magnetic field detectors on the polar orbiting satellite S3-2 made it possible to examine the details of auroral events down to discrete-arc scales. Depending on the instantaneous look direction of an electron detector, information about field-aligned accelerations above the satellite could also be obtained. Case studies of four arc events, three in the auroral oval and one in the polar cap, have been completed. Field-aligned currents associated with arcs in the auroral oval appeared as matched pairs of oppositely directed current sheets. Magnetic deflections, almost exclusively in the east-west direction departed from and returned to baselines established by the large-scale Region 1/Region 2 currents. The upward currents had intensities of up to 145 microamperes/sq m and were carried by electrons that were accelerated through field aligned potential drops. The relationship between the field-aligned current density and potential drop is not inconsistent with predictions of a laminar flow model. The most intense return (downward) currents were in the 10 to 15 microamperes/sq m range. At satellite altitudes near 1000 km, these currents approximate the critical limit for current driven, ion cyclotron instabilities. The arc in the polar cap was sun-aligned and was found in a region of intense convective shear, with the electric field pointing toward the center of the arc. The field-aligned currents consisted of three sheets two with currents flowing into and one out of the ionosphere. The upward current was carried by polar-rain electrons that had undergone a field-aligned acceleration of approximately 1 kV. 19 references

  7. US Army Research Laboratory (ARL) Standard for Characterization of Electric-Field Sensors, 10 Hz to 10 kHz

    Science.gov (United States)

    2016-11-01

    A third method of sensing quasi-static fields is to use ground reference sensors (GRSs), where 2 conductors are connected through a transimpedance ... amplifier to measure dE/dt as a function of dq/dt on the source conductor relative to the sink conductor.3 Sensors using the second and third...software. In most of our experiments, it is used to interface between the PXIe 1062Q and the waveform generator only. A current to voltage amplifier

  8. Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2

    Science.gov (United States)

    Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi

    2015-03-01

    Compared to the weak spin-orbit-interaction (SOI) in graphene, layered transitionmetal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way to extend functionalities of novel spintronics and valleytronics devices. Such a valley polarization achieved via valley-selective circular dichroism has been predicted theoretically and demonstrated with optical experiments in MX2 systems. Despite the exciting progresses, the generation of a valley/spin current by valley polarization in MX2 remains elusive and a great challenge. A spin/valley current in MX2 compounds caused by such a valley polarization has never been observed, nor its electric-field control. In this talk, we demonstrated, within an electric-double-layer transistor based on WSe2, the manipulation of a spin-coupled valley photocurrent whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further greatly modulated with an external electric field. Such room temperature generation and electric control of valley/spin photocurrent provides a new property of electrons in MX2 systems, thereby enabling new degrees of control for quantum-confined spintronics devices. (In collaboration with S.C. Zhang, Y.L. Chen, Z.X. Shen, B Lian, H.J. Zhang, G Xu, Y Xu, B Zhou, X.Q. Wang, B Shen X.F. Fang) Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  9. THE SPECTRAL-TIMING PROPERTIES OF UPPER AND LOWER kHz QPOs

    Energy Technology Data Exchange (ETDEWEB)

    Peille, Philippe; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Uttley, Phil, E-mail: philippe.peille@irap.omp.eu [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2015-10-01

    Soft lags from the emission of the lower kilohertz quasi-periodic oscillations (kHz QPOs) of neutron star low-mass X-ray binaries have been reported from 4U1608-522 and 4U1636-536. Those lags hold prospects for constraining the origin of the QPO emission. In this paper, we investigate the spectral-timing properties of both the lower and upper kHz QPOs from the neutron star binary 4U1728-34, using the entire Rossi X-Ray Timing Explorer archive on this source. We show that the lag-energy spectra of the two QPOs are systematically different: while the lower kHz QPO shows soft lags, the upper kHz QPO shows either a flat lag-energy spectrum or hard variations lagging softer variations. This suggests two different QPO-generation mechanisms. We also performed the first spectral deconvolution of the covariance spectra of both kHz QPOs. The QPO spectra are consistent with Comptonized blackbody emission, similar to the one found in the time-averaged spectrum, but with a higher seed-photon temperature, suggesting that a more compact inner region of the Comptonization layer (boundary/spreading layer, corona) is responsible for the QPO emission. Considering our results together with other recent findings, this leads us to the hypothesis that the lower kHz QPO signal is generated by coherent oscillations of the compact boundary layer region itself. The upper kHz QPO signal may then be linked to less-coherent accretion-rate variations produced in the inner accretion disk, and is then detected when they reach the boundary layer.

  10. Field-aligned current density versus electric potential characteristics for magnetospheric flux tubes

    International Nuclear Information System (INIS)

    Lemaire, J.; Scherer, M.

    1983-01-01

    The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article

  11. Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors

    Science.gov (United States)

    Yu, Hang; Martynov, Denis; Vitale, Salvatore; Evans, Matthew; Shoemaker, David; Barr, Bryan; Hammond, Giles; Hild, Stefan; Hough, James; Huttner, Sabina; Rowan, Sheila; Sorazu, Borja; Carbone, Ludovico; Freise, Andreas; Mow-Lowry, Conor; Dooley, Katherine L.; Fulda, Paul; Grote, Hartmut; Sigg, Daniel

    2018-04-01

    We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z ≃6 and would be sensitive to intermediate-mass black holes up to 2000 M⊙. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r modes and the gravitational memory effects.

