Adaptive Hysteresis Band Current Control for Transformerless Single-Phase PV Inverters
Vázquez, Gerardo; Rodriguez, Pedro; Ordoñez, Rafael
2009-01-01
Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response......, and requires a simple implementation in standard digital signal platforms. On the other hand, the main drawback of classical hysteresis current control lies in the fact that the switching frequency is variable, as the hysteresis band is fixed. In this paper a variable band hysteresis control algorithm...... different single-phase PV inverter topologies, by means of simulations performed with PSIM. In addition, the behavior of the thermal losses when using each control structure in such converters has been studied as well....
DSP based adaptive hysteresis-band current controlled active filter ...
The use of non-linear loads critically affects the quality of supply by drawing harmonic currents and reactive power from the electrical distribution system. Active power filters are the most viable solution for solving such power quality problems in compliance with the harmonic standards. This article presents a digital signal ...
Guo, Yougui; Zeng, Ping; Li, Lijuan
2011-01-01
Adaptive hysteresis band current control(AHB CC) is used to control the three-phase grid currents by means of grid side converter in wind power generation system in this paper. AHB has reached the good purpose with PLL (Lock phase loop). First the mathematical models of each part are given......, transformer and grid, and control parts, etc. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage in wind power generation system....
Hysteresis of critical currents of superconducting bridges in low perpendicular magnetic fields
Aomine, T.; Tanaka, E.; Yamasaki, S.; Tani, K.; Yonekura, A.
1989-01-01
Hysteresis of critical currents I c of superconducting bridges with In, Nb, and NbN has been studied in low perpendicular magnetic fields. Influences of bridge geometry, small field sweep, trapped flux, and bombardment of argon ions on the hysteresis were made clear. The experimental results suggest that the edge pinning and trapped flux in the bank of bridges are associated with the hysteresis. The peak value of I c of NbN bridges, as well as granular Al and In bridges reported before, in decreasing fields agrees with the calculated pair-breaking current. The origin of the hysteresis is discussed
A Digital Hysteresis Current Control for Half-Bridge Inverters with Constrained Switching Frequency
Triet Nguyen-Van
2017-10-01
Full Text Available This paper proposes a new robustly adaptive hysteresis current digital control algorithm for half-bridge inverters, which plays an important role in electric power, and in various applications in electronic systems. The proposed control algorithm is assumed to be implemented on a high-speed Field Programmable Gate Array (FPGA circuit, using measured data with high sampling frequency. The hysteresis current band is computed in each switching modulation period based on both the current error and the negative half switching period during the previous modulation period, in addition to the conventionally used voltages measured at computation instants. The proposed control algorithm is derived by solving the optimization problem—where the switching frequency is always constrained at below the desired constant frequency—which is not guaranteed by the conventional method. The optimization problem also keeps the output current stable around the reference, and minimizes power loss. Simulation results show good performances of the proposed algorithm compared with the conventional one.
Huang, Danhong
2001-01-01
.... For the time-dependent temperature, a counterclockwise hysteresis loop in the tunneling current as a function of the swept temperature is predicted and attributed to a blockade or an enhancement...
Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode
Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J
2012-01-01
Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)
Wegrowe, J.-E.; Kelly, D.; Hoffer, X.; Guittienne, Ph.; Ansermet, J.-Ph.
2001-01-01
Current pulses were injected into magnetic nanowires. Their effect on the magnetoresistance hysteresis loops was studied for three morphologies: homogeneous Ni wires, copper wires containing five cobalt/copper bilayers, and hybrid structures composed of a homogeneous Ni half wire and a multilayered Co/Cu half wire. The characteristic features of the action of the current on the magnetization are shown and discussed. [copyright] 2001 American Institute of Physics
N. Belhaouchet
2008-03-01
Full Text Available Hysteresis current control is one of the simplest techniques used to control the magnitude and phase angle of motor current for motor drives systems. However, this technique presents several disadvantages such as operation at variable switching frequency which can reveal problems of filtering, interference between the phases in the case of the three-phase systems with insulated neutral connection or delta connection, and irregularity of the modulation pulses which especially causes an acoustic noise on the level of the machine for the high power drive. In this paper, a new technique is proposed for a variable-hysteresis-band controller based on dead beat control applied to three phase voltage source PWM inverters feeding AC motors. Its main aim is firstly ensure a constant switching frequency and secondly the synchronization of modulation pulses using the phase-locked-loop with loop gain compensation in order to ensure a better stability. The behavior of the proposed technique is verified by simulation.
Bottauscio, Oriano.; Canova, Aldo; Chiampi, Mario; Repetto, Maurizio
2003-01-01
The magnetic analysis of stators of electrical motors is performed through an innovative 2D finite element formulation that takes into account the effects of eddy currents within the laminations by means of a generalized constitutive relationship also including vector hysteresis. This approach is applied to a deep estimation of magnetic flux distribution and magnetic losses in stator of induction motors supplied by high-frequency sinusoidal or six-step voltage sources
Oshurko, V. B.; Fedorov, A. N.; Ropyanoi, A. A.; Fedosov, M. V.
2014-06-01
It is found experimentally that the properties of nanoporous ion-exchange membranes (hysteresis of the current-voltage characteristic in the solution and negative differential resistance), which have been discussed in recent years, are not associated with the properties of the membrane. It is shown that these effects are also observed in a floating water bridge and in water-filled tubes and are apparently determined by the geometrical shape of the liquid conductor. The observed effects are explained qualitatively.
Electron currents associated with an auroral band
Spiger, R.J.; Anderson, H.R.
1975-01-01
Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed
Electron currents associated with an auroral band
Spiger, R. J.; Anderson, H. R.
1975-01-01
Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.
Svistunov, V M; Yachenko, A.I. d'
1991-12-01
It was found that pressure has a strong influence on the critical current hysteresis loop of ceramics at H {proportional to} 10 kOe. The phenomenon is attributed to the critical current hysteresis of separate Josephson contacts and is due to the Abrikosov vortex density gradient within granules. The gradient defines both the sign and the value of the pinning current, whereas the sign of Meissner reversible surfaces current component is determined by the external field H direction. As a result the critical current of Josephson contacts defined by the total surface value depends on the magnetic prehistory of a sample. (orig.).
Stenvall, A; Tarhasaari, T
2010-01-01
Many people these days employ only commercial finite element method (FEM) software when solving for the hysteresis losses of superconductors. Thus, the knowledge of a modeller is in the capability of using the black boxes of software efficiently. This has led to a relatively superficial examination of different formulations while the discussion stays mainly on the usage of the user interfaces of these programs. Also, if we stay only at the mercy of commercial software producers, we end up having less and less knowledge on the details of solvers. Then, it becomes more and more difficult to conceptually solve new kinds of problem. This may prevent us finding new kinds of method to solve old problems more efficiently, or finding a solution for a problem that was considered almost impossible earlier. In our earlier research, we presented the background of a co-tree gauged T-ψ FEM solver for computing the hysteresis losses of superconductors. In this paper, we examine the feasibility of FEM and eddy current vector potential formulation in the same problem.
Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits
Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL
2017-10-01
This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.
Cross Voltage Control with Inner Hysteresis Current Control for Multi-output Boost Converter
Nami, Alireza; Zare, Firuz; Blaabjerg, Frede
2009-01-01
Multi-output boost (MOB) converter is a novel DC-DC converter unlike the regular boost converter, has the ability to share its total output voltage and to have different series output voltage from a given duty cycle for low and high power applications. In this paper, discrete voltage control...... with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference...... voltages against variation in load or input voltage. The salient features of the proposed control strategy are simplicity of implementation and ease to extend to multiple outputs in the MOB converter. Simulation and experimental results are presented to show the validity of control strategy....
Optimum Peak Current Hysteresis Control for Energy Recovering Converter in CDI Desalination
Alberto M. Pernía
2014-06-01
Full Text Available Capacitive De-Ionization (CDI is becoming a suitable alternative for desalination. The low cost of the materials required and its reduced energy consumption can be critical factors for developing this technique. CDI technology does not require a high-pressure system and the energy storage capability of CDI cells allows it to be reused in other CDI cells, thus minimizing consumption. The goal of the power stage responsible of the energy recovery is transferring the stored energy from one cell to another with the maximum possible efficiency, thus allowing the desalination process to continue. Assuming hysteresis current control is implemented at the DC/DC (direct current converter, this paper aims to determine the optimum peak current through the inductor in each switching period with a view to maximizing overall efficiency. The geometrical parameters of the desalination cell and the NaCl concentration modify the cell electrical properties. The peak current control of the power stage should be adapted to the cell characteristics so that the efficiency behavior of the whole CDI system can be improved. The mathematical model defined in this paper allows the CDI plant automation using the peak inductor current as control variable, adapting its value to the salt concentration during the desalination process.
Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film
Das, Amit Kumar; Meikap, Ajit Kumar
2017-12-01
In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.
Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film
Das, Amit Kumar; Meikap, Ajit Kumar
2018-06-01
In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.
Jones, A R; Blunt, F J; Campbell, A M [Research Centre in Superconductivity, Univ. of Cambridge (United Kingdom); Doyle, R A [Dept. of Physics, Univ. of Witwatersrand (South Africa)
1992-06-10
Measurements are reported of transport critical current and magnetisation on the same samples of YBCO for three different orientations with respect to applied magnetic field. The predictions made by the model of Evetts and Glowacki for the hysteresis observed in J{sub c} were investigated and found to be in qualitative agreement with the results. However, attempts to relate the hysteresis to the magnetisation by assuming that J{sub c} is a unique function of the internal field H = H{sub 0}-nM were unsuccessful. The value of n is found to be much larger than any demagnetising factor and varies widely with both field and geometry. (orig.).
Berashevich, Y A; Kholod, A N; Borisenko, V E
2002-01-01
A kinetic model of charge carrier transport in nanosize periodical Si/CaF sub 2 structures via localized states in dielectric is proposed. Computer simulation of the current-voltage characteristics of such structures has shown that the built-in field arises in a dielectric due to polarization of the trapped charge by localized centers. This results in current hysteresis and negative differential resistance region at the current-voltage characteristics when the bias polarity is changed. At temperature below 250 K, the portion of negative differential resistance vanishes
Adell, Phillipe C.; Barnaby, H. J.; Schrimpf, R. D.; Vermeire, B.
2007-01-01
We propose a model, validated with simulations, describing how band-to-band tunneling (BBT) affects the leakage current degradation in some irradiated fully-depleted SOI devices. The dependence of drain current on gate voltage, including the apparent transition to a high current regime is explained.
Modelling band-to-band tunneling current in InP-based heterostructure photonic devices
van Engelen, J.P.; Shen, L.; van der Tol, J.J.G.M.; Smit, M.K.; Kockaert, P.; Emplit, P.; Gorza, S.-P.; Massar, S.
2015-01-01
Some semiconductor photonic devices show large discontinuities in the band structure. Short tunnel paths caused by this band structure may lead to an excessive tunneling current, especially in highly doped layers. Modelling of this tunnelling current is therefore important when designing photonic
Transport current dependence of the hysteresis loss in silver sheathed BSCOO-2212 conductors
Hemmes, Herman K.; Woudstra, Martin J.; ten Kate, Herman H.J.; Tenbrink, Johannes
1994-01-01
A technique is described to study the critical current density and penetration fieldassociated with the transport current in a silver sheathed BSCCO conductor. A transport current flowing in a conductor in a varying magnetic field will only influence magnetisation currents that are in competition
Hysteresis-controlled instability waves in a scale-free driven current sheet model
V. M. Uritsky
2005-01-01
Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.
Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst
2014-12-01
In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.
Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst
2014-01-01
In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies
Della Torre, Edward
2000-01-01
Understanding magnetic hysteresis is vitally important to the development of the science of magnetism as a whole and to the advancement of practical magnetic device applications. Magnetic Hysteresis, by acclaimed expert Edward Della Torre, presents a clear explanation of the connection between physical principles and phenomenological hysteresis. This comprehensive book offers a lucid analysis that enables the reader to save valuable time by reducing trial-and-error design. Dr. Della Torre uses physical principles to modify Preisach modeling and to describe the complex behavior of magnetic media. While Pretsach modeling is a useful mathematical tool, its congruency and deletion properties present limitations to accurate descriptions of magnetic materials. Step-by-step, this book describes the modifications that can overcome these limitations. Special attention is given to the use of feedback around a Preisach transducer to remove the congruency restriction, and to the use of accommodation and aftereffect model...
Hysteresis current control technique of VSI for compensation of grid-connected unbalanced loads
Pouresmaeil, Edris; Akorede, Mudathir Funsho; Montesinos-Miracle, Daniel
2014-01-01
interconnection issues that usually arise as DG units connect to the electric grid. The proposed strategy, implemented in Matlab/Simulink environment in different operating scenarios, provides compensation for active, reactive, unbalanced, and harmonic current components of grid-connected nonlinear unbalanced...... resources as they connect to the exiting power grid could provoke many power quality problems on the grid side. For this reason, due considerations must be given to power generation and safe running before DG units is actually integrated into the power grid. The main aim of this paper is to address the grid...... loads. The simulation results obtained in this study demonstrate the level of accuracy of the proposed technique, which ensure a balance in the overall grid phase currents, injection of maximum available power from DG resources to the grid, improvement of the utility grid power factor, and a reduction...
Mathematical models of hysteresis
1998-01-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above
Mathematical models of hysteresis
NONE
1998-08-01
The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.
Magnusson, N., E-mail: niklas.magnusson@sintef.no [SINTEF Energy Research, NO-7465 Trondheim (Norway); Abrahamsen, A.B. [DTU Wind Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Liu, D. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands); Runde, M. [SINTEF Energy Research, NO-7465 Trondheim (Norway); Polinder, H. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands)
2014-11-15
Highlights: • A method for calculating hysteresis losses in the low AC – high DC magnetic field and transport current range has been shown. • The method can be used in the design of wind turbine generators for calculating the losses in the generator DC rotor. • First estimates indicate tolerable current ripple in the 0.1% range for a 4 T DC MgB{sub 2} generator rotor coil. - Abstract: MgB{sub 2} superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must be evaluated in the design of the generator to ensure a sufficient overall efficiency. A major loss component is the hysteresis losses in the superconductor itself. In the high DC – low AC current and magnetic field region experimental results still lack for MgB{sub 2} conductors. In this article we reason towards a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB{sub 2} DC coils in the 1–4 T range with low AC magnetic field and current ripples.
Ghennam, Tarak [Laboratoire d' Electronique de Puissance (LEP), UER: Electrotechnique, Ecole Militaire Polytechnique d' Alger, BP 17, Bordj EL Bahri, Alger (Algeria); Berkouk, El-Madjid [Laboratoire de Commande des Processus (LCP), Ecole Nationale Polytechnique d' Alger, BP 182, 10 avenue Hassen Badi, 16200 el Harrach (Algeria)
2010-04-15
In this paper, a novel space-vector hysteresis current control (SVHCC) is proposed for a back-to-back three-level converter which is used as an electronic interface in a wind conversion system. The proposed SVHCC controls the active and reactive powers delivered to the grid by the doubly fed induction machine (DFIM) through the control of its rotor currents. In addition, it controls the neutral point voltage by using the redundant inverter switching states. The three rotor current errors are gathered into a single space-vector quantity. The magnitude of the error vector is limited within boundary areas of a square shape. The control scheme is based firstly on the detection of the area and sector in which the vector tip of the current error can be located. Then, an appropriate voltage vector among the 27 voltage vectors of the three-level voltage source inverter (VSI) is applied to push the error vector towards the hysteresis boundaries. Simple look-up tables are required for the area and sector detection, and also for vector selection. The performance of the proposed control technique has been verified by simulations. (author)
Magnusson, N.; Abrahamsen, Asger Bech; Liu, Dawei
2014-01-01
MgB2 superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must...... a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting...
Plastic deformation and hysteresis for hydrogen storage in Pd–Rh alloys
Cappillino, P.J., E-mail: pcappil@sandia.gov [Sandia National Laboratories, PO Box 969, Mail Stop 9292, Livermore, CA 94551 (United States); Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Ong, M.D. [Department of Physics, Whitworth University, Spokane, WA 99251 (United States); Wolfer, W.G.; Yang, N.Y. [Sandia National Laboratories, PO Box 969, Mail Stop 9292, Livermore, CA 94551 (United States)
2014-02-15
Highlights: • Experimental evidence of plastic work resulting from hydriding of palladium is presented. • A model of this plastic work was generated and correlated to hysteresis losses. • This hysteresis is thought to be important to the lifetime of hydrogen storage materials. • Yield strength values predicted by this model agree with measured hardness. -- Abstract: The hysteresis observed when reversibly absorbing and desorbing hydrogen in metals is currently not fully understood. In general, a hysteresis represents energy that is dissipated during a cycle, but the underlying mechanism of dissipation is still uncertain. It has been suggested that the hysteresis arises either from plastic work, or from elastic strains associated with the accommodation of the hydride phase, or from both. We present here experimental evidence that implicates plastic deformation as the cause of the hysteresis in a Pd–Rh alloy. The plastic work is evident from the increased dislocation density, from the accumulation of surface steps from slip bands, from line broadening of X-ray diffraction peaks, and from an increase in hardness with the number of hydriding cycles. A model of this plastic work is developed that depends on an effective yield strength. When this model is correlated with the measured hysteresis losses, two values are found for the effective yield strength. The lower value is shown to agree with yield strength values derived from Vickers hardness measurements. The hysteresis areas for repeated cycles of absorption and desorption decrease little with the number of cycles which is reminiscent of the plastic deformation hysteresis during low-cycle fatigue of metals. This similarity further confirms the plastic nature of the hydriding hysteresis.
Hysteresis in conducting ferromagnets
Schneider, Carl S.; Winchell, Stephen D.
2006-01-01
Maxwell's magnetic diffusion equation is solved for conducting ferromagnetic cylinders to predict a magnetic wave velocity, a time delay for flux penetration and an eddy current field, one of five fields in the linear unified field model of hysteresis. Measured Faraday voltages for a thin steel toroid are shown to be proportional to magnetic field step amplitude and decrease exponentially in time due to maximum rather than average permeability. Dynamic permeabilities are a field convolution of quasistatic permeability and the delay function from which we derive and observe square root dependence of coercivity on rate of field change
Krejčí, Pavel
1991-01-01
Roč. 2, - (1991), s. 281-292 ISSN 0956-7925 Keywords : vector hysteresis operator * hysteresis potential * differential inequality Subject RIV: BA - General Mathematics http://www.math.cas.cz/~krejci/b15p.pdf
Seasonally reversing current bands across 15 degrees N in the Arabian Sea and their implications
Antony, M.K.; Shenoi, S.S.C.; Gopalakrishna, V.V.; Murty, C.S.; Rao, D.P.; Murty, V.S.N.; Sastry, J.S.
Geostrophic currents computed from hydrographic data collected in different months from a section along 15 degrees N in the Arabian Sea show alternate N-S current bands. Flow directions of these bands are found to reverse with the change in season...
Amaha, S., E-mail: s-amaha@riken.jp [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Hatano, T. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Department of Physics, Tohoku University, Sendai-shi, Miyagi 980-8578 (Japan); Tarucha, S. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Gupta, J. A.; Austing, D. G. [National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)
2015-04-27
We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.
Carrander, Claes; Mousavi, Seyed Ali; Engdahl, Göran
2017-01-01
In many transformer applications, it is necessary to have a core magnetization model that takes into account both magnetic and electrical effects. This becomes particularly important in three-phase transformers, where the zero-sequence impedance is generally high, and therefore affects the magnetization very strongly. In this paper, we demonstrate a time-step topological simulation method that uses a lumped-element approach to accurately model both the electrical and magnetic circuits. The simulation method is independent of the used hysteresis model. In this paper, a hysteresis model based on the first-order reversal-curve has been used. - Highlights: • A lumped-element method for modelling transformers i demonstrated. • The method can include hysteresis and arbitrarily complex geometries. • Simulation results for one power transformer are compared to measurements. • An analytical curve-fitting expression for static hysteresis loops is shown.
Hysteresis of ferrogels magnetostriction
Zubarev, Andrey; Chirikov, Dmitry [Urals Federal University, 620000 Ekaterinburg (Russian Federation); Stepanov, Gennady [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Borin, Dmitry [Technische Universität Dresden, Magnetofluiddynamics, Measuring and Automation Technology, 01062 Dresden (Germany)
2017-06-01
We propose a theoretical model of magnetostriction hysteresis in soft magnetic gels filled by micronsized magnetizable particles. The hysteresis is explained by unification of the particles into linear chain-like aggregates while the field increasing and rupture of the chains when the field is decreased. - Highlights: • A theoretical model of magnetostriction hysteresis in magnetic gels is proposed. • Hysteresis is explained by the unification of the particles into chains and the rupture of this chains. • In the order of magnitude theoretical results are in agreement with the experimental one.
Unraveling current hysteresis effects in regular-type C60-CH3NH3PbI3 heterojunction solar cells.
Chen, Lung-Chien; Lin, Yu-Shiang; Tang, Po-Wen; Tai, Chao-Yi; Tseng, Zong-Liang; Lin, Ja-Hon; Chen, Sheng-Hui; Kuo, Hao-Chung
2017-11-23
Comprehensive studies were carried out to understand the origin of the current hysteresis effects in highly efficient C 60 -CH 3 NH 3 PbI 3 (MAPbI 3 ) heterojunction solar cells, using atomic-force microscopy, transmittance spectra, photoluminescence spectra, X-ray diffraction patterns and a femtosecond time-resolved pump-probe technique. The power conversion efficiency (PCE) of C 60 -MAPbI 3 solar cells can be increased to 18.23% by eliminating the point (lattice) defects in the MAPbI 3 thin film which is fabricated by using the one-step spin-coating method with toluene washing treatment. The experimental results show that the point defects and surface defects of the MAPbI 3 thin films can be minimized by varying the dropping time of the washing solvent. The point defects (surface defects) can be reduced with an (a) increase (decrease) in the dropping time, resulting in an optimized dropping time for obtaining the defect-minimized MAPbI 3 thin film deposited on top of the C 60 thin film. Consequently, the formation of the defect-minimized MAPbI 3 thin film allows for high-efficiency MAPbI 3 solar cells.
DC feedback for wide band frequency fixed current source
Aoday Hashim Mohamad Al-Rawi
2013-03-01
Full Text Available Alternating current sources are mainly used in bioelectrical impedance devices. Nowadays 50 – 100 kHz bioelectrical impedance devices are commonly used for body composition analysis. High frequency bioelectrical impedance analysis devices are mostly used in bioimpedance tomography and blood analysis. High speed op-amps and voltage comparators are used in this circuit. Direct current feedback is used to prevent delay. An N-Channel J-FET transistor was used to establish the voltage controlled gain amplifier (VCG. A sine wave signal has been applied as input voltage. The value of this signal should be constant in 170 mV rms to keep the output current in about 1 mA rms. Four frequencies; 100 kHz, 1 MHz, 2 MHz and 3.2 MHz were applied to the circuit and the current was measured for different load resistances. The results showed that the current was stable for changes in the resistor load, bouncing around an average point as a result of bouncing DC feedback.
Datta, Deepanjan [Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ganguly, Samiran [Department of Electronics Engineering, Indian School of Mines, Dhanbad-826004 (India); Dasgupta, S [Department of Electronics and Computer Engineering, Indian Institute of Technology, Roorkee-247667 (India)
2007-05-30
Large band-to-band tunnelling (BTBT) and gate leakage current can limit scalability of nanoscale devices. In this paper, we have proposed a novel nanoscale parallel connected heteromaterial double gate (PCHEM-DG) architecture with triple metal gate which significantly suppress BTBT leakage, making it efficient for low power design in the sub-10 nm regime. We have also proposed a triple gate device with p{sup +} poly-n{sup +} poly-p{sup +} poly gate which has substantially low gate leakage over symmetric DG MOSFET. Simulations are performed using a 2D Poisson-Schroedinger simulator and verified with a 2D device simulator ATLAS. We conclude that, due to intrinsic body doping, negligible gate leakage, suppressed BTBT over symmetric DG devices, metal gate (MG) PCHEM-DG MOSFET is efficient for low power circuit design in the nanometre regime.
Datta, Deepanjan; Ganguly, Samiran; Dasgupta, S
2007-01-01
Large band-to-band tunnelling (BTBT) and gate leakage current can limit scalability of nanoscale devices. In this paper, we have proposed a novel nanoscale parallel connected heteromaterial double gate (PCHEM-DG) architecture with triple metal gate which significantly suppress BTBT leakage, making it efficient for low power design in the sub-10 nm regime. We have also proposed a triple gate device with p + poly-n + poly-p + poly gate which has substantially low gate leakage over symmetric DG MOSFET. Simulations are performed using a 2D Poisson-Schroedinger simulator and verified with a 2D device simulator ATLAS. We conclude that, due to intrinsic body doping, negligible gate leakage, suppressed BTBT over symmetric DG devices, metal gate (MG) PCHEM-DG MOSFET is efficient for low power circuit design in the nanometre regime
Hysteresis in audiovisual synchrony perception.
Jean-Rémy Martin
Full Text Available The effect of stimulation history on the perception of a current event can yield two opposite effects, namely: adaptation or hysteresis. The perception of the current event thus goes in the opposite or in the same direction as prior stimulation, respectively. In audiovisual (AV synchrony perception, adaptation effects have primarily been reported. Here, we tested if perceptual hysteresis could also be observed over adaptation in AV timing perception by varying different experimental conditions. Participants were asked to judge the synchrony of the last (test stimulus of an AV sequence with either constant or gradually changing AV intervals (constant and dynamic condition, respectively. The onset timing of the test stimulus could be cued or not (prospective vs. retrospective condition, respectively. We observed hysteretic effects for AV synchrony judgments in the retrospective condition that were independent of the constant or dynamic nature of the adapted stimuli; these effects disappeared in the prospective condition. The present findings suggest that knowing when to estimate a stimulus property has a crucial impact on perceptual simultaneity judgments. Our results extend beyond AV timing perception, and have strong implications regarding the comparative study of hysteresis and adaptation phenomena.
Ozkaya, Efe; Yilmaz, Cetin
2017-02-01
The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.
Understanding Unemployment Hysteresis
Møller, Niels Framroze
What explains the persistence of unemployment? The literature on hysteresis, which is based on unit root testing in autoregressive models, consists of a vast number of univariate studies, i.e. that analyze unemployment series in isolation, but few multivariate analyses that focus on the sources...... of hysteresis. As a result, this question remains largely unanswered. This paper presents a multivariate econometric framework for analyzing hysteresis, which allows one to test different hypotheses about non-stationarity of unemployment against one another. For example, whether this is due to a persistently...... to UK quarterly data on prices, wages, output, unemployment and crude oil prices, suggests that, for the period 1988 up to the onset of the …financial crisis, the non-stationarity of UK unemployment cannot be explained as a result of slow adjustment, including sluggish wage formation as emphasized...
Model for hysteresis in magnetostriction
Sablik, M.J.; Jiles, D.C.
1988-01-01
The domain wall pinning model used previously by the authors to explain magnetic hysteresis and stress effects on magnetic hysteresis is used in conjunction with the Callen and Callen expression for magnetostriction λ to qualitatively explain magnetostriction hysteresis both with respect to magnetic intensity H and flux density B. The Callen and Callen form for the magnetostriction is used because it depends functionally on effective field H/sub e/ rather than M, and this produces hysteresis in λ vs B whereas λ = λ(M) does not. To our knowledge, this is the first time that magnetic hysteresis and magnetostriction hysteresis have been modeled simultaneously
Observation of dark-current signals from the S-band structures of the SLAC linac
Assmann, R.; Decker, F.J.; Seidel, M.; Siemann, R.H.; Whittum, D.
1997-07-01
It is well known that the electro-magnetic fields in high-gradient RF structures can cause electron emission from the metallic structure walls. If the emitted electrons are captured and accelerated by the accelerating fields so-called dark-current is induced. Dark-currents have been measured and studied for various RF-structures. In this paper the authors present measurements of RF induced signals for the SLC S-band structures. For nominal gradients of 17 MV/m it is shown that the dark-current can be strong enough to significantly reduce the signal-to-noise ratio of the SLC beam wire scanners. They also show results from RF measurements in the dipole band. The measurements are compared to more direct observations of dark-current and it is tried to connect the results to possible effects on the accelerated particle beam
The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions
Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu
2017-12-01
Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.
Wang, Ling; Bao, Xichang; Zhang, Wenjing; Li, Chao; Yuan, Yonggang; Xu, Jintong; Zhang, Yan; Li, Xiangyang
2009-01-01
Dark current is critical for GaN-based avalanche photodiodes because it significantly increases the noise current and limits the multiplication factor. It has been found that the band-to-band tunneling current is the dominant origin of the dark current for avalanche photodiodes at the onset of breakdown voltage. Experimentally, for GaN-based avalanche photodiodes with a thinner intrinsic layer, the dark current increases nearly exponentially with the applied voltage even at a lower bias voltage. In this paper, the intrinsic layer (i-layer) width of GaN-based avalanche photodiodes has been varied to study its effect on the band-to-band tunneling current. A widely used equation was used to calculate the band-to-band tunneling current of avalanche photodiodes with different i-layer widths (i-layer 0.1 µm, 0.2 µm and 0.4 µm). At −40 V, the band-to-band tunneling current significantly reduces by a magnitude of 10 −15 A with an increase in the i-layer width from 0.1 µm to 0.2 µm, and a magnitude of 10 −29 A with an increase in the i-layer width from 0.2 µm to 0.4 µm. Then, GaN-based avalanche photodiodes (i-layer 0.1 µm, 0.2 µm and 0.4 µm) with different-sized mesa were fabricated. Also, the measurement of dark current of all three different structures was performed, and their multiplication factors were given
Magnetic transmission gear finite element simulation with iron pole hysteresis
Filippini, Mattia; Alotto, Piergiorgio; Glehn, Gregor; Hameyer, Kay
2018-04-01
Ferromagnetic poles in a magnetic transmission gear require particular attention during their design process. Usually, during the numerical simulation of these devices the effects of hysteresis for loss estimation are neglected and considered only during post-processing calculations. Since the literature lacks hysteresis models, this paper adopts a homogenized hysteretic model able to include eddy current and hysteresis losses in 2D laminated materials for iron poles. In this article the results related to the hysteresis in a magnetic gear are presented and compared to the non-hysteretic approach.
Hysteresis in Magnetocaloric Materials
von Moos, Lars
, obtained at the initial low and final high field. However, in first order materials thermal entropy hysteresis loops are obtained through characterization, corresponding to measurements done in an increasing and a decreasing temperature mode. Indirectly determining the MCE through the use of the Maxwell...... order materials, taking the magnetic and thermal history dependence of material properties into account, as well as the heat production due to hysteretic losses. MnFe(P,As) and Gd5Si2Ge2 compounds are modelled and it is found that the Preisach approach is suitable to reproduce material behavior in both......In this thesis the effects of hysteresis on magnetocaloric material properties and their performance in magnetic refrigeration devices are investigated. This is done through an experimental and model study of first order magnetocaloric materials MnFe(P,As) and Gd5Si2Ge2. The experimental...
Christopher Tyler
2012-05-01
Full Text Available One of the most fascinating phenomena in stereopsis is the profound hysteresis effect reported by Fender and Julesz (1967, in which the depth percept persisted with increasing disparity long past the point at which depth was recovered with decreasing disparity. To control retinal disparity without vergence eye movements, they stabilized the stimuli on the retinas with an eye tracker. I now report that stereo hysteresis can be observed directly in printed stereograms simply by rotating the image. As the stereo image rotates, the horizontal disparities rotate to become vertical, then horizontal with inverted sign, and then vertical again before returning to the original orientation. The depth shows an interesting popout effect, almost as though the depth was turning on and off rapidly, despite the inherently sinusoidal change in the horizontal disparity vector. This stimulus was generated electronically in a circular format so that the random-dot field could be dynamically replaced, eliminating any cue to cyclorotation. Noise density was scaled with eccentricity to fade out the stimulus near fixation. For both the invariant and the dynamic noise, profound hysteresis of several seconds delay was found in six observers. This was far longer than the reaction time to respond to changes in disparity, which was less than a second. Purely horizontal modulation of disparity to match the horizontal vector component of the disparity rotation did not show the popout effect, which thus seems to be a function of the interaction between horizontal and vertical disparities and may be attributable to depth interpolation processes.
Tepe, M; Abukay, D
2003-01-01
The effect of pelletization pressures on structural properties and critical current hysteresis of Bi sub 1 sub . sub 7 Pb sub 0 sub . sub 3 Sr sub 2 Ca sub 2 Cu sub 3 O sub y samples was investigated. The samples used in this study were prepared by classical solid-state reaction at the pressures from 100 up to 500 MPa. The obtained samples were characterized by resistance vs. temperature, (R-T), critical current density vs. applied magnetic field, (J sub c -H), material density vs. pressure, (rho-P), XRD, SEM, and EDAX. The results of this study showed that the quality of electrical and structural properties of Bi-2223 bulk superconductors strongly depends on the pelletization pressure. Pressing of bulk samples at 400 MPa produces textured grain alignment and associates microstructural modifications in order to enhance flux pinning and thus increases current carrying capacities. (Abstract Copyright [2003], Wiley Periodicals, Inc.)
An Algorithm for Surface Current Retrieval from X-band Marine Radar Images
Chengxi Shen
2015-06-01
Full Text Available In this paper, a novel current inversion algorithm from X-band marine radar images is proposed. The routine, for which deep water is assumed, begins with 3-D FFT of the radar image sequence, followed by the extraction of the dispersion shell from the 3-D image spectrum. Next, the dispersion shell is converted to a polar current shell (PCS using a polar coordinate transformation. After removing outliers along each radial direction of the PCS, a robust sinusoidal curve fitting is applied to the data points along each circumferential direction of the PCS. The angle corresponding to the maximum of the estimated sinusoid function is determined to be the current direction, and the amplitude of this sinusoidal function is the current speed. For validation, the algorithm is tested against both simulated radar images and field data collected by a vertically-polarized X-band system and ground-truthed with measurements from an acoustic Doppler current profiler (ADCP. From the field data, it is observed that when the current speed is less than 0.5 m/s, the root mean square differences between the radar-derived and the ADCP-measured current speed and direction are 7.3 cm/s and 32.7°, respectively. The results indicate that the proposed procedure, unlike most existing current inversion schemes, is not susceptible to high current speeds and circumvents the need to consider aliasing. Meanwhile, the relatively low computational cost makes it an excellent choice in practical marine applications.
Current-induced massless mode of the interband phase difference in two-band superconductors
Tanaka, Y.; Hase, I.; Yanagisawa, T.; Kato, G.; Nishio, T.; Arisawa, S.
2015-01-01
Highlights: • A current induces an interband phase difference in two-band superconductors. • By controlling the boundary conditions, we can trap this phase difference. • A phase difference soliton is observed after switching off the current. - Abstract: There is a current-induced massless mode of an interband phase difference in two-band superconductors. For a thin wire, the externally applied current always invokes a finite interband phase difference when the end of the wire is terminated by a natural boundary condition, i.e., where the total current is specified but the other parameters are left as free and a finite interband phase difference is allowed. This condition can be realized by the normal state region formed by the shrinking of a cross section of the wire where the critical current density is lower than that of the other region of the wire. The interband interaction in the wire cannot completely prevent the emergence of the interband phase difference, though it reduces it somewhat. Instead, boundary conditions determine the presence of the interband phase difference. By reverting the normal state into the superconducting state at the shrunken region by decreasing the current, we may trap a rotation of integral multiples of 2π radians of the interband phase difference in the wire. After switching off the current, this rotation of integral multiples of 2π radians, which continuously spreads over the whole wire, is separated into several interband phase difference solitons (i-solitons), where one i-soliton locally generates a 2π interband phase difference
Talantsev, Evgueni [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); Crump, Wayne P.; Tallon, Jeffery L. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)
2017-12-15
Key questions for any superconductor include: what is its maximum dissipation-free electrical current (its 'critical current') and can this be used to extract fundamental thermodynamic parameters? Present models focus on depinning of magnetic vortices and implicate materials engineering to maximise pinning performance. But recently we showed that the self-field critical current for thin films is a universal property, independent of microstructure, controlled only by the penetration depth. Here, using an extended BCS-like model, we calculate the penetration depth from the temperature dependence of the superconducting energy gap thus allowing us to fit self-field critical current data. In this way we extract from the T-dependent gap a set of key thermodynamic parameters, the ground-state penetration depth, energy gap and jump in electronic specific heat. Our fits to 79 available data sets, from zinc nanowires to compressed sulphur hydride with critical temperatures of 0.65 to 203 K, respectively, are excellent and the extracted parameters agree well with reported bulk values. Samples include thin films, wires or nanowires of single- or multi-band s-wave and d-wave superconductors of either type I or type II. For multiband or multiphase samples we accurately recover individual band contributions and phase fractions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Dang Xuanju; Tan Yonghong
2005-01-01
A new neural networks dynamic hysteresis model for piezoceramic actuator is proposed by combining the Preisach model with diagonal recurrent neural networks. The Preisach model is based on elementary rate-independent operators and is not suitable for modeling piezoceramic actuator across a wide frequency band because of the rate-dependent hysteresis characteristic of the piezoceramic actuator. The structure of the developed model is based on the structure of the Preisach model, in which the rate-independent relay hysteresis operators (cells) are replaced by the rate-dependent hysteresis operators of first-order differential equation. The diagonal recurrent neural networks being modified by an adjustable factor can be used to model the hysteresis behavior of the pizeoceramic actuator because its structure is similar to the structure of the modified Preisach model. Therefore, the proposed model not only possesses that of the Preisach model, but also can be used for describing its dynamic hysteresis behavior. Through the experimental results of both the approximation and the prediction, the effectiveness of the neural networks dynamic hysteresis model for the piezoceramic actuator is demonstrated
Dark currents and their effect on the primary beam in an X-band linac
Karl L. F. Bane
2005-06-01
Full Text Available We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC we first perform a fairly complete (with some approximations calculation of dark-current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65 MV/m, considering two very different assumptions about dark-current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent ∼1%. Considering that ∼1 mA outgoing dark current is seen in measurement, this implies that ∼100 mA (or 10 pC per period is emitted within the structure itself. Using the formalism of the Liénard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is ∼1 V kick per mA (or per 0.1 pC per period dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be ∼15 V. For the NLC linac this translates to a ratio of (final vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made—particularly the number of emitters and their distribution within a structure—the accuracy of this result may be limited to the order of magnitude.
Improving the performance of hysteresis direct torque control of ...
Hysteresis direct torque control (HDTC) of an interior permanent magnet synchronous motor ... response, and improved the quality of the current waveforms. Luukko ..... LF , however, the cost and size of the AF increases, and therefore suitable ...
A BiCMOS Binary Hysteresis Chaos Generator
Ahmadi, S.; Newcomb, R. W.
A previous op-amp RC circuit which was proven to give chaotic signals is converted to a BiCMOS design more suitable to integrated circuit realization. The structure results from a degree two differential equation which includes binary hysteresis as its nonlinearity. The circuit is realized by differential (voltage to current) pairs feeding two capacitors, which carry the dynamics, with the key component being a (voltage to current) binary hysteresis circuit due to Linares.
Hysteresis phenomena in hydraulic measurement
Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y
2012-01-01
Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.
Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.
Xu, Jixian
2015-05-08
Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.
Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes
Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.
2015-05-01
Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.
Creeping of hysteresis cycles; Reptation des cycles d'hysteresis
Neel, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Faculte des Sciences de Grenoble, 38 (France)
1959-07-01
Creeping consists of a kind of progressive translation of dissymmetric ferromagnetic hysteresis cycles as a function of the order number of the cycle. It is interpreted here by means of a probable coupling field, the existence of which is connected to a statistical conception of the distribution of the elementary regions. (author) [French] La reptation consiste en une sorte de translation progressive des cycles d'hysteresis ferromagnetiques dissymetriques en fonction du numero d'ordre du cycle. L'auteur l'interprete au moyen d'un champ aleatoire de couplage dont l'existence est liee a une conception statistique de la distribution des domaines elementaires. (auteur)
Modelling of hysteresis in thin superconducting screens for mixed-mu suspension systems
Asher, G.M.; Williams, J.T.; Walters, C.R.; Joyce, H.; Paul, R.J.A.
1982-01-01
Mixed-mu levitation is the principle whereby iron is levitated in a magnetic field and stabilized by the proximity of diamagnetic superconducting screens. In a dynamic environment, the screens are subject to changing magnetic fields thus causing hysteresis losses in the superconducting material. This paper is concerned with the modeling of such hysteresis. A finite difference approximation to the current and field distributions is employed, the current distribution being made consistent with critical current values by iteration. Square and disc shaped screen samples are studied and hysteresis curves computed. It is shown that the method represents a fair approximation to the hysteresis behavior of thin superconducting screens. 8 refs
Moore, James E. [Naval Research Laboratory, Washington, DC 20375 (United States); Purdue University, West Lafayette, Indiana 47907 (United States); Hages, Charles J. [Purdue University, West Lafayette, Indiana 47907 (United States); Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Agrawal, Rakesh; Lundstrom, Mark S.; Gray, Jeffery L. [Purdue University, West Lafayette, Indiana 47907 (United States)
2016-07-11
Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependence and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.