  12. Electric theory

    International Nuclear Information System (INIS)

    Gong, Ha Seong

    2006-02-01

    This book explains electric theory which is divided into four chapters. The first chapter includes electricity and material, electric field, capacitance, magnetic field and electromagnetic force, inductance. The second chapter mentions electronic circuit analysis, electric resistance,heating and power, chemical activity on current and battery with electrolysis. The third chapter deals with an alternating current circuit about the basics of an AC circuit, operating of resistance, inductance and capacitance, series circuit and parallel circuit of PLC, an alternating current circuit, Three-phase Alternating current, two terminal pair network and voltage and current of non-linearity circuit. The last explains transient phenomena of RC series circuit, RL series circuit, transient phenomena of an alternating current circuit and transient phenomena of RLC series circuit.

  13. Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy

    Science.gov (United States)

    Elhatimi, Wafaa; Bouragba, Fatima Zahra; Lahkale, Redouane; Sadik, Rachid; Lebbar, Nacira; Siniti, Mostapha; Sabbar, Elmouloudi

    2018-05-01

    The Cu2Cr-DS-LDH hybrid was successfully prepared by the anion exchange method at room temperature. The structure, the chemical composition and the physico-chemical properties of the sample were determined using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and inductively coupled plasma (ICP). In this work, the electrical and dielectric properties investigated are determined using impedance spectroscopy (IS) in a frequency range of 1 Hz to 1 MHz. Indeed, the Nyquist diagram modelized by an electrical equivalent circuit showed three contributions attributed respectively to the polarization of grains, grains boundaries and interface electrode-sample. This modelization allowed us to determine the intrinsic electrical parameters of the hybrid (resistance, pseudo-capacitance and relaxation time). The presence of the non-Debye relaxation phenomena was confirmed by the frequency analysis of impedance. Moreover, the evolution of the alternating current conductivity (σac) studied obeys the double power law of Jonscher. The ionic conduction of this material was generated through a jump movement by translation of the charge carriers. As for the dielectric behavior of the material, the evolution of dielectric constant as a function of frequency shows relatively high values in a frequency range between 10 Hz and 1 KHz. The low values of the loss tangent obtained in this frequency zone can valorize this LDH hybrid.

  14. Analysis and modeling of low voltage electrical network at power line carrier frequencies (3-148.5 kHz); Analyse et modelisation du reseau basse tension aux frequences courants porteurs (3 KHZ-148,5 KHZ)

    Energy Technology Data Exchange (ETDEWEB)

    Duval, G.

    1998-07-01

    Electricite de France (EdF) wishes to establish a physical communication link between his clients and the EdF centres. The final link, i.e. between the high/low voltage transformation substation and the residential clients, being ensured by carrier currents. With this aim, an analysis and a modeling of the low voltage network at the carrier frequencies (3 kHz - 148.5 kHz) has been performed. This work has been carried out in parallel with an experiment involving 3500 apparatuses that use carrier currents. The diversity of the French low voltage networks and the limitations imposed by the EN50065-1 standard about the use of carrier currents in Europe do not favour the development of such carrier current systems. Disturbing voltages and localized impedances represent the main difficulties to get round. Inside accommodations, domotic carrier currents have a reduced range but a higher disturbance amplitude because of the proximity of appliances. A differential mode to common mode conversion phenomenon has been evidenced which generates network couplings and important electromagnetic fields. Energy lines and cables have been analyzed using numerical models. Load peaks have been analyzed using statistical tools in order to take into account the daily fluctuations. The modeling of the network is made in two steps: a double-wire model is considered first. Then a three-phase model is developed which analyzes the inter-phases coupling and the effect of the distribution of clients' loads on each phase. The results of this model are conformable with measurements except for underground networks. As perspectives of future works and beyond todays standard framework, the techniques that allow a sensible increase of communication flow rates have been reviewed. (J.S.)

  15. Measurements of intermediate-frequency electric and magnetic fields in households

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, Sam, E-mail: sam.aerts@intec.ugent.be [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium); Calderon, Carolina [Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Valič, Blaž [Institute of Non-Ionizing Radiation (INIS), Pohorskega bataljona 215, Ljubljana 1000 (Slovenia); Maslanyj, Myron; Addison, Darren; Mee, Terry; Goiceanu, Cristian [Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Verloock, Leen; Van den Bossche, Matthias [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium); Gajšek, Peter [Institute of Non-Ionizing Radiation (INIS), Pohorskega bataljona 215, Ljubljana 1000 (Slovenia); Vermeulen, Roel [Institute for Risk Assessment Sciences, Department of Environmental Epidemiology, Utrecht University, Yalelaan 2, 3508 Utrecht (Netherlands); Röösli, Martin [Swiss Tropical and Public Health Institute (Swiss TPH), Socinstrasse 57, P.O. Box, 4002 Basel (Switzerland); University of Basel, Petersplatz 1, 4003 Basel (Switzerland); Cardis, Elisabeth [Barcelona Institute for Global Health (ISGlobal) and Municipal Institute of Medical Research (IMIM-Hospital del Mar), Doctor Aiguader, 88, 08003 Barcelona (Spain); Martens, Luc; Joseph, Wout [Department of Information Technology, Ghent University/iMinds, iGent, Technologiepark-Zwijnaarde 15, B-9052 Ghent (Belgium)

    2017-04-15

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residences as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ{sub E} 1.0 and {sub E}Q{sub H} 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens. • No

  16. Measurements of intermediate-frequency electric and magnetic fields in households

    International Nuclear Information System (INIS)

    Aerts, Sam; Calderon, Carolina; Valič, Blaž; Maslanyj, Myron; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Verloock, Leen; Van den Bossche, Matthias; Gajšek, Peter; Vermeulen, Roel; Röösli, Martin; Cardis, Elisabeth; Martens, Luc; Joseph, Wout

    2017-01-01

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residences as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ E 1.0 and E Q H 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens. • No emissions exceeded

  17. Space Weather Effects on Current and Future Electric Power Systems

    Science.gov (United States)

    Munoz, D.; Dutta, O.; Tandoi, C.; Brandauer, W.; Mohamed, A.; Damas, M. C.

    2016-12-01

    This work addresses the effects of Geomagnetic Disturbances (GMDs) on the present bulk power system as well as the future smart grid, and discusses the mitigation of these geomagnetic impacts, so as to reduce the vulnerabilities of the electric power network to large space weather events. Solar storm characterized by electromagnetic radiation generates geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through the transmission lines, followed by transformers and the ground. As the ground conductivity and the power network topology significantly vary with the region, it becomes imperative to estimate of the magnitude of GICs for different places. In this paper, the magnitude of GIC has been calculated for New York State (NYS) with the help of extensive modelling of the whole NYS electricity transmission network using real data. Although GIC affects only high voltage levels, e.g. above 300 kV, the presence of coastline in NYS makes the low voltage transmission lines also susceptible to GIC. Besides this, the encroachment of technologies pertaining to smart grid implementation, such as Phasor Measurement Units (PMUs), Microgrids, Flexible AC Transmission System (FACTS), and Information and Communication Technology (ICT) have been analyzed for GMD impacts. Inaccurate PMU results due to scintillation of GPS signals that are affected by electromagnetic interference of solar storm, presence of renewable energy resources in coastal areas that are more vulnerable to GMD, the ability of FACTS devices to either block or pave new path for GICs and so on, shed some light on impacts of GMD on smart grid technologies.

  18. Predicting neutron star spins from twin kHz QPOs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We briefly review the proposed relations between the frequencies of twin kilohertz quasi-periodic oscillations(kHz QPOs) and the spin frequencies in neutron star low-mass X-ray binaries(NSLMXBs).To test the validity of the proposed models,we estimate the spin frequencies under these theoretical relations and compare them with the measured ones.It seems that magnetohydrodynamic(MHD) oscillations are more promising to account for the kHz QPOs.

  19. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane.

    Science.gov (United States)

    Zhu, Anna; Liu, Harris K; Long, Feng; Su, Erzheng; Klibanov, Alexander M

    2015-01-01

    Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution.

  20. Electricity Theory

    International Nuclear Information System (INIS)

    Gong, Ha Soung

    2006-12-01

    The text book composed of five parts, which are summary of this book, arrangement of electricity theory including electricity nad magnetism, a direct current, and alternating current. It has two dictionary electricity terms for a synonym. The last is an appendix. It is for preparing for test of officer, electricity engineer and fire fighting engineer.

  1. International comparison of AC-DC current transfer standards

    Science.gov (United States)

    Heine, G.; Garcocz, M.; Waldmann, W.

    2017-01-01

    The measurements of the international comparison of ac-dc current transfer standards identified as EURAMET.EM-K12 started in June 2012 and were completed in December 2014. Twenty NMIs in the EURAMET region and one NMI in the AFRIMET region took part: BEV (Austria), CMI (Czech Republic), PTB (Germany), METAS (Switzerland), JV (Norway), UME (Turkey), GUM (Poland), IPQ (Portugal), CEM (Spain), INRIM (Italy), SP (Sweden), DANIAmet-MI-Trescal (Denmark), BIM (Bulgaria), MKEH (Hungary), SIQ (Slovenia), LNE (France), NSAI NML (Ireland), VSL (The Netherlands), NPL (United Kingdom), Metrosert (Estonia), NIS (Egypt). The comparison was proposed to link the National Metrology Institutes organised in EURAMET to the key comparison CCEM-K12. The ac-dc current transfer difference of each travelling standard had been measured at its nominal current 10 mA and 5 A at the following frequencies: 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz, 100 kHz. The test points were selected to link the results with the equivalent CCEM Key Comparison (CCEM-K12), through five NMIs participating in both EURAMET and CCEM key comparisons (PTB, JV, NPL, SP and BEV). The report shows the degree of equivalence in the EURAMET region and also the degree of equivalence with the corresponding CCEM reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Occupational exposure to electric fields and induced currents associated with 400 kV substation tasks from different service platforms.

    Science.gov (United States)

    Korpinen, Leena H; Elovaara, Jarmo A; Kuisti, Harri A

    2011-01-01

    The aim of the study was to investigate the occupational exposure to electric fields, average current densities, and average total contact currents at 400 kV substation tasks from different service platforms (main transformer inspection, maintenance of operating device of disconnector, maintenance of operating device of circuit breaker). The average values are calculated over measured periods (about 2.5 min). In many work tasks, the maximum electric field strengths exceeded the action values proposed in the EU Directive 2004/40/EC, but the average electric fields (0.2-24.5 kV/m) were at least 40% lower than the maximum values. The average current densities were 0.1-2.3 mA/m² and the average total contact currents 2.0-143.2 µA, that is, clearly less than the limit values of the EU Directive. The average values of the currents in head and contact currents were 16-68% lower than the maximum values when we compared the average value from all cases in the same substation. In the future it is important to pay attention to the fact that the action and limit values of the EU Directive differ significantly. It is also important to take into account that generally, the workers' exposure to the electric fields, current densities, and total contact currents are obviously lower if we use the average values from a certain measured time period (e.g., 2.5 min) than in the case where exposure is defined with only the help of the maximum values. © 2010 Wiley-Liss, Inc.