Hysteresis as an Implicit Prior in Tactile Spatial Decision Making
Thiel, Sabrina D.; Bitzer, Sebastian; Nierhaus, Till; Kalberlah, Christian; Preusser, Sven; Neumann, Jane; Nikulin, Vadim V.; van der Meer, Elke; Villringer, Arno; Pleger, Burkhard
2014-01-01
Perceptual decisions not only depend on the incoming information from sensory systems but constitute a combination of current sensory evidence and internally accumulated information from past encounters. Although recent evidence emphasizes the fundamental role of prior knowledge for perceptual decision making, only few studies have quantified the relevance of such priors on perceptual decisions and examined their interplay with other decision-relevant factors, such as the stimulus properties. In the present study we asked whether hysteresis, describing the stability of a percept despite a change in stimulus property and known to occur at perceptual thresholds, also acts as a form of an implicit prior in tactile spatial decision making, supporting the stability of a decision across successively presented random stimuli (i.e., decision hysteresis). We applied a variant of the classical 2-point discrimination task and found that hysteresis influenced perceptual decision making: Participants were more likely to decide ‘same’ rather than ‘different’ on successively presented pin distances. In a direct comparison between the influence of applied pin distances (explicit stimulus property) and hysteresis, we found that on average, stimulus property explained significantly more variance of participants’ decisions than hysteresis. However, when focusing on pin distances at threshold, we found a trend for hysteresis to explain more variance. Furthermore, the less variance was explained by the pin distance on a given decision, the more variance was explained by hysteresis, and vice versa. Our findings suggest that hysteresis acts as an implicit prior in tactile spatial decision making that becomes increasingly important when explicit stimulus properties provide decreasing evidence. PMID:24587045
Pinched hysteresis behavior in a PID-controlled resistor
M.A. Carrasco-Aguilar
2018-06-01
Full Text Available A current-controlled grounded resistor that exhibits a frequency-dependent pinched hysteresis loop is described. A mathematical model describing this behavior is derived and validated numerically, which has the form of a Proportional Integral-Derivative (PID controller. The proposed topology is build by using AD844 commercially available active device configured as second-generation current conveyor and experimental tests are compared with numerical simulations, showing a good agreement among them. Moreover, the proposed PID-controlled resistor can be reconfigured in order to be used in future applications such as programmable analog circuits. Keyword: Pinched hysteresis, Current conveyors, Nonlinear resistor, Proportional-Integral-Derivative Controller
The Kurzweil integral and hysteresis
Krejci, P
2006-01-01
A hysteresis operator, called the play, with variable (possibly degenerate) characteristics, is considered in the space of right-continuous regulated functions. The Lipschitz continuity of the input-output mapping is proved by means of a new technique based on the Kurzweil integral
Mechano-electric optoisolator transducer with hysteresis
Ciurus, I M; Dimian, M; Graur, A
2011-01-01
This article presents a theoretical and experimental study of designing a mechano-electric optoisolator transducer with hysteresis. Our research is centred upon designing transducers on the basis of optical sensors, as photoelectric conversions eliminate the influence of electromagnetic disturbances. Conversion of the rotation/translation motions into electric signals is performed with the help of a LED-photoresistor Polaroid optocoupler. The driver of the optocoupler's transmitter module is an independent current source. The signal conditioning circuit is a Schmitt trigger circuit. The device is designed to be applied in the field of automation and mechatronics.
Ka-band Doppler Scatterometer for Measurements of Ocean Vector Winds and Surface Currents
National Aeronautics and Space Administration — Ocean surface currents impact heat transport, surface momentum and gas fluxes, ocean productivity and marine biological communities. Ocean currents also have social...
The Kurzweil integral and hysteresis
Krejčí, Pavel
2006-01-01
Roč. 55, - (2006), s. 144-154 ISSN 1742-6588. [International Workshop on Multi-Rate Processes and Hysteresis. Cork , 03.04.2006-08.04.2006] Institutional research plan: CEZ:AV0Z10190503 Keywords : regulated functions * space Subject RIV: BA - General Mathematics http://iopscience.iop.org/1742-6596/55/1/014/pdf/1742-6596_55_1_014.pdf
Designing Hysteresis with Dipolar Chains
Concha, Andrés; Aguayo, David; Mellado, Paula
2018-04-01
Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.
Bertotti, G.; Basso, V.; Beatrice, C.; LoBue, M.; Magni, A.; Tiberto, P.
2001-01-01
An overview is given of the present understanding of hysteresis phenomena in magnetic materials. The problem is addressed from three approximate viewpoints: the connection between rate-independent hysteresis and micromagnetics; the modifications brought into this picture by thermal relaxation effects; the role of rate-dependent magnetization mechanisms, like eddy-current-damped domain wall motion
Hysteresis in the solid oxide fuel cell cathode reaction
Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse
2001-01-01
The oxygen electrode reaction at the Pt/yttria-stabilised zirconia (YSZ) interface is investigated at 1000degreesC on Pt point electrodes on YSZ and YSZ point contacts on Pt. Linear potential sweeps show a pronounced non-linear current-voltage relation and inductive hysteresis, in particular at l...
Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.
2008-01-01
The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.
Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.
Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo
2015-07-01
InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.
Hysteresis development in superconducting Josephson junctions
Refai, T.F.; Shehata, L.N.
1988-09-01
The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs
Modeling of quasistatic magnetic hysteresis with feed-forward neural networks
Makaveev, Dimitre; Dupre, Luc; De Wulf, Marc; Melkebeek, Jan
2001-01-01
A modeling technique for rate-independent (quasistatic) scalar magnetic hysteresis is presented, using neural networks. Based on the theory of dynamic systems and the wiping-out and congruency properties of the classical scalar Preisach hysteresis model, the choice of a feed-forward neural network model is motivated. The neural network input parameters at each time step are the corresponding magnetic field strength and memory state, thereby assuring accurate prediction of the change of magnetic induction. For rate-independent hysteresis, the current memory state can be determined by the last extreme magnetic field strength and induction values, kept in memory. The choice of a network training set is motivated and the performance of the network is illustrated for a test set not used during training. Very accurate prediction of both major and minor hysteresis loops is observed, proving that the neural network technique is suitable for hysteresis modeling. [copyright] 2001 American Institute of Physics
Hysteresis in the phase transition of chocolate
Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua
2016-01-01
We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.
Hysteresis rarefaction in the Riemann problem
Krejčí, Pavel
2008-01-01
Roč. 138, - (2008), s. 1-10 ISSN 1742-6588. [International Workshop on Multi-Rate Processes and Hysteresis. Cork , 31.03.2008-05.04.2008] Institutional research plan: CEZ:AV0Z10190503 Keywords : Preisach hysteresis * Riemann problem Subject RIV: BA - General Mathematics http://iopscience.iop.org/1742-6596/138/1/012010
A Study of QMM Hysteresis Cycle Data. Field Linearity and Field Reproducibility
Vernin, P.; Fonvieille, H.; Quemener, G.
1997-08-01
A study of the hysteresis data provided by the quadrupole field mapping of the HRS Electron Arm is presented. For each quad Q1, Q2, Q3, a series of runs was performed to obtain the hysteresis curve of the magnet at maximal current. The focus of the present document is not the field maps but a specific analysis of QMM data in terms of hysteresis curves, and field linearity as a function of the current. These measurements allow to put limits on the reproducibility of magnet setting for the presently used operating mode of the quads. (K.A.)
Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes
Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.
2015-01-01
Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3− antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour. PMID:25953105
Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium
Iuliia Liubimova
2017-06-01
Full Text Available Magnetic and thermal hysteresis (difference in magnetic properties on cooling and heating have been studied in polycrystalline Dy (dysprosium between 80 and 250 K using measurements of the reversible Villari effect and alternating current (AC susceptibility. We argue that measurement of the reversible Villari effect in the antiferromagnetic phase is a more sensitive method to detect magnetic hysteresis than the registration of conventional B(H loops. We found that the Villari point, recently reported in the antiferromagnetic phase of Dy at 166 K, controls the essential features of magnetic hysteresis and AC susceptibility on heating from the ferromagnetic state: (i thermal hysteresis in AC susceptibility and in the reversible Villari effect disappears abruptly at the temperature of the Villari point; (ii the imaginary part of AC susceptibility is strongly frequency dependent, but only up to the temperature of the Villari point; (iii the imaginary part of the susceptibility drops sharply also at the Villari point. We attribute these effects observed at the Villari point to the disappearance of the residual ferromagnetic phase. The strong influence of the Villari point on several magnetic properties allows this temperature to be ranked almost as important as the Curie and Néel temperatures in Dy and likely also for other rare earth elements and their alloys.
Stabilization and Control Models of Systems With Hysteresis Nonlinearities
Mihail E. Semenov
2012-05-01
Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.
Jørgensen, Ivan Harald Holger; Bogason, Gudmundur
1998-01-01
This paper presents a third order switched current sigma delta-modulator. The modulator is optimized at the system level for minimum power consumption by careful design of the noise transfer function. A thorough noise analysis of the cascode type current copiers used to implement the modulator......, together with a new methodology for evaluating the nonlinear settling behavior is presented. This leads to a new optimization methodology that minimize the power consumption in switched current circuits for given design parameters. The optimization methodology takes process variations into account....... The modulator is implemented in a standard 2.4 mu m CMOS process only using MOS capacitors. For a power supply of 3.3 V the power consumption is approximately 2.5 mW when operating at a sampling rate of 600 kHz. Under these condition the peak SNR it measured to 74.5 dB with a signal band width of 5.5 kHz. Due...
Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop
Myung-Hwan Yoon
2017-05-01
Full Text Available Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.
Possible hysteresis loops of resonatorless optical bistability
Nguyen Ba An; Le Thi Cat Tuong.
1990-05-01
We qualitatively show that hysteresis loops of intrinsic optical bistability phenomena without any additional feedback may be of various shapes including those of a butterfly and a three-winged bow. (author). 15 refs, 4 figs
Khan, Mohammad Rezwan; Barreras, Jorge Varela; Stan, Ana-Irina
2014-01-01
. Therefore, an accurate knowledge of the hysteresis of OCV is vital for various applications and battery models. This is because currently Battery Management Systems (BMS) use the well-defined OCV-SoC representative curve for SoC estimation and power prediction. Particularly lithium-ion batteries with iron......One of the common phenomenona for most of the battery cell chemistries is hysteresis. Since an open circuit voltage (OCV) path is not identical for the charge and discharge of the battery cell at different states of charge (SoC) level, the battery cells show the hysteresis effect. Usually, the OCV...... i.e. voltage with zero current after previous charge is higher than the OCV after discharge at the same SoC level. It embodies the hysteresis of the battery cell. The OCV is principally subjected to previous operating condition and cannot be taken as self-regulating from the operating history...
Hysteresis effects in the cores of particle accelerator magnets
AUTHOR|(CDS)2086181; Schoerling, Daniel
A study of the hysteresis effects in the cores of particle accelerator magnets has been performed in the framework of the work presented in this thesis. This study has been focused on normal conducting particle accelerator magnets whose cores are manufactured using ferromagnetic materials. The magnetic circuits have been modelled using the developed models: one model for the magnetic circuit and one for the magnetization of the material in the core. The parameters of the magnetic circuit model have been identified with the help of simulations which rely on the finite element method (Opera 3D), while the parameters of the magnetic hysteresis model have been identified through experimental measurements performed using a method developed in the framework of this work. The modelling results have been validated by means of experimental measurements performed on two magnets: one small size magnet which has been specifically designed and manufactured, and one magnet which is currently used in a particle accelerator ...
Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto
2016-04-01
The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of
OCV Hysteresis in Li-Ion Batteries including Two-Phase Transition Materials
Michael A. Roscher
2011-01-01
Full Text Available The relation between batteries' state of charge (SOC and open-circuit voltage (OCV is a specific feature of electrochemical energy storage devices. Especially NiMH batteries are well known to exhibit OCV hysteresis, and also several kinds of lithium-ion batteries show OCV hysteresis, which can be critical for reliable state estimation issues. Electrode potential hysteresis is known to result from thermodynamical entropic effects, mechanical stress, and microscopic distortions within the active electrode materials which perform a two-phase transition during lithium insertion/extraction. Hence, some Li-ion cells including two-phase transition active materials show pronounced hysteresis referring to their open-circuit voltage. This work points out how macroscopic effects, that is, diffusion limitations, superimpose the latte- mentioned microscopic mechanisms and lead to a shrinkage of OCV hysteresis, if cells are loaded with high current rates. To validate the mentioned interaction, Li-ion cells' state of charge is adjusted to 50% with various current rates, beginning from the fully charged and the discharged state, respectively. As a pronounced difference remains between the OCV after charge and discharge adjustment, obviously the hysteresis vanishes as the target SOC is adjusted with very high current rate.
A novel model of magnetorheological damper with hysteresis division
Yu, Jianqiang; Dong, Xiaomin; Zhang, Zonglun
2017-10-01
Due to the complex nonlinearity of magnetorheological (MR) behavior, the modeling of MR dampers is a challenge. A simple and effective model of MR damper remains a work in progress. A novel model of MR damper is proposed with force-velocity hysteresis division method in this study. A typical hysteresis loop of MR damper can be simply divided into two novel curves with the division idea. One is the backbone curve and the other is the branch curve. The exponential-family functions which capturing the characteristics of the two curves can simplify the model and improve the identification efficiency. To illustrate and validate the novel phenomenological model with hysteresis division idea, a dual-end MR damper is designed and tested. Based on the experimental data, the characteristics of the novel curves are investigated. To simplify the parameters identification and obtain the reversibility, the maximum force part, the non-dimensional backbone part and the non-dimensional branch part are derived from the two curves. The maximum force part and the non-dimensional part are in multiplication type add-rule. The maximum force part is dependent on the current and maximum velocity. The non-dominated sorting genetic algorithm II (NSGA II) based on the design of experiments (DOE) is employed to identify the parameters of the normalized shape functions. Comparative analysis is conducted based on the identification results. The analysis shows that the novel model with few identification parameters has higher accuracy and better predictive ability.
Hysteresis response of daytime net ecosystem exchange during drought
N. Pingintha
2010-03-01
Full Text Available Continuous measurements of net ecosystem CO_{2} exchange (NEE using the eddy-covariance method were made over an agricultural ecosystem in the southeastern US. During optimum environmental conditions, photosynthetically active radiation (PAR was the primary driver controlling daytime NEE, accounting for as much as 67 to 89% of the variation in NEE. However, soil water content became the dominant factor limiting the NEE-PAR response during the peak growth stage. NEE was significantly depressed when high PAR values coincided with very low soil water content. The presence of a counter-clockwise hysteresis of daytime NEE with PAR was observed during periods of water stress. This is a result of the stomatal closure control of photosynthesis at high vapor pressure deficit and enhanced respiration at high temperature. This result is significant since this hysteresis effect limits the range of applicability of the Michaelis-Menten equation and other related expressions in the determination of daytime NEE as a function of PAR. The systematic presence of hysteresis in the response of NEE to PAR suggests that the gap-filling technique based on a non-linear regression approach should take into account the presence of water-limited field conditions. Including this step is therefore likely to improve current evaluation of ecosystem response to increased precipitation variability arising from climatic changes.
Origins and mechanisms of hysteresis in organometal halide perovskites
Li, Cheng; Guerrero, Antonio; Zhong, Yu; Huettner, Sven
2017-05-01
Inorganic-organic halide organometal perovskites, such as CH3NH3PbI3 and CsPbI3, etc, have been an unprecedented rising star in the field of photovoltaics since 2009, owing to their exceptionally high power conversion efficiency and simple fabrication processability. Despite its relatively short history of development, intensive investigations have been concentrating on this material; these have ranged from crystal structure analysis and photophysical characterization to performance optimization and device integration, etc. Yet, when applied in photovoltaic devices, this material suffers from hysteresis, that is, the difference of the current-voltage (I-V) curve during sweeping in two directions (from short-circuit towards open-circuit and vice versa). This behavior may significantly impede its large-scale commercial application. This Review will focus on the recent theoretical and experimental efforts to reveal the origin and mechanism of hysteresis. The proposed origins include (1) ferroelectric polarization, (2) charge trapping/detrapping, and (3) ion migration. Among them, recent evidence consistently supports the idea that ion migration plays a key role for the hysteretic behavior in perovskite solar cells (PSCs). Hence, this Review will summarize the recent results on ion migration such as the migrating ion species, activation energy measurement, capacitive characterization, and internal electrical field modulation, etc. In addition, this Review will also present the devices with alleviation/elimination of hysteresis by incorporating either large-size grains or phenyl-C61-butyric acid methyl ester molecules. In a different application, the hysteretic property has been utilized in photovoltaic and memristive switching devices. In sum, by examining these three possible mechanisms, it is concluded that the origin of hysteresis in PSCs is associated with a combination of effects, but mainly limited by ion/defect migration. This strong interaction between ion
A thermodynamic model of contact angle hysteresis.
Makkonen, Lasse
2017-08-14
When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.
Hysteresis phenomenon in nuclear reactor dynamics
Pirayesh, Behnam; Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Akbari, Monireh [Shahid Rajaee Teacher Training Univ., Tehran (Iran, Islamic Republic of). Dept. of Mathematics
2017-05-15
This paper applies a nonlinear analysis method to show that hysteresis phenomenon, due to the Saddle-node bifurcation, may occur in the nuclear reactor. This phenomenon may have significant effects on nuclear reactor dynamics and can even be the beginning of a nuclear reactor accident. A system of four dimensional nonlinear ordinary differential equations was considered to study the hysteresis phenomenon in a typical nuclear reactor. It should be noted that the reactivity was considered as a nonlinear function of state variables. The condition for emerging hysteresis was investigated using Routh-Hurwitz criterion and Sotomayor's theorem for saddle node bifurcation. A numerical analysis is also provided to illustrate the analytical results.
Equivalent Circuit Modeling of Hysteresis Motors
Nitao, J J; Scharlemann, E T; Kirkendall, B A
2009-08-31
We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.
Hysteresis behaviour of soils and rocks
Hueckel, T.; Nova, R.
1979-01-01
A theory of mechanical hysteresis of geological materials under alternating loading within the yield locus is studied, with emphasis on isotropic pressure sensitivity effects. The hysteresis is described by a 'secant' tensorially linear law which depends on a scalar parameter varying with the advance of the cycle. The constitutive relations are formulated piece-wisely within appropriately conceived stress reversal loci. Specialization to conventional triaxial tests is considered. Finally the feasibility of the model is examined by comparing calculated and actual test data, including those obtained in a cyclic undrained compression test which enlights the phenomenon of cyclic mobility. (orig.)
A Sorption Hysteresis Model For Cellulosic Materials
Frandsen, Henrik Lund; Damkilde, Lars
2006-01-01
The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and....../or imply accounting for the entire history variations of every material point. This paper presents a sorption hysteresis model based on a state formulation and expressed in closed-form solutions, which makes it suitable for implementation into a numerical method....
Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics
Lee, Hyo-Chang
2018-03-01
Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied
A low-power current-reuse dual-band analog front-end for multi-channel neural signal recording.
Sepehrian, H; Gosselin, B
2014-01-01
Thoroughly studying the brain activity of freely moving subjects requires miniature data acquisition systems to measure and wirelessly transmit neural signals in real time. In this application, it is mandatory to simultaneously record the bioelectrical activity of a large number of neurons to gain a better knowledge of brain functions. However, due to limitations in transferring the entire raw data to a remote base station, employing dedicated data reduction techniques to extract the relevant part of neural signals is critical to decrease the amount of data to transfer. In this work, we present a new dual-band neural amplifier to separate the neuronal spike signals (SPK) and the local field potential (LFP) simultaneously in the analog domain, immediately after the pre-amplification stage. By separating these two bands right after the pre-amplification stage, it is possible to process LFP and SPK separately. As a result, the required dynamic range of the entire channel, which is determined by the signal-to-noise ratio of the SPK signal of larger bandwidth, can be relaxed. In this design, a new current-reuse low-power low-noise amplifier and a new dual-band filter that separates SPK and LFP while saving capacitors and pseudo resistors. A four-channel dual-band (SPK, LFP) analog front-end capable of simultaneously separating SPK and LFP is implemented in a TSMC 0.18 μm technology. Simulation results present a total power consumption per channel of 3.1 μw for an input referred noise of 3.28 μV and a NEF for 2.07. The cutoff frequency of the LFP band is fc=280 Hz, and fL=725 Hz and fL=11.2 KHz for SPK, with 36 dB gain for LFP band 46 dB gain for SPK band.
Levy, Phillip M
2015-11-01
The platysma muscle acts as a major depressor in the lower face with subsequent inaesthetic implications. Botulinum toxin-A can be very useful to reverse some of these and this chapter describes how to (1) sharpen the jawline with the Nefertiti Lift, (2) treat anterior neck bands, and (3) soften necklace lines.
Managing Hysteresis: Three Cornerstones to Fiscal Stability
Weeks, Richard
2012-01-01
The effects of the Great Recession of 2007-2009 continue to challenge school business officials (SBOs) and other education leaders as they strive to prepare students for the global workforce. Economists have borrowed a word from chemistry to describe this state of affairs: hysteresis--the lingering effects of the past on the present. Today's SBOs…
Ferromagnetic hysteresis and the effective field
Naus, H.W.L.
2002-01-01
The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical
Hysteresis and transition in swirling nonpremixed flames
Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.
2009-01-01
Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change
The hysteresis limit in relaxation oscillation problems
Krejčí, Pavel
2005-01-01
Roč. 22, - (2005), s. 103-123 ISSN 1742-6588. [International Workshop on Hysteresis & Multi-scale Asymptotic. Cork , 17.3.2004-21.3.2004] Institutional research plan: CEZ:AV0Z1019905 Keywords : Helly principle * differential equation Subject RIV: BA - General Mathematics http://iopscience.iop.org/1742-6596/22/1/007
Weak differentiability of scalar hysteresis operators
Brokate, M.; Krejčí, Pavel
2015-01-01
Roč. 35, č. 6 (2015), s. 2405-2421 ISSN 1078-0947 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * differentiability * variational inequality Subject RIV: BA - General Mathematics Impact factor: 1.127, year: 2015 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10677
The environmental Kuznets curve when the environment exhibits hysteresis
Ranjan, Ram; Shortle, James
2007-01-01
The relevance and implications of the environmental Kuznets hypothesis are examined in the presence of stock effects and non-linearities associated with pollution generation. Stock effects lead to hysteresis and irreversibilities in environmental quality that are overlooked when emphasis is placed on the flow effects of pollutants only. It is demonstrated here that an optimal growth plan in the presence of stock effects shifts the focus away from prescribing economic growth as a panacea for environmental ills. Implications for currently industrializing economies are discussed. (author)
The environmental Kuznets curve when the environment exhibits hysteresis
Ranjan, Ram [Department of Food and Resource Economics, University of Florida, FL (United States); Shortle, James [Agricultural and Environmental Economics, the Department of Agricultural Economics and Rural Sociology, Penn State University, PA (United States)
2007-10-15
The relevance and implications of the environmental Kuznets hypothesis are examined in the presence of stock effects and non-linearities associated with pollution generation. Stock effects lead to hysteresis and irreversibilities in environmental quality that are overlooked when emphasis is placed on the flow effects of pollutants only. It is demonstrated here that an optimal growth plan in the presence of stock effects shifts the focus away from prescribing economic growth as a panacea for environmental ills. Implications for currently industrializing economies are discussed. (author)
Prandtl-Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities
Al Janaideh, M.; Krejčí, Pavel
2012-01-01
Roč. 407, č. 9 (2012), s. 1365-1367 ISSN 0921-4526 R&D Projects: GA ČR GAP201/10/2315 Institutional research plan: CEZ:AV0Z10190503 Keywords : complex hysteresis * time dependent hysteresis * Prandtl-Ishlinskii model Subject RIV: BA - General Mathematics Impact factor: 1.327, year: 2012 http://www.sciencedirect.com/science/article/pii/S092145261100932X
Goldfarb, R.B.; Clark, A.F.
1985-01-01
Magnetization and ac susceptibility of a standard NbTi superconductor were measured as a function of longitudinal dc magnetic field. The ac-field-amplitude and frequency dependences of the complex susceptibility are examined. The magnetization is related to the susceptibility by means of a theoretical derivation based on the field dependence of the critical current density. Hysteresis losses, obtained directly from dc hysteresis loops and derived theoretically from ac susceptibility and critical current density, were in reasonable agreement
On the relevance of kinking to reversible hysteresis in MAX phases
Jones, N.G.; Humphrey, C.; Connor, L.D.; Wilhelmsson, O.; Hultman, L.; Stone, H.J.; Giuliani, F.; Clegg, W.J.
2014-01-01
This paper examines the idea that reversible hysteresis in MAX phases is caused by the formation, growth and collapse of unstable, or incipient, kink bands. In situ X-ray diffraction of polycrystalline Ti 3 SiC 2 in compression showed that residual elastic lattice strains developed during the first loading cycle and remained approximately constant afterwards. These residual strains were compressive in grains with a low Schmid factor and tensile in grains with a high Schmid factor, consistent with previous observations of plastically deformed hexagonal metals. In contrast, incipient kink bands would be expected to collapse completely, without any residual strain. Elastoplastic self-consistent simulations showed that reversible hysteresis is predicted if some grains yield by slip on the basal plane, while others remain predominantly elastic, giving both the experimentally observed magnitude of the work dissipated and its dependence on the maximum applied stress. The reversible hysteresis in single crystals was studied by cyclically indenting thin films of Ti 3 SiC 2 and Ti 3 SiC 2 /TiC multilayers on Al 2 O 3 substrates. The work dissipated in the multilayer films was greater than in Ti 3 SiC 2 alone, despite the reduction in volume fraction of Ti 3 SiC 2 . Reversible hysteresis was also observed during indentation of single-crystal cubic MgO, demonstrating that this behaviour can occur if there are insufficient slip systems to accommodate the strain around the indentation. These results show that reversible hysteresis is associated with conventional dislocation flow, without the need for unstable kinking
Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo
2015-09-01
We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.
Bean grain hysteresis with induced mechanical damage
Renata C. Campos
Full Text Available ABSTRACT This study aimed to evaluate the effect of mechanical damage on the hysteresis of beans with induced mechanical damage under different conditions of temperature and relative humidity. Beans (Phaseolus vulgaris L. harvested manually with 35% water content (w.b. were used. Part of this product was subjected to induced mechanical damage by Stein Breakage Tester and controlled drying (damaged and control sample, for sorption processes. The sorption isotherms of water were analyzed for different temperature conditions: 20, 30, 40 and 50 oC; and relative humidity: 0.3; 0.4; 0.5; 0.7 and 0.9 (decimal. Equilibrium moisture content data were correlated with six mathematical models, and the Modified Oswin model was the one that best fitted to the experimental data. According to the above mentioned isotherms, it was possible to observe the phenomenon of hysteresis of damaged and control samples, and this phenomenon was more pronounced in control ones.
The Bilinear Product Model of Hysteresis Phenomena
Kádár, György
1989-01-01
In ferromagnetic materials non-reversible magnetization processes are represented by rather complex hysteresis curves. The phenomenological description of such curves needs the use of multi-valued, yet unambiguous, deterministic functions. The history dependent calculation of consecutive Everett-integrals of the two-variable Preisach-function can account for the main features of hysteresis curves in uniaxial magnetic materials. The traditional Preisach model has recently been modified on the basis of population dynamics considerations, removing the non-real congruency property of the model. The Preisach-function was proposed to be a product of two factors of distinct physical significance: a magnetization dependent function taking into account the overall magnetization state of the body and a bilinear form of a single variable, magnetic field dependent, switching probability function. The most important statement of the bilinear product model is, that the switching process of individual particles is to be separated from the book-keeping procedure of their states. This empirical model of hysteresis can easily be extended to other irreversible physical processes, such as first order phase transitions.
Hysteresis in simulations of malaria transmission
Yamana, Teresa K.; Qiu, Xin; Eltahir, Elfatih A. B.
2017-10-01
Malaria transmission is a complex system and in many parts of the world is closely related to climate conditions. However, studies on environmental determinants of malaria generally consider only concurrent climate conditions and ignore the historical or initial conditions of the system. Here, we demonstrate the concept of hysteresis in malaria transmission, defined as non-uniqueness of the relationship between malaria prevalence and concurrent climate conditions. We show the dependence of simulated malaria transmission on initial prevalence and the initial level of human immunity in the population. Using realistic time series of environmental variables, we quantify the effect of hysteresis in a modeled population. In a set of numerical experiments using HYDREMATS, a field-tested mechanistic model of malaria transmission, the simulated maximum malaria prevalence depends on both the initial prevalence and the initial level of human immunity in the population. We found the effects of initial conditions to be of comparable magnitude to the effects of interannual variability in environmental conditions in determining malaria prevalence. The memory associated with this hysteresis effect is longer in high transmission settings than in low transmission settings. Our results show that efforts to simulate and forecast malaria transmission must consider the exposure history of a location as well as the concurrent environmental drivers.
Factors influencing hysteresis characteristics of concrete dam deformation
Jia-he Zhang
2017-04-01
Full Text Available Thermal deformation of a concrete dam changes periodically, and its variation lags behind the air temperature variation. The lag, known as the hysteresis time, is generally attributed to the low velocity of heat conduction in concrete, but this explanation is not entirely sufficient. In this paper, analytical solutions of displacement hysteresis time for a cantilever beam and an arch ring are derived. The influence of different factors on the displacement hysteresis time was examined. A finite element model was used to verify the reliability of the theoretical analytical solutions. The following conclusions are reached: (1 the hysteresis time of the mean temperature is longer than that of the linearly distributed temperature difference; (2 the dam type has a large impact on the displacement hysteresis time, and the hysteresis time of the horizontal displacement of an arch dam is longer than that of a gravity dam; (3 the reservoir water temperature variation lags behind of the air temperature variation, which intensifies the differences in the horizontal displacement hysteresis time between the gravity dam and the arch dam; (4 with a decrease in elevation, the horizontal displacement hysteresis time of a gravity dam tends to increase, whereas the horizontal displacement hysteresis time of an arch dam is likely to increase initially, and then decrease; and (5 along the width of the dam, the horizontal displacement hysteresis time of a gravity dam decreases as a whole, while the horizontal displacement hysteresis time of an arch dam is shorter near the center and longer near dam surfaces.
Influence of magnetostriction on hysteresis loss of electrical steel sheet
Tada, Hirotoshi, E-mail: tada.547.hirotoshi@jp.nssmc.com [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan); Fujimura, Hiroshi; Yashiki, Hiroyoshi [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan)
2013-01-15
To reveal influence of magnetostriction on hysteresis loss of electrical steel sheet, hysteresis loss and magnetostriction of non-oriented electrical steel sheets (NOs) with various Si and Al content and grain size and grain oriented electrical steel sheet (GO) were measured under compressive or tensile stress. Here, Si and Al content and stress were focused on as the way to change magnetostriction. Stress direction and magnetizing direction were parallel to the rolling direction. Following three main results were obtained. The first is hysteresis loss of NO with same grain size which increased with magnetostriction independently of Si and Al content and stress. The second is hysteresis loss of NO was larger than that of GO under same magnetostriction. The third is hysteresis loss of NO at magnetostriction of zero was inversely proportional to grain size. Even if the grain size of NO increased to be similar size of GO without changing texture, the hysteresis loss of NO at magnetostriction of zero would be larger than that of GO because of the difference in texture. - Highlights: Black-Right-Pointing-Pointer Hysteresis loss and magnetostriction of NO and GO were measured under stress. Black-Right-Pointing-Pointer Hysteresis loss of NO was proportional to magnetostriction. Black-Right-Pointing-Pointer Hysteresis loss of GO was proportional to magnetostriction. Black-Right-Pointing-Pointer Hysteresis loss of NO was larger than that of GO under samemagnetostriction. Black-Right-Pointing-Pointer Hysteresis loss was separated into 4 components.
Transport hysteresis and hydrogen isotope effect on confinement
Itoh, S.-I.; Itoh, K.
2018-03-01
A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.
Kwon, O Y; Kam, S C; Choi, J H; Do, J M; Hyun, J S
2011-01-01
To identify the effects of sertraline, a selective serotonin reuptake inhibitor, for the treatment of premature ejaculation (PE), changes in brain current-source density (CSD) of the high beta frequency band (22-30 Hz) induced by sertraline administration were investigated during audiovisual erotic stimulation. Eleven patients with PE (36.9±7.8 yrs) and 11 male volunteers (24.2±1.9 years) were enrolled. Scalp electroencephalography (EEG) was conducted twice: once before sertraline administration and then again 4 h after the administration of 50 mg sertraline. Statistical non-parametric maps were obtained using the EEG segments to detect the current-density differences in the high beta frequency bands (beta-3, 22-30 Hz) between the EEGs before and after sertraline administration in the patient group and between the patient group and controls after the administration of sertraline during the erotic video sessions. Comparing between before and after sertraline administration in the patients with PE, the CSD of the high beta frequency band at 4 h after sertraline administration increased significantly in both superior frontal gyri and the right medial frontal gyrus (P<0.01). The CSD of the beta-3 band of the patients with PE were less activated significantly in the middle and superior temporal gyrus, lingual and fusiform gyrus, inferior occipital gyrus and cuneus of the right cerebral hemisphere compared with the normal volunteers 4 h after sertraline administration (P<0.01). In conclusion, sertraline administration increased the CSD in both the superior frontal and right middle temporal gyrus in patients with PE. The results suggest that the increased neural activity in these particular cerebral regions after sertraline administration may be associated with inhibitory effects on ejaculation in patients with PE.
Mathew, Prijil; Sajith Mathews, T.; Kurian, P. J.; Chattopadyay, P. K.
2018-05-01
Hysteresis in discharge current is produced in a low-pressure, magnetic field free, Glow discharge plasma by varying discharge voltage. The variation in area of the hysteresis loops with pressure, electrode distance and load resistor studied. To understand, the nonlinear behaviour of the I-V characteristics, the changes in gas resistance with electrode voltage, pressure and load resistor were studied. After many trials we propose the best suitable empirical equation for the exponential decrease of the gas resistance with electrode voltage as; R = Rmin + Ae-0.008V, which is a novel one and matches well with our experimental results.
Hysteresis, nucleation and growth phenomena in spin-crossover solids
Ridier, Karl; Molnár, Gábor; Salmon, Lionel; Nicolazzi, William; Bousseksou, Azzedine
2017-12-01
The observation and the study of first-order phase transitions in cooperative spin-crossover (SCO) solids exhibiting hysteresis behaviours are of particular interest and currently constitute a burgeoning area in the field of bistable molecular materials. The understanding and the control of the transition mechanisms (nucleation and growth processes) and their dynamics within the hysteresis region appear to be a general and appealing problem from a fundamental point of view and for technological applications as well. This review reports on the recent progresses and most important findings made on the spatiotemporal dynamics of the spin transition in SCO solids, particularly through the universal nucleation and growth process. Both thermally induced and light-induced spin transitions are discussed. We open up this review to the central question of the evolution of the transition mechanisms and dynamics in SCO nano-objects, which constitute promising systems to reach ultra-fast switching, and the experimental issues inherent to such studies at the micro- and nanometric scale.
Magnetic hysteresis measurements of thin films under isotropic stress.
Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus
2000-10-01
Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.
Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis
Ping Liu
2013-01-01
Full Text Available The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to construct a unique dynamic model in a given rate range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set input signal. Subsequently, a proportional integral derivative (PID control scheme combined with a feedforward compensation is implemented on a giant magnetostrictive actuator (GMA for real-time precise trajectory tracking. Simulations and experiments both verify the effectiveness and the practicality of the proposed modeling and control methods.
Hysteresis data of planar perovskite solar cells fabricated with different solvents.
Seo, You-Hyun; Kim, Eun-Chong; Cho, Se-Phin; Kim, Seok-Soon; Na, Seok-In
2018-02-01
In this data article, we introduced the hysteresis of planar perovskite solar cells (PSCs) fabricated using dimethylformamide (DMF), gamma-butyrolactone (GBL), methyl-2-pyrrolidinone (NMP), dimethylsulfoxide (DMSO), DMF-DMSO, GBL-DMSO and NMP-DMSO as perovskite precursor solutions according to different scan directions, sweep times, and current stability. The hysteresis analyses of the planar PSCs prepared with a glass-ITO /NiO X /perovskite /PC 61 BM/BCP/Ag configuration were measured with Keithley 2400 source meter unit under 100 mW/cm 2 (AM 1.5 G). The data collected in this article compares the hysteresis of PSCs with different solvents and is directly related to our research article "High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance" (You-Hyun Seo et al., 2017 [1]).
Hysteresis data of planar perovskite solar cells fabricated with different solvents
You-Hyun Seo
2018-02-01
Full Text Available In this data article, we introduced the hysteresis of planar perovskite solar cells (PSCs fabricated using dimethylformamide (DMF, gamma-butyrolactone (GBL, methyl-2-pyrrolidinone (NMP, dimethylsulfoxide (DMSO, DMF-DMSO, GBL-DMSO and NMP-DMSO as perovskite precursor solutions according to different scan directions, sweep times, and current stability. The hysteresis analyses of the planar PSCs prepared with a glass-ITO /NiOX/perovskite /PC61BM/BCP/Ag configuration were measured with Keithley 2400 source meter unit under 100 mW/cm2 (AM 1.5 G. The data collected in this article compares the hysteresis of PSCs with different solvents and is directly related to our research article “High-Performance Planar Perovskite Solar Cells: Influence of Solvent upon Performance” (You-Hyun Seo et al., 2017 [1].
Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering.
Son, Dae-Yong; Kim, Seul-Gi; Seo, Ja-Young; Lee, Seon-Hee; Shin, Hyunjung; Lee, Donghwa; Park, Nam-Gyu
2018-01-31
Organic-inorganic halide perovskite is believed to be a potential candidate for high efficiency solar cells because power conversion efficiency (PCE) was certified to be more than 22%. Nevertheless, mismatch of PCE due to current density (J)-voltage (V) hysteresis in perovskite solar cells is an obstacle to overcome. There has been much lively debate on the origin of J-V hysteresis; however, effective methodology to solve the hysteric problem has not been developed. Here we report a universal approach for hysteresis-free perovskite solar cells via defect engineering. A severe hysteresis observed from the normal mesoscopic structure employing TiO 2 and spiro-MeOTAD is almost removed or does not exist upon doping the pure perovskites, CH 3 NH 3 PbI 3 and HC(NH 2 ) 2 PbI 3 , and the mixed cation/anion perovskites, FA 0.85 MA 0.15 PbI 2.55 Br 0.45 and FA 0.85 MA 0.1 Cs 0.05 PbI 2.7 Br 0.3 , with potassium iodide. Substantial reductions in low-frequency capacitance and bulk trap density are measured from the KI-doped perovskite, which is indicative of trap-hysteresis correlation. A series of experiments with alkali metal iodides of LiI, NaI, KI, RbI and CsI reveals that potassium ion is the right element for hysteresis-free perovskite. Theoretical studies suggest that the atomistic origin of the hysteresis of perovskite solar cells is not the migration of iodide vacancy but results from the formation of iodide Frenkel defect. Potassium ion is able to prevent the formation of Frenkel defect since K + energetically prefers the interstitial site. A complete removal of hysteresis is more pronounced at mixed perovskite system as compared to pure perovskites, which is explained by lower formation energy of K interstitial (-0.65 V for CH 3 NH 3 PbI 3 vs -1.17 V for mixed perovskite). The developed KI doping methodology is universally adapted for hysteresis-free perovskite regardless of perovskite composition and device structure.
Phenomenological Treatment of the Inductive Hysteresis in the Cathode Reaction on YSZ Electrolytes
Bay, Lasse; Zachau-Christiansen, Birgit; Jacobsen, Torben
1999-01-01
The cathode reaction on YSZ electrolytes shows inductive hysteresis behavior with an activation/deactivation process of the cell. This is described by a phenomenological model, where the rate of activation is proportional to the current density and the rate of deactivation is proportional...