  3. A MEMS AC current sensor for residential and commercial electricity end-use monitoring

    International Nuclear Information System (INIS)

    Leland, E S; Wright, P K; White, R M

    2009-01-01

    This paper presents a novel prototype MEMS sensor for alternating current designed for monitoring electricity end-use in residential and commercial environments. This new current sensor design is comprised of a piezoelectric MEMS cantilever with a permanent magnet mounted on the cantilever's free end. When placed near a wire carrying AC current, the magnet is driven sinusoidally, producing a voltage in the cantilever proportional to the current being measured. Analytical models were developed to predict the applicable magnetic forces and piezoelectric voltage output in order to guide the design of a sensor prototype. This paper also details the fabrication process for this sensor design. Released piezoelectric MEMS cantilevers have been fabricated using a four-mask process and aluminum nitride as the active piezoelectric material. Dispenser-printed microscale composite permanent magnets have been integrated, resulting in the first MEMS-scale prototypes of this current sensor design

  4. Polypyrrole Actuators Working at 2 to 30 Hz

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; West, Keld

    2007-01-01

    “Soft actuators” based on the conducting polymer polypyrrole (PPy) may be especially suitable for use in combination with human limbs. A research project under the European Union Quality of Life program (DRIFTS, Dynamically Responsive Intervention for Tremor Suppression, http://www.gerontech.org.......“Soft actuators” based on the conducting polymer polypyrrole (PPy) may be especially suitable for use in combination with human limbs. A research project under the European Union Quality of Life program (DRIFTS, Dynamically Responsive Intervention for Tremor Suppression, http......://www.gerontech.org.il/drifts/) focuses on the development of practical tremor suppression orthoses prototypes [1]. One of the choices of actuation mechanism is to use conducting polymers. The main challenge is to provide significant forces at the frequencies relevant to tremor in upper limbs: 2-16 Hz. Forces in the range of 0.1-1 kg......, and 0.32 mm at 15 Hz for the 1 kg limit. The required mass of the actuator itself at 15 Hz is ~100 mg. The results indicate the feasibility of using PPy actuators for tremor suppression....

  5. Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.

    Science.gov (United States)

    Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane

    2018-04-30

    We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.

  6. Lignite mining and electricity generation in Poland: The current state and future prospects

    International Nuclear Information System (INIS)

    Widera, Marek; Kasztelewicz, Zbigniew; Ptak, Miranda

    2016-01-01

    This opinion paper presents the current state and future scenarios of Polish lignite mining. For many years, over 1/3 of domestic electricity, that is about 53–55 TWh, has been generated by lignite-fired power plants. Currently, with 63–66 million tons of extraction, Poland is the fourth lignite producer worldwide and the second in the European Union. There are three possible scenarios for the development of lignite mining in Poland by 2050. Unfortunately, despite the huge lignite resources, amounting to more than 23.5 billion tons, and great potential of the mining industry, the future of Polish lignite mining does not look optimistic from the economic point of view. This is associated with social and environmental problems, including the European Union's climate and energy policy. However, this may change in the event of a global economic crisis and unstable geopolitical conditions. Therefore, a new energy doctrine for Poland at least by 2050 is urgently needed. - Highlights: •Poland is one of the leaders in lignite production in the European Union. •Energy policy in Poland assumes a key role of lignite in energy mix. •Almost one-third of Polish electricity is currently generated from lignite. •For Polish lignite mining exist pessimistic, realistic and optimistic scenarios. •Extraction of lignite in Poland will gradually decrease in the coming decades.

  7. Charge transfer to a dielectric target by guided ionization waves using electric field measurements

    NARCIS (Netherlands)

    Slikboer, E.T.; Garcia-Caurel, E.; Guaitella, O.; Sobota, A.

    2017-01-01

    A kHz-operated atmospheric pressure plasma jet is investigated by measuring charge transferred to a dielectric electro-optic surface (BSO crystal) allowing for the measurement of electric field by exploiting the Pockels effect. The electric field values, distribution of the surface discharge and

  8. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation.

    Science.gov (United States)

    Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen

    2018-03-01

    Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC

  9. A brief report on the statistical study of net electric current in solar active regions with longitudinal fields of opposite polarity

    International Nuclear Information System (INIS)

    Gao Yu

    2013-01-01

    Dynamic processes occurring in solar active regions are dominated by the solar magnetic field. As of now, observations using a solar magnetograph have supplied us with the vector components of a solar photospheric magnetic field. The two transverse components of a photospheric magnetic field allow us to compute the amount of electric current. We found that the electric current in areas with positive (negative) polarity due to the longitudinal magnetic field have both positive and negative signs in an active region, however, the net current is found to be an order-of-magnitude less than the mean absolute magnitude and has a preferred sign. In particular, we have statistically found that there is a systematic net electric current from areas with negative (positive) polarity to areas with positive (negative) polarity in solar active regions in the northern (southern) hemisphere, but during the solar minimum this tendency is reversed over time at some latitudes. The result indicates that there is weak net electric current in areas of solar active regions with opposite polarity, thus providing further details about the hemispheric helicity rule found in a series of previous studies.

  10. Emitter depletion studies on electrodes of 50 Hz mercury/noble gas discharge lamps during ignition

    International Nuclear Information System (INIS)

    Hoek, W.J. van den; Thijssen, T.L.G.; Heijden, A.J.H. van der; Buijsse, B.; Haverlag, M.

    2002-01-01

    The depletion of emitter from the oxide cathodes during the glow switch starting of the discharge in 50 Hz operated low-pressure mercury/noble gas discharge lamps (fluorescent lamps) has been studied. It follows from pulse ignition studies and computer-controlled ignition experiments that two plasma modes exist during ignition: a glow discharge and a vapour-arc discharge. The occurrence of these modes depends on the point of interruption with respect to the phase of the 50 Hz preheat current. The vapour arc appears to be the dominant mechanism of emitter depletion. The average emitter loss per vapour-arc pulse has been quantified by radioactive Ba tracer experiments. The nature of the vapour arc has been studied by fast photography and SEM. The vapour arc involves dielectric breakdown over the non-conducting oxide mass and gives rise to explosive emitter vapourization. (author)

  11. Laser-induced incandescence measurements in a fired diesel engine at 3 kHz

    Science.gov (United States)

    Boxx, I. G.; Heinold, O.; Geigle, K. P.

    2015-01-01

    Laser-induced incandescence (LII) was performed at 3 kHz in an optically accessible cylinder of a fired diesel engine using a commercially available diode-pumped solid-state laser and an intensified CMOS camera. The resulting images, acquired every 3° of crank angle, enabled the spatiotemporal tracking of soot structures during the expansion/exhaust stroke of the engine cycle. The image sequences demonstrate that soot tends to form in thin sheets that propagate and interact with the in-cylinder flow. These sheets tend to align parallel to the central axis of the cylinder and are frequently wrapped into conical spirals by aerodynamic swirl. Most of the soot is observed well away from the cylinder walls. Quantitative soot measurements were beyond the scope of this study but the results demonstrate the practical utility of using kHz-rate LII to acquire ensemble-averaged statistical data with high crank angle resolution over a complete engine cycle. Based on semi-quantitative measures of soot distribution, it was possible to identify soot dynamics related to incomplete charge exchange. This study shows that long-duration, multi-kHz acquisition rate LII measurements are viable in a fired diesel engine with currently available laser and camera technology, albeit only in the expansion and exhaust phase of the cycle at present. Furthermore, such measurements yield useful insight into soot dynamics and therefore constitute an important new tool for the development and optimization of diesel engine technology.

  12. Using bedding in a test environment critically affects 50-kHz ultrasonic vocalizations in laboratory rats.

    Science.gov (United States)

    Natusch, C; Schwarting, R K W

    2010-09-01

    Rats utter distinct classes of ultrasonic vocalizations depending on their developmental stage, current state, and situational factors. One class, comprising the so-called 50-kHz calls, is typical for situations where rats are anticipating or actually experiencing rewarding stimuli, like being tickled by an experimenter, or when treated with drugs of abuse, such as the psychostimulant amphetamine. Furthermore, rats emit 50-kHz calls when exposed to a clean housing cage. Here, we show that such vocalization effects can depend on subtle details of the testing situation, namely the presence of fresh rodent bedding. Actually, we found that adult males vocalize more in bedded cages than in bare ones. Also, two experiments showed that adult rats emitted more 50-kHz calls when tickled on fresh bedding. Furthermore, ip amphetamine led to more 50-kHz vocalization in activity boxes containing such bedding as compared to bare ones. The analysis of psychomotor activation did not yield such group differences in case of locomotion and centre time, except for rearing duration in rats tested on bedding. Also, the temporal profile of vocalization did not parallel that of behavioural activation, since the effects on vocalization peaked and started to decline again before those of psychomotor activation. Therefore, 50-kHz calls are not a simple correlate of psychomotor activation. A final experiment with a choice procedure showed that rats prefer bedded conditions. Overall, we assume that bedded environments induce a positive affective state, which increases the likelihood of 50-kHz calling. Based on these findings, we recommend that contextual factors, like bedding, should receive more research attention, since they can apparently decrease the aversiveness of a testing situation. Also, we recommend to more routinely measure rat ultrasonic vocalization, especially when studying emotion and motivation, since this analysis can provide information about the subject's status, which may

  13. Dynamics of Ring Current and Electric Fields in the Inner Magnetosphere During Disturbed Periods: CRCM-BATS-R-US Coupled Model

    Science.gov (United States)

    Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.

    2010-01-01

    We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.

  14. Analytical solution of electromagnetic radiation by a vertical electric dipole inside the earth and the effect of atmospheric electrical conductivity inhomogeneity

    Science.gov (United States)

    Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl

    2017-11-01

    In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.

  15. Effect of argon ion implantation on the electrical and dielectric properties of CR-39

    International Nuclear Information System (INIS)

    Chawla, Mahak; Shekhawat, Nidhi; Goyal, Meetika; Gupta, Divya; Sharma, Annu; Aggarwal, Sanjeev

    2016-01-01

    The objective of the present work is to study the effect of 130 keV Ar"+ ions on the electrical and dielectric properties of CR-39 samples at various doses 5×10"1"4, 1×10"1"5 and 1×10"1"6 Ar"+ cm"−"2. Current-Voltage (I-V characteristics) measurements have been used to study the electrical properties of virgin and Ar"+ implanted CR-39 specimens. The current has been found to be increased with increasing voltage as well as with increasing ion dose. The dielectric spectroscopy of these specimens has been done in the frequency range of 100 kHz-100 MHz. The dielectric constant has been found to be decreasing whereas dielectric loss factor increases with increasing ion fluence. These kind of behavior observed in the implanted specimens indicate towards the formation of carbonaceous clusters due to the cross linking, chemical bond cleavage, formation of free radicals. The changes observed in the dielectric behavior have been further correlated with the structural changes observed through I-V characteristics.