Wang Xingwei; Zheng Bin; Wood, Marc; Li Shibo; Chen Wei; Liu Hong
2005-01-01
Automated detection and classification of banded chromosomes may help clinicians diagnose cancers and other genetic disorders at an early stage more efficiently and accurately. However, developing such an automated system (including both a high-speed microscopic image scanning device and related computer-assisted schemes) is quite a challenging and difficult task. Since the 1980s, great research efforts have been made to develop fast and more reliable methods to assist clinical technicians in performing this important and time-consuming task. A number of computer-assisted methods including classical statistical methods, artificial neural networks and knowledge-based fuzzy logic systems, have been applied and tested. Based on the initial test using limited datasets, encouraging results in algorithm and system development have been demonstrated. Despite the significant research effort and progress made over the last two decades, computer-assisted chromosome detection and classification systems have not been routinely accepted and used in clinical laboratories. Further research and development is needed
Wang Xingwei [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States); Zheng Bin [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Wood, Marc [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States); Li Shibo [Department of Pediatrics, University of Oklahoma Medical Center, Oklahoma City, OK (United States); Chen Wei [Department of Physics and Engineering, University of Central Oklahoma, Edmond, OK (United States); Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, OK (United States)
2005-08-07
Automated detection and classification of banded chromosomes may help clinicians diagnose cancers and other genetic disorders at an early stage more efficiently and accurately. However, developing such an automated system (including both a high-speed microscopic image scanning device and related computer-assisted schemes) is quite a challenging and difficult task. Since the 1980s, great research efforts have been made to develop fast and more reliable methods to assist clinical technicians in performing this important and time-consuming task. A number of computer-assisted methods including classical statistical methods, artificial neural networks and knowledge-based fuzzy logic systems, have been applied and tested. Based on the initial test using limited datasets, encouraging results in algorithm and system development have been demonstrated. Despite the significant research effort and progress made over the last two decades, computer-assisted chromosome detection and classification systems have not been routinely accepted and used in clinical laboratories. Further research and development is needed.
Fingerprint image enhancement by differential hysteresis processing.
Blotta, Eduardo; Moler, Emilce
2004-05-10
A new method to enhance defective fingerprints images through image digital processing tools is presented in this work. When the fingerprints have been taken without any care, blurred and in some cases mostly illegible, as in the case presented here, their classification and comparison becomes nearly impossible. A combination of spatial domain filters, including a technique called differential hysteresis processing (DHP), is applied to improve these kind of images. This set of filtering methods proved to be satisfactory in a wide range of cases by uncovering hidden details that helped to identify persons. Dactyloscopy experts from Policia Federal Argentina and the EAAF have validated these results.
Nguyen, Phuong-Bac; Choi, Seung-Bok
2013-05-01
This paper presents a novel type of magneto-rheological (MR) actuator called a bi-directional magneto-rheological (BMR) actuator and accurate torque control results considering both hysteresis and friction compensation. The induced torque of this actuator varies from negative to positive values. As a result, it can work as either a brake or a clutch depending on the scheme of current input. In our work, the configuration of the actuator as well as its driving system is presented first. Subsequently, a congruency hysteresis based (CBH) model to take account of the effect of the hysteresis is proposed. After that, a compensator based on this model is developed. In addition, the effect of dry friction, which exists inherently with MR actuators in general, is also considered. In order to assess the effectiveness of the hysteresis compensator, several experiments on modeling and control of the actuator with different waveforms are carried out.
Nguyen, Phuong-Bac; Choi, Seung-Bok
2013-01-01
This paper presents a novel type of magneto-rheological (MR) actuator called a bi-directional magneto-rheological (BMR) actuator and accurate torque control results considering both hysteresis and friction compensation. The induced torque of this actuator varies from negative to positive values. As a result, it can work as either a brake or a clutch depending on the scheme of current input. In our work, the configuration of the actuator as well as its driving system is presented first. Subsequently, a congruency hysteresis based (CBH) model to take account of the effect of the hysteresis is proposed. After that, a compensator based on this model is developed. In addition, the effect of dry friction, which exists inherently with MR actuators in general, is also considered. In order to assess the effectiveness of the hysteresis compensator, several experiments on modeling and control of the actuator with different waveforms are carried out. (paper)
Investigation of flip-flop effects in a linear analog comparator-with-hysteresis circuit
Roche, N.J.H.; Buchner, S.P.; Warner, J.H.; McMorrow, D.; Roig, F.; Auriel, G.; Dusseau, L.; Boch, J.; Saigne, F.; Azais, B.
2013-01-01
The impact of the positive feedback loop on analog single event transient (ASET) shapes was investigated for a comparator- with-hysteresis circuit. Simulation based on previous developed ASET simulation tool is used to model the impact of the power supply voltage, the input voltage level and the injected energy. Simulation results show that these kinds of circuits are sensitive to flip-flop effects. This phenomenon occurs if the input voltage is in the hysteresis band range. In this case, simulations show that the ASET can latch the output into a non-desired state by changing the state of the circuit on his transfer characteristic curves. Laser experiments were conducted and show that the simulation outputs are in agreement with the experimental collected data. (authors)
Chávez-Gonzalez, A. F.; Martínez-Ortiz, P.; Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Caleyo, F.
2018-01-01
This work analyzes the differences between the magnetic Barkhausen noise corresponding to the initial magnetization curve and Barkhausen noise corresponding to one branch of the hysteresis loop in API-5L steel. The outcomes show that the Barkhausen noise signal corresponding to the initial magnetization curve and that corresponding to the hysteresis are significantly different. This difference is due to the presence of different processes of the domain wall dynamics in both phenomena. To study the processes present in magnetization dynamics for an applied field of H > 0, research into the angular dependence of a Barkhausen signal using applied field bands has revealed that a Barkhausen signal corresponding to the initial magnetization curve is more suitable than a Barkhausen signal corresponding to the hysteresis loop.
Yerin, Yuriy; Omelyanchouk, Alexander [Verkin Inst. for Low Temperature Physics and Engineering. 61103 Kharkiv (Ukraine); Drechsler, Stefan-Ludwig; Brink, Jeroen van den; Efremov, Dmitriy [Inst. for Theorretical Solid State Physics at the Leibniz Inst. for Solid State an Materials Research, IFW-Dresden, D-01171 Dresden (Germany)
2016-07-01
Within the Ginzburg-Landau formalism we provide a classification of all possible ground states (GS) of a three-band superconductor (3BSC) where either frustrated states with BTRS or a single non-BTRS GS with unconventional/conventional s-wave symmetry, respectively, exist. The necessary condition for a BTRS GS in general cannot be reduced to a ''-''sign of the product of all interband couplings (IBC) valid in the case of 3 equivalent bands with repulsive equal IBC, only. It corresponds to a maximal IBC frustration. We show that with increasing diversity of the parameter space this frustration is reduced and the regions of possible BTRS GS start to shrink. We track possible evolutions of a BTRS GS of a 3BSC based doubly-connected system in an external magnetic field. Depending on its parameters, a magnetic flux can induce various current density leaps, connected with adiabatic or non-adiabatic transitions from BTRS to non-BTRS states and vice versa. The current induced magnetic flux response of samples with a doubly-connected geometry e.g. as a thin tube provides a suitable experimental tool for the detection of BTRS GS.
Method and apparatus for sub-hysteresis discrimination
De Geronimo, Gianluigi
2015-12-29
Embodiments of comparator circuits are disclosed. A comparator circuit may include a differential input circuit, an output circuit, a positive feedback circuit operably coupled between the differential input circuit and the output circuit, and a hysteresis control circuit operably coupled with the positive feedback circuit. The hysteresis control circuit includes a switching device and a transistor. The comparator circuit provides sub-hysteresis discrimination and high speed discrimination.
On the rationale for hysteresis in economic decisions
Rios, Luis A.; Rachinskii, Dmitrii; Cross, Rod
2017-02-01
In the social sciences there are plausible reasons to postulate that hysteresis effects are important. The available evidence, however, is predominantly at the macro level. In this paper we review the evidence regarding hysteresis in the neural processes underlying human behavior. We argue that there is a need for experimental and neuroimaging studies to fill the gap in knowledge about hysteresis processes at the micro level in the social sciences.
Representation of hysteresis with wipe-out memory
Friedman, G.; Cha, K.
2001-01-01
A model representing scalar hysteretic systems with wipe-out memory is proposed. In this model a hysteresis operator is represented as a power series expansion containing an infinite number of terms in general. It is shown that this representation converges to any given hysteresis relation having wipe-out memory as long as the output of the given hysteresis varies sufficiently smoothly with input history. [copyright] 2001 American Institute of Physics
A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds
Raye, Julie K; Smith, Ralph C
2004-01-01
This paper summarizes the development of a homogenized free energy model which characterizes the temperature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials...
A Free Energy Model for Hysteresis Ferroelectric Materials
Smith, Ralph C; Ounaies, Zoubeida; Seelecke, Stefan; Smith, Joshua
2003-01-01
This paper provides a theory for quantifying the hysteresis and constitutive nonlinearities inherent to piezoceramic compounds through a combination of free energy analysis and stochastic homogenization techniques...
Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors
Alpha A. Lee
2016-06-01
Full Text Available Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and hence power density. We show via an analytical theory and Monte Carlo simulations that charging is sensitively dependent on the affinity of ions to the pores, and that high capacitances can be obtained for ionophobic pores of widths significantly larger than the ion diameter. Our theory also predicts that charging can be hysteretic with a significant energy loss per cycle for intermediate ionophilicities. We use these observations to explore the parameter regimes in which a capacitance-power-hysteresis trilemma may be avoided.
Aljanaideh, Omar, E-mail: omaryanni@gmail.com [Department of Mechanical Engineering, The University of Jordan, Amman 11942 (Jordan); Habineza, Didace; Rakotondrabe, Micky [AS2M department, FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, Univ. de Franche-Comté/CNRS/ENSMM, 25000 Besançon (France); Al Janaideh, Mohammad [Department of Mechanical and Industrial Engineering, The Mechatronics and Microsystems Design Laboratory, University of Toronto (Canada); Department of Mechatronics Engineering, The University of Jordan, Amman 11942 (Jordan)
2016-04-01
An experimental study has been carried out to characterize rate-dependent hysteresis of a piezoelectric tube actuator at different excitation frequencies. The experimental measurements were followed by modeling and compensation of the hysteresis nonlinearities of the piezoelectric tube actuator using both the inverse rate-dependent Prandtl–Ishlinskii model (RDPI) and inverse rate-independent Prandtl–Ishlinskii model (RIPI) coupled with a controller. The comparison of hysteresis modeling and compensation of the actuator with both models is presented.
Aljanaideh, Omar; Habineza, Didace; Rakotondrabe, Micky; Al Janaideh, Mohammad
2016-01-01
An experimental study has been carried out to characterize rate-dependent hysteresis of a piezoelectric tube actuator at different excitation frequencies. The experimental measurements were followed by modeling and compensation of the hysteresis nonlinearities of the piezoelectric tube actuator using both the inverse rate-dependent Prandtl–Ishlinskii model (RDPI) and inverse rate-independent Prandtl–Ishlinskii model (RIPI) coupled with a controller. The comparison of hysteresis modeling and compensation of the actuator with both models is presented.
Contact angle hysteresis on superhydrophobic stripes.
Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I
2014-08-21
We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.
Hysteresis in pressure-driven DNA denaturation.
Enrique Hernández-Lemus
Full Text Available In the past, a great deal of attention has been drawn to thermal driven denaturation processes. In recent years, however, the discovery of stress-induced denaturation, observed at the one-molecule level, has revealed new insights into the complex phenomena involved in the thermo-mechanics of DNA function. Understanding the effect of local pressure variations in DNA stability is thus an appealing topic. Such processes as cellular stress, dehydration, and changes in the ionic strength of the medium could explain local pressure changes that will affect the molecular mechanics of DNA and hence its stability. In this work, a theory that accounts for hysteresis in pressure-driven DNA denaturation is proposed. We here combine an irreversible thermodynamic approach with an equation of state based on the Poisson-Boltzmann cell model. The latter one provides a good description of the osmotic pressure over a wide range of DNA concentrations. The resulting theoretical framework predicts, in general, the process of denaturation and, in particular, hysteresis curves for a DNA sequence in terms of system parameters such as salt concentration, density of DNA molecules and temperature in addition to structural and configurational states of DNA. Furthermore, this formalism can be naturally extended to more complex situations, for example, in cases where the host medium is made up of asymmetric salts or in the description of the (helical-like charge distribution along the DNA molecule. Moreover, since this study incorporates the effect of pressure through a thermodynamic analysis, much of what is known from temperature-driven experiments will shed light on the pressure-induced melting issue.
Contact angle hysteresis: a review of fundamentals and applications
Eral, Burak; 't Mannetje, Dieter; Oh, J.M.
2013-01-01
Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate a description of contact angle hysteresis into physical models. To
Carnot cycle for magnetic materials: The role of hysteresis
Sasso, Carlo P.; Basso, Vittorio; LoBue, Martino; Bertotti, Giorgio
2006-01-01
The role of hysteresis in a refrigeration thermodynamic cycle involving ferromagnetic materials is discussed. A model allowing to calculate magnetization, entropy and entropy production in systems with hysteresis is used to compute a non-ideal Carnot cycle performed on a ferromagnetic material
On the controllability of the semilinear heat equation with hysteresis
Bagagiolo, Fabio
2012-01-01
We study the null controllability problem for a semilinear parabolic equation, with hysteresis entering in the semilinearity. Under suitable hypotheses, we prove the controllability result and explicitly treat the cases where the hysteresis relationship is given by a Play or a Preisach operator.
Relating hysteresis and electrochemistry in graphene field effect transistors
Veligura, Alina; Zomer, Paul J.; Vera-Marun, Ivan J.; Jozsa, Csaba; Gordiichuk, Pavlo I.; van Wees, Bart J.
2011-01-01
Hysteresis and commonly observed p-doping of graphene based field effect transistors (FETs) have been discussed in reports over the last few years. However, the interpretation of experimental works differs; and the mechanism behind the appearance of the hysteresis and the role of charge transfer
Finite element analysis of hysteresis effects in piezoelectric transducers
Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard
2000-06-01
The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.
Coexistence of negative photoconductivity and hysteresis in semiconducting graphene
Zhuang, Shendong; Tang, Nujiang; Chen, Zhuo, E-mail: zchen@nju.edu.cn [School of Physics, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu, 210093 (China); Chen, Yan; Xia, Yidong [Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, No. 22 Hankou Road, Nanjing University, Nanjing, Jiangsu, 210093 (China); Xu, Xiaoyong; Hu, Jingguo, E-mail: jghu@yzu.edu.cn [School of Physics Science and Technology, Yangzhou University, No. 180 Siwangting Road, Yangzhou, Jiangsu, 225002 (China)
2016-04-15
Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.
Coexistence of negative photoconductivity and hysteresis in semiconducting graphene
Zhuang, Shendong; Tang, Nujiang; Chen, Zhuo; Chen, Yan; Xia, Yidong; Xu, Xiaoyong; Hu, Jingguo
2016-01-01
Solution-processed graphene quantum dots (GQDs) possess a moderate bandgap, which make them a promising candidate for optoelectronics devices. However, negative photoconductivity (NPC) and hysteresis that happen in the photoelectric conversion process could be harmful to performance of the GQDs-based devices. So far, their origins and relations have remained elusive. Here, we investigate experimentally the origins of the NPC and hysteresis in GQDs. By comparing the hysteresis and photoconductance of GQDs under different relative humidity conditions, we are able to demonstrate that NPC and hysteresis coexist in GQDs and both are attributed to the carrier trapping effect of surface adsorbed moisture. We also demonstrate that GQDs could exhibit positive photoconductivity with three-order-of-magnitude reduction of hysteresis after a drying process and a subsequent encapsulation. Considering the pervasive moisture adsorption, our results may pave the way for a commercialization of semiconducting graphene-based and diverse solution-based optoelectronic devices.
Xu Hui-Jing; Shu-Xia Zhao; Gao Fei; Zhang Yu-Ru; Li Xue-Chun; Wang You-Nian
2015-01-01
A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. (paper)
Lee, Seung Hyun; Hyun, Jae Seog; Kwon, Oh-Young
2010-08-01
The purpose of this study was to examine the cerebral changes in high beta frequency oscillations (22-30 Hz) induced by sertraline and by audiovisual erotic stimuli in healthy adult males. Scalp electroencephalographies (EEGs) were conducted twice in 11 healthy, right-handed males, once before sertraline intake and again 4 hours thereafter. The EEGs included four sessions recorded sequentially while the subjects were resting, watching a music video, resting, and watching an erotic video for 3 minutes, 5 minutes, 3 minutes, and 5 minutes, respectively. We performed frequency-domain analysis using the EEGs with a distributed model of current-source analysis. The statistical nonparametric maps were obtained from the sessions of watching erotic and music videos (perotic stimuli decreased the current-source density of the high beta frequency band in the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in the baseline EEGs taken before sertraline intake (perotic stimuli did not induce any changes in current-source distribution of the brain 4 hours after sertraline intake. It is speculated that erotic stimuli may decrease the function of the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in healthy adult males. This change may debase the inhibitory control of the brain against erotic stimuli. Sertraline may reduce the decrement in inhibitory control.
Wainwright, P R
2003-01-01
Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor'. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bio-heat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur
Design for Fermilab main injector magnet ramps which account for hysteresis
Brown, B.C.; Bhat, C.M.; Harding, D.J.; Martin, P.S.; Wu, G.
1997-05-01
Although the dominant fields in accelerator electromagnets are proportional to the excitation current, precise control of accelerator parameters requires a detailed understanding of the fields in Main Injector magnets including contribution from eddy currents, magnet saturation, and hysteresis. Operation for decelerating beam makes such considerations particularly significant. Analysis of magnet measurements and design of control system software is presented. Field saturation and its effects on low field hysteresis are accounted for in specifying the field ramps for dipole, quadrupole and sextupole magnets. Some simplifying assumptions are made which are accepted as limitations on the required ramp sequences. Specifications are provided for relating desired field ramps to required current ramps for the momentum, tune, and chromaticity control
Guo, Ying; Liu, Tao; Wang, Ning; Luo, Qiang; Lin, Hong; Li, Jianbao; Jiang, Qinglong; Wu, Lili; Guo, Zhanhu
2017-08-01
We report on high-efficiency planar heterojunction perovskite solar cells (PSCs) employing Ni-doped alpha-Fe2O3 as electron-transporting layer (ETL). The suitable addition of nickel (Ni) dopant could enhance the electron conductivity as well as induce downward shift of the conduction band minimum for alpha-Fe2O3, which facilitate electrons injection and transfer from the conduction band of the perovskite. As a consequence, a substantial reduction in the charge accumulation at the perovskite/ETL interface makes the device much less sensitive to scanning rate and direction, i.e., lower hysteresis. With a reverse scan for the optimized PSC under standard AM-1.5 sunlight illumination, it generates a competitive power conversion efficiency (PCE) of 14.2% with a large short circuit current (J(sc)) of 22.35 mA/cm(2), an open circuit photovoltage (V-oc) of 0.92 V and a fill factor (FF) of 69.1%. Due to the small J-V hysteresis behavior, a higher stabilized PCE up to 11.6% near the maximum power point can be reached for the device fabricated with 4 mol% Ni-doped alpha-Fe2O3 ETL compared with the undoped alpha-Fe2O3 based cell (9.2%). Furthermore, a good stability of devices with exposure to ambient air and high levels of ultraviolet (UV)-light can be achieved. Overall, our results demonstrate that the simple solution-processed Ni-doped alpha-Fe2O3 can be a good candidate of the n-type collection layer for commercialization of PSCs.
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Martino, Luca; Kane, Shashank N; Raghuvanshi, Saroj; Vinai, Franco; Tiberto, Paola
2017-06-01
Magnetic hysteresis loops areas and hyperthermia on magnetic nanoparticles have been studied with the aim of providing reliable and reproducible methods of measuring the specific absorption rate (SAR). The SAR of Fe 3 O 4 nanoparticles with two different mean sizes, and Ni 1-x Zn x Fe 2 O 4 ferrites with 0 ≤ x ≤ 0.8 has been measured with three approaches: static hysteresis loops areas, dynamic hysteresis loops areas and hyperthermia of a water solution. For dynamic loops and thermometric measurements, specific experimental setups have been developed, that operate at comparable frequencies (≈ 69kHz and ≈ 100kHz respectively) and rf magnetic field peak values (up to 100mT). The hyperthermia setup has been fully modelled to provide a direct measurement of the SAR of the magnetic nanoparticles by taking into account the heat exchange with the surrounding environment in non-adiabatic conditions and the parasitic heating of the water due to ionic currents. Dynamic hysteresis loops are shown to provide an accurate determination of the SAR except for superparamagnetic samples, where the boundary with a blocked regime could be crossed in dynamic conditions. Static hysteresis loops consistently underestimate the specific absorption rate but can be used to select the most promising samples. A means of reliably measure SAR of magnetic nanoparticles by different approaches for hyperthermia applications is presented and its validity discussed by comparing different methods. This work fits within the general subject of metrological traceability in medicine with a specific focus on magnetic hyperthermia. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2016 Elsevier B.V. All rights reserved.
Kraus, H.G.; Jones, J.L.
1986-01-01
Simulation of an internal voltage induced arc strike and attendant voltage-current hysteresis characteristics in an FED/INTOR scale superconducting magnet and circuit protection system during discharge was performed. To begin, an analytical solution was used to investigate system response for an internally shorted magnet and simplified circuit protection system during magnet discharge. The short produced a current split within the magnet resulting in a transformer like mutual inductance effect. Thus, the coupling coefficient was introduced in the equations to be physically realistic and to prevent degeneration of the associated eigenvalue problem. The effects of varying short resistance, dump resistance, and number of coil turns shorted are presented. This led to simulation of an arc strike, including hysteresis effects, which is then compared to the usual constant resistance used to simulate magnet shorts. Tracking of arc characteristics was made possible through specially developed multiple tripping capabilities recently incorporated into MSCAP (Magnet Systems Circuitry Analysis Program) for safety and instrumentation control simulation
Modeling of hysteresis in magnetic multidomains
Cardelli, E.; Carpentieri, M.; Faba, A.; Finocchio, G.
2014-01-01
In this paper, the analysis of multi-domain nanostructures is made by means of numerical approaches. The Landau–Lifshitz–Gilbert LLG equation is used to compute the magnetic hysteresis loops for different alternate scalar polarizations. The data computed are then used to identify the parameters of a phenomenological model, based on the extension of the Preisach model in 2-D. The identification in this case is the evaluation of the size and the position of the hysterons in the H-plane. Each hysteron is associated to a domain of the nanostructure and the assembly of hysterons reproduces with satisfactory accuracy the hysteretic behavior of the nanostructure computed by the LLG equation with an extremely reduced computational time. Some possible relationships between the magnetization nanostructure and the parameters of the hysteron are suggested. These relationship should be used for a “blind” prediction of the magnetization state of much larger magnetic structures, whose computation using the LLG equation is not possible in practice due to the enormous computational time, supposing that magnetic structures with the same aspect ratio exhibit a similar distribution of magnetic domains. The theory is applied here to an example of Permalloy nanostructure
Hysteresis in the Central African Rainforest
Pietsch, Stephan Alexander; Elias Bednar, Johannes; Gautam, Sishir; Petritsch, Richard; Schier, Franziska; Stanzl, Patrick
2014-05-01
Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, analyse the relationship between resilience, standing C-stocks and change in climate and finally provide evidence of hysteresis.
Titration and hysteresis in epigenetic chromatin silencing
Dayarian, Adel; Sengupta, Anirvan M
2013-01-01
Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)
Intrinsic Low Hysteresis Touch Mode Capacitive Pressure Sensor
Fragiacomo, Giulio; Pedersen, Thomas; Hansen, Ole
2011-01-01
Hysteresis has always been one of the main concerns when fabricating touch mode capacitive pressure sensors (TMCPS). This phenomenon can be fought at two different levels: during fabrication or after fabrication with the aid of a dedicated signal conditioning circuit. We will describe...... a microfabrication step that can be introduced in order to reduce drastically the hysteresis of this type of sensors without compromising their sensitivity. Medium-high range (0 to 10 bar absolute pressure) TMCPS with a capacitive signal span of over 100pF and less than 1 % hysteresis in the entire pressure range...
Symmetric wetting heterogeneity suppresses fluid displacement hysteresis in granular piles
Moosavi, R.; Schröter, M.; Herminghaus, S.
2018-02-01
We investigate experimentally the impact of heterogeneity on the capillary pressure hysteresis in fluid invasion of model porous media. We focus on symmetric heterogeneity, where the contact angles the fluid interface makes with the oil-wet (θ1) and the water-wet (θ2) beads add up to π . While enhanced heterogeneity is usually known to increase hysteresis phenomena, we find that hysteresis is greatly reduced when heterogeneities in wettability are introduced. On the contrary, geometric heterogeneity (like bidisperse particle size) does not lead to such an effect. We provide a qualitative explanation of this surprising result, resting on rather general geometric arguments.
Modeling the hysteresis of a scanning probe microscope
Dirscherl, Kai; Garnæs, Jørgen; Nielsen, L.
2000-01-01
Most scanning probe microscopes use piezoelectric actuators in open loop configurations. Therefore a major problem related to these instruments is the image distortion due to the hysteresis effect of the piezo. In order to eliminate the distortions, cost effective software control based on a model...... for hysteresis can be applied to the scanner. We describe a new rate-independent model for the hysteresis of a piezo scanner. Two reference standards were used to determine the accuracy of the model; a one-dimensional grating with a period of 3.0 mum and a two-dimensional grating with 200 nm pitch...
Fourier transform and controlling of flux in scalar hysteresis measurement
Kuczmann, Miklos
2008-01-01
The paper deals with a possible realization of eliminating the effect of noise in scalar hysteresis measurements. The measured signals have been transformed into the frequency domain, and, after applying digital filter, the spectrums of the filtered signals have been transformed back to the time domain. The proposed technique results in an accurate noise-removal algorithm. The paper illustrates a fast controlling algorithm applying the inverse of the actually measured hysteresis loop, and another proportional one to measure distorted flux pattern. By developing the mentioned algorithms, it aims at the controlling of a more complicated phenomena, i.e. measuring the vector hysteresis characteristics
Efficient Use of Preisach Hysteresis Model in Computer Aided Design
IONITA, V.
2013-05-01
Full Text Available The paper presents a practical detailed analysis regarding the use of the classical Preisach hysteresis model, covering all the steps, from measuring the necessary data for the model identification to the implementation in a software code for Computer Aided Design (CAD in Electrical Engineering. An efficient numerical method is proposed and the hysteresis modeling accuracy is tested on magnetic recording materials. The procedure includes the correction of the experimental data, which are used for the hysteresis model identification, taking into account the demagnetizing effect for the sample that is measured in an open-circuit device (a vibrating sample magnetometer.
Watanabe, Ken; Higo, Toshiyasu
2005-01-01
XTF (X-band Test Facility, Old name is GLCTA) is the high gradient test facility for X-band acceleration. We have installed an X-band 60cm structure (KX01) in the April 2004 and have been processing it for more than 10 months. Now it is under test on long-term operation. We report here the high gradient test result to date. (author)
Zhang, X. L.; Zhang, Q.; Werner, A. D.; Tan, Z. Q.
2017-10-01
A previous modeling study of the lake-floodplain system of Poyang Lake (China) revealed complex hysteretic relationships between stage, storage volume and surface area. However, only hypothetical causal factors were presented, and the reasons for the occurrence of both clockwise and counterclockwise hysteretic functions were unclear. The current study aims to address this by exploring further Poyang Lake's hysteretic behavior, including consideration of stage-flow relationships. Remotely sensed imagery is used to validate the water surface areas produced by hydrodynamic modeling. Stage-area relationships obtained using the two methods are in strong agreement. The new results reveal a three-phase hydrological regime in stage-flow relationships, which assists in developing improved physical interpretation of hysteretic stage-area relationships for the lake-floodplain system. For stage-area relationships, clockwise hysteresis is the result of classic floodplain hysteretic processes (e.g., restricted drainage of the floodplain during recession), whereas counterclockwise hysteresis derives from the river hysteresis effect (i.e., caused by backwater effects). The river hysteresis effect is enhanced by the time lag between the peaks of catchment inflow and Yangtze discharge (i.e., the so-called Yangtze River blocking effect). The time lag also leads to clockwise hysteresis in the relationship between Yangtze River discharge and lake stage. Thus, factors leading to hysteresis in other rivers, lakes and floodplains act in combination within Poyang Lake to create spatial variability in hydrological hysteresis. These effects dominate at different times, in different parts of the lake, and during different phases of the lake's water level fluctuations, creating the unique hysteretic hydrological behavior of Poyang Lake.
Efficient modeling of vector hysteresis using fuzzy inference systems
Adly, A.A.; Abd-El-Hafiz, S.K.
2008-01-01
Vector hysteresis models have always been regarded as important tools to determine which multi-dimensional magnetic field-media interactions may be predicted. In the past, considerable efforts have been focused on mathematical modeling methodologies of vector hysteresis. This paper presents an efficient approach based upon fuzzy inference systems for modeling vector hysteresis. Computational efficiency of the proposed approach stems from the fact that the basic non-local memory Preisach-type hysteresis model is approximated by a local memory model. The proposed computational low-cost methodology can be easily integrated in field calculation packages involving massive multi-dimensional discretizations. Details of the modeling methodology and its experimental testing are presented
Energy Barriers and Hysteresis in Martensitic Phase Transformations
2008-08-01
glacial acetic acid (CH3COOH) and 10-15% perchloric acid (HCLO4) by volume, the cathode was stainless steel , the anode was stainless steel or Ti, the...Submitted to Acta Materialia Energy barriers and hysteresis in martensitic phase transformations Zhiyong Zhang, Richard D. James and Stefan Müller...hysteresis based on the growth from a small scale of fully developed austenite martensite needles. In this theory the energy of the transition layer plays a
Nguyen, Phuong-Bac; Choi, Seung-Bok
2012-01-01
This paper proposes a rate-independent hysteresis compensator for a stacked PZT (lead zirconate titanate) actuator. From a congruency-based hysteresis (CBH) model which is derived from the inherent properties of this actuator, especially the congruency, a feedforward compensator associated with it is developed. The formulation of the proposed compensator is based on an assumption that the inverse operator also possesses the same properties as the CBH model does. This implies that the compensator also possesses properties such as the wiped-out loop closing between the consecutive control points and congruency. Consequently, the expressions for the compensator can be conducted by exploiting the equations for the CBH model in two cases of monotonic increase and monotonic decrease of input excitation. In order to assess the performance of the compensator, several experiments in both open-loop and closed-loop controls are undertaken. In the open-loop control experiment, the performance of the feedforward compensator using the CBH model is compared with the classical Preisach model-based one in three cases of reference waveforms. In the closed-loop control experiment, the proposed compensator is incorporated into a PID (proportional-integral-derivative) control system and the performance of this integrated system is then evaluated and compared to that of the PID with and without compensator. (paper)
Sinan ERDOĞAN
2016-07-01
Full Text Available This paper aims to test natural rate of unemployment and approach of unemployment hysteresis in MENA*** countries for the period of 1991-2014 by using panel data analysis methods which considering the cross-sectional dependency properties. Cross-sectional dependency test results indicate that there is cross-section dependency among all variables. According to CADF test results, unemployment rates in all countries have unit root. According to the CIPS test results, unemployment rates in MENA countries has unit root. In this context, all the impact of a shock can be seen on the unemployment rate in the mentioned region is permanent. Therefore; it can be said that the current approach of unemployment hysteresis in the region countries are valid.
Wang, Geng; Zhou, Kexin; Zhang, Yeming
2018-04-01
The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.
Xie, H.; Regnier, S.; Rakotondrabe, M.
2009-01-01
A method using atomic force microscope (AFM) optical levers and a reference nanopositioning stage has been developed to characterize piezoscanner hysteresis and creep. The piezoscanner is fixed on a closed-loop nanopositioning stage, both of which have the same arrangement on each axis of the three spatial directions inside the AFM-based nanomanipulation system. In order to achieve characterization, the optical lever is used as a displacement sensor to measure the relative movement between the nanopositioning stage and the piezoscanner by lateral tracking a well-defined slope with the tapping mode of the AFM cantilever. This setup can be used to estimate a piezoscanner's voltage input with a reference displacement from the nanopositioning stage. The hysteresis and creep were accurately calibrated by the method presented, which use the current setup of the AFM-based nanomanipulation system without any modification or additional devices.
submitter Hysteresis Losses and Effective $J_{c}(B)$ Scaling Law for ITER Nb$_{3}$Sn Strands
Seiler, E; Bordini, B; Bottura, L; Bessette, D; Vostner, A; Devred, A
2016-01-01
Hysteresis losses of five Nb$_{3}$Sn International Thermonuclear Experimental Reactor reference strands were investigated by means of magnetization loop measurements in a vibrating sample magnetometer in a perpendicularly applied magnetic field. The magnetization loops were recorded while continuously sweeping the applied field between the extreme values $±B_m$, covering a wide range of maximum applied fields (0.2-10 T). In this paper, we compare the directly determined hysteresis losses based on the area of the smaller measured loops and the losses calculated by the integration of the width ΔM of the $B_m$ = 10 T magnetization loop. A suitable fitting function is proposed to describe the ΔM(B) dependence, which leads, for each strand, to an excellent agreement with the experimentally determined hysteresis losses, magnetization, and pinning force. Transport critical current measurements in a perpendicularly applied magnetic field were also performed for all the strands, and on the basis of the comparison w...
Astorino, Antonio; Romano, D.; Antonini, G.
2018-01-01
In this paper, a fast H(M) magnetostatic hysteresis model is presented, tested, and used in Simulink and partial element equivalent circuit (PEEC) environments. The model is primarily designed to achieve full compatibility with the current 3-D PEEC formalism for nonlinear isotropic magnetic...
Wide Band to ''Double Band'' upgrade
Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.
1988-06-01
The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs
Szabó, Zsolt, E-mail: szabo@evt.bme.hu [Department of Broadband Infocommunications and Electromagnetic Theory, Budapest University of Technology and Economics, Budapest (Hungary); Füzi, János [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Faculty of Engineering and Information Technology, University of Pécs (Hungary)
2016-05-15
The Preisach function is considered as a product of two special one dimensional functions, which allows the closed form evaluation of the Everett integral. The deduced closed form expressions are included in Preisach models, in particular in the static model, moving model and a rate dependent hysteresis model, which can simulate the frequency dependence of the magnetization process. The details of the freely available implementations, which are available online are presented. The identification of the model parameters and the accuracy to describe the magnetization process are discussed and demonstrated by fitting measured data. Transient electric circuit simulation with hysteresis demonstrates the applicability of the developed models. - Highlights: • Formulation of the Preisach model with Everett function in closed form. • Identification of the parameters: when the shape of the analytical Preisach function does not matches the ferromagnetic material the moving model can be applied to increase the accuracy. • Novel algorithm with Fixed Point iteration, which utilizes the closed formulation to simulate the frequency dependence of the magnetization process. • The developed hysteresis models are utilized in circuit simulation algorithm to determine the transient behavior of the current, which flows through a toroidal coil with ferromagnetic core.
Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye
2013-10-01
Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.
Wu, Cyuan-Jhang; Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Woon, Wei-Yen [Department of Physics, National Central University, Jhongli 320, Taiwan (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Department of Physics, National Central University, Jhongli 320, Taiwan (China)
2016-11-01
Highlights: • Contact angle hysteresis(CAH) on four graphitic surfacesisinvestigated. • The hysteresis loopof water drops on the polished graphite sheetshowsparticularly small receding contact angle. • The significant CAH observed on CVD graphene and highly oriented pyrolytic graphite is attributed mainly to adhesion hysteresis. • An oil-infused surface of a graphite sheet is produced by imbibition of hexadecane into its porous structure. • The hysteresis-free property for water drops on such a surface is examined and quantitatively explained. - Abstract: Contact angle hysteresis (CAH) on graphitic surfaces, including chemical vapor deposition (CVD) graphene, reduced electrophoretic deposition (EPD) graphene, highly oriented pyrolytic graphite (HOPG), and polished graphite sheet, has been investigated. The hysteresis loops of water drops on the first three samples are similar but the receding contact angle is particularly small for the polished graphite sheet.The significant CAH observed on CVD graphene and HOPG associated with atom-scale roughness has to be attributed mainly to adhesion hysteresis (surface relaxation), instead of roughness or defects.The difference of the wetting behavior among those four graphitic samples has been further demonstrated by hexadecane drops. On the surface of HOPG or CVD graphene,the contact line expands continuously with time, indicating total wetting for which the contact angle does not exist and contact line pinning disappears. In contrast, on the surface of reduced EPD graphene, spontaneous spreading is halted by spikes on it and partial wetting with small contact angle (θ≈4°) is obtained. On the surface of polished graphite sheet, the superlipophilicity and porous structure are demonstrated by imbibition and capillary rise of hexadecane. Consequently, an oil-infused graphite surface can be fabricated and the ultralow CAH of water (∆θ≈2°) is achieved.
Shihyan Lee
2014-12-01
Full Text Available The launch of VIIRS on-board the Suomi-National Polar-orbiting Partnership (S-NPP on 28 October 2011, marked the beginning of the next chapter on nighttime lights observation started by the Defense Meteorological Satellite Program’s (DMSP OLS sensor more than two decades ago. The VIIRS observes the nighttime lights on Earth through its day-night band (DNB, a panchromatic channel covering the wavelengths from 500 nm to 900 nm. Compared to its predecessors, the VIIRS DNB has a much improved spatial/temporal resolution, radiometric sensitivity and, more importantly, continuous calibration using on-board calibrators (OBCs. In this paper, we describe the current state of the NASA calibration and characterization methodology used in supporting mission data quality assurance and producing consistent mission-wide sensor data records (SDRs through NASA’s Land Product Evaluation and Analysis Tool Element (Land PEATE. The NASA calibration method utilizes the OBCs to determine gains, offset drift and sign-to-noise ratio (SNR over the entire mission. In gain determination, the time-dependent relative spectral response (RSR is used to correct the optical throughput change over time. A deep space view acquired during an S-NPP pitch maneuver is used to compute the airglow free dark offset for DNB’s high gain stage. The DNB stray light is estimated each month from new-moon dark Earth surface observations to remove the excessive stray light over the day-night terminators. As the VIIRS DNB on-orbit calibration is the first of its kind, the evolution of the calibration methodology is evident when the S-NPP VIIRS’s official calibrations are compared with our latest mission-wide reprocessing. In the future, the DNB calibration methodology is likely to continue evolving, and the mission-wide reprocessing is a key to providing consistently calibrated DNB SDRs for the user community. In the meantime, the NASA Land PEATE provides an alternative source to obtain
A Highly Accurate Approach for Aeroelastic System with Hysteresis Nonlinearity
C. C. Cui
2017-01-01
Full Text Available We propose an accurate approach, based on the precise integration method, to solve the aeroelastic system of an airfoil with a pitch hysteresis. A major procedure for achieving high precision is to design a predictor-corrector algorithm. This algorithm enables accurate determination of switching points resulting from the hysteresis. Numerical examples show that the results obtained by the presented method are in excellent agreement with exact solutions. In addition, the high accuracy can be maintained as the time step increases in a reasonable range. It is also found that the Runge-Kutta method may sometimes provide quite different and even fallacious results, though the step length is much less than that adopted in the presented method. With such high computational accuracy, the presented method could be applicable in dynamical systems with hysteresis nonlinearities.
A new Preisach-type vector model of hysteresis
D' Aquino, M. E-mail: mdaquino@unina.it; Serpico, C. E-mail: serpico@unina.it
2004-05-01
A new class of scalar hysteresis operators is obtained from the classical Preisach scalar model of hysteresis by introducing a transformation of variables dependent on a suitable function g. The operators of this class are defined by means of a new type of Play operator and are characterized by the property of having the same scalar input-output relationship. These operators are then extended to the isotropic vector case by using the vector extension of the scalar Play operator. It is shown that the function g, although does not affect the scalar behavior, it does affect the vector behaviour of the mathematical model. The influence of the function g is illustrated by reporting numerically computed rotational hysteresis losses curves for different choices of the function g.
Hysteresis losses in a dense superparamagnetic nanoparticle assembly
S. A. Gudoshnikov
2012-03-01
Full Text Available The hysteresis losses of a dense assembly of magnetite nanoparticles with an average diameter D = 25 nm are measured in the frequency range f = 10 – 200 kHz for magnetic field amplitudes up to H0 = 400 Oe. The low frequency hysteresis loops of the assembly are obtained by means of integration of the electro-motive force signal arising in a small pick-up coil wrapped around a sample which contains 1 – 5 mg of a magnetite powder. It is proved experimentally that the specific absorption rate diminishes approximately 4.5 times when the sample aspect ratio decreases from 11.4 to 1. Theoretical estimate shows that experimentally measured hysteresis loops can be approximately described only by taking into account appreciable contributions of magnetic nanoparticles of both very small, D 30 nm, diameters. Thus the wide particle size distribution has to be assumed.
Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao
2015-09-01
Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the
Hysteresis of boiling for different tunnel-pore surfaces
Pastuszko Robert
2015-01-01
Full Text Available Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS, narrow tunnel structures (NTS and mini-fins covered with the copper wire net (NTS-L. The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.
Theoretical approach to the magnetocaloric effect with hysteresis
Basso, V.; Bertotti, G.; LoBue, M.; Sasso, C.P.
2005-01-01
In this paper a thermodynamic model with internal variables is presented and applied to ferromagnetic hysteresis. The out-of-equilibrium Gibbs free energy of a magnetic system is expressed as a function of the internal state of the Preisach model. Expressions for the system entropy and the entropy production are derived. By this approach it is possible to reproduce the characteristic features of the experimentally observed temperature changes (of the order of 10 -4 K around room temperature) induced by the magnetic field along the hysteresis loop performed in iron under adiabatic condition
Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts
Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus
1997-01-01
Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....
Implementation of sorption hysteresis in multi-Fickian moisture transport
Frandsen, Henrik Lund; Svensson, Staffan
2007-01-01
In the cellular structure of wood, bound-water diffusion and water-vapor diffusion interact via sorption in a complex moisture-transportation system. At low relative humidities, moisture transport may be modeled by a Fickian diffusion equation with a good approximation. At higher relative......-35% in moisture content. Hence, for a precise moisture content computation, sorption hysteresis must be taken into account. The present paper explains the relation between sorption hysteresis and multi-Fickian moisture transport, and clarifies how models for the two phenomena are coupled. To illustrate...
Exchange rate policy when the labour market exhibits hysteresis
Barry, Frank
1994-01-01
This paper analyzes the effects of exchange rate shocks in a small open economy whose labor market exhibits hysteresis. The model is used to highlight deficiencies in the response of the Irish authorities to exchange rate crisis of 1992/93. A secondary purpose of the paper, though, is to induce those who accept that the Irish labour market is characterised by hysteresis but who reject the argument made here that a more aggressive devaluation should have been pursued, to spell out the labour-m...
PLESA, C.-S.
2017-02-01
Full Text Available This paper presents several design options for implementing a thermal shutdown circuit with hysteretic characteristic, which has two special features: a programmable activation temperature (the upper trip point of the characteristic and a hysteresis width largely insensitive to the actual value of the activation temperature and to variations of the supply voltage. A fairly straightforward architecture is employed, with the hysteresis implemented by a current source enabled by the output of the circuit. Four possible designs are considered for this current source: VBE/R, modified-VBE/R, Widlar and a peaking current source tailored for this circuit. First, a detailed analytical analysis of the circuit implemented with these current sources is performed; it indicates the one best suited for this application and provides key sizing equations. Next, the chosen current source is employed to design the thermal shutdown protection of an integrated Low-Dropout Voltage Regulator (LDO for automotive applications. Simulation results and measurements performed on the silicon implementation fully validate the design. Moreover, they compare favorably with the performance of similar circuits reported recently.
Assessing temporal variations in connectivity through suspended sediment hysteresis analysis
Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; Melland, Alice; Mellander, Per-Erik; hUallacháin, Daire Ó.
2016-04-01
Connectivity provides a valuable concept for understanding catchment-scale sediment dynamics. In intensive agricultural catchments, land management through tillage, high livestock densities and extensive land drainage practices significantly change hydromorphological behaviour and alter sediment supply and downstream delivery. Analysis of suspended sediment-discharge hysteresis has offered insights into sediment dynamics but typically on a limited selection of events. Greater availability of continuous high-resolution discharge and turbidity data and qualitative hysteresis metrics enables assessment of sediment dynamics during more events and over time. This paper assesses the utility of this approach to explore seasonal variations in connectivity. Data were collected from three small (c. 10 km2) intensive agricultural catchments in Ireland with contrasting morphologies, soil types, land use patterns and management practices, and are broadly defined as low-permeability supporting grassland, moderate-permeability supporting arable and high-permeability supporting arable. Suspended sediment concentration (using calibrated turbidity measurements) and discharge data were collected at 10-min resolution from each catchment outlet and precipitation data were collected from a weather station within each catchment. Event databases (67-90 events per catchment) collated information on sediment export metrics, hysteresis category (e.g., clockwise, anti-clockwise, no hysteresis), numeric hysteresis index, and potential hydro-meteorological controls on sediment transport including precipitation amount, duration, intensity, stream flow and antecedent soil moisture and rainfall. Statistical analysis of potential controls on sediment export was undertaken using Pearson's correlation coefficient on separate hysteresis categories in each catchment. Sediment hysteresis fluctuations through time were subsequently assessed using the hysteresis index. Results showed the numeric
Tautin, J.
1995-01-01
Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.
A thermodynamically consistent phenomenological model for ferroelectric and ferroelastic hysteresis
Kaltenbacher, B.; Krejčí, Pavel
2016-01-01
Roč. 96, č. 7 (2016), s. 874-891 ISSN 0044-2267 R&D Projects: GA ČR(CZ) GA15-12227S Institutional support: RVO:67985840 Keywords : piezoelectricity * hysteresis * ferroelasticity Subject RIV: BA - General Mathematics Impact factor: 1.332, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400292/abstract
A simple model of hysteresis behavior using spreadsheet analysis
Ehrmann, A; Blachowicz, T
2015-01-01
Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur
Dynamical hysteresis and spatial synchronization in coupled non ...
For example, hysteresis is observed in the Van der Pol system with constant ... ϵ from low values of ϵ (region A), the system remains non-chaotic (Λ < 0) up to region B (ϵ ..... false nearest neighbor (NN) between two signals 1 and 2 as. R =.
Interpreting diel hysteresis between soil respiration and temperature
C. Phillips; N. Nickerson; D. Risk; B.J. Bond
2011-01-01
Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...
Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations
Klein, O.; Krejčí, Pavel
2003-01-01
Roč. 4, č. 5 (2003), s. 755-785 ISSN 1468-1218 Keywords : hysteresis operators * Prandtl-Ishlinskii operator * asymptotic behaviour Subject RIV: BA - General Mathematics Impact factor: 0.257, year: 2003 http://www.wias-berlin.de/preprint/748/wias_preprints_748.pdf
Hysteresis of soil temperature under different soil moisture and ...
... in a solar greenhouse. The objective of this study was to find a simple method to estimate the hysteresis of soil temperature under three soil moisture and two fertilizer levels in solar greenhouse conditions with tomato crop (Lycopersicon esculentum Mill). The results show that the soil moisture had no significant effects on ...
Hysteresis Control for a DC Connected Synchronous Generator
Rasmussen, Tonny Wederberg; Evangelos, Dimarakis
2009-01-01
Abstract— for offshore wind farms the distance to the coast increases, therefore DC cables will have to be used. For a variable speed wind turbine a rectifier and a synchronous generator with a boost converter is used. As a new suggestion for control the generator speed hysteresis control...
A thermodynamically consistent phenomenological model for ferroelectric and ferroelastic hysteresis
Kaltenbacher, B.; Krejčí, Pavel
2016-01-01
Roč. 96, č. 7 (2016), s. 874-891 ISSN 0044-2267 R&D Projects: GA ČR(CZ) GA15-12227S Institutional support: RVO:67985840 Keywords : piezoelectric ity * hysteresis * ferroelasticity Subject RIV: BA - General Mathematics Impact factor: 1.332, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400292/abstract
A simple model of hysteresis behavior using spreadsheet analysis
Ehrmann, A.; Blachowicz, T.
2015-01-01
Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.
A hybrid model for the play hysteresis operator
Al Janaideh, M.; Naldi, R.; Marconi, L.; Krejčí, Pavel
2013-01-01
Roč. 430, 1 December (2013), s. 95-98 ISSN 0921-4526 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * hybrid * play Subject RIV: BA - General Mathematics Impact factor: 1.276, year: 2013 http://www.sciencedirect.com/science/article/pii/S0921452613004146
Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements
Rode, Carsten; Hansen, Kurt Kielsgaard
2011-01-01
measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...... intermittently. For one of the materials, aerated concrete, the sorption curves are determined at three different temperatures....
Piezoelectric stack actuator parameter extraction with hysteresis compensation
Zsurzsan, Tiberiu-Gabriel; Mangeot, Charles; Andersen, Michael A. E.
2014-01-01
The Piezoelectric Actuator Drive (PAD) is a type of rotary motor that transforms the linear motion of piezoelectric stack actuators into a precise rotational motion. The very high stiffness of the actuators employed make this type of motor suited for open-loop control, but the inherent hysteresis...
The back transition and hysteresis effects in DIII-D
Thomas, D.M.; Groebner, R.J.; Burrell, K.H.; Osborne, T.H.; Carlstrom, T.N.
1997-09-01
The back transition from H-mode to L-mode has been studied on DIII-D as a part of the investigation of the L-H transition power threshold scaling. Based on a density-dependent scaling for the H-mode power threshold, ITER will require substantial hysteresis in this parameter to remain in H-mode as n e rises. Defining the hysteresis in terms of the ratio of sustaining to threshold power, P HL /P LH may need to be as small as 50% for ITER. Operation of DIII-D at injection powers slightly above the H-mode threshold results in an oscillatory behavior with multiple forward-backward transitions in the course of a discharge. These discharges represent a unique system for studying various control parameters that may influence the H↔L state transition. Careful analysis of the power flow through the edge gives values for the sustaining power which are well below the corresponding threshold powers (P HL /P LH = 35--70%), indicating substantial hysteresis can be achieved in this parameter. Studies of other control parameter candidates such as edge temperature during the back transitions are less clear: the amount of hysteresis seen in these parameters, if any, is primarily dependent on the nature (ELMing, ELM-free) of the parent H-state
Nguyen, Phuong-Bac; Choi, Seung-Bok
2010-01-01
This paper proposes a novel hysteresis compensator to enhance control accuracy in open-loop position tracking control of a piezoceramic flexible beam. The proposed hysteresis compensator consists of two components: a rate-independent hysteresis compensator and a nonlinear filter. The compensator is formulated based on the inverse Preisach model, while the weight coefficients of the filter are identified adaptively using a recursive least square (RLS) algorithm. In this work, two dynamic hysteresis compensators (or rate-independent hysteresis compensators) are developed by adopting two different nonlinear filters: Volterra and bilinear filters. In order to demonstrate the improved control accuracy of the proposed dynamic compensators, a flexible beam associated with the piezoceramic actuator is modeled using the finite element method (FEM) and Euler–Bernoulli beam theory. The beam model is then integrated with the proposed hysteresis model to achieve accurate position tracking control at the tip of the beam. An experimental investigation on the tip position tracking control is undertaken by realizing three different hysteresis compensators: a rate-independent hysteresis compensator, a rate-dependent hysteresis compensator with a Volterra nonlinear filter and a rate-independent hysteresis compensator with a bilinear nonlinear filter. It is shown that the proposed dynamic hysteresis compensators can provide much better tracking control accuracy than conventional rate-independent hysteresis compensators
Modelling of creep hysteresis in ferroelectrics
He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick
2018-05-01
In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.
Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong
2015-10-01
This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.
PREFACE: International Workshop on Multi-Rate Processes and Hysteresis
Mortell, Michael P.; O'Malley, Robert E.; Pokrovskii, Alexei; Rachinskii, Dmitrii; Sobolev, Vladimir A.
2008-07-01
We are interested in singular perturbation problems and hysteresis as common strongly nonlinear phenomena that occur in many industrial, physical and economic systems. The wording `strongly nonlinear' means that linearization will not encapsulate the observed phenomena. Often these two types of phenomena are manifested for different stages of the same or similar processes. A number of fundamental hysteresis models can be considered as limit cases of time relaxation processes, or admit an approximation by a differential equation which is singular with respect to a particular parameter. However, the amount of interaction between practitioners of theories of systems with time relaxation and systems with hysteresis (and between the `relaxation' and `hysteresis' research communities) is still low, and cross-fertilization is small. In recent years Ireland has become a home for a series of prestigious International Workshops in Singular Perturbations and Hysteresis: International Workshop on Multi-rate Processes and Hysteresis (University College Cork, Ireland, 3-8 April 2006). Proceedings are published in Journal of Physics: Conference Series, volume 55. See further information at http://euclid.ucc.ie/murphys2008.htm International Workshop on Hysteresis and Multi-scale Asymptotics (University College Cork, Ireland, 17-21 March 2004). Proceedings are published in Journal of Physics: Conference Series, volume 22. See further information at http://euclid.ucc.ie/murphys2006.htm International Workshop on Relaxation Oscillations and Hysteresis (University College Cork, Ireland, 1-6 April 2002). The related collection of invited lectures, was published as a volume Singular Perturbations and Hysteresis, SIAM, Philadelphia, 2005. See further information at http://euclid.ucc.ie/hamsa2004.htm International Workshop on Geometrical Methods of Nonlinear Analysis and Semiconductor Laser Dynamics (University College Cork, Ireland, 5-5 April 2001). A collection of invited papers has been
Hysteresis behaviour of thermoelastic alloys: some shape memory alloys models
Lexcellent, C.; Torra, V.; Raniecki, B.
1993-01-01
The hysteretic behaviour of shape memory alloys (SMA) needs a more and more thin analysis because of its importance for technological applications. The comparison between different approaches allows to explicite the specifity of every model (macroscopic approach, micro-macro level, local description, phenomenological approach) and their points of convergence. On one hand, a thermodynamic treatment with a free energy expression as a mixing rule of each phase (parent or austenite phase and martensite) by adding a coupling term: the configurational energy, allowes modelling of material hysteresis loops. On the other hand, a phenomenological treatment based on a local investigation of two single crystals with a visualisation of microscopic parameters allows to perceive the phase transition mechanisms (nucleation, growth). All the obtained results show the importance of entropy production (or of the definition of the configurational energy term) for the correct description of hysteresis loops (subloops or external). (orig.)
New approach to the calculation of pistachio powder hysteresis
Tavakolipour, Hamid; Mokhtarian, Mohsen
2016-04-01
Moisture sorption isotherms for pistachio powder were determined by gravimetric method at temperatures of 15, 25, 35 and 40°C. A selected mathematical models were tested to determine the best suitable model to predict isotherm curve. The results show that Caurie model had the most satisfactory goodness of fit. Also, another purpose of this research was to introduce a new methodology to determine the amount of hysteresis at different temperatures by using best predictive model of isotherm curve based on definite integration method. The results demonstrated that maximum hysteresis is related to the multi-layer water (in the range of water activity 0.2-0.6) which corresponds to the capillary condensation region and this phenomenon decreases with increasing temperature.
Hysteresis phenomenon during operation of gas condensate fields
Sadykh-Zade, E S; Karakashev, V K; Ismailov, D Kh
1966-01-01
Hysteresis behavior of gas-condensate mixtures was studied with a PVT apparatus. The study was conducted at 26 and 80/sup 0/C, with recombined samples having gas factors of 3,000, 6,500, and 10,000 cu meters per ton. Pressure on samples was decreased or increased at rates of 0.2; 0.1; 0.05; and 0.025 atm per sec. Composition of gas- condensate is given. It is reported that different amounts of liquid were produced by condensation and evaporation processes, i.e., results depended on whether pressure was being increased or decreased. It is suggested that the effect of hysteresis should be considered in operation of gas-condensate fields.
Effects of sorption hysteresis on radionuclide releases from waste packages
Barney, G.S.; Reed, D.T.
1985-01-01
A one-dimensional, numerical transport model was used to calculate radionuclide releases from waste packages emplaced in a nuclear waste repository in basalt. The model incorporates both sorption and desorption isotherm parameters measured previously for sorption of key radionuclides on the packing material component of the waste package. Sorption hysteresis as described by these isotherms lowered releases of some radionuclides by as much as two orders of magnitude. Radionuclides that have low molar inventories (relative to uranium), high solubility, and strongly sorbed, are most affected by sorption hysteresis. In these cases, almost the entire radionuclide inventory is sorbed on the packing material. The model can be used to help optimize the thickness of the packing material layer by comparing release rate versus packing material thickness curves with Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) release limits
Begaud, Xavier
2013-01-01
Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog
Stiffness and hysteresis properties of some prosthetic feet
van Jaarsveld, H.W.L.; Grootenboer, H.J.; de Vries, J.; Koopman, Hubertus F.J.M.
1990-01-01
A prosthetic foot is an important element of a prosthesis, although it is not always fully recognized that the properties of the foot, along with the prosthetic knee joint and the socket, are in part responsible for the stability and metabolic energy cost during walking. The stiffness and the hysteresis, which are the topics of this paper, are not properly prescribed, but could be adapted to improve the prosthetic walking performance. The shape is strongly related to the cosmetic appearance a...
Molecular magnetic hysteresis at 60 kelvin in dysprosocenium
Goodwin, Conrad A. P.; Ortu, Fabrizio; Reta, Daniel; Chilton, Nicholas F.; Mills, David P.
2017-08-01
Lanthanides have been investigated extensively for potential applications in quantum information processing and high-density data storage at the molecular and atomic scale. Experimental achievements include reading and manipulating single nuclear spins, exploiting atomic clock transitions for robust qubits and, most recently, magnetic data storage in single atoms. Single-molecule magnets exhibit magnetic hysteresis of molecular origin—a magnetic memory effect and a prerequisite of data storage—and so far lanthanide examples have exhibited this phenomenon at the highest temperatures. However, in the nearly 25 years since the discovery of single-molecule magnets, hysteresis temperatures have increased from 4 kelvin to only about 14 kelvin using a consistent magnetic field sweep rate of about 20 oersted per second, although higher temperatures have been achieved by using very fast sweep rates (for example, 30 kelvin with 200 oersted per second). Here we report a hexa-tert-butyldysprosocenium complex—[Dy(Cpttt)2][B(C6F5)4], with Cpttt = {C5H2tBu3-1,2,4} and tBu = C(CH3)3—which exhibits magnetic hysteresis at temperatures of up to 60 kelvin at a sweep rate of 22 oersted per second. We observe a clear change in the relaxation dynamics at this temperature, which persists in magnetically diluted samples, suggesting that the origin of the hysteresis is the localized metal-ligand vibrational modes that are unique to dysprosocenium. Ab initio calculations of spin dynamics demonstrate that magnetic relaxation at high temperatures is due to local molecular vibrations. These results indicate that, with judicious molecular design, magnetic data storage in single molecules at temperatures above liquid nitrogen should be possible.
Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes
Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem
2014-02-01
The Gd5Ge2Si2 alloy and the off-stoichiometric Ni50Mn35In15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd5Ge2Si2 and Ni50Mn35In15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis.
Hysteresis of magnetostructural transitions: Repeatable and non-repeatable processes
Provenzano, Virgil; Della Torre, Edward; Bennett, Lawrence H.; ElBidweihy, Hatem
2014-01-01
The Gd 5 Ge 2 Si 2 alloy and the off-stoichiometric Ni 50 Mn 35 In 15 Heusler alloy belong to a special class of metallic materials that exhibit first-order magnetostructural transitions near room temperature. The magnetic properties of this class of materials have been extensively studied due to their interesting magnetic behavior and their potential for a number of technological applications such as refrigerants for near-room-temperature magnetic refrigeration. The thermally driven first-order transitions in these materials can be field-induced in the reverse order by applying a strong enough field. The field-induced transitions are typically accompanied by the presence of large magnetic hysteresis, the characteristics of which are a complicated function of temperature, field, and magneto-thermal history. In this study we show that the virgin curve, the major loop, and sequentially measured MH loops are the results of both repeatable and non-repeatable processes, in which the starting magnetostructural state, prior to the cycling of field, plays a major role. Using the Gd 5 Ge 2 Si 2 and Ni 50 Mn 35 In 15 alloys, as model materials, we show that a starting single phase state results in fully repeatable processes and large magnetic hysteresis, whereas a mixed phase starting state results in non-repeatable processes and smaller hysteresis
Hyewon Lee
2015-04-01
Full Text Available This paper describes the design, evaluation, and implementation of a compensation scheme for a measurement voltage transformer (VT using the hysteresis characteristics of the core. The error of a VT is caused by the primary winding voltage and secondary winding voltage. The latter depends on the secondary current, whereas the former depends on the primary current, which is an aggregate of the exciting and secondary currents. The secondary current is obtained directly from the secondary voltage and is used to obtain the voltage across the secondary winding. For the primary current, the exciting current is decomposed into two components: core-loss and magnetizing currents. The magnetizing current is obtained by the flux-magnetizing current curve instead of the hysteresis loop to minimize the required loops for compensation. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. Finally, the estimated voltages across the primary and secondary windings are added to the measured secondary voltage for compensation. The scheme can significantly improve the accuracy of a VT. The results of the performance of compensator are shown in the experimental test. The accuracy of the measurement VT improves from 1.0C class to 0.1C class. The scheme can help to significantly reduce the required core cross section of a measurement VT in an electrical energy system.
Lee, Jae-Hoon; Shin, Kwang-Sub; Park, Joong-Hyun; Han, Min-Koo
2006-01-01
An experimental scheme for validating the cause of the hysteresis phenomenon in hydrogenated amorphous-silicon-thin-film transistors (a-Si:H TFTs) is reported. A different gate starting voltage to the desired gate voltage has been considered to prove an effect of filling an acceptor-like or donor-like state in the interface. The integration time of the semiconductor parameter analyzer has also been controlled to investigate the effect between the de-trapping rate and hysteresis. The experimental results show that the previous data voltage in the (n-1)th frame affects the OLED current in the (n)th frame.
Investigation of scaling laws in frequency-dependent minor hysteresis loops for ferromagnetic steels
Kobayashi, S.; Tsukidate, S.; Kamada, Y.; Kikuchi, H.; Ohtani, T.
2012-01-01
Scaling laws in dynamical magnetic minor hysteresis loops have been investigated in the magnetizing frequency range of 0.05-300 Hz for various steels including Cr-Mo-V steel subjected to creep, cold rolled steels, and plastically deformed Ni. Although scaling laws in the medium magnetization range found previously fail in the high magnetization frequency regime owing to a significant contribution of eddy currents, a scaling power law of the relation between remanence and remanence work of minor loops, associated with a constant exponent of approximately 1.9, holds true in a very low magnetization regime, irrespective of magnetization frequency and investigated materials. The coefficient of the law is proportionally related to Vickers hardness over the wide frequency range. These observations demonstrate that the scaling analysis of dynamical minor loops enables us to evaluate materials degradation in a short measurement time with low measurement field and high sensitivity to defect density. - Highlights: → We performed hysteresis scaling for dynamical minor loops in ferromagnetic steels. → An universal scaling power law with an exponent of 1.9 was observed. → Coefficient of the scaling law reflects defect density due to creep and deformation. → This method is useful for on-line non-destructive evaluation.
Zhang, Xinliang; Tan, Yonghong; Su, Miyong; Xie, Yangqiu
2010-01-01
This paper presents a method of the identification for the rate-dependent hysteresis in the piezoelectric actuator (PEA) by use of neural networks. In this method, a special hysteretic operator is constructed from the Prandtl-Ishlinskii (PI) model to extract the changing tendency of the static hysteresis. Then, an expanded input space is constructed by introducing the proposed hysteretic operator to transform the multi-valued mapping of the hysteresis into a one-to-one mapping. Thus, a feedforward neural network is applied to the approximation of the rate-independent hysteresis on the constructed expanded input space. Moreover, in order to describe the rate-dependent performance of the hysteresis, a special hybrid model, which is constructed by a linear auto-regressive exogenous input (ARX) sub-model preceded with the previously obtained neural network based rate-independent hysteresis sub-model, is proposed. For the compensation of the effect of the hysteresis in PEA, the PID feedback controller with a feedforward hysteresis compensator is developed for the tracking control of the PEA. Thus, a corresponding inverse model based on the proposed modeling method is developed for the feedforward hysteresis compensator. Finally, both simulations and experimental results on piezoelectric actuator are presented to verify the effectiveness of the proposed approach for the rate-dependent hysteresis.
Gu, Guo-Ying; Zhu, Li-Min
2014-01-01
Piezoceramic actuators (PCAs) are desired devices in many micro/nano-positioning applications. The performance of PCA-based applications is severely limited by the presence of hysteresis nonlinearity. To remedy the hysteresis nonlinearity in such systems, feedforward hysteresis compensation is the most common technique. In the literature, many different feedforward hysteresis compensation approaches have been developed, but there are no comparative studies of these approaches. Focusing on the modified Prandtl-Ishlinskii model (MPIM) for asymmetric hysteresis description of piezoceramic actuators, three feedforward hysteresis compensation approaches—inverse hysteresis compensation (IHC), without inverse hysteresis compensation (WIHC), and direct inverse hysteresis compensation (DIHC)—are developed and compared in this paper. Extensive comparative experiments were conducted on a PCA-actuated stage to verify the effectiveness of the three different feedforward control approaches to hysteresis compensation. The experimental results show that the performances among the three approaches are rather similar, and the main differences among them are due to the specific implementation of each approach. (paper)
Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T
2013-01-15
Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.
Effect of contact angle hysteresis on moving liquid film integrity.
Simon, F. F.; Hsu, Y. Y.
1972-01-01
A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.
Hysteresis-free nanoplasmonic pd-au alloy hydrogen sensors
Wadell, Carl; Nugroho, Ferry Anggoro Ardy; Lidström, Emil
2015-01-01
hydrogen sensors. By increasing the amount of Au in the alloy nanoparticles up to 25 atom %, we are able to suppress the hysteresis between hydrogen absorption and desorption, thereby increasing the sensor accuracy to below 5% throughout the investigated 1 mbar to 1 bar hydrogen pressure range. Furthermore......, we observe an 8-fold absolute sensitivity enhancement at low hydrogen pressures compared to sensors made of pure Pd, and an improved sensor response time to below one second within the 0-40 mbar pressure range, that is, below the flammability limit, by engineering the nanoparticle size....
The modified Cassie’s equation and contact angle hysteresis
Xu, Xianmin; Wang, Xiaoping
2012-01-01
In this paper, we derive a modified Cassie's equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie's state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.
Bifurcation of forced periodic oscillations for equations with Preisach hysteresis
Krasnosel'skii, A; Rachinskii, D
2005-01-01
We study oscillations in resonant systems under periodic forcing. The systems depend on a scalar parameter and have the form of simple pendulum type equations with ferromagnetic friction represented by the Preisach hysteresis nonlinearity. If for some parameter value the period of free oscillations of the principal linear part of the system coincides with the period of the forcing term, then one may expect the existence of unbounded branches of periodic solutions for nearby parameter values. We present conditions for the existence and nonexistence of such branches and estimates of their number
The modified Cassie’s equation and contact angle hysteresis
Xu, Xianmin
2012-08-29
In this paper, we derive a modified Cassie\\'s equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie\\'s state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.
Hysteresis modeling based on saturation operator without constraints
Park, Y.W.; Seok, Y.T.; Park, H.J.; Chung, J.Y.
2007-01-01
This paper proposes a simple way to model complex hysteresis in a magnetostrictive actuator by employing the saturation operators without constraints. Having no constraints causes a singularity problem, i.e. the inverse matrix cannot be obtained during calculating the weights. To overcome it, a pseudoinverse concept is introduced. Simulation results are compared with the experimental data, based on a Terfenol-D actuator. It is clear that the proposed model is much closer to the experimental data than the modified PI model. The relative error is calculated as 12% and less than 1% with the modified PI Model and proposed model, respectively
Magnetic dipolar ordering and hysteresis of geometrically defined nanoparticle clusters
Kure, Mathias; Beleggia, Marco; Frandsen, Cathrine
2017-01-01
Magnetic nanoparticle clusters have several biomedical and engineering applications, and revealing the basic interplay between particle configuration and magnetic properties is important for tuning the clusters for specific uses. Here, we consider the nanoparticles as macrospins and use computer...... of the polyhedra, the central moment relaxes along one of the principal axes and induces partial alignment of the surrounding moments. The resulting net moment is up to nearly four times that of the single moment added. Furthermore, we model quasi-static hysteresis loops for structures with and without a central...
Capillary condensation, invasion percolation, hysteresis, and discrete memory
Guyer, R.A.; McCall, K.R.
1996-01-01
A model of the capillary condensation process, i.e., of adsorption-desorption isotherms, having only pore-pore interactions is constructed. The model yields (1) hysteretic isotherms, (2) invasion percolation on desorption, and (3) hysteresis with discrete memory for interior chemical potential loops. All of these features are seen in experiment. The model is compared to a model with no pore-pore interactions (the Preisach model) and to a related model of interacting pore systems (the random field Ising model). The capillary condensation model differs from both. copyright 1996 The American Physical Society
Computational modeling of magnetic hysteresis with thermal effects
Kružík, Martin; Valdman, Jan
2018-01-01
Roč. 145, č. 1 (2018), s. 90-105 ISSN 0378-4754 R&D Projects: GA ČR GA13-18652S; GA ČR(CZ) GF16-34894L; GA ČR(CZ) GA17-04301S; GA MŠk(CZ) 7AMB16AT015 Institutional support: RVO:67985556 Keywords : Dissipative processes * hysteresis * micromagnetics Subject RIV: BA - General Mathematics Impact factor: 1.218, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0474872.pdf
Impact of back-gate bias on the hysteresis effect in partially depleted SOI MOSFETs
Luo Jie-Xin; Chen Jing; Zhou Jian-Hua; Wu Qing-Qing; Chai Zhan; Yu Tao; Wang Xi
2012-01-01
The hysteresis effect in the output characteristics, originating from the floating body effect, has been measured in partially depleted (PD) silicon-on-insulator (SOI) MOSFETs at different back-gate biases. I D hysteresis has been developed to clarify the hysteresis characteristics. The fabricated devices show the positive and negative peaks in the I D hysteresis. The experimental results show that the I D hysteresis is sensitive to the back gate bias in 0.13-μm PD SOI MOSFETs and does not vary monotonously with the back-gate bias. Based on the steady-state Shockley-Read-Hall (SRH) recombination theory, we have successfully interpreted the impact of the back-gate bias on the hysteresis effect in PD SOI MOSFETs. (condensed matter: structural, mechanical, and thermal properties)
Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration
Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.
2017-01-01
Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.
Research on the Hysteresis Effect on Positioning the System with Flexible Elements
Audrius Čereška
2015-03-01
Full Text Available The paper analyzes the hysteresis phenomenon of positioning systems with flexible elements for transmitting motion of which piezoelectric actuators are used. The article investigates the influence of hysteresis on the accuracy of positioning systems. A special test bench for conducting research and stand-up methodology for carrying out experimental researches have been used. The test bench includes a computer piezo controller, an inductive displacement sensor and a dynamic data collector used for gathering data and transmitting it to the software package. Mathematical modelling of hysteresis using Matlab/Simulink software package has been done. The performed research has shown that the hysteresis model of maximum dispersion error compared to experimental results makes less than 5%. Thus, it can be stated that the selected method for hysteresis modelling is suitable for precision positioning systems having deformable elements and controlled employing piezoelectric actuators to model hysteresis.
Jie-Sheng Wang
2015-01-01
Full Text Available According to the characteristics of grinding process and accuracy requirements of technical indicators, a hybrid multiple soft-sensor modeling method of grinding granularity is proposed based on cuckoo searching (CS algorithm and hysteresis switching (HS strategy. Firstly, a mechanism soft-sensor model of grinding granularity is deduced based on the technique characteristics and a lot of experimental data of grinding process. Meanwhile, the BP neural network soft-sensor model and wavelet neural network (WNN soft-sensor model are set up. Then, the hybrid multiple soft-sensor model based on the hysteresis switching strategy is realized. That is to say, the optimum model is selected as the current predictive model according to the switching performance index at each sampling instant. Finally the cuckoo searching algorithm is adopted to optimize the performance parameters of hysteresis switching strategy. Simulation results show that the proposed model has better generalization results and prediction precision, which can satisfy the real-time control requirements of grinding classification process.
Hedayati Dezfuli, F; Alam, M Shahria
2015-01-01
Smart lead rubber bearings (LRBs), in which a shape memory alloy (SMA) is used in the form of wires, are a new generation of elastomeric isolators with improved performance in terms of recentering capability and energy dissipation capacity. It is of great interest to implement SMA wire-based lead rubber bearings (SMA-LRBs) in bridges; however, currently there is no appropriate hysteresis model for accurately simulating the behavior of such isolators. A constitutive model for SMA-LRBs is proposed in this study. An LRB is equipped with a double cross configuration of SMA wires (DC-SMAW) and subjected to compression and unidirectional shear loadings. Due to the complexity of the shear behavior of the SMA-LRB, a hysteresis model is developed for the DC-SMAWs and then combined with the bilinear kinematic hardening model, which is assumed for the LRB. Comparing the hysteretic response of decoupled systems with that of the SMA-LRB shows that the high recentering capability of the DC-SMAW model with zero residual deformation could noticeably reduce the residual deformation of the LRB. The developed constitutive model for DC-SMAWs is characterized by three stiffnesses when the shear strain exceeds a starting limit at which the SMA wires are activated due to phase transformation. An important point is that the shear hysteresis of the DC-SMAW model looks different from the flag-shaped hysteresis of the SMA because of the specific arrangement of wires and its effect on the resultant forces transferred from the wires to the rubber bearing. (paper)
Solvability of Urysohn and Urysohn-Volterra equations with hysteresis in weighted spaces
Darwish Mohamed Abdalla
2005-09-01
The existence of solutions to nonlinear integral equations of the second kind with hysteresis, of Urysohn-Volterra and Urysohn types has been established. We develop the solvability theory of Urysohn-Volterra equation with hysteresis in weighted spaces proposed by the author [M.A. Darwish, On solvability of Urysohn-Volterra equations with hysteresis in weighted spaces, J. Integral Equations and Application, 14(2) (2002), 151-163]. (author)
Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
Zaman, Mohammad Asif; Sikder, Urmita
2015-01-01
The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found
Conductivity hysteresis in polymer electrolytes incorporating poly(tetrahydrofuran)
Akbulut, Ozge; Taniguchi, Ikuo; Mayes, Anne M. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Kumar, Sundeep; Shao-Horn, Yang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)
2007-01-01
Conductivity hysteresis and room temperature ionic conductivities >10{sup -3}S/cm were recently reported for electrolytes prepared from blends of an amphiphilic comb copolymer, poly[2,5,8,11,14-pentaoxapentadecamethylene (5-hexadecyloxy-1,3-phenylene)] (polymer I), and a linear multiblock copolymer, poly(oligotetrahydrofuran-co-dodecamethylene) (polymer II), following thermal treatment [F. Chia, Y. Zheng, J. Liu, N. Reeves, G. Ungar, P.V. Wright, Electrochim. Acta 43 (2003) 1939]. To investigate the origin of these effects, polymers I and II were synthesized in this work, and the conductivity and thermal properties of the individual polymers were investigated. AC impedance measurements were conducted on I and II doped with LiBF{sub 4} or LiClO{sub 4} during gradual heating to 110{sup o}C and slow cooling to room temperature. Significant conductivity hysteresis was seen for polymer II, and was similarly observed for poly(tetrahydrofuran) (PTHF) homopolymer at equivalent doping levels. From thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and {sup 1}H NMR spectroscopy, both polymer II and PTHF were found to partially decompose to THF during heat treatment, resulting in a self-plasticizing effect on conductivity. (author)
Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
Zaman, Mohammad Asif, E-mail: zaman@stanford.edu [Department of Electrical Engineering, Stanford University (United States); Sikder, Urmita [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (United States)
2015-12-01
The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found.
Wang, Liming; Wei, Jingjing; Su, Zhaohui
2011-12-20
High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society
Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas
Lee, Min-Hyong; Chung, Chin-Wook
2010-01-01
An inverse hysteresis is observed during the E mode to H mode transition in low pressure argon inductively coupled plasmas. The transition is accompanied by an evolution of electron energy distribution from the bi-Maxwellian to the Maxwellian distribution. The mechanism of this inversion is not clear. However, we think that the bi-Maxwellian electron energy distribution in E mode, where the proportion of high energy electron is much higher than the Maxwellian distribution, would be one of the reasons for the observed inverse hysteresis. As the gas pressure increases, the inverse hysteresis disappears and the E to H mode transition follows the scenario of usual hysteresis.
On the influence of thermal hysteresis on the performance of thermomagnetic motors
Bessa, C. V. X.; Ferreira, L. D. R.; Horikawa, O.; Monteiro, J. C. B.; Gandra, F. G.; Gama, S.
2017-12-01
Although thermal hysteresis might be a problem in the magnetocaloric refrigeration, the same is not necessarily true for thermomagnetic motor applications. This work presents a comparison of the magnetocaloric properties of materials with first order magnetic transition (having large or narrow thermal hysteresis) to those with second order magnetic transition, assessing the application of these materials in thermomagnetic motors through a thermodynamic approach. Results show that the larger the thermal hysteresis, the higher the specific work produced in a thermal cycle. This allows operation at higher temperature differences with high efficiency relative to Carnot efficiency, when compared with systems using narrow hysteresis and second order transition materials.
Hysteresis behaviour of silver sputtered in different plasma atmospheres at constant flow rates
Rizk, A.; Makar, L.N.; Rizk, N.S.; Shinoda, R.
1990-01-01
The effects of ion bombardment on sputtering behaviour of pure silver targets in inert and active gas atmospheres were investigated, using a dc planar magnetron sputtering system. The obtained current-voltage characteristics showed the formation of hysteresis loops without noticeable sharp transitions. Redeposited layers of silver nitride or silver oxide on the target surface when using nitrogen or oxygen in the glow discharge, residual ionization when using dry argon atmosphere were considered the main reasons for the occurrence of these loops. The results indicate that films of AgN x and AgO x can be deposited with controlled x in the range 0 ≤ x ≤ 1 using voltage control at constant gas flow rates. (author)
Vanessa eKrause
2016-01-01
Full Text Available The primary motor cortex (M1 contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS and direct current stimulation (tDCS. Alpha (10 Hz, beta (20 Hz or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for ten minutes. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions.Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. TDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioural modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization.
Suppression in the electrical hysteresis by using CaF2 dielectric layer for p-GaN MIS capacitors
Sang, Liwen; Ren, Bing; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo
2018-04-01
The capacitance-voltage (C-V) hysteresis in the bidirectional measurements of the p-GaN metal-insulator-semiconductor (MIS) capacitor is suppressed by using a CaF2 dielectric layer and a post annealing treatment. The density of trapped charge states at the CaF2/p-GaN interface is dramatically reduced from 1.3 × 1013 cm2 to 1.1 × 1011/cm2 compared to that of the Al2O3/p-GaN interface with a large C-V hysteresis. It is observed that the disordered oxidized interfacial layer can be avoided by using the CaF2 dielectric. The downward band bending of p-GaN is decreased from 1.51 to 0.85 eV as a result of the low-density oxides-related trap states. Our work indicates that the CaF2 can be used as a promising dielectric layer for the p-GaN MIS structures.
Greenberg, J.M.; Bult, C.E.P.M. van de
1984-01-01
Ever since it was proposed that H 2 O could be a dominant constituent of interstellar grains, its detection, or lack thereof, has played a large role in theories of grains and their evolution. It now appears possible to provide a basic theoretical structure for the evolution of grains in molecular clouds based on current observational evidence and laboratory experiments on the ice band. Both band strengths and shapes can be reasonably predicted by grain models. (U.K.)
Hysteresis in coral reefs under macroalgal toxicity and overfishing.
Bhattacharyya, Joydeb; Pal, Samares
2015-03-01
Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results.
Magnetization configurations and hysteresis loops of small permalloy ellipses
Schneider, M; Liszkowski, J; Rahm, M; Wegscheider, W; Weiss, D; Hoffmann, H; Zweck, J
2003-01-01
We investigated systematically the easy axis magnetization reversal of 20 nm thick permalloy ellipses with a fixed major axis of 1.47 μm and minor axes of 0.22-1.47 μm. Lorentz transmission electron microscopy was used to image the micromagnetic configurations during magnetization reversal. Hysteresis loops of single ellipses were recorded by means of micro-Hall magnetometry and could be traced back to certain reversal mechanisms observed by Lorentz microscopy. In most cases, the magnetization reversal is initiated by the evolution of a magnetization buckling, followed by the formation of a single, a double, or a trapped vortex configuration. For ellipses with high aspect ratio (length-to-width ratio), the magnetization switches in the reversed magnetic field without creation of a stable vortex configuration. Our experiments show that the characteristic field values for vortex creation, single vortex annihilation, and switching strongly depend on the shape anisotropy of the elements
Climate Dynamics and Hysteresis at Low and High Obliquity
Colose, C.; Del Genio, A. D.; Way, M.
2017-12-01
We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.
Cumulative growth of minor hysteresis loops in the Kolmogorov model
Meilikhov, E. Z.; Farzetdinova, R. M.
2013-01-01
The phenomenon of nonrepeatability of successive remagnetization cycles in Co/M (M = Pt, Pd, Au) multilayer film structures is explained in the framework of the Kolmogorov crystallization model. It is shown that this model of phase transitions can be adapted so as to adequately describe the process of magnetic relaxation in the indicated systems with “memory.” For this purpose, it is necessary to introduce some additional elements into the model, in particular, (i) to take into account the fact that every cycle starts from a state “inherited” from the preceding cycle and (ii) to assume that the rate of growth of a new magnetic phase depends on the cycle number. This modified model provides a quite satisfactory qualitative and quantitative description of all features of successive magnetic relaxation cycles in the system under consideration, including the surprising phenomenon of cumulative growth of minor hysteresis loops.
Dynamic hysteresis of a uniaxial superparamagnet: Semi-adiabatic approximation
Poperechny, I.S.; Raikher, Yu.L.; Stepanov, V.I.