  16. Simulation of current pricing-tendencies in the German electricity market for private consumption

    International Nuclear Information System (INIS)

    Mueller, Moritz; Sensfuss, Frank; Wietschel, Martin

    2007-01-01

    The German electricity market for private consumption is characterized by increasing prices and low participation of the consumers. This prompts us to investigate the interdependencies between the customers' engagement in the market and the suppliers' pricing strategies. Based on an analysis of the German retail market, an agent-based simulation model is developed. Whereas the behaviour of private customers is calibrated on field data, the suppliers learn to maximize profits with a feedback-learning heuristic. The simulation results show a tendency of rising prices, which are created without the assumption of tacit collusion among suppliers. We conclude that in Germany the current market pressure of private customers may not be a sufficient incentive for suppliers to lower electricity prices. (author)

  17. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  18. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  19. A current detection based on an extension of the Prony's method

    Energy Technology Data Exchange (ETDEWEB)

    Deng, C.; Xia, X.; Gong, F. [Changsha Univ. of Science and Technology, Changsha (China). College of Electrical Engineering

    2009-07-01

    The Prony method for spectrum estimation was combined with an adaptive frequency tracking and current frequency demultiplication method as a harmonic detection system. An injective active power filter was used for effective harmonic wave management. The automated system includes a digital signal processor and a high-speed interfacing device. An algorithm was developed to consider the slow voltage changes in the power grid as well as potential mutations in current harmonics. Widrow-Hoff's LMS algorithm was used to develop rolling steps for the filter. The method was used to detect harmonic waves with a sampling frequency of 400 Hz. Results of the study showed that the detection method can be used in real time to detect fundamental and first harmonics in electric power grids. 10 refs., 2 tabs., 1 fig.

  20. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  1. Active cooling of an audio-frequency electrical resonator to microkelvin temperatures

    Science.gov (United States)

    Vinante, A.; Bonaldi, M.; Mezzena, R.; Falferi, P.

    2010-11-01

    We have cooled a macroscopic LC electrical resonator using feedback-cooling combined with an ultrasensitive dc Superconducting Quantum Interference Device (SQUID) current amplifier. The resonator, with resonance frequency of 11.5 kHz and bath temperature of 135 mK, is operated in the high coupling limit so that the SQUID back-action noise overcomes the intrinsic resonator thermal noise. The effect of correlations between the amplifier noise sources clearly show up in the experimental data, as well as the interplay of the amplifier noise with the resonator thermal noise. The lowest temperature achieved by feedback is 14 μK, corresponding to 26 resonator photons, and approaches the limit imposed by the noise energy of the SQUID amplifier.

  2. ‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements

    Science.gov (United States)

    Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Spitzer, Seth M.

    2018-03-01

    Time-resolved particle image velocimetry recently has been demonstrated in high-speed flows using a pulse-burst laser at repetition rates reaching 50 kHz. Turbulent behavior can be measured at still higher frequencies if the field of view is greatly reduced and lower laser pulse energy is accepted. Current technology allows image acquisition at 400 kHz for sequences exceeding 4000 frames but for an array of only 128  ×  120 pixels, giving the moniker of ‘postage-stamp PIV’. The technique has been tested far downstream of a supersonic jet exhausting into a transonic crossflow. Two-component measurements appear valid until 120 kHz, at which point a noise floor emerges whose magnitude is dependent on the reduction of peak locking. Stereoscopic measurement offers three-component data for turbulent kinetic energy spectra, but exhibits a reduced signal bandwidth and higher noise in the out-of-plane component due to the oblique camera images. The resulting spectra reveal two regions exhibiting power-law dependence describing the turbulent decay. The frequency response of the present measurement configuration exceeds nearly all previous velocimetry measurements in high speed flow.

  3. Distribution of electric currents in sunspots from photosphere to corona

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  4. Spectroscopic measurement of the electric field in a helium plasma jet

    NARCIS (Netherlands)

    Hofmans, M.; Sobota, A.

    2017-01-01

    The electric field in a plasma jet is measured spectroscopically utilizing the Stark-effect. A cold atmospheric pressure helium plasma jet is used, which operates at a μs-pulsed applied voltage of 6 kV, a frequency of 5 kHz and with a helium flow of 1.5 slm. Due to the electric field in the jet, the

  5. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-01-01

    Full Text Available Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 μW/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14 and high (L > 2.14 geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36 in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from

  6. HORIZONTAL AXIS MARINE CURRENT TURBINE DESIGN FOR WIND-ELECTRIC HYBRID SAILING BOAT

    OpenAIRE

    Ekinci, Serkan; Alvar, Mustafa

    2017-01-01

    In recent decades, the number of theoretical studies and applications on electric power production from renewable sources such as wind, solar, sea and tidal flows, has been increasing rapidly. Marine Current Turbines (MCTs), among the power turbines, produce power from alternating flows and are a means of power production even at lower flow rates in oceans and seas. In this study, while maintaining functional requirements, an initial and detailed design (mechanic and hydrodynamic), of an M...