2014-01-01
The semi-adiabatic theory of magnetic response of a uniaxial single-domain ferromagnetic particle is presented. The approach is developed in the context of the kinetic theory and allows for any orientation of the external field. Within this approximation, the dynamic magnetic hysteresis loops in an ac field are calculated. It is demonstrated that they very closely resemble those obtained by the full kinetic theory. The behavior of the effective coercive force is analyzed in detail, and for it a simple formula is proposed. This relation accounts not only for the temperature behavior of the coercive force, as the previous ones do, but also yields the dependence on the frequency and amplitude of the applied field
Hysteresis in multiphase microfluidics at a T-junction.
Zagnoni, Michele; Anderson, Jamie; Cooper, Jonathan M
2010-06-15
Multiphase microfluidics offer a wide range of functionalities in the fields of fluid dynamics, biology, particle synthesis, and, more recently, also in logical computation. In this article, we describe the hysteresis of immiscible, multiphase flow obtained in hydrophilic, microfluidic systems at a T-junction. Stable and unstable state behaviors, in the form of segmented and parallel flow patterns of oil and water, were reliably produced, depending upon the history of the flow rates applied to the phases. The transition mechanisms between the two states were analyzed both experimentally and using numerical simulations, describing how the physical and fluid dynamic parameters influenced the hysteretic behavior of the flow. The characteristics of these multiphase systems render them suitable to be used as pressure comparators and also for the implementation of microfluidic logic operations.
Structure, morphology and melting hysteresis of ion-implanted nanocrystals
Andersen, H.H.; Johnson, E.
1995-01-01
Investigations of nanosized metal and semimetal inclusions produced by ion implantation in aluminium are reviewed. The inclusions are from 1 nm to 15 nm in size and contain from 80 to 100,000 atoms. Embedded crystallites, which are topotactically aligned with the surrounding matrix, may not be produced in this size range by any other method. The inclusions offer unique possibilities for study of the influence of interfaces on the crystal structure of the inclusions as well as on their melting and solidification behaviour. Studies are made with transmission electron microscopy (TEM), electron- and x-ray diffraction and in situ RBS- channeling measurements. Bi, Cd, In, Pb and Tl inclusions all show a substantial melting/solidification temperature hysteresis, which, in all cases except for Bi, is placed around the bulk melting temperature, while bismuth melts below that temperature. (au) 46 refs
Pressure effect on hysteresis in spin-crossover solid materials
Gudyma, Iurii, E-mail: yugudyma@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Ivashko, Victor [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC 20059 (United States); Faculty of Electrical Engineering and Computer Science & Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and control, Stefan cel Mare University, Suceava 720229 (Romania)
2016-04-01
A generalized microscopic Ising-like model is proposed to describe behavior of compressible spin-crossover solids with two states: low-spin and high-spin. The model was solved in mean-field approximation and shows hysteretic behavior at low energy difference between the states. We study the thermal transition between states under external hydrostatic pressure taking into account the changes in the volume of spin-crossover molecules in different states. Depending on the applied pressure, a spin-crossover system can have three types of behavior of molecular fraction in the high-spin state: hysteretic, second-order phase transition and no-phase transition. For the hysteretic regime, it is shown that the transition temperature under pressure is increased while the width of the hysteresis reduced.
Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing.
Noh, Minkyun; Gruber, Wolfgang; Trumper, David L
2017-10-01
We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose 2-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing 6- pole rotating flux, which drags the rotor via hysteresis coupling. This 6-pole flux does not generate radial forces in conjunction with the homopolar flux or 2-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has twelve teeth, each of which has a single phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflective-type optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25 degrees at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 rpm. The maximum driving torque is about 2.7 mNm.
Li, F.; Li, F.; Mugele, Friedrich Gunther
2008-01-01
Contact angle hysteresis caused by random pinning forces is a major obstacle in moving small quantities of liquid on solid surfaces. Here, we demonstrate that the contact angle hysteresis for sessile drops in electrowetting almost disappears with increasing alternating voltage, whereas for direct
"Shape function + memory mechanism"-based hysteresis modeling of magnetorheological fluid actuators
Qian, Li-Jun; Chen, Peng; Cai, Fei-Long; Bai, Xian-Xu
2018-03-01
A hysteresis model based on "shape function + memory mechanism" is presented and its feasibility is verified through modeling the hysteresis behavior of a magnetorheological (MR) damper. A hysteresis phenomenon in resistor-capacitor (RC) circuit is first presented and analyzed. In the hysteresis model, the "memory mechanism" originating from the charging and discharging processes of the RC circuit is constructed by adopting a virtual displacement variable and updating laws for the reference points. The "shape function" is achieved and generalized from analytical solutions of the simple semi-linear Duhem model. Using the approach, the memory mechanism reveals the essence of specific Duhem model and the general shape function provides a direct and clear means to fit the hysteresis loop. In the frame of the structure of a "Restructured phenomenological model", the original hysteresis operator, i.e., the Bouc-Wen operator, is replaced with the new hysteresis operator. The comparative work with the Bouc-Wen operator based model demonstrates superior performances of high computational efficiency and comparable accuracy of the new hysteresis operator-based model.
High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
Gu, Guoying; Zhu, Limin
2010-08-01
In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Gamma:R(2)-->R. Subsequently, the inverse MISO mapping Gamma(-1)(H[u](t),H[u](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz.
The rotational hysteresis losses in thin films with unidirectional magnetic anisotropy
Mucha, J. M.; Vatskichev, L.; Vatskicheva, M.
1992-03-01
Using the Planar Hall Effect (PHE) the rotational hysteresis losses in NiFeGe thin magnetic films were measured. The calculation of the critical field for magnetization and rotational hysteresis losses based on extended Stoner-Wohlfarth theory including an exchange magnetic field is given.
Quantitative description of hysteresis loops induced by rf radiation in long Josephson junctions
Olsen, Ole H.; Samuelsen, Mogens Rugholm
1991-01-01
The effect of an applied rf signal on the radiation emitted from a long Josephson junction is examined by means of a model based on the sine-Gordon equation. This system exhibits a variety of interesting phenomena, e.g., chaos and hysteresis. The hysteresis loop is examined in detail. These simple...
Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores
Chen, Jie; Wang, FengChao; Liu, He; Wu, HengAn
2017-01-01
Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas. Unexpectedly, obvious hysteresis is observed from the ideally reversible physical sorption of methane in some experiments. However, the underlying mechanism still remains an open problem. In this study, Monte Carlo (MC) and molecular dynamics (MD) simulations are carried out to explore the molecular mechanisms of adsorption/desorption hysteresis. First, a detailed analysis about the capillary condensation of methane in micropores is presented. The influence of pore width, surface strength, and temperature on the hysteresis loop is further investigated. It is found that a disappearance of hysteresis occurs above a temperature threshold. Combined with the phase diagram of methane, we explicitly point out that capillary condensation is inapplicable for the hysteresis of shale gas under normal temperature conditions. Second, a new mechanism, variation of pore throat size, is proposed and studied. For methane to pass through the throat, a certain energy is required due to the repulsive interaction. The required energy increases with shrinkage of the throat, such that the originally adsorbed methane cannot escape through the narrowed throat. These trapped methane molecules account for the hysteresis. Furthermore, the hysteresis loop is found to increase with the increasing pressure and decreasing temperature. We suggest that the variation of pore throat size can explain the adsorption/desorption hysteresis of shale gas. Our conclusions and findings are of great significance for guiding the efficient exploitation of shale gas.
Modeling hysteresis observed in the human erythrocyte voltage-dependent cation channel
Flyvbjerg, Henrik; Gudowska-Nowak, Ewa; Christophersen, Palle
2012-01-01
The non-selective voltage-activated cation channel from human red cells, which is activated at depolarizing potentials, has been shown to exhibit counter-clockwise gating hysteresis. Here, we analyze this phenomenon with the simplest possible phenomenological models. Specifically, the hysteresis ...
Congenital Constriction Band Syndrome
Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh
2008-01-01
Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.
Anatoly V. Klyuchevskii
2013-11-01
Full Text Available The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation. The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS. The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes, proximal in time but distant in space, may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors. The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity, with the largest events occurring in pairs, one shortly after another, on two ends of the rift system and with couples of smaller events in the central part of the rift. The event couples appear as peaks of earthquake ‘migration’ rate with an approximately decadal periodicity. Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation. The new knowledge, with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis, may be of theoretical and practical value for earthquake prediction issues. Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region, i.e., there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.
Evaluation of Water Vapor Sorption Hysteresis in Soils: The Role of Organic Matter and Clay
Arthur, Emmanuel; Tuller, Markus; Moldrup, Per
2015-01-01
an important role. It is clear that modeling physical and biological soil processes is more accurate when SWC hysteresis is considered, particularly at low potentials where small differences in water content are associated with large changes in potential energy. The objectives of the presented study were to......: (i) evaluate and compare recently developed methods (MBET-n, Dh and SPN) for quantifying hysteresis in soils and pure clays, and (ii) investigate the role of organic matter (OM) and clay content and type on hysteresis. Five pure clays and two sets of soils with gradients in organic matter and clay....... For the SPN method, large contents of organic matter and clay in soils are associated with increased hysteresis. For both MBET-n and Dh methods, no clear trends of clay or OM contents effects on hysteresis was observed....
A new class of Preisach-type isotropic vector model of hysteresis
Serpico, C.; D' Aquino, M.; Visone, C.; Davino, D
2004-01-01
A new class of scalar hysteresis operators is obtained from the classical Preisach scalar model of hysteresis by introducing a transformation of variables dependent on a suitable function g. The operators of this class are defined by means of a new type of Play operator and are characterized by the property of having the same scalar input-output relationship. These operators are then extended to the isotropic vector case by using the appropriate vector extension of the scalar Play operators. It is shown that the function g, which does not affect the scalar input-output relationship, does affect the vector hysteresis curves. The influence of the function g on vector hysteresis is illustrated by reporting numerically computed rotational hysteresis losses curves.
Study of leakage current behaviour on artificially polluted surface of ceramic insulator
Subba Reddy, B.; Nagabhushana, G.R.
2003-01-01
This paper presents the results of the study concerning to the leakage current behaviour on artificially polluted ceramic insulator surface. From the present study it was observed that there is a reasonably well-defined inception of current i.e. scintillations at a finite voltage. The corresponding voltages for extinction of the current are in the range of 0.8 kV to 2.1 kV. Obviously, the dry band formed in the immediate vicinity of the pin prevents smooth current flow as the voltage rises from zero. Only when the voltage is adequate it causes a flashover of the dray band and current starts flowing. As is common in similar current extinction phenomena, here also, the extinction voltages are significantly lower than the inception voltages. Further, the voltage-current curves invariably show hysteresis-the leakage currents are lower in the reducing portion of the voltage. This is obviously due to drying of the wet pollutant layer thereby increasing its resistance. It is believed that this is the first time that such a direct quantitative evidence of drying in individual half cycles is experimentally visualized
Dust bands in the asteroid belt
Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.
1989-01-01
This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs
Design of a side-band-separating heterodyne mixer for band 9 of ALMA
Baryshev, AM; Kooi, J; Mena, FR; Lodewijk, CRJ; Wild, W
2005-01-01
A side-band-separating (SBS) heterodyne mixer has been designed for the Atacama Large Millimeter Array (ALMA) 602-720 GHz band, as it will present a great improvement over the current double-side-band configuration under development at the moment. Here we present design details and the results of
Adly, A.A., E-mail: adlyamr@gmail.com [Electrical Power and Machines Dept., Faculty of Engineering, Cairo University, Giza 12613 (Egypt); Abd-El-Hafiz, S.K. [Engineering Mathematics Department, Faculty of Engineering, Cairo University, Giza 12613 (Egypt)
2017-07-15
Highlights: • An approach to simulate hysteresis while taking shape anisotropy into consideration. • Utilizing the ensemble of triangular sub-regions hysteresis models in field computation. • A novel tool capable of carrying out field computation while keeping track of hysteresis losses. • The approach may be extended for 3D tetra-hedra sub-volumes. - Abstract: Field computation in media exhibiting hysteresis is crucial to a variety of applications such as magnetic recording processes and accurate determination of core losses in power devices. Recently, Hopfield neural networks (HNN) have been successfully configured to construct scalar and vector hysteresis models. This paper presents an efficient hysteresis modeling methodology and its implementation in field computation applications. The methodology is based on the application of the integral equation approach on discretized triangular magnetic sub-regions. Within every triangular sub-region, hysteresis properties are realized using a 3-node HNN. Details of the approach and sample computation results are given in the paper.
Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor
Lan, Yann Wen
2016-09-05
The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.
Hysteresis and avalanches in two-dimensional foam rheology simulations
Jiang, Y.; Swart, P.J.; Saxena, A.; Asipauskas, M.; Glazier, J.A.
1999-01-01
Foams have unique rheological properties that range from solidlike to fluidlike. We study two-dimensional noncoarsening foams of different disorder under shear in a Monte Carlo simulation, using a driven large-Q Potts model. Simulations of periodic shear on an ordered foam show several different response regimes. At small strain amplitudes, bubbles deform and recover their shapes elastically, and the macroscopic response is that of a linear elastic cellular material. For increasing strain amplitude, the energy-strain curve starts to exhibit hysteresis before any topological rearrangements occur, indicating a macroscopic viscoelastic response. When the applied strain amplitude exceeds a critical value, the yield strain, topological rearrangements occur, the foam starts to flow, and we observe macroscopic irreversibility. We find that the dynamics of topological rearrangements depend sensitively on the structural disorder. Structural disorder decreases the yield strain; sufficiently high disorder changes the macroscopic response of a foam from a viscoelastic solid to a viscoelastic fluid. This wide-ranging dynamical response and the associated history effects of foams result from avalanchelike rearrangement events. The spatiotemporal statistics of rearrangement events do not display long-range correlations for ordered foams or at low shear rates, consistent with experimental observations. As the shear rate or structural disorder increases, the topological events become more correlated and their power spectra change from that of white noise toward 1/f noise. Intriguingly, the power spectra of the total stored energy also exhibit this 1/f trend. copyright 1999 The American Physical Society
Transport hysteresis and zonal flow stimulation in magnetized plasmas
Gravier, E.; Lesur, M.; Reveille, T.; Drouot, T.; Médina, J.
2017-12-01
A hysteresis in the relationship between zonal flows and electron heating is observed numerically by using gyrokinetic simulations in fusion plasmas. As the electron temperature increases, a first transition occurs, at a given electron/ion temperature ratio, above which zonal flows are much weaker than before the transition, leading to a poorly confined plasma. Beyond this transition, even if the electron temperature is lowered to a moderate value, the plasma fails to recover a dynamic state with strong zonal flows. Then, as the electron temperature decreases further, a new transition appears, at a temperature lower than the first transition, below which the zonal flows are stronger than they were initially. The confinement of the plasma and the heat flux are thus found to be sensitive to the history of the magnetized plasma. These transitions are associated with large exchanges of energy between the modes corresponding to instabilities ( m> 0 ) and zonal flows ( m = 0 ). We also observe that up to the first transition it is possible to use a control method to stimulate the appearance of zonal flows and therefore the confinement of the plasma. Beyond that transition, this control method is no longer effective.
Column formation and hysteresis in a two-fluid tornado
Sharifullin, B. R.; Naumov, I. V.; Herrada, M. A.; Shtern, V. N.
2018-03-01
This experimental and numerical study addresses a flow of water and sunflower oil. This flow is driven by the rotating lid in a sealed vertical cylinder. The experiments were performed in a glass container with a radius of 45 mm and a height of 45 mm with the water volume fraction of 20%. Different densities and immiscibility of liquids provide the stable and sharp interface. At the rest, the interface is flat and horizontal. As the rotation speeds up, a new water-flow cell emerges near the bottom center. This cell expands and occupies almost the entire water domain while the initial water circulation shrinks into a thin layer adjacent to the interface. The water, rising near the container axis, strongly deforms the interface (upward near the axis and downward near the sidewall). A new oil-flow cell emerges above the interface near the axis. This cell disappears as the interface approaches the lid. The water separates from the sidewall, reaches the lid, and forms a column. As the rotation is decreased, the scenario reverses, but the flow states differ from those for the increasing rotation, i.e., a hysteresis is observed. The numerical simulations agree with the experiment and help explain the flow metamorphoses.
Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles
Torres C.
2013-01-01
Full Text Available Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer’s formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.
The Dynamic Characteristic and Hysteresis Effect of an Air Spring
Löcken, F.; Welsch, M.
2015-02-01
In many applications of vibration technology, especially in chassis, air springs present a common alternative to steel spring concepts. A design-independent and therefore universal approach is presented to describe the dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled from two common spring- and one dashpot elements in a specific arrangement. This transfer into "mechanical language" enables a system description with a simple force-displacement law and a consideration of the nonobvious hysteresis and stiffness increase of an air spring from a mechanical point of view.
State transitions, hysteresis, and control parameters on DIII-D
Thomas, D.M.; Groebner, R.J.; Carlstrom, T.N.; Osborne, T.H.; Petrie, T.W.
1998-07-01
The theory of turbulence decorrelation by ExB velocity shear is the leading candidate to explain the changes in turbulence and transport that are seen at the plasma edge at the L to H transition. Based on this, a key question is: What are the conditions or control parameters needed to begin the formation of the E r shear layer and thus trigger the L to H transition? On the DIII-D tokamak, the authors are attacking this question both through direct tests of the various theories and by trying to gain insight into the fundamental physics by investigating the control parameters which have a major effect on the power threshold. In this paper the authors describe results of studies on oscillating discharges where the plasma transitions continuously between L and H states. By following the dynamics of the plasma state through the forward and back transitions, they can represent the evolution of various control parameter candidates as a trajectory in various parametric spaces. The shape of these control curves can illustrate the specific nonlinearities governing the L-H transition problem, and under the proper conditions may be interpreted in the context of various phase-transition based models. In particular, the hysteresis exhibited in the various curves may help to clarify causality (what are the critical parameters) and may serve as tests of the models, given sufficient experimental accuracy. At present they are looking at T e , E r and ballooning/diamagnetic parameters as possible control parameter candidates
Hysteresis in YHx films observed with in situ measurements
Remhof, A.; Kerssemakers, J.W.J.; Molen, S.J. van der; Griessen, R.; Kooij, E.S.
2002-01-01
Giant hysteretic effects in the YH x hydrogen switchable mirror system are observed between x=1.9 and x=3 in pressure composition isotherms, optical and electrical properties, and mechanical stress. Polycrystalline Y films are studied by simultaneous in situ measurements of electrical resistivity, optical transmittance and x-ray diffractometry. These experiments are linked to optical microscopy of the samples. During hydrogen loading above x=1.9 the films stay in the metallic fcc phase until the optical transmittance reaches its minimum and the electrical resistance curve exhibits a characteristic feature at x=2.1. Upon further loading the system crosses the miscibility gap in which the fcc phase coexists with the hcp phase before hydrogen saturation is reached in the pure hcp phase. While the fcc phase stays at a concentration of x=2.1 in the coexistence region during loading, it remains at a concentration of x=1.9 during unloading. The hysteretic effects observed in optical transmission and electrical resistivity result from the different properties of the low concentration fcc phase YH 1.9 and the high concentration fcc phase YH 2.1 . They can be explained on the basis of the bulk phase diagram if the different stress states during loading and unloading are taken into account. These results contradict earlier interpretations of the hysteresis in thin film YH x , based on nonsimultaneous measurements of the optical and structural properties on different films
Effect of Tabor parameter on hysteresis losses during adhesive contact
Ciavarella, M.; Greenwood, J. A.; Barber, J. R.
2017-01-01
The Tabor parameter μ is conventionally assumed to determine the range of applicability of the classical 'JKR' solution for adhesive elastic contact of a sphere and a plane, with the variation of the contact area and approach with load, and in particular the maximum tensile force (the pull-off force) being well predicted for μ > 5 . Here we show that the hysteretic energy loss during a contact separation cycle is significantly overestimated by the JKR theory, even at quite large values of μ. This stems from the absence of long-range tensile forces in the JKR theory, which implies that jump into contact is delayed until the separation α = 0 . We develop an approximate solution based on the use of Wu's solution with van der Waals interactions for jump-in, and the JKR theory for jump out of contact, and show that for μ > 5 , the predicted hysteresis loss is then close to that found by direct numerical solutions using the Lennard-Jones force law. We also show how the same method can be adapted to allow for contact between bodies with finite support stiffness.
Phase transition and hysteresis in a rechargeable lithium battery
Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Gaberscek, Miran; Jamnik, Janko [Kemijski Institut Ljubljana Slovenija (Slovenia). L10 Lab. for Materials Electrochemistry
2007-07-01
We develop a model which describes the evolution of a phase transition that occurs in some part of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate hysteretic behavior of the voltage - charge characteristics. During discharging of the battery, the interstitial lattice sites of a small crystalline host system are filled up with lithium atoms and these are released again during charging. We show within the context of a sharp interface model that two mechanical phenomena go along with a phase transition that appears in the host system during supply and removal of lithium. At first the lithium atoms need more space than it is available by the interstitial lattice sites, which leads to a maximal relative change of the crystal volume of about 6%. Furthermore there is an interface between two adjacent phases that has very large curvature of the order of magnitude 100 m, which evoke here a discontinuity of the normal component of the stress. In order to simulate the dynamics of the phase transitions and in particular the observed hysteresis we establish a new initial and boundary value problem for a nonlinear PDE system that can be reduced in some limiting case to an ODE system. (orig.)
Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich
2015-01-01
This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach. (paper)
Dorka, U.E.
1988-01-01
By defining a scalar function of comparison in general and isolating one-dimensional cyclic hysteresis curves for field elements, the foundation is laid for a unified way of judging systems with chain-type structure taking into account hysteresis evolution. A general description of this evolution leads to certain evolutionary properties, with the 'linear' and 'uniform' evolution covering the usual methods for low-cycle fatigue (Miner's rule, Manson-Coffin, Rainflow, etc.). For the more realistic case of an 'exponential' and 'consistent' evolution, experimentally verifiable typ-functions are given which enable with fair accuracy an approximate time-domain computation of a system regarding hysteresis evolution. (orig.) [de
Kamel, Lebchek; Outtas, T. [Laboratory of Structural Mechanics and Materials faculty of technology - University of Batna, Batha (Algeria)
2013-07-01
The aim of this work is the study of behavior of rotor dynamics of industrial turbines, using numerical simulation. Finite element model was developed by introducing a new hysteresis parameter to control more precisely the behavior of rolling bearings. The finite element model is used to extract the natural frequencies and modal deformed rotor vibration, as it identifies the constraints acting on the system and predict the dynamic behavior of the rotor transient. Results in Campbell diagram and those relating to the unbalance responses show significant amplitude differences in the parameters of hysteresis imposed . Key words: rotor dynamics, hysteresis, finite element, rotor vibration, unbalance responses, Campbell diagram.
Stress hysteresis as the cause of persistent holes in particulate suspensions
Deegan, Robert D.
2010-03-01
Concentrated particulate suspensions under vibrations can support stable, localized, vertically oriented free surfaces. The most robust of these structures are persistent holes: deep and stable depressions of the interface. Using a reduced model of the hydrodynamics we show that a rheology with hysteresis can lead to motion opposite to the time-averaged applied force. Moreover, we show experimentally that particulate suspensions of cornstarch in water exhibits hysteresis in the shear-rate response to an applied sinusoidal stress. The results of our model and our experiments suggest that hysteresis accounts for the outward force needed to support persistent holes.
Temperature-dependent gate-swing hysteresis of pentacene thin film transistors
Yow-Jon Lin
2014-10-01
Full Text Available The temperature-dependent hysteresis-type transfer characteristics of pentacene-based organic thin film transistors (OTFTs were researched. The temperature-dependent transfer characteristics exhibit hopping conduction behavior. The fitting data for the temperature-dependent off-to-on and on-to-off transfer characteristics of OTFTs demonstrate that the hopping distance (ah and the barrier height for hopping (qϕt control the carrier flow, resulting in the hysteresis-type transfer characteristics of OTFTs. The hopping model gives an explanation of the gate-swing hysteresis and the roles played by qϕt and ah.
Grishakov, K. S., E-mail: ksgrishakov@yahoo.com; Elesin, V. F. [National Research Nuclear University “MEPhI” (Russian Federation)
2016-08-15
A numerical solution to the problem of transient processes in a resonant tunneling diode featuring a current–voltage characteristic with hysteresis is found for the first time in the context of a coherent model (based on the coupled Schrödinger and Poisson equations) taking into account the Fermi distribution of electrons. The transitions from the high-current to the low-current state and vice versa, which result from the existence of hysteresis and are of great practical importance for ultrafast switches based on resonant tunneling diodes, are studied in detail. It is shown that the transition times for such processes initiated by the application of a small voltage can significantly exceed the characteristic time ℏ/Γ (where G is the width of the resonance level). It is established for the first time that the transition time can be reduced and made as short as the characteristic time ℏ/Γ by applying a sufficiently high voltage. For the parameters of the resonant-tunnelingdiode structure considered in this study, the required voltage is about 0.01 V.
Magnetic Hysteresis of Deep-Sea Sediments in Korea Deep Ocean Study(KODOS) Area, NE Pacific
Kim, K.; Park, C.; Yoo, C.
2001-12-01
The KODOS area within the Clarion-Clipperton fracture zone (C-C zone) is surrounded by the Hawaiian and Line Island Ridges to the west and the central American continent to the east. Topography of the seafloor consists of flat-topped abyssal hills and adjacent abyssal troughs, both of which run parallel in N-S direction. Sediments from the study area consist mainly of biogenic sediments. Latitudinal zonation of sedimentary facies was caused by the accumulation of biogenic materials associated with the equatorial current system and movement of the Pacific plate toward the north or northwest. The KODOS area belongs to the latitudinal transition zone having depositional characteristics between non-fossiliferous pelagic clay-dominated zone and calcareous sediment-dominated zone. The box core sediments of the KODOS area are analyzed in an attempt to obtain magnetic hysteresis information and to elucidate the relationship between hysteresis property and lithological facies. Variations in magnetic hysteresis parameters with unit layers reflect the magnetic grain-size and concentrations within the sediments. The ratios of remanant coercivity/coercive force (Hcr/Hc) and saturation remnance/saturation magnetization (Mrs/Ms) indicate that coarse magnetic grains are mainly distributed in dark brown sediments (lower part of the sediment core samples) reflecting high Hcr/Hc and low Mrs/Ms ratios. These results are mainly caused by dissolution differences with core depth. From the plotting of the ratios of hyteresis parameters, it is indicated that magnetic minerals in cubic samples are in pseudo-single domain (PSD) state.
Band structure of semiconductors
Tsidilkovski, I M
2013-01-01
Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio
Light regulated I–V hysteresis loop of Ag/BiFeO{sub 3}/FTO thin film
Wei, Lujun; Sun, Bai; Zhao, Wenxi; Li, Hongwei; Chen, Peng, E-mail: pchen@swu.edu.cn
2017-01-30
A hysteresis loop of current–voltage characteristics based multiferroic BiFeO{sub 3} nanoribbons memory device is observed. Moreover, the white-light can greatly regulate both the current–voltage hysteresis loop and the ferroelectric hysteresis loop. The stored space charges within the electrodes/BiFeO{sub 3} interface can lead to hysteresis-type I–V characteristics of Ag/BiFeO{sub 3}/FTO devices. The white-light controlled I–V loop and ferroelectric loop result from photon-generated carries. Since the I–V hysteresis loop and ferroelectric hysteresis loop have a potential application prospect to the memory devices, these two white-light controlled the hysteresis loops curves are likely to provide promising opportunity for developing the multi-functional memory devices.
Magnetic hysteresis and refrigeration capacity of Ni–Mn–Ga alloys near Martensitic transformation
Bin, Fu; Yi, Long; Jing-Fang, Duan; Chao-Lun, Wang; Yong-Qin, Chang; Rong-Chang, Ye; Guang-Heng, Wu
2010-01-01
This paper studies the magnetic hysteresis and refrigeration capacity of Ni-Mn-Ga alloys in detail during heating and cooling isothermal magnetisation processes. The Ni-Mn-Ga alloys show larger magnetic hysteresis when they transform from austenite to martensite, but smaller magnetic hysteresis when they transform from martensite to austenite. This behaviour is independent of either the pure Ni-Mn-Ga alloys or the alloys doped with other elements. Because of the existence of the magnetic hysteresis, the relation between the magnetic entropy change and refrigeration capacity is not simply linear. For practical consideration, magnetocaloric effect of Ni-Mn-Ga alloys should be investigated both on cooling and heating processes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system
Kocakaplan, Yusuf; Keskin, Mustafa
2014-01-01
The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement
Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system
Kocakaplan, Yusuf [Graduate School of Natural and Applied Sciences, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2014-09-07
The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.
Ji-Sik Kim
2017-01-01
Full Text Available This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane dispersed with carbon nanotubes (CNTs, to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied.
Giant magnetoresistance of hysteresis-free Cu/Co-based multilayers
Huetten, A.; Hempel, T.; Schepper, W.; Kleineberg, U.; Reiss, G.
2001-01-01
It has been demonstrated that hysteresis-free multilayers based on {Cu/Co} and {Cu/Ni 57 Co 43 } can be experimentally realized obtaining room temperature GMR effect amplitudes from 6.5% up to 20%. A critical window for the layer thickness for hysteresis-free GMR curves can be achieved for both systems, ranging from 0.38 to 0.45 nm and 0.59 to 0.7 nm, respectively. The corresponding sensitivities range from 0.075 up to 0.114%/Oe, but are still below that of normal {Cu/Co} multilayers. Hysteresis-free multilayers based on these systems are stable up to 180 deg. C upon isochronal annealing. It is shown that hysteresis-free {Cu/Co or Ni 57 Co 43 }-multilayers are neither a solution to achieve good temperature stability nor a higher sensitivity compared with normal ones and hence are not candidates for application
Hysteresis compensation of piezoelectric deformable mirror based on Prandtl-Ishlinskii model
Ma, Jianqiang; Tian, Lei; Li, Yan; Yang, Zongfeng; Cui, Yuguo; Chu, Jiaru
2018-06-01
Hysteresis of piezoelectric deformable mirror (DM) reduces the closed-loop bandwidth and the open-loop correction accuracy of adaptive optics (AO) systems. In this work, a classical Prandtl-Ishlinskii (PI) model is employed to model the hysteresis behavior of a unimorph DM with 20 actuators. A modified control algorithm combined with the inverse PI model is developed for piezoelectric DMs. With the help of PI model, the hysteresis of the DM was reduced effectively from about 9% to 1%. Furthermore, open-loop regenerations of low-order aberrations with or without hysteresis compensation were carried out. The experimental results demonstrate that the regeneration accuracy with PI model compensation is significantly improved.
Bukharov, A A; Ovchinnikov, A S; Baranov, N V [Department of Physics, Ural State University, Ekaterinburg, 620083 (Russian Federation); Inoue, K [Institute for Advanced Materials Research, Hiroshima University, Hiroshima (Japan)
2010-11-03
Using Monte Carlo simulations we investigate magnetic hysteresis in two- and three-dimensional systems of weakly antiferromagnetically coupled spin chains based on a scenario of domain wall (kink) motion within the chains. By adapting the model of walkers to simulate the domain wall dynamics and using the Ising-like dipole-dipole model, we study the effects of interchain coupling, temperature and anisotropy axis direction on hysteresis curves.
Preisach hysteresis model for non-linear 2D heat diffusion
Jancskar, Ildiko; Ivanyi, Amalia
2006-01-01
This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way
Tatano, F.
1996-01-01
The wastewater treatments plants localized in the Ruhr River (Germany), generally present a typical wastewater temperature variation curve during the winter period. These temperature changes produce specific effects on the nitrogen removal efficiencies in the activated sludge systems. The so called 'hysteresis' phenomenon is responsible for these effects. The paper deals with some simplified theoretical considerations and with a full scale experimental evaluations of the effects caused by the hysteresis phenomenon in the biological nitrogen removal
Hysteresis in unemployment: evidence from sector-specific unemployment in Turkey
Barışık, Salih; Cevik, Emrah Ismail
2009-01-01
High levels of inflation and unemployment have been experienced together in the world after 1970’s. Efforts of decreasing inflation have been achieved in the world after 1990’s. The fact that there has been no evidence the unemployment rate beginning to decrease despite the increasing growth rates in the USA and Europe countries recalls hysteresis effect. This phenomenon observed in Turkey after 1994 and 2001 crises. This paper examines hysteresis effect in sector-specific unemployment in Tur...
Experimental Study of Hysteresis behavior of Foam Generation in Porous Media
Kahrobaei, S.; Vincent-Bonnieu, S.; Farajzadeh, R.
2017-01-01
Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at...
Dynamic hysteresis behaviors in the kinetic Ising system on triangular lattice
Kantar, Ersin; Ertaş, Mehmet
2018-04-01
We studied dynamic hysteresis behaviors of the spin-1 Blume-Capel (BC) model in a triangular lattice by means of the effective-field theory (EFT) with correlations and using Glauber-type stochastic dynamics. The effects of the exchange interaction (J), crystal field (D), temperature (T) and oscillating frequency (w) on the hysteresis behaviors of the BC model in a triangular lattice are investigated in detail. Results are compared with some other dynamic studies and quantitatively good agreement is found.
Han Zheng
Full Text Available Evapotranspiration (ET is an important component of the water cycle in terrestrial ecosystems. Understanding the ways in which ET changes with meteorological factors is central to a better understanding of ecological and hydrological processes. In this study, we used eddy covariance measurements of ET from a typical alpine shrubland meadow ecosystem in China to investigate the hysteresis response of ET to environmental variables including air temperature (Ta, vapor pressure deficit (VPD and net radiation (Rn at a diel timescale. Meanwhile, the simulated ET by Priestly-Taylor equation was used to interpret the measured ET under well-watered conditions. Pronounced hysteresis was observed in both Ta and VPD response curves of ET. At a similar Ta and VPD, ET was always significantly depressed in the afternoon compared with the morning. But the hysteresis response of ET to Rn was not evident. Similar hysteresis patterns were also observed in the Ta/VPD response curves of simulated ET. The magnitudes of the measured and simulated hysteresis loops showed similar seasonal variation, with relatively smaller values occurring from May to September, which agreed well with the lifetime of plants and the period of rainy season at this site. About 62% and 23% of changes in the strength of measured ET-Ta and ET-VPD loops could be explained by the changes in the strength of simulated loops, respectively. Thus, the time lag between Rn and Ta/VPD is the most important factor generating and modulating the ET-Ta/VPD hysteresis, but plants and water status also contribute to the hysteresis response of ET. Our research confirmed the different hysteresis in the responses of ET to meteorological factors and proved the vital role of Rn in driving the diel course of ET.
Effect of grain size, deformation, aging and anisotropy on hysteresis loss of electrical steels
Landgraf, F.J.G.; Emura, M.; Teixeira, J.C.; Campos, M.F. de
2000-01-01
The investigation of the effect of cold deformation, anisotropy, aging and grain size on the shape of the hysteresis curve of non-oriented electrical steels shows that most of the hysteresis energy is dissipated in the high-induction region (above the maximum permeability induction). It indicates that more attention should be given to the energy dissipation mechanisms in that region, such as the domain annihilation and nucleation
Numerical modeling of transformer inrush currents
Cardelli, E. [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy); Faba, A., E-mail: faba@unipg.it [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy)
2014-02-15
This paper presents an application of a vector hysteresis model to the prediction of the inrush current due the arbitrary initial excitation of a transformer after a fault. The approach proposed seems promising in order to predict the transient overshoot in current and the optimal time to close the circuit after the fault.
A nonlinear finite element model of a piezoelectric tube actuator with hysteresis and creep
Chung, S H; Fung, Eric H K
2010-01-01
Piezoelectric tube actuators are commonly used for nanopositioning in atomic force microscopes (AFMs). However, piezoelectric tube actuators exhibit hysteresis and creep which significantly limit the accuracy of nanopositioning. A finite element model of a piezoelectric tube actuator with hysteresis and creep is important for control purposes, but so far one has not been developed. The purpose of this paper is to present a nonlinear finite element (FE) model with hysteresis and creep for design purposes. Prandtl–Ishlinskii (PI) hysteresis operators and creep operators are adopted into constitutive equations. The nonlinear FE model is formulated using energy approach and Hamilton's principle. The parameters of the PI hysteresis operators and the creep operators are identified by comparing the simulation results and experimental results of other researchers. The working operation of the piezoelectric tube actuator is simulated by the reduced order FE model, and the displacement error due to hysteresis, creep and coupling effect is investigated. An output feedback controller is implemented into the reduced order FE model to show that this model is controllable
Bashash, Saeid; Jalili, Nader
2007-02-01
Piezoelectrically-driven nanostagers have limited performance in a variety of feedforward and feedback positioning applications because of their nonlinear hysteretic response to input voltage. The hysteresis phenomenon is well known for its complex and multi-path behavior. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligence properties of hysteresis with the effects of non-local memories are discussed here. Through performing a set of experiments on a piezoelectrically-driven nanostager with a high resolution capacitive position sensor, it is shown that for the precise prediction of the hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of the hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the ever-present nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect, if memory units are sufficiently chosen for the inverse model.
Feedforward hysteresis compensation in trajectory control of piezoelectrically-driven nanostagers
Bashash, Saeid; Jalili, Nader
2006-03-01
Complex structural nonlinearities of piezoelectric materials drastically degrade their performance in variety of micro- and nano-positioning applications. From the precision positioning and control perspective, the multi-path time-history dependent hysteresis phenomenon is the most concerned nonlinearity in piezoelectric actuators to be analyzed. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligent properties of hysteresis with the effects of non-local memories are discussed. Through performing a set of experiments on a piezoelectrically-driven nanostager with high resolution capacitive position sensor, it is shown that for the precise prediction of hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the system everpresent nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect if memory units are sufficiently chosen for the inverse model.
High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter.
Matko, Vojko; Milanović, Miro
2016-06-28
A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal's natural temperature characteristics (in the temperature range between 0 and 50 °C). The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity) connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10(-13) frequency instability (during the temperature change between 0 and 50 °C) with a maximum 1 × 10(-11) hysteresis frequency difference.
High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter
Vojko Matko
2016-06-01
Full Text Available A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal’s natural temperature characteristics (in the temperature range between 0 and 50 °C. The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10−13 frequency instability (during the temperature change between 0 and 50 °C with a maximum 1 × 10−11 hysteresis frequency difference.
The Hysteresis Performance and Restoring Force Model for Corroded Reinforced Concrete Frame Columns
Guifeng Zhao
2016-01-01
Full Text Available A numerical simulation of the hysteresis performance of corroded reinforced concrete (RC frame columns was conducted. Moreover, the results obtained were compared with experimental data. On this basis, a degenerated three-linearity (D-TRI restoring force model was established which could reflect the hysteresis performance of corroded RC frame columns through theoretical analysis and data fitting. Results indicated that the hysteretic bearing capacity of frame columns decreased significantly due to corrosion of the rebar. In view of the characteristics of the hysteresis curve, the plumpness of the hysteresis loop for frame columns decreased and shrinkage increased with increasing rebar corrosion. All these illustrated that the seismic energy dissipation performance of frame columns reduced but their brittleness increased. As for the features of the skeleton curve, the trends for corroded and noncorroded members were basically consistent and roughly corresponded to the features of a trilinear equivalent model. Thereby, the existing Clough hysteresis rule can be used to establish the restoring force model applicable to corroded RC frame columns based on that of the noncorroded RC members. The calculated skeleton curve and hysteresis curve of corroded RC frame columns using the D-TRI model are closer to the experimental results.
Modeling and inverse feedforward control for conducting polymer actuators with hysteresis
Wang, Xiangjiang; Alici, Gursel; Tan, Xiaobo
2014-01-01
Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators. (paper)
A novel rate-independent hysteresis model of a piezostack actuator using the congruency property
Nguyen, Phuong-Bac; Choi, Seung-Bok
2011-01-01
This paper presents a novel hysteresis prediction model for a piezostack actuator. The model proposed in this work is a type of rate-independent hysteresis and is formulated using the inherent congruency property which exists in most piezoelectric materials. Specifically, the model is established by exploiting the fact that the high-order hysteretic curve segment is congruent with its first-order one that is limited by the same consecutive maximum and minimum values of input. Thus, in order to successfully implement this model two discretized first-order datasets of the ascending and descending curves need to be experimentally identified in advance. Using both the identified datasets and the congruency property, a systematic approach for predicting the hysteresis of the piezostack actuator is then obtained in two cases of input voltage: monotonic ascending and monotonic descending. The developed model is experimentally realized in order to demonstrate the effectiveness on the hysteresis prediction. In the experiment, three waveforms of input excitation schemes—a triangular waveform of decreasing amplitude, a triangular waveform of increasing amplitude and a multi-extremes triangular waveform—are applied to the proposed model. The hysteresis characteristics of the piezostack actuator predicted from the proposed model are compared with those obtained from the classical Preisach model. It is shown that the proposed model gives better accuracy, less computation time for the hysteresis prediction and more feasibility to realize than the classical Preisach model
Tuning the hysteresis voltage in 2D multilayer MoS{sub 2} FETs
Jiang, Jie, E-mail: jiangjie@csu.edu.cn; Zheng, Zhouming; Guo, Junjie
2016-10-01
The hysteresis tuning is of great significance before the two-dimensional (2D) molybdenum disulfide (MoS{sub 2}) field-effect transistors (FETs) can be practically used in the next-generation nanoelectronic devices. In this paper, a simple and effective annealing method was developed to tune the hysteresis voltage in 2D MoS{sub 2} transistors. It was found that high temperature (175 °C) annealing in air could increase the hysteresis voltage from 8.0 V (original device) to 28.4 V, while a next vacuum annealing would reduce the hysteresis voltage to be only 2.0 V. An energyband diagram model based on electron trapping/detrapping due to oxygen adsorption is proposed to understand the hysteresis mechanism in multilayer MoS{sub 2} FET. This simple method for tuning the hysteresis voltage of MoS{sub 2} FET can make a significant step toward 2D nanoelectronic device applications.
Effects of hysteresis and Brayton cycle constraints on magnetocaloric refrigerant performance
Brown, T. D.; Buffington, T.; Shamberger, P. J.
2018-05-01
Despite promising proofs of concept, system-level implementation of magnetic refrigeration has been critically limited by history-dependent refrigerant losses that interact with governing thermodynamic cycles to adversely impact refrigeration performance. Future development demands a more detailed understanding of how hysteresis limits performance, and of how different types of cycles can mitigate these limitations, but without the extreme cost of experimental realization. Here, the utility of Brayton cycles for magnetic refrigeration is investigated via direct simulation, using a combined thermodynamic-hysteresis modeling framework to compute the path-dependent magnetization and entropy of a model alloy for a variety of feasible Brayton cycles between 0-1.5 T and 0-5 T. By simultaneously varying the model alloy's hysteresis properties and applying extensions of the thermodynamic laws to non-equilibrium systems, heat transfers and efficiencies are quantified throughout the space of hystereses and Brayton cycles and then compared with a previous investigation using Ericsson cycles. It is found that (1) hysteresis losses remain a critical obstacle to magnetic refrigeration implementation, with efficiencies >80% in the model system requiring hysteresis refrigerant transformation temperatures at the relevant fields; (3) for a given hysteresis and field constraint, Brayton and Ericsson-type cycles generate similar efficiencies; for a given temperature span, Ericsson cycles lift more heat per cycle, with the difference decreasing with the refrigerant heat capacity outside the phase transformation region.
Calculation of persistent currents in superconducting magnets
C. Völlinger
2000-12-01
Full Text Available This paper describes a semianalytical hysteresis model for hard superconductors. The model is based on the critical state model considering the dependency of the critical current density on the varying local field in the superconducting filaments. By combining this hysteresis model with numerical field computation methods, it is possible to calculate the persistent current multipole errors in the magnet taking local saturation effects in the magnetic iron parts into consideration. As an application of the method, the use of soft magnetic iron sheets (coil protection sheets mounted between the coils and the collars for partial compensation of the multipole errors during the ramping of the magnets is investigated.
Diffuse and constricted modes of a dc discharge in neon: Simulation of the hysteresis transition
Shkurenkov, I. A.; Mankelevich, Yu. A.; Rakhimova, T. V.
2008-01-01
Results are presented from theoretical studies of high-pressure (∼100 Torr) dc discharges in neon. The diffuse and constricted discharge modes are studied using a model including the equation of balance for charged and excited particles, heat conduction equations for the neutral gas and plasma electrons, and Poisson's equation for the radial electric field at a fixed total discharge current. A specific feature of the constricted mode in the investigated range of low fields and high degrees of ionization is that the excitation and ionization rates in the center of the discharge tube and at the periphery differ by several orders of magnitude. This implies that, in the constricted mode, the region where the electron energy distribution function is Maxwellian due to electron-electron collisions may adjoin the region (beyond the constriction zone) where the high-energy part of the distribution function is depleted. The hysteresis transition between the diffuse and constricted modes is analyzed. A transition from the constricted to the diffuse mode can be regarded as a manifestation of the nonlocal character of the formation of the electron distribution function, specifically, the diffusion of high-energy electrons capable of producing gas ionization from the central (constricted) region toward the periphery. The nonlocal formation of the distribution function is described by a nonlocal kinetic equation accounting for electron-electron collisions and electron transport along the radius of the discharge tube. Since only high-energy electrons produce gas ionization, the effect of the nonlocal formation of the electron distribution function is taken into account by introducing the effective temperature of the high-energy part of the distribution function and solving the equation for the radial profile of the high-energy part of the distribution function. This approach allows one to approximately take into account the nonlocal character of the electron distribution
Low band gap polymers for organic photovoltaics
Bundgaard, Eva; Krebs, Frederik C
2007-01-01
Low band gap polymer materials and their application in organic photovoltaics (OPV) are reviewed. We detail the synthetic approaches to low band gap polymer materials starting from the early methodologies employing quinoid homopolymer structures to the current state of the art that relies...
A void ratio dependent water retention curve model including hydraulic hysteresis
Pasha Amin Y.
2016-01-01
Full Text Available Past experimental evidence has shown that Water Retention Curve (WRC evolves with mechanical stress and structural changes in soil matrix. Models currently available in the literature for capturing the volume change dependency of WRC are mainly empirical in nature requiring an extensive experimental programme for parameter identification which renders them unsuitable for practical applications. In this paper, an analytical model for the evaluation of the void ratio dependency of WRC in deformable porous media is presented. The approach proposed enables quantification of the dependency of WRC on void ratio solely based on the form of WRC at the reference void ratio and requires no additional parameters. The effect of hydraulic hysteresis on the evolution process is also incorporated in the model, an aspect rarely addressed in the literature. Expressions are presented for the evolution of main and scanning curves due to loading and change in the hydraulic path from scanning to main wetting/drying and vice versa as well as the WRC parameters such as air entry value, air expulsion value, pore size distribution index and slope of the scanning curve. The model is validated using experimental data on compacted and reconstituted soils subjected to various hydro-mechanical paths. Good agreement is obtained between model predictions and experimental data in all the cases considered.
Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.
2001-01-01
This article concerns the investigation of the magnetic behavior of the surface impedance tensor cflx var-sigma in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor cflx var-sigma involving three different components is found by measuring the S 21 parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field H ex exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of cflx var-sigma (longitudinal var-sigma zz and circular var-sigma v ar-phi v ar-phi) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component var-sigma zv ar-phi (var-sigma v ar-phi z ) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model. [copyright] 2001 American Institute of Physics
Zang, Xizhe; Liu, Yixiang; Heng, Shuai; Lin, Zhenkun; Zhao, Jie
2017-01-01
High-performance position control of pneumatic artificial muscles is limited by their inherent nonlinearity and hysteresis. This study aims to model the length/pressure hysteresis of a single pneumatic artificial muscle and to realize its accurate position tracking control with forward hysteresis compensation. The classical Prandtl-Ishlinskii model is widely used in hysteresis modelling and compensation. But it is only effective for symmetric hysteresis. Therefore, a modified Prandtl-Ishlinskii model is built to characterize the asymmetric length/pressure hysteresis of a single pneumatic artificial muscle, by replacing the classical play operators with two more flexible elementary operators to independently describe the ascending branch and descending branch of hysteresis loops. On the basis, a position tracking controller, which is composed of cascade forward hysteresis compensation and simple proportional pressure controller, is designed for the pneumatic artificial muscle. Experiment results show that the MPI model can reproduce the length/pressure hysteresis of the pneumatic artificial muscle, and the proposed controller for the pneumatic artificial muscle can track the reference position signals with high accuracy. By modelling the length/pressure hysteresis with the modified Prandtl-Ishlinskii model and using its inversion for compensation, precise position control of a single pneumatic artificial muscle is achieved.
Magnetic hysteresis of cerium doped bismuth ferrite thin films
Gupta, Surbhi; Tomar, Monika; Gupta, Vinay
2015-01-01
The influence of Cerium doping on the structural and magnetic properties of BiFeO 3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi 1−x Ce x FeO 3 (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm −1 ) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm −1 ), shows a minor shift. Sudden evolution of Raman mode at 668 cm −1 , manifested as A 1 -tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M s ) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi 0.88 Ce 0.12 FeO 3 thin film found to exhibit better magnetic properties with M s =15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi 1−x Ce x FeO 3 thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical applications of such materials exhibiting pinching behavior are conferred
Magnetic hysteresis of cerium doped bismuth ferrite thin films
Gupta, Surbhi [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi (India)
2015-03-15
The influence of Cerium doping on the structural and magnetic properties of BiFeO{sub 3} thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi{sub 1−x}Ce{sub x}FeO{sub 3} (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm{sup −1}) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm{sup −1}), shows a minor shift. Sudden evolution of Raman mode at 668 cm{sup −1}, manifested as A{sub 1}-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (M{sub s}) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi{sub 0.88}Ce{sub 0.12}FeO{sub 3} thin film found to exhibit better magnetic properties with M{sub s}=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi{sub 1−x}Ce{sub x}FeO{sub 3} thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical
Zhu, Letao; Sun, Zechang; Dai, Haifeng; Wei, Xuezhe
2015-01-01
Highlights: • An adaptive discrete Preisach model (ADPM) of OCV–SOC hysteresis is proposed. • The measured current is used to adjust the weight vector in the proposed ADPM. • A deformation algorithm of ADPM is developed for the accidental current errors. • The performance of ADPM under uncertainty of measured current is investigated. • The performance of ADPM under uncertainty of OCV is investigated. - Abstract: The relationship of open circuit voltage (OCV) versus state of charge (SOC) is critical for many techniques such as accurate battery modeling and reliable SOC estimation. However, the hysteresis existing in OCV–SOC curves of lithium-ion batteries complicates this relationship especially for lithium iron phosphate (LiFePO 4 ) batteries which exhibit a very flat OCV–SOC hysteretic feature. This paper aims at modeling the OCV–SOC hysteresis for LiFePO 4 batteries. The modeling approach is a novel adaptive discrete Preisach model (ADPM) based on the classic Preisach model and the least mean square (LMS) theory. To enhance the performance, the ADPM uses the measured current at each time step to adjust the weight vector. This method significantly decreases the errors (<1%) between the model predicted SOC and the true SOC acquired from experiments. A deformation algorithm of ADPM is further proposed to guarantee the performance even when large errors appear in the measured current. For further applications of the proposed ADPM such as SOC estimation, the robust performance of ADPM is also discussed when considering OCV input errors and measurement current errors. The results show that the maximum SOC calculation errors are about 6% and 5% respectively against uncertain OCV input and measured current which indicate the enormous potential of ADPM in battery management systems
Entropy production analysis of hysteresis characteristic of a pump-turbine model
Li, Deyou; Wang, Hongjie; Qin, Yonglin; Han, Lei; Wei, Xianzhu; Qin, Daqing
2017-01-01
Highlights: • An interesting hysteresis phenomenon was analyzed using entropy production theory. • A function was used to calculate the entropy production in the wall region. • Generation mechanism of the hump and hysteresis characteristics was obtained. - Abstract: The hydraulic loss due to friction and unstable flow patterns in hydro-turbines causes a drop in their efficiency. The traditional method for analyzing the hydraulic loss is by evaluating the pressure drop, which has certain limitations and cannot determine the exact locations at which the high hydraulic loss occurs. In this study, entropy production theory was adopted to obtain a detailed distribution of the hydraulic loss in a pump-turbine in the pump mode. In the past, the wall effects of entropy production were not considered, which caused larger errors as compared with the method of pressure difference. First, a wall equation was proposed to calculate the hydraulic loss in the wall region. The comparison of hydraulic loss calculated by entropy production and pressure difference revealed a better result. Then, through the use of the entropy production theory, the performance characteristics were determined for a pump-turbine with 19 mm guide vane opening, and the variation in the entropy production was obtained. Recently, an interesting phenomenon, i.e., a hysteresis characteristic, was observed in the hump region in pump-turbines. Research shows that the hysteresis characteristic is a result of the Euler momentum and hydraulic loss; the hydraulic loss accounts for a major portion of the hysteresis characteristic. Finally, the hysteresis characteristic in the hump region was analyzed in detail through the entropy production. The results showed that the hump characteristic and the accompanying hysteresis phenomenon are caused by backflow at the runner inlet and the presence of separation vortices close to the hub and the shroud in the stay/guide vanes, which is dependent on the direction of
Hao Wang
2016-01-01
Full Text Available Hysteresis characteristics of grain-oriented electrical steel were studied through the hysteresis loop. Existing hysteresis fitting simulation methods were summarized, and new Fe-3% Si grain-oriented electrical steel hysteresis loop model was proposed. Undetermined coefficients of the magnetic field intensity and magnetic flux density were determined by both the fixed angle method and the least squares method, and the hysteresis loop model was validated with high fitting degree by experimental data.
Vortex instability and hysteresis effects in I-V curves of superconducting Y1Ba2Cu3O7-δ
Kilic, A.; Kilic, K.; Cetin, O.
2003-01-01
We have investigated the effect of the current sweep rate (CSR) on the vortex dynamics in superconducting bulk sample of Y 1 Ba 2 Cu 3 O 7-δ . It has been found that the CSR has several dramatic effects on the vortex motion by giving rise enhancement in dissipation as decreasing the CSR, significant time effects, and instabilities in current-voltage (I-V) curves. The hysteresis loops concerning the I-V curves in both the current-increase and -decrease branches of the forward current region, and also the branches of the reversed current region have been observed together with a gradual diminutive of the hysteresis effects with decreasing the CSR. Due to the field and temperature domain considered, it is also observed that the moving state becomes unstable giving rise some instabilities such as small jumps and steps for both low and moderate current values as a function of CSR. Those anomalies have been discussed in terms of the depinning-pinning correlated to the plastic flow regime together with the disorder in the coupling strength between the superconducting grains, and compared qualitatively to the numerical computer simulations. In addition, for a given field and temperature domain, it has been shown that the CSR together with a relevant current scale is of importance in evolution of the I-V curves and is a useful tool in investigating the details of the vortex dynamics
Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films
Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.
2018-02-01
In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.
Revisiting hydraulic hysteresis based on long-term monitoring of hydraulic states in lysimeters
Hannes, M.; Wollschläger, U.; Wöhling, T.; Vogel, H.-J.
2016-05-01
Hysteretic processes have been recognized for decades as an important characteristic of soil hydraulic behavior. Several studies confirmed that wetting and drying periods cannot be described by a simple functional relationship, and that some nonequilibrium of the water retention characteristics has to be taken into account. A large number of models describing the hysteresis of the soil water retention characteristic were successfully tested on soil cores under controlled laboratory conditions. However, its relevance under field conditions under natural forcings has rarely been investigated. In practice, the modeling of field soils usually neglects the hysteretic nature of soil hydraulic properties. In this study, long-term observations of water content and matric potential in lysimeters of the lysimeter network TERENO-SoilCan are presented, clearly demonstrating the hysteretic behavior of field soils. We propose a classification into three categories related to different time scales. Based on synthetic and long-term monitoring data, three different models of hysteresis were applied to data sets showing different degrees of hysteresis. We found no single model to be superior to the others. The model ranking depended on the degree of hysteresis. All models were able to reflect the general structure of hysteresis in most cases but failed to reproduce the detailed trajectories of state variables especially under highly transient conditions. As an important result we found that the temporal dynamics of wetting and drying significantly affects these trajectories which should be accounted for in future model concepts.
Hysteresis loop behaviors of ferroelectric thin films:A Monte Carlo simulation study
C. M. Bedoya-Hincapi´e; H. H. Ortiz-´Alvarez; E. Restrepo-Parra; J. J. Olaya-Fl´orez; J. E. Alfonso
2015-01-01
The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole–dipole interaction in the transversal (x–y) direction, and the nearest dipole–dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response.
Hysteresis losses of magnetic nanoparticle powders in the single domain size range
Dutz, S.; Hergt, R.; Muerbe, J.; Mueller, R.; Zeisberger, M.; Andrae, W.; Toepfer, J.; Bellemann, M.E.
2007-01-01
Magnetic iron oxide nanoparticle powders were investigated in order to optimise the specific hysteresis losses for biomedical heating applications. Different samples with a mean particle size in the transition range from superparamagnetic to ferromagnetic behaviour (i.e. 10-100 nm) were prepared by two different chemical precipitation routes. Additionally, the influence of milling and annealing on hysteresis losses of the nanoparticles was investigated. Structural investigations of the samples were carried out by X-ray diffraction, measurement of specific surface area, and scanning and transmission electron microscopy. The dependence of hysteresis losses of minor loops on the field amplitude was determined using vibrating sample magnetometry and caloric measurements. For small field amplitudes, a power law was found which changes into saturation at amplitudes well above the coercive field. Maximum hysteresis losses of 6.6 J/kg per cycle were observed for milled powder. For field amplitudes below about 10 kA/m, which are especially interesting for medical and technical applications, hysteresis losses of all investigated powders were at least by one order of magnitude lower than reported for magnetosomes of comparable size
Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study
M. Bedoya-Hincapié, C.; H. Ortiz-Álvarez, H.; Restrepo-Parra, E.; J. Olaya-Flórez, J.; E. Alfonso, J.
2015-11-01
The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole-dipole interaction in the transversal (x-y) direction, and the nearest dipole-dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response. Project sponsored by the research departments of the Universidad Nacional de Colombia DIMA and DIB under Project 201010018227-“Crecimiento y caracterización eléctrica y estructural de películas delgadas de BixTiyOz producidas mediante Magnetrón Sputtering” and Project 12920-“Desarrollo teóricoexperimental de nanoestructuras basadas en Bismuto y materiales similares” and “Bisnano Project.”
Inacio, D; Inacio, S; Pina, J; Goncalves, A; Neves, M Ventim; Rodrigues, A Leao
2008-01-01
Hysteresis motors are very attractive in a wide range of fractional power applications, due to its torque-speed characteristics and simplicity of construction. This motor's performance is expected to improve when HTS rotors are used, and in fact, hysteresis motors have shown to be probably the most viable electrical machines using HTS materials. While these motors, either conventional or HTS, are both hysteresis motors, they base their operation on different physical phenomena: hysteretic behaviour in conventional ferromagnetic materials is due to the material's non-linear magnetic properties, while in HTS materials the hysteresis has an ohmic nature and is related with vortices' dynamics. In this paper, theoretical aspects of both conventional and HTS hysteresis motors are discussed, its operation principles are highlighted, and the characteristics of both motors are presented. The characteristics, obtained both by experimental tests and numerical simulation (made with commercial software), are compared, in order to evaluate not only the motor's electromechanical performances but also the overall systems efficiency, including cryogenics for the HTS device
Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements
Guibert, Clément; Fresnais, Jérôme; Peyre, Véronique; Dupuis, Vincent, E-mail: vincent.dupuis@upmc.fr
2017-01-01
In this paper, we report an investigation of magnetic fluid hyperthermia (MFH) using combined calorimetric and newly implemented dynamic hysteresis measurements for two sets of well characterized size-sorted maghemite nanoparticles (with diameters of about 10 nm and 20 nm) dispersed in water and in glycerol. Our primary goal was to assess the influence of viscosity on the heating efficiency of magnetic nanoparticles described in terms of specific loss power (SLP or specific absorption rate, SAR) and dynamic hysteresis. In particular, we aimed to investigate how this SLP depends on the transition from Néelian to Brownian behavior of nanoparticles expected to occur between 10 nm and 20 nm (for maghemite) and dependent on the viscosity. While we observed a good agreement between calorimetric and dynamic hysteresis measurements, we found that the SLP measured for the different systems do not depend noticeably on the viscosity of solvent. Calculations performed according to Rosensweig's linear model [1] allow us to quantitatively reproduce our results at low field intensities, provided we use a value for the magnetic anisotropy constant much smaller than the one commonly used in the literature. This raises the question of the temperature dependance of the magnetic anisotropy constant and its relevance for a quantitative description of MFH. - Highlights: • Dynamic hysteresis measurements are a promising tool to study magnetic hyperthermia. • Dynamic hysteresis cycles can be reproduced using a simple model. • The effect of viscosity on hyperthermia of maghemite is weaker than expected.
A challenging hysteresis operator for the simulation of Goss-textured magnetic materials
Cardelli, Ermanno [Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia (Italy); Centre for Electric and Magnetic Applied Research, Perugia (Italy); Faba, Antonio [Centre for Electric and Magnetic Applied Research, Perugia (Italy); Polo Didattico Scientifico di Terni, Strada Pentima Bassa n. 4, 05100 Terni (Italy); Laudani, Antonino [Università Roma tre, Via Ostiense, 159, 00154 Roma (Italy); Pompei, Michele [Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia (Italy); Quondam Antonio, Simone, E-mail: simonequondam87@gmail.com [Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti, 67, 06125 Perugia (Italy); Fulginei, Francesco Riganti; Salvini, Alessandro [Università Roma tre, Via Ostiense, 159, 00154 Roma (Italy)
2017-06-15
Highlights: • New 2-D hysteresis operator for the simulation of Goss-textured ferromagnets at macromagnetic scale-length. • The operator is derived from the classic Stoner–Wohlfarth but the in-plane magnetic anisotropy is cubic. • The single hysteron model is defined exploiting only one “moving” hysteresis operator. • Results are especially promising for FEM based calculations, where the magnetization state in each point must be recalculated at each time step. • Numerical accuracy is proved by comparison with measured data. - Abstract: A new hysteresis operator for the simulation of Goss-textured ferromagnets is here defined. The operator is derived from the classic Stoner–Wohlfarth model, where the anisotropy energy is assumed to be cubic instead of uniaxial, in order to reproduce the magnetic behavior of Goss textured ferromagnetic materials, such as grain-oriented Fe–Si alloys, Ni–Fe alloys, and Ni–Co alloys. A vector hysteresis model based on a single hysteresis operator is then implemented and used for the prediction of the rotational magnetizations that have been measured in a sample of grain-oriented electrical steel. This is especially promising for FEM based calculations, where the magnetization state in each point must be recalculated at each time step. Finally, the computed loops, as well as the magnetic losses, are compared to the measured data.
Hysteresis Curve Fitting Optimization of Magnetic Controlled Shape Memory Alloy Actuator
Fuquan Tu
2016-11-01
Full Text Available As a new actuating material, magnetic controlled shape memory alloys (MSMAs have excellent characteristics such as a large output strain, fast response, and high energy density. These excellent characteristics are very attractive for precision positioning systems. However, the availability of MSMAs in practical precision positioning is poor, caused by weak repeatability under a certain stimulus. This problem results from the error of a large magnetic hysteresis in an external magnetic field. A suitable hysteresis modelling method can reduce the error and improve the accuracy of the MSMA actuator. After analyzing the original hysteresis modelling methods, three kinds of hysteresis modelling methods are proposed: least squares method, back propagation (BP artificial neural network, and BP artificial neural network based on genetic algorithms. Comparing the accuracy and convergence rate of three kinds of hysteresis modelling methods, the results show that the convergence rate of least squares method is the fastest, and the convergence accuracy of BP artificial neural networks based on genetic algorithms is the highest.
NCenter wide band neutrino beam
Stutte, L.G.
1985-01-01
This memo describes the physical properties of the currently operating N-Center wide band neutrino beam---commonly called the triplet train, following a past tradition of a triplet lens configuration. In reality, in order to gain a larger momentum acceptance and to minimize the angular divergence of the beam, a quadruplet beam (4 lenses) employing point-to-parallel optics at a central momentum of 300 GeV was built. 6 refs., 13 figs., 1 tab
Mathematical modelling of frequency-dependent hysteresis and energy loss of FeBSiC amorphous alloy
Koprivica, Branko; Milovanovic, Alenka; Mitrovic, Nebojsa
2017-01-01
The aim of this paper is to present a novel mathematical model of frequency-dependent magnetic hysteresis. The major hysteresis loop in this model is represented by the ascending and descending curve over an arctangent function. The parameters of the hysteresis model have been calculated from a measured hysteresis loop of the FeBSiC amorphous alloy sample. A number of measurements have been performed with this sample at different frequencies of the sinusoidal excitation magnetic field. A variation of the coercive magnetic field with the frequency has been observed and used in the modelling of frequency-dependent hysteresis with the proposed model. A comparison between measured and modelled hysteresis loops has been presented. Additionally, the areas of the obtained hysteresis loops, representing the energy loss per unit volume, have been calculated and the dependence of the energy loss on the frequency is shown. Furthermore, two models of the frequency dependence of the coercivity and two models of the energy loss separation have been used for fitting the experimental and simulation results. The relations between these models and their parameters have been observed and analysed. Also, the relations between parameters of the hysteresis model and the parameters of the energy loss separation models have been analysed and discussed. - Highlights: • A mathematical model of frequency-dependent hysteresis is proposed. • Dependence of coercivity and energy loss per unit volume on frequency is modelled. • Equivalence between models and relation between model parameters are presented.
Sedlock, Steve [Kansas State Univ., Manhattan, KS (United States)
2012-01-01
The design of power amplifiers in any semi-conductor process is not a trivia exercise and it is often encountered that the simulated solution is qualitatively different than the results obtained. Phenomena such as oscillation occurring either in-band or out of band and sometimes at subharmonic intervals, continuous spectrum noticed in some frequency bands, often referred to as chaos, and jumps and hysteresis effects can all be encountered and render a design useless. All of these problems might have been identified through a more rigorous approach to stability analysis. Designing for stability is probably the one area of amplifier design that receives the least amount of attention but incurs the most catastrophic of effects if it is not performed properly. Other parameters such as gain, power output, frequency response and even matching may suitable mitigation paths. But the lack of stability in an amplifier has no mitigating path. In addition to of loss of the design completely there are the increased production cycle costs, costs involved with investigating and resolving the problem and the costs involved with schedule slips or delays resulting from it. The Linville or Rollett stability criteria that many microwave engineers follow and rely exclusively on is not sufficient by itself to ensure a stable and robust design. It will be shown that the universal belief that unconditional stability is obtained through an analysis of the scattering matrix S to determine if 1 and |{Delta}{sub S}| < 1 is only part of the procedure and other tools must be used to validate the criteria. The research shown contributes to the state of the art by developing a more thorough stability design technique for designing amplifiers of any class, whether that be current mode or switch mode, than is currently undertaken with the goal of obtaining first pass design success.
Linares, Jorge, E-mail: jorge.linares@uvsq.fr [GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); Jureschi, Catalin-Maricel [LISV, Université de Versailles Saint-Quentin-en-Yvelines, 78140 Velizy (France); Faculty of Electrical Engineering and Computer Science & MANSiD, Stefan cel Mare University, Suceava 720229 (Romania); Boulmaali, Ayoub [Département de Sciences Physiques, Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles Cedex (France); Boukheddaden, Kamel, E-mail: kamel.bouheddaden@uvsq.fr [GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France)
2016-04-01
The Ising-like model is used to simulate the thermal behavior of a 2D spin crossover (SC) nanoparticle embedded in a matrix, which affects the ligand field at its surface. First, we discuss the standard case of the isolated nanoparticle, and in the second part we consider the effect of the interaction between edge molecules and their local environment. We found that in the case of an isolated SC nanoparticle presenting a gradual spin transition, the matrix effect may drive a first-order spin transition accompanied with a hysteresis loop. An in-depth analysis of the physical mechanism underlying this unusual property is performed, leading to build up the system's phase diagram which clarifies the conditions of appearance of the first-order transition in the current 2D SC nanoparticles as function of their size and the strength of their interaction with their immediate environment.
Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)
2015-02-02
The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.
Apparent contact angle and contact angle hysteresis on liquid infused surfaces.
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-12-21
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.
Diminution of contact angle hysteresis under the influence of an oscillating force.
Manor, Ofer
2014-06-17
We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.
Martinez-de-Guerenu, A.; Gurruchaga, K.; Arizti, F.
2007-01-01
How structure sensitive parameters derived from hysteresis loops can provide nondestructive information about the evolution of the microstructure of cold rolled low carbon steel as a result of recovery and recrystallization processes during the annealing is shown. The coercive field, remanent induction and hysteresis losses can be used to monitor the decrease in the dislocation density during recovery. These parameters are also influenced by the average grain refinement that takes place during recrystallization, which compensates the variation produced by the annihilation of dislocations during recrystallization. The maximum of the induction and of the relative differential permeability are shown to be very sensitive to the onset and to the monitoring of the recrystallization, respectively. The correlations between coercive field and remanent induction and hysteresis losses can also be used to distinguish between recovery and recrystallization
Theresa A. LaFollette
2011-01-01
Full Text Available Concentrated solutions of a water-soluble block copolymer (PEO20-(PPO70-(PEO20 show a thermoreversible transition from a liquid to a gel. Over a range of concentration there also exists an order-order transition (OOT between cubically-packed spherical micelles and hexagonally-packed cylindrical micelles. This OOT displays a hysteresis between the heating and cooling transitions that is observed at both the macroscale through rheology and nanoscale through small angle neutron scattering (SANS. The hysteresis is caused by the persistence of the cubically-packed spherical micelle phase into the hexagonally-packed cylindrical micelle phase likely due to the hindered realignment of the spherical micelles into cylindrical micelles and then packing of the cylindrical micelles into a hexagonally-packed cylindrical micelle phase. This type of hysteresis must be fully characterized, and possibly avoided, for these block copolymer systems to be used as templates in nanocomposites.
Hysteresis phenomena at metal-semiconductor phase transformation in vanadium oxides
Lanskaya, T.G.; Merkulov, I.A.; Chudnovski , F.A.
1978-01-01
The hysteresis phenomena during the metal-semiconductor phase transformation (MSPT) in vanadium oxides are investigated. It is shown experimentally that the hysteresis effects during MSPT in vanadium oxides are associated not only with the martensite nature of the transformation, but also with activation processes. It is shown that the hysteresis phenomena during MSPT may be described by the distribution function of microregions of the crystal in the phase transformation temperature T 0 and the coercive temperature Tsub(c). An experimental method for constructing this distribution function was worked out. An analysis of the experimental data shows that finely dispersed films are characterized by a wide range of values of T 0 and Tsub(c) (55 deg C 0 <65 deg C, 6 deg C< Tsub(c)<12 deg C). The peculiarities of the optical recording of information on monocrystal and finely dispersed films are considered
The Influence of the Relaxation Time on the Dynamic Hysteresis in Perovskite Solar Cells
Palici Alexandra
2018-01-01
Full Text Available We investigate the dynamic behavior of perovskite solar cells by focusing on the relaxation time τ, which corresponds to the slow de-polarization process from an initial bias pre-poled state. The dynamic electrical model (DEM is employed for simulating the J-V characteristics for different bias scan rates and pre-poling conditions. Depending on the sign of the initial polarization normal or inverted hysteresis may be induced. For fixed pre-poling conditions, the relaxation time, in relation to the bias scan rate, governs the magnitude of the dynamic hysteresis. In the limit of large τ the hysteretic effects are vanishing for the typical range of bias scan rates considered, while for very small τ the hysteresis is significant only when it is comparable with the measurement time interval.
Adly, A. A.; Abd-El-Hafiz, S. K.
2018-05-01
It is well known that accurate modeling of magnetostrictive hysteresis is crucial to different industrial applications. Although several magnetostrictive models have been developed in the past, the accuracy-efficiency balance has always been crucial. Recently, the possibility of constructing a primitive vector hysteresis operator using a tri-node Hopfield Neural Network (HNN) was demonstrated. Based upon the fact that mechanical stress along a certain direction results in dimensional deformation, this paper introduces a novel extension to the aforementioned recently developed approach. More specifically, a stress-driven evolution of a tri-node HNN hysteresis operator pair is proposed, thus yielding a tripod-like HNN pair having different input offset values. Model identification, sample simulation results and comparison with experimental measurements are given in the paper.
Gomes Leal-Junior, Arnaldo; Frizera-Neto, Anselmo; José Pontes, Maria; Rodrigues Botelho, Thomaz
2017-12-01
Polymer optical fiber (POF) curvature sensors present some advantages over conventional techniques for angle measurements, such as their light weight, compactness and immunity to electromagnetic fields. However, high hysteresis can occur in POF curvature sensors due to the polymer viscoelastic response. In order to overcome this limitation, this paper shows how the hysteresis sensor can be compensated by a calibration equation relating the measured output signal to the sensor’s angular velocity. The proposed method is validated using an exoskeleton with an active joint on the knee for flexion and extension rehabilitation exercises. The results show a decrease in sensor hysteresis and a decrease by more than two times in the error between the POF sensor and the potentiometer, which is employed for the angle measurement of the exoskeleton knee joint.
Analysis of a hysteresis motor on asynchronous speed using complex permeability
Horii, T.; Yuge, N.; Wakui, G.
1994-01-01
Although hysteresis motors have a comparatively small output for their mechanical dimensions compared with other types of motor, they offer the advantages of extremely low vibration and noise levels, and so are widely used as driving motors in acoustic equipment and uranium gas centrifuges. This paper deals with a method for determining the complex permeability in analysis of hysteresis motors. The method assumes that the magnetic intensity distribution is sinusoidal in the direction of rotation. Analysis of the asynchronous speed of a hysteresis motor is then performed for cylindrical coordinates, using modified Bessel functions. The results of calculations are in good agreement with experimental results, confirming the effectiveness of the proposed model and method for determining the complex permeability
Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst
Mortensen, Peter Mølgaard; Engbæk, Jakob Soland; Vendelbo, Søren Bastholm
2017-01-01
We demonstrated a proof-of-concept catalytic steam reforming flow reactor system heated only by supported magnetic nickel–cobalt nanoparticles in an oscillating magnetic field. The heat transfer was facilitated by the hysteresis heating in the nickel–cobalt nanoparticles alone. This produced...... a sufficient power input to equilibrate the reaction at above 780 °C with more than 98% conversion of methane. The high conversion of methane indicated that Co-rich nanoparticles with a high Curie temperature provide sufficient heat to enable the endothermic reaction, with the catalytic activity facilitated...... by the Ni content in the nanoparticles. The magnetic hysteresis losses obtained from temperature-dependent hysteresis measurements were found to correlate well with the heat generation in the system. The direct heating of the catalytic system provides a fast heat transfer and thereby overcomes the heat...
Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun
2017-10-12
Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.
Boiling hysteresis of impinging circular submerged jets with highly wetting liquids
Zhou, D.W.; Ma, C.F.; Yu, J.
2004-01-01
An experimental study was carried out to characterize the boiling hysteresis of impinging circular submerged jets with highly wetting liquids. The effects of noncondensable gases and surface aging on boiling curves were considered. The present study focused on the effects of jet parameters (jet exit velocity, radial distance from the stagnation point and nozzle diameter) and fluid subcooling on incipient boiling superheat and superheat excursion, as well as the physical mechanism of boiling hysteresis. Results show that the incipient boiling superheat decreases only with fluid subcooling regardless of jet parameters, and that the superheat excursion increases with nozzle diameter and radial distance from the stagnation point and decreasing jet exit velocity and fluid subcooling. Boiling hysteresis occurs due to deactivation of vapor embryos within larger cavities. Three anomalous phenomena at boiling inception are recorded and discussed in terms of irregular activation of vapor embryos
Temperature dependence and hysteresis of the initial permeability of the 50%Ni - 50%Fe alloy
Kekalo, I.B.; Stolyarov, V.L.; Patsionov, V.A.
1979-01-01
Studied has been a temperature dependence of the initial permeability of the 50% Ni - 50% Fe alloy after primary and secondary recrystallization and effect of thermomagnetic treatment upon the dependence. For all the alloys with the structure of primary recrystallization a monotonous increase of initial permeability with temperature and the presence of slight temperature hysteresis are typical. Thermomagnetic treatment, not affecting considerably the temperature dependence of permeability for all the primarily recrystallized alloys, changes to a great extent the character of the dependence in the secondary recrystallized alloys. For 20-200-20 deg C temperature cycle of the alloys with secondary recrystallized structure are characterized after thermomagnetic treatment by the presence of gigantic hysteresis of initial permeability and a maximum on the heating branch of the curve in the vicinity of 130 deg C which are accounted for by peculiarities of temperature hysteresis of domain structure in the given alloy
Incorporation of the capillary hysteresis model HYSTR into the numerical code TOUGH
Niemi, A.; Bodvarsson, G.S.; Pruess, K.
1991-11-01
As part of the work performed to model flow in the unsaturated zone at Yucca Mountain Nevada, a capillary hysteresis model has been developed. The computer program HYSTR has been developed to compute the hysteretic capillary pressure -- liquid saturation relationship through interpolation of tabulated data. The code can be easily incorporated into any numerical unsaturated flow simulator. A complete description of HYSTR, including a brief summary of the previous hysteresis literature, detailed description of the program, and instructions for its incorporation into a numerical simulator are given in the HYSTR user's manual (Niemi and Bodvarsson, 1991a). This report describes the incorporation of HYSTR into the numerical code TOUGH (Transport of Unsaturated Groundwater and Heat; Pruess, 1986). The changes made and procedures for the use of TOUGH for hysteresis modeling are documented
Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator
Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin
2016-06-01
Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.
Morishige, Kunimitsu
2009-06-02
To examine the mechanisms for capillary condensation and for capillary evaporation in porous glass, we measured the hysteresis critical points and desorption scanning curves of nitrogen in four kinds of porous glasses with different pore sizes (Vycor, CPG75A, CPG120A, and CPG170A). The shapes of the hysteresis loop in the adsorption isotherm of nitrogen for the Vycor and the CPG75A changed with temperature, whereas those for the CPG120A and the CPG170A remained almost unchanged with temperature. The hysteresis critical points for the Vycor and the CPG75A fell on the common line observed previously for ordered mesoporous silicas. On the other hand, the hysteresis critical points for the CPG120A and the CPG170A deviated appreciably from the common line. This strongly suggests that capillary evaporation of nitrogen in the interconnected and disordered pores of both the Vycor and the CPG75A follows a cavitation process at least in the vicinity of their hysteresis critical temperatures in the same way as that in the cagelike pores of the ordered silicas, whereas the hysteresis critical points in the CPG120A and the CPG170A have origin different from that in the cagelike pores. The desorption scanning curves for the CPG75A indicated the nonindependence of the porous domains. On the other hand, for both the CPG120A and the CPG170A, we obtained the scanning curves that are expected from the independent domain theory. All these results suggest that sample spanning transitions in capillary condensation and evaporation take place inside the interconnected pores of both the CPG120A and the CPG170A.
A combined Preisach–Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D
Talebian, Soheil [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hojjat, Yousef, E-mail: yhojjat@modares.ac.ir [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghodsi, Mojtaba [Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat (Oman); Karafi, Mohammad Reza [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mirzamohammadi, Shahed [Department of Mechanical Engineering, Shahid Rajaee University, Tehran (Iran, Islamic Republic of)
2015-12-15
This study presents a new model using the combination of Preisach and Hyperbolic Tangent models, to predict the magnetic hysteresis of Terfenol-D at different frequencies. Initially, a proper experimental setup was fabricated and used to obtain different magnetic hysteresis curves of Terfenol-D; such as major, minor and reversal loops. Then, it was shown that the Hyperbolic Tangent model is precisely capable of modeling the magnetic hysteresis of the Terfenol-D for both rate-independent and rate-dependent cases. Empirical equations were proposed with respect to magnetic field frequency which can calculate the non-dimensional coefficients needed by the model. These empirical equations were validated at new frequencies of 100 Hz and 300 Hz. Finally, the new model was developed through the combination of Preisach and Hyperbolic Tangent models. In the combined model, analytical relations of the Hyperbolic Tangent model for the first order reversal loops determined the weighting function of the Preisach model. This model reduces the required experiments and errors due to numerical differentiations generally needed for characterization of the Preisach function. In addition, it can predict the rate-dependent hysteresis as well as rate-independent hysteresis. - Highlights: • Different hysteresis curves of Terfenol-D are experimentally obtained at 0–200 Hz. • A new model is presented using combination of Preisach and Hyperbolic Tangent models. • The model predicts both rate-independent and rate-dependent hystereses of Terfenol-D. • The analytical model reduces the numerical errors and number of required experiments.
... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Amniotic band sequence URL of this page: //medlineplus.gov/ency/ ... birth. The baby should be delivered in a medical center that has specialists experienced in caring for babies ... or partial loss of function of a body part. Congenital bands affecting large parts of the body cause the ...
Phenomenological analysis of thermal hysteresis in Ni-Mn-Ga Heusler alloys
Zagrebin, M. A.; Sokolovskiy, V. V.; Buchelnikov, V. D.
2018-05-01
The manipulation of thermal hysteresis in Ni-Mn-Ga Heusler alloys with coupled magnetostructural phase transition is studied theoretically using the Landau theory, including magnetic, elastic and crystal lattice modulation order parameters as well as an external magnetic field. It is shown that for the assigned combination of phenomenological parameters, in the phase diagrams, the Austenite-Martensite first-order phase transition has a finite (critical) point in which the thermal hysteresis is disappeared. Moreover, this point depends on the relation between modulation and elastic constants as well as on the magnetic field. Obtained results have been compared with other theoretical end experimental data.