  7. Communication: theoretical study of ThO for the electron electric dipole moment search.

    Science.gov (United States)

    Skripnikov, L V; Petrov, A N; Titov, A V

    2013-12-14

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H(3)Δ1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [http://www.electronedm.org]. To interpret the experiment in terms of eEDM and dimensionless constant kT, P characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT, P, in ThO is required. We report our results for Eeff (84 GV/cm) and WT, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H(3)Δ1 → X(1)Σ(+) transition energy, which can serve as a measure of reliability of the obtained Eeff and WT, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H(3)Δ1.

  8. Communication: Theoretical study of ThO for the electron electric dipole moment search

    International Nuclear Information System (INIS)

    Skripnikov, L. V.; Petrov, A. N.; Titov, A. V.

    2013-01-01

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H 3 Δ 1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [ http://www.electronedm.org ]. To interpret the experiment in terms of eEDM and dimensionless constant k T, P characterizing the strength of the T,P-odd pseudoscalar–scalar electron–nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, E eff , and a parameter of the T,P-odd pseudoscalar–scalar interaction, W T, P , in ThO is required. We report our results for E eff (84 GV/cm) and W T, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H 3 Δ 1 → X 1 Σ + transition energy, which can serve as a measure of reliability of the obtained E eff and W T, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H 3 Δ 1

  9. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    Science.gov (United States)

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue

  10. Wire Probe Antenna (WPT) and Electric Field Detector (EFD) of Plasma Wave Experiment (PWE) aboard the Arase satellite: specifications and initial evaluation results

    Science.gov (United States)

    Kasaba, Yasumasa; Ishisaka, Keigo; Kasahara, Yoshiya; Imachi, Tomohiko; Yagitani, Satoshi; Kojima, Hirotsugu; Matsuda, Shoya; Shoji, Masafumi; Kurita, Satoshi; Hori, Tomoaki; Shinbori, Atsuki; Teramoto, Mariko; Miyoshi, Yoshizumi; Nakagawa, Tomoko; Takahashi, Naoko; Nishimura, Yukitoshi; Matsuoka, Ayako; Kumamoto, Atsushi; Tsuchiya, Fuminori; Nomura, Reiko

    2017-12-01

    This paper summarizes the specifications and initial evaluation results of Wire Probe Antenna (WPT) and Electric Field Detector (EFD), the key components for the electric field measurement of the Plasma Wave Experiment (PWE) aboard the Arase (ERG) satellite. WPT consists of two pairs of dipole antennas with 31-m tip-to-tip length. Each antenna element has a spherical probe (60 mm diameter) at each end of the wire (15 m length). They are extended orthogonally in the spin plane of the spacecraft, which is roughly perpendicular to the Sun and enables to measure the electric field in the frequency range of DC to 10 MHz. This system is almost identical to the WPT of Plasma Wave Investigation aboard the BepiColombo Mercury Magnetospheric Orbiter, except for the material of the spherical probe (ERG: Al alloy, MMO: Ti alloy). EFD is a part of the EWO (EFD/WFC/OFA) receiver and measures the 2-ch electric field at a sampling rate of 512 Hz (dynamic range: ± 200 mV/m) and the 4-ch spacecraft potential at a sampling rate of 128 Hz (dynamic range: ± 100 V and ± 3 V/m), with the bias control capability of WPT. The electric field waveform provides (1) fundamental information about the plasma dynamics and accelerations and (2) the characteristics of MHD and ion waves in various magnetospheric statuses with the magnetic field measured by MGF and PWE-MSC. The spacecraft potential provides information on thermal electron plasma variations and structure combined with the electron density obtained from the upper hybrid resonance frequency provided by PWE-HFA. EFD has two data modes. The continuous (medium-mode) data are provided as (1) 2-ch waveforms at 64 Hz (in apoapsis mode, L > 4) or 256 Hz (in periapsis mode, L < 4), (2) 1-ch spectrum within 1-232 Hz with 1-s resolution, and (3) 4-ch spacecraft potential at 8 Hz. The burst (high-mode) data are intermittently obtained as (4) 2-ch waveforms at 512 Hz and (5) 4-ch spacecraft potential at 128 Hz and downloaded with the WFC

  11. Effectiveness of transcutaneous electrical nerve stimulation and microcurrent electrical nerve stimulation in bruxism associated with masticatory muscle pain - A comparative study

    Directory of Open Access Journals (Sweden)

    Rajpurohit Bharat

    2010-01-01

    Full Text Available Objectives: To compare the effectiveness of transcutaneous electrical nerve stimulation (TENS and microcurrent electrical nerve stimulation (MENS on masticatory muscles pain bruxism patient. Materials and Methods : A total of 60 subjects with the clinical diagnosis of bruxism were randomly allocated to two study groups. Group A received TENS (50 Hz, pulse width 0.5 mSec, intensity 0-60 mA for 20 minutes for a period of seven days and Group B received MENS (0.5 Hz, intensity 1,000 μA for 20 minutes for a period of seven days. The outcome measures were assessed in term of Visual Analog Scale (VAS and digital pressometer of 2 Kgf. Results : The study showed significant change in intensity of pain as per VAS score ( P ≤ 0.0001 and tenderness as per digital pressometer ( P ≤ 0.0001. Conclusion : MENS could be used as an effective pain-relieving adjunct to TENS in the treatment of masticatory muscle pain due to bruxism.