A wave shaping approach of ferrite inductors exhibiting hysteresis using orthogonal field bias
Adly, A. A.; Abd-El-Hafiz, S. K.; Mahgoub, A. O.
2018-05-01
Advances in power electronic systems have considerably contributed to a wide spectrum of applications. In most power electronic circuits, inductors play crucial functions. Utilization of ferrite cores becomes a must when large inductances are required. Nevertheless, this results in an additional complexity due to their hysteresis nature. Recently, an efficient approach for modeling vector hysteresis using tri-node Hopfield neural networks (HNNs) has been introduced. This paper presents a wave shaping approach using hollow cylindrical ferrite core inductors having axial and toroidal windings. The approach investigates the possibility of tuning the inductor permeability to minimize circuit harmonics. Details of the approach are given in the paper.
Modelling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects
Morozovska, Anna N; Eliseev, Eugene A
2004-01-01
We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. We have modified the Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic values and the various hysteresis-loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films
Xi Li-Ying; Chen Huan-Ming; Zheng Fu; Gao Hua; Tong Yang; Ma Zhi
2015-01-01
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. (paper)
Andrei, Petru; Oniciuc, Liviu; Stancu, Alexandru; Stoleriu, Laurentiu
2007-01-01
An identification technique for the parameters of phenomenological models of hysteresis is presented. The basic idea of our technique is to set up a system of equations for the parameters of the model as a function of known quantities on the major or minor hysteresis loops (e.g. coercive force, susceptibilities at various points, remanence), or other magnetization curves. This system of equations can be either over or underspecified and is solved by using the conjugate gradient method. Numerical results related to the identification of parameters in the Energetic, Jiles-Atherton, and Preisach models are presented
Influence of tensile stress and frequency on the longitudinal magnetic hysteresis of amorphous wires
Torres, Carlos; Maria Munoz, Jose; Hernandez-Gomez, Pablo; Francisco, Carlos de
2010-01-01
This work studies the longitudinal magnetic hysteresis of amorphous wires with different Fe or Co compositions through an external magnetic field in the axial direction. Measurements have been carried out with the help of a digitally processed system in the 50 Hz-1 kHz frequency range. In addition, the influence of different tensile stresses has been also analyzed. The results show that both parameters change considerably the magnetic hysteresis of the wires but in a different way depending on their composition. This behaviour has been interpreted in terms of the different domain distribution associated with the opposite sign of the magnetostriction for Fe and Co-based wires, respectively.
Major and minor magnetostriction hysteresis loops of Co-Cu-Ni ferrite
Bienkowski, Adam; Kaczkowski, Zbigniew
2000-01-01
Initial curve, major and minor magnetostriction hysteresis loops (butterfly loops) as the functions of the static magnetic field of the Co 0.004 Cu 0.12 Ni 0.866 Fe 2.01 O 4.02 ferrite were investigated. The saturation magnetostriction for the field equal to 2500 A/m was negative and equal to -11.1x10 -6 and for the field of 540 A/m (equal to 3H c ) was equal to -8.0x10 -6 . Other minor magnetostriction hysteresis loops are presented
Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.; Bintacchit, P.; Trolier-McKinstry, S.
2009-01-01
An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.
Hysteresis of methane hydrate formation/decomposition at subsea geological conditions
Klapproth, Alice; Piltz, Ross; Peterson, Vanessa K.; Kennedy, Shane J.; Kozielski, Karen A.; Hartley, Patrick G.
2009-01-01
Full text: Gas hydrates are a major risk when transporting oil and gas in offshore subsea pipelines. Under typical conditions in these pipelines (at high pressure and low temperature) the formation of gas hydrates is favourable. The hydrates form large solid plugs that can block pipelines and can even cause them to burst. This represents a major problem for the gas mining industry, which currently goes to extreme measures to reduce the risk of hydrate formation because there is no reliable experimental data on hydrate processes. The mechanisms of gas hydrate formation, growth and inhibition are poorly understood. A clear understanding of the fundamental processes will allow development of cost effective technologies to avoid production losses in gas pipelines. We are studying the nucleation of the methane hydrates by measuring the hysteresis of hydrate formation/decomposition by neutron diffraction. When a gas hydrate is decomposed (melted) the resulting water has a 'supposed memory effect' raising the probability of rapid hydrate reformation. This rapid reformation does not occur for pure water where nucleation can be delayed by several hours (induction time) due to metastability [1]. The memory effect can only be destroyed by extreme heating of the effected area. Possible causes of this effect include residual water structure, persistent hydrate crystal lites remaining in solution and remaining dissolved gas. We will compare the kinetics of formation and the stability region of hydrate formation of 'memory' water for comparison with pure water. This information has important implications for the oil and gas industry because it should provide a better understanding of the role of multiple dissociation and reformation of gas hydrates in plug formation.
Atitoaie, Alexandru; Tanasa, Radu; Enachescu, Cristian
2012-01-01
Spin crossover compounds are photo-magnetic bistable molecular magnets with two states in thermodynamic competition: the diamagnetic low-spin state and paramagnetic high-spin state. The thermal transition between the two states is often accompanied by a wide hysteresis, premise for possible application of these materials as recording media. In this paper we study the influence of the system's size on the thermal hysteresis loops using Monte Carlo simulations based on an Arrhenius dynamics applied for an Ising like model with long- and short-range interactions. We show that using appropriate boundary conditions it is possible to reproduce both the drop of hysteresis width with decreasing particle size, the hysteresis shift towards lower temperatures and the incomplete transition, as in the available experimental data. The case of larger systems composed by several sublattices is equally treated reproducing the shrinkage of the hysteresis loop's width experimentally observed. - Highlights: ► A study concerning size effects in spin crossover nanoparticles hysteresis is presented. ► An Ising like model with short- and long-range interactions and Arrhenius dynamics is employed. ► In open boundary system the hysteresis width decreases with particle size. ► With appropriate environment, hysteresis loop is shifted towards lower temperature and transition is incomplete.
Vrijsen, N.H.; Jansen, J.W.; Compter, J.C.; Lomonova, E.
2013-01-01
A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet.
Band parameters of phosphorene
Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)
Infrared diffuse interstellar bands
Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.
2017-05-01
We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.
Band parameters of phosphorene
Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....
Aji, D. P. B.; Johari, G. P., E-mail: joharig@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)
2015-06-07
Fluctuations confined to local regions in the structure of a glass are observed as the Johari-Goldstein (JG) relaxation. Properties of these regions and their atomic configuration are currently studied by relaxation techniques, by electron microscopy, and by high-energy X-ray scattering and extended x-ray absorption fine structure methods. One expects that these fluctuations (i) would kinetically freeze on cooling a glass, and the temperature coefficient of its enthalpy, dH/dT, would consequently show a gradual decrease with decrease in T, (ii) would kinetically unfreeze on heating the glass toward the glass-liquid transition temperature, T{sub g}, and dH/dT would gradually increase, and (iii) there would be a thermal hysteresis indicating the time and temperature dependence of the enthalpy. Since no such features have been found, thermodynamic consequences of these fluctuations are debated. After searching for these features in glasses of different types, we found it in one of the most stable metal alloy glasses of composition Pd{sub 40}Ni{sub 10}Cu{sub 30}P{sub 20}. On cooling from its T{sub g}, dH/dT decreased along a broad sigmoid-shape path as local-region fluctuations kinetically froze. On heating thereafter, dH/dT increased along a similar path as these fluctuations unfroze, and there is hysteresis in the cooling and heating paths, similar to that observed in the T{sub g}-endotherm range. After eliminating other interpretations, we conclude that local-region fluctuations seen as the JG relaxation in the non-equilibrium state of a glass contribute to its entropy, and we suggest conditions under which such fluctuations may be observed.
Aji, D. P. B.; Johari, G. P.
2015-01-01
Fluctuations confined to local regions in the structure of a glass are observed as the Johari-Goldstein (JG) relaxation. Properties of these regions and their atomic configuration are currently studied by relaxation techniques, by electron microscopy, and by high-energy X-ray scattering and extended x-ray absorption fine structure methods. One expects that these fluctuations (i) would kinetically freeze on cooling a glass, and the temperature coefficient of its enthalpy, dH/dT, would consequently show a gradual decrease with decrease in T, (ii) would kinetically unfreeze on heating the glass toward the glass-liquid transition temperature, T g , and dH/dT would gradually increase, and (iii) there would be a thermal hysteresis indicating the time and temperature dependence of the enthalpy. Since no such features have been found, thermodynamic consequences of these fluctuations are debated. After searching for these features in glasses of different types, we found it in one of the most stable metal alloy glasses of composition Pd 40 Ni 10 Cu 30 P 20 . On cooling from its T g , dH/dT decreased along a broad sigmoid-shape path as local-region fluctuations kinetically froze. On heating thereafter, dH/dT increased along a similar path as these fluctuations unfroze, and there is hysteresis in the cooling and heating paths, similar to that observed in the T g -endotherm range. After eliminating other interpretations, we conclude that local-region fluctuations seen as the JG relaxation in the non-equilibrium state of a glass contribute to its entropy, and we suggest conditions under which such fluctuations may be observed
Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz
2014-02-01
An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p biological systems.
The bifurcation diagram of drops in a sphere/plane geometry: influence of contact angle hysteresis
de Ruiter, Riëlle; van Gorcum, M.; Semprebon, C.; Duits, Michael H.G.; Brinkmann, M.; Mugele, Friedrich Gunther
2014-01-01
We study liquid drops that are present in a generic geometry, namely the gap in between a sphere and a plane. For the ideal system without contact angle hysteresis, the drop position is solely dependent on the contact angle, drop volume, and sphere/ plane separation distance. Performing a geometric
Fully coupled modeling of magnetomechanical hysteresis through ‘thermodynamic’ compatibility
Davino, D.; Krejčí, Pavel; Visone, C.
2013-01-01
Roč. 22, č. 9 (2013), 095009 ISSN 0964-1726 Institutional support: RVO:67985840 Keywords : magnetostriction * hysteresis * Preisach model Subject RIV: BA - General Mathematics Impact factor: 2.449, year: 2013 http://iopscience.iop.org/0964-1726/22/9/095009
THE INFLUENCE OF HYSTERESIS IN CONSUMER’S BEHAVIOUR FOR PREMIUM PRICE EVALUATION
Evgeny KRYUKOV
2014-10-01
Full Text Available The paper deals with an example of the manifestation of the hysteresis in consumers’ behaviour for the Latvian company operating on the market closest to oligopoly and having a local brand name. Based on the quota sample of 332 company stores consumers, their loyalty, willingness to pay for domestic cosmetic products and the propensity to buy habitual products were evaluated. In the survey the unfolding bracketing procedure is used. It is shown that the relationship between the number of loyal consumers and the product price depends on the price increase or decrease and has the form of a hysteresis loop. The width of the hysteresis loop depends on the pricing of a competing company. The range of the premium prices bringing a positive economic impact is determined. The obtained results confirm a considerable influence of the hysteresis effect on consumers’ sensitivity to price changes. The findings can be useful for managers in evaluating a possible revenue growth connected with the premium pricing strategy.
Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states
Tambach, T.J.; Bolhuis, P.G.; Hensen, E.J.M.; Smit, B.
2006-01-01
We perform grand-canonical molecular simulations to study the molecular mechanism of clay swelling hysteresis as a function of the relative humidity. In particular, we focus on the transition from the one- to the two-layer hydrate and the influence of three types of counterions (Li+, Na+, and K+).
Temperature dependency of the hysteresis behaviour of PZT actuators using Preisach model
Mangeot, Charles; Zsurzsan, Tiberiu-Gabriel
2016-01-01
The Preisach model is a powerful tool for modelling the hysteresis phenomenon on multilayer piezo actuators under large signal excitation. In this paper, measurements at different temperatures are presented, showing the effect on the density of the Preisach matrix. An energy-based approach is pre...
El-Shaer, A.H.; Al Janaideh, M.; Krejčí, Pavel; Tomizuka, M.
2013-01-01
Roč. 135, č. 5 (2013), 051008 ISSN 0022-0434 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * optimization * robust control Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2013 http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=1692306
Three-dimensional hysteresis compensation enhances accuracy of robotic artificial muscles
Zhang, Jun; Simeonov, Anthony; Yip, Michael C.
2018-03-01
Robotic artificial muscles are compliant and can generate straight contractions. They are increasingly popular as driving mechanisms for robotic systems. However, their strain and tension force often vary simultaneously under varying loads and inputs, resulting in three-dimensional hysteretic relationships. The three-dimensional hysteresis in robotic artificial muscles poses difficulties in estimating how they work and how to make them perform designed motions. This study proposes an approach to driving robotic artificial muscles to generate designed motions and forces by modeling and compensating for their three-dimensional hysteresis. The proposed scheme captures the nonlinearity by embedding two hysteresis models. The effectiveness of the model is confirmed by testing three popular robotic artificial muscles. Inverting the proposed model allows us to compensate for the hysteresis among temperature surrogate, contraction length, and tension force of a shape memory alloy (SMA) actuator. Feedforward control of an SMA-actuated robotic bicep is demonstrated. This study can be generalized to other robotic artificial muscles, thus enabling muscle-powered machines to generate desired motions.
Krejčí, Pavel; Kuhnen, K.
2008-01-01
Roč. 14, č. 5 (2008), s. 409-417 ISSN 0947-3580 Institutional research plan: CEZ:AV0Z10190503 Keywords : active materials * hysteresis * creep Subject RIV: BA - General Mathematics Impact factor: 1.013, year: 2008
Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao
2012-08-01
In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.
Effects of the amorphization on hysteresis loops of the amorphous spin-1/2 Ising system
Essaoudi, I.; Ainane, A.; Saber, M.; Miguel, J.J. de
2009-01-01
We examine the effects of the amorphization on the hysteresis loops of the amorphous spin-1/2 Ising system using the effective field theory within a probability distribution technique that accounts for the self-spin correlation functions. The magnetization, the transverse and longitudinal susceptibilities, and pyromagnetic coefficient are also studied in detail
Reversible hysteresis inversion in MoS_{2} field effect transistors
Kaushik, Naveen; Mackenzie, David M. A.; Thakar, Kartikey
2017-01-01
. The intrinsic-oxide trap model has been corroborated through device simulations. Further, pulsed current–voltage (I–V) measurements were carried out to extract the trap time constants at different temperatures. Non-volatile memory and temperature sensor applications exploiting temperature dependent hysteresis...
In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...
Bingxiao Ding
2018-05-01
Full Text Available Based on the background of atomic force microscope (AFM driven by piezoelectric actuators (PEAs, this paper proposes a sliding mode control coupled with an inverse Bouc–Wen (BW hysteresis compensator to improve the positioning performance of PEAs. The intrinsic hysteresis and creep characteristics degrade the performance of the PEA and cause accuracy loss. Although creep effect can be eliminated by the closed-loop control approach, hysteresis effects need to be compensated and alleviated by hysteresis compensators. For the purpose of dealing with the estimation errors, unmodeled vibration, and disturbances, a sliding mode control with perturbation estimation (SMCPE method is adopted to enhance the performance and robustness of the system. In order to validate the feasibility and performance of the proposed method, experimental studies are carried out, and the results show that the proposed controller performs better than a proportional-integral-derivative (PID controller at 1 and 2 Hz, reducing error to 1.2% and 1.4%, respectively.
Mueller, Robert; Dutz, Silvio; Hergt, Rudolf; Schmidt, Christopher; Steinmetz, Hanna; Zeisberger, Matthias; Gawalek, Wolfgang
2007-01-01
Ferrofluids were prepared from glass crystallized as well as wet precipitated iron oxide particles. Comparing hysteresis losses versus applied field amplitude from particles in immobilized state (powder) and in fluid state (ferrofluid) shows in some cases anomalous large losses at low magnetic fields. The influence of texture on the losses was investigated
Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor
Shi, Changshuai; Zhu, Xiaohua; Tang, Liping; Deng, Juan
2017-01-01
Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well
Sorption Hysteresis of Light Hydrocarbons and Carbon Dioxide in Shale and Kerogen
Zhao, Huangjing
2017-11-20
We present adsorption and desorption isotherms of methane, ethane, propane, n-butane and iso-butane as well as carbon dioxide for two shales and isolated kerogens determined by a gravimetric method. The sorption measurements of two shales were performed at three different temperatures, 308.15, 323.15, and 338.15 K. For the isolated kerogens, the measurements were conducted at 338.15 K. Methane and ethane sorption isotherms were measured to 35 bar. Carbon dioxide sorption isotherms were studied to 30 bar. Due to the low vapor pressure at room temperature, the sorption isotherms of propane, n-butane and iso-butane were measured to 8, 2, and 2 bar, respectively. The adsorptions of propane, n-butane, and iso-butane were much higher than methane at the highest pressures where the measurements were conducted. The adsorption of n-butane was 10 times higher than methane by mole at 2 bar, followed by iso-butane and propane. Our data show significant adsorption hysteresis in ethane, propane, n-butane and iso-butane. The most pronounced hysteresis was found in n-butane and iso-butane. Significant hysteresis is attributed to the reversible structural changes of kerogens. Dissolution of adsorbates into organic matter may also affect the hysteresis. This is the first report of propane and butane sorption isotherms in shales.
Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor
Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)
2017-03-15
Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.
Kuhnen, K.; Krejčí, Pavel
2009-01-01
Roč. 54, č. 3 (2009), s. 537-550 ISSN 0018-9286 Institutional research plan: CEZ:AV0Z10190503 Keywords : compensation * creep * hysteresis Subject RIV: BA - General Mathematics Impact factor: 2.556, year: 2009 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4797784
Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.
Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R
2017-08-21
Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.
Zaim, N.; Zaim, A., E-mail: ah_zaim@yahoo.fr; Kerouad, M., E-mail: kerouad@fs-umi.ac.ma
2017-02-15
In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction J{sub s} on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined. - Highlights: • Phase diagrams of a ferromagnetic nanowire are examined by the Monte Carlo simulation. • Different types of the phase diagrams are obtained. • The effect of the random crystal field on the hysteresis loops is studied. • Single, double and para hysteresis regions are explicitly determined.
The effect of hysteresis on microbial activity in computer simulation models
Whitmore, A.P.; Heinen, M.
1999-01-01
Microbial activity in soils depends on the status or the soil water, which is expressed by pressure head (h) or water content (θ). There is no unique relationship between θ and h because moisture relations exhibit hysteresis. For convenience microbial activity has usually been related to the main
The Preisach hysteresis model: Error bounds for numerical identification and inversion
Krejčí, Pavel
2013-01-01
Roč. 6, č. 1 (2013), s. 101-119 ISSN 1937-1632 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * Preisach model * error bounds Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7779
Nondestructive inspection of ductile cast iron by measurement of minor magnetic hysteresis loops
Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan
2010-01-01
Roč. 659, č. 9 (2010), 355-360 ISSN 0255-5476 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism
Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content
Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith
2007-01-01
Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...
Lift hysteresis at stall as an unsteady boundary-layer phenomenon
Moore, Franklin K
1956-01-01
Analysis of rotating stall of compressor blade rows requires specification of a dynamic lift curve for the airfoil section at or near stall, presumably including the effect of lift hysteresis. Consideration of the magnus lift of a rotating cylinder suggests performing an unsteady boundary-layer calculation to find the movement of the separation points of an airfoil fixed in a stream of variable incidence. The consideration of the shedding of vorticity into the wake should yield an estimate of lift increment proportional to time rate of change of angle of attack. This increment is the amplitude of the hysteresis loop. An approximate analysis is carried out according to the foregoing ideas for a 6:1 elliptic airfoil at the angle of attack for maximum lift. The assumptions of small perturbations from maximum lift are made, permitting neglect of distributed vorticity in the wake. The calculated hysteresis loop is counterclockwise. Finally, a discussion of the forms of hysteresis loops is presented; and, for small reduced frequency of oscillation, it is concluded that the concept of a viscous "time lag" is appropriate only for harmonic variations of angle of attack with time at mean conditions other than maximum lift.
Sorption Hysteresis of Light Hydrocarbons and Carbon Dioxide in Shale and Kerogen
Zhao, Huangjing; Lai, Zhiping; Firoozabadi, Abbas
2017-01-01
We present adsorption and desorption isotherms of methane, ethane, propane, n-butane and iso-butane as well as carbon dioxide for two shales and isolated kerogens determined by a gravimetric method. The sorption measurements of two shales were performed at three different temperatures, 308.15, 323.15, and 338.15 K. For the isolated kerogens, the measurements were conducted at 338.15 K. Methane and ethane sorption isotherms were measured to 35 bar. Carbon dioxide sorption isotherms were studied to 30 bar. Due to the low vapor pressure at room temperature, the sorption isotherms of propane, n-butane and iso-butane were measured to 8, 2, and 2 bar, respectively. The adsorptions of propane, n-butane, and iso-butane were much higher than methane at the highest pressures where the measurements were conducted. The adsorption of n-butane was 10 times higher than methane by mole at 2 bar, followed by iso-butane and propane. Our data show significant adsorption hysteresis in ethane, propane, n-butane and iso-butane. The most pronounced hysteresis was found in n-butane and iso-butane. Significant hysteresis is attributed to the reversible structural changes of kerogens. Dissolution of adsorbates into organic matter may also affect the hysteresis. This is the first report of propane and butane sorption isotherms in shales.
Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators
Krejčí, Pavel; Sprekels, J.
2008-01-01
Roč. 1, č. 2 (2008), s. 283-292 ISSN 1937-1632 Institutional research plan: CEZ:AV0Z10190503 Keywords : elastoplasticity * beam equation * hysteresis Subject RIV: BA - General Mathematics http://aimsciences.org/journals/pdfs.jsp?paperID=3201&mode=abstract
von Moos, Lars; Bahl, Christian R.H.; Nielsen, Kaspar Kirstein
2014-01-01
description of the phase transition at varying magnetic fields and temperatures. Using detailed experimental property data, a Preisach type model is used to describe the thermal hysteresis effects and simulate the material under realistic working conditions. We find that the adiabatic temperature change...
Study of vortex configurations in Yb3Rh4Sn13 via minor hysteresis loops
Sarkar, S.; Tulapurkar, A.A.; Ramakrishnan, S.; Grover, A.K.; Tomy, C.V.
2001-01-01
The tracings of the minor hysteresis loops in the superconductor Yb 3 Rh 4 Sn 13 (i) elucidate the path dependence in J c (H), (ii) help to reach the stable vortex configuration from a given metastable state and (iii) reveal the occurrence of step change in equilibrium magnetization across the peak effect (PE) regime. (author)
Hydrogenation effect on the hysteresis properties of rapidly quenched Nd-Ho-Fe-Co-B alloys
Tereshina, I.; Kudrevatykh, N.; Tereshina, Evgeniya; Burkhanov, G.; Chistyakov, O.; Grechishkin, R.; Salamova, A.; Verbetsky, V.
2011-01-01
Roč. 509, č. 2 (2011), S835-S838 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare earth -iron compounds * hydrogenation * coercive field * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.289, year: 2011
Quan Zhang; Richard P. Phillips; Stefano Manzoni; Russell L. Scott; A. Christopher Oishi; Adrien Finzi; Edoardo Daly; Rodrigo Vargas; Kimberly A. Novick
2018-01-01
In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This...
Relaxation and optimisation of a phase-field control system with hysteresis
Krejčí, Pavel; Timoshin, S. A.; Tolstonogov, A. A.
2018-01-01
Roč. 91, č. 1 (2018), s. 85-100 ISSN 0020-7179 Institutional support: RVO:67985840 Keywords : evolution control system * hysteresis * state-dependent constraint Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.208, year: 2016 http://www.tandfonline.com/doi/full/10.1080/00207179.2016.1268270
Hamimid, M.; Mimoune, S.M.; Feliachi, M.; Atallah, K.
2014-01-01
In this present work, a non centered minor hysteresis loops evaluation is performed using the exponential transforms (ET) of the modified inverse Jiles–Atherton model parameters. This model improves the non centered minor hysteresis loops representation. The parameters of the non centered minor hysteresis loops are obtained from exponential expressions related to the major ones. The parameters of minor loops are obtained by identification using the stochastic optimization method “simulated annealing”. The four parameters of JA model (a,α, k and c) obtained by this transformation are applied only in both ascending and descending branches of the non centered minor hysteresis loops while the major ones are applied to the rest of the cycle. This proposal greatly improves both branches and consequently the minor loops. To validate this model, calculated non-centered minor hysteresis loops are compared with measured ones and good agreements are obtained
Two component butterfly hysteresis in RuSr2EuCeCu2O1 ruthenocuprate
Zivkovic, I.; Drobac, D.; Prester, M.
2006-01-01
We report detailed studies of the ac susceptibility butterfly hysteresis on the RuSr 2 EuCeCu 2 O 1 (Ru1222) ruthenocuprate compound. Two separate contributions to these hysteresis have been identified and studied. One contribution is ferromagnetic-like and is characterized by the coercive field maximum. Another contribution, represented by the so called inverted maximum, is related to the unusual inverted loops, unique feature of Ru1222 butterfly hysteresis. The different nature of the two identified magnetic contributions is proved by the different temperature dependences involved. By lowering the temperature the inverted peak gradually disappears while the coercive field slowly raises. If the maximum dc field for the hysteresis is increased, the size of the inverted part of the butterfly hysteresis monotonously grows while the position of the peak saturates. In reaching saturation exponential field dependence has been demonstrated to take place. At T = 78 K the saturation field is 42 Oe
Adly, A.A.; Davino, D.; Visone, C.
2006-01-01
Materials exhibiting gigantic magnetostriction and magnetic shape memory are currently being widely used in various applications. Recently, an approach based on simulating 1-D magnetostriction using 2-D anisotropic Preisach-type models has been introduced. The purpose of this paper is to present a detailed formulation and quantitative assessment for the simulation of field effects on the mechanical hysteresis of Terfenol rods and magnetic shape memory materials using this recently proposed model. Details of the model formulation, identification procedure and experimental testing are given in the paper
CSF oligoclonal banding - slideshow
... this page: //medlineplus.gov/ency/presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy To use the ... 5 out of 5 Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous ...
Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.
1995-01-01
One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs
... eat by making you feel full after eating small amounts of food. After surgery, your doctor can adjust the band ... You will feel full after eating just a small amount of food. The food in the small upper pouch will ...
Ganow, H.C.
1985-08-01
The US Bureau of Mines borehole deformation gauge (BMG) was designed in the early 1960's to allow rock stress measurements by the overcoring method. Since that time it has become a de facto standard against which the performance of other borehole deformation gauges is often judged. However, during recent in situ stress studies in the Climax Stock at the Nevada Test Site a strange ''negative hysteresis'' in the order of 300 to 500 microstrains was observed in standard calibration data. Here, the relaxation curve lies below the indentation (compression) curves as if the system were to somehow respond with an energy release. Therefore, a precision micro-indentation apparatus has been designed and used to perform a series of tests allowing a better understanding of the BMG button to cantilever interaction. Results indicate that the hysteresis effect is caused by differential motion between the button base and the cantilever resulting from the geometric motion inherent in the cantilever. The very large apparent hysteresis is mainly caused by cycling opposing cantilevers through the instrument's entire dynamic range, and the fundamental imprecision inherent in use of the standard micrometers to calibrate the BMG. Laboratory mean hysteresis magnitudes for a polished cantilever typically range from 3 to 25 microstrain for 100 and 1000 microstrain relaxations on 1000 microstrain deflection loops intended to simulate typical field data. The error percentage is thought to remain fairly constant with deformation loop size, and is sufficiently small such that it can be safely ignored. The hysteresis effect can probably be reduced, and instrument stability improved by machining a small 90 degree cone in the cantilever in which a slightly larger mating cone on the base of the indentation button would reside. 5 refs. 26 figs., 1 tab
Ducharne, B., E-mail: Benjamin.ducharne@insa-lyon.fr; Le, M.Q.; Sebald, G.; Cottinet, P.J.; Guyomar, D.; Hebrard, Y.
2017-06-15
Highlights: • Barkhausen noise energy versus excitation field hysteresis cycles MBN{sub energy}(H). • Difference in the dynamics of the induction field B and of the MBN{sub energy}. • Dynamic behavior of MBN{sub energy}(H) cycles is first-order. • Dynamic behavior of B(H) cycles is non-entire order. - Abstract: By means of a post-processing technique, we succeeded in plotting magnetic Barkhausen noise energy hysteresis cycles MBN{sub energy}(H). These cycles were compared to the usual hysteresis cycles, displaying the evolution of the magnetic induction field B versus the magnetic excitation H. The divergence between these comparisons as the excitation frequency was increased gave rise to the conclusion that there was a difference in the dynamics of the induction field and of the MBN{sub energy} related to the domain wall movements. Indeed, for the MBN{sub energy} hysteresis cycle, merely the domain wall movements were involved. On the other hand, for the usual B(H) cycle, two dynamic contributions were observed: domain wall movements and diffusion of the magnetic field excitation. From a simulation point of view, it was demonstrated that over a large frequency bandwidth a correct dynamic behavior of the domain wall movement MBN{sub energy}(H) cycle could be taken into account using first-order derivation whereas fractional orders were required for the B(H) cycles. The present article also gives a detailed description of how to use the developed process to obtain the MBN{sub energy}(H) hysteresis cycle as well as its evolution as the frequency increases. Moreover, this article provides an interesting explanation of the separation of magnetic loss contributions through a magnetic sample: a wall movement contribution varying according to first-order dynamics and a diffusion contribution which in a lump model can be taken into account using fractional order dynamics.
Various causes behind the desorption hysteresis of carboxylic acids on mudstones.
Rasamimanana, S; Lefèvre, G; Dagnelie, R V H
2017-02-01
Adsorption desorption is a key factor for leaching, migration and (bio)degradation of organic pollutants in soils and sediments. Desorption hysteresis of apolar organic compounds is known to be correlated with adsorption/diffusion into soil organic matter. This work focuses on the desorption hysteresis of polar organic compounds on a natural mudstone sample. Acetic, citric and ortho-phthalic acids displayed adsorption-desorption hysteresis on Callovo-Oxfordian mudstone. The non-reversible behaviours resulted from three different mechanisms. Adsorption and desorption kinetics were evaluated using 14C- and 3H-labelled tracers and an isotopic exchange method. The solid-liquid distribution ratio of acetate decreased using a NaN 3 bactericide, indicating a rapid bacterial consumption compared with negligible adsorption. The desorption hysteresis of phthalate was apparent and suppressed by the equilibration of renewal pore water with mudstone. This confirms the significant and reversible adsorption of phthalate. Finally, persistent desorption hysteresis was evidenced for citrate. In this case, a third mechanism should be considered, such as the incorporation of citrate in the solid or a chemical perturbation, leading to strong desorption resilience. The results highlighted the different pathways that polar organic pollutants might encounter in a similar environment. Data on phthalic acid is useful to predict the retarded transport of phthalate esters and amines degradation products in sediments. The behaviour of citric acid is representative of polydentate chelating agents used in ore and remediation industries. The impact of irreversible adsorption on solid/solution partitioning and transport deserves further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model
Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-03-15
The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT
Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors
Lee, Alpha A; Vella, Dominic; Goriely, Alain; Kondrat, Svyatoslav
2015-01-01
Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and he...
Two opposite hysteresis curves in semiconductors with mobile dopants
Lee, Jae Sung; Lee, Shin Buhm; Kahng, Byungnam; Noh, Tae Won
2012-01-01
Recent experimental researches on semiconductors with mobile dopants (SMD) have reported unconventional hysteretic current-voltage (I-V) curves, which form dynamically in either one of the two opposite directions, the counter-figure-eight and figure-eight ways. However the fundamental theory for the formation of the two directions is still absent, and this poses a major barrier for researches oriented to applications. Here, we introduce a theoretical model to explain the origin of the two dir...
Popov, E. O.; Kolosko, A. G.; Filippov, S. V.; Romanov, P. A.; Terukov, E. I.; Shchegolkov, A. V.; Tkachev, A. G.
2017-12-01
We received and compared the current-voltage characteristics of large-area field emitters based on nanocomposites with graphene and nanotubes. The characteristics were measured in two high voltage scanning modes: the "slow" and the "fast". Correlation between two types of hysteresis observed in these regimes was determined. Conditions for transition from "reverse" hysteresis to the "direct" one were experimentally defined. Analysis of the eight-shaped hysteresis was provided with calculation of the effective emission parameters. The phenomenological model of adsorption-desorption processes in the field emission system was proposed.
Magnetic hysteresis effects in superconducting coplanar microwave resonators
Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)
2013-07-01
We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.
Dopant concentration dependence of radiation-induced positive hysteresis of Ce:GSO and Ce:GSOZ
Yanagida, Takayuki; Fujimoto, Yutaka; Watanabe, Kenichi
2014-01-01
Positive hysteresis and radiation tolerance to high-dose radiation exposure were investigated for Ce 0.5, 1, and 1.5%-doped Gd 2 SiO 5 (GSO) and for Zr co-doped GSO with the same Ce concentrations (GSOZ). When they were irradiated by 200–800 Gy 60 Co in 200 Gy steps, all Ce-doped GSO samples exhibited light yield enhancement (positive hysteresis). On the other hand, the light yield of GSOZ decreased greatly. Ce 0.5%-doped GSO showed the highest positive hysteresis, with ∼20% light yield enhancement. When the Ce concentration was increased, the positive hysteresis became weaker. - Highlights: • Positive hysteresis Ce 0.5, 1, and 1.5% doped GSO and GSOZ are studied. • Ce 0.5, 1, and 1.5% doped GSO show the positive hysteresis by 2–8 M rad 60 Co irradiation. • Ce 0.5, 1, and 1.5% doped GSOZ do not show the positive hysteresis. • By Zn co-doping, radiation tolerance of GSO becomes weaker. • By dense Ce doping, radiation tolerance of GSO and GSOZ are improved
Beriozkin, A.; Mualem, Y.
2018-05-01
This study theoretically analyzes the concept of apparent saturation hysteresis, combined with the Scott et al. (1983) scaling approach, as suggested by Parker and Lenhard (1987), to account for the effect of air entrapment and release on the soil water hysteresis. We found that the theory of Parker and Lenhard (1987) is comprised of some mutually canceling mathematical operations, and when cleared of the superfluous intermediate calculations, their model reduces to the original Scott et al.'s (1983) scaling method, supplemented with the requirement of closure of scanning loops. Our analysis reveals that actually there is no effect of their technique of accounting for the entrapped air on the final prediction of the effective saturation (or water content) scanning curves. Our consideration indicates that the use of the Land (1968) formula for assessing the amount of entrapped air is in disaccord with the apparent saturation concept as introduced by Parker and Lenhard (1987). In this paper, a proper routine is suggested for predicting hysteretic scanning curves of any order, given the two measured main curves, in the complete hysteretic domain and some verification tests are carried out versus measured results. Accordingly, explicit closed-form formulae for direct prediction (with no need of intermediate calculation) of scanning curves up to the third order are derived to sustain our analysis.
Al Janaideh, Mohammad, E-mail: aljanaideh@gmail.com [Department of Mechatronics Engineering, The University of Jordan, 11942 Amman (Jordan)
2013-03-15
We present a time-dependent stop operator-based Prandtl–Ishlinskii model to characterize singular hysteresis loops in a piezoceramic actuator. The model is constructed based on the time-dependent threshold. The inverse time-dependent stop operator-based Prandtl–Ishlinskii model is obtained analytically and it can be applied as a feedforward compensator to compensate for singular hysteresis loops in a class of smart-material-based actuators. The objective of this study is to present an invertible Prandtl–Ishlinskii model that can be applied as a feedforward compensator to compensate for singular hysteresis loops without inserting a feedback control system.
Al Janaideh, Mohammad
2013-01-01
We present a time-dependent stop operator-based Prandtl–Ishlinskii model to characterize singular hysteresis loops in a piezoceramic actuator. The model is constructed based on the time-dependent threshold. The inverse time-dependent stop operator-based Prandtl–Ishlinskii model is obtained analytically and it can be applied as a feedforward compensator to compensate for singular hysteresis loops in a class of smart-material-based actuators. The objective of this study is to present an invertible Prandtl–Ishlinskii model that can be applied as a feedforward compensator to compensate for singular hysteresis loops without inserting a feedback control system
Hysteresis of thin film IPRTs in the range 100 °C to 600 °C
Zvizdić, D.; Šestan, D.
2013-09-01
As opposed to SPRTs, the IPRTs succumb to hysteresis when submitted to change of temperature. This uncertainty component, although acknowledged as omnipresent at many other types of sensors (pressure, electrical, magnetic, humidity, etc.) has often been disregarded in their calibration certificates' uncertainty budgets in the past, its determination being costly, time-consuming and not appreciated by customers and manufacturers. In general, hysteresis is a phenomenon that results in a difference in an item's behavior when approached from a different path. Thermal hysteresis results in a difference in resistance at a given temperature based on the thermal history to which the PRTs were exposed. The most prominent factor that contributes to the hysteresis error in an IPRT is a strain within the sensing element caused by the thermal expansion and contraction. The strains that cause hysteresis error are closely related to the strains that cause repeatability error. Therefore, it is typical that PRTs that exhibit small hysteresis also exhibit small repeatability error, and PRTs that exhibit large hysteresis have poor repeatability. Aim of this paper is to provide hysteresis characterization of a batch of IPRTs using the same type of thin-film sensor, encapsulated by same procedure and same company and to estimate to what extent the thermal hysteresis obtained by testing one single thermometer (or few thermometers) can serve as representative of other thermometers of the same type and manufacturer. This investigation should also indicate the range of hysteresis departure between IPRTs of the same type. Hysteresis was determined by cycling IPRTs temperature from 100 °C through intermediate points up to 600 °C and subsequently back to 100 °C. Within that range several typical sub-ranges are investigated: 100 °C to 400 °C, 100 °C to 500 °C, 100 °C to 600 °C, 300 °C to 500 °C and 300 °C to 600 °C . The hysteresis was determined at various temperatures by
Hysteresis effects on the high-temperature internal friction of polycrystalline zirconium
Povolo, F.; Molinas, B.J.; Rosario Univ. Nacional
1985-01-01
Hysteresis effects present on the high temperature internal friction of annealed polycrystalline zirconium are investigated in detail. It is shown that two internal friction maxima are present when the measurements are performed on heating. If a high enough temperature is reached, only one internal friction maximum is observed on cooling. Furthermore, when the temperature is not decreased below a certain value (critical temperature) only the lower temperature peak is present during a subsequent heating cycle. The critical temperature is strongly dependent on the grain size. Finally, both the hysteresis effects and the internal friction maxima are explained by relaxation mechanisms associated with grain boundary sliding and segregation of impurities to the grain boundaries. (author)
A contact angle hysteresis model based on the fractal structure of contact line.
Wu, Shuai; Ma, Ming
2017-11-01
Contact angle is one of the most popular concept used in fields such as wetting, transport and microfludics. In practice, different contact angles such as equilibrium, receding and advancing contact angles are observed due to hysteresis. The connection among these contact angles is important in revealing the chemical and physical properties of surfaces related to wetting. Inspired by the fractal structure of contact line, we propose a single parameter model depicting the connection of the three angles. This parameter is decided by the fractal structure of the contact line. The results of this model agree with experimental observations. In certain cases, it can be reduced to other existing models. It also provides a new point of view in understanding the physical nature of the contact angle hysteresis. Interestingly, some counter-intuitive phenomena, such as the binary receding angles, are indicated in this model, which are waited to be validated by experiments. Copyright © 2017 Elsevier Inc. All rights reserved.
Data-driven techniques to estimate parameters in a rate-dependent ferromagnetic hysteresis model
Hu Zhengzheng; Smith, Ralph C.; Ernstberger, Jon M.
2012-01-01
The quantification of rate-dependent ferromagnetic hysteresis is important in a range of applications including high speed milling using Terfenol-D actuators. There exist a variety of frameworks for characterizing rate-dependent hysteresis including the magnetic model in Ref. , the homogenized energy framework, Preisach formulations that accommodate after-effects, and Prandtl-Ishlinskii models. A critical issue when using any of these models to characterize physical devices concerns the efficient estimation of model parameters through least squares data fits. A crux of this issue is the determination of initial parameter estimates based on easily measured attributes of the data. In this paper, we present data-driven techniques to efficiently and robustly estimate parameters in the homogenized energy model. This framework was chosen due to its physical basis and its applicability to ferroelectric, ferromagnetic and ferroelastic materials.
Suzuki, Eiichiro; Nagashima, Nobuya (Ajinomoto Co. Inc., Kawasaki, Kanagawa (Japan))
1982-09-01
an automatic recording system was developed for unfrozen water content and spin-spin relaxation time measurements as continuous functions of temperature, by using a broad-line pulsed NMR spectrometer and a minicomputer. The advantages of this system are that the exact quantitative measurements can be done by calibrating the nonlinearity of the NMR sensitivity, and that for high sensitivity temperature measurement the thermocouple with special device is directly immersed in a sample. Three types of freezing-thawing hysteresis phenomena, (1) recrystallization of solute (hydroxy-L-proline, D-mannitol) and refreezing of released hydrated water molecules in frozen aqueous solutions, and (2) hysteresis as the characteristic feature of gels (gelatin, alpha sub(sl)-casein), and (3) supercooling of capillary water in water-insoluble materials (zein, yeast RNA, cellulose) were analysed. The usefulness of this system as an analytical instrument of hydration properties of biological materials is emphasized.
Suzuki, E.; Nagashima, N.
1982-01-01
An automatic recording system was developed for unfrozen water content and spin-spin relaxation time measurements as continuous functions of temperature, by using a broad-line pulsed NMR spectrometer and a mini-computer. The advantages of this system are that the exact quantitative measurements can be done by calibrating the nonlinearity of the NMR sensitivity, and that for high sensitivity temperature measurement the thermocouple with special device is directly immersed in a sample. Three types of freezing-thawing hysteresis phenomena, (1) recrystallization of solute(hydroxy-L-proline, D-mannitol) and refreezing of released hydrated water molecules in frozen aqueous solutions, and (2) hysteresis as the characteristic feature of gels(gelatin, J/sub s1/-casein), and (3) supercooling of capillary water in water-insoluble materials(zein, yeast RNA, cellulose) were analysed. The usefulness of this system as an analytical instrument of hydration properties of biological materials is emphasized.
Ekkachai, Kittipong; Nilkhamhang, Itthisek; Tungpimolrut, Kanokvate
2013-01-01
An inverse controller is proposed for a magnetorheological (MR) damper that consists of a hysteresis model and a voltage controller. The force characteristics of the MR damper caused by excitation signals are represented by a feedforward neural network (FNN) with an elementary hysteresis model (EHM). The voltage controller is constructed using another FNN to calculate a suitable input signal that will allow the MR damper to produce the desired damping force. The performance of the proposed EHM-based FNN controller is experimentally compared to existing control methodologies, such as clipped-optimal control, signum function control, conventional FNN, and recurrent neural network with displacement or velocity inputs. The results show that the proposed controller, which does not require force feedback to implement, provides excellent accuracy, fast response time, and lower energy consumption. (paper)
Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process
Aiki, Toyohiko; Kumazaki, Kota
2012-01-01
From civil engineering point of view it is very important to construct and analyze a mathematical model for a mechanism of concrete carbonation process. On this subject there are several mathematical results concerned with a one-dimensional model, in which hysteresis effects are neglected. Our aim is to give a model with hysteresis effects appearing in carbonation process. In this paper, as the first step of this research we focus only on moisture transport in the process and propose an initial boundary value problem for a system of partial differential equations as a mathematical model. Also, we give results on the existence of a solution to the problem, globally in time and the uniqueness in only one-dimensional case without proofs.
Analysis of hysteresis characteristics and low frequency oscillation in gas discharge plasma
Matsunaga, Yasushi; Kato, Tomokazu
1997-01-01
Hysteresis of gas discharge plasma and nonlinear oscillation of low frequency, caused by the trapped ion, are analyzed. Mainly, the hysteresis and emergence of multiple-steady states are discussed by a simple model of chemical-reaction system. It is shown that a function describing the energy balance has three different real roots. The condition for plural roots depends on the ratio of the bulk energy increase to the surface energy loss of plasma. The criterion contains the non-thermodynamic variables such as conductivity and surface quantities. Examination of stabilities of three-obtained solutions by using linear analysis of differential equations manifests that a root represents a saddle point and other two roots represent stable points. (author)
Narrow thermal hysteresis of NiTi shape memory alloy thin films with submicrometer thickness
Hou, Huilong; Hamilton, Reginald F., E-mail: rfhamilton@psu.edu; Horn, Mark W. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)
2016-09-15
NiTi shape memory alloy (SMA) thin films were fabricated using biased target ion beam deposition (BTIBD), which is a new technique for fabricating submicrometer-thick SMA thin films, and the capacity to exhibit shape memory behavior was investigated. The thermally induced shape memory effect (SME) was studied using the wafer curvature method to report the stress-temperature response. The films exhibited the SME in a temperature range above room temperature and a narrow thermal hysteresis with respect to previous reports. To confirm the underlying phase transformation, in situ x-ray diffraction was carried out in the corresponding phase transformation temperature range. The B2 to R-phase martensitic transformation occurs, and the R-phase transformation is stable with respect to the expected conversion to the B19′ martensite phase. The narrow hysteresis and stable R-phase are rationalized in terms of the unique properties of the BTIBD technique.
Noise in Neural Networks: Thresholds, Hysteresis, and Neuromodulation of Signal-To-Noise
Keeler, James D.; Pichler, Elgar E.; Ross, John
1989-03-01
We study a neural-network model including Gaussian noise, higher-order neuronal interactions, and neuromodulation. For a first-order network, there is a threshold in the noise level (phase transition) above which the network displays only disorganized behavior and critical slowing down near the noise threshold. The network can tolerate more noise if it has higher-order feedback interactions, which also lead to hysteresis and multistability in the network dynamics. The signal-to-noise ratio can be adjusted in a biological neural network by neuromodulators such as norepinephrine. Comparisons are made to experimental results and further investigations are suggested to test the effects of hysteresis and neuromodulation in pattern recognition and learning. We propose that norepinephrine may ``quench'' the neural patterns of activity to enhance the ability to learn details.
Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization
Estrada, David; Dutta, Sumit; Liao, Albert; Pop, Eric
2010-01-01
We describe a pulsed measurement technique for suppressing hysteresis for carbon nanotube (CNT) device measurements in air, vacuum, and over a wide temperature range (80-453 K). Varying the gate pulse width and duty cycle probes the relaxation times associated with charge trapping near the CNT, found to be up to the 0.1-10 s range. Longer off times between voltage pulses enable consistent, hysteresis-free measurements of CNT mobility. A tunneling front model for charge trapping and relaxation is also described, suggesting trap depths up to 4-8 nm for CNTs on SiO 2 . Pulsed measurements will also be applicable for other nanoscale devices such as graphene, nanowires, or molecular electronics, and could enable probing trap relaxation times in a variety of material system interfaces.
Polarization-dependent asymmetric hysteresis behavior in ZnCrO layers
Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon; Fu, Dejun
2012-01-01
A ZnCrO layer grown on a Pt (111)/Al 2 O 3 (0001) substrate exhibits a lattice displacement induced ferroelectric behavior due to a modulation in the lattice translation symmetry. The top-to-bottom Pt/ZnCrO/Pt structure shows asymmetric hysteresis loops in positive and negative voltage bias regions. This is attributed to a change in the Schottky emission rate due to the nonlinear polarization of the ZnCrO barrier. The characteristics of the hysteresis loops depend on the film textures of ZnCrO, which vary with the oxygen partial pressure during the growth stage of the ZnCrO layers. The results suggest that ZnCrO has efficacy characteristics for applications in the non-volatile resistive-switching systems.
Polarization-dependent asymmetric hysteresis behavior in ZnCrO layers
Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon [Dongguk University, Seoul (Korea, Republic of); Fu, Dejun [Wuhan University, Wuhan (China)
2012-06-15
A ZnCrO layer grown on a Pt (111)/Al{sub 2}O{sub 3} (0001) substrate exhibits a lattice displacement induced ferroelectric behavior due to a modulation in the lattice translation symmetry. The top-to-bottom Pt/ZnCrO/Pt structure shows asymmetric hysteresis loops in positive and negative voltage bias regions. This is attributed to a change in the Schottky emission rate due to the nonlinear polarization of the ZnCrO barrier. The characteristics of the hysteresis loops depend on the film textures of ZnCrO, which vary with the oxygen partial pressure during the growth stage of the ZnCrO layers. The results suggest that ZnCrO has efficacy characteristics for applications in the non-volatile resistive-switching systems.
Suzuki, Eiichiro; Nagashima, Nobuya
1982-01-01
an automatic recording system was developed for unfrozen water content and spin-spin relaxation time measurements as continuous functions of temperature, by using a broad-line pulsed NMR spectrometer and a minicomputer. The advantages of this system are that the exact quantitative measurements can be done by calibrating the nonlinearity of the NMR sensitivity, and that for high sensitivity temperature measurement the thermocouple with special device is directly immersed in a sample. Three types of freezing-thawing hysteresis phenomena, (1) recrystallization of solute (hydroxy-L-proline, D-mannitol) and refreezing of released hydrated water molecules in frozen aqueous solutions, and (2) hysteresis as the characteristic feature of gels(gelatin, alpha sub(sl)-casein), and (3) supercooling of capillary water in water-insoluble materials(zein, yeast RNA, cellulose) were analysed. The usefulness of this system as an analytical instrument of hydration properties of biological materials is emphasized. (author)
Wei Huang
2013-05-01
Full Text Available Hysteresis mechanism of pentacene organic field-effect transistors (OFETs with polyvinyl alcohol (PVA and/or polymethyl methacrylate (PMMA dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ∼ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.
Study of thermodynamic water properties and moisture sorption hysteresis of mango skin
Silvio José Ferreira de Souza
2015-03-01
Full Text Available The equilibrium moisture content for adsorption and desorption isotherms of mango skin was determined using the static gravimetric method at temperatures of 20, 26, 33, 38 and 44 oC in the 0.056 to 0.873 water activity range. Both sorption curves show a decrease in equilibrium moisture content as the temperature increasing. The hysteresis effect was observed at constant water activity. The Guggenheim, Anderson, and de Boer (GAB model presented the best fitting accuracy among a group of models and was used to determine the thermodynamic properties of water sorption. Integral enthalpy and integral entropy areas showed inverted values for the adsorption and desorption isotherms over the wide range of water activity studied. These values confirm, in energetic terms, the difference between adsorption and desorption isotherms observed in the hysteresis phenomenon. Finally, the Gibbs free energy revealed that the sorption process was spontaneous for both sorption isotherms.
Frequency shift and hysteresis suppression in contact-mode AFM using contact stiffness modulation
Belhaq M.
2012-07-01
Full Text Available In this paper the frequency response shift and hysteresis suppression of contact-mode atomic force microscopy is investigated using parametric modulation of the contact stiffness. Based on the Hertzian contact theory, a lumped single degree of freedom oscillator is considered for modeling the cantilever dynamics contact-mode atomic force microscopy. We use the technique of direct partition of motion and the method of multiple scales to obtain, respectively, the slow dynamic and the corresponding slow flow of the system. As results, this study shows that the amplitude of the contact stiffness modulation has a significant effect on the frequency response. Specifically, increasing the amplitude of the stiffness modulation suppresses hysteresis, decreases the peak amplitude and produces shifts towards higher and lower frequencies.
Asymmetrically shaped hysteresis loop in exchange-biased FeNi/FeMn film
Gnatchenko, S.L.; Merenkov, D.N.; Bludov, A.N.; Pishko, V.V.; Shakhayeva, Yu.A.; Baran, M.; Szymczak, R.; Novosad, V.A.
2006-01-01
The magnetization reversal of the bilayer polycrystalline FeNi(50 A)/FeMn(50 A) film sputtered in a magnetic field has been studied by magnetic and magneto-optical techniques. The external magnetic fields were applied along the easy or hard magnetization axis of the ferromagnetic permalloy layer. The asymmetry of hysteresis loop has been found. Appreciable asymmetry and the exchange bias were observed only in the field applied along the easy axis. The specific features of magnetization reversal were explained within the phenomenological model that involves high-order exchange anisotropy and misalignment of the easy axes of the antiferromagnetic and ferromagnetic layers. It has been shown that the film can exist in one of three equilibrium magnetic states in the field applied along the easy axis. The transitions between these states occur as first-order phase transitions. The observed hysteresis loop asymmetry is related to the existence of the metastable state
Batı, Mehmet, E-mail: mehmet.bati@erdogan.edu.tr [Department of Physics, Recep Tayyip Erdoğan University, 53100 Rize (Turkey); Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2017-05-15
The hysteresis properties of a kinetic mixed spin (1/2, 1) Ising ferrimagnetic system on a hexagonal lattice are studied by means of the dynamic mean field theory. In the present study, the effects of the nearest-neighbor interaction, temperature, frequency of oscillating magnetic field and the exchange anisotropy on the hysteresis properties of the kinetic system are discussed in detail. A number of interesting phenomena such as the shape of hysteresis loops with one, two, three and inverted-hysteresis/proteresis (butterfly shape hysteresis) have been obtained. Finally, the obtained results are compared with some experimental and theoretical results and a qualitatively good agreement is found.
Apparent Contact Angle and Contact Angle Hysteresis on Liquid Infused Surfaces
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-01-01
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...
Drop deposition on surfaces with contact-angle hysteresis: Liquid-bridge stability and breakup
Akbari, Amir; Hill, Reghan J.
2015-01-01
We study the stability and breakup of liquid bridges with a free contact line on a surface with contact-angle hysteresis under zero-gravity conditions. Theoretical predictions of the stability limits are validated by experimental measurements. Experiments are conducted in a water-methanol-silicon oil system where the gravity force is offset by buoyancy. We highlight cases where stability is lost during the transition from a pinned-pinned to pinned-free interface when the receding contact angl...
Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces
Xu, Xianmin; Wang, Xiaoping
2011-01-01
Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.
Dollarization hysteresis, network externalities and the “past legacy” effect: the case of Bolivia
Bernardo X. Fernández Tellería
2007-01-01
Dollarization in Bolivia rose rapidly immediately after the hyperinflation and currency crisis episode that took place between 1984 and 1985, but failed to reduce and, in fact, continued increasing the following years. In order to explain this dollarization hysteresis, this document proposes and estimates a model, based in the work of Oomes (2003), where network externalities can generate multiple steady-states for dollarization while a so-called past legacy effect increases the likelihood of...
Allag , Hicham; Kedous-Lebouc , Afef; Latreche , Mohamed E. H.
2008-01-01
International audience; In this work, an implementation of static magnetic hysteresis in the reluctance network method is presented and its effectiveness is demonstrated. This implementation is achieved by a succession of iterative steps in the form of algorithm explained and developed for simple examples. However it remains valid for any magnetic circuit. The results obtained are compared to those given by finite element method simulation and essentially the effect of relaxation is discussed...
Use of a novel transfer function to reduce repolarization interval hysteresis
Halámek, Josef; Jurák, Pavel; Bunch, T.J.; Lipoldová, J.; Novák, M.; Vondra, Vlastimil; Leinveber, Pavel; Plachý, M.; Kára, T.; Villa, M.; Fráňa, P.; Souček, M.; Somers, V. K.; Asirvatham, S.J.
2010-01-01
Roč. 29, č. 1 (2010), s. 23-32 ISSN 1383-875X R&D Projects: GA ČR GA102/08/1129 Institutional research plan: CEZ:AV0Z20650511 Keywords : QT hysteresis * QT/RR coupling * Transfer function * Long QT syndrome Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.228, year: 2010
Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.
Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A
2015-11-01
We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.
A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials
Kopfová, J.; Krejčí, Pavel
2011-01-01
Roč. 23, č. 2 (2011), s. 125-137 ISSN 0935-1175 R&D Projects: GA ČR GAP201/10/2315 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape memory * hysteresis * thermodynamical consistency * uniform convergence Subject RIV: BA - General Mathematics Impact factor: 1.310, year: 2011 http://www.springerlink.com/content/6325635691ku0477/
THE INFLUENCE OF HYSTERESIS IN CONSUMER’S BEHAVIOUR FOR PREMIUM PRICE EVALUATION
Evgeny KRYUKOV; Vladislav MALGIN; Irina MALGINA
2014-01-01
The paper deals with an example of the manifestation of the hysteresis in consumers’ behaviour for the Latvian company operating on the market closest to oligopoly and having a local brand name. Based on the quota sample of 332 company stores consumers, their loyalty, willingness to pay for domestic cosmetic products and the propensity to buy habitual products were evaluated. In the survey the unfolding bracketing procedure is used. It is shown that the relationship between the number of loya...
A system for controllable magnetic measurements of hysteresis and Barkhausen noise
Stupakov, Oleksandr; Perevertov, Oleksiy; Zablotskyy, Vitaliy A.
2016-01-01
Roč. 65, č. 5 (2016), s. 1087-1097 ISSN 0018-9456. [IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2015). Pisa, 11.05.2015-14.05.2015] R&D Projects: GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Barkhausen effect * feedback circuits * magnetic field measurement * magnetic hysteresis * magnetization processes * silicon steel Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.456, year: 2016
Nature of dislocation hysteresis losses and nonlinear effect in lead at high vibration amplitudes
Lomakin, V.V.; Pal-Val, L.N.; Platkov, V.Y.; Roshchupkin, A.M.
1982-01-01
The nature of the dislocation hysteresis was established and changes in this hysteresis were determined by investigating the dependence of the dislocation-induced absorption of ultrasound (coefficient α) on the amplitude of ultrasound epsilon-c 0 in single crystals of pure lead and of lead containing Tl and Sn impurities. The investigation was carried out in a wide range of epsilon-c 0 under superconducting transition conditions. In the superconducting (s) state both pure Pb and that doped with T1 exhibited a maximum in the dependence α(epsilon-c 0 ) at high values of epsilon-c 0 ; on transition to the normal (n) state this maximum changed to a plateau. This provided a direct proof of a change in the static nature of the dislocation hysteresis to the dynamic process because of an increase in the coefficient of the electron drag of dislocations. Estimates were obtained of the range of lengths of dislocation loops: 2.4 x 10 - 4 cm - 4 cm. In the case of lead containing Sn the dynamic hysteresis occurred both in the normal and superconducting states. In the range of amplitudes above that of the maximum and at the beginning of the plateau all single crystals exhibited a rise of α on increase of epsilon-c 0 in the superconducting and normal states; this rise was due to nonlinear effects observed in the case of strong bending of L/sub N/ loops. An analysis was made of the amplitude dependence of the losses associated with this effect. The results were in good agreement with the experimental data
Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.
Iliev, Stanimir; Pesheva, Nina
2016-06-01
We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.
Kovalev, L.K.; Ilushin, K.V.; Penkin, V.T.; Kovalev, K.L.; Koneev, S.M.-A.; Poltavets, V.N.; Larionoff, A.E.; Modestov, K.A.; Larionoff, S.A.; Gawalek, W.; Habisreuther, T.; Oswald, B.; Best, K.-J.; Strasser, T.
2000-01-01
Two new types of HTS electric machine are considered. The first type is hysteresis motors and generators with cylindrical and disc rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such rotors have anisotropic properties (ferromagnetic in one direction and diamagnetic in the perpendicular one). Theoretical and experimental results for HTS hysteresis and reluctance motors are presented. A series of hysteresis HTS motors with output power rating from 1 kW (at 50 Hz) up to 4 kW (at 400 Hz) and a series of reluctance HTS motors with output power 2-18.5 kW (at 50 Hz) were constructed and successfully tested. It was shown that HTS reluctance motors could reach two to five times better overall dimensions and specific power than conventional asynchronous motors of the same size and will have higher values of power factor (cos φ≥0.7 to 0.8). (author)
Magnetic fluid hyperthermia probed by both calorimetric and dynamic hysteresis measurements
Guibert, Clément; Fresnais, Jérôme; Peyre, Véronique; Dupuis, Vincent
2017-01-01
In this paper, we report an investigation of magnetic fluid hyperthermia (MFH) using combined calorimetric and newly implemented dynamic hysteresis measurements for two sets of well characterized size-sorted maghemite nanoparticles (with diameters of about 10 nm and 20 nm) dispersed in water and in glycerol. Our primary goal was to assess the influence of viscosity on the heating efficiency of magnetic nanoparticles described in terms of specific loss power (SLP or specific absorption rate, SAR) and dynamic hysteresis. In particular, we aimed to investigate how this SLP depends on the transition from Néelian to Brownian behavior of nanoparticles expected to occur between 10 nm and 20 nm (for maghemite) and dependent on the viscosity. While we observed a good agreement between calorimetric and dynamic hysteresis measurements, we found that the SLP measured for the different systems do not depend noticeably on the viscosity of solvent. Calculations performed according to Rosensweig's linear model [1] allow us to quantitatively reproduce our results at low field intensities, provided we use a value for the magnetic anisotropy constant much smaller than the one commonly used in the literature. This raises the question of the temperature dependance of the magnetic anisotropy constant and its relevance for a quantitative description of MFH.
Evans, Phillip G.; Dapino, Marcelo J.
2013-01-01
Measurements are performed to characterize the hysteresis in magnetomechanical coupling of iron–gallium (Galfenol) alloys. Magnetization and strain of production and research grade Galfenol are measured under applied stress at constant field, applied field at constant stress, and alternately applied field and stress. A high degree of reversibility in the magnetomechanical coupling is demonstrated by comparing a series of applied field at constant stress measurements with a single applied stress at constant field measurement. Accommodation is not evident and magnetic hysteresis for applied field and stress is shown to be coupled. A thermodynamic model is formulated for 3-D magnetization and strain. It employs a stress, field, and direction dependent hysteron that has an instantaneous loss mechanism, similar to Coulomb-friction or Preisach-type models. Stochastic homogenization is utilized to account for the smoothing effect that material inhomogeneities have on bulk processes. - Highlights: ► We conduct coupled experiments and develop nonlinear thermodynamic models for magnetostrictive iron–gallium (Galfenol) alloys. ► The measurements show unexpected kinematic reversibility in the magnetomechanical coupling. ► This is in contrast with the magnetomechanical coupling in steel which is both thermodynamically and kinematically irreversible. ► The model accurately describes the measurements and provides a framework for understanding hysteresis in ferromagnetic materials which exhibit kinematically reversible magnetomechanical coupling.
Yan, Peng; Zhang, Yangming
2018-06-01
High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.
Yang Wenjiang; Liu Yu; Wen Zheng; Chen Xiaodong; Duan Yi
2008-01-01
In order to investigate the feasible application of a permanent magnet-high-temperature superconductor (PM-HTS) interaction maglev system to a maglev train or a space vehicle launcher, we have constructed a demonstration maglev test vehicle. The force dissipation and damping of the maglev vehicle against external disturbances are studied in a wide range of amplitudes and frequencies by using a sine vibration testing set-up. The dynamic levitation force shows a typical hysteresis behavior, and the force loss is regarded as the hysteresis loss, which is believed to be due to flux motions in superconductors. In this study, we find that the hysteresis loss has weak frequency dependence at small amplitudes and that the dependence increases as the amplitude grows. To analyze the damping properties of the maglev vehicle at different field cooling (FC) conditions, we also employ a transient vibration testing technique. The maglev vehicle shows a very weak damping behavior, and the damping is almost unaffected by the trapped flux of the HTSs in different FC conditions, which is believed to be attributed to the strong pinning in melt-textured HTSs
Stress- and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics
Yimnirun, R; Wongsaenmai, S; Wongmaneerung, R; Wongdamnern, N; Ngamjarurojana, A; Ananta, S; Laosiritaworn, Y
2007-01-01
Effects of electric field-frequency, electric field-amplitude, mechanical stress, and temperature on the hysteresis area, especially the scaling form, were investigated in soft lead zirconate titanate (PZT) bulk ceramics. The hysteresis area was found to depend on the frequency and field-amplitude with the same set of exponents as the power-law scaling for both with and without stresses. The inclusion of stresses into the power-law was obtained in the form of σ=0 > ∝ f -0.25 E 0 σ 0.45 which indicates the difference in energy dissipation between the under-stress and stress-free conditions. The power-law temperature scaling relations were obtained for hysteresis area (A) and remanent polarization P r , while the coercivity E C was found to scale linearly with temperature T. The three temperature scaling relations were also field-dependent. At fixed field amplitude E 0 , the scaling relations take the forms of ∝ T -1.1024 , P r ∼T -1.2322 and (E C0 - E C ) ∼T
Study of spin crossover nanoparticles thermal hysteresis using FORC diagrams on an Ising-like model
Atitoaie, Alexandru; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian
2014-01-01
Recent developments in the synthesis and characterization of spin crossover (SCO) nanoparticles and their prospects of switching at molecular level turned these bistable compounds into possible candidates for replacing the materials used in recording media industry for development of solid state pressure and temperature sensors or for bringing contributions in engineering. Compared to bulk samples with the same chemical structure, SCO nanoparticles display different characteristics of the hysteretic and relaxation properties like the shift of the transition temperature towards lower values along with decrease of the hysteresis width with nanoparticles size. Using an Ising-like model with specific boundary conditions within a Monte Carlo procedure, we here reproduce most of the hysteretic properties of SCO nanoparticles by considering the interaction between spin crossover edge molecules and embedding surfactant molecules and we propose a complex analysis concerning the effect of the interactions and sizes during the thermal transition in systems of SCO nanoparticles by using the First Order Reversal Curves diagram method and by comparison with similar effects in mixed crystal systems. - Highlights: • The influence of size effects in spin crossover nanoparticles is analyzed. • The environment shifts the hysteresis loop towards lower temperatures. • First Order Reversal Curves technique is employed. • One determines the distributions of switching temperatures. • One disentangles between kinetics and non-kinetic parts of the hysteresis
Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering.
Athanasios Ch Mitropoulos
Full Text Available Everett's theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a at a common point the system can reach in a finite (not an infinite number of ways, b a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM. Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed.
Hysteresis Analysis and Positioning Control for a Magnetic Shape Memory Actuator
Lin, Jhih-Hong; Chiang, Mao-Hsiung
2015-01-01
Magnetic shape memory alloys (MSM alloys), a new kind of smart materials, have become a potential candidate in many engineering fields. MSMs have the advantage of bearing a huge strain, much larger than other materials. In addition, they also have fast response. These characteristics make MSM a good choice in micro engineering. However, MSMs display the obvious hysteresis phenomenon of nonlinear behavior. Thus the difficulty in using the MSM element as a positioning actuator is increased due to the hysteresis. In this paper, the hysteresis phenomenon of the MSM actuator is analyzed, and the closed-loop positioning control is also implemented experimentally. For that, a modified fuzzy sliding mode control (MFSMC) is proposed. The MFSMC and the PID control are used to design the controllers for realizing the positioning control. The experimental results are compared under different experimental conditions, such as different frequency, amplitude, and loading. The experimental results show that the precise positioning control of MFSMC can be achieved satisfactorily. PMID:25853405
Zhou, Miaolei; Wang, Shoubin; Gao, Wei
2013-01-01
As a new type of intelligent material, magnetically shape memory alloy (MSMA) has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP) model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.
Prasetyo, Luisa; Horikawa, Toshihide; Phadungbut, Poomiwat; Johnathan Tan, Shiliang; Do, D D; Nicholson, D
2016-09-15
Adsorption isotherms and isosteric heats of krypton on a highly graphitized carbon black, Carbopack F, have been studied with a combination of Monte Carlo simulation and high-resolution experiments at 77K and 87K. Our investigation sheds light on the microscopic origin of the experimentally observed, horizontal hysteresis loop in the first layer, and the vertical hysteresis-loop in the second layer, and is found to be in agreement with our recent Monte Carlo simulation study (Diao et al., 2015). From detailed analysis of the adsorption isotherm, the latter is attributed to the compression of an imperfect solid-like state in the first layer, to form a hexagonally packed, solid-like state, immediately following the first order condensation of the second layer. To ensure that capillary condensation in the confined spaces between microcrystallites of Carbopack F does not interfere with these hysteresis loops, we carried out simulations of krypton adsorption in the confined space of a wedge-shaped pore that mimics the interstices between particles. These simulations show that, up to the third layer, any such interference is negligible. Copyright © 2016 Elsevier Inc. All rights reserved.
Harikrishnan, A. R.; Dhar, Purbarun; Agnihotri, Prabhat K.; Gedupudi, Sateesh; Das, Sarit K.
2018-04-01
Dynamic wettability and contact angle hysteresis can be correlated to shed insight onto any solid-liquid interaction. Complex fluids are capable of altering the expected hysteresis and dynamic wetting behavior due to interfacial interactions. We report the effect of capillary number on the dynamic advancing and receding contact angles of surfactant-based nanocolloidal solutions on hydrophilic, near hydrophobic, and superhydrophobic surfaces by performing forced wetting and de-wetting experiments by employing the embedded needle method. A segregated study is performed to infer the contributing effects of the constituents and effects of particle morphology. The static contact angle hysteresis is found to be a function of particle and surfactant concentrations and greatly depends on the nature of the morphology of the particles. An order of estimate of line energy and a dynamic flow parameter called spreading factor and the transient variations of these parameters are explored which sheds light on the dynamics of contact line movement and response to perturbation of three-phase contact. The Cox-Voinov-Tanner law was found to hold for hydrophilic and a weak dependency on superhydrophobic surfaces with capillary number, and even for the complex fluids, with a varying degree of dependency for different fluids.
[Process study on hysteresis of vegetation cover influencing sand-dust events].
Xu, Xing-Kui; Wang, Xiao-Tao; Zhang, Feng
2009-02-15
Data analysis from satellite and weather stations during 1982-2000 shows nonlinear relationship between vegetation cover and sand-dust events is present in most part of China. Vegetation cover ratio in summer can impact significantly on the frequency of sand-dust storms from winter to spring in the source regions of sand-dust events. It is not quite clear about the hysteresis that vegetation cover in summer influence sand-dust events during winter and spring. A quasi-geostrophic barotropic model is used under the condition of 3 magnitude of frictional coefficient to investigate the cause of the hysteresis. Wind velocity shows a greatest decline at 90% during 72 h as initial wind velocity is 10 m/s for magnitude of frictional coefficient between atmosphere and water surface, greatest decline at 100% during 18 h for magnitude of frictional coefficient between atmosphere and bare soil and a 100% reduction of wind speed during 1 h for magnitude of frictional coefficient between atmosphere and vegetation cover. Observation and simulation prove that residual root and stem from summervegetation are one of factors to influence sand-dust events happened during winter and spring. Air inhibition from residual root and stem is a most important reason for hysteresis that vegetation cover influence sand-dust events.
Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering
Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.
2016-01-01
Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263
Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model
Miaolei Zhou
2013-01-01
Full Text Available As a new type of intelligent material, magnetically shape memory alloy (MSMA has a good performance in its applications in the actuator manufacturing. Compared with traditional actuators, MSMA actuator has the advantages as fast response and large deformation; however, the hysteresis nonlinearity of the MSMA actuator restricts its further improving of control precision. In this paper, an improved Krasnosel'skii-Pokrovskii (KP model is used to establish the hysteresis model of MSMA actuator. To identify the weighting parameters of the KP operators, an improved gradient correction algorithm and a variable step-size recursive least square estimation algorithm are proposed in this paper. In order to demonstrate the validity of the proposed modeling approach, simulation experiments are performed, simulations with improved gradient correction algorithm and variable step-size recursive least square estimation algorithm are studied, respectively. Simulation results of both identification algorithms demonstrate that the proposed modeling approach in this paper can establish an effective and accurate hysteresis model for MSMA actuator, and it provides a foundation for improving the control precision of MSMA actuator.
Long- and short-run price asymmetries and hysteresis in the Italian gasoline market
Bagnai, Alberto; Mongeau Ospina, Christian Alexander
2015-01-01
Using monthly data from 1994 to 2013 we study the long-run relation of the pre-tax retail prices of gasoline with crude price and the nominal exchange rate. We find a strongly significant long-run relation. We then use the nonlinear ARDL (NARDL) model to assess the asymmetries on both the short- and long-run elasticities, as well as the presence of hysteresis in the pricing behaviour. The estimation results confirm the presence of asymmetry in the long-run elasticities, with significant differences between the crude price and the exchange rate, as well as the presence of hysteresis in the relation between the retail price of gasoline and crude oil price. - Highlights: • The pass-through of crude oil prices and exchange rate into gasoline prices is examined. •We use an extended NARDL model to test for asymmetric reactions and hysteresis. • Asymmetric pricing behaviour features only in the long run. • The sign of the asymmetry differs between exchange rate and crude price changes. • The results are robust to the inclusion of several variables usually related to asymmetry
An investigation of the effect of hysteresis in a simple rainfall-runoff model
Flynn, D. P.; O'Kane, J. P.
2009-04-01
Multiphase porous media such as soils are known to exhibit hysteresis, e.g. in soils there is a strong hysteretic relationship between the moisture content and the matric potential and to date the Preisach model has been successful in modelling this relationship. Subsequently ODEs with Preisach hysteresis have been developed, such as a hysteretic version of Darcy's law and a hysteretic version of the linear reservoir known as the Preisach reservoir. In this paper we combine the above Hysteretic Differential Equations (HDEs) with three linear reservoirs so as to develop a simple rainfall runoff model. The model can be represented by a block diagram: Rainfall q(t) enters the soil component and either infiltrates and/or runs off when it exceeds the maximum rate of infiltration. The runoff part is fed into two linear reservoirs in series. Next, the drainage from the soil to groundwater is represented by a single linear reservoir, where the output from the soil becomes the input to the ground reservoir and vice-versa for capillary rise. Finally the groundwater and surface runoff are combined at some point and contribute to the total outflow from the catchment. Finally we investigate the effects of hysteresis in this system and compare it to the non-hysteretic case.
Jeon, Jae; Chang, John
2018-03-13
A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.
Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Christopher
2017-01-01
The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experiment...
Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris
2017-01-01
The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.
Wempe, W.; Spetzler, H.; Kittleson, C.; Pursley, J.
2003-12-01
We observed significant reduction in wetting hysteresis with time while a diesel-contaminated quartz crystal was dipped in and out of an oil-reducing bacteria solution. This wetting hysteresis is significantly greater than the wetting hysteresis when the diesel-contaminated quartz crystal is dipped in and out of (1) water, (2) diesel and (3) the bacterial food solution that does not contain bacteria. The reduction in wetting hysteresis of the bacteria solution on the quartz surface results from a reduction in the advancing contact angle formed at the air-liquid-quartz contact with time; the receding contact angle remains the same with time. Our results suggest that the bacteria solution moves across the quartz surface with less resistance after bioremediation has begun. These results imply that bioremediation may influence fluid flow behavior with time. For many fluid-solid systems there is a difference between the contact angle while a contact line advances and recedes across a solid surface; this difference is known as wetting hysteresis. Changes in wetting hysteresis can occur from changes in surface tension or the surface topography. Low contact angle values indicate that the liquid spreads or wets well, while high values indicate poor wetting or non-wetting. Contact angles are estimated in the lab by measuring the weight of the meniscus formed at the air-liquid-quartz interface and by knowing the fluid surface tension. In the lab, we have been able to use low-frequency seismic attenuation data to detect changes in the wetting characteristics of glass plates and of Berea sandstone. The accepted seismic attenuation mechanism is related to the loss of seismic energy due to the hysteresis of meniscus movement (wetting hysteresis) when a pore containing two fluids is stressed at very low frequencies (bioremediation progress using seismic attenuation data. We are measuring low-frequency seismic attenuation in the lab while flowing bacteria solution through Berea
Ghosh, Bahniman; Mondal, Partha; Akram, M. W.; Bal, Punyasloka; Salimath, Akshay Kumar
2014-01-01
We propose a hetero-gate-dielectric double gate junctionless transistor (HGJLT), taking high-k gate insulator at source side and low-k gate insulator at drain side, which reduces the effects of band-to-band tunnelling (BTBT) in the sub-threshold region. A junctionless transistor (JLT) is turned off by the depletion of carriers in the highly doped thin channel (device layer) which results in a significant band overlap between the valence band of the channel region and the conduction band of the drain region, due to off-state drain bias, that triggers electrons to tunnel from the valence band of the channel region to the conduction band of the drain region leaving behind holes in the channel. These effects of band-to-band tunnelling increase the sub-threshold leakage current, and the accumulation of holes in the channel forms a parasitic bipolar junction transistor (n–p–n BJT for channel JLT) in the lateral direction by the source (emitter), channel (base) and drain (collector) regions in JLT structure in off-state. The proposed HGJLT reduces the subthreshold leakage current and suppresses the parasitic BJT action in off-state by reducing the band-to-band tunnelling probability. (semiconductor devices)
Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T
2004-01-01
To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel
Proximal iliotibial band syndrome: case report
Guilherme Guadagnini Falotico
2013-08-01
Full Text Available OBJECTIVE: The overuse injuries in the hip joint occur commonly in sports practitioners and currently due to technical advances in diagnostic imaging, especially magnetic resonance imaging (MRI, are often misdiagnosed. Recently, a group of people were reported, all female, with pain and swelling in the pelvic region.T2-weighted MRI showed increased signal in the enthesis of the iliotibial band (ITB along the lower border of the iliac tubercle. We report a case of a 34 year old woman, non-professional runner, with pain at the iliac crest with no history of trauma and whose MRI was compatible with the proximal iliotibial band syndrome.
Banding of connection standards for distributed generation
NONE
2006-05-04
This report presents the views of distributed network operators (DNOs), developers, equipment manufacturers and consultants on the current banding of distributed generation in terms of connection standards and recommendations. The Documents ER G59/1, ER G75/1, ER G83/1 and ETR 113/1 covering recommendations for the connection of embedded generating plant to distribution systems and guidance notes for the protection of embedded generating plant are examined. The way in which the recommendations are applied in practice is investigated. Multiple distribution generator installations, fault ride through, and banding are considered as well as both protection required and maximum generator sizes at respective voltage levels.
Noise exposure in marching bands
Keefe, Joseph
2005-09-01
Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.
Reduction in pediatric identification band errors: a quality collaborative.
Phillips, Shannon Connor; Saysana, Michele; Worley, Sarah; Hain, Paul D
2012-06-01
Accurate and consistent placement of a patient identification (ID) band is used in health care to reduce errors associated with patient misidentification. Multiple safety organizations have devoted time and energy to improving patient ID, but no multicenter improvement collaboratives have shown scalability of previously successful interventions. We hoped to reduce by half the pediatric patient ID band error rate, defined as absent, illegible, or inaccurate ID band, across a quality improvement learning collaborative of hospitals in 1 year. On the basis of a previously successful single-site intervention, we conducted a self-selected 6-site collaborative to reduce ID band errors in heterogeneous pediatric hospital settings. The collaborative had 3 phases: preparatory work and employee survey of current practice and barriers, data collection (ID band failure rate), and intervention driven by data and collaborative learning to accelerate change. The collaborative audited 11377 patients for ID band errors between September 2009 and September 2010. The ID band failure rate decreased from 17% to 4.1% (77% relative reduction). Interventions including education of frontline staff regarding correct ID bands as a safety strategy; a change to softer ID bands, including "luggage tag" type ID bands for some patients; and partnering with families and patients through education were applied at all institutions. Over 13 months, a collaborative of pediatric institutions significantly reduced the ID band failure rate. This quality improvement learning collaborative demonstrates that safety improvements tested in a single institution can be disseminated to improve quality of care across large populations of children.
Abeysekara, A. U.; Flinders, A.; Archambault, S.; Feng, Q.; Archer, A.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Bird, R.; Buchovecky, M.; Cardenzana, J. V; Eisch, J. D.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Finley, J. P.; Falcone, A.; Fleischhack, H.
2017-01-01
Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi -Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10 −4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.
Abeysekara, A. U.; Flinders, A. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Archambault, S.; Feng, Q. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Cardenzana, J. V; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Fleischhack, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Collaboration: VERITAS Collaboration; MAGIC Collaboration; and others
2017-01-01
Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi -Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10{sup −4} Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.
A comparison of L-band and C-band rf guns as sources for inline-injection systems
Gallardo, J.C.; Kirk, H.G.; Meyerer, T.
1994-12-01
We consider the beam dynamics associated with installing a BNL type 1 1/2 cell L-band or C-band rf gun before two TESLA L-band cryomodules. This system will deliver a 25 MeV electron beam with peak currents on the order of 100 A suitable for further magnetic compression. evaluate the injection systems utilizing the electron beam dynamic code PARMELA from the point of view of minimizing the transverse invariant emittance
Semiconductors bonds and bands
Ferry, David K
2013-01-01
As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.
Experimental investigation of hysteresis in the break-up of liquid curtains
Marston, Jeremy
2014-09-01
Findings from an experimental investigation of the break-up of liquid curtains are reported, with the overall aim of examining stability windows for multi-layer liquid curtains composed of Newtonian fluids, where the properties of each layer can be kept constant or varied. For a single-layer curtain it is known that the minimum flow rate required for initial stability can be violated by carefully reducing the flow rate below this point, which defines a hysteresis region. However, when two or three layers are used to form a composite curtain, the hysteresis window can be considerably reduced depending on the experimental procedure used. Extensive quantitative measurements of this hysteresis region are provided alongside an examination of the influence of physical properties such as viscosity and surface tension. The origins of curtain break-up for two different geometries are analysed; first where the curtain width remains constant, pinned by straight edge guides; and second where the curtain is tapered by angled edge guides. For both cases, the rupture speed is measured, which appears to be consistent with the Taylor-Culick velocity. Observations of the typical linearly spaced jets which form after the break-up has transpired and the periodicity of these jets are compared to the Rayleigh-Taylor wavelength and previous experimental measurements. Furthermore, the curtain stability criterion originally developed by Brown (1961), summarised in terms of a Weber number, has recently been extended to multi-layer curtains by Dyson et al. (2009); thus this report provides the first experimental measurements which puts this to the test. Ultimately, it is found that only the most viscous and polymer-based liquids violate this criterion. © 2014 Elsevier Ltd.