  12. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Science.gov (United States)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  13. Upper Limits on a Stochastic Gravitational-Wave Background Using LIGO and Virgo Interferometers at 600-1000 Hz

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2012-01-01

    A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of omega(sub GW)(f) = omega(sub 3) (f/900Hz)3, of omega(sub 3) < 0.33, assuming a value of the Hubble parameter of h(sub 100) = 0.72. These new limits are a factor of seven better than the previous best in this frequency band.

  14. Electric field measurements on plasma bullets in N2 using four-wave mixing

    NARCIS (Netherlands)

    van der Schans, M.; Böhm, P.; Nijdam, S.; IJzerman, W.L.; Czarnetzki, U.

    2015-01-01

    Atmospheric pressure plasma jets driven by pulsed DC or kHz AC voltages typically consist of discrete guided ionisation waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated. Electric field measurements in N2

  15. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Lisha Yang

    Full Text Available This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa, whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa, a Ca2+-activated K+ current (IK(Ca, and a sustained voltage-dependent delayed rectifier K+ current (IKV. A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.

  16. State of the art of superconducting fault current limiters and their application to the electric power system

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2013-01-01

    Highlights: ► The state of the art of superconducting fault current limiters is reviewed. ► An innovative concept of FCL is discussed and the potential of MgB 2 is outlined. ► The use of FCL to allow more interconnection of MV bus-bar is discussed. ► The use of FCL to increase the immunity from voltage dips is discussed. ► The use of FCL to integrate more distributed generation is pointed out. -- Abstract: Modern electric power systems are becoming more and more complex in order to meet new needs. Nowadays a high power quality is mandatory and there is the need to integrate increasing amounts of on-site generation. All this translates in more sophisticated electric network with intrinsically high short circuit rate. This network is vulnerable in case of fault and special protection apparatus and procedures needs to be developed in order to avoid costly or even irreversible damage. A superconducting fault current limiter (SFCL) is a device with a negligible impedance in normal operating conditions that reliably switches to a high impedance state in case of extra-current. Such a device is able to increase the short circuit power of an electric network and to contemporarily eliminate the hazard during the fault. It can be regarded as a key component for future electric power systems. In this paper the state of the art of superconducting fault current limiters mature for applications is briefly resumed and the potential impact of this device on the paradigm of design and operation of power systems is analyzed. In particular the use of the FCL as a mean to allow more interconnection of MV bus-bars as well an increased immunity with respect to the voltage disturbances induced by critical customer is discussed. The possibility to integrate more distributed generation in the distribution grid is also considered

  17. Electrical properties and dielectric spectroscopy of Ar{sup +} implanted polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Mahak, E-mail: mahak.chawla@gmail.com; Shekhawat, Nidhi; Aggarwal, Sanjeev; Sharma, Annu [Department of Physics, Kurukshetra University, Kurukshetra - 136119 (India); Nair, K. G. M. [Consultant, UGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokilamedu-603104, Tamilnadu (India)

    2015-05-15

    The aim of the present paper is to study the effect of argon ion implantation on electrical and dielectric properties of polycarbonate. Specimens were implanted with 130 keV Ar{sup +} ions in the fluence ranging from 1×10{sup 14} to 1×10{sup 16} ions cm{sup −2}. The beam current used was ∼0.40 µA cm{sup −2}. The electrical conduction behaviour of virgin and Ar{sup +} implanted polycarbonate specimens have been studied through current-voltage (I-V characteristic) measurements. It has been observed that after implantation conductivity increases with increasing ion fluence. The dielectric spectroscopy of these specimens has been done in the frequency range of 100 kHz-100 MHz. Relaxation processes were studied by Cole-Cole plot of complex permittivity (real part of complex permittivity, ε′ vs. imaginary part of complex permittivity, ε″). The Cole-Cole plots have also been used to determine static dielectric constant (ε{sub s}), optical dielectric constant (ε{sub ∞}), spreading factor (α), average relaxation time (τ{sub 0}) and molecular relaxation time (τ). The dielectric behaviour has been found to be significantly affected due to Ar{sup +} implantation. The possible correlation between this behaviour and the changes induced by the implantation has been discussed.

  18. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads

    Directory of Open Access Journals (Sweden)

    Seidman Seth J

    2011-10-01

    Full Text Available Abstract Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter

  19. Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis

    Science.gov (United States)

    Otto, Oliver; Gutsche, Christof; Kremer, Friedrich; Keyser, Ulrich F.

    2008-02-01

    We developed an optical tweezers setup to study the electrophoretic motion of colloids in an external electric field. The setup is based on standard components for illumination and video detection. Our video based optical tracking of the colloid motion has a time resolution of 0.2ms, resulting in a bandwidth of 2.5kHz. This enables calibration of the optical tweezers by Brownian motion without applying a quadrant photodetector. We demonstrate that our system has a spatial resolution of 0.5nm and a force sensitivity of 20fN using a Fourier algorithm to detect periodic oscillations of the trapped colloid caused by an external ac field. The electrophoretic mobility and zeta potential of a single colloid can be extracted in aqueous solution avoiding screening effects common for usual bulk measurements.

  20. High output power reluctance electric motors with bulk high-temperature superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, L.K. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (Russian Federation)]. E-mail: kovalev@mail.sitek.net; Ilushin, K.V.; Penkin, V.T. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (RU)] [and others

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS)-YBCO and Bi-Ag-elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems. (author)